1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_CHNL: 26 return "ICE_VSI_CHNL"; 27 case ICE_VSI_LB: 28 return "ICE_VSI_LB"; 29 case ICE_VSI_SWITCHDEV_CTRL: 30 return "ICE_VSI_SWITCHDEV_CTRL"; 31 default: 32 return "unknown"; 33 } 34 } 35 36 /** 37 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 38 * @vsi: the VSI being configured 39 * @ena: start or stop the Rx rings 40 * 41 * First enable/disable all of the Rx rings, flush any remaining writes, and 42 * then verify that they have all been enabled/disabled successfully. This will 43 * let all of the register writes complete when enabling/disabling the Rx rings 44 * before waiting for the change in hardware to complete. 45 */ 46 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 47 { 48 int ret = 0; 49 u16 i; 50 51 ice_for_each_rxq(vsi, i) 52 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 53 54 ice_flush(&vsi->back->hw); 55 56 ice_for_each_rxq(vsi, i) { 57 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 58 if (ret) 59 break; 60 } 61 62 return ret; 63 } 64 65 /** 66 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 67 * @vsi: VSI pointer 68 * 69 * On error: returns error code (negative) 70 * On success: returns 0 71 */ 72 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 73 { 74 struct ice_pf *pf = vsi->back; 75 struct device *dev; 76 77 dev = ice_pf_to_dev(pf); 78 if (vsi->type == ICE_VSI_CHNL) 79 return 0; 80 81 /* allocate memory for both Tx and Rx ring pointers */ 82 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 83 sizeof(*vsi->tx_rings), GFP_KERNEL); 84 if (!vsi->tx_rings) 85 return -ENOMEM; 86 87 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 88 sizeof(*vsi->rx_rings), GFP_KERNEL); 89 if (!vsi->rx_rings) 90 goto err_rings; 91 92 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 93 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 94 sizeof(*vsi->txq_map), GFP_KERNEL); 95 96 if (!vsi->txq_map) 97 goto err_txq_map; 98 99 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 100 sizeof(*vsi->rxq_map), GFP_KERNEL); 101 if (!vsi->rxq_map) 102 goto err_rxq_map; 103 104 /* There is no need to allocate q_vectors for a loopback VSI. */ 105 if (vsi->type == ICE_VSI_LB) 106 return 0; 107 108 /* allocate memory for q_vector pointers */ 109 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 110 sizeof(*vsi->q_vectors), GFP_KERNEL); 111 if (!vsi->q_vectors) 112 goto err_vectors; 113 114 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 115 if (!vsi->af_xdp_zc_qps) 116 goto err_zc_qps; 117 118 return 0; 119 120 err_zc_qps: 121 devm_kfree(dev, vsi->q_vectors); 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SWITCHDEV_CTRL: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 /** 161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 162 * @vsi: the VSI being configured 163 * @vf_id: ID of the VF being configured 164 * 165 * Return 0 on success and a negative value on error 166 */ 167 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 168 { 169 struct ice_pf *pf = vsi->back; 170 struct ice_vf *vf = NULL; 171 172 if (vsi->type == ICE_VSI_VF) 173 vsi->vf_id = vf_id; 174 else 175 vsi->vf_id = ICE_INVAL_VFID; 176 177 switch (vsi->type) { 178 case ICE_VSI_PF: 179 if (vsi->req_txq) { 180 vsi->alloc_txq = vsi->req_txq; 181 vsi->num_txq = vsi->req_txq; 182 } else { 183 vsi->alloc_txq = min3(pf->num_lan_msix, 184 ice_get_avail_txq_count(pf), 185 (u16)num_online_cpus()); 186 } 187 188 pf->num_lan_tx = vsi->alloc_txq; 189 190 /* only 1 Rx queue unless RSS is enabled */ 191 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 192 vsi->alloc_rxq = 1; 193 } else { 194 if (vsi->req_rxq) { 195 vsi->alloc_rxq = vsi->req_rxq; 196 vsi->num_rxq = vsi->req_rxq; 197 } else { 198 vsi->alloc_rxq = min3(pf->num_lan_msix, 199 ice_get_avail_rxq_count(pf), 200 (u16)num_online_cpus()); 201 } 202 } 203 204 pf->num_lan_rx = vsi->alloc_rxq; 205 206 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 207 max_t(int, vsi->alloc_rxq, 208 vsi->alloc_txq)); 209 break; 210 case ICE_VSI_SWITCHDEV_CTRL: 211 /* The number of queues for ctrl VSI is equal to number of VFs. 212 * Each ring is associated to the corresponding VF_PR netdev. 213 */ 214 vsi->alloc_txq = pf->num_alloc_vfs; 215 vsi->alloc_rxq = pf->num_alloc_vfs; 216 vsi->num_q_vectors = 1; 217 break; 218 case ICE_VSI_VF: 219 vf = &pf->vf[vsi->vf_id]; 220 if (vf->num_req_qs) 221 vf->num_vf_qs = vf->num_req_qs; 222 vsi->alloc_txq = vf->num_vf_qs; 223 vsi->alloc_rxq = vf->num_vf_qs; 224 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 225 * data queue interrupts). Since vsi->num_q_vectors is number 226 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 227 * original vector count 228 */ 229 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 230 break; 231 case ICE_VSI_CTRL: 232 vsi->alloc_txq = 1; 233 vsi->alloc_rxq = 1; 234 vsi->num_q_vectors = 1; 235 break; 236 case ICE_VSI_CHNL: 237 vsi->alloc_txq = 0; 238 vsi->alloc_rxq = 0; 239 break; 240 case ICE_VSI_LB: 241 vsi->alloc_txq = 1; 242 vsi->alloc_rxq = 1; 243 break; 244 default: 245 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 246 break; 247 } 248 249 ice_vsi_set_num_desc(vsi); 250 } 251 252 /** 253 * ice_get_free_slot - get the next non-NULL location index in array 254 * @array: array to search 255 * @size: size of the array 256 * @curr: last known occupied index to be used as a search hint 257 * 258 * void * is being used to keep the functionality generic. This lets us use this 259 * function on any array of pointers. 260 */ 261 static int ice_get_free_slot(void *array, int size, int curr) 262 { 263 int **tmp_array = (int **)array; 264 int next; 265 266 if (curr < (size - 1) && !tmp_array[curr + 1]) { 267 next = curr + 1; 268 } else { 269 int i = 0; 270 271 while ((i < size) && (tmp_array[i])) 272 i++; 273 if (i == size) 274 next = ICE_NO_VSI; 275 else 276 next = i; 277 } 278 return next; 279 } 280 281 /** 282 * ice_vsi_delete - delete a VSI from the switch 283 * @vsi: pointer to VSI being removed 284 */ 285 void ice_vsi_delete(struct ice_vsi *vsi) 286 { 287 struct ice_pf *pf = vsi->back; 288 struct ice_vsi_ctx *ctxt; 289 enum ice_status status; 290 291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 292 if (!ctxt) 293 return; 294 295 if (vsi->type == ICE_VSI_VF) 296 ctxt->vf_num = vsi->vf_id; 297 ctxt->vsi_num = vsi->vsi_num; 298 299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 300 301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 302 if (status) 303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 304 vsi->vsi_num, ice_stat_str(status)); 305 306 kfree(ctxt); 307 } 308 309 /** 310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 311 * @vsi: pointer to VSI being cleared 312 */ 313 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 314 { 315 struct ice_pf *pf = vsi->back; 316 struct device *dev; 317 318 dev = ice_pf_to_dev(pf); 319 320 if (vsi->af_xdp_zc_qps) { 321 bitmap_free(vsi->af_xdp_zc_qps); 322 vsi->af_xdp_zc_qps = NULL; 323 } 324 /* free the ring and vector containers */ 325 if (vsi->q_vectors) { 326 devm_kfree(dev, vsi->q_vectors); 327 vsi->q_vectors = NULL; 328 } 329 if (vsi->tx_rings) { 330 devm_kfree(dev, vsi->tx_rings); 331 vsi->tx_rings = NULL; 332 } 333 if (vsi->rx_rings) { 334 devm_kfree(dev, vsi->rx_rings); 335 vsi->rx_rings = NULL; 336 } 337 if (vsi->txq_map) { 338 devm_kfree(dev, vsi->txq_map); 339 vsi->txq_map = NULL; 340 } 341 if (vsi->rxq_map) { 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 } 346 347 /** 348 * ice_vsi_clear - clean up and deallocate the provided VSI 349 * @vsi: pointer to VSI being cleared 350 * 351 * This deallocates the VSI's queue resources, removes it from the PF's 352 * VSI array if necessary, and deallocates the VSI 353 * 354 * Returns 0 on success, negative on failure 355 */ 356 int ice_vsi_clear(struct ice_vsi *vsi) 357 { 358 struct ice_pf *pf = NULL; 359 struct device *dev; 360 361 if (!vsi) 362 return 0; 363 364 if (!vsi->back) 365 return -EINVAL; 366 367 pf = vsi->back; 368 dev = ice_pf_to_dev(pf); 369 370 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 371 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 372 return -EINVAL; 373 } 374 375 mutex_lock(&pf->sw_mutex); 376 /* updates the PF for this cleared VSI */ 377 378 pf->vsi[vsi->idx] = NULL; 379 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 380 pf->next_vsi = vsi->idx; 381 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 382 vsi->vf_id != ICE_INVAL_VFID) 383 pf->next_vsi = vsi->idx; 384 385 ice_vsi_free_arrays(vsi); 386 mutex_unlock(&pf->sw_mutex); 387 devm_kfree(dev, vsi); 388 389 return 0; 390 } 391 392 /** 393 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.tx_ring) 402 return IRQ_HANDLED; 403 404 #define FDIR_RX_DESC_CLEAN_BUDGET 64 405 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 406 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_msix_clean_rings - MSIX mode Interrupt Handler 413 * @irq: interrupt number 414 * @data: pointer to a q_vector 415 */ 416 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 417 { 418 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 419 420 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 421 return IRQ_HANDLED; 422 423 q_vector->total_events++; 424 425 napi_schedule(&q_vector->napi); 426 427 return IRQ_HANDLED; 428 } 429 430 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 431 { 432 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 433 struct ice_pf *pf = q_vector->vsi->back; 434 int i; 435 436 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 437 return IRQ_HANDLED; 438 439 ice_for_each_vf(pf, i) 440 napi_schedule(&pf->vf[i].repr->q_vector->napi); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 447 * @pf: board private structure 448 * @vsi_type: type of VSI 449 * @ch: ptr to channel 450 * @vf_id: ID of the VF being configured 451 * 452 * returns a pointer to a VSI on success, NULL on failure. 453 */ 454 static struct ice_vsi * 455 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 456 struct ice_channel *ch, u16 vf_id) 457 { 458 struct device *dev = ice_pf_to_dev(pf); 459 struct ice_vsi *vsi = NULL; 460 461 /* Need to protect the allocation of the VSIs at the PF level */ 462 mutex_lock(&pf->sw_mutex); 463 464 /* If we have already allocated our maximum number of VSIs, 465 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 466 * is available to be populated 467 */ 468 if (pf->next_vsi == ICE_NO_VSI) { 469 dev_dbg(dev, "out of VSI slots!