1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  * @vf: the VF associated with this VSI, if any
170  *
171  * Return 0 on success and a negative value on error
172  */
173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174 {
175 	enum ice_vsi_type vsi_type = vsi->type;
176 	struct ice_pf *pf = vsi->back;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 void ice_vsi_delete(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 	if (!ctxt)
296 		return;
297 
298 	if (vsi->type == ICE_VSI_VF)
299 		ctxt->vf_num = vsi->vf->vf_id;
300 	ctxt->vsi_num = vsi->vsi_num;
301 
302 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303 
304 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 	if (status)
306 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 			vsi->vsi_num, status);
308 
309 	kfree(ctxt);
310 }
311 
312 /**
313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314  * @vsi: pointer to VSI being cleared
315  */
316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = vsi->back;
319 	struct device *dev;
320 
321 	dev = ice_pf_to_dev(pf);
322 
323 	if (vsi->af_xdp_zc_qps) {
324 		bitmap_free(vsi->af_xdp_zc_qps);
325 		vsi->af_xdp_zc_qps = NULL;
326 	}
327 	/* free the ring and vector containers */
328 	if (vsi->q_vectors) {
329 		devm_kfree(dev, vsi->q_vectors);
330 		vsi->q_vectors = NULL;
331 	}
332 	if (vsi->tx_rings) {
333 		devm_kfree(dev, vsi->tx_rings);
334 		vsi->tx_rings = NULL;
335 	}
336 	if (vsi->rx_rings) {
337 		devm_kfree(dev, vsi->rx_rings);
338 		vsi->rx_rings = NULL;
339 	}
340 	if (vsi->txq_map) {
341 		devm_kfree(dev, vsi->txq_map);
342 		vsi->txq_map = NULL;
343 	}
344 	if (vsi->rxq_map) {
345 		devm_kfree(dev, vsi->rxq_map);
346 		vsi->rxq_map = NULL;
347 	}
348 }
349 
350 /**
351  * ice_vsi_clear - clean up and deallocate the provided VSI
352  * @vsi: pointer to VSI being cleared
353  *
354  * This deallocates the VSI's queue resources, removes it from the PF's
355  * VSI array if necessary, and deallocates the VSI
356  *
357  * Returns 0 on success, negative on failure
358  */
359 int ice_vsi_clear(struct ice_vsi *vsi)
360 {
361 	struct ice_pf *pf = NULL;
362 	struct device *dev;
363 
364 	if (!vsi)
365 		return 0;
366 
367 	if (!vsi->back)
368 		return -EINVAL;
369 
370 	pf = vsi->back;
371 	dev = ice_pf_to_dev(pf);
372 
373 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 		return -EINVAL;
376 	}
377 
378 	mutex_lock(&pf->sw_mutex);
379 	/* updates the PF for this cleared VSI */
380 
381 	pf->vsi[vsi->idx] = NULL;
382 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 		pf->next_vsi = vsi->idx;
384 	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 		pf->next_vsi = vsi->idx;
386 
387 	ice_vsi_free_arrays(vsi);
388 	mutex_unlock(&pf->sw_mutex);
389 	devm_kfree(dev, vsi);
390 
391 	return 0;
392 }
393 
394 /**
395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396  * @irq: interrupt number
397  * @data: pointer to a q_vector
398  */
399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400 {
401 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402 
403 	if (!q_vector->tx.tx_ring)
404 		return IRQ_HANDLED;
405 
406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
407 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 /**
414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
415  * @irq: interrupt number
416  * @data: pointer to a q_vector
417  */
418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419 {
420 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421 
422 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 		return IRQ_HANDLED;
424 
425 	q_vector->total_events++;
426 
427 	napi_schedule(&q_vector->napi);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433 {
434 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 	struct ice_pf *pf = q_vector->vsi->back;
436 	struct ice_vf *vf;
437 	unsigned int bkt;
438 
439 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 		return IRQ_HANDLED;
441 
442 	rcu_read_lock();
443 	ice_for_each_vf_rcu(pf, bkt, vf)
444 		napi_schedule(&vf->repr->q_vector->napi);
445 	rcu_read_unlock();
446 
447 	return IRQ_HANDLED;
448 }
449 
450 /**
451  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
452  * @pf: board private structure
453  * @vsi_type: type of VSI
454  * @ch: ptr to channel
455  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
456  *
457  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
458  * it may be NULL in the case there is no association with a VF. For
459  * ICE_VSI_VF the VF pointer *must not* be NULL.
460  *
461  * returns a pointer to a VSI on success, NULL on failure.
462  */
463 static struct ice_vsi *
464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
465 	      struct ice_channel *ch, struct ice_vf *vf)
466 {
467 	struct device *dev = ice_pf_to_dev(pf);
468 	struct ice_vsi *vsi = NULL;
469 
470 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
471 		return NULL;
472 
473 	/* Need to protect the allocation of the VSIs at the PF level */
474 	mutex_lock(&pf->sw_mutex);
475 
476 	/* If we have already allocated our maximum number of VSIs,
477 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
478 	 * is available to be populated
479 	 */
480 	if (pf->next_vsi == ICE_NO_VSI) {
481 		dev_dbg(dev, "out of VSI slots!\n");
482 		goto unlock_pf;
483 	}
484 
485 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
486 	if (!vsi)
487 		goto unlock_pf;
488 
489 	vsi->type = vsi_type;
490 	vsi->back = pf;
491 	set_bit(ICE_VSI_DOWN, vsi->state);
492 
493 	if (vsi_type == ICE_VSI_VF)
494 		ice_vsi_set_num_qs(vsi, vf);
495 	else if (vsi_type != ICE_VSI_CHNL)
496 		ice_vsi_set_num_qs(vsi, NULL);
497 
498 	switch (vsi->type) {
499 	case ICE_VSI_SWITCHDEV_CTRL:
500 		if (ice_vsi_alloc_arrays(vsi))
501 			goto err_rings;
502 
503 		/* Setup eswitch MSIX irq handler for VSI */
504 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
505 		break;
506 	case ICE_VSI_PF:
507 		if (ice_vsi_alloc_arrays(vsi))
508 			goto err_rings;
509 
510 		/* Setup default MSIX irq handler for VSI */
511 		vsi->irq_handler = ice_msix_clean_rings;
512 		break;
513 	case ICE_VSI_CTRL:
514 		if (ice_vsi_alloc_arrays(vsi))
515 			goto err_rings;
516 
517 		/* Setup ctrl VSI MSIX irq handler */
518 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
519 
520 		/* For the PF control VSI this is NULL, for the VF control VSI
521 		 * this will be the first VF to allocate it.
522 		 */
523 		vsi->vf = vf;
524 		break;
525 	case ICE_VSI_VF:
526 		if (ice_vsi_alloc_arrays(vsi))
527 			goto err_rings;
528 		vsi->vf = vf;
529 		break;
530 	case ICE_VSI_CHNL:
531 		if (!ch)
532 			goto err_rings;
533 		vsi->num_rxq = ch->num_rxq;
534 		vsi->num_txq = ch->num_txq;
535 		vsi->next_base_q = ch->base_q;
536 		break;
537 	case ICE_VSI_LB:
538 		if (ice_vsi_alloc_arrays(vsi))
539 			goto err_rings;
540 		break;
541 	default:
542 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
543 		goto unlock_pf;
544 	}
545 
546 	if (vsi->type == ICE_VSI_CTRL && !vf) {
547 		/* Use the last VSI slot as the index for PF control VSI */
548 		vsi->idx = pf->num_alloc_vsi - 1;
549 		pf->ctrl_vsi_idx = vsi->idx;
550 		pf->vsi[vsi->idx] = vsi;
551 	} else {
552 		/* fill slot and make note of the index */
553 		vsi->idx = pf->next_vsi;
554 		pf->vsi[pf->next_vsi] = vsi;
555 
556 		/* prepare pf->next_vsi for next use */
557 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
558 						 pf->next_vsi);
559 	}
560 
561 	if (vsi->type == ICE_VSI_CTRL && vf)
562 		vf->ctrl_vsi_idx = vsi->idx;
563 	goto unlock_pf;
564 
565 err_rings:
566 	devm_kfree(dev, vsi);
567 	vsi = NULL;
568 unlock_pf:
569 	mutex_unlock(&pf->sw_mutex);
570 	return vsi;
571 }
572 
573 /**
574  * ice_alloc_fd_res - Allocate FD resource for a VSI
575  * @vsi: pointer to the ice_vsi
576  *
577  * This allocates the FD resources
578  *
579  * Returns 0 on success, -EPERM on no-op or -EIO on failure
580  */
581 static int ice_alloc_fd_res(struct ice_vsi *vsi)
582 {
583 	struct ice_pf *pf = vsi->back;
584 	u32 g_val, b_val;
585 
586 	/* Flow Director filters are only allocated/assigned to the PF VSI or
587 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
588 	 * add/delete filters so resources are not allocated to it
589 	 */
590 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
591 		return -EPERM;
592 
593 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
594 	      vsi->type == ICE_VSI_CHNL))
595 		return -EPERM;
596 
597 	/* FD filters from guaranteed pool per VSI */
598 	g_val = pf->hw.func_caps.fd_fltr_guar;
599 	if (!g_val)
600 		return -EPERM;
601 
602 	/* FD filters from best effort pool */
603 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
604 	if (!b_val)
605 		return -EPERM;
606 
607 	/* PF main VSI gets only 64 FD resources from guaranteed pool
608 	 * when ADQ is configured.
609 	 */
610 #define ICE_PF_VSI_GFLTR	64
611 
612 	/* determine FD filter resources per VSI from shared(best effort) and
613 	 * dedicated pool
614 	 */
615 	if (vsi->type == ICE_VSI_PF) {
616 		vsi->num_gfltr = g_val;
617 		/* if MQPRIO is configured, main VSI doesn't get all FD
618 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
619 		 */
620 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
621 			if (g_val < ICE_PF_VSI_GFLTR)
622 				return -EPERM;
623 			/* allow bare minimum entries for PF VSI */
624 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
625 		}
626 
627 		/* each VSI gets same "best_effort" quota */
628 		vsi->num_bfltr = b_val;
629 	} else if (vsi->type == ICE_VSI_VF) {
630 		vsi->num_gfltr = 0;
631 
632 		/* each VSI gets same "best_effort" quota */
633 		vsi->num_bfltr = b_val;
634 	} else {
635 		struct ice_vsi *main_vsi;
636 		int numtc;
637 
638 		main_vsi = ice_get_main_vsi(pf);
639 		if (!main_vsi)
640 			return -EPERM;
641 
642 		if (!main_vsi->all_numtc)
643 			return -EINVAL;
644 
645 		/* figure out ADQ numtc */
646 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
647 
648 		/* only one TC but still asking resources for channels,
649 		 * invalid config
650 		 */
651 		if (numtc < ICE_CHNL_START_TC)
652 			return -EPERM;
653 
654 		g_val -= ICE_PF_VSI_GFLTR;
655 		/* channel VSIs gets equal share from guaranteed pool */
656 		vsi->num_gfltr = g_val / numtc;
657 
658 		/* each VSI gets same "best_effort" quota */
659 		vsi->num_bfltr = b_val;
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * ice_vsi_get_qs - Assign queues from PF to VSI
667  * @vsi: the VSI to assign queues to
668  *
669  * Returns 0 on success and a negative value on error
670  */
671 static int ice_vsi_get_qs(struct ice_vsi *vsi)
672 {
673 	struct ice_pf *pf = vsi->back;
674 	struct ice_qs_cfg tx_qs_cfg = {
675 		.qs_mutex = &pf->avail_q_mutex,
676 		.pf_map = pf->avail_txqs,
677 		.pf_map_size = pf->max_pf_txqs,
678 		.q_count = vsi->alloc_txq,
679 		.scatter_count = ICE_MAX_SCATTER_TXQS,
680 		.vsi_map = vsi->txq_map,
681 		.vsi_map_offset = 0,
682 		.mapping_mode = ICE_VSI_MAP_CONTIG
683 	};
684 	struct ice_qs_cfg rx_qs_cfg = {
685 		.qs_mutex = &pf->avail_q_mutex,
686 		.pf_map = pf->avail_rxqs,
687 		.pf_map_size = pf->max_pf_rxqs,
688 		.q_count = vsi->alloc_rxq,
689 		.scatter_count = ICE_MAX_SCATTER_RXQS,
690 		.vsi_map = vsi->rxq_map,
691 		.vsi_map_offset = 0,
692 		.mapping_mode = ICE_VSI_MAP_CONTIG
693 	};
694 	int ret;
695 
696 	if (vsi->type == ICE_VSI_CHNL)
697 		return 0;
698 
699 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
700 	if (ret)
701 		return ret;
702 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
703 
704 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
705 	if (ret)
706 		return ret;
707 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
708 
709 	return 0;
710 }
711 
712 /**
713  * ice_vsi_put_qs - Release queues from VSI to PF
714  * @vsi: the VSI that is going to release queues
715  */
716 static void ice_vsi_put_qs(struct ice_vsi *vsi)
717 {
718 	struct ice_pf *pf = vsi->back;
719 	int i;
720 
721 	mutex_lock(&pf->avail_q_mutex);
722 
723 	ice_for_each_alloc_txq(vsi, i) {
724 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
725 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
726 	}
727 
728 	ice_for_each_alloc_rxq(vsi, i) {
729 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
730 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
731 	}
732 
733 	mutex_unlock(&pf->avail_q_mutex);
734 }
735 
736 /**
737  * ice_is_safe_mode
738  * @pf: pointer to the PF struct
739  *
740  * returns true if driver is in safe mode, false otherwise
741  */
742 bool ice_is_safe_mode(struct ice_pf *pf)
743 {
744 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
745 }
746 
747 /**
748  * ice_is_rdma_ena
749  * @pf: pointer to the PF struct
750  *
751  * returns true if RDMA is currently supported, false otherwise
752  */
753 bool ice_is_rdma_ena(struct ice_pf *pf)
754 {
755 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
756 }
757 
758 /**
759  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
760  * @vsi: the VSI being cleaned up
761  *
762  * This function deletes RSS input set for all flows that were configured
763  * for this VSI
764  */
765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
766 {
767 	struct ice_pf *pf = vsi->back;
768 	int status;
769 
770 	if (ice_is_safe_mode(pf))
771 		return;
772 
773 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
774 	if (status)
775 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
776 			vsi->vsi_num, status);
777 }
778 
779 /**
780  * ice_rss_clean - Delete RSS related VSI structures and configuration
781  * @vsi: the VSI being removed
782  */
783 static void ice_rss_clean(struct ice_vsi *vsi)
784 {
785 	struct ice_pf *pf = vsi->back;
786 	struct device *dev;
787 
788 	dev = ice_pf_to_dev(pf);
789 
790 	if (vsi->rss_hkey_user)
791 		devm_kfree(dev, vsi->rss_hkey_user);
792 	if (vsi->rss_lut_user)
793 		devm_kfree(dev, vsi->rss_lut_user);
794 
795 	ice_vsi_clean_rss_flow_fld(vsi);
796 	/* remove RSS replay list */
797 	if (!ice_is_safe_mode(pf))
798 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
799 }
800 
801 /**
802  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
803  * @vsi: the VSI being configured
804  */
805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
806 {
807 	struct ice_hw_common_caps *cap;
808 	struct ice_pf *pf = vsi->back;
809 
810 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
811 		vsi->rss_size = 1;
812 		return;
813 	}
814 
815 	cap = &pf->hw.func_caps.common_cap;
816 	switch (vsi->type) {
817 	case ICE_VSI_CHNL:
818 	case ICE_VSI_PF:
819 		/* PF VSI will inherit RSS instance of PF */
820 		vsi->rss_table_size = (u16)cap->rss_table_size;
821 		if (vsi->type == ICE_VSI_CHNL)
822 			vsi->rss_size = min_t(u16, vsi->num_rxq,
823 					      BIT(cap->rss_table_entry_width));
824 		else
825 			vsi->rss_size = min_t(u16, num_online_cpus(),
826 					      BIT(cap->rss_table_entry_width));
827 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
828 		break;
829 	case ICE_VSI_SWITCHDEV_CTRL:
830 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
831 		vsi->rss_size = min_t(u16, num_online_cpus(),
832 				      BIT(cap->rss_table_entry_width));
833 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
834 		break;
835 	case ICE_VSI_VF:
836 		/* VF VSI will get a small RSS table.
