1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 return 0; 109 110 err_vectors: 111 devm_kfree(dev, vsi->rxq_map); 112 err_rxq_map: 113 devm_kfree(dev, vsi->txq_map); 114 err_txq_map: 115 devm_kfree(dev, vsi->rx_rings); 116 err_rings: 117 devm_kfree(dev, vsi->tx_rings); 118 return -ENOMEM; 119 } 120 121 /** 122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 123 * @vsi: the VSI being configured 124 */ 125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 126 { 127 switch (vsi->type) { 128 case ICE_VSI_PF: 129 case ICE_VSI_CTRL: 130 case ICE_VSI_LB: 131 /* a user could change the values of num_[tr]x_desc using 132 * ethtool -G so we should keep those values instead of 133 * overwriting them with the defaults. 134 */ 135 if (!vsi->num_rx_desc) 136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 137 if (!vsi->num_tx_desc) 138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 139 break; 140 default: 141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 142 vsi->type); 143 break; 144 } 145 } 146 147 /** 148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 149 * @vsi: the VSI being configured 150 * @vf_id: ID of the VF being configured 151 * 152 * Return 0 on success and a negative value on error 153 */ 154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 155 { 156 struct ice_pf *pf = vsi->back; 157 struct ice_vf *vf = NULL; 158 159 if (vsi->type == ICE_VSI_VF) 160 vsi->vf_id = vf_id; 161 else 162 vsi->vf_id = ICE_INVAL_VFID; 163 164 switch (vsi->type) { 165 case ICE_VSI_PF: 166 vsi->alloc_txq = min3(pf->num_lan_msix, 167 ice_get_avail_txq_count(pf), 168 (u16)num_online_cpus()); 169 if (vsi->req_txq) { 170 vsi->alloc_txq = vsi->req_txq; 171 vsi->num_txq = vsi->req_txq; 172 } 173 174 pf->num_lan_tx = vsi->alloc_txq; 175 176 /* only 1 Rx queue unless RSS is enabled */ 177 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 178 vsi->alloc_rxq = 1; 179 } else { 180 vsi->alloc_rxq = min3(pf->num_lan_msix, 181 ice_get_avail_rxq_count(pf), 182 (u16)num_online_cpus()); 183 if (vsi->req_rxq) { 184 vsi->alloc_rxq = vsi->req_rxq; 185 vsi->num_rxq = vsi->req_rxq; 186 } 187 } 188 189 pf->num_lan_rx = vsi->alloc_rxq; 190 191 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 192 max_t(int, vsi->alloc_rxq, 193 vsi->alloc_txq)); 194 break; 195 case ICE_VSI_VF: 196 vf = &pf->vf[vsi->vf_id]; 197 vsi->alloc_txq = vf->num_vf_qs; 198 vsi->alloc_rxq = vf->num_vf_qs; 199 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 200 * data queue interrupts). Since vsi->num_q_vectors is number 201 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 202 * original vector count 203 */ 204 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 205 break; 206 case ICE_VSI_CTRL: 207 vsi->alloc_txq = 1; 208 vsi->alloc_rxq = 1; 209 vsi->num_q_vectors = 1; 210 break; 211 case ICE_VSI_LB: 212 vsi->alloc_txq = 1; 213 vsi->alloc_rxq = 1; 214 break; 215 default: 216 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 217 break; 218 } 219 220 ice_vsi_set_num_desc(vsi); 221 } 222 223 /** 224 * ice_get_free_slot - get the next non-NULL location index in array 225 * @array: array to search 226 * @size: size of the array 227 * @curr: last known occupied index to be used as a search hint 228 * 229 * void * is being used to keep the functionality generic. This lets us use this 230 * function on any array of pointers. 231 */ 232 static int ice_get_free_slot(void *array, int size, int curr) 233 { 234 int **tmp_array = (int **)array; 235 int next; 236 237 if (curr < (size - 1) && !tmp_array[curr + 1]) { 238 next = curr + 1; 239 } else { 240 int i = 0; 241 242 while ((i < size) && (tmp_array[i])) 243 i++; 244 if (i == size) 245 next = ICE_NO_VSI; 246 else 247 next = i; 248 } 249 return next; 250 } 251 252 /** 253 * ice_vsi_delete - delete a VSI from the switch 254 * @vsi: pointer to VSI being removed 255 */ 256 static void ice_vsi_delete(struct ice_vsi *vsi) 257 { 258 struct ice_pf *pf = vsi->back; 259 struct ice_vsi_ctx *ctxt; 260 enum ice_status status; 261 262 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 263 if (!ctxt) 264 return; 265 266 if (vsi->type == ICE_VSI_VF) 267 ctxt->vf_num = vsi->vf_id; 268 ctxt->vsi_num = vsi->vsi_num; 269 270 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 271 272 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 273 if (status) 274 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 275 vsi->vsi_num, ice_stat_str(status)); 276 277 kfree(ctxt); 278 } 279 280 /** 281 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 282 * @vsi: pointer to VSI being cleared 283 */ 284 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 285 { 286 struct ice_pf *pf = vsi->back; 287 struct device *dev; 288 289 dev = ice_pf_to_dev(pf); 290 291 /* free the ring and vector containers */ 292 if (vsi->q_vectors) { 293 devm_kfree(dev, vsi->q_vectors); 294 vsi->q_vectors = NULL; 295 } 296 if (vsi->tx_rings) { 297 devm_kfree(dev, vsi->tx_rings); 298 vsi->tx_rings = NULL; 299 } 300 if (vsi->rx_rings) { 301 devm_kfree(dev, vsi->rx_rings); 302 vsi->rx_rings = NULL; 303 } 304 if (vsi->txq_map) { 305 devm_kfree(dev, vsi->txq_map); 306 vsi->txq_map = NULL; 307 } 308 if (vsi->rxq_map) { 309 devm_kfree(dev, vsi->rxq_map); 310 vsi->rxq_map = NULL; 311 } 312 } 313 314 /** 315 * ice_vsi_clear - clean up and deallocate the provided VSI 316 * @vsi: pointer to VSI being cleared 317 * 318 * This deallocates the VSI's queue resources, removes it from the PF's 319 * VSI array if necessary, and deallocates the VSI 320 * 321 * Returns 0 on success, negative on failure 322 */ 323 static int ice_vsi_clear(struct ice_vsi *vsi) 324 { 325 struct ice_pf *pf = NULL; 326 struct device *dev; 327 328 if (!vsi) 329 return 0; 330 331 if (!vsi->back) 332 return -EINVAL; 333 334 pf = vsi->back; 335 dev = ice_pf_to_dev(pf); 336 337 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 338 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 339 return -EINVAL; 340 } 341 342 mutex_lock(&pf->sw_mutex); 343 /* updates the PF for this cleared VSI */ 344 345 pf->vsi[vsi->idx] = NULL; 346 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 347 pf->next_vsi = vsi->idx; 348 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 349 vsi->vf_id != ICE_INVAL_VFID) 350 pf->next_vsi = vsi->idx; 351 352 ice_vsi_free_arrays(vsi); 353 mutex_unlock(&pf->sw_mutex); 354 devm_kfree(dev, vsi); 355 356 return 0; 357 } 358 359 /** 360 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 361 * @irq: interrupt number 362 * @data: pointer to a q_vector 363 */ 364 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 365 { 366 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 367 368 if (!q_vector->tx.ring) 369 return IRQ_HANDLED; 370 371 #define FDIR_RX_DESC_CLEAN_BUDGET 64 372 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 373 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 374 375 return IRQ_HANDLED; 376 } 377 378 /** 379 * ice_msix_clean_rings - MSIX mode Interrupt Handler 380 * @irq: interrupt number 381 * @data: pointer to a q_vector 382 */ 383 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 384 { 385 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 386 387 if (!q_vector->tx.ring && !q_vector->rx.ring) 388 return IRQ_HANDLED; 389 390 q_vector->total_events++; 391 392 napi_schedule(&q_vector->napi); 393 394 return IRQ_HANDLED; 395 } 396 397 /** 398 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 399 * @pf: board private structure 400 * @vsi_type: type of VSI 401 * @vf_id: ID of the VF being configured 402 * 403 * returns a pointer to a VSI on success, NULL on failure. 404 */ 405 static struct ice_vsi * 406 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 407 { 408 struct device *dev = ice_pf_to_dev(pf); 409 struct ice_vsi *vsi = NULL; 410 411 /* Need to protect the allocation of the VSIs at the PF level */ 412 mutex_lock(&pf->sw_mutex); 413 414 /* If we have already allocated our maximum number of VSIs, 415 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 416 * is available to be populated 417 */ 418 if (pf->next_vsi == ICE_NO_VSI) { 419 dev_dbg(dev, "out of VSI slots!\n"); 420 goto unlock_pf; 421 } 422 423 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 424 if (!vsi) 425 goto unlock_pf; 426 427 vsi->type = vsi_type; 428 vsi->back = pf; 429 set_bit(ICE_VSI_DOWN, vsi->state); 430 431 if (vsi_type == ICE_VSI_VF) 432 ice_vsi_set_num_qs(vsi, vf_id); 433 else 434 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 435 436 switch (vsi->type) { 437 case ICE_VSI_PF: 438 if (ice_vsi_alloc_arrays(vsi)) 439 goto err_rings; 440 441 /* Setup default MSIX irq handler for VSI */ 442 vsi->irq_handler = ice_msix_clean_rings; 443 break; 444 case ICE_VSI_CTRL: 445 if (ice_vsi_alloc_arrays(vsi)) 446 goto err_rings; 447 448 /* Setup ctrl VSI MSIX irq handler */ 449 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 450 break; 451 case ICE_VSI_VF: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 break; 455 case ICE_VSI_LB: 456 if (ice_vsi_alloc_arrays(vsi)) 457 goto err_rings; 458 break; 459 default: 460 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 461 goto unlock_pf; 462 } 463 464 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 465 /* Use the last VSI slot as the index for PF control VSI */ 466 vsi->idx = pf->num_alloc_vsi - 1; 467 pf->ctrl_vsi_idx = vsi->idx; 468 pf->vsi[vsi->idx] = vsi; 469 } else { 470 /* fill slot and make note of the index */ 471 vsi->idx = pf->next_vsi; 472 pf->vsi[pf->next_vsi] = vsi; 473 474 /* prepare pf->next_vsi for next use */ 475 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 476 pf->next_vsi); 477 } 478 479 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 480 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 481 goto unlock_pf; 482 483 err_rings: 484 devm_kfree(dev, vsi); 485 vsi = NULL; 486 unlock_pf: 487 mutex_unlock(&pf->sw_mutex); 488 return vsi; 489 } 490 491 /** 492 * ice_alloc_fd_res - Allocate FD resource for a VSI 493 * @vsi: pointer to the ice_vsi 494 * 495 * This allocates the FD resources 496 * 497 * Returns 0 on success, -EPERM on no-op or -EIO on failure 498 */ 499 static int ice_alloc_fd_res(struct ice_vsi *vsi) 500 { 501 struct ice_pf *pf = vsi->back; 502 u32 g_val, b_val; 503 504 /* Flow Director filters are only allocated/assigned to the PF VSI which 505 * passes the traffic. The CTRL VSI is only used to add/delete filters 506 * so we don't allocate resources to it 507 */ 508 509 /* FD filters from guaranteed pool per VSI */ 510 g_val = pf->hw.func_caps.fd_fltr_guar; 511 if (!g_val) 512 return -EPERM; 513 514 /* FD filters from best effort pool */ 515 b_val = pf->hw.func_caps.fd_fltr_best_effort; 516 if (!b_val) 517 return -EPERM; 518 519 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 520 return -EPERM; 521 522 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 523 return -EPERM; 524 525 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 526 527 /* each VSI gets same "best_effort" quota */ 528 vsi->num_bfltr = b_val; 529 530 if (vsi->type == ICE_VSI_VF) { 531 vsi->num_gfltr = 0; 532 533 /* each VSI gets same "best_effort" quota */ 534 vsi->num_bfltr = b_val; 535 } 536 537 return 0; 538 } 539 540 /** 541 * ice_vsi_get_qs - Assign queues from PF to VSI 542 * @vsi: the VSI to assign queues to 543 * 544 * Returns 0 on success and a negative value on error 545 */ 546 static int ice_vsi_get_qs(struct ice_vsi *vsi) 547 { 548 struct ice_pf *pf = vsi->back; 549 struct ice_qs_cfg tx_qs_cfg = { 550 .qs_mutex = &pf->avail_q_mutex, 551 .pf_map = pf->avail_txqs, 552 .pf_map_size = pf->max_pf_txqs, 553 .q_count = vsi->alloc_txq, 554 .scatter_count = ICE_MAX_SCATTER_TXQS, 555 .vsi_map = vsi->txq_map, 556 .vsi_map_offset = 0, 557 .mapping_mode = ICE_VSI_MAP_CONTIG 558 }; 559 struct ice_qs_cfg rx_qs_cfg = { 560 .qs_mutex = &pf->avail_q_mutex, 561 .pf_map = pf->avail_rxqs, 562 .pf_map_size = pf->max_pf_rxqs, 563 .q_count = vsi->alloc_rxq, 564 .scatter_count = ICE_MAX_SCATTER_RXQS, 565 .vsi_map = vsi->rxq_map, 566 .vsi_map_offset = 0, 567 .mapping_mode = ICE_VSI_MAP_CONTIG 568 }; 569 int ret; 570 571 ret = __ice_vsi_get_qs(&tx_qs_cfg); 572 if (ret) 573 return ret; 574 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 