\n"); 470 goto unlock_pf; 471 } 472 473 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 474 if (!vsi) 475 goto unlock_pf; 476 477 vsi->type = vsi_type; 478 vsi->back = pf; 479 set_bit(ICE_VSI_DOWN, vsi->state); 480 481 if (vsi_type == ICE_VSI_VF) 482 ice_vsi_set_num_qs(vsi, vf_id); 483 else if (vsi_type != ICE_VSI_CHNL) 484 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 485 486 switch (vsi->type) { 487 case ICE_VSI_SWITCHDEV_CTRL: 488 if (ice_vsi_alloc_arrays(vsi)) 489 goto err_rings; 490 491 /* Setup eswitch MSIX irq handler for VSI */ 492 vsi->irq_handler = ice_eswitch_msix_clean_rings; 493 break; 494 case ICE_VSI_PF: 495 if (ice_vsi_alloc_arrays(vsi)) 496 goto err_rings; 497 498 /* Setup default MSIX irq handler for VSI */ 499 vsi->irq_handler = ice_msix_clean_rings; 500 break; 501 case ICE_VSI_CTRL: 502 if (ice_vsi_alloc_arrays(vsi)) 503 goto err_rings; 504 505 /* Setup ctrl VSI MSIX irq handler */ 506 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 507 break; 508 case ICE_VSI_VF: 509 if (ice_vsi_alloc_arrays(vsi)) 510 goto err_rings; 511 break; 512 case ICE_VSI_CHNL: 513 if (!ch) 514 goto err_rings; 515 vsi->num_rxq = ch->num_rxq; 516 vsi->num_txq = ch->num_txq; 517 vsi->next_base_q = ch->base_q; 518 break; 519 case ICE_VSI_LB: 520 if (ice_vsi_alloc_arrays(vsi)) 521 goto err_rings; 522 break; 523 default: 524 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 525 goto unlock_pf; 526 } 527 528 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 529 /* Use the last VSI slot as the index for PF control VSI */ 530 vsi->idx = pf->num_alloc_vsi - 1; 531 pf->ctrl_vsi_idx = vsi->idx; 532 pf->vsi[vsi->idx] = vsi; 533 } else { 534 /* fill slot and make note of the index */ 535 vsi->idx = pf->next_vsi; 536 pf->vsi[pf->next_vsi] = vsi; 537 538 /* prepare pf->next_vsi for next use */ 539 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 540 pf->next_vsi); 541 } 542 543 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 544 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 545 goto unlock_pf; 546 547 err_rings: 548 devm_kfree(dev, vsi); 549 vsi = NULL; 550 unlock_pf: 551 mutex_unlock(&pf->sw_mutex); 552 return vsi; 553 } 554 555 /** 556 * ice_alloc_fd_res - Allocate FD resource for a VSI 557 * @vsi: pointer to the ice_vsi 558 * 559 * This allocates the FD resources 560 * 561 * Returns 0 on success, -EPERM on no-op or -EIO on failure 562 */ 563 static int ice_alloc_fd_res(struct ice_vsi *vsi) 564 { 565 struct ice_pf *pf = vsi->back; 566 u32 g_val, b_val; 567 568 /* Flow Director filters are only allocated/assigned to the PF VSI which 569 * passes the traffic. The CTRL VSI is only used to add/delete filters 570 * so we don't allocate resources to it 571 */ 572 573 /* FD filters from guaranteed pool per VSI */ 574 g_val = pf->hw.func_caps.fd_fltr_guar; 575 if (!g_val) 576 return -EPERM; 577 578 /* FD filters from best effort pool */ 579 b_val = pf->hw.func_caps.fd_fltr_best_effort; 580 if (!b_val) 581 return -EPERM; 582 583 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 584 return -EPERM; 585 586 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 587 return -EPERM; 588 589 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 590 591 /* each VSI gets same "best_effort" quota */ 592 vsi->num_bfltr = b_val; 593 594 if (vsi->type == ICE_VSI_VF) { 595 vsi->num_gfltr = 0; 596 597 /* each VSI gets same "best_effort" quota */ 598 vsi->num_bfltr = b_val; 599 } 600 601 return 0; 602 } 603 604 /** 605 * ice_vsi_get_qs - Assign queues from PF to VSI 606 * @vsi: the VSI to assign queues to 607 * 608 * Returns 0 on success and a negative value on error 609 */ 610 static int ice_vsi_get_qs(struct ice_vsi *vsi) 611 { 612 struct ice_pf *pf = vsi->back; 613 struct ice_qs_cfg tx_qs_cfg = { 614 .qs_mutex = &pf->avail_q_mutex, 615 .pf_map = pf->avail_txqs, 616 .pf_map_size = pf->max_pf_txqs, 617 .q_count = vsi->alloc_txq, 618 .scatter_count = ICE_MAX_SCATTER_TXQS, 619 .vsi_map = vsi->txq_map, 620 .vsi_map_offset = 0, 621 .mapping_mode = ICE_VSI_MAP_CONTIG 622 }; 623 struct ice_qs_cfg rx_qs_cfg = { 624 .qs_mutex = &pf->avail_q_mutex, 625 .pf_map = pf->avail_rxqs, 626 .pf_map_size = pf->max_pf_rxqs, 627 .q_count = vsi->alloc_rxq, 628 .scatter_count = ICE_MAX_SCATTER_RXQS, 629 .vsi_map = vsi->rxq_map, 630 .vsi_map_offset = 0, 631 .mapping_mode = ICE_VSI_MAP_CONTIG 632 }; 633 int ret; 634 635 if (vsi->type == ICE_VSI_CHNL) 636 return 0; 637 638 ret = __ice_vsi_get_qs(&tx_qs_cfg); 639 if (ret) 640 return ret; 641 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 642 643 ret = __ice_vsi_get_qs(&rx_qs_cfg); 644 if (ret) 645 return ret; 646 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 647 648 return 0; 649 } 650 651 /** 652 * ice_vsi_put_qs - Release queues from VSI to PF 653 * @vsi: the VSI that is going to release queues 654 */ 655 static void ice_vsi_put_qs(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 int i; 659 660 mutex_lock(&pf->avail_q_mutex); 661 662 ice_for_each_alloc_txq(vsi, i) { 663 clear_bit(vsi->txq_map[i], pf->avail_txqs); 664 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 665 } 666 667 ice_for_each_alloc_rxq(vsi, i) { 668 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 669 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 670 } 671 672 mutex_unlock(&pf->avail_q_mutex); 673 } 674 675 /** 676 * ice_is_safe_mode 677 * @pf: pointer to the PF struct 678 * 679 * returns true if driver is in safe mode, false otherwise 680 */ 681 bool ice_is_safe_mode(struct ice_pf *pf) 682 { 683 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 684 } 685 686 /** 687 * ice_is_aux_ena 688 * @pf: pointer to the PF struct 689 * 690 * returns true if AUX devices/drivers are supported, false otherwise 691 */ 692 bool ice_is_aux_ena(struct ice_pf *pf) 693 { 694 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 695 } 696 697 /** 698 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 699 * @vsi: the VSI being cleaned up 700 * 701 * This function deletes RSS input set for all flows that were configured 702 * for this VSI 703 */ 704 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 705 { 706 struct ice_pf *pf = vsi->back; 707 enum ice_status status; 708 709 if (ice_is_safe_mode(pf)) 710 return; 711 712 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 713 if (status) 714 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 715 vsi->vsi_num, ice_stat_str(status)); 716 } 717 718 /** 719 * ice_rss_clean - Delete RSS related VSI structures and configuration 720 * @vsi: the VSI being removed 721 */ 722 static void ice_rss_clean(struct ice_vsi *vsi) 723 { 724 struct ice_pf *pf = vsi->back; 725 struct device *dev; 726 727 dev = ice_pf_to_dev(pf); 728 729 if (vsi->rss_hkey_user) 730 devm_kfree(dev, vsi->rss_hkey_user); 731 if (vsi->rss_lut_user) 732 devm_kfree(dev, vsi->rss_lut_user); 733 734 ice_vsi_clean_rss_flow_fld(vsi); 735 /* remove RSS replay list */ 736 if (!ice_is_safe_mode(pf)) 737 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 738 } 739 740 /** 741 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 742 * @vsi: the VSI being configured 743 */ 744 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 745 { 746 struct ice_hw_common_caps *cap; 747 struct ice_pf *pf = vsi->back; 748 749 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 750 vsi->rss_size = 1; 751 return; 752 } 753 754 cap = &pf->hw.func_caps.common_cap; 755 switch (vsi->type) { 756 case ICE_VSI_CHNL: 757 case ICE_VSI_PF: 758 /* PF VSI will inherit RSS instance of PF */ 759 vsi->rss_table_size = (u16)cap->rss_table_size; 760 if (vsi->type == ICE_VSI_CHNL) 761 vsi->rss_size = min_t(u16, vsi->num_rxq, 762 BIT(cap->rss_table_entry_width)); 763 else 764 vsi->rss_size = min_t(u16, num_online_cpus(), 765 BIT(cap->rss_table_entry_width)); 766 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 767 break; 768 case ICE_VSI_SWITCHDEV_CTRL: 769 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 770 vsi->rss_size = min_t(u16, num_online_cpus(), 771 BIT(cap->rss_table_entry_width)); 772 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 773 break; 774 case ICE_VSI_VF: 775 /* VF VSI will get a small RSS table. 776 * For VSI_LUT, LUT size should be set to 64 bytes. 777 */ 778 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 779 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 780 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 781 break; 782 case ICE_VSI_LB: 783 break; 784 default: 785 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 786 ice_vsi_type_str(vsi->type)); 787 break; 788 } 789 } 790 791 /** 792 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 793 * @ctxt: the VSI context being set 794 * 795 * This initializes a default VSI context for all sections except the Queues. 796 */ 797 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 798 { 799 u32 table = 0; 800 801 memset(&ctxt->info, 0, sizeof(ctxt->info)); 802 /* VSI's should be allocated from shared pool */ 803 ctxt->alloc_from_pool = true; 804 /* Src pruning enabled by default */ 805 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 806 /* Traffic from VSI can be sent to LAN */ 807 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 808 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 809 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 810 * packets untagged/tagged. 