837 		 * For VSI_LUT, LUT size should be set to 64 bytes.
838 		 */
839 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
840 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
841 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
842 		break;
843 	case ICE_VSI_LB:
844 		break;
845 	default:
846 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
847 			ice_vsi_type_str(vsi->type));
848 		break;
849 	}
850 }
851 
852 /**
853  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
854  * @hw: HW structure used to determine the VLAN mode of the device
855  * @ctxt: the VSI context being set
856  *
857  * This initializes a default VSI context for all sections except the Queues.
858  */
859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
860 {
861 	u32 table = 0;
862 
863 	memset(&ctxt->info, 0, sizeof(ctxt->info));
864 	/* VSI's should be allocated from shared pool */
865 	ctxt->alloc_from_pool = true;
866 	/* Src pruning enabled by default */
867 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
868 	/* Traffic from VSI can be sent to LAN */
869 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
870 	/* allow all untagged/tagged packets by default on Tx */
871 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
872 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
873 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
874 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
875 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
876 	 *
877 	 * DVM - leave inner VLAN in packet by default
878 	 */
879 	if (ice_is_dvm_ena(hw)) {
880 		ctxt->info.inner_vlan_flags |=
881 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
882 		ctxt->info.outer_vlan_flags =
883 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
884 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
885 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
886 		ctxt->info.outer_vlan_flags |=
887 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
888 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
889 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
890 	}
891 	/* Have 1:1 UP mapping for both ingress/egress tables */
892 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
893 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
894 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
895 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
896 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
897 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
898 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
899 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
900 	ctxt->info.ingress_table = cpu_to_le32(table);
901 	ctxt->info.egress_table = cpu_to_le32(table);
902 	/* Have 1:1 UP mapping for outer to inner UP table */
903 	ctxt->info.outer_up_table = cpu_to_le32(table);
904 	/* No Outer tag support outer_tag_flags remains to zero */
905 }
906 
907 /**
908  * ice_vsi_setup_q_map - Setup a VSI queue map
909  * @vsi: the VSI being configured
910  * @ctxt: VSI context structure
911  */
912 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
913 {
914 	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
915 	u16 num_txq_per_tc, num_rxq_per_tc;
916 	u16 qcount_tx = vsi->alloc_txq;
917 	u16 qcount_rx = vsi->alloc_rxq;
918 	u8 netdev_tc = 0;
919 	int i;
920 
921 	if (!vsi->tc_cfg.numtc) {
922 		/* at least TC0 should be enabled by default */
923 		vsi->tc_cfg.numtc = 1;
924 		vsi->tc_cfg.ena_tc = 1;
925 	}
926 
927 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
928 	if (!num_rxq_per_tc)
929 		num_rxq_per_tc = 1;
930 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
931 	if (!num_txq_per_tc)
932 		num_txq_per_tc = 1;
933 
934 	/* find the (rounded up) power-of-2 of qcount */
935 	pow = (u16)order_base_2(num_rxq_per_tc);
936 
937 	/* TC mapping is a function of the number of Rx queues assigned to the
938 	 * VSI for each traffic class and the offset of these queues.
939 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
940 	 * queues allocated to TC0. No:of queues is a power-of-2.
941 	 *
942 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
943 	 * queue, this way, traffic for the given TC will be sent to the default
944 	 * queue.
945 	 *
946 	 * Setup number and offset of Rx queues for all TCs for the VSI
947 	 */
948 	ice_for_each_traffic_class(i) {
949 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
950 			/* TC is not enabled */
951 			vsi->tc_cfg.tc_info[i].qoffset = 0;
952 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
953 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
954 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
955 			ctxt->info.tc_mapping[i] = 0;
956 			continue;
957 		}
958 
959 		/* TC is enabled */
960 		vsi->tc_cfg.tc_info[i].qoffset = offset;
961 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
962 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
963 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
964 
965 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
966 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
967 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
968 			 ICE_AQ_VSI_TC_Q_NUM_M);
969 		offset += num_rxq_per_tc;
970 		tx_count += num_txq_per_tc;
971 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
972 	}
973 
974 	/* if offset is non-zero, means it is calculated correctly based on
975 	 * enabled TCs for a given VSI otherwise qcount_rx will always
976 	 * be correct and non-zero because it is based off - VSI's
977 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
978 	 * at least 1)
979 	 */
980 	if (offset)
981 		vsi->num_rxq = offset;
982 	else
983 		vsi->num_rxq = num_rxq_per_tc;
984 
985 	if (vsi->num_rxq > vsi->alloc_rxq) {
986 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
987 			vsi->num_rxq, vsi->alloc_rxq);
988 		return -EINVAL;
989 	}
990 
991 	vsi->num_txq = tx_count;
992 	if (vsi->num_txq > vsi->alloc_txq) {
993 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
994 			vsi->num_txq, vsi->alloc_txq);
995 		return -EINVAL;
996 	}
997 
998 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
999 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1000 		/* since there is a chance that num_rxq could have been changed
1001 		 * in the above for loop, make num_txq equal to num_rxq.
1002 		 */
1003 		vsi->num_txq = vsi->num_rxq;
1004 	}
1005 
1006 	/* Rx queue mapping */
1007 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1008 	/* q_mapping buffer holds the info for the first queue allocated for
1009 	 * this VSI in the PF space and also the number of queues associated
1010 	 * with this VSI.
1011 	 */
1012 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1013 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1014 
1015 	return 0;
1016 }
1017 
1018 /**
1019  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1020  * @ctxt: the VSI context being set
1021  * @vsi: the VSI being configured
1022  */
1023 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1024 {
1025 	u8 dflt_q_group, dflt_q_prio;
1026 	u16 dflt_q, report_q, val;
1027 
1028 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1029 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1030 		return;
1031 
1032 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1033 	ctxt->info.valid_sections |= cpu_to_le16(val);
1034 	dflt_q = 0;
1035 	dflt_q_group = 0;
1036 	report_q = 0;
1037 	dflt_q_prio = 0;
1038 
1039 	/* enable flow director filtering/programming */
1040 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1041 	ctxt->info.fd_options = cpu_to_le16(val);
1042 	/* max of allocated flow director filters */
1043 	ctxt->info.max_fd_fltr_dedicated =
1044 			cpu_to_le16(vsi->num_gfltr);
1045 	/* max of shared flow director filters any VSI may program */
1046 	ctxt->info.max_fd_fltr_shared =
1047 			cpu_to_le16(vsi->num_bfltr);
1048 	/* default queue index within the VSI of the default FD */
1049 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1050 	       ICE_AQ_VSI_FD_DEF_Q_M);
1051 	/* target queue or queue group to the FD filter */
1052 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1053 		ICE_AQ_VSI_FD_DEF_GRP_M);
1054 	ctxt->info.fd_def_q = cpu_to_le16(val);
1055 	/* queue index on which FD filter completion is reported */
1056 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1057 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1058 	/* priority of the default qindex action */
1059 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1060 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1061 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1062 }
1063 
1064 /**
1065  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1066  * @ctxt: the VSI context being set
1067  * @vsi: the VSI being configured
1068  */
1069 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1070 {
1071 	u8 lut_type, hash_type;
1072 	struct device *dev;
1073 	struct ice_pf *pf;
1074 
1075 	pf = vsi->back;
1076 	dev = ice_pf_to_dev(pf);
1077 
1078 	switch (vsi->type) {
1079 	case ICE_VSI_CHNL:
1080 	case ICE_VSI_PF:
1081 		/* PF VSI will inherit RSS instance of PF */
1082 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1083 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1084 		break;
1085 	case ICE_VSI_VF:
1086 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1087 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1088 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1089 		break;
1090 	default:
1091 		dev_dbg(dev, "Unsupported VSI type %s\n",
1092 			ice_vsi_type_str(vsi->type));
1093 		return;
1094 	}
1095 
1096 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1097 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1098 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1099 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1100 }
1101 
1102 static void
1103 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1104 {
1105 	struct ice_pf *pf = vsi->back;
1106 	u16 qcount, qmap;
1107 	u8 offset = 0;
1108 	int pow;
1109 
1110 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1111 
1112 	pow = order_base_2(qcount);
1113 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1114 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1115 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1116 		   ICE_AQ_VSI_TC_Q_NUM_M);
1117 
1118 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1119 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1120 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1121 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1122 }
1123 
1124 /**
1125  * ice_vsi_init - Create and initialize a VSI
1126  * @vsi: the VSI being configured
1127  * @init_vsi: is this call creating a VSI
1128  *
1129  * This initializes a VSI context depending on the VSI type to be added and
1130  * passes it down to the add_vsi aq command to create a new VSI.
1131  */
1132 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1133 {
1134 	struct ice_pf *pf = vsi->back;
1135 	struct ice_hw *hw = &pf->hw;
1136 	struct ice_vsi_ctx *ctxt;
1137 	struct device *dev;
1138 	int ret = 0;
1139 
1140 	dev = ice_pf_to_dev(pf);
1141 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1142 	if (!ctxt)
1143 		return -ENOMEM;
1144 
1145 	switch (vsi->type) {
1146 	case ICE_VSI_CTRL:
1147 	case ICE_VSI_LB:
1148 	case ICE_VSI_PF:
1149 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1150 		break;
1151 	case ICE_VSI_SWITCHDEV_CTRL:
1152 	case ICE_VSI_CHNL:
1153 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1154 		break;
1155 	case ICE_VSI_VF:
1156 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1157 		/* VF number here is the absolute VF number (0-255) */
1158 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1159 		break;
1160 	default:
1161 		ret = -ENODEV;
1162 		goto out;
1163 	}
1164 
1165 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1166 	 * prune enabled
1167 	 */
1168 	if (vsi->type == ICE_VSI_CHNL) {
1169 		struct ice_vsi *main_vsi;
1170 
1171 		main_vsi = ice_get_main_vsi(pf);
1172 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1173 			ctxt->info.sw_flags2 |=
1174 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1175 		else
1176 			ctxt->info.sw_flags2 &=
1177 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1178 	}
1179 
1180 	ice_set_dflt_vsi_ctx(hw, ctxt);
1181 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1182 		ice_set_fd_vsi_ctx(ctxt, vsi);
1183 	/* if the switch is in VEB mode, allow VSI loopback */
1184 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1185 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1186 
1187 	/* Set LUT type and HASH type if RSS is enabled */
1188 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1189 	    vsi->type != ICE_VSI_CTRL) {
1190 		ice_set_rss_vsi_ctx(ctxt, vsi);
1191 		/* if updating VSI context, make sure to set valid_section:
1192 		 * to indicate which section of VSI context being updated
1193 		 */
1194 		if (!init_vsi)
1195 			ctxt->info.valid_sections |=
1196 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1197 	}
1198 
1199 	ctxt->info.sw_id = vsi->port_info->sw_id;
1200 	if (vsi->type == ICE_VSI_CHNL) {
1201 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1202 	} else {
1203 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1204 		if (ret)
1205 			goto out;
1206 
1207 		if (!init_vsi) /* means VSI being updated */
1208 			/* must to indicate which section of VSI context are
1209 			 * being modified
1210 			 */
1211 			ctxt->info.valid_sections |=
1212 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1213 	}
1214 
1215 	/* Allow control frames out of main VSI */
1216 	if (vsi->type == ICE_VSI_PF) {
1217 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1218 		ctxt->info.valid_sections |=
1219 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1220 	}
1221 
1222 	if (init_vsi) {
1223 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1224 		if (ret) {
1225 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1226 			ret = -EIO;
1227 			goto out;
1228 		}
1229 	} else {
1230 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1231 		if (ret) {
1232 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1233 			ret = -EIO;
1234 			goto out;
1235 		}
1236 	}
1237 
1238 	/* keep context for update VSI operations */
1239 	vsi->info = ctxt->info;
1240 
1241 	/* record VSI number returned */
1242 	vsi->vsi_num = ctxt->vsi_num;
1243 
1244 out:
1245 	kfree(ctxt);
1246 	return ret;
1247 }
1248 
1249 /**
1250  * ice_free_res - free a block of resources
1251  * @res: pointer to the resource
1252  * @index: starting index previously returned by ice_get_res
1253  * @id: identifier to track owner
1254  *
1255  * Returns number of resources freed
1256  */
1257 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1258 {
1259 	int count = 0;
1260 	int i;
1261 
1262 	if (!res || index >= res->end)
1263 		return -EINVAL;
1264 
1265 	id |= ICE_RES_VALID_BIT;
1266 	for (i = index; i < res->end && res->list[i] == id; i++) {
1267 		res->list[i] = 0;
1268 		count++;
1269 	}
1270 
1271 	return count;
1272 }
1273 
1274 /**
1275  * ice_search_res - Search the tracker for a block of resources
1276  * @res: pointer to the resource
1277  * @needed: size of the block needed
1278  * @id: identifier to track owner
1279  *
1280  * Returns the base item index of the block, or -ENOMEM for error
1281  */
1282 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1283 {
1284 	u16 start = 0, end = 0;
1285 
1286 	if (needed > res->end)
1287 		return -ENOMEM;
1288 
1289 	id |= ICE_RES_VALID_BIT;
1290 
1291 	do {
1292 		/* skip already allocated entries */
1293 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1294 			start = end;
1295 			if ((start + needed) > res->end)
1296 				break;
1297 		}
1298 
1299 		if (end == (start + needed)) {
1300 			int i = start;
1301 
1302 			/* there was enough, so assign it to the requestor */
1303 			while (i != end)
1304 				res->list[i++] = id;
1305 
1306 			return start;
1307 		}
1308 	} while (end < res->end);
1309 
1310 	return -ENOMEM;
1311 }
1312 
1313 /**
1314  * ice_get_free_res_count - Get free count from a resource tracker
1315  * @res: Resource tracker instance
1316  */
1317 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1318 {
1319 	u16 i, count = 0;
1320 
1321 	for (i = 0; i < res->end; i++)
1322 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1323 			count++;
1324 
1325 	return count;
1326 }
1327 
1328 /**
1329  * ice_get_res - get a block of resources
1330  * @pf: board private structure
1331  * @res: pointer to the resource
1332  * @needed: size of the block needed
1333  * @id: identifier to track owner
1334  *
1335  * Returns the base item index of the block, or negative for error
1336  */
1337 int
1338 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1339 {
1340 	if (!res || !pf)
1341 		return -EINVAL;
1342 
1343 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1344 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1345 			needed, res->num_entries, id);
1346 		return -EINVAL;
1347 	}
1348 
1349 	return ice_search_res(res, needed, id);
1350 }
1351 
1352 /**
1353  * ice_get_vf_ctrl_res - Get VF control VSI resource
1354  * @pf: pointer to the PF structure
1355  * @vsi: the VSI to allocate a resource for
1356  *
1357  * Look up whether another VF has already allocated the control VSI resource.