575 576 ret = __ice_vsi_get_qs(&rx_qs_cfg); 577 if (ret) 578 return ret; 579 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 580 581 return 0; 582 } 583 584 /** 585 * ice_vsi_put_qs - Release queues from VSI to PF 586 * @vsi: the VSI that is going to release queues 587 */ 588 static void ice_vsi_put_qs(struct ice_vsi *vsi) 589 { 590 struct ice_pf *pf = vsi->back; 591 int i; 592 593 mutex_lock(&pf->avail_q_mutex); 594 595 for (i = 0; i < vsi->alloc_txq; i++) { 596 clear_bit(vsi->txq_map[i], pf->avail_txqs); 597 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 598 } 599 600 for (i = 0; i < vsi->alloc_rxq; i++) { 601 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 602 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 603 } 604 605 mutex_unlock(&pf->avail_q_mutex); 606 } 607 608 /** 609 * ice_is_safe_mode 610 * @pf: pointer to the PF struct 611 * 612 * returns true if driver is in safe mode, false otherwise 613 */ 614 bool ice_is_safe_mode(struct ice_pf *pf) 615 { 616 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 617 } 618 619 /** 620 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 621 * @vsi: the VSI being cleaned up 622 * 623 * This function deletes RSS input set for all flows that were configured 624 * for this VSI 625 */ 626 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 627 { 628 struct ice_pf *pf = vsi->back; 629 enum ice_status status; 630 631 if (ice_is_safe_mode(pf)) 632 return; 633 634 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 635 if (status) 636 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 637 vsi->vsi_num, ice_stat_str(status)); 638 } 639 640 /** 641 * ice_rss_clean - Delete RSS related VSI structures and configuration 642 * @vsi: the VSI being removed 643 */ 644 static void ice_rss_clean(struct ice_vsi *vsi) 645 { 646 struct ice_pf *pf = vsi->back; 647 struct device *dev; 648 649 dev = ice_pf_to_dev(pf); 650 651 if (vsi->rss_hkey_user) 652 devm_kfree(dev, vsi->rss_hkey_user); 653 if (vsi->rss_lut_user) 654 devm_kfree(dev, vsi->rss_lut_user); 655 656 ice_vsi_clean_rss_flow_fld(vsi); 657 /* remove RSS replay list */ 658 if (!ice_is_safe_mode(pf)) 659 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 660 } 661 662 /** 663 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 664 * @vsi: the VSI being configured 665 */ 666 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 667 { 668 struct ice_hw_common_caps *cap; 669 struct ice_pf *pf = vsi->back; 670 671 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 672 vsi->rss_size = 1; 673 return; 674 } 675 676 cap = &pf->hw.func_caps.common_cap; 677 switch (vsi->type) { 678 case ICE_VSI_PF: 679 /* PF VSI will inherit RSS instance of PF */ 680 vsi->rss_table_size = (u16)cap->rss_table_size; 681 vsi->rss_size = min_t(u16, num_online_cpus(), 682 BIT(cap->rss_table_entry_width)); 683 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 684 break; 685 case ICE_VSI_VF: 686 /* VF VSI will get a small RSS table. 687 * For VSI_LUT, LUT size should be set to 64 bytes. 688 */ 689 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 690 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 691 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 692 break; 693 case ICE_VSI_LB: 694 break; 695 default: 696 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 697 ice_vsi_type_str(vsi->type)); 698 break; 699 } 700 } 701 702 /** 703 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 704 * @ctxt: the VSI context being set 705 * 706 * This initializes a default VSI context for all sections except the Queues. 707 */ 708 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 709 { 710 u32 table = 0; 711 712 memset(&ctxt->info, 0, sizeof(ctxt->info)); 713 /* VSI's should be allocated from shared pool */ 714 ctxt->alloc_from_pool = true; 715 /* Src pruning enabled by default */ 716 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 717 /* Traffic from VSI can be sent to LAN */ 718 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 719 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 720 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 721 * packets untagged/tagged. 722 */ 723 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 724 ICE_AQ_VSI_VLAN_MODE_M) >> 725 ICE_AQ_VSI_VLAN_MODE_S); 726 /* Have 1:1 UP mapping for both ingress/egress tables */ 727 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 728 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 729 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 730 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 731 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 732 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 733 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 734 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 735 ctxt->info.ingress_table = cpu_to_le32(table); 736 ctxt->info.egress_table = cpu_to_le32(table); 737 /* Have 1:1 UP mapping for outer to inner UP table */ 738 ctxt->info.outer_up_table = cpu_to_le32(table); 739 /* No Outer tag support outer_tag_flags remains to zero */ 740 } 741 742 /** 743 * ice_vsi_setup_q_map - Setup a VSI queue map 744 * @vsi: the VSI being configured 745 * @ctxt: VSI context structure 746 */ 747 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 748 { 749 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 750 u16 num_txq_per_tc, num_rxq_per_tc; 751 u16 qcount_tx = vsi->alloc_txq; 752 u16 qcount_rx = vsi->alloc_rxq; 753 bool ena_tc0 = false; 754 u8 netdev_tc = 0; 755 int i; 756 757 /* at least TC0 should be enabled by default */ 758 if (vsi->tc_cfg.numtc) { 759 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 760 ena_tc0 = true; 761 } else { 762 ena_tc0 = true; 763 } 764 765 if (ena_tc0) { 766 vsi->tc_cfg.numtc++; 767 vsi->tc_cfg.ena_tc |= 1; 768 } 769 770 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 771 if (!num_rxq_per_tc) 772 num_rxq_per_tc = 1; 773 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 774 if (!num_txq_per_tc) 775 num_txq_per_tc = 1; 776 777 /* find the (rounded up) power-of-2 of qcount */ 778 pow = (u16)order_base_2(num_rxq_per_tc); 779 780 /* TC mapping is a function of the number of Rx queues assigned to the 781 * VSI for each traffic class and the offset of these queues. 782 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 783 * queues allocated to TC0. No:of queues is a power-of-2. 784 * 785 * If TC is not enabled, the queue offset is set to 0, and allocate one 786 * queue, this way, traffic for the given TC will be sent to the default 787 * queue. 788 * 789 * Setup number and offset of Rx queues for all TCs for the VSI 790 */ 791 ice_for_each_traffic_class(i) { 792 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 793 /* TC is not enabled */ 794 vsi->tc_cfg.tc_info[i].qoffset = 0; 795 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 796 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 797 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 798 ctxt->info.tc_mapping[i] = 0; 799 continue; 800 } 801 802 /* TC is enabled */ 803 vsi->tc_cfg.tc_info[i].qoffset = offset; 804 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 805 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 806 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 807 808 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 809 ICE_AQ_VSI_TC_Q_OFFSET_M) | 810 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 811 ICE_AQ_VSI_TC_Q_NUM_M); 812 offset += num_rxq_per_tc; 813 tx_count += num_txq_per_tc; 814 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 815 } 816 817 /* if offset is non-zero, means it is calculated correctly based on 818 * enabled TCs for a given VSI otherwise qcount_rx will always 819 * be correct and non-zero because it is based off - VSI's 820 * allocated Rx queues which is at least 1 (hence qcount_tx will be 821 * at least 1) 822 */ 823 if (offset) 824 vsi->num_rxq = offset; 825 else 826 vsi->num_rxq = num_rxq_per_tc; 827 828 vsi->num_txq = tx_count; 829 830 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 831 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 832 /* since there is a chance that num_rxq could have been changed 833 * in the above for loop, make num_txq equal to num_rxq. 834 */ 835 vsi->num_txq = vsi->num_rxq; 836 } 837 838 /* Rx queue mapping */ 839 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 840 /* q_mapping buffer holds the info for the first queue allocated for 841 * this VSI in the PF space and also the number of queues associated 842 * with this VSI. 843 */ 844 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 845 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 846 } 847 848 /** 849 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 850 * @ctxt: the VSI context being set 851 * @vsi: the VSI being configured 852 */ 853 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 854 { 855 u8 dflt_q_group, dflt_q_prio; 856 u16 dflt_q, report_q, val; 857 858 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 859 vsi->type != ICE_VSI_VF) 860 return; 861 862 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 863 ctxt->info.valid_sections |= cpu_to_le16(val); 864 dflt_q = 0; 865 dflt_q_group = 0; 866 report_q = 0; 867 dflt_q_prio = 0; 868 869 /* enable flow director filtering/programming */ 870 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 871 ctxt->info.fd_options = cpu_to_le16(val); 872 /* max of allocated flow director filters */ 873 ctxt->info.max_fd_fltr_dedicated = 874 cpu_to_le16(vsi->num_gfltr); 875 /* max of shared flow director filters any VSI may program */ 876 ctxt->info.max_fd_fltr_shared = 877 cpu_to_le16(vsi->num_bfltr); 878 /* default queue index within the VSI of the default FD */ 879 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 880 ICE_AQ_VSI_FD_DEF_Q_M); 881 /* target queue or queue group to the FD filter */ 882 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 883 ICE_AQ_VSI_FD_DEF_GRP_M); 884 ctxt->info.fd_def_q = cpu_to_le16(val); 885 /* queue index on which FD filter completion is reported */ 886 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 887 ICE_AQ_VSI_FD_REPORT_Q_M); 888 /* priority of the default qindex action */ 889 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 890 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 891 ctxt->info.fd_report_opt = cpu_to_le16(val); 892 } 893 894 /** 895 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 896 * @ctxt: the VSI context being set 897 * @vsi: the VSI being configured 898 */ 899 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 900 { 901 u8 lut_type, hash_type; 902 struct device *dev; 903 struct ice_pf *pf; 904 905 pf = vsi->back; 906 dev = ice_pf_to_dev(pf); 907 908 switch (vsi->type) { 909 case ICE_VSI_PF: 910 /* PF VSI will inherit RSS instance of PF */ 911 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 912 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 913 break; 914 case ICE_VSI_VF: 915 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 916 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 917 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 918 break; 919 default: 920 dev_dbg(dev, "Unsupported VSI type %s\n", 921 ice_vsi_type_str(vsi->type)); 922 return; 923 } 924 925 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 926 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 927 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 928 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 929 } 930 931 /** 932 * ice_vsi_init - Create and initialize a VSI 933 * @vsi: the VSI being configured 934 * @init_vsi: is this call creating a VSI 935 * 936 * This initializes a VSI context depending on the VSI type to be added and 937 * passes it down to the add_vsi aq command to create a new VSI. 938 */ 939 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 940 { 941 struct ice_pf *pf = vsi->back; 942 struct ice_hw *hw = &pf->hw; 943 struct ice_vsi_ctx *ctxt; 944 struct device *dev; 945 int ret = 0; 946 947 dev = ice_pf_to_dev(pf); 948 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 949 if (!ctxt) 950 return -ENOMEM; 951 952 switch (vsi->type) { 953 case ICE_VSI_CTRL: 