811 */ 812 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 813 ICE_AQ_VSI_VLAN_MODE_M) >> 814 ICE_AQ_VSI_VLAN_MODE_S); 815 /* Have 1:1 UP mapping for both ingress/egress tables */ 816 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 817 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 818 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 819 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 820 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 821 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 822 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 823 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 824 ctxt->info.ingress_table = cpu_to_le32(table); 825 ctxt->info.egress_table = cpu_to_le32(table); 826 /* Have 1:1 UP mapping for outer to inner UP table */ 827 ctxt->info.outer_up_table = cpu_to_le32(table); 828 /* No Outer tag support outer_tag_flags remains to zero */ 829 } 830 831 /** 832 * ice_vsi_setup_q_map - Setup a VSI queue map 833 * @vsi: the VSI being configured 834 * @ctxt: VSI context structure 835 */ 836 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 837 { 838 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 839 u16 num_txq_per_tc, num_rxq_per_tc; 840 u16 qcount_tx = vsi->alloc_txq; 841 u16 qcount_rx = vsi->alloc_rxq; 842 u8 netdev_tc = 0; 843 int i; 844 845 if (!vsi->tc_cfg.numtc) { 846 /* at least TC0 should be enabled by default */ 847 vsi->tc_cfg.numtc = 1; 848 vsi->tc_cfg.ena_tc = 1; 849 } 850 851 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 852 if (!num_rxq_per_tc) 853 num_rxq_per_tc = 1; 854 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 855 if (!num_txq_per_tc) 856 num_txq_per_tc = 1; 857 858 /* find the (rounded up) power-of-2 of qcount */ 859 pow = (u16)order_base_2(num_rxq_per_tc); 860 861 /* TC mapping is a function of the number of Rx queues assigned to the 862 * VSI for each traffic class and the offset of these queues. 863 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 864 * queues allocated to TC0. No:of queues is a power-of-2. 865 * 866 * If TC is not enabled, the queue offset is set to 0, and allocate one 867 * queue, this way, traffic for the given TC will be sent to the default 868 * queue. 869 * 870 * Setup number and offset of Rx queues for all TCs for the VSI 871 */ 872 ice_for_each_traffic_class(i) { 873 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 874 /* TC is not enabled */ 875 vsi->tc_cfg.tc_info[i].qoffset = 0; 876 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 877 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 878 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 879 ctxt->info.tc_mapping[i] = 0; 880 continue; 881 } 882 883 /* TC is enabled */ 884 vsi->tc_cfg.tc_info[i].qoffset = offset; 885 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 886 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 887 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 888 889 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 890 ICE_AQ_VSI_TC_Q_OFFSET_M) | 891 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 892 ICE_AQ_VSI_TC_Q_NUM_M); 893 offset += num_rxq_per_tc; 894 tx_count += num_txq_per_tc; 895 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 896 } 897 898 /* if offset is non-zero, means it is calculated correctly based on 899 * enabled TCs for a given VSI otherwise qcount_rx will always 900 * be correct and non-zero because it is based off - VSI's 901 * allocated Rx queues which is at least 1 (hence qcount_tx will be 902 * at least 1) 903 */ 904 if (offset) 905 vsi->num_rxq = offset; 906 else 907 vsi->num_rxq = num_rxq_per_tc; 908 909 vsi->num_txq = tx_count; 910 911 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 912 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 913 /* since there is a chance that num_rxq could have been changed 914 * in the above for loop, make num_txq equal to num_rxq. 915 */ 916 vsi->num_txq = vsi->num_rxq; 917 } 918 919 /* Rx queue mapping */ 920 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 921 /* q_mapping buffer holds the info for the first queue allocated for 922 * this VSI in the PF space and also the number of queues associated 923 * with this VSI. 924 */ 925 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 926 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 927 } 928 929 /** 930 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 931 * @ctxt: the VSI context being set 932 * @vsi: the VSI being configured 933 */ 934 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 935 { 936 u8 dflt_q_group, dflt_q_prio; 937 u16 dflt_q, report_q, val; 938 939 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 940 vsi->type != ICE_VSI_VF) 941 return; 942 943 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 944 ctxt->info.valid_sections |= cpu_to_le16(val); 945 dflt_q = 0; 946 dflt_q_group = 0; 947 report_q = 0; 948 dflt_q_prio = 0; 949 950 /* enable flow director filtering/programming */ 951 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 952 ctxt->info.fd_options = cpu_to_le16(val); 953 /* max of allocated flow director filters */ 954 ctxt->info.max_fd_fltr_dedicated = 955 cpu_to_le16(vsi->num_gfltr); 956 /* max of shared flow director filters any VSI may program */ 957 ctxt->info.max_fd_fltr_shared = 958 cpu_to_le16(vsi->num_bfltr); 959 /* default queue index within the VSI of the default FD */ 960 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 961 ICE_AQ_VSI_FD_DEF_Q_M); 962 /* target queue or queue group to the FD filter */ 963 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 964 ICE_AQ_VSI_FD_DEF_GRP_M); 965 ctxt->info.fd_def_q = cpu_to_le16(val); 966 /* queue index on which FD filter completion is reported */ 967 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 968 ICE_AQ_VSI_FD_REPORT_Q_M); 969 /* priority of the default qindex action */ 970 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 971 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 972 ctxt->info.fd_report_opt = cpu_to_le16(val); 973 } 974 975 /** 976 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 977 * @ctxt: the VSI context being set 978 * @vsi: the VSI being configured 979 */ 980 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 981 { 982 u8 lut_type, hash_type; 983 struct device *dev; 984 struct ice_pf *pf; 985 986 pf = vsi->back; 987 dev = ice_pf_to_dev(pf); 988 989 switch (vsi->type) { 990 case ICE_VSI_CHNL: 991 case ICE_VSI_PF: 992 /* PF VSI will inherit RSS instance of PF */ 993 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 994 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 995 break; 996 case ICE_VSI_VF: 997 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 998 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 999 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1000 break; 1001 default: 1002 dev_dbg(dev, "Unsupported VSI type %s\n", 1003 ice_vsi_type_str(vsi->type)); 1004 return; 1005 } 1006 1007 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1008 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1009 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1010 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1011 } 1012 1013 static void 1014 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1015 { 1016 struct ice_pf *pf = vsi->back; 1017 u16 qcount, qmap; 1018 u8 offset = 0; 1019 int pow; 1020 1021 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1022 1023 pow = order_base_2(qcount); 1024 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1025 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1026 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1027 ICE_AQ_VSI_TC_Q_NUM_M); 1028 1029 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1030 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1031 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1032 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1033 } 1034 1035 /** 1036 * ice_vsi_init - Create and initialize a VSI 1037 * @vsi: the VSI being configured 1038 * @init_vsi: is this call creating a VSI 1039 * 1040 * This initializes a VSI context depending on the VSI type to be added and 1041 * passes it down to the add_vsi aq command to create a new VSI. 1042 */ 1043 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1044 { 1045 struct ice_pf *pf = vsi->back; 1046 struct ice_hw *hw = &pf->hw; 1047 struct ice_vsi_ctx *ctxt; 1048 struct device *dev; 1049 int ret = 0; 1050 1051 dev = ice_pf_to_dev(pf); 1052 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1053 if (!ctxt) 1054 return -ENOMEM; 1055 1056 switch (vsi->type) { 1057 case ICE_VSI_CTRL: 1058 case ICE_VSI_LB: 1059 case ICE_VSI_PF: 1060 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1061 break; 1062 case ICE_VSI_SWITCHDEV_CTRL: 1063 case ICE_VSI_CHNL: 1064 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1065 break; 1066 case ICE_VSI_VF: 1067 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1068 /* VF number here is the absolute VF number (0-255) */ 1069 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1070 break; 1071 default: 1072 ret = -ENODEV; 1073 goto out; 1074 } 1075 1076 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1077 * prune enabled 1078 */ 1079 if (vsi->type == ICE_VSI_CHNL) { 1080 struct ice_vsi *main_vsi; 1081 1082 main_vsi = ice_get_main_vsi(pf); 1083 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1084 ctxt->info.sw_flags2 |= 1085 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1086 else 1087 ctxt->info.sw_flags2 &= 1088 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1089 } 1090 1091 ice_set_dflt_vsi_ctx(ctxt); 1092 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1093 ice_set_fd_vsi_ctx(ctxt, vsi); 1094 /* if the switch is in VEB mode, allow VSI loopback */ 1095 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1096 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1097 1098 /* Set LUT type and HASH type if RSS is enabled */ 1099 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1100 vsi->type != ICE_VSI_CTRL) { 1101 ice_set_rss_vsi_ctx(ctxt, vsi); 1102 /* if updating VSI context, make sure to set valid_section: 1103 * to indicate which section of VSI context being updated 1104 */ 1105 if (!init_vsi) 1106 ctxt->info.valid_sections |= 1107 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1108 } 1109 1110 ctxt->info.sw_id = vsi->port_info->sw_id; 1111 if (vsi->type == ICE_VSI_CHNL) { 1112 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1113 } else { 1114 ice_vsi_setup_q_map(vsi, ctxt); 1115 if (!init_vsi) /* means VSI being updated */ 1116 /* must to indicate which section of VSI context are 1117 * being modified 1118 */ 1119 ctxt->info.valid_sections |= 1120 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1121 } 1122 1123 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1124 * respectively 1125 */ 1126 if (vsi->type == ICE_VSI_VF) { 1127 ctxt->info.valid_sections |= 1128 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1129 if (pf->vf[vsi->vf_id].spoofchk) { 1130 ctxt->info.sec_flags |= 1131 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1132 