1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 } 891 /* Have 1:1 UP mapping for both ingress/egress tables */ 892 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 893 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 894 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 895 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 896 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 897 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 898 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 899 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 900 ctxt->info.ingress_table = cpu_to_le32(table); 901 ctxt->info.egress_table = cpu_to_le32(table); 902 /* Have 1:1 UP mapping for outer to inner UP table */ 903 ctxt->info.outer_up_table = cpu_to_le32(table); 904 /* No Outer tag support outer_tag_flags remains to zero */ 905 } 906 907 /** 908 * ice_vsi_setup_q_map - Setup a VSI queue map 909 * @vsi: the VSI being configured 910 * @ctxt: VSI context structure 911 */ 912 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 913 { 914 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 915 u16 num_txq_per_tc, num_rxq_per_tc; 916 u16 qcount_tx = vsi->alloc_txq; 917 u16 qcount_rx = vsi->alloc_rxq; 918 u8 netdev_tc = 0; 919 int i; 920 921 if (!vsi->tc_cfg.numtc) { 922 /* at least TC0 should be enabled by default */ 923 vsi->tc_cfg.numtc = 1; 924 vsi->tc_cfg.ena_tc = 1; 925 } 926 927 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 928 if (!num_rxq_per_tc) 929 num_rxq_per_tc = 1; 930 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 931 if (!num_txq_per_tc) 932 num_txq_per_tc = 1; 933 934 /* find the (rounded up) power-of-2 of qcount */ 935 pow = (u16)order_base_2(num_rxq_per_tc); 936 937 /* TC mapping is a function of the number of Rx queues assigned to the 938 * VSI for each traffic class and the offset of these queues. 939 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 940 * queues allocated to TC0. No:of queues is a power-of-2. 941 * 942 * If TC is not enabled, the queue offset is set to 0, and allocate one 943 * queue, this way, traffic for the given TC will be sent to the default 944 * queue. 945 * 946 * Setup number and offset of Rx queues for all TCs for the VSI 947 */ 948 ice_for_each_traffic_class(i) { 949 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 950 /* TC is not enabled */ 951 vsi->tc_cfg.tc_info[i].qoffset = 0; 952 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 953 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 954 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 955 ctxt->info.tc_mapping[i] = 0; 956 continue; 957 } 958 959 /* TC is enabled */ 960 vsi->tc_cfg.tc_info[i].qoffset = offset; 961 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 962 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 963 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 964 965 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 966 ICE_AQ_VSI_TC_Q_OFFSET_M) | 967 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 968 ICE_AQ_VSI_TC_Q_NUM_M); 969 offset += num_rxq_per_tc; 970 tx_count += num_txq_per_tc; 971 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 972 } 973 974 /* if offset is non-zero, means it is calculated correctly based on 975 * enabled TCs for a given VSI otherwise qcount_rx will always 976 * be correct and non-zero because it is based off - VSI's 977 * allocated Rx queues which is at least 1 (hence qcount_tx will be 978 * at least 1) 979 */ 980 if (offset) 981 vsi->num_rxq = offset; 982 else 983 vsi->num_rxq = num_rxq_per_tc; 984 985 if (vsi->num_rxq > vsi->alloc_rxq) { 986 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 987 vsi->num_rxq, vsi->alloc_rxq); 988 return -EINVAL; 989 } 990 991 vsi->num_txq = tx_count; 992 if (vsi->num_txq > vsi->alloc_txq) { 993 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 994 vsi->num_txq, vsi->alloc_txq); 995 return -EINVAL; 996 } 997 998 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 999 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1000 /* since there is a chance that num_rxq could have been changed 1001 * in the above for loop, make num_txq equal to num_rxq. 1002 */ 1003 vsi->num_txq = vsi->num_rxq; 1004 } 1005 1006 /* Rx queue mapping */ 1007 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1008 /* q_mapping buffer holds the info for the first queue allocated for 1009 * this VSI in the PF space and also the number of queues associated 1010 * with this VSI. 1011 */ 1012 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1013 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1014 1015 return 0; 1016 } 1017 1018 /** 1019 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1020 * @ctxt: the VSI context being set 1021 * @vsi: the VSI being configured 1022 */ 1023 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1024 { 1025 u8 dflt_q_group, dflt_q_prio; 1026 u16 dflt_q, report_q, val; 1027 1028 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1029 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1030 return; 1031 1032 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1033 ctxt->info.valid_sections |= cpu_to_le16(val); 1034 dflt_q = 0; 1035 dflt_q_group = 0; 1036 report_q = 0; 1037 dflt_q_prio = 0; 1038 1039 /* enable flow director filtering/programming */ 1040 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1041 ctxt->info.fd_options = cpu_to_le16(val); 1042 /* max of allocated flow director filters */ 1043 ctxt->info.max_fd_fltr_dedicated = 1044 cpu_to_le16(vsi->num_gfltr); 1045 /* max of shared flow director filters any VSI may program */ 1046 ctxt->info.max_fd_fltr_shared = 1047 cpu_to_le16(vsi->num_bfltr); 1048 /* default queue index within the VSI of the default FD */ 1049 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1050 ICE_AQ_VSI_FD_DEF_Q_M); 1051 /* target queue or queue group to the FD filter */ 1052 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1053 ICE_AQ_VSI_FD_DEF_GRP_M); 1054 ctxt->info.fd_def_q = cpu_to_le16(val); 1055 /* queue index on which FD filter completion is reported */ 1056 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1057 ICE_AQ_VSI_FD_REPORT_Q_M); 1058 /* priority of the default qindex action */ 1059 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1060 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1061 ctxt->info.fd_report_opt = cpu_to_le16(val); 1062 } 1063 1064 /** 1065 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1066 * @ctxt: the VSI context being set 1067 * @vsi: the VSI being configured 1068 */ 1069 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1070 { 1071 u8 lut_type, hash_type; 1072 struct device *dev; 1073 struct ice_pf *pf; 1074 1075 pf = vsi->back; 1076 dev = ice_pf_to_dev(pf); 1077 1078 switch (vsi->type) { 1079 case ICE_VSI_CHNL: 1080 case ICE_VSI_PF: 1081 /* PF VSI will inherit RSS instance of PF */ 1082 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1083 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1084 break; 1085 case ICE_VSI_VF: 1086 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1087 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1088 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1089 break; 1090 default: 1091 dev_dbg(dev, "Unsupported VSI type %s\n", 1092 ice_vsi_type_str(vsi->type)); 1093 return; 1094 } 1095 1096 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1097 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1098 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1099 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1100 } 1101 1102 static void 1103 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1104 { 1105 struct ice_pf *pf = vsi->back; 1106 u16 qcount, qmap; 1107 u8 offset = 0; 1108 int pow; 1109 1110 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1111 1112 pow = order_base_2(qcount); 1113 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1114 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1115 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1116 ICE_AQ_VSI_TC_Q_NUM_M); 1117 1118 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1119 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1120 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1121 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1122 } 1123 1124 /** 1125 * ice_vsi_init - Create and initialize a VSI 1126 * @vsi: the VSI being configured 1127 * @init_vsi: is this call creating a VSI 1128 * 1129 * This initializes a VSI context depending on the VSI type to be added and 1130 * passes it down to the add_vsi aq command to create a new VSI. 1131 */ 1132 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1133 { 1134 struct ice_pf *pf = vsi->back; 1135 struct ice_hw *hw = &pf->hw; 1136 struct ice_vsi_ctx *ctxt; 1137 struct device *dev; 1138 int ret = 0; 1139 1140 dev = ice_pf_to_dev(pf); 1141 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1142 if (!ctxt) 1143 return -ENOMEM; 1144 1145 switch (vsi->type) { 1146 case ICE_VSI_CTRL: 1147 case ICE_VSI_LB: 1148 case ICE_VSI_PF: 1149 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1150 break; 1151 case ICE_VSI_SWITCHDEV_CTRL: 1152 case ICE_VSI_CHNL: 1153 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1154 break; 1155 case ICE_VSI_VF: 1156 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1157 /* VF number here is the absolute VF number (0-255) */ 1158 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1159 break; 1160 default: 1161 ret = -ENODEV; 1162 goto out; 1163 } 1164 1165 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1166 * prune enabled 1167 */ 1168 if (vsi->type == ICE_VSI_CHNL) { 1169 struct ice_vsi *main_vsi; 1170 1171 main_vsi = ice_get_main_vsi(pf); 1172 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1173 ctxt->info.sw_flags2 |= 1174 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1175 else 1176 ctxt->info.sw_flags2 &= 1177 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1178 } 1179 1180 ice_set_dflt_vsi_ctx(hw, ctxt); 1181 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1182 ice_set_fd_vsi_ctx(ctxt, vsi); 1183 /* if the switch is in VEB mode, allow VSI loopback */ 1184 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1185 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1186 1187 /* Set LUT type and HASH type if RSS is enabled */ 1188 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1189 vsi->type != ICE_VSI_CTRL) { 1190 ice_set_rss_vsi_ctx(ctxt, vsi); 1191 /* if updating VSI context, make sure to set valid_section: 1192 * to indicate which section of VSI context being updated 1193 */ 1194 if (!init_vsi) 1195 ctxt->info.valid_sections |= 1196 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1197 } 1198 1199 ctxt->info.sw_id = vsi->port_info->sw_id; 1200 if (vsi->type == ICE_VSI_CHNL) { 1201 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1202 } else { 1203 ret = ice_vsi_setup_q_map(vsi, ctxt); 1204 if (ret) 1205 goto out; 1206 1207 if (!init_vsi) /* means VSI being updated */ 1208 /* must to indicate which section of VSI context are 1209 * being modified 1210 */ 1211 ctxt->info.valid_sections |= 1212 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1213 } 1214 1215 /* Allow control frames out of main VSI */ 1216 if (vsi->type == ICE_VSI_PF) { 1217 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1218 ctxt->info.valid_sections |= 1219 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1220 } 1221 1222 if (init_vsi) { 1223 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1224 if (ret) { 1225 dev_err(dev, "Add VSI failed, err %d\n", ret); 1226 ret = -EIO; 1227 goto out; 1228 } 1229 } else { 1230 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1231 if (ret) { 1232 dev_err(dev, "Update VSI failed, err %d\n", ret); 1233 ret = -EIO; 1234 goto out; 1235 } 1236 } 1237 1238 /* keep context for update VSI operations */ 1239 vsi->info = ctxt->info; 1240 1241 /* record VSI number returned */ 1242 vsi->vsi_num = ctxt->vsi_num; 1243 1244 out: 1245 kfree(ctxt); 1246 return ret; 1247 } 1248 1249 /** 1250 * ice_free_res - free a block of resources 1251 * @res: pointer to the resource 1252 * @index: starting index previously returned by ice_get_res 1253 * @id: identifier to track owner 1254 * 1255 * Returns number of resources freed 1256 */ 1257 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1258 { 1259 int count = 0; 1260 int i; 1261 1262 if (!res || index >= res->end) 1263 return -EINVAL; 