954 case ICE_VSI_LB: 955 case ICE_VSI_PF: 956 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 957 break; 958 case ICE_VSI_VF: 959 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 960 /* VF number here is the absolute VF number (0-255) */ 961 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 962 break; 963 default: 964 ret = -ENODEV; 965 goto out; 966 } 967 968 ice_set_dflt_vsi_ctx(ctxt); 969 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 970 ice_set_fd_vsi_ctx(ctxt, vsi); 971 /* if the switch is in VEB mode, allow VSI loopback */ 972 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 973 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 974 975 /* Set LUT type and HASH type if RSS is enabled */ 976 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 977 vsi->type != ICE_VSI_CTRL) { 978 ice_set_rss_vsi_ctx(ctxt, vsi); 979 /* if updating VSI context, make sure to set valid_section: 980 * to indicate which section of VSI context being updated 981 */ 982 if (!init_vsi) 983 ctxt->info.valid_sections |= 984 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 985 } 986 987 ctxt->info.sw_id = vsi->port_info->sw_id; 988 ice_vsi_setup_q_map(vsi, ctxt); 989 if (!init_vsi) /* means VSI being updated */ 990 /* must to indicate which section of VSI context are 991 * being modified 992 */ 993 ctxt->info.valid_sections |= 994 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 995 996 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 997 * respectively 998 */ 999 if (vsi->type == ICE_VSI_VF) { 1000 ctxt->info.valid_sections |= 1001 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1002 if (pf->vf[vsi->vf_id].spoofchk) { 1003 ctxt->info.sec_flags |= 1004 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1005 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1006 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1007 } else { 1008 ctxt->info.sec_flags &= 1009 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1010 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1011 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1012 } 1013 } 1014 1015 /* Allow control frames out of main VSI */ 1016 if (vsi->type == ICE_VSI_PF) { 1017 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1018 ctxt->info.valid_sections |= 1019 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1020 } 1021 1022 if (init_vsi) { 1023 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1024 if (ret) { 1025 dev_err(dev, "Add VSI failed, err %d\n", ret); 1026 ret = -EIO; 1027 goto out; 1028 } 1029 } else { 1030 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1031 if (ret) { 1032 dev_err(dev, "Update VSI failed, err %d\n", ret); 1033 ret = -EIO; 1034 goto out; 1035 } 1036 } 1037 1038 /* keep context for update VSI operations */ 1039 vsi->info = ctxt->info; 1040 1041 /* record VSI number returned */ 1042 vsi->vsi_num = ctxt->vsi_num; 1043 1044 out: 1045 kfree(ctxt); 1046 return ret; 1047 } 1048 1049 /** 1050 * ice_free_res - free a block of resources 1051 * @res: pointer to the resource 1052 * @index: starting index previously returned by ice_get_res 1053 * @id: identifier to track owner 1054 * 1055 * Returns number of resources freed 1056 */ 1057 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1058 { 1059 int count = 0; 1060 int i; 1061 1062 if (!res || index >= res->end) 1063 return -EINVAL; 1064 1065 id |= ICE_RES_VALID_BIT; 1066 for (i = index; i < res->end && res->list[i] == id; i++) { 1067 res->list[i] = 0; 1068 count++; 1069 } 1070 1071 return count; 1072 } 1073 1074 /** 1075 * ice_search_res - Search the tracker for a block of resources 1076 * @res: pointer to the resource 1077 * @needed: size of the block needed 1078 * @id: identifier to track owner 1079 * 1080 * Returns the base item index of the block, or -ENOMEM for error 1081 */ 1082 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1083 { 1084 u16 start = 0, end = 0; 1085 1086 if (needed > res->end) 1087 return -ENOMEM; 1088 1089 id |= ICE_RES_VALID_BIT; 1090 1091 do { 1092 /* skip already allocated entries */ 1093 if (res->list[end++] & ICE_RES_VALID_BIT) { 1094 start = end; 1095 if ((start + needed) > res->end) 1096 break; 1097 } 1098 1099 if (end == (start + needed)) { 1100 int i = start; 1101 1102 /* there was enough, so assign it to the requestor */ 1103 while (i != end) 1104 res->list[i++] = id; 1105 1106 return start; 1107 } 1108 } while (end < res->end); 1109 1110 return -ENOMEM; 1111 } 1112 1113 /** 1114 * ice_get_free_res_count - Get free count from a resource tracker 1115 * @res: Resource tracker instance 1116 */ 1117 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1118 { 1119 u16 i, count = 0; 1120 1121 for (i = 0; i < res->end; i++) 1122 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1123 count++; 1124 1125 return count; 1126 } 1127 1128 /** 1129 * ice_get_res - get a block of resources 1130 * @pf: board private structure 1131 * @res: pointer to the resource 1132 * @needed: size of the block needed 1133 * @id: identifier to track owner 1134 * 1135 * Returns the base item index of the block, or negative for error 1136 */ 1137 int 1138 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1139 { 1140 if (!res || !pf) 1141 return -EINVAL; 1142 1143 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1144 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1145 needed, res->num_entries, id); 1146 return -EINVAL; 1147 } 1148 1149 return ice_search_res(res, needed, id); 1150 } 1151 1152 /** 1153 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1154 * @vsi: ptr to the VSI 1155 * 1156 * This should only be called after ice_vsi_alloc() which allocates the 1157 * corresponding SW VSI structure and initializes num_queue_pairs for the 1158 * newly allocated VSI. 1159 * 1160 * Returns 0 on success or negative on failure 1161 */ 1162 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1163 { 1164 struct ice_pf *pf = vsi->back; 1165 struct device *dev; 1166 u16 num_q_vectors; 1167 int base; 1168 1169 dev = ice_pf_to_dev(pf); 1170 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1171 if (vsi->type == ICE_VSI_VF) 1172 return 0; 1173 1174 if (vsi->base_vector) { 1175 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1176 vsi->vsi_num, vsi->base_vector); 1177 return -EEXIST; 1178 } 1179 1180 num_q_vectors = vsi->num_q_vectors; 1181 /* reserve slots from OS requested IRQs */ 1182 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1183 struct ice_vf *vf; 1184 int i; 1185 1186 ice_for_each_vf(pf, i) { 1187 vf = &pf->vf[i]; 1188 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1189 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1190 break; 1191 } 1192 } 1193 if (i == pf->num_alloc_vfs) 1194 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1195 ICE_RES_VF_CTRL_VEC_ID); 1196 } else { 1197 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1198 vsi->idx); 1199 } 1200 1201 if (base < 0) { 1202 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1203 ice_get_free_res_count(pf->irq_tracker), 1204 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1205 return -ENOENT; 1206 } 1207 vsi->base_vector = (u16)base; 1208 pf->num_avail_sw_msix -= num_q_vectors; 1209 1210 return 0; 1211 } 1212 1213 /** 1214 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1215 * @vsi: the VSI having rings deallocated 1216 */ 1217 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1218 { 1219 int i; 1220 1221 /* Avoid stale references by clearing map from vector to ring */ 1222 if (vsi->q_vectors) { 1223 ice_for_each_q_vector(vsi, i) { 1224 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1225 1226 if (q_vector) { 1227 q_vector->tx.ring = NULL; 1228 q_vector->rx.ring = NULL; 1229 } 1230 } 1231 } 1232 1233 if (vsi->tx_rings) { 1234 for (i = 0; i < vsi->alloc_txq; i++) { 1235 if (vsi->tx_rings[i]) { 1236 kfree_rcu(vsi->tx_rings[i], rcu); 1237 WRITE_ONCE(vsi->tx_rings[i], NULL); 1238 } 1239 } 1240 } 1241 if (vsi->rx_rings) { 1242 for (i = 0; i < vsi->alloc_rxq; i++) { 1243 if (vsi->rx_rings[i]) { 1244 kfree_rcu(vsi->rx_rings[i], rcu); 1245 WRITE_ONCE(vsi->rx_rings[i], NULL); 1246 } 1247 } 1248 } 1249 } 1250 1251 /** 1252 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1253 * @vsi: VSI which is having rings allocated 1254 */ 1255 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1256 { 1257 struct ice_pf *pf = vsi->back; 1258 struct device *dev; 1259 u16 i; 1260 1261 dev = ice_pf_to_dev(pf); 1262 /* Allocate Tx rings */ 1263 for (i = 0; i < vsi->alloc_txq; i++) { 1264 struct ice_ring *ring; 1265 1266 /* allocate with kzalloc(), free with kfree_rcu() */ 1267 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1268 1269 if (!ring) 1270 goto err_out; 1271 1272 ring->q_index = i; 1273 ring->reg_idx = vsi->txq_map[i]; 1274 ring->ring_active = false; 1275 ring->vsi = vsi; 1276 ring->dev = dev; 1277 ring->count = vsi->num_tx_desc; 1278 WRITE_ONCE(vsi->tx_rings[i], ring); 1279 } 1280 1281 /* Allocate Rx rings */ 1282 for (i = 0; i < vsi->alloc_rxq; i++) { 1283 struct ice_ring *ring; 1284 1285 /* allocate with kzalloc(), free with kfree_rcu() */ 1286 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1287 if (!ring) 1288 goto err_out; 1289 1290 ring->q_index = i; 1291 ring->reg_idx = vsi->rxq_map[i]; 1292 ring->ring_active = false; 1293 ring->vsi = vsi; 1294 ring->netdev = vsi->netdev; 1295 ring->dev = dev; 1296 ring->count = vsi->num_rx_desc; 1297 WRITE_ONCE(vsi->rx_rings[i], ring); 1298 } 1299 1300 return 0; 1301 1302 err_out: 1303 ice_vsi_clear_rings(vsi); 1304 return -ENOMEM; 1305 } 1306 1307 /** 1308 * ice_vsi_manage_rss_lut - disable/enable RSS 1309 * @vsi: the VSI being changed 1310 * @ena: boolean value indicating if this is an enable or disable request 1311 * 1312 * In the event of disable request for RSS, this function will zero out RSS 1313 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1314 * LUT. 1315 */ 1316 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1317 { 1318 u8 *lut; 1319 1320 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1321 if (!lut) 1322 return; 1323 1324 if (ena) { 1325 if (vsi->rss_lut_user) 1326 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1327 else 1328 ice_fill_rss_lut(lut, vsi->rss_table_size, 1329 vsi->rss_size); 1330 } 1331 1332 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1333 kfree(lut); 1334 } 1335 1336 /** 1337 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1338 * @vsi: VSI to be configured 1339 */ 1340 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1341 { 1342 struct ice_pf *pf = vsi->back; 1343 struct device *dev; 1344 u8 *lut, *key; 1345 int err; 1346 1347 dev = ice_pf_to_dev(pf); 1348 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1349 1350 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1351 if (!lut) 1352 return -ENOMEM; 1353 1354 if (vsi->rss_lut_user) 1355 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1356 else 1357 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1358 1359 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1360 if (err) { 1361 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1362 goto ice_vsi_cfg_rss_exit; 1363 } 1364 1365 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1366 if (!key) { 1367 err = -ENOMEM; 1368 goto ice_vsi_cfg_rss_exit; 1369 } 1370 1371 if (vsi->rss_hkey_user) 1372 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1373 else 1374 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1375 1376 err = ice_set_rss_key(vsi, key); 1377 if (err) 1378 dev_err(dev, "set_rss_key failed, error %d\n", err); 1379 1380 kfree(key); 1381 ice_vsi_cfg_rss_exit: 1382 kfree(lut); 1383 return err; 1384 } 1385 1386 /** 1387 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1388 * @vsi: VSI to be configured 1389 * 1390 * This function will only be called during the VF VSI setup. Upon successful 1391 * completion of package download, this function will configure default RSS 1392 * input sets for VF VSI. 1393 */ 1394 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1395 { 1396 struct ice_pf *pf = vsi->back; 1397 enum ice_status status; 1398 struct device *dev; 1399 1400 dev = ice_pf_to_dev(pf); 1401 if (ice_is_safe_mode(pf)) { 1402 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1403 vsi->vsi_num); 1404 return; 1405 } 1406 1407 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1408 if (status) 1409 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1410 vsi->vsi_num, ice_stat_str(status)); 1411 } 1412 1413 /** 1414 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1415 * @vsi: VSI to be configured 1416 * 1417 * This function will only be called after successful download package call 1418 * during initialization of PF. Since the downloaded package will erase the 1419 * RSS section, this function will configure RSS input sets for different 1420 * flow types. The last profile added has the highest priority, therefore 2 1421 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1422 * (i.e. IPv4 src/dst TCP src/dst port). 