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1133 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1134 } else { 1135 ctxt->info.sec_flags &= 1136 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1137 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1138 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1139 } 1140 } 1141 1142 /* Allow control frames out of main VSI */ 1143 if (vsi->type == ICE_VSI_PF) { 1144 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1145 ctxt->info.valid_sections |= 1146 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1147 } 1148 1149 if (init_vsi) { 1150 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1151 if (ret) { 1152 dev_err(dev, "Add VSI failed, err %d\n", ret); 1153 ret = -EIO; 1154 goto out; 1155 } 1156 } else { 1157 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1158 if (ret) { 1159 dev_err(dev, "Update VSI failed, err %d\n", ret); 1160 ret = -EIO; 1161 goto out; 1162 } 1163 } 1164 1165 /* keep context for update VSI operations */ 1166 vsi->info = ctxt->info; 1167 1168 /* record VSI number returned */ 1169 vsi->vsi_num = ctxt->vsi_num; 1170 1171 out: 1172 kfree(ctxt); 1173 return ret; 1174 } 1175 1176 /** 1177 * ice_free_res - free a block of resources 1178 * @res: pointer to the resource 1179 * @index: starting index previously returned by ice_get_res 1180 * @id: identifier to track owner 1181 * 1182 * Returns number of resources freed 1183 */ 1184 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1185 { 1186 int count = 0; 1187 int i; 1188 1189 if (!res || index >= res->end) 1190 return -EINVAL; 1191 1192 id |= ICE_RES_VALID_BIT; 1193 for (i = index; i < res->end && res->list[i] == id; i++) { 1194 res->list[i] = 0; 1195 count++; 1196 } 1197 1198 return count; 1199 } 1200 1201 /** 1202 * ice_search_res - Search the tracker for a block of resources 1203 * @res: pointer to the resource 1204 * @needed: size of the block needed 1205 * @id: identifier to track owner 1206 * 1207 * Returns the base item index of the block, or -ENOMEM for error 1208 */ 1209 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1210 { 1211 u16 start = 0, end = 0; 1212 1213 if (needed > res->end) 1214 return -ENOMEM; 1215 1216 id |= ICE_RES_VALID_BIT; 1217 1218 do { 1219 /* skip already allocated entries */ 1220 if (res->list[end++] & ICE_RES_VALID_BIT) { 1221 start = end; 1222 if ((start + needed) > res->end) 1223 break; 1224 } 1225 1226 if (end == (start + needed)) { 1227 int i = start; 1228 1229 /* there was enough, so assign it to the requestor */ 1230 while (i != end) 1231 res->list[i++] = id; 1232 1233 return start; 1234 } 1235 } while (end < res->end); 1236 1237 return -ENOMEM; 1238 } 1239 1240 /** 1241 * ice_get_free_res_count - Get free count from a resource tracker 1242 * @res: Resource tracker instance 1243 */ 1244 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1245 { 1246 u16 i, count = 0; 1247 1248 for (i = 0; i < res->end; i++) 1249 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1250 count++; 1251 1252 return count; 1253 } 1254 1255 /** 1256 * ice_get_res - get a block of resources 1257 * @pf: board private structure 1258 * @res: pointer to the resource 1259 * @needed: size of the block needed 1260 * @id: identifier to track owner 1261 * 1262 * Returns the base item index of the block, or negative for error 1263 */ 1264 int 1265 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1266 { 1267 if (!res || !pf) 1268 return -EINVAL; 1269 1270 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1271 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1272 needed, res->num_entries, id); 1273 return -EINVAL; 1274 } 1275 1276 return ice_search_res(res, needed, id); 1277 } 1278 1279 /** 1280 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1281 * @vsi: ptr to the VSI 1282 * 1283 * This should only be called after ice_vsi_alloc() which allocates the 1284 * corresponding SW VSI structure and initializes num_queue_pairs for the 1285 * newly allocated VSI. 1286 * 1287 * Returns 0 on success or negative on failure 1288 */ 1289 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1290 { 1291 struct ice_pf *pf = vsi->back; 1292 struct device *dev; 1293 u16 num_q_vectors; 1294 int base; 1295 1296 dev = ice_pf_to_dev(pf); 1297 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1298 if (vsi->type == ICE_VSI_VF) 1299 return 0; 1300 if (vsi->type == ICE_VSI_CHNL) 1301 return 0; 1302 1303 if (vsi->base_vector) { 1304 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1305 vsi->vsi_num, vsi->base_vector); 1306 return -EEXIST; 1307 } 1308 1309 num_q_vectors = vsi->num_q_vectors; 1310 /* reserve slots from OS requested IRQs */ 1311 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1312 int i; 1313 1314 ice_for_each_vf(pf, i) { 1315 struct ice_vf *vf = &pf->vf[i]; 1316 1317 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1318 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1319 break; 1320 } 1321 } 1322 if (i == pf->num_alloc_vfs) 1323 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1324 ICE_RES_VF_CTRL_VEC_ID); 1325 } else { 1326 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1327 vsi->idx); 1328 } 1329 1330 if (base < 0) { 1331 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1332 ice_get_free_res_count(pf->irq_tracker), 1333 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1334 return -ENOENT; 1335 } 1336 vsi->base_vector = (u16)base; 1337 pf->num_avail_sw_msix -= num_q_vectors; 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1344 * @vsi: the VSI having rings deallocated 1345 */ 1346 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1347 { 1348 int i; 1349 1350 /* Avoid stale references by clearing map from vector to ring */ 1351 if (vsi->q_vectors) { 1352 ice_for_each_q_vector(vsi, i) { 1353 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1354 1355 if (q_vector) { 1356 q_vector->tx.tx_ring = NULL; 1357 q_vector->rx.rx_ring = NULL; 1358 } 1359 } 1360 } 1361 1362 if (vsi->tx_rings) { 1363 ice_for_each_alloc_txq(vsi, i) { 1364 if (vsi->tx_rings[i]) { 1365 kfree_rcu(vsi->tx_rings[i], rcu); 1366 WRITE_ONCE(vsi->tx_rings[i], NULL); 1367 } 1368 } 1369 } 1370 if (vsi->rx_rings) { 1371 ice_for_each_alloc_rxq(vsi, i) { 1372 if (vsi->rx_rings[i]) { 1373 kfree_rcu(vsi->rx_rings[i], rcu); 1374 WRITE_ONCE(vsi->rx_rings[i], NULL); 1375 } 1376 } 1377 } 1378 } 1379 1380 /** 1381 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1382 * @vsi: VSI which is having rings allocated 1383 */ 1384 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1385 { 1386 struct ice_pf *pf = vsi->back; 1387 struct device *dev; 1388 u16 i; 1389 1390 dev = ice_pf_to_dev(pf); 1391 /* Allocate Tx rings */ 1392 ice_for_each_alloc_txq(vsi, i) { 1393 struct ice_tx_ring *ring; 1394 1395 /* allocate with kzalloc(), free with kfree_rcu() */ 1396 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1397 1398 if (!ring) 1399 goto err_out; 1400 1401 ring->q_index = i; 1402 ring->reg_idx = vsi->txq_map[i]; 1403 ring->vsi = vsi; 1404 ring->tx_tstamps = &pf->ptp.port.tx; 1405 ring->dev = dev; 1406 ring->count = vsi->num_tx_desc; 1407 WRITE_ONCE(vsi->tx_rings[i], ring); 1408 } 1409 1410 /* Allocate Rx rings */ 1411 ice_for_each_alloc_rxq(vsi, i) { 1412 struct ice_rx_ring *ring; 1413 1414 /* allocate with kzalloc(), free with kfree_rcu() */ 1415 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1416 if (!ring) 1417 goto err_out; 1418 1419 ring->q_index = i; 1420 ring->reg_idx = vsi->rxq_map[i]; 1421 ring->vsi = vsi; 1422 ring->netdev = vsi->netdev; 1423 ring->dev = dev; 1424 ring->count = vsi->num_rx_desc; 1425 WRITE_ONCE(vsi->rx_rings[i], ring); 1426 } 1427 1428 return 0; 1429 1430 err_out: 1431 ice_vsi_clear_rings(vsi); 1432 return -ENOMEM; 1433 } 1434 1435 /** 1436 * ice_vsi_manage_rss_lut - disable/enable RSS 1437 * @vsi: the VSI being changed 1438 * @ena: boolean value indicating if this is an enable or disable request 1439 * 1440 * In the event of disable request for RSS, this function will zero out RSS 1441 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1442 * LUT. 1443 */ 1444 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1445 { 1446 u8 *lut; 1447 1448 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1449 if (!lut) 1450 return; 1451 1452 if (ena) { 1453 if (vsi->rss_lut_user) 1454 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1455 else 1456 ice_fill_rss_lut(lut, vsi->rss_table_size, 1457 vsi->rss_size); 1458 } 1459 1460 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1461 kfree(lut); 1462 } 1463 1464 /** 1465 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1466 * @vsi: VSI to be configured 1467 */ 1468 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1469 { 1470 struct ice_pf *pf = vsi->back; 1471 struct device *dev; 1472 u8 *lut, *key; 1473 int err; 1474 1475 dev = ice_pf_to_dev(pf); 1476 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1477 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1478 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1479 } else { 1480 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1481 1482 /* If orig_rss_size is valid and it is less than determined 1483 * main VSI's rss_size, update main VSI's rss_size to be 1484 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1485 * RSS table gets programmed to be correct (whatever it was 1486 * to begin with (prior to setup-tc for ADQ config) 1487 */ 1488 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1489 vsi->orig_rss_size <= vsi->num_rxq) { 1490 vsi->rss_size = vsi->orig_rss_size; 1491 /* now orig_rss_size is used, reset it to zero */ 1492 vsi->orig_rss_size = 0; 1493 } 1494 } 1495 1496 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1497 if (!lut) 1498 return -ENOMEM; 1499 1500 if (vsi->rss_lut_user) 1501 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1502 else 1503 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1504 1505 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1506 if (err) { 1507 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1508 goto ice_vsi_cfg_rss_exit; 1509 } 1510 1511 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1512 if (!key) { 1513 err = -ENOMEM; 1514 goto ice_vsi_cfg_rss_exit; 1515 } 1516 1517 if (vsi->rss_hkey_user) 1518 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1519 