1264 1265 id |= ICE_RES_VALID_BIT; 1266 for (i = index; i < res->end && res->list[i] == id; i++) { 1267 res->list[i] = 0; 1268 count++; 1269 } 1270 1271 return count; 1272 } 1273 1274 /** 1275 * ice_search_res - Search the tracker for a block of resources 1276 * @res: pointer to the resource 1277 * @needed: size of the block needed 1278 * @id: identifier to track owner 1279 * 1280 * Returns the base item index of the block, or -ENOMEM for error 1281 */ 1282 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1283 { 1284 u16 start = 0, end = 0; 1285 1286 if (needed > res->end) 1287 return -ENOMEM; 1288 1289 id |= ICE_RES_VALID_BIT; 1290 1291 do { 1292 /* skip already allocated entries */ 1293 if (res->list[end++] & ICE_RES_VALID_BIT) { 1294 start = end; 1295 if ((start + needed) > res->end) 1296 break; 1297 } 1298 1299 if (end == (start + needed)) { 1300 int i = start; 1301 1302 /* there was enough, so assign it to the requestor */ 1303 while (i != end) 1304 res->list[i++] = id; 1305 1306 return start; 1307 } 1308 } while (end < res->end); 1309 1310 return -ENOMEM; 1311 } 1312 1313 /** 1314 * ice_get_free_res_count - Get free count from a resource tracker 1315 * @res: Resource tracker instance 1316 */ 1317 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1318 { 1319 u16 i, count = 0; 1320 1321 for (i = 0; i < res->end; i++) 1322 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1323 count++; 1324 1325 return count; 1326 } 1327 1328 /** 1329 * ice_get_res - get a block of resources 1330 * @pf: board private structure 1331 * @res: pointer to the resource 1332 * @needed: size of the block needed 1333 * @id: identifier to track owner 1334 * 1335 * Returns the base item index of the block, or negative for error 1336 */ 1337 int 1338 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1339 { 1340 if (!res || !pf) 1341 return -EINVAL; 1342 1343 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1344 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1345 needed, res->num_entries, id); 1346 return -EINVAL; 1347 } 1348 1349 return ice_search_res(res, needed, id); 1350 } 1351 1352 /** 1353 * ice_get_vf_ctrl_res - Get VF control VSI resource 1354 * @pf: pointer to the PF structure 1355 * @vsi: the VSI to allocate a resource for 1356 * 1357 * Look up whether another VF has already allocated the control VSI resource. 1358 * If so, re-use this resource so that we share it among all VFs. 1359 * 1360 * Otherwise, allocate the resource and return it. 1361 */ 1362 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1363 { 1364 struct ice_vf *vf; 1365 unsigned int bkt; 1366 int base; 1367 1368 rcu_read_lock(); 1369 ice_for_each_vf_rcu(pf, bkt, vf) { 1370 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1371 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1372 rcu_read_unlock(); 1373 return base; 1374 } 1375 } 1376 rcu_read_unlock(); 1377 1378 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1379 ICE_RES_VF_CTRL_VEC_ID); 1380 } 1381 1382 /** 1383 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1384 * @vsi: ptr to the VSI 1385 * 1386 * This should only be called after ice_vsi_alloc() which allocates the 1387 * corresponding SW VSI structure and initializes num_queue_pairs for the 1388 * newly allocated VSI. 1389 * 1390 * Returns 0 on success or negative on failure 1391 */ 1392 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1393 { 1394 struct ice_pf *pf = vsi->back; 1395 struct device *dev; 1396 u16 num_q_vectors; 1397 int base; 1398 1399 dev = ice_pf_to_dev(pf); 1400 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1401 if (vsi->type == ICE_VSI_VF) 1402 return 0; 1403 if (vsi->type == ICE_VSI_CHNL) 1404 return 0; 1405 1406 if (vsi->base_vector) { 1407 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1408 vsi->vsi_num, vsi->base_vector); 1409 return -EEXIST; 1410 } 1411 1412 num_q_vectors = vsi->num_q_vectors; 1413 /* reserve slots from OS requested IRQs */ 1414 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1415 base = ice_get_vf_ctrl_res(pf, vsi); 1416 } else { 1417 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1418 vsi->idx); 1419 } 1420 1421 if (base < 0) { 1422 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1423 ice_get_free_res_count(pf->irq_tracker), 1424 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1425 return -ENOENT; 1426 } 1427 vsi->base_vector = (u16)base; 1428 pf->num_avail_sw_msix -= num_q_vectors; 1429 1430 return 0; 1431 } 1432 1433 /** 1434 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1435 * @vsi: the VSI having rings deallocated 1436 */ 1437 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1438 { 1439 int i; 1440 1441 /* Avoid stale references by clearing map from vector to ring */ 1442 if (vsi->q_vectors) { 1443 ice_for_each_q_vector(vsi, i) { 1444 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1445 1446 if (q_vector) { 1447 q_vector->tx.tx_ring = NULL; 1448 q_vector->rx.rx_ring = NULL; 1449 } 1450 } 1451 } 1452 1453 if (vsi->tx_rings) { 1454 ice_for_each_alloc_txq(vsi, i) { 1455 if (vsi->tx_rings[i]) { 1456 kfree_rcu(vsi->tx_rings[i], rcu); 1457 WRITE_ONCE(vsi->tx_rings[i], NULL); 1458 } 1459 } 1460 } 1461 if (vsi->rx_rings) { 1462 ice_for_each_alloc_rxq(vsi, i) { 1463 if (vsi->rx_rings[i]) { 1464 kfree_rcu(vsi->rx_rings[i], rcu); 1465 WRITE_ONCE(vsi->rx_rings[i], NULL); 1466 } 1467 } 1468 } 1469 } 1470 1471 /** 1472 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1473 * @vsi: VSI which is having rings allocated 1474 */ 1475 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1476 { 1477 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1478 struct ice_pf *pf = vsi->back; 1479 struct device *dev; 1480 u16 i; 1481 1482 dev = ice_pf_to_dev(pf); 1483 /* Allocate Tx rings */ 1484 ice_for_each_alloc_txq(vsi, i) { 1485 struct ice_tx_ring *ring; 1486 1487 /* allocate with kzalloc(), free with kfree_rcu() */ 1488 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1489 1490 if (!ring) 1491 goto err_out; 1492 1493 ring->q_index = i; 1494 ring->reg_idx = vsi->txq_map[i]; 1495 ring->vsi = vsi; 1496 ring->tx_tstamps = &pf->ptp.port.tx; 1497 ring->dev = dev; 1498 ring->count = vsi->num_tx_desc; 1499 ring->txq_teid = ICE_INVAL_TEID; 1500 if (dvm_ena) 1501 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1502 else 1503 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1504 WRITE_ONCE(vsi->tx_rings[i], ring); 1505 } 1506 1507 /* Allocate Rx rings */ 1508 ice_for_each_alloc_rxq(vsi, i) { 1509 struct ice_rx_ring *ring; 1510 1511 /* allocate with kzalloc(), free with kfree_rcu() */ 1512 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1513 if (!ring) 1514 goto err_out; 1515 1516 ring->q_index = i; 1517 ring->reg_idx = vsi->rxq_map[i]; 1518 ring->vsi = vsi; 1519 ring->netdev = vsi->netdev; 1520 ring->dev = dev; 1521 ring->count = vsi->num_rx_desc; 1522 WRITE_ONCE(vsi->rx_rings[i], ring); 1523 } 1524 1525 return 0; 1526 1527 err_out: 1528 ice_vsi_clear_rings(vsi); 1529 return -ENOMEM; 1530 } 1531 1532 /** 1533 * ice_vsi_manage_rss_lut - disable/enable RSS 1534 * @vsi: the VSI being changed 1535 * @ena: boolean value indicating if this is an enable or disable request 1536 * 1537 * In the event of disable request for RSS, this function will zero out RSS 1538 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1539 * LUT. 1540 */ 1541 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1542 { 1543 u8 *lut; 1544 1545 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1546 if (!lut) 1547 return; 1548 1549 if (ena) { 1550 if (vsi->rss_lut_user) 1551 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1552 else 1553 ice_fill_rss_lut(lut, vsi->rss_table_size, 1554 vsi->rss_size); 1555 } 1556 1557 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1558 kfree(lut); 1559 } 1560 1561 /** 1562 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1563 * @vsi: VSI to be configured 1564 */ 1565 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1566 { 1567 struct ice_pf *pf = vsi->back; 1568 struct device *dev; 1569 u8 *lut, *key; 1570 int err; 1571 1572 dev = ice_pf_to_dev(pf); 1573 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1574 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1575 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1576 } else { 1577 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1578 1579 /* If orig_rss_size is valid and it is less than determined 1580 * main VSI's rss_size, update main VSI's rss_size to be 1581 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1582 * RSS table gets programmed to be correct (whatever it was 1583 * to begin with (prior to setup-tc for ADQ config) 1584 */ 1585 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1586 vsi->orig_rss_size <= vsi->num_rxq) { 1587 vsi->rss_size = vsi->orig_rss_size; 1588 /* now orig_rss_size is used, reset it to zero */ 1589 vsi->orig_rss_size = 0; 1590 } 1591 } 1592 1593 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1594 if (!lut) 1595 return -ENOMEM; 1596 1597 if (vsi->rss_lut_user) 1598 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1599 else 1600 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1601 1602 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1603 if (err) { 1604 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1605 goto ice_vsi_cfg_rss_exit; 1606 } 1607 1608 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1609 if (!key) { 1610 err = -ENOMEM; 1611 goto ice_vsi_cfg_rss_exit; 1612 } 1613 1614 if (vsi->rss_hkey_user) 1615 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1616 else 1617 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1618 1619 err = ice_set_rss_key(vsi, key); 1620 if (err) 1621 dev_err(dev, "set_rss_key failed, error %d\n", err); 1622 1623 kfree(key); 1624 ice_vsi_cfg_rss_exit: 1625 kfree(lut); 1626 return err; 1627 } 1628 1629 /** 1630 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1631 * @vsi: VSI to be configured 1632 * 1633 * This function will only be called during the VF VSI setup. Upon successful 1634 * completion of package download, this function will configure default RSS 1635 * input sets for VF VSI. 1636 */ 1637 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1638 { 1639 struct ice_pf *pf = vsi->back; 1640 struct device *dev; 1641 int status; 1642 1643 dev = ice_pf_to_dev(pf); 1644 if (ice_is_safe_mode(pf)) { 1645 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1646 vsi->vsi_num); 1647 return; 1648 } 1649 1650 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1651 if (status) 1652 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1653 vsi->vsi_num, status); 1654 } 1655 1656 /** 1657 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1658 * @vsi: VSI to be configured 1659 * 1660 * This function will only be called after successful download package call 1661 * during initialization of PF. Since the downloaded package will erase the 1662 * RSS section, this function will configure RSS input sets for different 1663 * flow types. The last profile added has the highest priority, therefore 2 1664 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1665 * (i.e. IPv4 src/dst TCP src/dst port). 