1423 */ 1424 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1425 { 1426 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1427 struct ice_pf *pf = vsi->back; 1428 struct ice_hw *hw = &pf->hw; 1429 enum ice_status status; 1430 struct device *dev; 1431 1432 dev = ice_pf_to_dev(pf); 1433 if (ice_is_safe_mode(pf)) { 1434 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1435 vsi_num); 1436 return; 1437 } 1438 /* configure RSS for IPv4 with input set IP src/dst */ 1439 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1440 ICE_FLOW_SEG_HDR_IPV4); 1441 if (status) 1442 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1443 vsi_num, ice_stat_str(status)); 1444 1445 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1446 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1447 ICE_FLOW_SEG_HDR_IPV6); 1448 if (status) 1449 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1450 vsi_num, ice_stat_str(status)); 1451 1452 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1453 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1454 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1455 if (status) 1456 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1457 vsi_num, ice_stat_str(status)); 1458 1459 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1460 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1461 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1462 if (status) 1463 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1464 vsi_num, ice_stat_str(status)); 1465 1466 /* configure RSS for sctp4 with input set IP src/dst */ 1467 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1468 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1469 if (status) 1470 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1471 vsi_num, ice_stat_str(status)); 1472 1473 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1474 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1475 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1476 if (status) 1477 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1478 vsi_num, ice_stat_str(status)); 1479 1480 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1481 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1482 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1483 if (status) 1484 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1485 vsi_num, ice_stat_str(status)); 1486 1487 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1488 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1489 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1490 if (status) 1491 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1492 vsi_num, ice_stat_str(status)); 1493 } 1494 1495 /** 1496 * ice_pf_state_is_nominal - checks the PF for nominal state 1497 * @pf: pointer to PF to check 1498 * 1499 * Check the PF's state for a collection of bits that would indicate 1500 * the PF is in a state that would inhibit normal operation for 1501 * driver functionality. 1502 * 1503 * Returns true if PF is in a nominal state, false otherwise 1504 */ 1505 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1506 { 1507 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1508 1509 if (!pf) 1510 return false; 1511 1512 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1513 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1514 return false; 1515 1516 return true; 1517 } 1518 1519 /** 1520 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1521 * @vsi: the VSI to be updated 1522 */ 1523 void ice_update_eth_stats(struct ice_vsi *vsi) 1524 { 1525 struct ice_eth_stats *prev_es, *cur_es; 1526 struct ice_hw *hw = &vsi->back->hw; 1527 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1528 1529 prev_es = &vsi->eth_stats_prev; 1530 cur_es = &vsi->eth_stats; 1531 1532 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1533 &prev_es->rx_bytes, &cur_es->rx_bytes); 1534 1535 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1536 &prev_es->rx_unicast, &cur_es->rx_unicast); 1537 1538 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1539 &prev_es->rx_multicast, &cur_es->rx_multicast); 1540 1541 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1542 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1543 1544 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1545 &prev_es->rx_discards, &cur_es->rx_discards); 1546 1547 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1548 &prev_es->tx_bytes, &cur_es->tx_bytes); 1549 1550 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1551 &prev_es->tx_unicast, &cur_es->tx_unicast); 1552 1553 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1554 &prev_es->tx_multicast, &cur_es->tx_multicast); 1555 1556 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1557 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1558 1559 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1560 &prev_es->tx_errors, &cur_es->tx_errors); 1561 1562 vsi->stat_offsets_loaded = true; 1563 } 1564 1565 /** 1566 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1567 * @vsi: the VSI being configured 1568 * @vid: VLAN ID to be added 1569 * @action: filter action to be performed on match 1570 */ 1571 int 1572 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1573 { 1574 struct ice_pf *pf = vsi->back; 1575 struct device *dev; 1576 int err = 0; 1577 1578 dev = ice_pf_to_dev(pf); 1579 1580 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1581 vsi->num_vlan++; 1582 } else { 1583 err = -ENODEV; 1584 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1585 vsi->vsi_num); 1586 } 1587 1588 return err; 1589 } 1590 1591 /** 1592 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1593 * @vsi: the VSI being configured 1594 * @vid: VLAN ID to be removed 1595 * 1596 * Returns 0 on success and negative on failure 1597 */ 1598 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1599 { 1600 struct ice_pf *pf = vsi->back; 1601 enum ice_status status; 1602 struct device *dev; 1603 int err = 0; 1604 1605 dev = ice_pf_to_dev(pf); 1606 1607 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1608 if (!status) { 1609 vsi->num_vlan--; 1610 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1611 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1612 vid, vsi->vsi_num, ice_stat_str(status)); 1613 } else { 1614 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1615 vid, vsi->vsi_num, ice_stat_str(status)); 1616 err = -EIO; 1617 } 1618 1619 return err; 1620 } 1621 1622 /** 1623 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1624 * @vsi: VSI 1625 */ 1626 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1627 { 1628 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1629 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1630 vsi->rx_buf_len = ICE_RXBUF_2048; 1631 #if (PAGE_SIZE < 8192) 1632 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1633 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1634 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1635 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1636 #endif 1637 } else { 1638 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1639 #if (PAGE_SIZE < 8192) 1640 vsi->rx_buf_len = ICE_RXBUF_3072; 1641 #else 1642 vsi->rx_buf_len = ICE_RXBUF_2048; 1643 #endif 1644 } 1645 } 1646 1647 /** 1648 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1649 * @hw: HW pointer 1650 * @pf_q: index of the Rx queue in the PF's queue space 1651 * @rxdid: flexible descriptor RXDID 1652 * @prio: priority for the RXDID for this queue 1653 */ 1654 void 1655 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1656 { 1657 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1658 1659 /* clear any previous values */ 1660 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1661 QRXFLXP_CNTXT_RXDID_PRIO_M | 1662 QRXFLXP_CNTXT_TS_M); 1663 1664 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1665 QRXFLXP_CNTXT_RXDID_IDX_M; 1666 1667 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1668 QRXFLXP_CNTXT_RXDID_PRIO_M; 1669 1670 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1671 } 1672 1673 /** 1674 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1675 * @vsi: the VSI being configured 1676 * 1677 * Return 0 on success and a negative value on error 1678 * Configure the Rx VSI for operation. 1679 */ 1680 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1681 { 1682 u16 i; 1683 1684 if (vsi->type == ICE_VSI_VF) 1685 goto setup_rings; 1686 1687 ice_vsi_cfg_frame_size(vsi); 1688 setup_rings: 1689 /* set up individual rings */ 1690 for (i = 0; i < vsi->num_rxq; i++) { 1691 int err; 1692 1693 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1694 if (err) { 1695 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1696 i, err); 1697 return err; 1698 } 1699 } 1700 1701 return 0; 1702 } 1703 1704 /** 1705 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1706 * @vsi: the VSI being configured 1707 * @rings: Tx ring array to be configured 1708 * 1709 * Return 0 on success and a negative value on error 1710 * Configure the Tx VSI for operation. 1711 */ 1712 static int 1713 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1714 { 1715 struct ice_aqc_add_tx_qgrp *qg_buf; 1716 u16 q_idx = 0; 1717 int err = 0; 1718 1719 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1720 if (!qg_buf) 1721 return -ENOMEM; 1722 1723 qg_buf->num_txqs = 1; 1724 1725 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1726 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1727 if (err) 1728 goto err_cfg_txqs; 1729 } 1730 1731 err_cfg_txqs: 1732 kfree(qg_buf); 1733 return err; 1734 } 1735 1736 /** 1737 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1738 * @vsi: the VSI being configured 1739 * 1740 * Return 0 on success and a negative value on error 1741 * Configure the Tx VSI for operation. 1742 */ 1743 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1744 { 1745 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1746 } 1747 1748 /** 1749 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1750 * @vsi: the VSI being configured 1751 * 1752 * Return 0 on success and a negative value on error 1753 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1754 */ 1755 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1756 { 1757 int ret; 1758 int i; 1759 1760 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1761 if (ret) 1762 return ret; 1763 1764 for (i = 0; i < vsi->num_xdp_txq; i++) 1765 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1766 1767 return ret; 1768 } 1769 1770 /** 1771 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1772 * @intrl: interrupt rate limit in usecs 1773 * @gran: interrupt rate limit granularity in usecs 1774 * 1775 * This function converts a decimal interrupt rate limit in usecs to the format 1776 * expected by firmware. 