else 1520 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1521 1522 err = ice_set_rss_key(vsi, key); 1523 if (err) 1524 dev_err(dev, "set_rss_key failed, error %d\n", err); 1525 1526 kfree(key); 1527 ice_vsi_cfg_rss_exit: 1528 kfree(lut); 1529 return err; 1530 } 1531 1532 /** 1533 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1534 * @vsi: VSI to be configured 1535 * 1536 * This function will only be called during the VF VSI setup. Upon successful 1537 * completion of package download, this function will configure default RSS 1538 * input sets for VF VSI. 1539 */ 1540 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1541 { 1542 struct ice_pf *pf = vsi->back; 1543 enum ice_status status; 1544 struct device *dev; 1545 1546 dev = ice_pf_to_dev(pf); 1547 if (ice_is_safe_mode(pf)) { 1548 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1549 vsi->vsi_num); 1550 return; 1551 } 1552 1553 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1554 if (status) 1555 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1556 vsi->vsi_num, ice_stat_str(status)); 1557 } 1558 1559 /** 1560 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1561 * @vsi: VSI to be configured 1562 * 1563 * This function will only be called after successful download package call 1564 * during initialization of PF. Since the downloaded package will erase the 1565 * RSS section, this function will configure RSS input sets for different 1566 * flow types. The last profile added has the highest priority, therefore 2 1567 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1568 * (i.e. IPv4 src/dst TCP src/dst port). 1569 */ 1570 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1571 { 1572 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1573 struct ice_pf *pf = vsi->back; 1574 struct ice_hw *hw = &pf->hw; 1575 enum ice_status status; 1576 struct device *dev; 1577 1578 dev = ice_pf_to_dev(pf); 1579 if (ice_is_safe_mode(pf)) { 1580 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1581 vsi_num); 1582 return; 1583 } 1584 /* configure RSS for IPv4 with input set IP src/dst */ 1585 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1586 ICE_FLOW_SEG_HDR_IPV4); 1587 if (status) 1588 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1589 vsi_num, ice_stat_str(status)); 1590 1591 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1592 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1593 ICE_FLOW_SEG_HDR_IPV6); 1594 if (status) 1595 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1596 vsi_num, ice_stat_str(status)); 1597 1598 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1599 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1600 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1601 if (status) 1602 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1603 vsi_num, ice_stat_str(status)); 1604 1605 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1606 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1607 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1608 if (status) 1609 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1610 vsi_num, ice_stat_str(status)); 1611 1612 /* configure RSS for sctp4 with input set IP src/dst */ 1613 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1614 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1615 if (status) 1616 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1617 vsi_num, ice_stat_str(status)); 1618 1619 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1620 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1621 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1622 if (status) 1623 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1624 vsi_num, ice_stat_str(status)); 1625 1626 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1627 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1628 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1629 if (status) 1630 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1631 vsi_num, ice_stat_str(status)); 1632 1633 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1634 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1635 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1636 if (status) 1637 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1638 vsi_num, ice_stat_str(status)); 1639 } 1640 1641 /** 1642 * ice_pf_state_is_nominal - checks the PF for nominal state 1643 * @pf: pointer to PF to check 1644 * 1645 * Check the PF's state for a collection of bits that would indicate 1646 * the PF is in a state that would inhibit normal operation for 1647 * driver functionality. 1648 * 1649 * Returns true if PF is in a nominal state, false otherwise 1650 */ 1651 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1652 { 1653 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1654 1655 if (!pf) 1656 return false; 1657 1658 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1659 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1660 return false; 1661 1662 return true; 1663 } 1664 1665 /** 1666 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1667 * @vsi: the VSI to be updated 1668 */ 1669 void ice_update_eth_stats(struct ice_vsi *vsi) 1670 { 1671 struct ice_eth_stats *prev_es, *cur_es; 1672 struct ice_hw *hw = &vsi->back->hw; 1673 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1674 1675 prev_es = &vsi->eth_stats_prev; 1676 cur_es = &vsi->eth_stats; 1677 1678 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1679 &prev_es->rx_bytes, &cur_es->rx_bytes); 1680 1681 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1682 &prev_es->rx_unicast, &cur_es->rx_unicast); 1683 1684 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1685 &prev_es->rx_multicast, &cur_es->rx_multicast); 1686 1687 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1688 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1689 1690 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1691 &prev_es->rx_discards, &cur_es->rx_discards); 1692 1693 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1694 &prev_es->tx_bytes, &cur_es->tx_bytes); 1695 1696 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1697 &prev_es->tx_unicast, &cur_es->tx_unicast); 1698 1699 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1700 &prev_es->tx_multicast, &cur_es->tx_multicast); 1701 1702 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1703 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1704 1705 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1706 &prev_es->tx_errors, &cur_es->tx_errors); 1707 1708 vsi->stat_offsets_loaded = true; 1709 } 1710 1711 /** 1712 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1713 * @vsi: the VSI being configured 1714 * @vid: VLAN ID to be added 1715 * @action: filter action to be performed on match 1716 */ 1717 int 1718 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1719 { 1720 struct ice_pf *pf = vsi->back; 1721 struct device *dev; 1722 int err = 0; 1723 1724 dev = ice_pf_to_dev(pf); 1725 1726 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1727 vsi->num_vlan++; 1728 } else { 1729 err = -ENODEV; 1730 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1731 vsi->vsi_num); 1732 } 1733 1734 return err; 1735 } 1736 1737 /** 1738 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1739 * @vsi: the VSI being configured 1740 * @vid: VLAN ID to be removed 1741 * 1742 * Returns 0 on success and negative on failure 1743 */ 1744 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1745 { 1746 struct ice_pf *pf = vsi->back; 1747 enum ice_status status; 1748 struct device *dev; 1749 int err = 0; 1750 1751 dev = ice_pf_to_dev(pf); 1752 1753 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1754 if (!status) { 1755 vsi->num_vlan--; 1756 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1757 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1758 vid, vsi->vsi_num, ice_stat_str(status)); 1759 } else { 1760 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1761 vid, vsi->vsi_num, ice_stat_str(status)); 1762 err = -EIO; 1763 } 1764 1765 return err; 1766 } 1767 1768 /** 1769 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1770 * @vsi: VSI 1771 */ 1772 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1773 { 1774 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1775 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1776 vsi->rx_buf_len = ICE_RXBUF_2048; 1777 #if (PAGE_SIZE < 8192) 1778 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1779 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1780 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1781 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1782 #endif 1783 } else { 1784 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1785 #if (PAGE_SIZE < 8192) 1786 vsi->rx_buf_len = ICE_RXBUF_3072; 1787 #else 1788 vsi->rx_buf_len = ICE_RXBUF_2048; 1789 #endif 1790 } 1791 } 1792 1793 /** 1794 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1795 * @hw: HW pointer 1796 * @pf_q: index of the Rx queue in the PF's queue space 1797 * @rxdid: flexible descriptor RXDID 1798 * @prio: priority for the RXDID for this queue 1799 * @ena_ts: true to enable timestamp and false to disable timestamp 1800 */ 1801 void 1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1803 bool ena_ts) 1804 { 1805 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1806 1807 /* clear any previous values */ 1808 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1809 QRXFLXP_CNTXT_RXDID_PRIO_M | 1810 QRXFLXP_CNTXT_TS_M); 1811 1812 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1813 QRXFLXP_CNTXT_RXDID_IDX_M; 1814 1815 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1816 QRXFLXP_CNTXT_RXDID_PRIO_M; 1817 1818 if (ena_ts) 1819 /* Enable TimeSync on this queue */ 1820 regval |= QRXFLXP_CNTXT_TS_M; 1821 1822 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1823 } 1824 1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1826 { 1827 if (q_idx >= vsi->num_rxq) 1828 return -EINVAL; 1829 1830 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1831 } 1832 1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1834 { 1835 struct ice_aqc_add_tx_qgrp *qg_buf; 1836 int err; 1837 1838 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1839 return -EINVAL; 1840 1841 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1842 if (!qg_buf) 1843 return -ENOMEM; 1844 1845 qg_buf->num_txqs = 1; 1846 1847 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1848 kfree(qg_buf); 1849 return err; 1850 } 1851 1852 /** 1853 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1854 * @vsi: the VSI being configured 1855 * 1856 * Return 0 on success and a negative value on error 1857 * Configure the Rx VSI for operation. 