1358  * If so, re-use this resource so that we share it among all VFs.
1359  *
1360  * Otherwise, allocate the resource and return it.
1361  */
1362 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1363 {
1364 	struct ice_vf *vf;
1365 	unsigned int bkt;
1366 	int base;
1367 
1368 	rcu_read_lock();
1369 	ice_for_each_vf_rcu(pf, bkt, vf) {
1370 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1371 			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1372 			rcu_read_unlock();
1373 			return base;
1374 		}
1375 	}
1376 	rcu_read_unlock();
1377 
1378 	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1379 			   ICE_RES_VF_CTRL_VEC_ID);
1380 }
1381 
1382 /**
1383  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1384  * @vsi: ptr to the VSI
1385  *
1386  * This should only be called after ice_vsi_alloc() which allocates the
1387  * corresponding SW VSI structure and initializes num_queue_pairs for the
1388  * newly allocated VSI.
1389  *
1390  * Returns 0 on success or negative on failure
1391  */
1392 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1393 {
1394 	struct ice_pf *pf = vsi->back;
1395 	struct device *dev;
1396 	u16 num_q_vectors;
1397 	int base;
1398 
1399 	dev = ice_pf_to_dev(pf);
1400 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1401 	if (vsi->type == ICE_VSI_VF)
1402 		return 0;
1403 	if (vsi->type == ICE_VSI_CHNL)
1404 		return 0;
1405 
1406 	if (vsi->base_vector) {
1407 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1408 			vsi->vsi_num, vsi->base_vector);
1409 		return -EEXIST;
1410 	}
1411 
1412 	num_q_vectors = vsi->num_q_vectors;
1413 	/* reserve slots from OS requested IRQs */
1414 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1415 		base = ice_get_vf_ctrl_res(pf, vsi);
1416 	} else {
1417 		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1418 				   vsi->idx);
1419 	}
1420 
1421 	if (base < 0) {
1422 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1423 			ice_get_free_res_count(pf->irq_tracker),
1424 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1425 		return -ENOENT;
1426 	}
1427 	vsi->base_vector = (u16)base;
1428 	pf->num_avail_sw_msix -= num_q_vectors;
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1435  * @vsi: the VSI having rings deallocated
1436  */
1437 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1438 {
1439 	int i;
1440 
1441 	/* Avoid stale references by clearing map from vector to ring */
1442 	if (vsi->q_vectors) {
1443 		ice_for_each_q_vector(vsi, i) {
1444 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1445 
1446 			if (q_vector) {
1447 				q_vector->tx.tx_ring = NULL;
1448 				q_vector->rx.rx_ring = NULL;
1449 			}
1450 		}
1451 	}
1452 
1453 	if (vsi->tx_rings) {
1454 		ice_for_each_alloc_txq(vsi, i) {
1455 			if (vsi->tx_rings[i]) {
1456 				kfree_rcu(vsi->tx_rings[i], rcu);
1457 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1458 			}
1459 		}
1460 	}
1461 	if (vsi->rx_rings) {
1462 		ice_for_each_alloc_rxq(vsi, i) {
1463 			if (vsi->rx_rings[i]) {
1464 				kfree_rcu(vsi->rx_rings[i], rcu);
1465 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1466 			}
1467 		}
1468 	}
1469 }
1470 
1471 /**
1472  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1473  * @vsi: VSI which is having rings allocated
1474  */
1475 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1476 {
1477 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1478 	struct ice_pf *pf = vsi->back;
1479 	struct device *dev;
1480 	u16 i;
1481 
1482 	dev = ice_pf_to_dev(pf);
1483 	/* Allocate Tx rings */
1484 	ice_for_each_alloc_txq(vsi, i) {
1485 		struct ice_tx_ring *ring;
1486 
1487 		/* allocate with kzalloc(), free with kfree_rcu() */
1488 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1489 
1490 		if (!ring)
1491 			goto err_out;
1492 
1493 		ring->q_index = i;
1494 		ring->reg_idx = vsi->txq_map[i];
1495 		ring->vsi = vsi;
1496 		ring->tx_tstamps = &pf->ptp.port.tx;
1497 		ring->dev = dev;
1498 		ring->count = vsi->num_tx_desc;
1499 		ring->txq_teid = ICE_INVAL_TEID;
1500 		if (dvm_ena)
1501 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1502 		else
1503 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1504 		WRITE_ONCE(vsi->tx_rings[i], ring);
1505 	}
1506 
1507 	/* Allocate Rx rings */
1508 	ice_for_each_alloc_rxq(vsi, i) {
1509 		struct ice_rx_ring *ring;
1510 
1511 		/* allocate with kzalloc(), free with kfree_rcu() */
1512 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1513 		if (!ring)
1514 			goto err_out;
1515 
1516 		ring->q_index = i;
1517 		ring->reg_idx = vsi->rxq_map[i];
1518 		ring->vsi = vsi;
1519 		ring->netdev = vsi->netdev;
1520 		ring->dev = dev;
1521 		ring->count = vsi->num_rx_desc;
1522 		WRITE_ONCE(vsi->rx_rings[i], ring);
1523 	}
1524 
1525 	return 0;
1526 
1527 err_out:
1528 	ice_vsi_clear_rings(vsi);
1529 	return -ENOMEM;
1530 }
1531 
1532 /**
1533  * ice_vsi_manage_rss_lut - disable/enable RSS
1534  * @vsi: the VSI being changed
1535  * @ena: boolean value indicating if this is an enable or disable request
1536  *
1537  * In the event of disable request for RSS, this function will zero out RSS
1538  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1539  * LUT.
1540  */
1541 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1542 {
1543 	u8 *lut;
1544 
1545 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1546 	if (!lut)
1547 		return;
1548 
1549 	if (ena) {
1550 		if (vsi->rss_lut_user)
1551 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1552 		else
1553 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1554 					 vsi->rss_size);
1555 	}
1556 
1557 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1558 	kfree(lut);
1559 }
1560 
1561 /**
1562  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1563  * @vsi: VSI to be configured
1564  */
1565 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1566 {
1567 	struct ice_pf *pf = vsi->back;
1568 	struct device *dev;
1569 	u8 *lut, *key;
1570 	int err;
1571 
1572 	dev = ice_pf_to_dev(pf);
1573 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1574 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1575 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1576 	} else {
1577 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1578 
1579 		/* If orig_rss_size is valid and it is less than determined
1580 		 * main VSI's rss_size, update main VSI's rss_size to be
1581 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1582 		 * RSS table gets programmed to be correct (whatever it was
1583 		 * to begin with (prior to setup-tc for ADQ config)
1584 		 */
1585 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1586 		    vsi->orig_rss_size <= vsi->num_rxq) {
1587 			vsi->rss_size = vsi->orig_rss_size;
1588 			/* now orig_rss_size is used, reset it to zero */
1589 			vsi->orig_rss_size = 0;
1590 		}
1591 	}
1592 
1593 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1594 	if (!lut)
1595 		return -ENOMEM;
1596 
1597 	if (vsi->rss_lut_user)
1598 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1599 	else
1600 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1601 
1602 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1603 	if (err) {
1604 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1605 		goto ice_vsi_cfg_rss_exit;
1606 	}
1607 
1608 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1609 	if (!key) {
1610 		err = -ENOMEM;
1611 		goto ice_vsi_cfg_rss_exit;
1612 	}
1613 
1614 	if (vsi->rss_hkey_user)
1615 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1616 	else
1617 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1618 
1619 	err = ice_set_rss_key(vsi, key);
1620 	if (err)
1621 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1622 
1623 	kfree(key);
1624 ice_vsi_cfg_rss_exit:
1625 	kfree(lut);
1626 	return err;
1627 }
1628 
1629 /**
1630  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1631  * @vsi: VSI to be configured
1632  *
1633  * This function will only be called during the VF VSI setup. Upon successful
1634  * completion of package download, this function will configure default RSS
1635  * input sets for VF VSI.
1636  */
1637 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1638 {
1639 	struct ice_pf *pf = vsi->back;
1640 	struct device *dev;
1641 	int status;
1642 
1643 	dev = ice_pf_to_dev(pf);
1644 	if (ice_is_safe_mode(pf)) {
1645 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1646 			vsi->vsi_num);
1647 		return;
1648 	}
1649 
1650 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1651 	if (status)
1652 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1653 			vsi->vsi_num, status);
1654 }
1655 
1656 /**
1657  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1658  * @vsi: VSI to be configured
1659  *
1660  * This function will only be called after successful download package call
1661  * during initialization of PF. Since the downloaded package will erase the
1662  * RSS section, this function will configure RSS input sets for different
1663  * flow types. The last profile added has the highest priority, therefore 2
1664  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1665  * (i.e. IPv4 src/dst TCP src/dst port).
1666  */
1667 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1668 {
1669 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1670 	struct ice_pf *pf = vsi->back;
1671 	struct ice_hw *hw = &pf->hw;
1672 	struct device *dev;
1673 	int status;
1674 
1675 	dev = ice_pf_to_dev(pf);
1676 	if (ice_is_safe_mode(pf)) {
1677 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1678 			vsi_num);
1679 		return;
1680 	}
1681 	/* configure RSS for IPv4 with input set IP src/dst */
1682 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1683 				 ICE_FLOW_SEG_HDR_IPV4);
1684 	if (status)
1685 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1686 			vsi_num, status);
1687 
1688 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1689 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1690 				 ICE_FLOW_SEG_HDR_IPV6);
1691 	if (status)
1692 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1693 			vsi_num, status);
1694 
1695 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1696 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1697 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1698 	if (status)
1699 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1700 			vsi_num, status);
1701 
1702 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1703 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1704 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1705 	if (status)
1706 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1707 			vsi_num, status);
1708 
1709 	/* configure RSS for sctp4 with input set IP src/dst */
1710 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1711 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1712 	if (status)
1713 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1714 			vsi_num, status);
1715 
1716 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1717 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1718 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1719 	if (status)
1720 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1721 			vsi_num, status);
1722 
1723 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1724 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1725 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1726 	if (status)
1727 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1728 			vsi_num, status);
1729 
1730 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1731 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1732 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1733 	if (status)
1734 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1735 			vsi_num, status);
1736 
1737 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1738 				 ICE_FLOW_SEG_HDR_ESP);
1739 	if (status)
1740 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1741 			vsi_num, status);
1742 }
1743 
1744 /**
1745  * ice_pf_state_is_nominal - checks the PF for nominal state
1746  * @pf: pointer to PF to check
1747  *
1748  * Check the PF's state for a collection of bits that would indicate
1749  * the PF is in a state that would inhibit normal operation for
1750  * driver functionality.