1777 */ 1778 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1779 { 1780 u32 val = intrl / gran; 1781 1782 if (val) 1783 return val | GLINT_RATE_INTRL_ENA_M; 1784 return 0; 1785 } 1786 1787 /** 1788 * ice_write_intrl - write throttle rate limit to interrupt specific register 1789 * @q_vector: pointer to interrupt specific structure 1790 * @intrl: throttle rate limit in microseconds to write 1791 */ 1792 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1793 { 1794 struct ice_hw *hw = &q_vector->vsi->back->hw; 1795 1796 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1797 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1798 } 1799 1800 /** 1801 * __ice_write_itr - write throttle rate to register 1802 * @q_vector: pointer to interrupt data structure 1803 * @rc: pointer to ring container 1804 * @itr: throttle rate in microseconds to write 1805 */ 1806 static void __ice_write_itr(struct ice_q_vector *q_vector, 1807 struct ice_ring_container *rc, u16 itr) 1808 { 1809 struct ice_hw *hw = &q_vector->vsi->back->hw; 1810 1811 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1812 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1813 } 1814 1815 /** 1816 * ice_write_itr - write throttle rate to queue specific register 1817 * @rc: pointer to ring container 1818 * @itr: throttle rate in microseconds to write 1819 */ 1820 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1821 { 1822 struct ice_q_vector *q_vector; 1823 1824 if (!rc->ring) 1825 return; 1826 1827 q_vector = rc->ring->q_vector; 1828 1829 __ice_write_itr(q_vector, rc, itr); 1830 } 1831 1832 /** 1833 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1834 * @vsi: the VSI being configured 1835 * 1836 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1837 * for the VF VSI. 1838 */ 1839 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1840 { 1841 struct ice_pf *pf = vsi->back; 1842 struct ice_hw *hw = &pf->hw; 1843 u16 txq = 0, rxq = 0; 1844 int i, q; 1845 1846 for (i = 0; i < vsi->num_q_vectors; i++) { 1847 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1848 u16 reg_idx = q_vector->reg_idx; 1849 1850 ice_cfg_itr(hw, q_vector); 1851 1852 /* Both Transmit Queue Interrupt Cause Control register 1853 * and Receive Queue Interrupt Cause control register 1854 * expects MSIX_INDX field to be the vector index 1855 * within the function space and not the absolute 1856 * vector index across PF or across device. 1857 * For SR-IOV VF VSIs queue vector index always starts 1858 * with 1 since first vector index(0) is used for OICR 1859 * in VF space. Since VMDq and other PF VSIs are within 1860 * the PF function space, use the vector index that is 1861 * tracked for this PF. 1862 */ 1863 for (q = 0; q < q_vector->num_ring_tx; q++) { 1864 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1865 q_vector->tx.itr_idx); 1866 txq++; 1867 } 1868 1869 for (q = 0; q < q_vector->num_ring_rx; q++) { 1870 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1871 q_vector->rx.itr_idx); 1872 rxq++; 1873 } 1874 } 1875 } 1876 1877 /** 1878 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1879 * @vsi: the VSI being changed 1880 */ 1881 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1882 { 1883 struct ice_hw *hw = &vsi->back->hw; 1884 struct ice_vsi_ctx *ctxt; 1885 enum ice_status status; 1886 int ret = 0; 1887 1888 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1889 if (!ctxt) 1890 return -ENOMEM; 1891 1892 /* Here we are configuring the VSI to let the driver add VLAN tags by 1893 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1894 * insertion happens in the Tx hot path, in ice_tx_map. 1895 */ 1896 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1897 1898 /* Preserve existing VLAN strip setting */ 1899 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1900 ICE_AQ_VSI_VLAN_EMOD_M); 1901 1902 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1903 1904 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1905 if (status) { 1906 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1907 ice_stat_str(status), 1908 ice_aq_str(hw->adminq.sq_last_status)); 1909 ret = -EIO; 1910 goto out; 1911 } 1912 1913 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1914 out: 1915 kfree(ctxt); 1916 return ret; 1917 } 1918 1919 /** 1920 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1921 * @vsi: the VSI being changed 1922 * @ena: boolean value indicating if this is a enable or disable request 1923 */ 1924 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1925 { 1926 struct ice_hw *hw = &vsi->back->hw; 1927 struct ice_vsi_ctx *ctxt; 1928 enum ice_status status; 1929 int ret = 0; 1930 1931 /* do not allow modifying VLAN stripping when a port VLAN is configured 1932 * on this VSI 1933 */ 1934 if (vsi->info.pvid) 1935 return 0; 1936 1937 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1938 if (!ctxt) 1939 return -ENOMEM; 1940 1941 /* Here we are configuring what the VSI should do with the VLAN tag in 1942 * the Rx packet. We can either leave the tag in the packet or put it in 1943 * the Rx descriptor. 1944 */ 1945 if (ena) 1946 /* Strip VLAN tag from Rx packet and put it in the desc */ 1947 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1948 else 1949 /* Disable stripping. Leave tag in packet */ 1950 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1951 1952 /* Allow all packets untagged/tagged */ 1953 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1954 1955 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1956 1957 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1958 if (status) { 1959 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1960 ena, ice_stat_str(status), 1961 ice_aq_str(hw->adminq.sq_last_status)); 1962 ret = -EIO; 1963 goto out; 1964 } 1965 1966 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1967 out: 1968 kfree(ctxt); 1969 return ret; 1970 } 1971 1972 /** 1973 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1974 * @vsi: the VSI whose rings are to be enabled 1975 * 1976 * Returns 0 on success and a negative value on error 1977 */ 1978 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1979 { 1980 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1981 } 1982 1983 /** 1984 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1985 * @vsi: the VSI whose rings are to be disabled 1986 * 1987 * Returns 0 on success and a negative value on error 1988 */ 1989 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1990 { 1991 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1992 } 1993 1994 /** 1995 * ice_vsi_stop_tx_rings - Disable Tx rings 1996 * @vsi: the VSI being configured 1997 * @rst_src: reset source 1998 * @rel_vmvf_num: Relative ID of VF/VM 1999 * @rings: Tx ring array to be stopped 2000 */ 2001 static int 2002 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2003 u16 rel_vmvf_num, struct ice_ring **rings) 2004 { 2005 u16 q_idx; 2006 2007 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2008 return -EINVAL; 2009 2010 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 2011 struct ice_txq_meta txq_meta = { }; 2012 int status; 2013 2014 if (!rings || !rings[q_idx]) 2015 return -EINVAL; 2016 2017 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2018 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2019 rings[q_idx], &txq_meta); 2020 2021 if (status) 2022 return status; 2023 } 2024 2025 return 0; 2026 } 2027 2028 /** 2029 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2030 * @vsi: the VSI being configured 2031 * @rst_src: reset source 2032 * @rel_vmvf_num: Relative ID of VF/VM 2033 */ 2034 int 2035 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2036 u16 rel_vmvf_num) 2037 { 2038 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2039 } 2040 2041 /** 2042 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2043 * @vsi: the VSI being configured 2044 */ 2045 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2046 { 2047 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2048 } 2049 2050 /** 2051 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2052 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2053 * 2054 * returns true if Rx VLAN pruning is enabled and false otherwise. 2055 */ 2056 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2057 { 2058 if (!vsi) 2059 return false; 2060 2061 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2062 } 2063 2064 /** 2065 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2066 * @vsi: VSI to enable or disable VLAN pruning on 2067 * @ena: set to true to enable VLAN pruning and false to disable it 2068 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2069 * 2070 * returns 0 if VSI is updated, negative otherwise 2071 */ 2072 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2073 { 2074 struct ice_vsi_ctx *ctxt; 2075 struct ice_pf *pf; 2076 int status; 2077 2078 if (!vsi) 2079 return -EINVAL; 2080 2081 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2082 * mode. VLAN pruning will be enabled when the interface exits 2083 * promiscuous mode if any VLAN filters are active. 2084 */ 2085 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2086 return 0; 2087 2088 pf = vsi->back; 2089 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2090 if (!ctxt) 2091 return -ENOMEM; 2092 2093 ctxt->info = vsi->info; 2094 2095 if (ena) 2096 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2097 else 2098 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2099 2100 if (!vlan_promisc) 2101 ctxt->info.valid_sections = 2102 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2103 2104 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2105 if (status) { 2106 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2107 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2108 ice_stat_str(status), 2109 ice_aq_str(pf->hw.adminq.sq_last_status)); 2110 goto err_out; 2111 } 2112 2113 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2114 2115 kfree(ctxt); 2116 return 0; 2117 2118 err_out: 2119 kfree(ctxt); 2120 return -EIO; 2121 } 2122 2123 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2124 { 2125 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2126 2127 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2128 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2129 } 2130 2131 /** 2132 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2133 * @vsi: VSI to set the q_vectors register index on 2134 */ 2135 static int 2136 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2137 { 2138 u16 i; 2139 2140 if (!vsi || !vsi->q_vectors) 2141 return -EINVAL; 2142 2143 ice_for_each_q_vector(vsi, i) { 2144 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2145 2146 if (!q_vector) { 2147 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2148 i, vsi->vsi_num); 2149 goto clear_reg_idx; 2150 } 2151 2152 if (vsi->type == ICE_VSI_VF) { 2153 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2154 2155 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2156 } else { 2157 q_vector->reg_idx = 2158 q_vector->v_idx + vsi->base_vector; 2159 } 2160 } 2161 2162 return 0; 2163 2164 clear_reg_idx: 2165 ice_for_each_q_vector(vsi, i) { 2166 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2167 2168 if (q_vector) 2169 q_vector->reg_idx = 0; 2170 } 2171 2172 return -EINVAL; 2173 } 2174 2175 /** 2176 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2177 * @vsi: the VSI being configured 2178 * @tx: bool to determine Tx or Rx rule 2179 * @create: bool to determine create or remove Rule 2180 */ 2181 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2182 { 2183 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2184 enum ice_sw_fwd_act_type act); 2185 struct ice_pf *pf = vsi->back; 2186 enum ice_status status; 2187 struct device *dev; 2188 2189 dev = ice_pf_to_dev(pf); 2190 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2191 2192 if (tx) { 2193 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2194 ICE_DROP_PACKET); 2195 } else { 2196 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2197 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2198 create); 2199 } else { 2200 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2201 ICE_FWD_TO_VSI); 2202 } 2203 } 2204 2205 if (status) 2206 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2207 create ? "adding" : "removing", tx ? "TX" : "RX", 2208 vsi->vsi_num, ice_stat_str(status)); 2209 } 2210 2211 /** 2212 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2213 * @vsi: pointer to the VSI 2214 * 2215 * This function will allocate new scheduler aggregator now if needed and will 2216 * move specified VSI into it. 2217 */ 2218 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2219 { 2220 struct device *dev = ice_pf_to_dev(vsi->back); 2221 struct ice_agg_node *agg_node_iter = NULL; 2222 