1666 */ 1667 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1668 { 1669 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1670 struct ice_pf *pf = vsi->back; 1671 struct ice_hw *hw = &pf->hw; 1672 struct device *dev; 1673 int status; 1674 1675 dev = ice_pf_to_dev(pf); 1676 if (ice_is_safe_mode(pf)) { 1677 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1678 vsi_num); 1679 return; 1680 } 1681 /* configure RSS for IPv4 with input set IP src/dst */ 1682 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1683 ICE_FLOW_SEG_HDR_IPV4); 1684 if (status) 1685 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1686 vsi_num, status); 1687 1688 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1689 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1690 ICE_FLOW_SEG_HDR_IPV6); 1691 if (status) 1692 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1693 vsi_num, status); 1694 1695 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1696 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1697 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1698 if (status) 1699 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1700 vsi_num, status); 1701 1702 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1703 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1704 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1705 if (status) 1706 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1707 vsi_num, status); 1708 1709 /* configure RSS for sctp4 with input set IP src/dst */ 1710 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1711 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1712 if (status) 1713 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1714 vsi_num, status); 1715 1716 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1717 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1718 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1719 if (status) 1720 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1721 vsi_num, status); 1722 1723 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1724 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1725 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1726 if (status) 1727 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1728 vsi_num, status); 1729 1730 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1731 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1732 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1733 if (status) 1734 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1735 vsi_num, status); 1736 1737 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1738 ICE_FLOW_SEG_HDR_ESP); 1739 if (status) 1740 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1741 vsi_num, status); 1742 } 1743 1744 /** 1745 * ice_pf_state_is_nominal - checks the PF for nominal state 1746 * @pf: pointer to PF to check 1747 * 1748 * Check the PF's state for a collection of bits that would indicate 1749 * the PF is in a state that would inhibit normal operation for 1750 * driver functionality. 1751 * 1752 * Returns true if PF is in a nominal state, false otherwise 1753 */ 1754 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1755 { 1756 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1757 1758 if (!pf) 1759 return false; 1760 1761 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1762 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1763 return false; 1764 1765 return true; 1766 } 1767 1768 /** 1769 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1770 * @vsi: the VSI to be updated 1771 */ 1772 void ice_update_eth_stats(struct ice_vsi *vsi) 1773 { 1774 struct ice_eth_stats *prev_es, *cur_es; 1775 struct ice_hw *hw = &vsi->back->hw; 1776 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1777 1778 prev_es = &vsi->eth_stats_prev; 1779 cur_es = &vsi->eth_stats; 1780 1781 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1782 &prev_es->rx_bytes, &cur_es->rx_bytes); 1783 1784 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1785 &prev_es->rx_unicast, &cur_es->rx_unicast); 1786 1787 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1788 &prev_es->rx_multicast, &cur_es->rx_multicast); 1789 1790 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1791 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1792 1793 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1794 &prev_es->rx_discards, &cur_es->rx_discards); 1795 1796 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1797 &prev_es->tx_bytes, &cur_es->tx_bytes); 1798 1799 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1800 &prev_es->tx_unicast, &cur_es->tx_unicast); 1801 1802 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1803 &prev_es->tx_multicast, &cur_es->tx_multicast); 1804 1805 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1806 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1807 1808 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1809 &prev_es->tx_errors, &cur_es->tx_errors); 1810 1811 vsi->stat_offsets_loaded = true; 1812 } 1813 1814 /** 1815 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1816 * @vsi: VSI 1817 */ 1818 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1819 { 1820 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1821 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1822 vsi->rx_buf_len = ICE_RXBUF_2048; 1823 #if (PAGE_SIZE < 8192) 1824 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1825 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1826 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1827 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1828 #endif 1829 } else { 1830 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1831 #if (PAGE_SIZE < 8192) 1832 vsi->rx_buf_len = ICE_RXBUF_3072; 1833 #else 1834 vsi->rx_buf_len = ICE_RXBUF_2048; 1835 #endif 1836 } 1837 } 1838 1839 /** 1840 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1841 * @hw: HW pointer 1842 * @pf_q: index of the Rx queue in the PF's queue space 1843 * @rxdid: flexible descriptor RXDID 1844 * @prio: priority for the RXDID for this queue 1845 * @ena_ts: true to enable timestamp and false to disable timestamp 1846 */ 1847 void 1848 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1849 bool ena_ts) 1850 { 1851 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1852 1853 /* clear any previous values */ 1854 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1855 QRXFLXP_CNTXT_RXDID_PRIO_M | 1856 QRXFLXP_CNTXT_TS_M); 1857 1858 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1859 QRXFLXP_CNTXT_RXDID_IDX_M; 1860 1861 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1862 QRXFLXP_CNTXT_RXDID_PRIO_M; 1863 1864 if (ena_ts) 1865 /* Enable TimeSync on this queue */ 1866 regval |= QRXFLXP_CNTXT_TS_M; 1867 1868 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1869 } 1870 1871 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1872 { 1873 if (q_idx >= vsi->num_rxq) 1874 return -EINVAL; 1875 1876 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1877 } 1878 1879 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1880 { 1881 struct ice_aqc_add_tx_qgrp *qg_buf; 1882 int err; 1883 1884 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1885 return -EINVAL; 1886 1887 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1888 if (!qg_buf) 1889 return -ENOMEM; 1890 1891 qg_buf->num_txqs = 1; 1892 1893 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1894 kfree(qg_buf); 1895 return err; 1896 } 1897 1898 /** 1899 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1900 * @vsi: the VSI being configured 1901 * 1902 * Return 0 on success and a negative value on error 1903 * Configure the Rx VSI for operation. 1904 */ 1905 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1906 { 1907 u16 i; 1908 1909 if (vsi->type == ICE_VSI_VF) 1910 goto setup_rings; 1911 1912 ice_vsi_cfg_frame_size(vsi); 1913 setup_rings: 1914 /* set up individual rings */ 1915 ice_for_each_rxq(vsi, i) { 1916 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1917 1918 if (err) 1919 return err; 1920 } 1921 1922 return 0; 1923 } 1924 1925 /** 1926 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1927 * @vsi: the VSI being configured 1928 * @rings: Tx ring array to be configured 1929 * @count: number of Tx ring array elements 1930 * 1931 * Return 0 on success and a negative value on error 1932 * Configure the Tx VSI for operation. 1933 */ 1934 static int 1935 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1936 { 1937 struct ice_aqc_add_tx_qgrp *qg_buf; 1938 u16 q_idx = 0; 1939 int err = 0; 1940 1941 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1942 if (!qg_buf) 1943 return -ENOMEM; 1944 1945 qg_buf->num_txqs = 1; 1946 1947 for (q_idx = 0; q_idx < count; q_idx++) { 1948 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1949 if (err) 1950 goto err_cfg_txqs; 1951 } 1952 1953 err_cfg_txqs: 1954 kfree(qg_buf); 1955 return err; 1956 } 1957 1958 /** 1959 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1960 * @vsi: the VSI being configured 1961 * 1962 * Return 0 on success and a negative value on error 1963 * Configure the Tx VSI for operation. 1964 */ 1965 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1966 { 1967 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1968 } 1969 1970 /** 1971 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1972 * @vsi: the VSI being configured 1973 * 1974 * Return 0 on success and a negative value on error 1975 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1976 */ 1977 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1978 { 1979 int ret; 1980 int i; 1981 1982 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1983 if (ret) 1984 return ret; 1985 1986 ice_for_each_xdp_txq(vsi, i) 1987 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1988 1989 return ret; 1990 } 1991 1992 /** 1993 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1994 * @intrl: interrupt rate limit in usecs 1995 * @gran: interrupt rate limit granularity in usecs 1996 * 1997 * This function converts a decimal interrupt rate limit in usecs to the format 1998 * expected by firmware. 1999 */ 2000 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2001 { 2002 u32 val = intrl / gran; 2003 2004 if (val) 2005 return val | GLINT_RATE_INTRL_ENA_M; 2006 return 0; 2007 } 2008 2009 /** 2010 * ice_write_intrl - write throttle rate limit to interrupt specific register 2011 * @q_vector: pointer to interrupt specific structure 2012 * @intrl: throttle rate limit in microseconds to write 2013 */ 2014 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2015 { 2016 struct ice_hw *hw = &q_vector->vsi->back->hw; 2017 2018 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2019 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2020 } 2021 2022 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2023 { 2024 switch (rc->type) { 2025 case ICE_RX_CONTAINER: 2026 if (rc->rx_ring) 2027 return rc->rx_ring->q_vector; 2028 break; 2029 case ICE_TX_CONTAINER: 2030 if (rc->tx_ring) 2031 return rc->tx_ring->q_vector; 2032 break; 2033 default: 2034 break; 2035 } 2036 2037 return NULL; 2038 } 2039 2040 /** 2041 * __ice_write_itr - write throttle rate to register 2042 * @q_vector: pointer to interrupt data structure 2043 * @rc: pointer to ring container 2044 * @itr: throttle rate in microseconds to write 2045 */ 2046 static void __ice_write_itr(struct ice_q_vector *q_vector, 2047 struct ice_ring_container *rc, u16 itr) 2048 { 2049 struct ice_hw *hw = &q_vector->vsi->back->hw; 2050 2051 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2052 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2053 } 2054 2055 /** 2056 * ice_write_itr - write throttle rate to queue specific register 2057 * @rc: pointer to ring container 2058 * @itr: throttle rate in microseconds to write 2059 */ 2060 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2061 { 2062 struct ice_q_vector *q_vector; 2063 2064 q_vector = ice_pull_qvec_from_rc(rc); 2065 if (!q_vector) 2066 return; 2067 2068 __ice_write_itr(q_vector, rc, itr); 2069 } 2070 2071 /** 2072 * ice_set_q_vector_intrl - set up interrupt rate limiting 2073 * @q_vector: the vector to be configured 2074 * 2075 * Interrupt rate limiting is local to the vector, not per-queue so we must 2076 * detect if either ring container has dynamic moderation enabled to decide 2077 * what to set the interrupt rate limit to via INTRL settings. In the case that 2078 * dynamic moderation is disabled on both, write the value with the cached 2079 * setting to make sure INTRL register matches the user visible value. 2080 */ 2081 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2082 { 2083 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2084 /* in the case of dynamic enabled, cap each vector to no more 2085 * than (4 us) 250,000 ints/sec, which allows low latency 2086 * but still less than 500,000 interrupts per second, which 2087 * reduces CPU a bit in the case of the lowest latency 2088 * setting. The 4 here is a value in microseconds. 2089 */ 2090 ice_write_intrl(q_vector, 4); 2091 } else { 2092 ice_write_intrl(q_vector, q_vector->intrl); 2093 } 2094 } 2095 2096 /** 2097 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2098 * @vsi: the VSI being configured 2099 * 2100 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2101 * for the VF VSI. 2102 */ 2103 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2104 { 2105 struct ice_pf *pf = vsi->back; 2106 struct ice_hw *hw = &pf->hw; 2107 u16 txq = 0, rxq = 0; 2108 int i, q; 2109 2110 ice_for_each_q_vector(vsi, i) { 2111 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2112 u16 reg_idx = q_vector->reg_idx; 2113 2114 ice_cfg_itr(hw, q_vector); 2115 2116 /* Both Transmit Queue Interrupt Cause Control register 2117 * and Receive Queue Interrupt Cause control register 2118 * expects MSIX_INDX field to be the vector index 2119 * within the function space and not the absolute 2120 * vector index across PF or across device. 