1858 */ 1859 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1860 { 1861 u16 i; 1862 1863 if (vsi->type == ICE_VSI_VF) 1864 goto setup_rings; 1865 1866 ice_vsi_cfg_frame_size(vsi); 1867 setup_rings: 1868 /* set up individual rings */ 1869 ice_for_each_rxq(vsi, i) { 1870 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1871 1872 if (err) 1873 return err; 1874 } 1875 1876 return 0; 1877 } 1878 1879 /** 1880 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1881 * @vsi: the VSI being configured 1882 * @rings: Tx ring array to be configured 1883 * @count: number of Tx ring array elements 1884 * 1885 * Return 0 on success and a negative value on error 1886 * Configure the Tx VSI for operation. 1887 */ 1888 static int 1889 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1890 { 1891 struct ice_aqc_add_tx_qgrp *qg_buf; 1892 u16 q_idx = 0; 1893 int err = 0; 1894 1895 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1896 if (!qg_buf) 1897 return -ENOMEM; 1898 1899 qg_buf->num_txqs = 1; 1900 1901 for (q_idx = 0; q_idx < count; q_idx++) { 1902 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1903 if (err) 1904 goto err_cfg_txqs; 1905 } 1906 1907 err_cfg_txqs: 1908 kfree(qg_buf); 1909 return err; 1910 } 1911 1912 /** 1913 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1914 * @vsi: the VSI being configured 1915 * 1916 * Return 0 on success and a negative value on error 1917 * Configure the Tx VSI for operation. 1918 */ 1919 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1920 { 1921 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1922 } 1923 1924 /** 1925 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1926 * @vsi: the VSI being configured 1927 * 1928 * Return 0 on success and a negative value on error 1929 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1930 */ 1931 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1932 { 1933 int ret; 1934 int i; 1935 1936 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1937 if (ret) 1938 return ret; 1939 1940 ice_for_each_xdp_txq(vsi, i) 1941 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1942 1943 return ret; 1944 } 1945 1946 /** 1947 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1948 * @intrl: interrupt rate limit in usecs 1949 * @gran: interrupt rate limit granularity in usecs 1950 * 1951 * This function converts a decimal interrupt rate limit in usecs to the format 1952 * expected by firmware. 1953 */ 1954 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1955 { 1956 u32 val = intrl / gran; 1957 1958 if (val) 1959 return val | GLINT_RATE_INTRL_ENA_M; 1960 return 0; 1961 } 1962 1963 /** 1964 * ice_write_intrl - write throttle rate limit to interrupt specific register 1965 * @q_vector: pointer to interrupt specific structure 1966 * @intrl: throttle rate limit in microseconds to write 1967 */ 1968 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1969 { 1970 struct ice_hw *hw = &q_vector->vsi->back->hw; 1971 1972 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1973 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1974 } 1975 1976 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1977 { 1978 switch (rc->type) { 1979 case ICE_RX_CONTAINER: 1980 if (rc->rx_ring) 1981 return rc->rx_ring->q_vector; 1982 break; 1983 case ICE_TX_CONTAINER: 1984 if (rc->tx_ring) 1985 return rc->tx_ring->q_vector; 1986 break; 1987 default: 1988 break; 1989 } 1990 1991 return NULL; 1992 } 1993 1994 /** 1995 * __ice_write_itr - write throttle rate to register 1996 * @q_vector: pointer to interrupt data structure 1997 * @rc: pointer to ring container 1998 * @itr: throttle rate in microseconds to write 1999 */ 2000 static void __ice_write_itr(struct ice_q_vector *q_vector, 2001 struct ice_ring_container *rc, u16 itr) 2002 { 2003 struct ice_hw *hw = &q_vector->vsi->back->hw; 2004 2005 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2006 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2007 } 2008 2009 /** 2010 * ice_write_itr - write throttle rate to queue specific register 2011 * @rc: pointer to ring container 2012 * @itr: throttle rate in microseconds to write 2013 */ 2014 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2015 { 2016 struct ice_q_vector *q_vector; 2017 2018 q_vector = ice_pull_qvec_from_rc(rc); 2019 if (!q_vector) 2020 return; 2021 2022 __ice_write_itr(q_vector, rc, itr); 2023 } 2024 2025 /** 2026 * ice_set_q_vector_intrl - set up interrupt rate limiting 2027 * @q_vector: the vector to be configured 2028 * 2029 * Interrupt rate limiting is local to the vector, not per-queue so we must 2030 * detect if either ring container has dynamic moderation enabled to decide 2031 * what to set the interrupt rate limit to via INTRL settings. In the case that 2032 * dynamic moderation is disabled on both, write the value with the cached 2033 * setting to make sure INTRL register matches the user visible value. 2034 */ 2035 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2036 { 2037 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2038 /* in the case of dynamic enabled, cap each vector to no more 2039 * than (4 us) 250,000 ints/sec, which allows low latency 2040 * but still less than 500,000 interrupts per second, which 2041 * reduces CPU a bit in the case of the lowest latency 2042 * setting. The 4 here is a value in microseconds. 2043 */ 2044 ice_write_intrl(q_vector, 4); 2045 } else { 2046 ice_write_intrl(q_vector, q_vector->intrl); 2047 } 2048 } 2049 2050 /** 2051 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2052 * @vsi: the VSI being configured 2053 * 2054 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2055 * for the VF VSI. 2056 */ 2057 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2058 { 2059 struct ice_pf *pf = vsi->back; 2060 struct ice_hw *hw = &pf->hw; 2061 u16 txq = 0, rxq = 0; 2062 int i, q; 2063 2064 ice_for_each_q_vector(vsi, i) { 2065 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2066 u16 reg_idx = q_vector->reg_idx; 2067 2068 ice_cfg_itr(hw, q_vector); 2069 2070 /* Both Transmit Queue Interrupt Cause Control register 2071 * and Receive Queue Interrupt Cause control register 2072 * expects MSIX_INDX field to be the vector index 2073 * within the function space and not the absolute 2074 * vector index across PF or across device. 2075 * For SR-IOV VF VSIs queue vector index always starts 2076 * with 1 since first vector index(0) is used for OICR 2077 * in VF space. Since VMDq and other PF VSIs are within 2078 * the PF function space, use the vector index that is 2079 * tracked for this PF. 2080 */ 2081 for (q = 0; q < q_vector->num_ring_tx; q++) { 2082 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2083 q_vector->tx.itr_idx); 2084 txq++; 2085 } 2086 2087 for (q = 0; q < q_vector->num_ring_rx; q++) { 2088 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2089 q_vector->rx.itr_idx); 2090 rxq++; 2091 } 2092 } 2093 } 2094 2095 /** 2096 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 2097 * @vsi: the VSI being changed 2098 */ 2099 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 2100 { 2101 struct ice_hw *hw = &vsi->back->hw; 2102 struct ice_vsi_ctx *ctxt; 2103 enum ice_status status; 2104 int ret = 0; 2105 2106 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2107 if (!ctxt) 2108 return -ENOMEM; 2109 2110 /* Here we are configuring the VSI to let the driver add VLAN tags by 2111 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 2112 * insertion happens in the Tx hot path, in ice_tx_map. 2113 */ 2114 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 2115 2116 /* Preserve existing VLAN strip setting */ 2117 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 2118 ICE_AQ_VSI_VLAN_EMOD_M); 2119 2120 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2121 2122 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2123 if (status) { 2124 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 2125 ice_stat_str(status), 2126 ice_aq_str(hw->adminq.sq_last_status)); 2127 ret = -EIO; 2128 goto out; 2129 } 2130 2131 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2132 out: 2133 kfree(ctxt); 2134 return ret; 2135 } 2136 2137 /** 2138 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2139 * @vsi: the VSI being changed 2140 * @ena: boolean value indicating if this is a enable or disable request 2141 */ 2142 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2143 { 2144 struct ice_hw *hw = &vsi->back->hw; 2145 struct ice_vsi_ctx *ctxt; 2146 enum ice_status status; 2147 int ret = 0; 2148 2149 /* do not allow modifying VLAN stripping when a port VLAN is configured 2150 * on this VSI 2151 */ 2152 if (vsi->info.pvid) 2153 return 0; 2154 2155 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2156 if (!ctxt) 2157 return -ENOMEM; 2158 2159 /* Here we are configuring what the VSI should do with the VLAN tag in 2160 * the Rx packet. We can either leave the tag in the packet or put it in 2161 * the Rx descriptor. 