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2223 struct ice_agg_node *agg_node = NULL; 2224 int node_offset, max_agg_nodes = 0; 2225 struct ice_port_info *port_info; 2226 struct ice_pf *pf = vsi->back; 2227 u32 agg_node_id_start = 0; 2228 enum ice_status status; 2229 2230 /* create (as needed) scheduler aggregator node and move VSI into 2231 * corresponding aggregator node 2232 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2233 * - VF aggregator nodes will contain VF VSI 2234 */ 2235 port_info = pf->hw.port_info; 2236 if (!port_info) 2237 return; 2238 2239 switch (vsi->type) { 2240 case ICE_VSI_CTRL: 2241 case ICE_VSI_LB: 2242 case ICE_VSI_PF: 2243 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2244 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2245 agg_node_iter = &pf->pf_agg_node[0]; 2246 break; 2247 case ICE_VSI_VF: 2248 /* user can create 'n' VFs on a given PF, but since max children 2249 * per aggregator node can be only 64. Following code handles 2250 * aggregator(s) for VF VSIs, either selects a agg_node which 2251 * was already created provided num_vsis < 64, otherwise 2252 * select next available node, which will be created 2253 */ 2254 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2255 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2256 agg_node_iter = &pf->vf_agg_node[0]; 2257 break; 2258 default: 2259 /* other VSI type, handle later if needed */ 2260 dev_dbg(dev, "unexpected VSI type %s\n", 2261 ice_vsi_type_str(vsi->type)); 2262 return; 2263 } 2264 2265 /* find the appropriate aggregator node */ 2266 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2267 /* see if we can find space in previously created 2268 * node if num_vsis < 64, otherwise skip 2269 */ 2270 if (agg_node_iter->num_vsis && 2271 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2272 agg_node_iter++; 2273 continue; 2274 } 2275 2276 if (agg_node_iter->valid && 2277 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2278 agg_id = agg_node_iter->agg_id; 2279 agg_node = agg_node_iter; 2280 break; 2281 } 2282 2283 /* find unclaimed agg_id */ 2284 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2285 agg_id = node_offset + agg_node_id_start; 2286 agg_node = agg_node_iter; 2287 break; 2288 } 2289 /* move to next agg_node */ 2290 agg_node_iter++; 2291 } 2292 2293 if (!agg_node) 2294 return; 2295 2296 /* if selected aggregator node was not created, create it */ 2297 if (!agg_node->valid) { 2298 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2299 (u8)vsi->tc_cfg.ena_tc); 2300 if (status) { 2301 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2302 agg_id); 2303 return; 2304 } 2305 /* aggregator node is created, store the neeeded info */ 2306 agg_node->valid = true; 2307 agg_node->agg_id = agg_id; 2308 } 2309 2310 /* move VSI to corresponding aggregator node */ 2311 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2312 (u8)vsi->tc_cfg.ena_tc); 2313 if (status) { 2314 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2315 vsi->idx, agg_id); 2316 return; 2317 } 2318 2319 /* keep active children count for aggregator node */ 2320 agg_node->num_vsis++; 2321 2322 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2323 * to aggregator node 2324 */ 2325 vsi->agg_node = agg_node; 2326 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2327 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2328 vsi->agg_node->num_vsis); 2329 } 2330 2331 /** 2332 * ice_vsi_setup - Set up a VSI by a given type 2333 * @pf: board private structure 2334 * @pi: pointer to the port_info instance 2335 * @vsi_type: VSI type 2336 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2337 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2338 * fill-in ICE_INVAL_VFID as input. 2339 * 2340 * This allocates the sw VSI structure and its queue resources. 2341 * 2342 * Returns pointer to the successfully allocated and configured VSI sw struct on 2343 * success, NULL on failure. 2344 */ 2345 struct ice_vsi * 2346 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2347 enum ice_vsi_type vsi_type, u16 vf_id) 2348 { 2349 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2350 struct device *dev = ice_pf_to_dev(pf); 2351 enum ice_status status; 2352 struct ice_vsi *vsi; 2353 int ret, i; 2354 2355 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2356 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2357 else 2358 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2359 2360 if (!vsi) { 2361 dev_err(dev, "could not allocate VSI\n"); 2362 return NULL; 2363 } 2364 2365 vsi->port_info = pi; 2366 vsi->vsw = pf->first_sw; 2367 if (vsi->type == ICE_VSI_PF) 2368 vsi->ethtype = ETH_P_PAUSE; 2369 2370 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2371 vsi->vf_id = vf_id; 2372 2373 ice_alloc_fd_res(vsi); 2374 2375 if (ice_vsi_get_qs(vsi)) { 2376 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2377 vsi->idx); 2378 goto unroll_vsi_alloc; 2379 } 2380 2381 /* set RSS capabilities */ 2382 ice_vsi_set_rss_params(vsi); 2383 2384 /* set TC configuration */ 2385 ice_vsi_set_tc_cfg(vsi); 2386 2387 /* create the VSI */ 2388 ret = ice_vsi_init(vsi, true); 2389 if (ret) 2390 goto unroll_get_qs; 2391 2392 switch (vsi->type) { 2393 case ICE_VSI_CTRL: 2394 case ICE_VSI_PF: 2395 ret = ice_vsi_alloc_q_vectors(vsi); 2396 if (ret) 2397 goto unroll_vsi_init; 2398 2399 ret = ice_vsi_setup_vector_base(vsi); 2400 if (ret) 2401 goto unroll_alloc_q_vector; 2402 2403 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2404 if (ret) 2405 goto unroll_vector_base; 2406 2407 ret = ice_vsi_alloc_rings(vsi); 2408 if (ret) 2409 goto unroll_vector_base; 2410 2411 /* Always add VLAN ID 0 switch rule by default. This is needed 2412 * in order to allow all untagged and 0 tagged priority traffic 2413 * if Rx VLAN pruning is enabled. Also there are cases where we 2414 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2415 * so this handles those cases (i.e. adding the PF to a bridge 2416 * without the 8021q module loaded). 2417 */ 2418 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2419 if (ret) 2420 goto unroll_clear_rings; 2421 2422 ice_vsi_map_rings_to_vectors(vsi); 2423 2424 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2425 if (vsi->type != ICE_VSI_CTRL) 2426 /* Do not exit if configuring RSS had an issue, at 2427 * least receive traffic on first queue. Hence no 2428 * need to capture return value 2429 */ 2430 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2431 ice_vsi_cfg_rss_lut_key(vsi); 2432 ice_vsi_set_rss_flow_fld(vsi); 2433 } 2434 ice_init_arfs(vsi); 2435 break; 2436 case ICE_VSI_VF: 2437 /* VF driver will take care of creating netdev for this type and 2438 * map queues to vectors through Virtchnl, PF driver only 2439 * creates a VSI and corresponding structures for bookkeeping 2440 * purpose 2441 */ 2442 ret = ice_vsi_alloc_q_vectors(vsi); 2443 if (ret) 2444 goto unroll_vsi_init; 2445 2446 ret = ice_vsi_alloc_rings(vsi); 2447 if (ret) 2448 goto unroll_alloc_q_vector; 2449 2450 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2451 if (ret) 2452 goto unroll_vector_base; 2453 2454 /* Do not exit if configuring RSS had an issue, at least 2455 * receive traffic on first queue. Hence no need to capture 2456 * return value 2457 */ 2458 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2459 ice_vsi_cfg_rss_lut_key(vsi); 2460 ice_vsi_set_vf_rss_flow_fld(vsi); 2461 } 2462 break; 2463 case ICE_VSI_LB: 2464 ret = ice_vsi_alloc_rings(vsi); 2465 if (ret) 2466 goto unroll_vsi_init; 2467 break; 2468 default: 2469 /* clean up the resources and exit */ 2470 goto unroll_vsi_init; 2471 } 2472 2473 /* configure VSI nodes based on number of queues and TC's */ 2474 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2475 max_txqs[i] = vsi->alloc_txq; 2476 2477 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2478 max_txqs); 2479 if (status) { 2480 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2481 vsi->vsi_num, ice_stat_str(status)); 2482 goto unroll_clear_rings; 2483 } 2484 2485 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2486 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2487 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2488 * The rule is added once for PF VSI in order to create appropriate 2489 * recipe, since VSI/VSI list is ignored with drop action... 2490 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2491 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2492 * settings in the HW. 2493 */ 2494 if (!ice_is_safe_mode(pf)) 2495 if (vsi->type == ICE_VSI_PF) { 2496 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2497 ICE_DROP_PACKET); 2498 ice_cfg_sw_lldp(vsi, true, true); 2499 } 2500 2501 if (!vsi->agg_node) 2502 ice_set_agg_vsi(vsi); 2503 return vsi; 2504 2505 unroll_clear_rings: 2506 ice_vsi_clear_rings(vsi); 2507 unroll_vector_base: 2508 /* reclaim SW interrupts back to the common pool */ 2509 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2510 pf->num_avail_sw_msix += vsi->num_q_vectors; 2511 unroll_alloc_q_vector: 2512 ice_vsi_free_q_vectors(vsi); 2513 unroll_vsi_init: 2514 ice_vsi_delete(vsi); 2515 unroll_get_qs: 2516 ice_vsi_put_qs(vsi); 2517 unroll_vsi_alloc: 2518 if (vsi_type == ICE_VSI_VF) 2519 ice_enable_lag(pf->lag); 2520 ice_vsi_clear(vsi); 2521 2522 return NULL; 2523 } 2524 2525 /** 2526 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2527 * @vsi: the VSI being cleaned up 2528 */ 2529 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2530 { 2531 struct ice_pf *pf = vsi->back; 2532 struct ice_hw *hw = &pf->hw; 2533 u32 txq = 0; 2534 u32 rxq = 0; 2535 int i, q; 2536 2537 for (i = 0; i < vsi->num_q_vectors; i++) { 2538 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2539 2540 ice_write_intrl(q_vector, 0); 2541 for (q = 0; q < q_vector->num_ring_tx; q++) { 2542 ice_write_itr(&q_vector->tx, 0); 2543 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2544 if (ice_is_xdp_ena_vsi(vsi)) { 2545 u32 xdp_txq = txq + vsi->num_xdp_txq; 2546 2547 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2548 } 2549 txq++; 2550 } 2551 2552 for (q = 0; q < q_vector->num_ring_rx; q++) { 2553 ice_write_itr(&q_vector->rx, 0); 2554 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2555 rxq++; 2556 } 2557 } 2558 2559 ice_flush(hw); 2560 } 2561 2562 /** 2563 * ice_vsi_free_irq - Free the IRQ association with the OS 2564 * @vsi: the VSI being configured 2565 */ 2566 void ice_vsi_free_irq(struct ice_vsi *vsi) 2567 { 2568 struct ice_pf *pf = vsi->back; 2569 int base = vsi->base_vector; 2570 int i; 2571 2572 if (!vsi->q_vectors || !vsi->irqs_ready) 2573 return; 2574 2575 ice_vsi_release_msix(vsi); 2576 if (vsi->type == ICE_VSI_VF) 2577 return; 2578 2579 vsi->irqs_ready = false; 2580 ice_for_each_q_vector(vsi, i) { 2581 u16 vector = i + base; 2582 int irq_num; 2583 2584 irq_num = pf->msix_entries[vector].vector; 2585 2586 /* free only the irqs that were actually requested */ 2587 if (!vsi->q_vectors[i] || 2588 !