2121 * For SR-IOV VF VSIs queue vector index always starts 2122 * with 1 since first vector index(0) is used for OICR 2123 * in VF space. Since VMDq and other PF VSIs are within 2124 * the PF function space, use the vector index that is 2125 * tracked for this PF. 2126 */ 2127 for (q = 0; q < q_vector->num_ring_tx; q++) { 2128 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2129 q_vector->tx.itr_idx); 2130 txq++; 2131 } 2132 2133 for (q = 0; q < q_vector->num_ring_rx; q++) { 2134 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2135 q_vector->rx.itr_idx); 2136 rxq++; 2137 } 2138 } 2139 } 2140 2141 /** 2142 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2143 * @vsi: the VSI whose rings are to be enabled 2144 * 2145 * Returns 0 on success and a negative value on error 2146 */ 2147 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2148 { 2149 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2150 } 2151 2152 /** 2153 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2154 * @vsi: the VSI whose rings are to be disabled 2155 * 2156 * Returns 0 on success and a negative value on error 2157 */ 2158 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2159 { 2160 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2161 } 2162 2163 /** 2164 * ice_vsi_stop_tx_rings - Disable Tx rings 2165 * @vsi: the VSI being configured 2166 * @rst_src: reset source 2167 * @rel_vmvf_num: Relative ID of VF/VM 2168 * @rings: Tx ring array to be stopped 2169 * @count: number of Tx ring array elements 2170 */ 2171 static int 2172 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2173 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2174 { 2175 u16 q_idx; 2176 2177 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2178 return -EINVAL; 2179 2180 for (q_idx = 0; q_idx < count; q_idx++) { 2181 struct ice_txq_meta txq_meta = { }; 2182 int status; 2183 2184 if (!rings || !rings[q_idx]) 2185 return -EINVAL; 2186 2187 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2188 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2189 rings[q_idx], &txq_meta); 2190 2191 if (status) 2192 return status; 2193 } 2194 2195 return 0; 2196 } 2197 2198 /** 2199 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2200 * @vsi: the VSI being configured 2201 * @rst_src: reset source 2202 * @rel_vmvf_num: Relative ID of VF/VM 2203 */ 2204 int 2205 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2206 u16 rel_vmvf_num) 2207 { 2208 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2209 } 2210 2211 /** 2212 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2213 * @vsi: the VSI being configured 2214 */ 2215 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2216 { 2217 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2218 } 2219 2220 /** 2221 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2222 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2223 * 2224 * returns true if Rx VLAN pruning is enabled and false otherwise. 2225 */ 2226 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2227 { 2228 if (!vsi) 2229 return false; 2230 2231 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2232 } 2233 2234 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2235 { 2236 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2237 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2238 vsi->tc_cfg.numtc = 1; 2239 return; 2240 } 2241 2242 /* set VSI TC information based on DCB config */ 2243 ice_vsi_set_dcb_tc_cfg(vsi); 2244 } 2245 2246 /** 2247 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2248 * @vsi: VSI to set the q_vectors register index on 2249 */ 2250 static int 2251 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2252 { 2253 u16 i; 2254 2255 if (!vsi || !vsi->q_vectors) 2256 return -EINVAL; 2257 2258 ice_for_each_q_vector(vsi, i) { 2259 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2260 2261 if (!q_vector) { 2262 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2263 i, vsi->vsi_num); 2264 goto clear_reg_idx; 2265 } 2266 2267 if (vsi->type == ICE_VSI_VF) { 2268 struct ice_vf *vf = vsi->vf; 2269 2270 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2271 } else { 2272 q_vector->reg_idx = 2273 q_vector->v_idx + vsi->base_vector; 2274 } 2275 } 2276 2277 return 0; 2278 2279 clear_reg_idx: 2280 ice_for_each_q_vector(vsi, i) { 2281 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2282 2283 if (q_vector) 2284 q_vector->reg_idx = 0; 2285 } 2286 2287 return -EINVAL; 2288 } 2289 2290 /** 2291 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2292 * @vsi: the VSI being configured 2293 * @tx: bool to determine Tx or Rx rule 2294 * @create: bool to determine create or remove Rule 2295 */ 2296 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2297 { 2298 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2299 enum ice_sw_fwd_act_type act); 2300 struct ice_pf *pf = vsi->back; 2301 struct device *dev; 2302 int status; 2303 2304 dev = ice_pf_to_dev(pf); 2305 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2306 2307 if (tx) { 2308 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2309 ICE_DROP_PACKET); 2310 } else { 2311 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2312 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2313 create); 2314 } else { 2315 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2316 ICE_FWD_TO_VSI); 2317 } 2318 } 2319 2320 if (status) 2321 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2322 create ? "adding" : "removing", tx ? "TX" : "RX", 2323 vsi->vsi_num, status); 2324 } 2325 2326 /** 2327 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2328 * @vsi: pointer to the VSI 2329 * 2330 * This function will allocate new scheduler aggregator now if needed and will 2331 * move specified VSI into it. 2332 */ 2333 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2334 { 2335 struct device *dev = ice_pf_to_dev(vsi->back); 2336 struct ice_agg_node *agg_node_iter = NULL; 2337 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2338 struct ice_agg_node *agg_node = NULL; 2339 int node_offset, max_agg_nodes = 0; 2340 struct ice_port_info *port_info; 2341 struct ice_pf *pf = vsi->back; 2342 u32 agg_node_id_start = 0; 2343 int status; 2344 2345 /* create (as needed) scheduler aggregator node and move VSI into 2346 * corresponding aggregator node 2347 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2348 * - VF aggregator nodes will contain VF VSI 2349 */ 2350 port_info = pf->hw.port_info; 2351 if (!port_info) 2352 return; 2353 2354 switch (vsi->type) { 2355 case ICE_VSI_CTRL: 2356 case ICE_VSI_CHNL: 2357 case ICE_VSI_LB: 2358 case ICE_VSI_PF: 2359 case ICE_VSI_SWITCHDEV_CTRL: 2360 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2361 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2362 agg_node_iter = &pf->pf_agg_node[0]; 2363 break; 2364 case ICE_VSI_VF: 2365 /* user can create 'n' VFs on a given PF, but since max children 2366 * per aggregator node can be only 64. Following code handles 2367 * aggregator(s) for VF VSIs, either selects a agg_node which 2368 * was already created provided num_vsis < 64, otherwise 2369 * select next available node, which will be created 2370 */ 2371 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2372 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2373 agg_node_iter = &pf->vf_agg_node[0]; 2374 break; 2375 default: 2376 /* other VSI type, handle later if needed */ 2377 dev_dbg(dev, "unexpected VSI type %s\n", 2378 ice_vsi_type_str(vsi->type)); 2379 return; 2380 } 2381 2382 /* find the appropriate aggregator node */ 2383 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2384 /* see if we can find space in previously created 2385 * node if num_vsis < 64, otherwise skip 2386 */ 2387 if (agg_node_iter->num_vsis && 2388 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2389 agg_node_iter++; 2390 continue; 2391 } 2392 2393 if (agg_node_iter->valid && 2394 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2395 agg_id = agg_node_iter->agg_id; 2396 agg_node = agg_node_iter; 2397 break; 2398 } 2399 2400 /* find unclaimed agg_id */ 2401 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2402 agg_id = node_offset + agg_node_id_start; 2403 agg_node = agg_node_iter; 2404 break; 2405 } 2406 /* move to next agg_node */ 2407 agg_node_iter++; 2408 } 2409 2410 if (!agg_node) 2411 return; 2412 2413 /* if selected aggregator node was not created, create it */ 2414 if (!agg_node->valid) { 2415 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2416 (u8)vsi->tc_cfg.ena_tc); 2417 if (status) { 2418 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2419 agg_id); 2420 return; 2421 } 2422 /* aggregator node is created, store the neeeded info */ 2423 agg_node->valid = true; 2424 agg_node->agg_id = agg_id; 2425 } 2426 2427 /* move VSI to corresponding aggregator node */ 2428 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2429 (u8)vsi->tc_cfg.ena_tc); 2430 if (status) { 2431 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2432 vsi->idx, agg_id); 2433 return; 2434 } 2435 2436 /* keep active children count for aggregator node */ 2437 agg_node->num_vsis++; 2438 2439 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2440 * to aggregator node 2441 */ 2442 vsi->agg_node = agg_node; 2443 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2444 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2445 vsi->agg_node->num_vsis); 2446 } 2447 2448 /** 2449 * ice_vsi_setup - Set up a VSI by a given type 2450 * @pf: board private structure 2451 * @pi: pointer to the port_info instance 2452 * @vsi_type: VSI type 2453 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2454 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2455 * @ch: ptr to channel 2456 * 2457 * This allocates the sw VSI structure and its queue resources. 2458 * 2459 * Returns pointer to the successfully allocated and configured VSI sw struct on 2460 * success, NULL on failure. 2461 */ 2462 struct ice_vsi * 2463 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2464 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2465 struct ice_channel *ch) 2466 { 2467 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2468 struct device *dev = ice_pf_to_dev(pf); 2469 struct ice_vsi *vsi; 2470 int ret, i; 2471 2472 if (vsi_type == ICE_VSI_CHNL) 2473 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2474 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2475 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2476 else 2477 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2478 2479 if (!vsi) { 2480 dev_err(dev, "could not allocate VSI\n"); 2481 return NULL; 2482 } 2483 2484 vsi->port_info = pi; 2485 vsi->vsw = pf->first_sw; 2486 if (vsi->type == ICE_VSI_PF) 2487 vsi->ethtype = ETH_P_PAUSE; 2488 2489 ice_alloc_fd_res(vsi); 2490 2491 if (vsi_type != ICE_VSI_CHNL) { 2492 if (ice_vsi_get_qs(vsi)) { 2493 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2494 vsi->idx); 2495 goto unroll_vsi_alloc; 2496 } 2497 } 2498 2499 /* set RSS capabilities */ 2500 ice_vsi_set_rss_params(vsi); 2501 2502 /* set TC configuration */ 2503 ice_vsi_set_tc_cfg(vsi); 2504 2505 /* create the VSI */ 2506 ret = ice_vsi_init(vsi, true); 2507 if (ret) 2508 goto unroll_get_qs; 2509 2510 ice_vsi_init_vlan_ops(vsi); 2511 2512 switch (vsi->type) { 2513 case ICE_VSI_CTRL: 2514 case ICE_VSI_SWITCHDEV_CTRL: 2515 case ICE_VSI_PF: 2516 ret = ice_vsi_alloc_q_vectors(vsi); 2517 if (ret) 2518 goto unroll_vsi_init; 2519 2520 ret = ice_vsi_setup_vector_base(vsi); 2521 if (ret) 2522 goto unroll_alloc_q_vector; 2523 2524 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2525 if (ret) 2526 goto unroll_vector_base; 2527 2528 ret = ice_vsi_alloc_rings(vsi); 2529 if (ret) 2530 goto unroll_vector_base; 2531 2532 ice_vsi_map_rings_to_vectors(vsi); 2533 2534 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2535 if (vsi->type != ICE_VSI_CTRL) 2536 /* Do not exit if configuring RSS had an issue, at 2537 * least receive traffic on first queue. Hence no 2538 * need to capture return value 2539 */ 2540 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2541 ice_vsi_cfg_rss_lut_key(vsi); 2542 ice_vsi_set_rss_flow_fld(vsi); 2543 } 2544 ice_init_arfs(vsi); 2545 break; 2546 case ICE_VSI_CHNL: 