1751  *
1752  * Returns true if PF is in a nominal state, false otherwise
1753  */
1754 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1755 {
1756 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1757 
1758 	if (!pf)
1759 		return false;
1760 
1761 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1762 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1763 		return false;
1764 
1765 	return true;
1766 }
1767 
1768 /**
1769  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1770  * @vsi: the VSI to be updated
1771  */
1772 void ice_update_eth_stats(struct ice_vsi *vsi)
1773 {
1774 	struct ice_eth_stats *prev_es, *cur_es;
1775 	struct ice_hw *hw = &vsi->back->hw;
1776 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1777 
1778 	prev_es = &vsi->eth_stats_prev;
1779 	cur_es = &vsi->eth_stats;
1780 
1781 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1782 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1783 
1784 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1785 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1786 
1787 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1788 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1789 
1790 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1791 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1792 
1793 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1794 			  &prev_es->rx_discards, &cur_es->rx_discards);
1795 
1796 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1797 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1798 
1799 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1800 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1801 
1802 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1803 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1804 
1805 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1806 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1807 
1808 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1809 			  &prev_es->tx_errors, &cur_es->tx_errors);
1810 
1811 	vsi->stat_offsets_loaded = true;
1812 }
1813 
1814 /**
1815  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1816  * @vsi: VSI
1817  */
1818 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1819 {
1820 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1821 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1822 		vsi->rx_buf_len = ICE_RXBUF_2048;
1823 #if (PAGE_SIZE < 8192)
1824 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1825 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1826 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1827 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1828 #endif
1829 	} else {
1830 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1831 #if (PAGE_SIZE < 8192)
1832 		vsi->rx_buf_len = ICE_RXBUF_3072;
1833 #else
1834 		vsi->rx_buf_len = ICE_RXBUF_2048;
1835 #endif
1836 	}
1837 }
1838 
1839 /**
1840  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1841  * @hw: HW pointer
1842  * @pf_q: index of the Rx queue in the PF's queue space
1843  * @rxdid: flexible descriptor RXDID
1844  * @prio: priority for the RXDID for this queue
1845  * @ena_ts: true to enable timestamp and false to disable timestamp
1846  */
1847 void
1848 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1849 			bool ena_ts)
1850 {
1851 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1852 
1853 	/* clear any previous values */
1854 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1855 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1856 		    QRXFLXP_CNTXT_TS_M);
1857 
1858 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1859 		QRXFLXP_CNTXT_RXDID_IDX_M;
1860 
1861 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1862 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1863 
1864 	if (ena_ts)
1865 		/* Enable TimeSync on this queue */
1866 		regval |= QRXFLXP_CNTXT_TS_M;
1867 
1868 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1869 }
1870 
1871 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1872 {
1873 	if (q_idx >= vsi->num_rxq)
1874 		return -EINVAL;
1875 
1876 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1877 }
1878 
1879 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1880 {
1881 	struct ice_aqc_add_tx_qgrp *qg_buf;
1882 	int err;
1883 
1884 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1885 		return -EINVAL;
1886 
1887 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1888 	if (!qg_buf)
1889 		return -ENOMEM;
1890 
1891 	qg_buf->num_txqs = 1;
1892 
1893 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1894 	kfree(qg_buf);
1895 	return err;
1896 }
1897 
1898 /**
1899  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1900  * @vsi: the VSI being configured
1901  *
1902  * Return 0 on success and a negative value on error
1903  * Configure the Rx VSI for operation.
1904  */
1905 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1906 {
1907 	u16 i;
1908 
1909 	if (vsi->type == ICE_VSI_VF)
1910 		goto setup_rings;
1911 
1912 	ice_vsi_cfg_frame_size(vsi);
1913 setup_rings:
1914 	/* set up individual rings */
1915 	ice_for_each_rxq(vsi, i) {
1916 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1917 
1918 		if (err)
1919 			return err;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 /**
1926  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1927  * @vsi: the VSI being configured
1928  * @rings: Tx ring array to be configured
1929  * @count: number of Tx ring array elements
1930  *
1931  * Return 0 on success and a negative value on error
1932  * Configure the Tx VSI for operation.
1933  */
1934 static int
1935 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1936 {
1937 	struct ice_aqc_add_tx_qgrp *qg_buf;
1938 	u16 q_idx = 0;
1939 	int err = 0;
1940 
1941 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1942 	if (!qg_buf)
1943 		return -ENOMEM;
1944 
1945 	qg_buf->num_txqs = 1;
1946 
1947 	for (q_idx = 0; q_idx < count; q_idx++) {
1948 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1949 		if (err)
1950 			goto err_cfg_txqs;
1951 	}
1952 
1953 err_cfg_txqs:
1954 	kfree(qg_buf);
1955 	return err;
1956 }
1957 
1958 /**
1959  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1960  * @vsi: the VSI being configured
1961  *
1962  * Return 0 on success and a negative value on error
1963  * Configure the Tx VSI for operation.
1964  */
1965 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1966 {
1967 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1968 }
1969 
1970 /**
1971  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1972  * @vsi: the VSI being configured
1973  *
1974  * Return 0 on success and a negative value on error
1975  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1976  */
1977 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1978 {
1979 	int ret;
1980 	int i;
1981 
1982 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1983 	if (ret)
1984 		return ret;
1985 
1986 	ice_for_each_xdp_txq(vsi, i)
1987 		vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]);
1988 
1989 	return ret;
1990 }
1991 
1992 /**
1993  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1994  * @intrl: interrupt rate limit in usecs
1995  * @gran: interrupt rate limit granularity in usecs
1996  *
1997  * This function converts a decimal interrupt rate limit in usecs to the format
1998  * expected by firmware.
1999  */
2000 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2001 {
2002 	u32 val = intrl / gran;
2003 
2004 	if (val)
2005 		return val | GLINT_RATE_INTRL_ENA_M;
2006 	return 0;
2007 }
2008 
2009 /**
2010  * ice_write_intrl - write throttle rate limit to interrupt specific register
2011  * @q_vector: pointer to interrupt specific structure
2012  * @intrl: throttle rate limit in microseconds to write
2013  */
2014 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2015 {
2016 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2017 
2018 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2019 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2020 }
2021 
2022 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2023 {
2024 	switch (rc->type) {
2025 	case ICE_RX_CONTAINER:
2026 		if (rc->rx_ring)
2027 			return rc->rx_ring->q_vector;
2028 		break;
2029 	case ICE_TX_CONTAINER:
2030 		if (rc->tx_ring)
2031 			return rc->tx_ring->q_vector;
2032 		break;
2033 	default:
2034 		break;
2035 	}
2036 
2037 	return NULL;
2038 }
2039 
2040 /**
2041  * __ice_write_itr - write throttle rate to register
2042  * @q_vector: pointer to interrupt data structure
2043  * @rc: pointer to ring container
2044  * @itr: throttle rate in microseconds to write
2045  */
2046 static void __ice_write_itr(struct ice_q_vector *q_vector,
2047 			    struct ice_ring_container *rc, u16 itr)
2048 {
2049 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2050 
2051 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2052 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2053 }
2054 
2055 /**
2056  * ice_write_itr - write throttle rate to queue specific register
2057  * @rc: pointer to ring container
2058  * @itr: throttle rate in microseconds to write
2059  */
2060 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2061 {
2062 	struct ice_q_vector *q_vector;
2063 
2064 	q_vector = ice_pull_qvec_from_rc(rc);
2065 	if (!q_vector)
2066 		return;
2067 
2068 	__ice_write_itr(q_vector, rc, itr);
2069 }
2070 
2071 /**
2072  * ice_set_q_vector_intrl - set up interrupt rate limiting
2073  * @q_vector: the vector to be configured
2074  *
2075  * Interrupt rate limiting is local to the vector, not per-queue so we must
2076  * detect if either ring container has dynamic moderation enabled to decide
2077  * what to set the interrupt rate limit to via INTRL settings. In the case that
2078  * dynamic moderation is disabled on both, write the value with the cached
2079  * setting to make sure INTRL register matches the user visible value.
2080  */
2081 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2082 {
2083 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2084 		/* in the case of dynamic enabled, cap each vector to no more
2085 		 * than (4 us) 250,000 ints/sec, which allows low latency
2086 		 * but still less than 500,000 interrupts per second, which
2087 		 * reduces CPU a bit in the case of the lowest latency
2088 		 * setting. The 4 here is a value in microseconds.
2089 		 */
2090 		ice_write_intrl(q_vector, 4);
2091 	} else {
2092 		ice_write_intrl(q_vector, q_vector->intrl);
2093 	}
2094 }
2095 
2096 /**
2097  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2098  * @vsi: the VSI being configured
2099  *
2100  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2101  * for the VF VSI.
2102  */
2103 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2104 {
2105 	struct ice_pf *pf = vsi->back;
2106 	struct ice_hw *hw = &pf->hw;
2107 	u16 txq = 0, rxq = 0;
2108 	int i, q;
2109 
2110 	ice_for_each_q_vector(vsi, i) {
2111 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2112 		u16 reg_idx = q_vector->reg_idx;
2113 
2114 		ice_cfg_itr(hw, q_vector);
2115 
2116 		/* Both Transmit Queue Interrupt Cause Control register
2117 		 * and Receive Queue Interrupt Cause control register
2118 		 * expects MSIX_INDX field to be the vector index
2119 		 * within the function space and not the absolute
2120 		 * vector index across PF or across device.
2121 		 * For SR-IOV VF VSIs queue vector index always starts
2122 		 * with 1 since first vector index(0) is used for OICR
2123 		 * in VF space. Since VMDq and other PF VSIs are within
2124 		 * the PF function space, use the vector index that is
2125 		 * tracked for this PF.
2126 		 */
2127 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2128 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2129 					      q_vector->tx.itr_idx);
2130 			txq++;
2131 		}
2132 
2133 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2134 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2135 					      q_vector->rx.itr_idx);
2136 			rxq++;
2137 		}
2138 	}
2139 }
2140 
2141 /**
2142  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2143  * @vsi: the VSI whose rings are to be enabled
2144  *
2145  * Returns 0 on success and a negative value on error
2146  */
2147 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2148 {
2149 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2150 }
2151 
2152 /**
2153  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2154  * @vsi: the VSI whose rings are to be disabled
2155  *
2156  * Returns 0 on success and a negative value on error
2157  */
2158 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2159 {
2160 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2161 }
2162 
2163 /**
2164  * ice_vsi_stop_tx_rings - Disable Tx rings
2165  * @vsi: the VSI being configured
2166  * @rst_src: reset source
2167  * @rel_vmvf_num: Relative ID of VF/VM
2168  * @rings: Tx ring array to be stopped
2169  * @count: number of Tx ring array elements
2170  */
2171 static int
2172 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2173 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2174 {
2175 	u16 q_idx;
2176 
2177 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2178 		return -EINVAL;
2179 
2180 	for (q_idx = 0; q_idx < count; q_idx++) {
2181 		struct ice_txq_meta txq_meta = { };
2182 		int status;
2183 
2184 		if (!rings || !rings[q_idx])
2185 			return -EINVAL;
2186 
2187 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2188 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2189 					      rings[q_idx], &txq_meta);
2190 
2191 		if (status)
2192 			return status;
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /**
2199  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2200  * @vsi: the VSI being configured
2201  * @rst_src: reset source
2202  * @rel_vmvf_num: Relative ID of VF/VM
2203  */
2204 int
2205 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2206 			  u16 rel_vmvf_num)
2207 {
2208 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2209 }
2210 
2211 /**
2212  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2213  * @vsi: the VSI being configured
2214  */
2215 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2216 {
2217 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2218 }
2219 
2220 /**
2221  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2222  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2223  *
2224  * returns true if Rx VLAN pruning is enabled and false otherwise.
2225  */
2226 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2227 {
2228 	if (!vsi)
2229 		return false;
2230 
2231 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2232 }
2233 
2234 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2235 {
2236 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2237 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2238 		vsi->tc_cfg.numtc = 1;
2239 		return;
2240 	}
2241 
2242 	/* set VSI TC information based on DCB config */
2243 	ice_vsi_set_dcb_tc_cfg(vsi);
2244 }
2245 
2246 /**
2247  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2248  * @vsi: VSI to set the q_vectors register index on
2249  */
2250 static int
2251 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2252 {
2253 	u16 i;
2254 
2255 	if (!vsi || !vsi->q_vectors)
2256 		return -EINVAL;
2257 
2258 	ice_for_each_q_vector(vsi, i) {
2259 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2260 
2261 		if (!q_vector) {
2262 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2263 				i, vsi->vsi_num);
2264 			goto clear_reg_idx;
2265 		}
2266 
2267 		if (vsi->type == ICE_VSI_VF) {
2268 			struct ice_vf *vf = vsi->vf;
2269 
2270 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2271 		} else {
2272 			q_vector->reg_idx =
2273 				q_vector->v_idx + vsi->base_vector;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 
2279 clear_reg_idx:
2280 	ice_for_each_q_vector(vsi, i) {
2281 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2282 
2283 		if (q_vector)
2284 			q_vector->reg_idx = 0;
2285 	}
2286 
2287 	return -EINVAL;
2288 }
2289 
2290 /**
2291  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2292  * @vsi: the VSI being configured
2293  * @tx: bool to determine Tx or Rx rule
2294  * @create: bool to determine create or remove Rule
2295  */
2296 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2297 {
2298 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2299 			enum ice_sw_fwd_act_type act);
2300 	struct ice_pf *pf = vsi->back;
2301 	struct device *dev;
2302 	int status;
2303 
2304 	dev = ice_pf_to_dev(pf);
2305 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2306 
2307 	if (tx) {
2308 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2309 				  ICE_DROP_PACKET);
2310 	} else {
2311 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2312 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2313 							  create);
2314 		} else {
2315 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2316 					  ICE_FWD_TO_VSI);
2317 		}
2318 	}
2319 
2320 	if (status)
2321 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2322 			create ? "adding" : "removing", tx ? "TX" : "RX",
2323 			vsi->vsi_num, status);
2324 }
2325 
2326 /**
2327  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2328  * @vsi: pointer to the VSI
2329  *
2330  * This function will allocate new scheduler aggregator now if needed and will
2331  * move specified VSI into it.