(vsi->q_vectors[i]->num_ring_tx || 2589 vsi->q_vectors[i]->num_ring_rx)) 2590 continue; 2591 2592 /* clear the affinity notifier in the IRQ descriptor */ 2593 irq_set_affinity_notifier(irq_num, NULL); 2594 2595 /* clear the affinity_mask in the IRQ descriptor */ 2596 irq_set_affinity_hint(irq_num, NULL); 2597 synchronize_irq(irq_num); 2598 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2599 } 2600 } 2601 2602 /** 2603 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2604 * @vsi: the VSI having resources freed 2605 */ 2606 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2607 { 2608 int i; 2609 2610 if (!vsi->tx_rings) 2611 return; 2612 2613 ice_for_each_txq(vsi, i) 2614 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2615 ice_free_tx_ring(vsi->tx_rings[i]); 2616 } 2617 2618 /** 2619 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2620 * @vsi: the VSI having resources freed 2621 */ 2622 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2623 { 2624 int i; 2625 2626 if (!vsi->rx_rings) 2627 return; 2628 2629 ice_for_each_rxq(vsi, i) 2630 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2631 ice_free_rx_ring(vsi->rx_rings[i]); 2632 } 2633 2634 /** 2635 * ice_vsi_close - Shut down a VSI 2636 * @vsi: the VSI being shut down 2637 */ 2638 void ice_vsi_close(struct ice_vsi *vsi) 2639 { 2640 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2641 ice_down(vsi); 2642 2643 ice_vsi_free_irq(vsi); 2644 ice_vsi_free_tx_rings(vsi); 2645 ice_vsi_free_rx_rings(vsi); 2646 } 2647 2648 /** 2649 * ice_ena_vsi - resume a VSI 2650 * @vsi: the VSI being resume 2651 * @locked: is the rtnl_lock already held 2652 */ 2653 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2654 { 2655 int err = 0; 2656 2657 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2658 return 0; 2659 2660 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2661 2662 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2663 if (netif_running(vsi->netdev)) { 2664 if (!locked) 2665 rtnl_lock(); 2666 2667 err = ice_open_internal(vsi->netdev); 2668 2669 if (!locked) 2670 rtnl_unlock(); 2671 } 2672 } else if (vsi->type == ICE_VSI_CTRL) { 2673 err = ice_vsi_open_ctrl(vsi); 2674 } 2675 2676 return err; 2677 } 2678 2679 /** 2680 * ice_dis_vsi - pause a VSI 2681 * @vsi: the VSI being paused 2682 * @locked: is the rtnl_lock already held 2683 */ 2684 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2685 { 2686 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2687 return; 2688 2689 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2690 2691 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2692 if (netif_running(vsi->netdev)) { 2693 if (!locked) 2694 rtnl_lock(); 2695 2696 ice_vsi_close(vsi); 2697 2698 if (!locked) 2699 rtnl_unlock(); 2700 } else { 2701 ice_vsi_close(vsi); 2702 } 2703 } else if (vsi->type == ICE_VSI_CTRL) { 2704 ice_vsi_close(vsi); 2705 } 2706 } 2707 2708 /** 2709 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2710 * @vsi: the VSI being un-configured 2711 */ 2712 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2713 { 2714 int base = vsi->base_vector; 2715 struct ice_pf *pf = vsi->back; 2716 struct ice_hw *hw = &pf->hw; 2717 u32 val; 2718 int i; 2719 2720 /* disable interrupt causation from each queue */ 2721 if (vsi->tx_rings) { 2722 ice_for_each_txq(vsi, i) { 2723 if (vsi->tx_rings[i]) { 2724 u16 reg; 2725 2726 reg = vsi->tx_rings[i]->reg_idx; 2727 val = rd32(hw, QINT_TQCTL(reg)); 2728 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2729 wr32(hw, QINT_TQCTL(reg), val); 2730 } 2731 } 2732 } 2733 2734 if (vsi->rx_rings) { 2735 ice_for_each_rxq(vsi, i) { 2736 if (vsi->rx_rings[i]) { 2737 u16 reg; 2738 2739 reg = vsi->rx_rings[i]->reg_idx; 2740 val = rd32(hw, QINT_RQCTL(reg)); 2741 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2742 wr32(hw, QINT_RQCTL(reg), val); 2743 } 2744 } 2745 } 2746 2747 /* disable each interrupt */ 2748 ice_for_each_q_vector(vsi, i) { 2749 if (!vsi->q_vectors[i]) 2750 continue; 2751 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2752 } 2753 2754 ice_flush(hw); 2755 2756 /* don't call synchronize_irq() for VF's from the host */ 2757 if (vsi->type == ICE_VSI_VF) 2758 return; 2759 2760 ice_for_each_q_vector(vsi, i) 2761 synchronize_irq(pf->msix_entries[i + base].vector); 2762 } 2763 2764 /** 2765 * ice_napi_del - Remove NAPI handler for the VSI 2766 * @vsi: VSI for which NAPI handler is to be removed 2767 */ 2768 void ice_napi_del(struct ice_vsi *vsi) 2769 { 2770 int v_idx; 2771 2772 if (!vsi->netdev) 2773 return; 2774 2775 ice_for_each_q_vector(vsi, v_idx) 2776 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2777 } 2778 2779 /** 2780 * ice_vsi_release - Delete a VSI and free its resources 2781 * @vsi: the VSI being removed 2782 * 2783 * Returns 0 on success or < 0 on error 2784 */ 2785 int ice_vsi_release(struct ice_vsi *vsi) 2786 { 2787 struct ice_pf *pf; 2788 2789 if (!vsi->back) 2790 return -ENODEV; 2791 pf = vsi->back; 2792 2793 /* do not unregister while driver is in the reset recovery pending 2794 * state. Since reset/rebuild happens through PF service task workqueue, 2795 * it's not a good idea to unregister netdev that is associated to the 2796 * PF that is running the work queue items currently. This is done to 2797 * avoid check_flush_dependency() warning on this wq 2798 */ 2799 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2800 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2801 unregister_netdev(vsi->netdev); 2802 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2803 } 2804 2805 ice_devlink_destroy_port(vsi); 2806 2807 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2808 ice_rss_clean(vsi); 2809 2810 /* Disable VSI and free resources */ 2811 if (vsi->type != ICE_VSI_LB) 2812 ice_vsi_dis_irq(vsi); 2813 ice_vsi_close(vsi); 2814 2815 /* SR-IOV determines needed MSIX resources all at once instead of per 2816 * VSI since when VFs are spawned we know how many VFs there are and how 2817 * many interrupts each VF needs. SR-IOV MSIX resources are also 2818 * cleared in the same manner. 2819 */ 2820 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2821 struct ice_vf *vf; 2822 int i; 2823 2824 ice_for_each_vf(pf, i) { 2825 vf = &pf->vf[i]; 2826 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2827 break; 2828 } 2829 if (i == pf->num_alloc_vfs) { 2830 /* No other VFs left that have control VSI, reclaim SW 2831 * interrupts back to the common pool 2832 */ 2833 ice_free_res(pf->irq_tracker, vsi->base_vector, 2834 ICE_RES_VF_CTRL_VEC_ID); 2835 pf->num_avail_sw_msix += vsi->num_q_vectors; 2836 } 2837 } else if (vsi->type != ICE_VSI_VF) { 2838 /* reclaim SW interrupts back to the common pool */ 2839 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2840 pf->num_avail_sw_msix += vsi->num_q_vectors; 2841 } 2842 2843 if (!ice_is_safe_mode(pf)) { 2844 if (vsi->type == ICE_VSI_PF) { 2845 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2846 ICE_DROP_PACKET); 2847 ice_cfg_sw_lldp(vsi, true, false); 2848 /* The Rx rule will only exist to remove if the LLDP FW 2849 * engine is currently stopped 2850 */ 2851 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2852 ice_cfg_sw_lldp(vsi, false, false); 2853 } 2854 } 2855 2856 ice_fltr_remove_all(vsi); 2857 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2858 ice_vsi_delete(vsi); 2859 ice_vsi_free_q_vectors(vsi); 2860 2861 if (vsi->netdev) { 2862 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2863 unregister_netdev(vsi->netdev); 2864 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2865 } 2866 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2867 free_netdev(vsi->netdev); 2868 vsi->netdev = NULL; 2869 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2870 } 2871 } 2872 2873 if (vsi->type == ICE_VSI_VF && 2874 vsi->agg_node && vsi->agg_node->valid) 2875 vsi->agg_node->num_vsis--; 2876 ice_vsi_clear_rings(vsi); 2877 2878 ice_vsi_put_qs(vsi); 2879 2880 /* retain SW VSI data structure since it is needed to unregister and 2881 * free VSI netdev when PF is not in reset recovery pending state,\ 2882 * for ex: during rmmod. 2883 */ 2884 if (!ice_is_reset_in_progress(pf->state)) 2885 ice_vsi_clear(vsi); 2886 2887 return 0; 2888 } 2889 2890 /** 2891 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2892 * @vsi: VSI connected with q_vectors 2893 * @coalesce: array of struct with stored coalesce 2894 * 2895 * Returns array size. 2896 */ 2897 static int 2898 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2899 struct ice_coalesce_stored *coalesce) 2900 { 2901 int i; 2902 2903 ice_for_each_q_vector(vsi, i) { 2904 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2905 2906 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2907 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2908 coalesce[i].intrl = q_vector->intrl; 2909 2910 if (i < vsi->num_txq) 2911 coalesce[i].tx_valid = true; 2912 if (i < vsi->num_rxq) 2913 coalesce[i].rx_valid = true; 2914 } 2915 2916 return vsi->num_q_vectors; 2917 } 2918 2919 /** 2920 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2921 * @vsi: VSI connected with q_vectors 2922 * @coalesce: pointer to array of struct with stored coalesce 2923 * @size: size of coalesce array 2924 * 2925 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2926 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2927 * to default value. 2928 */ 2929 static void 2930 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2931 struct ice_coalesce_stored *coalesce, int size) 2932 { 2933 struct ice_ring_container *rc; 2934 int i; 2935 2936 if ((size && !coalesce) || !vsi) 2937 return; 2938 2939 /* There are a couple of cases that have to be handled here: 2940 * 1. The case where the number of queue vectors stays the same, but 2941 * the number of Tx or Rx rings changes (the first for loop) 2942 * 2. The case where the number of queue vectors increased (the 2943 * second for loop) 2944 */ 2945 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2946 /* There are 2 cases to handle here and they are the same for 2947 * both Tx and Rx: 2948 * if the entry was valid previously (coalesce[i].[tr]x_valid 2949 * and the loop variable is less than the number of rings 2950 * allocated, then write the previous values 2951 * 2952 * if the entry was not valid previously, but the number of 2953 * rings is less than are allocated (this means the number of 2954 * rings increased from previously), then write out the 2955 * values in the first element 2956 * 2957 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2958 * as there is no harm because the dynamic algorithm 2959 * will just overwrite. 2960 */ 2961 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2962 rc = &vsi->q_vectors[i]->rx; 2963 rc->itr_setting = coalesce[i].itr_rx; 2964 ice_write_itr(rc, rc->itr_setting); 2965 } else if (i < vsi->alloc_rxq) { 2966 rc = &vsi->q_vectors[i]->rx; 2967 rc->itr_setting = coalesce[0].itr_rx; 2968 ice_write_itr(rc, rc->itr_setting); 2969 } 2970 2971 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2972 rc = &vsi->q_vectors[i]->tx; 2973 rc->itr_setting = coalesce[i].itr_tx; 2974 ice_write_itr(rc, rc->itr_setting); 2975 } else if (i < vsi->alloc_txq) { 2976 rc = &vsi->q_vectors[i]->tx; 2977 rc->itr_setting = coalesce[0].itr_tx; 2978 ice_write_itr(rc, rc->itr_setting); 2979 } 2980 2981 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2982 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 2983 } 2984 2985 /* the number of queue vectors increased so write whatever is in 2986 * the first element 2987 */ 2988 for (; i < vsi->num_q_vectors; i++) { 2989 /* transmit */ 2990 rc = &vsi->q_vectors[i]->tx; 2991 rc->itr_setting = coalesce[0].itr_tx; 2992 ice_write_itr(rc, rc->itr_setting); 2993 2994 /* receive */ 2995 rc = &vsi->q_vectors[i]->rx; 2996 rc->itr_setting = coalesce[0].itr_rx; 2997 ice_write_itr(rc, rc->itr_setting); 2998 2999 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3000 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3001 } 3002 } 3003 3004 /** 3005 * ice_vsi_rebuild - Rebuild VSI after reset 3006 * @vsi: VSI to be rebuild 3007 * @init_vsi: is this an initialization or a reconfigure of the VSI 3008 * 3009 * Returns 0 on success and negative value on failure 3010 */ 3011 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3012 { 3013 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3014 struct ice_coalesce_stored *coalesce; 3015 int prev_num_q_vectors = 0; 3016 struct ice_vf *vf = NULL; 3017 enum ice_vsi_type vtype; 3018 enum ice_status status; 3019 struct ice_pf *pf; 3020 int ret, i; 3021 3022 if (!vsi) 3023 return -EINVAL; 3024 3025 pf = vsi->back; 3026 vtype = vsi->type; 3027 if (vtype == ICE_VSI_VF) 3028 vf = &pf->vf[vsi->vf_id]; 3029 3030 coalesce = kcalloc(vsi->num_q_vectors, 3031 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3032 if (!coalesce) 3033 return -ENOMEM; 3034 3035 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3036 3037 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3038 ice_vsi_free_q_vectors(vsi); 3039 3040 /* SR-IOV determines needed MSIX resources all at once instead of per 3041 * VSI since when VFs are spawned we know how many VFs there are and how 3042 * many interrupts each VF needs. SR-IOV MSIX resources are also 3043 * cleared in the same manner. 