2162 */ 2163 if (ena) 2164 /* Strip VLAN tag from Rx packet and put it in the desc */ 2165 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2166 else 2167 /* Disable stripping. Leave tag in packet */ 2168 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2169 2170 /* Allow all packets untagged/tagged */ 2171 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2172 2173 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2174 2175 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2176 if (status) { 2177 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2178 ena, ice_stat_str(status), 2179 ice_aq_str(hw->adminq.sq_last_status)); 2180 ret = -EIO; 2181 goto out; 2182 } 2183 2184 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2185 out: 2186 kfree(ctxt); 2187 return ret; 2188 } 2189 2190 /** 2191 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2192 * @vsi: the VSI whose rings are to be enabled 2193 * 2194 * Returns 0 on success and a negative value on error 2195 */ 2196 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2197 { 2198 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2199 } 2200 2201 /** 2202 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2203 * @vsi: the VSI whose rings are to be disabled 2204 * 2205 * Returns 0 on success and a negative value on error 2206 */ 2207 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2208 { 2209 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2210 } 2211 2212 /** 2213 * ice_vsi_stop_tx_rings - Disable Tx rings 2214 * @vsi: the VSI being configured 2215 * @rst_src: reset source 2216 * @rel_vmvf_num: Relative ID of VF/VM 2217 * @rings: Tx ring array to be stopped 2218 * @count: number of Tx ring array elements 2219 */ 2220 static int 2221 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2222 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2223 { 2224 u16 q_idx; 2225 2226 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2227 return -EINVAL; 2228 2229 for (q_idx = 0; q_idx < count; q_idx++) { 2230 struct ice_txq_meta txq_meta = { }; 2231 int status; 2232 2233 if (!rings || !rings[q_idx]) 2234 return -EINVAL; 2235 2236 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2237 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2238 rings[q_idx], &txq_meta); 2239 2240 if (status) 2241 return status; 2242 } 2243 2244 return 0; 2245 } 2246 2247 /** 2248 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2249 * @vsi: the VSI being configured 2250 * @rst_src: reset source 2251 * @rel_vmvf_num: Relative ID of VF/VM 2252 */ 2253 int 2254 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2255 u16 rel_vmvf_num) 2256 { 2257 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2258 } 2259 2260 /** 2261 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2262 * @vsi: the VSI being configured 2263 */ 2264 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2265 { 2266 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2267 } 2268 2269 /** 2270 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2271 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2272 * 2273 * returns true if Rx VLAN pruning is enabled and false otherwise. 2274 */ 2275 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2276 { 2277 if (!vsi) 2278 return false; 2279 2280 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2281 } 2282 2283 /** 2284 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2285 * @vsi: VSI to enable or disable VLAN pruning on 2286 * @ena: set to true to enable VLAN pruning and false to disable it 2287 * 2288 * returns 0 if VSI is updated, negative otherwise 2289 */ 2290 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena) 2291 { 2292 struct ice_vsi_ctx *ctxt; 2293 struct ice_pf *pf; 2294 int status; 2295 2296 if (!vsi) 2297 return -EINVAL; 2298 2299 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2300 * mode. VLAN pruning will be enabled when the interface exits 2301 * promiscuous mode if any VLAN filters are active. 2302 */ 2303 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2304 return 0; 2305 2306 pf = vsi->back; 2307 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2308 if (!ctxt) 2309 return -ENOMEM; 2310 2311 ctxt->info = vsi->info; 2312 2313 if (ena) 2314 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2315 else 2316 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2317 2318 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2319 2320 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2321 if (status) { 2322 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2323 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2324 ice_stat_str(status), 2325 ice_aq_str(pf->hw.adminq.sq_last_status)); 2326 goto err_out; 2327 } 2328 2329 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2330 2331 kfree(ctxt); 2332 return 0; 2333 2334 err_out: 2335 kfree(ctxt); 2336 return -EIO; 2337 } 2338 2339 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2340 { 2341 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2342 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2343 vsi->tc_cfg.numtc = 1; 2344 return; 2345 } 2346 2347 /* set VSI TC information based on DCB config */ 2348 ice_vsi_set_dcb_tc_cfg(vsi); 2349 } 2350 2351 /** 2352 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2353 * @vsi: VSI to set the q_vectors register index on 2354 */ 2355 static int 2356 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2357 { 2358 u16 i; 2359 2360 if (!vsi || !vsi->q_vectors) 2361 return -EINVAL; 2362 2363 ice_for_each_q_vector(vsi, i) { 2364 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2365 2366 if (!q_vector) { 2367 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2368 i, vsi->vsi_num); 2369 goto clear_reg_idx; 2370 } 2371 2372 if (vsi->type == ICE_VSI_VF) { 2373 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2374 2375 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2376 } else { 2377 q_vector->reg_idx = 2378 q_vector->v_idx + vsi->base_vector; 2379 } 2380 } 2381 2382 return 0; 2383 2384 clear_reg_idx: 2385 ice_for_each_q_vector(vsi, i) { 2386 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2387 2388 if (q_vector) 2389 q_vector->reg_idx = 0; 2390 } 2391 2392 return -EINVAL; 2393 } 2394 2395 /** 2396 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2397 * @vsi: the VSI being configured 2398 * @tx: bool to determine Tx or Rx rule 2399 * @create: bool to determine create or remove Rule 2400 */ 2401 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2402 { 2403 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2404 enum ice_sw_fwd_act_type act); 2405 struct ice_pf *pf = vsi->back; 2406 enum ice_status status; 2407 struct device *dev; 2408 2409 dev = ice_pf_to_dev(pf); 2410 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2411 2412 if (tx) { 2413 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2414 ICE_DROP_PACKET); 2415 } else { 2416 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2417 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2418 create); 2419 } else { 2420 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2421 ICE_FWD_TO_VSI); 2422 } 2423 } 2424 2425 if (status) 2426 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2427 create ? "adding" : "removing", tx ? "TX" : "RX", 2428 vsi->vsi_num, ice_stat_str(status)); 2429 } 2430 2431 /** 2432 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2433 * @vsi: pointer to the VSI 2434 * 2435 * This function will allocate new scheduler aggregator now if needed and will 2436 * move specified VSI into it. 2437 */ 2438 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2439 { 2440 struct device *dev = ice_pf_to_dev(vsi->back); 2441 struct ice_agg_node *agg_node_iter = NULL; 2442 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2443 struct ice_agg_node *agg_node = NULL; 2444 int node_offset, max_agg_nodes = 0; 2445 struct ice_port_info *port_info; 2446 struct ice_pf *pf = vsi->back; 2447 u32 agg_node_id_start = 0; 2448 enum ice_status status; 2449 2450 /* create (as needed) scheduler aggregator node and move VSI into 2451 * corresponding aggregator node 2452 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2453 * - VF aggregator nodes will contain VF VSI 2454 */ 2455 port_info = pf->hw.port_info; 2456 if (!port_info) 2457 return; 2458 2459 switch (vsi->type) { 2460 case ICE_VSI_CTRL: 2461 case ICE_VSI_CHNL: 2462 case ICE_VSI_LB: 2463 case ICE_VSI_PF: 2464 case ICE_VSI_SWITCHDEV_CTRL: 2465 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2466 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2467 agg_node_iter = &pf->pf_agg_node[0]; 2468 break; 2469 case ICE_VSI_VF: 2470 /* user can create 'n' VFs on a given PF, but since max children 2471 * per aggregator node can be only 64. Following code handles 2472 * aggregator(s) for VF VSIs, either selects a agg_node which 2473 * was already created provided num_vsis < 64, otherwise 2474 * select next available node, which will be created 2475 */ 2476 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2477 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2478 agg_node_iter = &pf->vf_agg_node[0]; 2479 break; 2480 default: 2481 /* other VSI type, handle later if needed */ 2482 dev_dbg(dev, "unexpected VSI type %s\n", 2483 ice_vsi_type_str(vsi->type)); 2484 return; 2485 } 2486 2487 /* find the appropriate aggregator node */ 2488 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2489 /* see if we can find space in previously created 2490 * node if num_vsis < 64, otherwise skip 2491 */ 2492 if (agg_node_iter->num_vsis && 2493 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2494 agg_node_iter++; 2495 continue; 2496 } 2497 2498 if (agg_node_iter->valid && 2499 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2500 agg_id = agg_node_iter->agg_id; 2501 agg_node = agg_node_iter; 2502 break; 2503 } 2504 2505 /* find unclaimed agg_id */ 2506 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2507 agg_id = node_offset + agg_node_id_start; 2508 agg_node = agg_node_iter; 2509 break; 2510 } 2511 /* move to next agg_node */ 2512 agg_node_iter++; 2513 } 2514 2515 if (!agg_node) 2516 return; 2517 2518 /* if selected aggregator node was not created, create it */ 2519 if (!agg_node->valid) { 2520 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2521 (u8)vsi->tc_cfg.ena_tc); 2522 if (status) { 2523 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2524 agg_id); 2525 return; 2526 } 2527 /* aggregator node is created, store the neeeded info */ 2528 agg_node->valid = true; 2529 agg_node->agg_id = agg_id; 2530 } 2531 2532 /* move VSI to corresponding aggregator node */ 2533 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2534 (u8)vsi->tc_cfg.ena_tc); 2535 if (status) { 2536 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2537 vsi->idx, agg_id); 2538 return; 2539 } 2540 2541 /* keep active children count for aggregator node */ 2542 agg_node->num_vsis++; 2543 2544 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2545 * to aggregator node 2546 */ 2547 vsi->agg_node = agg_node; 2548 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2549 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2550 vsi->agg_node->num_vsis); 2551 } 2552 2553 /** 2554 * ice_vsi_setup - Set up a VSI by a given type 2555 * @pf: board private structure 2556 * @pi: pointer to the port_info instance 2557 * @vsi_type: VSI type 2558 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2559 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2560 * fill-in ICE_INVAL_VFID as input. 