2547 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2548 ice_vsi_cfg_rss_lut_key(vsi); 2549 ice_vsi_set_rss_flow_fld(vsi); 2550 } 2551 break; 2552 case ICE_VSI_VF: 2553 /* VF driver will take care of creating netdev for this type and 2554 * map queues to vectors through Virtchnl, PF driver only 2555 * creates a VSI and corresponding structures for bookkeeping 2556 * purpose 2557 */ 2558 ret = ice_vsi_alloc_q_vectors(vsi); 2559 if (ret) 2560 goto unroll_vsi_init; 2561 2562 ret = ice_vsi_alloc_rings(vsi); 2563 if (ret) 2564 goto unroll_alloc_q_vector; 2565 2566 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2567 if (ret) 2568 goto unroll_vector_base; 2569 2570 /* Do not exit if configuring RSS had an issue, at least 2571 * receive traffic on first queue. Hence no need to capture 2572 * return value 2573 */ 2574 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2575 ice_vsi_cfg_rss_lut_key(vsi); 2576 ice_vsi_set_vf_rss_flow_fld(vsi); 2577 } 2578 break; 2579 case ICE_VSI_LB: 2580 ret = ice_vsi_alloc_rings(vsi); 2581 if (ret) 2582 goto unroll_vsi_init; 2583 break; 2584 default: 2585 /* clean up the resources and exit */ 2586 goto unroll_vsi_init; 2587 } 2588 2589 /* configure VSI nodes based on number of queues and TC's */ 2590 ice_for_each_traffic_class(i) { 2591 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2592 continue; 2593 2594 if (vsi->type == ICE_VSI_CHNL) { 2595 if (!vsi->alloc_txq && vsi->num_txq) 2596 max_txqs[i] = vsi->num_txq; 2597 else 2598 max_txqs[i] = pf->num_lan_tx; 2599 } else { 2600 max_txqs[i] = vsi->alloc_txq; 2601 } 2602 } 2603 2604 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2605 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2606 max_txqs); 2607 if (ret) { 2608 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2609 vsi->vsi_num, ret); 2610 goto unroll_clear_rings; 2611 } 2612 2613 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2614 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2615 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2616 * The rule is added once for PF VSI in order to create appropriate 2617 * recipe, since VSI/VSI list is ignored with drop action... 2618 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2619 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2620 * settings in the HW. 2621 */ 2622 if (!ice_is_safe_mode(pf)) 2623 if (vsi->type == ICE_VSI_PF) { 2624 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2625 ICE_DROP_PACKET); 2626 ice_cfg_sw_lldp(vsi, true, true); 2627 } 2628 2629 if (!vsi->agg_node) 2630 ice_set_agg_vsi(vsi); 2631 return vsi; 2632 2633 unroll_clear_rings: 2634 ice_vsi_clear_rings(vsi); 2635 unroll_vector_base: 2636 /* reclaim SW interrupts back to the common pool */ 2637 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2638 pf->num_avail_sw_msix += vsi->num_q_vectors; 2639 unroll_alloc_q_vector: 2640 ice_vsi_free_q_vectors(vsi); 2641 unroll_vsi_init: 2642 ice_vsi_delete(vsi); 2643 unroll_get_qs: 2644 ice_vsi_put_qs(vsi); 2645 unroll_vsi_alloc: 2646 if (vsi_type == ICE_VSI_VF) 2647 ice_enable_lag(pf->lag); 2648 ice_vsi_clear(vsi); 2649 2650 return NULL; 2651 } 2652 2653 /** 2654 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2655 * @vsi: the VSI being cleaned up 2656 */ 2657 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2658 { 2659 struct ice_pf *pf = vsi->back; 2660 struct ice_hw *hw = &pf->hw; 2661 u32 txq = 0; 2662 u32 rxq = 0; 2663 int i, q; 2664 2665 ice_for_each_q_vector(vsi, i) { 2666 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2667 2668 ice_write_intrl(q_vector, 0); 2669 for (q = 0; q < q_vector->num_ring_tx; q++) { 2670 ice_write_itr(&q_vector->tx, 0); 2671 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2672 if (ice_is_xdp_ena_vsi(vsi)) { 2673 u32 xdp_txq = txq + vsi->num_xdp_txq; 2674 2675 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2676 } 2677 txq++; 2678 } 2679 2680 for (q = 0; q < q_vector->num_ring_rx; q++) { 2681 ice_write_itr(&q_vector->rx, 0); 2682 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2683 rxq++; 2684 } 2685 } 2686 2687 ice_flush(hw); 2688 } 2689 2690 /** 2691 * ice_vsi_free_irq - Free the IRQ association with the OS 2692 * @vsi: the VSI being configured 2693 */ 2694 void ice_vsi_free_irq(struct ice_vsi *vsi) 2695 { 2696 struct ice_pf *pf = vsi->back; 2697 int base = vsi->base_vector; 2698 int i; 2699 2700 if (!vsi->q_vectors || !vsi->irqs_ready) 2701 return; 2702 2703 ice_vsi_release_msix(vsi); 2704 if (vsi->type == ICE_VSI_VF) 2705 return; 2706 2707 vsi->irqs_ready = false; 2708 ice_free_cpu_rx_rmap(vsi); 2709 2710 ice_for_each_q_vector(vsi, i) { 2711 u16 vector = i + base; 2712 int irq_num; 2713 2714 irq_num = pf->msix_entries[vector].vector; 2715 2716 /* free only the irqs that were actually requested */ 2717 if (!vsi->q_vectors[i] || 2718 !(vsi->q_vectors[i]->num_ring_tx || 2719 vsi->q_vectors[i]->num_ring_rx)) 2720 continue; 2721 2722 /* clear the affinity notifier in the IRQ descriptor */ 2723 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2724 irq_set_affinity_notifier(irq_num, NULL); 2725 2726 /* clear the affinity_mask in the IRQ descriptor */ 2727 irq_set_affinity_hint(irq_num, NULL); 2728 synchronize_irq(irq_num); 2729 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2730 } 2731 } 2732 2733 /** 2734 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2735 * @vsi: the VSI having resources freed 2736 */ 2737 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2738 { 2739 int i; 2740 2741 if (!vsi->tx_rings) 2742 return; 2743 2744 ice_for_each_txq(vsi, i) 2745 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2746 ice_free_tx_ring(vsi->tx_rings[i]); 2747 } 2748 2749 /** 2750 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2751 * @vsi: the VSI having resources freed 2752 */ 2753 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2754 { 2755 int i; 2756 2757 if (!vsi->rx_rings) 2758 return; 2759 2760 ice_for_each_rxq(vsi, i) 2761 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2762 ice_free_rx_ring(vsi->rx_rings[i]); 2763 } 2764 2765 /** 2766 * ice_vsi_close - Shut down a VSI 2767 * @vsi: the VSI being shut down 2768 */ 2769 void ice_vsi_close(struct ice_vsi *vsi) 2770 { 2771 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2772 ice_down(vsi); 2773 2774 ice_vsi_free_irq(vsi); 2775 ice_vsi_free_tx_rings(vsi); 2776 ice_vsi_free_rx_rings(vsi); 2777 } 2778 2779 /** 2780 * ice_ena_vsi - resume a VSI 2781 * @vsi: the VSI being resume 2782 * @locked: is the rtnl_lock already held 2783 */ 2784 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2785 { 2786 int err = 0; 2787 2788 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2789 return 0; 2790 2791 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2792 2793 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2794 if (netif_running(vsi->netdev)) { 2795 if (!locked) 2796 rtnl_lock(); 2797 2798 err = ice_open_internal(vsi->netdev); 2799 2800 if (!locked) 2801 rtnl_unlock(); 2802 } 2803 } else if (vsi->type == ICE_VSI_CTRL) { 2804 err = ice_vsi_open_ctrl(vsi); 2805 } 2806 2807 return err; 2808 } 2809 2810 /** 2811 * ice_dis_vsi - pause a VSI 2812 * @vsi: the VSI being paused 2813 * @locked: is the rtnl_lock already held 2814 */ 2815 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2816 { 2817 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2818 return; 2819 2820 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2821 2822 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2823 if (netif_running(vsi->netdev)) { 2824 if (!locked) 2825 rtnl_lock(); 2826 2827 ice_vsi_close(vsi); 2828 2829 if (!locked) 2830 rtnl_unlock(); 2831 } else { 2832 ice_vsi_close(vsi); 2833 } 2834 } else if (vsi->type == ICE_VSI_CTRL || 2835 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2836 ice_vsi_close(vsi); 2837 } 2838 } 2839 2840 /** 2841 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2842 * @vsi: the VSI being un-configured 2843 */ 2844 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2845 { 2846 int base = vsi->base_vector; 2847 struct ice_pf *pf = vsi->back; 2848 struct ice_hw *hw = &pf->hw; 2849 u32 val; 2850 int i; 2851 2852 /* disable interrupt causation from each queue */ 2853 if (vsi->tx_rings) { 2854 ice_for_each_txq(vsi, i) { 2855 if (vsi->tx_rings[i]) { 2856 u16 reg; 2857 2858 reg = vsi->tx_rings[i]->reg_idx; 2859 val = rd32(hw, QINT_TQCTL(reg)); 2860 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2861 wr32(hw, QINT_TQCTL(reg), val); 2862 } 2863 } 2864 } 2865 2866 if (vsi->rx_rings) { 2867 ice_for_each_rxq(vsi, i) { 2868 if (vsi->rx_rings[i]) { 2869 u16 reg; 2870 2871 reg = vsi->rx_rings[i]->reg_idx; 2872 val = rd32(hw, QINT_RQCTL(reg)); 2873 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2874 wr32(hw, QINT_RQCTL(reg), val); 2875 } 2876 } 2877 } 2878 2879 /* disable each interrupt */ 2880 ice_for_each_q_vector(vsi, i) { 2881 if (!vsi->q_vectors[i]) 2882 continue; 2883 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2884 } 2885 2886 ice_flush(hw); 2887 2888 /* don't call synchronize_irq() for VF's from the host */ 2889 if (vsi->type == ICE_VSI_VF) 2890 return; 2891 2892 ice_for_each_q_vector(vsi, i) 2893 synchronize_irq(pf->msix_entries[i + base].vector); 2894 } 2895 2896 /** 2897 * ice_napi_del - Remove NAPI handler for the VSI 2898 * @vsi: VSI for which NAPI handler is to be removed 2899 */ 2900 void ice_napi_del(struct ice_vsi *vsi) 2901 { 2902 int v_idx; 2903 2904 if (!vsi->netdev) 2905 return; 2906 2907 ice_for_each_q_vector(vsi, v_idx) 2908 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2909 } 2910 2911 /** 2912 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2913 * @pf: pointer to PF structure 2914 * @vsi: the VSI to free resources for 2915 * 2916 * Check if the VF control VSI resource is still in use. If no VF is using it 2917 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2918 * once no other VF uses it. 2919 */ 2920 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2921 { 2922 struct ice_vf *vf; 2923 unsigned int bkt; 2924 2925 rcu_read_lock(); 2926 ice_for_each_vf_rcu(pf, bkt, vf) { 2927 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2928 rcu_read_unlock(); 2929 return; 2930 } 2931 } 2932 rcu_read_unlock(); 2933 2934 /* No other VFs left that have control VSI. It is now safe to reclaim 2935 * SW interrupts back to the common pool. 2936 */ 2937 ice_free_res(pf->irq_tracker, vsi->base_vector, 2938 ICE_RES_VF_CTRL_VEC_ID); 2939 pf->num_avail_sw_msix += vsi->num_q_vectors; 2940 } 2941 2942 /** 2943 * ice_vsi_release - Delete a VSI and free its resources 2944 * @vsi: the VSI being removed 2945 * 2946 * Returns 0 on success or < 0 on error 2947 */ 2948 int ice_vsi_release(struct ice_vsi *vsi) 2949 { 2950 struct ice_pf *pf; 2951 int err; 2952 2953 if (!vsi->back) 2954 return -ENODEV; 2955 pf = vsi->back; 2956 2957 /* do not unregister while driver is in the reset recovery pending 2958 * state. Since reset/rebuild happens through PF service task workqueue, 2959 * it's not a good idea to unregister netdev that is associated to the 2960 * PF that is running the work queue items currently. This is done to 2961 * avoid check_flush_dependency() warning on this wq 2962 */ 2963 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2964 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2965 unregister_netdev(vsi->netdev); 2966 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2967 } 2968 2969 if (vsi->type == ICE_VSI_PF) 2970 ice_devlink_destroy_pf_port(pf); 2971 2972 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2973 ice_rss_clean(vsi); 2974 2975 /* Disable VSI and free resources */ 2976 if (vsi->type != ICE_VSI_LB) 2977 ice_vsi_dis_irq(vsi); 2978 ice_vsi_close(vsi); 2979 2980 /* SR-IOV determines needed MSIX resources all at once instead of per 2981 * VSI since when VFs are spawned we know how many VFs there are and how 2982 * many interrupts each VF needs. SR-IOV MSIX resources are also 2983 * cleared in the same manner. 