3044 */ 3045 if (vtype != ICE_VSI_VF) { 3046 /* reclaim SW interrupts back to the common pool */ 3047 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3048 pf->num_avail_sw_msix += vsi->num_q_vectors; 3049 vsi->base_vector = 0; 3050 } 3051 3052 if (ice_is_xdp_ena_vsi(vsi)) 3053 /* return value check can be skipped here, it always returns 3054 * 0 if reset is in progress 3055 */ 3056 ice_destroy_xdp_rings(vsi); 3057 ice_vsi_put_qs(vsi); 3058 ice_vsi_clear_rings(vsi); 3059 ice_vsi_free_arrays(vsi); 3060 if (vtype == ICE_VSI_VF) 3061 ice_vsi_set_num_qs(vsi, vf->vf_id); 3062 else 3063 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3064 3065 ret = ice_vsi_alloc_arrays(vsi); 3066 if (ret < 0) 3067 goto err_vsi; 3068 3069 ice_vsi_get_qs(vsi); 3070 3071 ice_alloc_fd_res(vsi); 3072 ice_vsi_set_tc_cfg(vsi); 3073 3074 /* Initialize VSI struct elements and create VSI in FW */ 3075 ret = ice_vsi_init(vsi, init_vsi); 3076 if (ret < 0) 3077 goto err_vsi; 3078 3079 switch (vtype) { 3080 case ICE_VSI_CTRL: 3081 case ICE_VSI_PF: 3082 ret = ice_vsi_alloc_q_vectors(vsi); 3083 if (ret) 3084 goto err_rings; 3085 3086 ret = ice_vsi_setup_vector_base(vsi); 3087 if (ret) 3088 goto err_vectors; 3089 3090 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3091 if (ret) 3092 goto err_vectors; 3093 3094 ret = ice_vsi_alloc_rings(vsi); 3095 if (ret) 3096 goto err_vectors; 3097 3098 ice_vsi_map_rings_to_vectors(vsi); 3099 if (ice_is_xdp_ena_vsi(vsi)) { 3100 vsi->num_xdp_txq = vsi->alloc_rxq; 3101 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3102 if (ret) 3103 goto err_vectors; 3104 } 3105 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3106 if (vtype != ICE_VSI_CTRL) 3107 /* Do not exit if configuring RSS had an issue, at 3108 * least receive traffic on first queue. Hence no 3109 * need to capture return value 3110 */ 3111 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3112 ice_vsi_cfg_rss_lut_key(vsi); 3113 break; 3114 case ICE_VSI_VF: 3115 ret = ice_vsi_alloc_q_vectors(vsi); 3116 if (ret) 3117 goto err_rings; 3118 3119 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3120 if (ret) 3121 goto err_vectors; 3122 3123 ret = ice_vsi_alloc_rings(vsi); 3124 if (ret) 3125 goto err_vectors; 3126 3127 break; 3128 default: 3129 break; 3130 } 3131 3132 /* configure VSI nodes based on number of queues and TC's */ 3133 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3134 max_txqs[i] = vsi->alloc_txq; 3135 3136 if (ice_is_xdp_ena_vsi(vsi)) 3137 max_txqs[i] += vsi->num_xdp_txq; 3138 } 3139 3140 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3141 max_txqs); 3142 if (status) { 3143 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3144 vsi->vsi_num, ice_stat_str(status)); 3145 if (init_vsi) { 3146 ret = -EIO; 3147 goto err_vectors; 3148 } else { 3149 return ice_schedule_reset(pf, ICE_RESET_PFR); 3150 } 3151 } 3152 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3153 kfree(coalesce); 3154 3155 return 0; 3156 3157 err_vectors: 3158 ice_vsi_free_q_vectors(vsi); 3159 err_rings: 3160 if (vsi->netdev) { 3161 vsi->current_netdev_flags = 0; 3162 unregister_netdev(vsi->netdev); 3163 free_netdev(vsi->netdev); 3164 vsi->netdev = NULL; 3165 } 3166 err_vsi: 3167 ice_vsi_clear(vsi); 3168 set_bit(ICE_RESET_FAILED, pf->state); 3169 kfree(coalesce); 3170 return ret; 3171 } 3172 3173 /** 3174 * ice_is_reset_in_progress - check for a reset in progress 3175 * @state: PF state field 3176 */ 3177 bool ice_is_reset_in_progress(unsigned long *state) 3178 { 3179 return test_bit(ICE_RESET_OICR_RECV, state) || 3180 test_bit(ICE_PFR_REQ, state) || 3181 test_bit(ICE_CORER_REQ, state) || 3182 test_bit(ICE_GLOBR_REQ, state); 3183 } 3184 3185 #ifdef CONFIG_DCB 3186 /** 3187 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3188 * @vsi: VSI being configured 3189 * @ctx: the context buffer returned from AQ VSI update command 3190 */ 3191 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3192 { 3193 vsi->info.mapping_flags = ctx->info.mapping_flags; 3194 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3195 sizeof(vsi->info.q_mapping)); 3196 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3197 sizeof(vsi->info.tc_mapping)); 3198 } 3199 3200 /** 3201 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3202 * @vsi: VSI to be configured 3203 * @ena_tc: TC bitmap 3204 * 3205 * VSI queues expected to be quiesced before calling this function 3206 */ 3207 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3208 { 3209 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3210 struct ice_pf *pf = vsi->back; 3211 struct ice_vsi_ctx *ctx; 3212 enum ice_status status; 3213 struct device *dev; 3214 int i, ret = 0; 3215 u8 num_tc = 0; 3216 3217 dev = ice_pf_to_dev(pf); 3218 3219 ice_for_each_traffic_class(i) { 3220 /* build bitmap of enabled TCs */ 3221 if (ena_tc & BIT(i)) 3222 num_tc++; 3223 /* populate max_txqs per TC */ 3224 max_txqs[i] = vsi->alloc_txq; 3225 } 3226 3227 vsi->tc_cfg.ena_tc = ena_tc; 3228 vsi->tc_cfg.numtc = num_tc; 3229 3230 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3231 if (!ctx) 3232 return -ENOMEM; 3233 3234 ctx->vf_num = 0; 3235 ctx->info = vsi->info; 3236 3237 ice_vsi_setup_q_map(vsi, ctx); 3238 3239 /* must to indicate which section of VSI context are being modified */ 3240 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3241 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3242 if (status) { 3243 dev_info(dev, "Failed VSI Update\n"); 3244 ret = -EIO; 3245 goto out; 3246 } 3247 3248 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3249 max_txqs); 3250 3251 if (status) { 3252 dev_err(dev, "VSI %d failed TC config, error %s\n", 3253 vsi->vsi_num, ice_stat_str(status)); 3254 ret = -EIO; 3255 goto out; 3256 } 3257 ice_vsi_update_q_map(vsi, ctx); 3258 vsi->info.valid_sections = 0; 3259 3260 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3261 out: 3262 kfree(ctx); 3263 return ret; 3264 } 3265 #endif /* CONFIG_DCB */ 3266 3267 /** 3268 * ice_update_ring_stats - Update ring statistics 3269 * @ring: ring to update 3270 * @pkts: number of processed packets 3271 * @bytes: number of processed bytes 3272 * 3273 * This function assumes that caller has acquired a u64_stats_sync lock. 3274 */ 3275 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3276 { 3277 ring->stats.bytes += bytes; 3278 ring->stats.pkts += pkts; 3279 } 3280 3281 /** 3282 * ice_update_tx_ring_stats - Update Tx ring specific counters 3283 * @tx_ring: ring to update 3284 * @pkts: number of processed packets 3285 * @bytes: number of processed bytes 3286 */ 3287 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3288 { 3289 u64_stats_update_begin(&tx_ring->syncp); 3290 ice_update_ring_stats(tx_ring, pkts, bytes); 3291 u64_stats_update_end(&tx_ring->syncp); 3292 } 3293 3294 /** 3295 * ice_update_rx_ring_stats - Update Rx ring specific counters 3296 * @rx_ring: ring to update 3297 * @pkts: number of processed packets 3298 * @bytes: number of processed bytes 3299 */ 3300 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3301 { 3302 u64_stats_update_begin(&rx_ring->syncp); 3303 ice_update_ring_stats(rx_ring, pkts, bytes); 3304 u64_stats_update_end(&rx_ring->syncp); 3305 } 3306 3307 /** 3308 * ice_status_to_errno - convert from enum ice_status to Linux errno 3309 * @err: ice_status value to convert 3310 */ 3311 int ice_status_to_errno(enum ice_status err) 3312 { 3313 switch (err) { 3314 case ICE_SUCCESS: 3315 return 0; 3316 case ICE_ERR_DOES_NOT_EXIST: 3317 return -ENOENT; 3318 case ICE_ERR_OUT_OF_RANGE: 3319 return -ENOTTY; 3320 case ICE_ERR_PARAM: 3321 return -EINVAL; 3322 case ICE_ERR_NO_MEMORY: 3323 return -ENOMEM; 3324 case ICE_ERR_MAX_LIMIT: 3325 return -EAGAIN; 3326 default: 3327 return -EINVAL; 3328 } 3329 } 3330 3331 /** 3332 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3333 * @sw: switch to check if its default forwarding VSI is free 3334 * 3335 * Return true if the default forwarding VSI is already being used, else returns 3336 * false signalling that it's available to use. 3337 */ 3338 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3339 { 3340 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3341 } 3342 3343 /** 3344 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3345 * @sw: switch for the default forwarding VSI to compare against 3346 * @vsi: VSI to compare against default forwarding VSI 3347 * 3348 * If this VSI passed in is the default forwarding VSI then return true, else 3349 * return false 3350 */ 3351 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3352 { 3353 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3354 } 3355 3356 /** 3357 * ice_set_dflt_vsi - set the default forwarding VSI 3358 * @sw: switch used to assign the default forwarding VSI 3359 * @vsi: VSI getting set as the default forwarding VSI on the switch 3360 * 3361 * If the VSI passed in is already the default VSI and it's enabled just return 3362 * success. 3363 * 3364 * If there is already a default VSI on the switch and it's enabled then return 3365 * -EEXIST since there can only be one default VSI per switch. 3366 * 3367 * Otherwise try to set the VSI passed in as the switch's default VSI and 3368 * return the result. 3369 */ 3370 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3371 { 3372 enum ice_status status; 3373 struct device *dev; 3374 3375 if (!sw || !vsi) 3376 return -EINVAL; 3377 3378 dev = ice_pf_to_dev(vsi->back); 3379 3380 /* the VSI passed in is already the default VSI */ 3381 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3382 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3383 vsi->vsi_num); 3384 return 0; 3385 } 3386 3387 /* another VSI is already the default VSI for this switch */ 3388 if (ice_is_dflt_vsi_in_use(sw)) { 3389 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3390 sw->dflt_vsi->vsi_num); 3391 return -EEXIST; 3392 } 3393 3394 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3395 if (status) { 3396 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3397 vsi->vsi_num, ice_stat_str(status)); 3398 return -EIO; 3399 } 3400 3401 sw->dflt_vsi = vsi; 3402 sw->dflt_vsi_ena = true; 3403 3404 return 0; 3405 } 3406 3407 /** 3408 * ice_clear_dflt_vsi - clear the default forwarding VSI 3409 * @sw: switch used to clear the default VSI 3410 * 3411 * If the switch has no default VSI or it's not enabled then return error. 3412 * 3413 * Otherwise try to clear the default VSI and return the result. 3414 */ 3415 int ice_clear_dflt_vsi(struct ice_sw *sw) 3416 { 3417 struct ice_vsi *dflt_vsi; 3418 enum ice_status status; 3419 struct device *dev; 3420 3421 if (!sw) 3422 return -EINVAL; 3423 3424 dev = ice_pf_to_dev(sw->pf); 3425 3426 dflt_vsi = sw->dflt_vsi; 3427 3428 /* there is no default VSI configured */ 3429 if (!ice_is_dflt_vsi_in_use(sw)) 3430 return -ENODEV; 3431 3432 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3433 ICE_FLTR_RX); 3434 if (status) { 3435 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3436 dflt_vsi->vsi_num, ice_stat_str(status)); 3437 return -EIO; 3438 } 3439 3440 sw->dflt_vsi = NULL; 3441 sw->dflt_vsi_ena = false; 3442 3443 return 0; 3444 } 3445 3446 /** 3447 * ice_set_link - turn on/off physical link 3448 * @vsi: VSI to modify physical link on 3449 * @ena: turn on/off physical link 3450 */ 3451 int ice_set_link(struct ice_vsi *vsi, bool ena) 3452 { 3453 struct device *dev = ice_pf_to_dev(vsi->back); 3454 struct ice_port_info *pi = vsi->port_info; 3455 struct ice_hw *hw = pi->hw; 3456 enum ice_status status; 3457 3458 if (vsi->type != ICE_VSI_PF) 3459 return -EINVAL; 3460 3461 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3462 3463 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3464 * this is not a fatal error, so print a warning message and return 3465 * a success code. Return an error if FW returns an error code other 3466 * than ICE_AQ_RC_EMODE 3467 */ 3468 if (status == ICE_ERR_AQ_ERROR) { 3469 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3470 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3471 (ena ? "ON" : "OFF"), ice_stat_str(status), 3472 ice_aq_str(hw->adminq.sq_last_status)); 3473 } else if (status) { 3474 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3475 (ena ? "ON" : "OFF"), ice_stat_str(status), 3476 ice_aq_str(hw->adminq.sq_last_status)); 3477 return -EIO; 3478 } 3479 3480 return 0; 3481 } 3482