2332  */
2333 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2334 {
2335 	struct device *dev = ice_pf_to_dev(vsi->back);
2336 	struct ice_agg_node *agg_node_iter = NULL;
2337 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2338 	struct ice_agg_node *agg_node = NULL;
2339 	int node_offset, max_agg_nodes = 0;
2340 	struct ice_port_info *port_info;
2341 	struct ice_pf *pf = vsi->back;
2342 	u32 agg_node_id_start = 0;
2343 	int status;
2344 
2345 	/* create (as needed) scheduler aggregator node and move VSI into
2346 	 * corresponding aggregator node
2347 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2348 	 * - VF aggregator nodes will contain VF VSI
2349 	 */
2350 	port_info = pf->hw.port_info;
2351 	if (!port_info)
2352 		return;
2353 
2354 	switch (vsi->type) {
2355 	case ICE_VSI_CTRL:
2356 	case ICE_VSI_CHNL:
2357 	case ICE_VSI_LB:
2358 	case ICE_VSI_PF:
2359 	case ICE_VSI_SWITCHDEV_CTRL:
2360 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2361 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2362 		agg_node_iter = &pf->pf_agg_node[0];
2363 		break;
2364 	case ICE_VSI_VF:
2365 		/* user can create 'n' VFs on a given PF, but since max children
2366 		 * per aggregator node can be only 64. Following code handles
2367 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2368 		 * was already created provided num_vsis < 64, otherwise
2369 		 * select next available node, which will be created
2370 		 */
2371 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2372 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2373 		agg_node_iter = &pf->vf_agg_node[0];
2374 		break;
2375 	default:
2376 		/* other VSI type, handle later if needed */
2377 		dev_dbg(dev, "unexpected VSI type %s\n",
2378 			ice_vsi_type_str(vsi->type));
2379 		return;
2380 	}
2381 
2382 	/* find the appropriate aggregator node */
2383 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2384 		/* see if we can find space in previously created
2385 		 * node if num_vsis < 64, otherwise skip
2386 		 */
2387 		if (agg_node_iter->num_vsis &&
2388 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2389 			agg_node_iter++;
2390 			continue;
2391 		}
2392 
2393 		if (agg_node_iter->valid &&
2394 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2395 			agg_id = agg_node_iter->agg_id;
2396 			agg_node = agg_node_iter;
2397 			break;
2398 		}
2399 
2400 		/* find unclaimed agg_id */
2401 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2402 			agg_id = node_offset + agg_node_id_start;
2403 			agg_node = agg_node_iter;
2404 			break;
2405 		}
2406 		/* move to next agg_node */
2407 		agg_node_iter++;
2408 	}
2409 
2410 	if (!agg_node)
2411 		return;
2412 
2413 	/* if selected aggregator node was not created, create it */
2414 	if (!agg_node->valid) {
2415 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2416 				     (u8)vsi->tc_cfg.ena_tc);
2417 		if (status) {
2418 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2419 				agg_id);
2420 			return;
2421 		}
2422 		/* aggregator node is created, store the neeeded info */
2423 		agg_node->valid = true;
2424 		agg_node->agg_id = agg_id;
2425 	}
2426 
2427 	/* move VSI to corresponding aggregator node */
2428 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2429 				     (u8)vsi->tc_cfg.ena_tc);
2430 	if (status) {
2431 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2432 			vsi->idx, agg_id);
2433 		return;
2434 	}
2435 
2436 	/* keep active children count for aggregator node */
2437 	agg_node->num_vsis++;
2438 
2439 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2440 	 * to aggregator node
2441 	 */
2442 	vsi->agg_node = agg_node;
2443 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2444 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2445 		vsi->agg_node->num_vsis);
2446 }
2447 
2448 /**
2449  * ice_vsi_setup - Set up a VSI by a given type
2450  * @pf: board private structure
2451  * @pi: pointer to the port_info instance
2452  * @vsi_type: VSI type
2453  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2454  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2455  * @ch: ptr to channel
2456  *
2457  * This allocates the sw VSI structure and its queue resources.
2458  *
2459  * Returns pointer to the successfully allocated and configured VSI sw struct on
2460  * success, NULL on failure.
2461  */
2462 struct ice_vsi *
2463 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2464 	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2465 	      struct ice_channel *ch)
2466 {
2467 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2468 	struct device *dev = ice_pf_to_dev(pf);
2469 	struct ice_vsi *vsi;
2470 	int ret, i;
2471 
2472 	if (vsi_type == ICE_VSI_CHNL)
2473 		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2474 	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2475 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2476 	else
2477 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2478 
2479 	if (!vsi) {
2480 		dev_err(dev, "could not allocate VSI\n");
2481 		return NULL;
2482 	}
2483 
2484 	vsi->port_info = pi;
2485 	vsi->vsw = pf->first_sw;
2486 	if (vsi->type == ICE_VSI_PF)
2487 		vsi->ethtype = ETH_P_PAUSE;
2488 
2489 	ice_alloc_fd_res(vsi);
2490 
2491 	if (vsi_type != ICE_VSI_CHNL) {
2492 		if (ice_vsi_get_qs(vsi)) {
2493 			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2494 				vsi->idx);
2495 			goto unroll_vsi_alloc;
2496 		}
2497 	}
2498 
2499 	/* set RSS capabilities */
2500 	ice_vsi_set_rss_params(vsi);
2501 
2502 	/* set TC configuration */
2503 	ice_vsi_set_tc_cfg(vsi);
2504 
2505 	/* create the VSI */
2506 	ret = ice_vsi_init(vsi, true);
2507 	if (ret)
2508 		goto unroll_get_qs;
2509 
2510 	ice_vsi_init_vlan_ops(vsi);
2511 
2512 	switch (vsi->type) {
2513 	case ICE_VSI_CTRL:
2514 	case ICE_VSI_SWITCHDEV_CTRL:
2515 	case ICE_VSI_PF:
2516 		ret = ice_vsi_alloc_q_vectors(vsi);
2517 		if (ret)
2518 			goto unroll_vsi_init;
2519 
2520 		ret = ice_vsi_setup_vector_base(vsi);
2521 		if (ret)
2522 			goto unroll_alloc_q_vector;
2523 
2524 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2525 		if (ret)
2526 			goto unroll_vector_base;
2527 
2528 		ret = ice_vsi_alloc_rings(vsi);
2529 		if (ret)
2530 			goto unroll_vector_base;
2531 
2532 		ice_vsi_map_rings_to_vectors(vsi);
2533 
2534 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2535 		if (vsi->type != ICE_VSI_CTRL)
2536 			/* Do not exit if configuring RSS had an issue, at
2537 			 * least receive traffic on first queue. Hence no
2538 			 * need to capture return value
2539 			 */
2540 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2541 				ice_vsi_cfg_rss_lut_key(vsi);
2542 				ice_vsi_set_rss_flow_fld(vsi);
2543 			}
2544 		ice_init_arfs(vsi);
2545 		break;
2546 	case ICE_VSI_CHNL:
2547 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2548 			ice_vsi_cfg_rss_lut_key(vsi);
2549 			ice_vsi_set_rss_flow_fld(vsi);
2550 		}
2551 		break;
2552 	case ICE_VSI_VF:
2553 		/* VF driver will take care of creating netdev for this type and
2554 		 * map queues to vectors through Virtchnl, PF driver only
2555 		 * creates a VSI and corresponding structures for bookkeeping
2556 		 * purpose
2557 		 */
2558 		ret = ice_vsi_alloc_q_vectors(vsi);
2559 		if (ret)
2560 			goto unroll_vsi_init;
2561 
2562 		ret = ice_vsi_alloc_rings(vsi);
2563 		if (ret)
2564 			goto unroll_alloc_q_vector;
2565 
2566 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2567 		if (ret)
2568 			goto unroll_vector_base;
2569 
2570 		/* Do not exit if configuring RSS had an issue, at least
2571 		 * receive traffic on first queue. Hence no need to capture
2572 		 * return value
2573 		 */
2574 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2575 			ice_vsi_cfg_rss_lut_key(vsi);
2576 			ice_vsi_set_vf_rss_flow_fld(vsi);
2577 		}
2578 		break;
2579 	case ICE_VSI_LB:
2580 		ret = ice_vsi_alloc_rings(vsi);
2581 		if (ret)
2582 			goto unroll_vsi_init;
2583 		break;
2584 	default:
2585 		/* clean up the resources and exit */
2586 		goto unroll_vsi_init;
2587 	}
2588 
2589 	/* configure VSI nodes based on number of queues and TC's */
2590 	ice_for_each_traffic_class(i) {
2591 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2592 			continue;
2593 
2594 		if (vsi->type == ICE_VSI_CHNL) {
2595 			if (!vsi->alloc_txq && vsi->num_txq)
2596 				max_txqs[i] = vsi->num_txq;
2597 			else
2598 				max_txqs[i] = pf->num_lan_tx;
2599 		} else {
2600 			max_txqs[i] = vsi->alloc_txq;
2601 		}
2602 	}
2603 
2604 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2605 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2606 			      max_txqs);
2607 	if (ret) {
2608 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2609 			vsi->vsi_num, ret);
2610 		goto unroll_clear_rings;
2611 	}
2612 
2613 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2614 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2615 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2616 	 * The rule is added once for PF VSI in order to create appropriate
2617 	 * recipe, since VSI/VSI list is ignored with drop action...
2618 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2619 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2620 	 * settings in the HW.
2621 	 */
2622 	if (!ice_is_safe_mode(pf))
2623 		if (vsi->type == ICE_VSI_PF) {
2624 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2625 					 ICE_DROP_PACKET);
2626 			ice_cfg_sw_lldp(vsi, true, true);
2627 		}
2628 
2629 	if (!vsi->agg_node)
2630 		ice_set_agg_vsi(vsi);
2631 	return vsi;
2632 
2633 unroll_clear_rings:
2634 	ice_vsi_clear_rings(vsi);
2635 unroll_vector_base:
2636 	/* reclaim SW interrupts back to the common pool */
2637 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2638 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2639 unroll_alloc_q_vector:
2640 	ice_vsi_free_q_vectors(vsi);
2641 unroll_vsi_init:
2642 	ice_vsi_delete(vsi);
2643 unroll_get_qs:
2644 	ice_vsi_put_qs(vsi);
2645 unroll_vsi_alloc:
2646 	if (vsi_type == ICE_VSI_VF)
2647 		ice_enable_lag(pf->lag);
2648 	ice_vsi_clear(vsi);
2649 
2650 	return NULL;
2651 }
2652 
2653 /**
2654  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2655  * @vsi: the VSI being cleaned up
2656  */
2657 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2658 {
2659 	struct ice_pf *pf = vsi->back;
2660 	struct ice_hw *hw = &pf->hw;
2661 	u32 txq = 0;
2662 	u32 rxq = 0;
2663 	int i, q;
2664 
2665 	ice_for_each_q_vector(vsi, i) {
2666 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2667 
2668 		ice_write_intrl(q_vector, 0);
2669 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2670 			ice_write_itr(&q_vector->tx, 0);
2671 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2672 			if (ice_is_xdp_ena_vsi(vsi)) {
2673 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2674 
2675 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2676 			}
2677 			txq++;
2678 		}
2679 
2680 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2681 			ice_write_itr(&q_vector->rx, 0);
2682 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2683 			rxq++;
2684 		}
2685 	}
2686 
2687 	ice_flush(hw);
2688 }
2689 
2690 /**
2691  * ice_vsi_free_irq - Free the IRQ association with the OS
2692  * @vsi: the VSI being configured
2693  */
2694 void ice_vsi_free_irq(struct ice_vsi *vsi)
2695 {
2696 	struct ice_pf *pf = vsi->back;
2697 	int base = vsi->base_vector;
2698 	int i;
2699 
2700 	if (!vsi->q_vectors || !vsi->irqs_ready)
2701 		return;
2702 
2703 	ice_vsi_release_msix(vsi);
2704 	if (vsi->type == ICE_VSI_VF)
2705 		return;
2706 
2707 	vsi->irqs_ready = false;
2708 	ice_free_cpu_rx_rmap(vsi);
2709 
2710 	ice_for_each_q_vector(vsi, i) {
2711 		u16 vector = i + base;
2712 		int irq_num;
2713 
2714 		irq_num = pf->msix_entries[vector].vector;
2715 
2716 		/* free only the irqs that were actually requested */
2717 		if (!vsi->q_vectors[i] ||
2718 		    !(vsi->q_vectors[i]->num_ring_tx ||
2719 		      vsi->q_vectors[i]->num_ring_rx))
2720 			continue;
2721 
2722 		/* clear the affinity notifier in the IRQ descriptor */
2723 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2724 			irq_set_affinity_notifier(irq_num, NULL);
2725 
2726 		/* clear the affinity_mask in the IRQ descriptor */
2727 		irq_set_affinity_hint(irq_num, NULL);
2728 		synchronize_irq(irq_num);
2729 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2730 	}
2731 }
2732 
2733 /**
2734  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2735  * @vsi: the VSI having resources freed
2736  */
2737 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2738 {
2739 	int i;
2740 
2741 	if (!vsi->tx_rings)
2742 		return;
2743 
2744 	ice_for_each_txq(vsi, i)
2745 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2746 			ice_free_tx_ring(vsi->tx_rings[i]);
2747 }
2748 
2749 /**
2750  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2751  * @vsi: the VSI having resources freed
2752  */
2753 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2754 {
2755 	int i;
2756 
2757 	if (!vsi->rx_rings)
2758 		return;
2759 
2760 	ice_for_each_rxq(vsi, i)
2761 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2762 			ice_free_rx_ring(vsi->rx_rings[i]);
2763 }
2764 
2765 /**
2766  * ice_vsi_close - Shut down a VSI
2767  * @vsi: the VSI being shut down
2768  */
2769 void ice_vsi_close(struct ice_vsi *vsi)
2770 {
2771 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2772 		ice_down(vsi);
2773 
2774 	ice_vsi_free_irq(vsi);
2775 	ice_vsi_free_tx_rings(vsi);
2776 	ice_vsi_free_rx_rings(vsi);
2777 }
2778 
2779 /**
2780  * ice_ena_vsi - resume a VSI
2781  * @vsi: the VSI being resume
2782  * @locked: is the rtnl_lock already held
2783  */
2784 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2785 {
2786 	int err = 0;
2787 
2788 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2789 		return 0;
2790 
2791 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2792 
2793 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2794 		if (netif_running(vsi->netdev)) {
2795 			if (!locked)
2796 				rtnl_lock();
2797 
2798 			err = ice_open_internal(vsi->netdev);
2799 
2800 			if (!locked)
2801 				rtnl_unlock();
2802 		}
2803 	} else if (vsi->type == ICE_VSI_CTRL) {
2804 		err = ice_vsi_open_ctrl(vsi);
2805 	}
2806 
2807 	return err;
2808 }
2809 
2810 /**
2811  * ice_dis_vsi - pause a VSI
2812  * @vsi: the VSI being paused
2813  * @locked: is the rtnl_lock already held
2814  */
2815 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2816 {
2817 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2818 		return;
2819 
2820 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2821 
2822 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2823 		if (netif_running(vsi->netdev)) {
2824 			if (!locked)
2825 				rtnl_lock();
2826 
2827 			ice_vsi_close(vsi);
2828 
2829 			if (!locked)
2830 				rtnl_unlock();
2831 		} else {
2832 			ice_vsi_close(vsi);
2833 		}
2834 	} else if (vsi->type == ICE_VSI_CTRL ||
2835 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2836 		ice_vsi_close(vsi);
2837 	}
2838 }
2839 
2840 /**
2841  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2842  * @vsi: the VSI being un-configured
2843  */
2844 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2845 {
2846 	int base = vsi->base_vector;
2847 	struct ice_pf *pf = vsi->back;
2848 	struct ice_hw *hw = &pf->hw;
2849 	u32 val;
2850 	int i;
2851 
2852 	/* disable interrupt causation from each queue */
2853 	if (vsi->tx_rings) {
2854 		ice_for_each_txq(vsi, i) {
2855 			if (vsi->tx_rings[i]) {
2856 				u16 reg;
2857 
2858 				reg = vsi->tx_rings[i]->reg_idx;
2859 				val = rd32(hw, QINT_TQCTL(reg));
2860 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2861 				wr32(hw, QINT_TQCTL(reg), val);
2862 			}
2863 		}
2864 	}
2865 
2866 	if (vsi->rx_rings) {
2867 		ice_for_each_rxq(vsi, i) {
2868 			if (vsi->rx_rings[i]) {
2869 				u16 reg;
2870 
2871 				reg = vsi->rx_rings[i]->reg_idx;
2872 				val = rd32(hw, QINT_RQCTL(reg));
2873 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2874 				wr32(hw, QINT_RQCTL(reg), val);
2875 			}
2876 		}
2877 	}
2878 
2879 	/* disable each interrupt */
2880 	ice_for_each_q_vector(vsi, i) {
2881 		if (!vsi->q_vectors[i])
2882 			continue;
2883 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2884 	}
2885 
2886 	ice_flush(hw);
2887 
2888 	/* don't call synchronize_irq() for VF's from the host */
2889 	if (vsi->type == ICE_VSI_VF)
2890 		return;
2891 
2892 	ice_for_each_q_vector(vsi, i)
2893 		synchronize_irq(pf->msix_entries[i + base].vector);
2894 }
2895 
2896 /**
2897  * ice_napi_del - Remove NAPI handler for the VSI
2898  * @vsi: VSI for which NAPI handler is to be removed
2899  */
2900 void ice_napi_del(struct ice_vsi *vsi)
2901 {
2902 	int v_idx;
2903 
2904 	if (!vsi->netdev)
2905 		return;
2906 
2907 	ice_for_each_q_vector(vsi, v_idx)
2908 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2909 }
2910 
2911 /**
2912  * ice_free_vf_ctrl_res - Free the VF control VSI resource
2913  * @pf: pointer to PF structure
2914  * @vsi: the VSI to free resources for
2915  *
2916  * Check if the VF control VSI resource is still in use. If no VF is using it
2917  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
2918  * once no other VF uses it.