2984 */ 2985 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2986 ice_free_vf_ctrl_res(pf, vsi); 2987 } else if (vsi->type != ICE_VSI_VF) { 2988 /* reclaim SW interrupts back to the common pool */ 2989 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2990 pf->num_avail_sw_msix += vsi->num_q_vectors; 2991 } 2992 2993 if (!ice_is_safe_mode(pf)) { 2994 if (vsi->type == ICE_VSI_PF) { 2995 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2996 ICE_DROP_PACKET); 2997 ice_cfg_sw_lldp(vsi, true, false); 2998 /* The Rx rule will only exist to remove if the LLDP FW 2999 * engine is currently stopped 3000 */ 3001 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3002 ice_cfg_sw_lldp(vsi, false, false); 3003 } 3004 } 3005 3006 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 3007 ice_clear_dflt_vsi(pf->first_sw); 3008 ice_fltr_remove_all(vsi); 3009 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3010 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3011 if (err) 3012 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3013 vsi->vsi_num, err); 3014 ice_vsi_delete(vsi); 3015 ice_vsi_free_q_vectors(vsi); 3016 3017 if (vsi->netdev) { 3018 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3019 unregister_netdev(vsi->netdev); 3020 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3021 } 3022 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3023 free_netdev(vsi->netdev); 3024 vsi->netdev = NULL; 3025 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3026 } 3027 } 3028 3029 if (vsi->type == ICE_VSI_VF && 3030 vsi->agg_node && vsi->agg_node->valid) 3031 vsi->agg_node->num_vsis--; 3032 ice_vsi_clear_rings(vsi); 3033 3034 ice_vsi_put_qs(vsi); 3035 3036 /* retain SW VSI data structure since it is needed to unregister and 3037 * free VSI netdev when PF is not in reset recovery pending state,\ 3038 * for ex: during rmmod. 3039 */ 3040 if (!ice_is_reset_in_progress(pf->state)) 3041 ice_vsi_clear(vsi); 3042 3043 return 0; 3044 } 3045 3046 /** 3047 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3048 * @vsi: VSI connected with q_vectors 3049 * @coalesce: array of struct with stored coalesce 3050 * 3051 * Returns array size. 3052 */ 3053 static int 3054 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3055 struct ice_coalesce_stored *coalesce) 3056 { 3057 int i; 3058 3059 ice_for_each_q_vector(vsi, i) { 3060 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3061 3062 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3063 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3064 coalesce[i].intrl = q_vector->intrl; 3065 3066 if (i < vsi->num_txq) 3067 coalesce[i].tx_valid = true; 3068 if (i < vsi->num_rxq) 3069 coalesce[i].rx_valid = true; 3070 } 3071 3072 return vsi->num_q_vectors; 3073 } 3074 3075 /** 3076 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3077 * @vsi: VSI connected with q_vectors 3078 * @coalesce: pointer to array of struct with stored coalesce 3079 * @size: size of coalesce array 3080 * 3081 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3082 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3083 * to default value. 3084 */ 3085 static void 3086 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3087 struct ice_coalesce_stored *coalesce, int size) 3088 { 3089 struct ice_ring_container *rc; 3090 int i; 3091 3092 if ((size && !coalesce) || !vsi) 3093 return; 3094 3095 /* There are a couple of cases that have to be handled here: 3096 * 1. The case where the number of queue vectors stays the same, but 3097 * the number of Tx or Rx rings changes (the first for loop) 3098 * 2. The case where the number of queue vectors increased (the 3099 * second for loop) 3100 */ 3101 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3102 /* There are 2 cases to handle here and they are the same for 3103 * both Tx and Rx: 3104 * if the entry was valid previously (coalesce[i].[tr]x_valid 3105 * and the loop variable is less than the number of rings 3106 * allocated, then write the previous values 3107 * 3108 * if the entry was not valid previously, but the number of 3109 * rings is less than are allocated (this means the number of 3110 * rings increased from previously), then write out the 3111 * values in the first element 3112 * 3113 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3114 * as there is no harm because the dynamic algorithm 3115 * will just overwrite. 3116 */ 3117 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3118 rc = &vsi->q_vectors[i]->rx; 3119 rc->itr_settings = coalesce[i].itr_rx; 3120 ice_write_itr(rc, rc->itr_setting); 3121 } else if (i < vsi->alloc_rxq) { 3122 rc = &vsi->q_vectors[i]->rx; 3123 rc->itr_settings = coalesce[0].itr_rx; 3124 ice_write_itr(rc, rc->itr_setting); 3125 } 3126 3127 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3128 rc = &vsi->q_vectors[i]->tx; 3129 rc->itr_settings = coalesce[i].itr_tx; 3130 ice_write_itr(rc, rc->itr_setting); 3131 } else if (i < vsi->alloc_txq) { 3132 rc = &vsi->q_vectors[i]->tx; 3133 rc->itr_settings = coalesce[0].itr_tx; 3134 ice_write_itr(rc, rc->itr_setting); 3135 } 3136 3137 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3138 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3139 } 3140 3141 /* the number of queue vectors increased so write whatever is in 3142 * the first element 3143 */ 3144 for (; i < vsi->num_q_vectors; i++) { 3145 /* transmit */ 3146 rc = &vsi->q_vectors[i]->tx; 3147 rc->itr_settings = coalesce[0].itr_tx; 3148 ice_write_itr(rc, rc->itr_setting); 3149 3150 /* receive */ 3151 rc = &vsi->q_vectors[i]->rx; 3152 rc->itr_settings = coalesce[0].itr_rx; 3153 ice_write_itr(rc, rc->itr_setting); 3154 3155 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3156 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3157 } 3158 } 3159 3160 /** 3161 * ice_vsi_rebuild - Rebuild VSI after reset 3162 * @vsi: VSI to be rebuild 3163 * @init_vsi: is this an initialization or a reconfigure of the VSI 3164 * 3165 * Returns 0 on success and negative value on failure 3166 */ 3167 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3168 { 3169 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3170 struct ice_coalesce_stored *coalesce; 3171 int prev_num_q_vectors = 0; 3172 enum ice_vsi_type vtype; 3173 struct ice_pf *pf; 3174 int ret, i; 3175 3176 if (!vsi) 3177 return -EINVAL; 3178 3179 pf = vsi->back; 3180 vtype = vsi->type; 3181 if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf) 3182 return -EINVAL; 3183 3184 ice_vsi_init_vlan_ops(vsi); 3185 3186 coalesce = kcalloc(vsi->num_q_vectors, 3187 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3188 if (!coalesce) 3189 return -ENOMEM; 3190 3191 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3192 3193 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3194 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3195 if (ret) 3196 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3197 vsi->vsi_num, ret); 3198 ice_vsi_free_q_vectors(vsi); 3199 3200 /* SR-IOV determines needed MSIX resources all at once instead of per 3201 * VSI since when VFs are spawned we know how many VFs there are and how 3202 * many interrupts each VF needs. SR-IOV MSIX resources are also 3203 * cleared in the same manner. 3204 */ 3205 if (vtype != ICE_VSI_VF) { 3206 /* reclaim SW interrupts back to the common pool */ 3207 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3208 pf->num_avail_sw_msix += vsi->num_q_vectors; 3209 vsi->base_vector = 0; 3210 } 3211 3212 if (ice_is_xdp_ena_vsi(vsi)) 3213 /* return value check can be skipped here, it always returns 3214 * 0 if reset is in progress 3215 */ 3216 ice_destroy_xdp_rings(vsi); 3217 ice_vsi_put_qs(vsi); 3218 ice_vsi_clear_rings(vsi); 3219 ice_vsi_free_arrays(vsi); 3220 if (vtype == ICE_VSI_VF) 3221 ice_vsi_set_num_qs(vsi, vsi->vf); 3222 else 3223 ice_vsi_set_num_qs(vsi, NULL); 3224 3225 ret = ice_vsi_alloc_arrays(vsi); 3226 if (ret < 0) 3227 goto err_vsi; 3228 3229 ice_vsi_get_qs(vsi); 3230 3231 ice_alloc_fd_res(vsi); 3232 ice_vsi_set_tc_cfg(vsi); 3233 3234 /* Initialize VSI struct elements and create VSI in FW */ 3235 ret = ice_vsi_init(vsi, init_vsi); 3236 if (ret < 0) 3237 goto err_vsi; 3238 3239 switch (vtype) { 3240 case ICE_VSI_CTRL: 3241 case ICE_VSI_SWITCHDEV_CTRL: 3242 case ICE_VSI_PF: 3243 ret = ice_vsi_alloc_q_vectors(vsi); 3244 if (ret) 3245 goto err_rings; 3246 3247 ret = ice_vsi_setup_vector_base(vsi); 3248 if (ret) 3249 goto err_vectors; 3250 3251 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3252 if (ret) 3253 goto err_vectors; 3254 3255 ret = ice_vsi_alloc_rings(vsi); 3256 if (ret) 3257 goto err_vectors; 3258 3259 ice_vsi_map_rings_to_vectors(vsi); 3260 if (ice_is_xdp_ena_vsi(vsi)) { 3261 ret = ice_vsi_determine_xdp_res(vsi); 3262 if (ret) 3263 goto err_vectors; 3264 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3265 if (ret) 3266 goto err_vectors; 3267 } 3268 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3269 if (vtype != ICE_VSI_CTRL) 3270 /* Do not exit if configuring RSS had an issue, at 3271 * least receive traffic on first queue. Hence no 3272 * need to capture return value 3273 */ 3274 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3275 ice_vsi_cfg_rss_lut_key(vsi); 3276 break; 3277 case ICE_VSI_VF: 3278 ret = ice_vsi_alloc_q_vectors(vsi); 3279 if (ret) 3280 goto err_rings; 3281 3282 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3283 if (ret) 3284 goto err_vectors; 3285 3286 ret = ice_vsi_alloc_rings(vsi); 3287 if (ret) 3288 goto err_vectors; 3289 3290 break; 3291 case ICE_VSI_CHNL: 3292 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3293 ice_vsi_cfg_rss_lut_key(vsi); 3294 ice_vsi_set_rss_flow_fld(vsi); 3295 } 3296 break; 3297 default: 3298 break; 3299 } 3300 3301 /* configure VSI nodes based on number of queues and TC's */ 3302 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3303 /* configure VSI nodes based on number of queues and TC's. 3304 * ADQ creates VSIs for each TC/Channel but doesn't 3305 * allocate queues instead it reconfigures the PF queues 3306 * as per the TC command. So max_txqs should point to the 3307 * PF Tx queues. 3308 */ 3309 if (vtype == ICE_VSI_CHNL) 3310 max_txqs[i] = pf->num_lan_tx; 3311 else 3312 max_txqs[i] = vsi->alloc_txq; 3313 3314 if (ice_is_xdp_ena_vsi(vsi)) 3315 max_txqs[i] += vsi->num_xdp_txq; 3316 } 3317 3318 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3319 /* If MQPRIO is set, means channel code path, hence for main 3320 * VSI's, use TC as 1 3321 */ 3322 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3323 else 3324 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3325 vsi->tc_cfg.ena_tc, max_txqs); 3326 3327 if (ret) { 3328 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3329 vsi->vsi_num, ret); 3330 if (init_vsi) { 3331 ret = -EIO; 3332 goto err_vectors; 3333 } else { 3334 return ice_schedule_reset(pf, ICE_RESET_PFR); 3335 } 3336 } 3337 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3338 kfree(coalesce); 3339 3340 return 0; 3341 3342 err_vectors: 3343 ice_vsi_free_q_vectors(vsi); 3344 err_rings: 3345 if (vsi->netdev) { 3346 vsi->current_netdev_flags = 0; 3347 unregister_netdev(vsi->netdev); 3348 free_netdev(vsi->netdev); 3349 vsi->netdev = NULL; 3350 } 3351 err_vsi: 3352 ice_vsi_clear(vsi); 3353 set_bit(ICE_RESET_FAILED, pf->state); 3354 kfree(coalesce); 3355 return ret; 3356 } 3357 3358 /** 3359 * ice_is_reset_in_progress - check for a reset in progress 3360 * @state: PF state field 3361 */ 3362 bool ice_is_reset_in_progress(unsigned long *state) 3363 { 3364 return test_bit(ICE_RESET_OICR_RECV, state) || 3365 test_bit(ICE_PFR_REQ, state) || 3366 test_bit(ICE_CORER_REQ, state) || 3367 test_bit(ICE_GLOBR_REQ, state); 3368 } 3369 3370 /** 3371 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3372 * @pf: pointer to the PF structure 3373 * @timeout: length of time to wait, in jiffies 3374 * 3375 * Wait (sleep) for a short time until the driver finishes cleaning up from 3376 * a device reset. The caller must be able to sleep. Use this to delay 3377 * operations that could fail while the driver is cleaning up after a device 3378 * reset. 3379 * 3380 * Returns 0 on success, -EBUSY if the reset is not finished within the 3381 * timeout, and -ERESTARTSYS if the thread was interrupted. 3382 */ 3383 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3384 { 3385 long ret; 3386 3387 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3388 !ice_is_reset_in_progress(pf->state), 3389 timeout); 3390 if (ret < 0) 3391 return ret; 3392 else if (!ret) 3393 return -EBUSY; 3394 else 3395 return 0; 3396 } 3397 3398 /** 3399 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3400 * @vsi: VSI being configured 3401 * @ctx: the context buffer returned from AQ VSI update command 3402 */ 3403 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3404 { 3405 vsi->info.mapping_flags = ctx->info.mapping_flags; 3406 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3407 sizeof(vsi->info.q_mapping)); 3408 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3409 sizeof(vsi->info.tc_mapping)); 3410 } 3411 3412 /** 3413 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3414 * @vsi: the VSI being configured 3415 * @ena_tc: TC map to be enabled 3416 */ 3417 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3418 { 3419 struct net_device *netdev = vsi->netdev; 3420 struct ice_pf *pf = vsi->back; 3421 int numtc = vsi->tc_cfg.numtc; 3422 struct ice_dcbx_cfg *dcbcfg; 3423 u8 netdev_tc; 3424 int i; 3425 3426 if (!netdev) 3427 return; 3428 3429 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3430 if (vsi->type == ICE_VSI_CHNL) 3431 return; 3432 3433 if (!ena_tc) { 3434 netdev_reset_tc(netdev); 3435 return; 3436 } 3437 3438 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3439 numtc = vsi->all_numtc; 3440 3441 if (netdev_set_num_tc(netdev, numtc)) 3442 return; 3443 3444 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3445 3446 ice_for_each_traffic_class(i) 3447 if (vsi->tc_cfg.ena_tc & BIT(i)) 3448 netdev_set_tc_queue(netdev, 3449 vsi->tc_cfg.tc_info[i].netdev_tc, 3450 vsi->tc_cfg.tc_info[i].qcount_tx, 3451 vsi->tc_cfg.tc_info[i].qoffset); 3452 /* setup TC queue map for CHNL TCs */ 3453 ice_for_each_chnl_tc(i) { 3454 if (!(vsi->all_enatc & BIT(i))) 3455 break; 3456 if (!vsi->mqprio_qopt.qopt.count[i]) 3457 break; 3458 netdev_set_tc_queue(netdev, i, 3459 vsi->mqprio_qopt.qopt.count[i], 3460 vsi->mqprio_qopt.qopt.offset[i]); 3461 } 3462 3463 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3464 return; 3465 3466 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3467 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3468 3469 /* Get the mapped netdev TC# for the UP */ 3470 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3471 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3472 } 3473 } 3474 3475 /** 3476 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3477 * @vsi: the VSI being configured, 3478 * @ctxt: VSI context structure 3479 * @ena_tc: number of traffic classes to enable 3480 * 3481 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3482 */ 3483 static int 3484 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3485 u8 ena_tc) 3486 { 3487 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3488 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3489 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3490 u8 netdev_tc = 0; 3491 int i; 3492 3493 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3494 3495 pow = order_base_2(tc0_qcount); 3496 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3497 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3498 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3499 3500 ice_for_each_traffic_class(i) { 3501 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3502 /* TC is not enabled */ 3503 vsi->tc_cfg.tc_info[i].qoffset = 0; 3504 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3505 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3506 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3507 ctxt->info.tc_mapping[i] = 0; 3508 continue; 3509 } 3510 3511 offset = vsi->mqprio_qopt.qopt.offset[i]; 3512 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3513 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3514 vsi->tc_cfg.tc_info[i].qoffset = offset; 3515 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3516 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3517 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3518 } 3519 3520 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3521 ice_for_each_chnl_tc(i) { 3522 if (!(vsi->all_enatc & BIT(i))) 3523 continue; 3524 offset = vsi->mqprio_qopt.qopt.offset[i]; 3525 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3526 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3527 } 3528 } 3529 3530 /* Set actual Tx/Rx queue pairs */ 3531 vsi->num_txq = offset + qcount_tx; 3532 if (vsi->num_txq > vsi->alloc_txq) { 3533 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3534 vsi->num_txq, vsi->alloc_txq); 3535 return -EINVAL; 3536 } 3537 3538 vsi->num_rxq = offset + qcount_rx; 3539 if (vsi->num_rxq > vsi->alloc_rxq) { 3540 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3541 vsi->num_rxq, vsi->alloc_rxq); 3542 return -EINVAL; 3543 } 3544 3545 /* Setup queue TC[0].qmap for given VSI context */ 3546 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3547 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3548 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3549 3550 /* Find queue count available for channel VSIs and starting offset 3551 * for channel VSIs 3552 */ 3553 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3554 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3555 vsi->next_base_q = tc0_qcount; 3556 } 3557 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3558 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3559 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3560 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3561 3562 return 0; 3563 } 3564 3565 /** 3566 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3567 * @vsi: VSI to be configured 3568 * @ena_tc: TC bitmap 3569 * 3570 * VSI queues expected to be quiesced before calling this function 3571 */ 3572 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3573 { 3574 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3575 struct ice_pf *pf = vsi->back; 3576 struct ice_vsi_ctx *ctx; 3577 struct device *dev; 3578 int i, ret = 0; 3579 u8 num_tc = 0; 3580 3581 dev = ice_pf_to_dev(pf); 3582 if (vsi->tc_cfg.ena_tc == ena_tc && 3583 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3584 return ret; 3585 3586 ice_for_each_traffic_class(i) { 3587 /* build bitmap of enabled TCs */ 3588 if (ena_tc & BIT(i)) 3589 num_tc++; 3590 /* populate max_txqs per TC */ 3591 max_txqs[i] = vsi->alloc_txq; 3592 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3593 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3594 */ 3595 if (vsi->type == ICE_VSI_CHNL && 3596 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3597 max_txqs[i] = vsi->num_txq; 3598 } 3599 3600 vsi->tc_cfg.ena_tc = ena_tc; 3601 vsi->tc_cfg.numtc = num_tc; 3602 3603 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3604 if (!ctx) 3605 return -ENOMEM; 3606 3607 ctx->vf_num = 0; 3608 ctx->info = vsi->info; 3609 3610 if (vsi->type == ICE_VSI_PF && 3611 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3612 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3613 else 3614 ret = ice_vsi_setup_q_map(vsi, ctx); 3615 3616 if (ret) 3617 goto out; 3618 3619 /* must to indicate which section of VSI context are being modified */ 3620 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3621 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3622 if (ret) { 3623 dev_info(dev, "Failed VSI Update\n"); 3624 goto out; 3625 } 3626 3627 if (vsi->type == ICE_VSI_PF && 3628 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3629 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3630 else 3631 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3632 vsi->tc_cfg.ena_tc, max_txqs); 3633 3634 if (ret) { 3635 dev_err(dev, "VSI %d failed TC config, error %d\n", 3636 vsi->vsi_num, ret); 3637 goto out; 3638 } 3639 ice_vsi_update_q_map(vsi, ctx); 3640 vsi->info.valid_sections = 0; 3641 3642 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3643 out: 3644 kfree(ctx); 3645 return ret; 3646 } 3647 3648 /** 3649 * ice_update_ring_stats - Update ring statistics 3650 * @stats: stats to be updated 3651 * @pkts: number of processed packets 3652 * @bytes: number of processed bytes 3653 * 3654 * This function assumes that caller has acquired a u64_stats_sync lock. 3655 */ 3656 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3657 { 3658 stats->bytes += bytes; 3659 stats->pkts += pkts; 3660 } 3661 3662 /** 3663 * ice_update_tx_ring_stats - Update Tx ring specific counters 3664 * @tx_ring: ring to update 3665 * @pkts: number of processed packets 3666 * @bytes: number of processed bytes 3667 */ 3668 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3669 { 3670 u64_stats_update_begin(&tx_ring->syncp); 3671 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3672 u64_stats_update_end(&tx_ring->syncp); 3673 } 3674 3675 /** 3676 * ice_update_rx_ring_stats - Update Rx ring specific counters 3677 * @rx_ring: ring to update 3678 * @pkts: number of processed packets 3679 * @bytes: number of processed bytes 3680 */ 3681 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3682 { 3683 u64_stats_update_begin(&rx_ring->syncp); 3684 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3685 u64_stats_update_end(&rx_ring->syncp); 3686 } 3687 3688 /** 3689 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3690 * @sw: switch to check if its default forwarding VSI is free 3691 * 3692 * Return true if the default forwarding VSI is already being used, else returns 3693 * false signalling that it's available to use. 3694 */ 3695 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3696 { 3697 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3698 } 3699 3700 /** 3701 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3702 * @sw: switch for the default forwarding VSI to compare against 3703 * @vsi: VSI to compare against default forwarding VSI 3704 * 3705 * If this VSI passed in is the default forwarding VSI then return true, else 3706 * return false 3707 */ 3708 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3709 { 3710 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3711 } 3712 3713 /** 3714 * ice_set_dflt_vsi - set the default forwarding VSI 3715 * @sw: switch used to assign the default forwarding VSI 3716 * @vsi: VSI getting set as the default forwarding VSI on the switch 3717 * 3718 * If the VSI passed in is already the default VSI and it's enabled just return 3719 * success. 3720 * 3721 * If there is already a default VSI on the switch and it's enabled then return 3722 * -EEXIST since there can only be one default VSI per switch. 3723 * 3724 * Otherwise try to set the VSI passed in as the switch's default VSI and 3725 * return the result. 3726 */ 3727 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3728 { 3729 struct device *dev; 3730 int status; 3731 3732 if (!sw || !vsi) 3733 return -EINVAL; 3734 3735 dev = ice_pf_to_dev(vsi->back); 3736 3737 /* the VSI passed in is already the default VSI */ 3738 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3739 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3740 vsi->vsi_num); 3741 return 0; 3742 } 3743 3744 /* another VSI is already the default VSI for this switch */ 3745 if (ice_is_dflt_vsi_in_use(sw)) { 3746 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3747 sw->dflt_vsi->vsi_num); 3748 return -EEXIST; 3749 } 3750 3751 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3752 if (status) { 3753 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3754 vsi->vsi_num, status); 3755 return status; 3756 } 3757 3758 sw->dflt_vsi = vsi; 3759 sw->dflt_vsi_ena = true; 3760 3761 return 0; 3762 } 3763 3764 /** 3765 * ice_clear_dflt_vsi - clear the default forwarding VSI 3766 * @sw: switch used to clear the default VSI 3767 * 3768 * If the switch has no default VSI or it's not enabled then return error. 3769 * 3770 * Otherwise try to clear the default VSI and return the result. 3771 */ 3772 int ice_clear_dflt_vsi(struct ice_sw *sw) 3773 { 3774 struct ice_vsi *dflt_vsi; 3775 struct device *dev; 3776 int status; 3777 3778 if (!sw) 3779 return -EINVAL; 3780 3781 dev = ice_pf_to_dev(sw->pf); 3782 3783 dflt_vsi = sw->dflt_vsi; 3784 3785 /* there is no default VSI configured */ 3786 if (!ice_is_dflt_vsi_in_use(sw)) 3787 return -ENODEV; 3788 3789 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3790 ICE_FLTR_RX); 3791 if (status) { 3792 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3793 dflt_vsi->vsi_num, status); 3794 return -EIO; 3795 } 3796 3797 sw->dflt_vsi = NULL; 3798 sw->dflt_vsi_ena = false; 3799 3800 return 0; 3801 } 3802 3803 /** 3804 * ice_get_link_speed_mbps - get link speed in Mbps 3805 * @vsi: the VSI whose link speed is being queried 3806 * 3807 * Return current VSI link speed and 0 if the speed is unknown. 