2919  */
2920 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
2921 {
2922 	struct ice_vf *vf;
2923 	unsigned int bkt;
2924 
2925 	rcu_read_lock();
2926 	ice_for_each_vf_rcu(pf, bkt, vf) {
2927 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
2928 			rcu_read_unlock();
2929 			return;
2930 		}
2931 	}
2932 	rcu_read_unlock();
2933 
2934 	/* No other VFs left that have control VSI. It is now safe to reclaim
2935 	 * SW interrupts back to the common pool.
2936 	 */
2937 	ice_free_res(pf->irq_tracker, vsi->base_vector,
2938 		     ICE_RES_VF_CTRL_VEC_ID);
2939 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2940 }
2941 
2942 /**
2943  * ice_vsi_release - Delete a VSI and free its resources
2944  * @vsi: the VSI being removed
2945  *
2946  * Returns 0 on success or < 0 on error
2947  */
2948 int ice_vsi_release(struct ice_vsi *vsi)
2949 {
2950 	struct ice_pf *pf;
2951 	int err;
2952 
2953 	if (!vsi->back)
2954 		return -ENODEV;
2955 	pf = vsi->back;
2956 
2957 	/* do not unregister while driver is in the reset recovery pending
2958 	 * state. Since reset/rebuild happens through PF service task workqueue,
2959 	 * it's not a good idea to unregister netdev that is associated to the
2960 	 * PF that is running the work queue items currently. This is done to
2961 	 * avoid check_flush_dependency() warning on this wq
2962 	 */
2963 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2964 	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2965 		unregister_netdev(vsi->netdev);
2966 		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2967 	}
2968 
2969 	if (vsi->type == ICE_VSI_PF)
2970 		ice_devlink_destroy_pf_port(pf);
2971 
2972 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2973 		ice_rss_clean(vsi);
2974 
2975 	/* Disable VSI and free resources */
2976 	if (vsi->type != ICE_VSI_LB)
2977 		ice_vsi_dis_irq(vsi);
2978 	ice_vsi_close(vsi);
2979 
2980 	/* SR-IOV determines needed MSIX resources all at once instead of per
2981 	 * VSI since when VFs are spawned we know how many VFs there are and how
2982 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2983 	 * cleared in the same manner.
2984 	 */
2985 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
2986 		ice_free_vf_ctrl_res(pf, vsi);
2987 	} else if (vsi->type != ICE_VSI_VF) {
2988 		/* reclaim SW interrupts back to the common pool */
2989 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2990 		pf->num_avail_sw_msix += vsi->num_q_vectors;
2991 	}
2992 
2993 	if (!ice_is_safe_mode(pf)) {
2994 		if (vsi->type == ICE_VSI_PF) {
2995 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2996 					    ICE_DROP_PACKET);
2997 			ice_cfg_sw_lldp(vsi, true, false);
2998 			/* The Rx rule will only exist to remove if the LLDP FW
2999 			 * engine is currently stopped
3000 			 */
3001 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002 				ice_cfg_sw_lldp(vsi, false, false);
3003 		}
3004 	}
3005 
3006 	if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
3007 		ice_clear_dflt_vsi(pf->first_sw);
3008 	ice_fltr_remove_all(vsi);
3009 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3010 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3011 	if (err)
3012 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3013 			vsi->vsi_num, err);
3014 	ice_vsi_delete(vsi);
3015 	ice_vsi_free_q_vectors(vsi);
3016 
3017 	if (vsi->netdev) {
3018 		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3019 			unregister_netdev(vsi->netdev);
3020 			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3021 		}
3022 		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3023 			free_netdev(vsi->netdev);
3024 			vsi->netdev = NULL;
3025 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3026 		}
3027 	}
3028 
3029 	if (vsi->type == ICE_VSI_VF &&
3030 	    vsi->agg_node && vsi->agg_node->valid)
3031 		vsi->agg_node->num_vsis--;
3032 	ice_vsi_clear_rings(vsi);
3033 
3034 	ice_vsi_put_qs(vsi);
3035 
3036 	/* retain SW VSI data structure since it is needed to unregister and
3037 	 * free VSI netdev when PF is not in reset recovery pending state,\
3038 	 * for ex: during rmmod.
3039 	 */
3040 	if (!ice_is_reset_in_progress(pf->state))
3041 		ice_vsi_clear(vsi);
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3048  * @vsi: VSI connected with q_vectors
3049  * @coalesce: array of struct with stored coalesce
3050  *
3051  * Returns array size.
3052  */
3053 static int
3054 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3055 			     struct ice_coalesce_stored *coalesce)
3056 {
3057 	int i;
3058 
3059 	ice_for_each_q_vector(vsi, i) {
3060 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3061 
3062 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3063 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3064 		coalesce[i].intrl = q_vector->intrl;
3065 
3066 		if (i < vsi->num_txq)
3067 			coalesce[i].tx_valid = true;
3068 		if (i < vsi->num_rxq)
3069 			coalesce[i].rx_valid = true;
3070 	}
3071 
3072 	return vsi->num_q_vectors;
3073 }
3074 
3075 /**
3076  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3077  * @vsi: VSI connected with q_vectors
3078  * @coalesce: pointer to array of struct with stored coalesce
3079  * @size: size of coalesce array
3080  *
3081  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3082  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3083  * to default value.
3084  */
3085 static void
3086 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3087 			     struct ice_coalesce_stored *coalesce, int size)
3088 {
3089 	struct ice_ring_container *rc;
3090 	int i;
3091 
3092 	if ((size && !coalesce) || !vsi)
3093 		return;
3094 
3095 	/* There are a couple of cases that have to be handled here:
3096 	 *   1. The case where the number of queue vectors stays the same, but
3097 	 *      the number of Tx or Rx rings changes (the first for loop)
3098 	 *   2. The case where the number of queue vectors increased (the
3099 	 *      second for loop)
3100 	 */
3101 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3102 		/* There are 2 cases to handle here and they are the same for
3103 		 * both Tx and Rx:
3104 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3105 		 *   and the loop variable is less than the number of rings
3106 		 *   allocated, then write the previous values
3107 		 *
3108 		 *   if the entry was not valid previously, but the number of
3109 		 *   rings is less than are allocated (this means the number of
3110 		 *   rings increased from previously), then write out the
3111 		 *   values in the first element
3112 		 *
3113 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3114 		 *   as there is no harm because the dynamic algorithm
3115 		 *   will just overwrite.
3116 		 */
3117 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3118 			rc = &vsi->q_vectors[i]->rx;
3119 			rc->itr_settings = coalesce[i].itr_rx;
3120 			ice_write_itr(rc, rc->itr_setting);
3121 		} else if (i < vsi->alloc_rxq) {
3122 			rc = &vsi->q_vectors[i]->rx;
3123 			rc->itr_settings = coalesce[0].itr_rx;
3124 			ice_write_itr(rc, rc->itr_setting);
3125 		}
3126 
3127 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3128 			rc = &vsi->q_vectors[i]->tx;
3129 			rc->itr_settings = coalesce[i].itr_tx;
3130 			ice_write_itr(rc, rc->itr_setting);
3131 		} else if (i < vsi->alloc_txq) {
3132 			rc = &vsi->q_vectors[i]->tx;
3133 			rc->itr_settings = coalesce[0].itr_tx;
3134 			ice_write_itr(rc, rc->itr_setting);
3135 		}
3136 
3137 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3138 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3139 	}
3140 
3141 	/* the number of queue vectors increased so write whatever is in
3142 	 * the first element
3143 	 */
3144 	for (; i < vsi->num_q_vectors; i++) {
3145 		/* transmit */
3146 		rc = &vsi->q_vectors[i]->tx;
3147 		rc->itr_settings = coalesce[0].itr_tx;
3148 		ice_write_itr(rc, rc->itr_setting);
3149 
3150 		/* receive */
3151 		rc = &vsi->q_vectors[i]->rx;
3152 		rc->itr_settings = coalesce[0].itr_rx;
3153 		ice_write_itr(rc, rc->itr_setting);
3154 
3155 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3156 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3157 	}
3158 }
3159 
3160 /**
3161  * ice_vsi_rebuild - Rebuild VSI after reset
3162  * @vsi: VSI to be rebuild
3163  * @init_vsi: is this an initialization or a reconfigure of the VSI
3164  *
3165  * Returns 0 on success and negative value on failure
3166  */
3167 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3168 {
3169 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3170 	struct ice_coalesce_stored *coalesce;
3171 	int prev_num_q_vectors = 0;
3172 	enum ice_vsi_type vtype;
3173 	struct ice_pf *pf;
3174 	int ret, i;
3175 
3176 	if (!vsi)
3177 		return -EINVAL;
3178 
3179 	pf = vsi->back;
3180 	vtype = vsi->type;
3181 	if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf)
3182 		return -EINVAL;
3183 
3184 	ice_vsi_init_vlan_ops(vsi);
3185 
3186 	coalesce = kcalloc(vsi->num_q_vectors,
3187 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3188 	if (!coalesce)
3189 		return -ENOMEM;
3190 
3191 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3192 
3193 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3194 	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3195 	if (ret)
3196 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3197 			vsi->vsi_num, ret);
3198 	ice_vsi_free_q_vectors(vsi);
3199 
3200 	/* SR-IOV determines needed MSIX resources all at once instead of per
3201 	 * VSI since when VFs are spawned we know how many VFs there are and how
3202 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3203 	 * cleared in the same manner.