3808 */ 3809 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3810 { 3811 switch (vsi->port_info->phy.link_info.link_speed) { 3812 case ICE_AQ_LINK_SPEED_100GB: 3813 return SPEED_100000; 3814 case ICE_AQ_LINK_SPEED_50GB: 3815 return SPEED_50000; 3816 case ICE_AQ_LINK_SPEED_40GB: 3817 return SPEED_40000; 3818 case ICE_AQ_LINK_SPEED_25GB: 3819 return SPEED_25000; 3820 case ICE_AQ_LINK_SPEED_20GB: 3821 return SPEED_20000; 3822 case ICE_AQ_LINK_SPEED_10GB: 3823 return SPEED_10000; 3824 case ICE_AQ_LINK_SPEED_5GB: 3825 return SPEED_5000; 3826 case ICE_AQ_LINK_SPEED_2500MB: 3827 return SPEED_2500; 3828 case ICE_AQ_LINK_SPEED_1000MB: 3829 return SPEED_1000; 3830 case ICE_AQ_LINK_SPEED_100MB: 3831 return SPEED_100; 3832 case ICE_AQ_LINK_SPEED_10MB: 3833 return SPEED_10; 3834 case ICE_AQ_LINK_SPEED_UNKNOWN: 3835 default: 3836 return 0; 3837 } 3838 } 3839 3840 /** 3841 * ice_get_link_speed_kbps - get link speed in Kbps 3842 * @vsi: the VSI whose link speed is being queried 3843 * 3844 * Return current VSI link speed and 0 if the speed is unknown. 3845 */ 3846 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3847 { 3848 int speed_mbps; 3849 3850 speed_mbps = ice_get_link_speed_mbps(vsi); 3851 3852 return speed_mbps * 1000; 3853 } 3854 3855 /** 3856 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3857 * @vsi: VSI to be configured 3858 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3859 * 3860 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3861 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3862 * on TC 0. 3863 */ 3864 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3865 { 3866 struct ice_pf *pf = vsi->back; 3867 struct device *dev; 3868 int status; 3869 int speed; 3870 3871 dev = ice_pf_to_dev(pf); 3872 if (!vsi->port_info) { 3873 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3874 vsi->idx, vsi->type); 3875 return -EINVAL; 3876 } 3877 3878 speed = ice_get_link_speed_kbps(vsi); 3879 if (min_tx_rate > (u64)speed) { 3880 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3881 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3882 speed); 3883 return -EINVAL; 3884 } 3885 3886 /* Configure min BW for VSI limit */ 3887 if (min_tx_rate) { 3888 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3889 ICE_MIN_BW, min_tx_rate); 3890 if (status) { 3891 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3892 min_tx_rate, ice_vsi_type_str(vsi->type), 3893 vsi->idx); 3894 return status; 3895 } 3896 3897 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3898 min_tx_rate, ice_vsi_type_str(vsi->type)); 3899 } else { 3900 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3901 vsi->idx, 0, 3902 ICE_MIN_BW); 3903 if (status) { 3904 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3905 ice_vsi_type_str(vsi->type), vsi->idx); 3906 return status; 3907 } 3908 3909 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3910 ice_vsi_type_str(vsi->type), vsi->idx); 3911 } 3912 3913 return 0; 3914 } 3915 3916 /** 3917 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3918 * @vsi: VSI to be configured 3919 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3920 * 3921 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3922 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3923 * on TC 0. 3924 */ 3925 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3926 { 3927 struct ice_pf *pf = vsi->back; 3928 struct device *dev; 3929 int status; 3930 int speed; 3931 3932 dev = ice_pf_to_dev(pf); 3933 if (!vsi->port_info) { 3934 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3935 vsi->idx, vsi->type); 3936 return -EINVAL; 3937 } 3938 3939 speed = ice_get_link_speed_kbps(vsi); 3940 if (max_tx_rate > (u64)speed) { 3941 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3942 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3943 speed); 3944 return -EINVAL; 3945 } 3946 3947 /* Configure max BW for VSI limit */ 3948 if (max_tx_rate) { 3949 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3950 ICE_MAX_BW, max_tx_rate); 3951 if (status) { 3952 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3953 max_tx_rate, ice_vsi_type_str(vsi->type), 3954 vsi->idx); 3955 return status; 3956 } 3957 3958 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3959 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3960 } else { 3961 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3962 vsi->idx, 0, 3963 ICE_MAX_BW); 3964 if (status) { 3965 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3966 ice_vsi_type_str(vsi->type), vsi->idx); 3967 return status; 3968 } 3969 3970 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3971 ice_vsi_type_str(vsi->type), vsi->idx); 3972 } 3973 3974 return 0; 3975 } 3976 3977 /** 3978 * ice_set_link - turn on/off physical link 3979 * @vsi: VSI to modify physical link on 3980 * @ena: turn on/off physical link 3981 */ 3982 int ice_set_link(struct ice_vsi *vsi, bool ena) 3983 { 3984 struct device *dev = ice_pf_to_dev(vsi->back); 3985 struct ice_port_info *pi = vsi->port_info; 3986 struct ice_hw *hw = pi->hw; 3987 int status; 3988 3989 if (vsi->type != ICE_VSI_PF) 3990 return -EINVAL; 3991 3992 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3993 3994 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3995 * this is not a fatal error, so print a warning message and return 3996 * a success code. Return an error if FW returns an error code other 3997 * than ICE_AQ_RC_EMODE 3998 */ 3999 if (status == -EIO) { 4000 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4001 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4002 (ena ? "ON" : "OFF"), status, 4003 ice_aq_str(hw->adminq.sq_last_status)); 4004 } else if (status) { 4005 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4006 (ena ? "ON" : "OFF"), status, 4007 ice_aq_str(hw->adminq.sq_last_status)); 4008 return status; 4009 } 4010 4011 return 0; 4012 } 4013 4014 /** 4015 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4016 * @vsi: VSI used to add VLAN filters 4017 * 4018 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4019 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4020 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4021 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4022 * 4023 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4024 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4025 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4026 * 4027 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4028 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4029 * part of filtering. 4030 */ 4031 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4032 { 4033 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4034 struct ice_vlan vlan; 4035 int err; 4036 4037 vlan = ICE_VLAN(0, 0, 0); 4038 err = vlan_ops->add_vlan(vsi, &vlan); 4039 if (err && err != -EEXIST) 4040 return err; 4041 4042 /* in SVM both VLAN 0 filters are identical */ 4043 if (!ice_is_dvm_ena(&vsi->back->hw)) 4044 return 0; 4045 4046 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4047 err = vlan_ops->add_vlan(vsi, &vlan); 4048 if (err && err != -EEXIST) 4049 return err; 4050 4051 return 0; 4052 } 4053 4054 /** 4055 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4056 * @vsi: VSI used to add VLAN filters 4057 * 4058 * Delete the VLAN 0 filters in the same manner that they were added in 4059 * ice_vsi_add_vlan_zero. 4060 */ 4061 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4062 { 4063 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4064 struct ice_vlan vlan; 4065 int err; 4066 4067 vlan = ICE_VLAN(0, 0, 0); 4068 err = vlan_ops->del_vlan(vsi, &vlan); 4069 if (err && err != -EEXIST) 4070 return err; 4071 4072 /* in SVM both VLAN 0 filters are identical */ 4073 if (!ice_is_dvm_ena(&vsi->back->hw)) 4074 return 0; 4075 4076 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4077 err = vlan_ops->del_vlan(vsi, &vlan); 4078 if (err && err != -EEXIST) 4079 return err; 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4086 * @vsi: VSI used to get the VLAN mode 4087 * 4088 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4089 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4090 */ 4091 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4092 { 4093 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4094 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4095 /* no VLAN 0 filter is created when a port VLAN is active */ 4096 if (vsi->type == ICE_VSI_VF) { 4097 if (WARN_ON(!vsi->vf)) 4098 return 0; 4099 4100 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4101 return 0; 4102 } 4103 4104 if (ice_is_dvm_ena(&vsi->back->hw)) 4105 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4106 else 4107 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4108 } 4109 4110 /** 4111 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4112 * @vsi: VSI used to determine if any non-zero VLANs have been added 4113 */ 4114 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4115 { 4116 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4117 } 4118 4119 /** 4120 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4121 * @vsi: VSI used to get the number of non-zero VLANs added 4122 */ 4123 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4124 { 4125 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4126 } 4127 4128 /** 4129 * ice_is_feature_supported 4130 * @pf: pointer to the struct ice_pf instance 4131 * @f: feature enum to be checked 4132 * 4133 * returns true if feature is supported, false otherwise 4134 */ 4135 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4136 { 4137 if (f < 0 || f >= ICE_F_MAX) 4138 return false; 4139 4140 return test_bit(f, pf->features); 4141 } 4142 4143 /** 4144 * ice_set_feature_support 4145 * @pf: pointer to the struct ice_pf instance 4146 * @f: feature enum to set 4147 */ 4148 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4149 { 4150 if (f < 0 || f >= ICE_F_MAX) 4151 return; 4152 4153 set_bit(f, pf->features); 4154 } 4155 4156 /** 4157 * ice_clear_feature_support 4158 * @pf: pointer to the struct ice_pf instance 4159 * @f: feature enum to clear 4160 */ 4161 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4162 { 4163 if (f < 0 || f >= ICE_F_MAX) 4164 return; 4165 4166 clear_bit(f, pf->features); 4167 } 4168 4169 /** 4170 * ice_init_feature_support 4171 * @pf: pointer to the struct ice_pf instance 4172 * 4173 * called during init to setup supported feature 4174 */ 4175 void ice_init_feature_support(struct ice_pf *pf) 4176 { 4177 switch (pf->hw.device_id) { 4178 case ICE_DEV_ID_E810C_BACKPLANE: 4179 case ICE_DEV_ID_E810C_QSFP: 4180 case ICE_DEV_ID_E810C_SFP: 4181 ice_set_feature_support(pf, ICE_F_DSCP); 4182 if (ice_is_e810t(&pf->hw)) { 4183 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4184 if (ice_gnss_is_gps_present(&pf->hw)) 4185 ice_set_feature_support(pf, ICE_F_GNSS); 4186 } 4187 break; 4188 default: 4189 break; 4190 } 4191 } 4192 4193 /** 4194 * ice_vsi_update_security - update security block in VSI 4195 * @vsi: pointer to VSI structure 4196 * @fill: function pointer to fill ctx 4197 */ 4198 int 4199 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4200 { 4201 struct ice_vsi_ctx ctx = { 0 }; 4202 4203 ctx.info = vsi->info; 4204 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4205 fill(&ctx); 4206 4207 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4208 return -ENODEV; 4209 4210 vsi->info = ctx.info; 4211 return 0; 4212 } 4213 4214 /** 4215 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4216 * @ctx: pointer to VSI ctx structure 4217 */ 4218 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4219 { 4220 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4221 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4222 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4223 } 4224 4225 /** 4226 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4227 * @ctx: pointer to VSI ctx structure 4228 */ 4229 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4230 { 4231 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4232 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4233 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4234 } 4235 4236 /** 4237 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4238 * @ctx: pointer to VSI ctx structure 4239 */ 4240 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4241 { 4242 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4243 } 4244 4245 /** 4246 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4247 * @ctx: pointer to VSI ctx structure 4248 */ 4249 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4250 { 4251 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4252 } 4253