3204 	 */
3205 	if (vtype != ICE_VSI_VF) {
3206 		/* reclaim SW interrupts back to the common pool */
3207 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3208 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3209 		vsi->base_vector = 0;
3210 	}
3211 
3212 	if (ice_is_xdp_ena_vsi(vsi))
3213 		/* return value check can be skipped here, it always returns
3214 		 * 0 if reset is in progress
3215 		 */
3216 		ice_destroy_xdp_rings(vsi);
3217 	ice_vsi_put_qs(vsi);
3218 	ice_vsi_clear_rings(vsi);
3219 	ice_vsi_free_arrays(vsi);
3220 	if (vtype == ICE_VSI_VF)
3221 		ice_vsi_set_num_qs(vsi, vsi->vf);
3222 	else
3223 		ice_vsi_set_num_qs(vsi, NULL);
3224 
3225 	ret = ice_vsi_alloc_arrays(vsi);
3226 	if (ret < 0)
3227 		goto err_vsi;
3228 
3229 	ice_vsi_get_qs(vsi);
3230 
3231 	ice_alloc_fd_res(vsi);
3232 	ice_vsi_set_tc_cfg(vsi);
3233 
3234 	/* Initialize VSI struct elements and create VSI in FW */
3235 	ret = ice_vsi_init(vsi, init_vsi);
3236 	if (ret < 0)
3237 		goto err_vsi;
3238 
3239 	switch (vtype) {
3240 	case ICE_VSI_CTRL:
3241 	case ICE_VSI_SWITCHDEV_CTRL:
3242 	case ICE_VSI_PF:
3243 		ret = ice_vsi_alloc_q_vectors(vsi);
3244 		if (ret)
3245 			goto err_rings;
3246 
3247 		ret = ice_vsi_setup_vector_base(vsi);
3248 		if (ret)
3249 			goto err_vectors;
3250 
3251 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3252 		if (ret)
3253 			goto err_vectors;
3254 
3255 		ret = ice_vsi_alloc_rings(vsi);
3256 		if (ret)
3257 			goto err_vectors;
3258 
3259 		ice_vsi_map_rings_to_vectors(vsi);
3260 		if (ice_is_xdp_ena_vsi(vsi)) {
3261 			ret = ice_vsi_determine_xdp_res(vsi);
3262 			if (ret)
3263 				goto err_vectors;
3264 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3265 			if (ret)
3266 				goto err_vectors;
3267 		}
3268 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3269 		if (vtype != ICE_VSI_CTRL)
3270 			/* Do not exit if configuring RSS had an issue, at
3271 			 * least receive traffic on first queue. Hence no
3272 			 * need to capture return value
3273 			 */
3274 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3275 				ice_vsi_cfg_rss_lut_key(vsi);
3276 		break;
3277 	case ICE_VSI_VF:
3278 		ret = ice_vsi_alloc_q_vectors(vsi);
3279 		if (ret)
3280 			goto err_rings;
3281 
3282 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3283 		if (ret)
3284 			goto err_vectors;
3285 
3286 		ret = ice_vsi_alloc_rings(vsi);
3287 		if (ret)
3288 			goto err_vectors;
3289 
3290 		break;
3291 	case ICE_VSI_CHNL:
3292 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3293 			ice_vsi_cfg_rss_lut_key(vsi);
3294 			ice_vsi_set_rss_flow_fld(vsi);
3295 		}
3296 		break;
3297 	default:
3298 		break;
3299 	}
3300 
3301 	/* configure VSI nodes based on number of queues and TC's */
3302 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3303 		/* configure VSI nodes based on number of queues and TC's.
3304 		 * ADQ creates VSIs for each TC/Channel but doesn't
3305 		 * allocate queues instead it reconfigures the PF queues
3306 		 * as per the TC command. So max_txqs should point to the
3307 		 * PF Tx queues.
3308 		 */
3309 		if (vtype == ICE_VSI_CHNL)
3310 			max_txqs[i] = pf->num_lan_tx;
3311 		else
3312 			max_txqs[i] = vsi->alloc_txq;
3313 
3314 		if (ice_is_xdp_ena_vsi(vsi))
3315 			max_txqs[i] += vsi->num_xdp_txq;
3316 	}
3317 
3318 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3319 		/* If MQPRIO is set, means channel code path, hence for main
3320 		 * VSI's, use TC as 1
3321 		 */
3322 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3323 	else
3324 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3325 				      vsi->tc_cfg.ena_tc, max_txqs);
3326 
3327 	if (ret) {
3328 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3329 			vsi->vsi_num, ret);
3330 		if (init_vsi) {
3331 			ret = -EIO;
3332 			goto err_vectors;
3333 		} else {
3334 			return ice_schedule_reset(pf, ICE_RESET_PFR);
3335 		}
3336 	}
3337 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3338 	kfree(coalesce);
3339 
3340 	return 0;
3341 
3342 err_vectors:
3343 	ice_vsi_free_q_vectors(vsi);
3344 err_rings:
3345 	if (vsi->netdev) {
3346 		vsi->current_netdev_flags = 0;
3347 		unregister_netdev(vsi->netdev);
3348 		free_netdev(vsi->netdev);
3349 		vsi->netdev = NULL;
3350 	}
3351 err_vsi:
3352 	ice_vsi_clear(vsi);
3353 	set_bit(ICE_RESET_FAILED, pf->state);
3354 	kfree(coalesce);
3355 	return ret;
3356 }
3357 
3358 /**
3359  * ice_is_reset_in_progress - check for a reset in progress
3360  * @state: PF state field
3361  */
3362 bool ice_is_reset_in_progress(unsigned long *state)
3363 {
3364 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3365 	       test_bit(ICE_PFR_REQ, state) ||
3366 	       test_bit(ICE_CORER_REQ, state) ||
3367 	       test_bit(ICE_GLOBR_REQ, state);
3368 }
3369 
3370 /**
3371  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3372  * @pf: pointer to the PF structure
3373  * @timeout: length of time to wait, in jiffies
3374  *
3375  * Wait (sleep) for a short time until the driver finishes cleaning up from
3376  * a device reset. The caller must be able to sleep. Use this to delay
3377  * operations that could fail while the driver is cleaning up after a device
3378  * reset.
3379  *
3380  * Returns 0 on success, -EBUSY if the reset is not finished within the
3381  * timeout, and -ERESTARTSYS if the thread was interrupted.
3382  */
3383 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3384 {
3385 	long ret;
3386 
3387 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3388 					       !ice_is_reset_in_progress(pf->state),
3389 					       timeout);
3390 	if (ret < 0)
3391 		return ret;
3392 	else if (!ret)
3393 		return -EBUSY;
3394 	else
3395 		return 0;
3396 }
3397 
3398 /**
3399  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3400  * @vsi: VSI being configured
3401  * @ctx: the context buffer returned from AQ VSI update command
3402  */
3403 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3404 {
3405 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3406 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3407 	       sizeof(vsi->info.q_mapping));
3408 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3409 	       sizeof(vsi->info.tc_mapping));
3410 }
3411 
3412 /**
3413  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3414  * @vsi: the VSI being configured
3415  * @ena_tc: TC map to be enabled
3416  */
3417 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3418 {
3419 	struct net_device *netdev = vsi->netdev;
3420 	struct ice_pf *pf = vsi->back;
3421 	int numtc = vsi->tc_cfg.numtc;
3422 	struct ice_dcbx_cfg *dcbcfg;
3423 	u8 netdev_tc;
3424 	int i;
3425 
3426 	if (!netdev)
3427 		return;
3428 
3429 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3430 	if (vsi->type == ICE_VSI_CHNL)
3431 		return;
3432 
3433 	if (!ena_tc) {
3434 		netdev_reset_tc(netdev);
3435 		return;
3436 	}
3437 
3438 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3439 		numtc = vsi->all_numtc;
3440 
3441 	if (netdev_set_num_tc(netdev, numtc))
3442 		return;
3443 
3444 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3445 
3446 	ice_for_each_traffic_class(i)
3447 		if (vsi->tc_cfg.ena_tc & BIT(i))
3448 			netdev_set_tc_queue(netdev,
3449 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3450 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3451 					    vsi->tc_cfg.tc_info[i].qoffset);
3452 	/* setup TC queue map for CHNL TCs */
3453 	ice_for_each_chnl_tc(i) {
3454 		if (!(vsi->all_enatc & BIT(i)))
3455 			break;
3456 		if (!vsi->mqprio_qopt.qopt.count[i])
3457 			break;
3458 		netdev_set_tc_queue(netdev, i,
3459 				    vsi->mqprio_qopt.qopt.count[i],
3460 				    vsi->mqprio_qopt.qopt.offset[i]);
3461 	}
3462 
3463 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3464 		return;
3465 
3466 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3467 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3468 
3469 		/* Get the mapped netdev TC# for the UP */
3470 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3471 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3472 	}
3473 }
3474 
3475 /**
3476  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3477  * @vsi: the VSI being configured,
3478  * @ctxt: VSI context structure
3479  * @ena_tc: number of traffic classes to enable
3480  *
3481  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3482  */
3483 static int
3484 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3485 			   u8 ena_tc)
3486 {
3487 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3488 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3489 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3490 	u8 netdev_tc = 0;
3491 	int i;
3492 
3493 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3494 
3495 	pow = order_base_2(tc0_qcount);
3496 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3497 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3498 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3499 
3500 	ice_for_each_traffic_class(i) {
3501 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3502 			/* TC is not enabled */
3503 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3504 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3505 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3506 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3507 			ctxt->info.tc_mapping[i] = 0;
3508 			continue;
3509 		}
3510 
3511 		offset = vsi->mqprio_qopt.qopt.offset[i];
3512 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3513 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3514 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3515 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3516 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3517 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3518 	}
3519 
3520 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3521 		ice_for_each_chnl_tc(i) {
3522 			if (!(vsi->all_enatc & BIT(i)))
3523 				continue;
3524 			offset = vsi->mqprio_qopt.qopt.offset[i];
3525 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3526 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3527 		}
3528 	}
3529 
3530 	/* Set actual Tx/Rx queue pairs */
3531 	vsi->num_txq = offset + qcount_tx;
3532 	if (vsi->num_txq > vsi->alloc_txq) {
3533 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3534 			vsi->num_txq, vsi->alloc_txq);
3535 		return -EINVAL;
3536 	}
3537 
3538 	vsi->num_rxq = offset + qcount_rx;
3539 	if (vsi->num_rxq > vsi->alloc_rxq) {
3540 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3541 			vsi->num_rxq, vsi->alloc_rxq);
3542 		return -EINVAL;
3543 	}
3544 
3545 	/* Setup queue TC[0].qmap for given VSI context */
3546 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3547 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3548 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3549 
3550 	/* Find queue count available for channel VSIs and starting offset
3551 	 * for channel VSIs
3552 	 */
3553 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3554 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3555 		vsi->next_base_q = tc0_qcount;
3556 	}
3557 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3558 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3559 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3560 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3561 
3562 	return 0;
3563 }
3564 
3565 /**
3566  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3567  * @vsi: VSI to be configured
3568  * @ena_tc: TC bitmap
3569  *
3570  * VSI queues expected to be quiesced before calling this function
3571  */
3572 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3573 {
3574 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3575 	struct ice_pf *pf = vsi->back;
3576 	struct ice_vsi_ctx *ctx;
3577 	struct device *dev;
3578 	int i, ret = 0;
3579 	u8 num_tc = 0;
3580 
3581 	dev = ice_pf_to_dev(pf);
3582 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3583 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3584 		return ret;
3585 
3586 	ice_for_each_traffic_class(i) {
3587 		/* build bitmap of enabled TCs */
3588 		if (ena_tc & BIT(i))
3589 			num_tc++;
3590 		/* populate max_txqs per TC */
3591 		max_txqs[i] = vsi->alloc_txq;
3592 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3593 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3594 		 */
3595 		if (vsi->type == ICE_VSI_CHNL &&
3596 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3597 			max_txqs[i] = vsi->num_txq;
3598 	}
3599 
3600 	vsi->tc_cfg.ena_tc = ena_tc;
3601 	vsi->tc_cfg.numtc = num_tc;
3602 
3603 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3604 	if (!ctx)
3605 		return -ENOMEM;
3606 
3607 	ctx->vf_num = 0;
3608 	ctx->info = vsi->info;
3609 
3610 	if (vsi->type == ICE_VSI_PF &&
3611 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3612 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3613 	else
3614 		ret = ice_vsi_setup_q_map(vsi, ctx);
3615 
3616 	if (ret)
3617 		goto out;
3618 
3619 	/* must to indicate which section of VSI context are being modified */
3620 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3621 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3622 	if (ret) {
3623 		dev_info(dev, "Failed VSI Update\n");
3624 		goto out;
3625 	}
3626 
3627 	if (vsi->type == ICE_VSI_PF &&
3628 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3629 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3630 	else
3631 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3632 				      vsi->tc_cfg.ena_tc, max_txqs);
3633 
3634 	if (ret) {
3635 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3636 			vsi->vsi_num, ret);
3637 		goto out;
3638 	}
3639 	ice_vsi_update_q_map(vsi, ctx);
3640 	vsi->info.valid_sections = 0;
3641 
3642 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3643 out:
3644 	kfree(ctx);
3645 	return ret;
3646 }
3647 
3648 /**
3649  * ice_update_ring_stats - Update ring statistics
3650  * @stats: stats to be updated
3651  * @pkts: number of processed packets
3652  * @bytes: number of processed bytes
3653  *
3654  * This function assumes that caller has acquired a u64_stats_sync lock.
3655  */
3656 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3657 {
3658 	stats->bytes += bytes;
3659 	stats->pkts += pkts;
3660 }
3661 
3662 /**
3663  * ice_update_tx_ring_stats - Update Tx ring specific counters
3664  * @tx_ring: ring to update
3665  * @pkts: number of processed packets
3666  * @bytes: number of processed bytes
3667  */
3668 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3669 {
3670 	u64_stats_update_begin(&tx_ring->syncp);
3671 	ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
3672 	u64_stats_update_end(&tx_ring->syncp);
3673 }
3674 
3675 /**
3676  * ice_update_rx_ring_stats - Update Rx ring specific counters
3677  * @rx_ring: ring to update
3678  * @pkts: number of processed packets
3679  * @bytes: number of processed bytes
3680  */
3681 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3682 {
3683 	u64_stats_update_begin(&rx_ring->syncp);
3684 	ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
3685 	u64_stats_update_end(&rx_ring->syncp);
3686 }
3687 
3688 /**
3689  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3690  * @sw: switch to check if its default forwarding VSI is free
3691  *
3692  * Return true if the default forwarding VSI is already being used, else returns
3693  * false signalling that it's available to use.
3694  */
3695 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3696 {
3697 	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3698 }
3699 
3700 /**
3701  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3702  * @sw: switch for the default forwarding VSI to compare against
3703  * @vsi: VSI to compare against default forwarding VSI
3704  *
3705  * If this VSI passed in is the default forwarding VSI then return true, else
3706  * return false
3707  */
3708 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3709 {
3710 	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3711 }
3712 
3713 /**
3714  * ice_set_dflt_vsi - set the default forwarding VSI
3715  * @sw: switch used to assign the default forwarding VSI
3716  * @vsi: VSI getting set as the default forwarding VSI on the switch
3717  *
3718  * If the VSI passed in is already the default VSI and it's enabled just return
3719  * success.
3720  *
3721  * If there is already a default VSI on the switch and it's enabled then return
3722  * -EEXIST since there can only be one default VSI per switch.
3723  *
3724  *  Otherwise try to set the VSI passed in as the switch's default VSI and
3725  *  return the result.
3726  */
3727 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3728 {
3729 	struct device *dev;
3730 	int status;
3731 
3732 	if (!sw || !vsi)
3733 		return -EINVAL;
3734 
3735 	dev = ice_pf_to_dev(vsi->back);
3736 
3737 	/* the VSI passed in is already the default VSI */
3738 	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3739 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3740 			vsi->vsi_num);
3741 		return 0;
3742 	}
3743 
3744 	/* another VSI is already the default VSI for this switch */
3745 	if (ice_is_dflt_vsi_in_use(sw)) {
3746 		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3747 			sw->dflt_vsi->vsi_num);
3748 		return -EEXIST;
3749 	}
3750 
3751 	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3752 	if (status) {
3753 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3754 			vsi->vsi_num, status);
3755 		return status;
3756 	}
3757 
3758 	sw->dflt_vsi = vsi;
3759 	sw->dflt_vsi_ena = true;
3760 
3761 	return 0;
3762 }
3763 
3764 /**
3765  * ice_clear_dflt_vsi - clear the default forwarding VSI
3766  * @sw: switch used to clear the default VSI
3767  *
3768  * If the switch has no default VSI or it's not enabled then return error.
3769  *
3770  * Otherwise try to clear the default VSI and return the result.
3771  */
3772 int ice_clear_dflt_vsi(struct ice_sw *sw)
3773 {
3774 	struct ice_vsi *dflt_vsi;
3775 	struct device *dev;
3776 	int status;
3777 
3778 	if (!sw)
3779 		return -EINVAL;
3780 
3781 	dev = ice_pf_to_dev(sw->pf);
3782 
3783 	dflt_vsi = sw->dflt_vsi;
3784 
3785 	/* there is no default VSI configured */
3786 	if (!ice_is_dflt_vsi_in_use(sw))
3787 		return -ENODEV;
3788 
3789 	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3790 				  ICE_FLTR_RX);
3791 	if (status) {
3792 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3793 			dflt_vsi->vsi_num, status);
3794 		return -EIO;
3795 	}
3796 
3797 	sw->dflt_vsi = NULL;
3798 	sw->dflt_vsi_ena = false;
3799 
3800 	return 0;
3801 }
3802 
3803 /**
3804  * ice_get_link_speed_mbps - get link speed in Mbps
3805  * @vsi: the VSI whose link speed is being queried
3806  *
3807  * Return current VSI link speed and 0 if the speed is unknown.
3808  */
3809 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3810 {
3811 	switch (vsi->port_info->phy.link_info.link_speed) {
3812 	case ICE_AQ_LINK_SPEED_100GB:
3813 		return SPEED_100000;
3814 	case ICE_AQ_LINK_SPEED_50GB:
3815 		return SPEED_50000;
3816 	case ICE_AQ_LINK_SPEED_40GB:
3817 		return SPEED_40000;
3818 	case ICE_AQ_LINK_SPEED_25GB:
3819 		return SPEED_25000;
3820 	case ICE_AQ_LINK_SPEED_20GB:
3821 		return SPEED_20000;
3822 	case ICE_AQ_LINK_SPEED_10GB:
3823 		return SPEED_10000;
3824 	case ICE_AQ_LINK_SPEED_5GB:
3825 		return SPEED_5000;
3826 	case ICE_AQ_LINK_SPEED_2500MB:
3827 		return SPEED_2500;
3828 	case ICE_AQ_LINK_SPEED_1000MB:
3829 		return SPEED_1000;
3830 	case ICE_AQ_LINK_SPEED_100MB:
3831 		return SPEED_100;
3832 	case ICE_AQ_LINK_SPEED_10MB:
3833 		return SPEED_10;
3834 	case ICE_AQ_LINK_SPEED_UNKNOWN:
3835 	default:
3836 		return 0;
3837 	}
3838 }
3839 
3840 /**
3841  * ice_get_link_speed_kbps - get link speed in Kbps
3842  * @vsi: the VSI whose link speed is being queried
3843  *
3844  * Return current VSI link speed and 0 if the speed is unknown.
3845  */
3846 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3847 {
3848 	int speed_mbps;
3849 
3850 	speed_mbps = ice_get_link_speed_mbps(vsi);
3851 
3852 	return speed_mbps * 1000;
3853 }
3854 
3855 /**
3856  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3857  * @vsi: VSI to be configured
3858  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3859  *
3860  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3861  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3862  * on TC 0.
3863  */
3864 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3865 {
3866 	struct ice_pf *pf = vsi->back;
3867 	struct device *dev;
3868 	int status;
3869 	int speed;
3870 
3871 	dev = ice_pf_to_dev(pf);
3872 	if (!vsi->port_info) {
3873 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3874 			vsi->idx, vsi->type);
3875 		return -EINVAL;
3876 	}
3877 
3878 	speed = ice_get_link_speed_kbps(vsi);
3879 	if (min_tx_rate > (u64)speed) {
3880 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3881 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3882 			speed);
3883 		return -EINVAL;
3884 	}
3885 
3886 	/* Configure min BW for VSI limit */
3887 	if (min_tx_rate) {
3888 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3889 						   ICE_MIN_BW, min_tx_rate);
3890 		if (status) {
3891 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3892 				min_tx_rate, ice_vsi_type_str(vsi->type),
3893 				vsi->idx);
3894 			return status;
3895 		}
3896 
3897 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3898 			min_tx_rate, ice_vsi_type_str(vsi->type));
3899 	} else {
3900 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3901 							vsi->idx, 0,
3902 							ICE_MIN_BW);
3903 		if (status) {
3904 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3905 				ice_vsi_type_str(vsi->type), vsi->idx);
3906 			return status;
3907 		}
3908 
3909 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3910 			ice_vsi_type_str(vsi->type), vsi->idx);
3911 	}
3912 
3913 	return 0;
3914 }
3915 
3916 /**
3917  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3918  * @vsi: VSI to be configured
3919  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3920  *
3921  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3922  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3923  * on TC 0.
3924  */
3925 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3926 {
3927 	struct ice_pf *pf = vsi->back;
3928 	struct device *dev;
3929 	int status;
3930 	int speed;
3931 
3932 	dev = ice_pf_to_dev(pf);
3933 	if (!vsi->port_info) {
3934 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3935 			vsi->idx, vsi->type);
3936 		return -EINVAL;
3937 	}
3938 
3939 	speed = ice_get_link_speed_kbps(vsi);
3940 	if (max_tx_rate > (u64)speed) {
3941 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3942 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3943 			speed);
3944 		return -EINVAL;
3945 	}
3946 
3947 	/* Configure max BW for VSI limit */
3948 	if (max_tx_rate) {
3949 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3950 						   ICE_MAX_BW, max_tx_rate);
3951 		if (status) {
3952 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3953 				max_tx_rate, ice_vsi_type_str(vsi->type),
3954 				vsi->idx);
3955 			return status;
3956 		}
3957 
3958 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3959 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3960 	} else {
3961 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3962 							vsi->idx, 0,
3963 							ICE_MAX_BW);
3964 		if (status) {
3965 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3966 				ice_vsi_type_str(vsi->type), vsi->idx);
3967 			return status;
3968 		}
3969 
3970 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3971 			ice_vsi_type_str(vsi->type), vsi->idx);
3972 	}
3973 
3974 	return 0;
3975 }
3976 
3977 /**
3978  * ice_set_link - turn on/off physical link
3979  * @vsi: VSI to modify physical link on
3980  * @ena: turn on/off physical link
3981  */
3982 int ice_set_link(struct ice_vsi *vsi, bool ena)
3983 {
3984 	struct device *dev = ice_pf_to_dev(vsi->back);
3985 	struct ice_port_info *pi = vsi->port_info;
3986 	struct ice_hw *hw = pi->hw;
3987 	int status;
3988 
3989 	if (vsi->type != ICE_VSI_PF)
3990 		return -EINVAL;
3991 
3992 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3993 
3994 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3995 	 * this is not a fatal error, so print a warning message and return
3996 	 * a success code. Return an error if FW returns an error code other
3997 	 * than ICE_AQ_RC_EMODE
3998 	 */
3999 	if (status == -EIO) {
4000 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4001 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4002 				(ena ? "ON" : "OFF"), status,
4003 				ice_aq_str(hw->adminq.sq_last_status));
4004 	} else if (status) {
4005 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4006 			(ena ? "ON" : "OFF"), status,
4007 			ice_aq_str(hw->adminq.sq_last_status));
4008 		return status;
4009 	}
4010 
4011 	return 0;
4012 }
4013 
4014 /**
4015  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4016  * @vsi: VSI used to add VLAN filters
4017  *
4018  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4019  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4020  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4021  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4022  *
4023  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4024  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4025  * traffic in SVM, since the VLAN TPID isn't part of filtering.
4026  *
4027  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4028  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4029  * part of filtering.
4030  */
4031 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4032 {
4033 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4034 	struct ice_vlan vlan;
4035 	int err;
4036 
4037 	vlan = ICE_VLAN(0, 0, 0);
4038 	err = vlan_ops->add_vlan(vsi, &vlan);
4039 	if (err && err != -EEXIST)
4040 		return err;
4041 
4042 	/* in SVM both VLAN 0 filters are identical */
4043 	if (!ice_is_dvm_ena(&vsi->back->hw))
4044 		return 0;
4045 
4046 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4047 	err = vlan_ops->add_vlan(vsi, &vlan);
4048 	if (err && err != -EEXIST)
4049 		return err;
4050 
4051 	return 0;
4052 }
4053 
4054 /**
4055  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4056  * @vsi: VSI used to add VLAN filters
4057  *
4058  * Delete the VLAN 0 filters in the same manner that they were added in
4059  * ice_vsi_add_vlan_zero.
4060  */
4061 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4062 {
4063 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4064 	struct ice_vlan vlan;
4065 	int err;
4066 
4067 	vlan = ICE_VLAN(0, 0, 0);
4068 	err = vlan_ops->del_vlan(vsi, &vlan);
4069 	if (err && err != -EEXIST)
4070 		return err;
4071 
4072 	/* in SVM both VLAN 0 filters are identical */
4073 	if (!ice_is_dvm_ena(&vsi->back->hw))
4074 		return 0;
4075 
4076 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4077 	err = vlan_ops->del_vlan(vsi, &vlan);
4078 	if (err && err != -EEXIST)
4079 		return err;
4080 
4081 	return 0;
4082 }
4083 
4084 /**
4085  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4086  * @vsi: VSI used to get the VLAN mode
4087  *
4088  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4089  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4090  */
4091 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4092 {
4093 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4094 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4095 	/* no VLAN 0 filter is created when a port VLAN is active */
4096 	if (vsi->type == ICE_VSI_VF) {
4097 		if (WARN_ON(!vsi->vf))
4098 			return 0;
4099 
4100 		if (ice_vf_is_port_vlan_ena(vsi->vf))
4101 			return 0;
4102 	}
4103 
4104 	if (ice_is_dvm_ena(&vsi->back->hw))
4105 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4106 	else
4107 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4108 }
4109 
4110 /**
4111  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4112  * @vsi: VSI used to determine if any non-zero VLANs have been added
4113  */
4114 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4115 {
4116 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4117 }
4118 
4119 /**
4120  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4121  * @vsi: VSI used to get the number of non-zero VLANs added
4122  */
4123 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4124 {
4125 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4126 }
4127 
4128 /**
4129  * ice_is_feature_supported
4130  * @pf: pointer to the struct ice_pf instance
4131  * @f: feature enum to be checked
4132  *
4133  * returns true if feature is supported, false otherwise
4134  */
4135 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4136 {
4137 	if (f < 0 || f >= ICE_F_MAX)
4138 		return false;
4139 
4140 	return test_bit(f, pf->features);
4141 }
4142 
4143 /**
4144  * ice_set_feature_support
4145  * @pf: pointer to the struct ice_pf instance
4146  * @f: feature enum to set
4147  */
4148 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4149 {
4150 	if (f < 0 || f >= ICE_F_MAX)
4151 		return;
4152 
4153 	set_bit(f, pf->features);
4154 }
4155 
4156 /**
4157  * ice_clear_feature_support
4158  * @pf: pointer to the struct ice_pf instance
4159  * @f: feature enum to clear
4160  */
4161 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4162 {
4163 	if (f < 0 || f >= ICE_F_MAX)
4164 		return;
4165 
4166 	clear_bit(f, pf->features);
4167 }
4168 
4169 /**
4170  * ice_init_feature_support
4171  * @pf: pointer to the struct ice_pf instance
4172  *
4173  * called during init to setup supported feature
4174  */
4175 void ice_init_feature_support(struct ice_pf *pf)
4176 {
4177 	switch (pf->hw.device_id) {
4178 	case ICE_DEV_ID_E810C_BACKPLANE:
4179 	case ICE_DEV_ID_E810C_QSFP:
4180 	case ICE_DEV_ID_E810C_SFP:
4181 		ice_set_feature_support(pf, ICE_F_DSCP);
4182 		if (ice_is_e810t(&pf->hw)) {
4183 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4184 			if (ice_gnss_is_gps_present(&pf->hw))
4185 				ice_set_feature_support(pf, ICE_F_GNSS);
4186 		}
4187 		break;
4188 	default:
4189 		break;
4190 	}
4191 }
4192 
4193 /**
4194  * ice_vsi_update_security - update security block in VSI
4195  * @vsi: pointer to VSI structure
4196  * @fill: function pointer to fill ctx
4197  */
4198 int
4199 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4200 {
4201 	struct ice_vsi_ctx ctx = { 0 };
4202 
4203 	ctx.info = vsi->info;
4204 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4205 	fill(&ctx);
4206 
4207 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4208 		return -ENODEV;
4209 
4210 	vsi->info = ctx.info;
4211 	return 0;
4212 }
4213 
4214 /**
4215  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4216  * @ctx: pointer to VSI ctx structure
4217  */
4218 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4219 {
4220 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4221 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4222 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4223 }
4224 
4225 /**
4226  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4227  * @ctx: pointer to VSI ctx structure
4228  */
4229 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4230 {
4231 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4232 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4233 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4234 }
4235 
4236 /**
4237  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4238  * @ctx: pointer to VSI ctx structure
4239  */
4240 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4241 {
4242 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4243 }
4244 
4245 /**
4246  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4247  * @ctx: pointer to VSI ctx structure
4248  */
4249 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4250 {
4251 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4252 }
4253