2561 * @ch: ptr to channel 2562 * 2563 * This allocates the sw VSI structure and its queue resources. 2564 * 2565 * Returns pointer to the successfully allocated and configured VSI sw struct on 2566 * success, NULL on failure. 2567 */ 2568 struct ice_vsi * 2569 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2570 enum ice_vsi_type vsi_type, u16 vf_id, struct ice_channel *ch) 2571 { 2572 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2573 struct device *dev = ice_pf_to_dev(pf); 2574 enum ice_status status; 2575 struct ice_vsi *vsi; 2576 int ret, i; 2577 2578 if (vsi_type == ICE_VSI_CHNL) 2579 vsi = ice_vsi_alloc(pf, vsi_type, ch, ICE_INVAL_VFID); 2580 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2581 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf_id); 2582 else 2583 vsi = ice_vsi_alloc(pf, vsi_type, NULL, ICE_INVAL_VFID); 2584 2585 if (!vsi) { 2586 dev_err(dev, "could not allocate VSI\n"); 2587 return NULL; 2588 } 2589 2590 vsi->port_info = pi; 2591 vsi->vsw = pf->first_sw; 2592 if (vsi->type == ICE_VSI_PF) 2593 vsi->ethtype = ETH_P_PAUSE; 2594 2595 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2596 vsi->vf_id = vf_id; 2597 2598 ice_alloc_fd_res(vsi); 2599 2600 if (vsi_type != ICE_VSI_CHNL) { 2601 if (ice_vsi_get_qs(vsi)) { 2602 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2603 vsi->idx); 2604 goto unroll_vsi_alloc; 2605 } 2606 } 2607 2608 /* set RSS capabilities */ 2609 ice_vsi_set_rss_params(vsi); 2610 2611 /* set TC configuration */ 2612 ice_vsi_set_tc_cfg(vsi); 2613 2614 /* create the VSI */ 2615 ret = ice_vsi_init(vsi, true); 2616 if (ret) 2617 goto unroll_get_qs; 2618 2619 switch (vsi->type) { 2620 case ICE_VSI_CTRL: 2621 case ICE_VSI_SWITCHDEV_CTRL: 2622 case ICE_VSI_PF: 2623 ret = ice_vsi_alloc_q_vectors(vsi); 2624 if (ret) 2625 goto unroll_vsi_init; 2626 2627 ret = ice_vsi_setup_vector_base(vsi); 2628 if (ret) 2629 goto unroll_alloc_q_vector; 2630 2631 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2632 if (ret) 2633 goto unroll_vector_base; 2634 2635 ret = ice_vsi_alloc_rings(vsi); 2636 if (ret) 2637 goto unroll_vector_base; 2638 2639 /* Always add VLAN ID 0 switch rule by default. This is needed 2640 * in order to allow all untagged and 0 tagged priority traffic 2641 * if Rx VLAN pruning is enabled. Also there are cases where we 2642 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2643 * so this handles those cases (i.e. adding the PF to a bridge 2644 * without the 8021q module loaded). 2645 */ 2646 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2647 if (ret) 2648 goto unroll_clear_rings; 2649 2650 ice_vsi_map_rings_to_vectors(vsi); 2651 2652 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2653 if (vsi->type != ICE_VSI_CTRL) 2654 /* Do not exit if configuring RSS had an issue, at 2655 * least receive traffic on first queue. Hence no 2656 * need to capture return value 2657 */ 2658 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2659 ice_vsi_cfg_rss_lut_key(vsi); 2660 ice_vsi_set_rss_flow_fld(vsi); 2661 } 2662 ice_init_arfs(vsi); 2663 break; 2664 case ICE_VSI_CHNL: 2665 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2666 ice_vsi_cfg_rss_lut_key(vsi); 2667 ice_vsi_set_rss_flow_fld(vsi); 2668 } 2669 break; 2670 case ICE_VSI_VF: 2671 /* VF driver will take care of creating netdev for this type and 2672 * map queues to vectors through Virtchnl, PF driver only 2673 * creates a VSI and corresponding structures for bookkeeping 2674 * purpose 2675 */ 2676 ret = ice_vsi_alloc_q_vectors(vsi); 2677 if (ret) 2678 goto unroll_vsi_init; 2679 2680 ret = ice_vsi_alloc_rings(vsi); 2681 if (ret) 2682 goto unroll_alloc_q_vector; 2683 2684 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2685 if (ret) 2686 goto unroll_vector_base; 2687 2688 /* Do not exit if configuring RSS had an issue, at least 2689 * receive traffic on first queue. Hence no need to capture 2690 * return value 2691 */ 2692 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2693 ice_vsi_cfg_rss_lut_key(vsi); 2694 ice_vsi_set_vf_rss_flow_fld(vsi); 2695 } 2696 break; 2697 case ICE_VSI_LB: 2698 ret = ice_vsi_alloc_rings(vsi); 2699 if (ret) 2700 goto unroll_vsi_init; 2701 break; 2702 default: 2703 /* clean up the resources and exit */ 2704 goto unroll_vsi_init; 2705 } 2706 2707 /* configure VSI nodes based on number of queues and TC's */ 2708 ice_for_each_traffic_class(i) { 2709 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2710 continue; 2711 2712 if (vsi->type == ICE_VSI_CHNL) { 2713 if (!vsi->alloc_txq && vsi->num_txq) 2714 max_txqs[i] = vsi->num_txq; 2715 else 2716 max_txqs[i] = pf->num_lan_tx; 2717 } else { 2718 max_txqs[i] = vsi->alloc_txq; 2719 } 2720 } 2721 2722 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2723 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2724 max_txqs); 2725 if (status) { 2726 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2727 vsi->vsi_num, ice_stat_str(status)); 2728 goto unroll_clear_rings; 2729 } 2730 2731 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2732 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2733 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2734 * The rule is added once for PF VSI in order to create appropriate 2735 * recipe, since VSI/VSI list is ignored with drop action... 2736 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2737 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2738 * settings in the HW. 2739 */ 2740 if (!ice_is_safe_mode(pf)) 2741 if (vsi->type == ICE_VSI_PF) { 2742 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2743 ICE_DROP_PACKET); 2744 ice_cfg_sw_lldp(vsi, true, true); 2745 } 2746 2747 if (!vsi->agg_node) 2748 ice_set_agg_vsi(vsi); 2749 return vsi; 2750 2751 unroll_clear_rings: 2752 ice_vsi_clear_rings(vsi); 2753 unroll_vector_base: 2754 /* reclaim SW interrupts back to the common pool */ 2755 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2756 pf->num_avail_sw_msix += vsi->num_q_vectors; 2757 unroll_alloc_q_vector: 2758 ice_vsi_free_q_vectors(vsi); 2759 unroll_vsi_init: 2760 ice_vsi_delete(vsi); 2761 unroll_get_qs: 2762 ice_vsi_put_qs(vsi); 2763 unroll_vsi_alloc: 2764 if (vsi_type == ICE_VSI_VF) 2765 ice_enable_lag(pf->lag); 2766 ice_vsi_clear(vsi); 2767 2768 return NULL; 2769 } 2770 2771 /** 2772 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2773 * @vsi: the VSI being cleaned up 2774 */ 2775 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2776 { 2777 struct ice_pf *pf = vsi->back; 2778 struct ice_hw *hw = &pf->hw; 2779 u32 txq = 0; 2780 u32 rxq = 0; 2781 int i, q; 2782 2783 ice_for_each_q_vector(vsi, i) { 2784 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2785 2786 ice_write_intrl(q_vector, 0); 2787 for (q = 0; q < q_vector->num_ring_tx; q++) { 2788 ice_write_itr(&q_vector->tx, 0); 2789 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2790 if (ice_is_xdp_ena_vsi(vsi)) { 2791 u32 xdp_txq = txq + vsi->num_xdp_txq; 2792 2793 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2794 } 2795 txq++; 2796 } 2797 2798 for (q = 0; q < q_vector->num_ring_rx; q++) { 2799 ice_write_itr(&q_vector->rx, 0); 2800 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2801 rxq++; 2802 } 2803 } 2804 2805 ice_flush(hw); 2806 } 2807 2808 /** 2809 * ice_vsi_free_irq - Free the IRQ association with the OS 2810 * @vsi: the VSI being configured 2811 */ 2812 void ice_vsi_free_irq(struct ice_vsi *vsi) 2813 { 2814 struct ice_pf *pf = vsi->back; 2815 int base = vsi->base_vector; 2816 int i; 2817 2818 if (!vsi->q_vectors || !vsi->irqs_ready) 2819 return; 2820 2821 ice_vsi_release_msix(vsi); 2822 if (vsi->type == ICE_VSI_VF) 2823 return; 2824 2825 vsi->irqs_ready = false; 2826 ice_for_each_q_vector(vsi, i) { 2827 u16 vector = i + base; 2828 int irq_num; 2829 2830 irq_num = pf->msix_entries[vector].vector; 2831 2832 /* free only the irqs that were actually requested */ 2833 if (!vsi->q_vectors[i] || 2834 !(vsi->q_vectors[i]->num_ring_tx || 2835 vsi->q_vectors[i]->num_ring_rx)) 2836 continue; 2837 2838 /* clear the affinity notifier in the IRQ descriptor */ 2839 irq_set_affinity_notifier(irq_num, NULL); 2840 2841 /* clear the affinity_mask in the IRQ descriptor */ 2842 irq_set_affinity_hint(irq_num, NULL); 2843 synchronize_irq(irq_num); 2844 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2845 } 2846 } 2847 2848 /** 2849 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2850 * @vsi: the VSI having resources freed 2851 */ 2852 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2853 { 2854 int i; 2855 2856 if (!vsi->tx_rings) 2857 return; 2858 2859 ice_for_each_txq(vsi, i) 2860 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2861 ice_free_tx_ring(vsi->tx_rings[i]); 2862 } 2863 2864 /** 2865 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2866 * @vsi: the VSI having resources freed 2867 */ 2868 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2869 { 2870 int i; 2871 2872 if (!vsi->rx_rings) 2873 return; 2874 2875 ice_for_each_rxq(vsi, i) 2876 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2877 ice_free_rx_ring(vsi->rx_rings[i]); 2878 } 2879 2880 /** 2881 * ice_vsi_close - Shut down a VSI 2882 * @vsi: the VSI being shut down 2883 */ 2884 void ice_vsi_close(struct ice_vsi *vsi) 2885 { 2886 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2887 ice_down(vsi); 2888 2889 ice_vsi_free_irq(vsi); 2890 ice_vsi_free_tx_rings(vsi); 2891 ice_vsi_free_rx_rings(vsi); 2892 } 2893 2894 /** 2895 * ice_ena_vsi - resume a VSI 2896 * @vsi: the VSI being resume 2897 * @locked: is the rtnl_lock already held 2898 */ 2899 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2900 { 2901 int err = 0; 2902 2903 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2904 return 0; 2905 2906 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2907 2908 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2909 if (netif_running(vsi->netdev)) { 2910 if (!locked) 2911 rtnl_lock(); 2912 2913 err = ice_open_internal(vsi->netdev); 2914 2915 if (!locked) 2916 rtnl_unlock(); 2917 } 2918 } else if (vsi->type == ICE_VSI_CTRL) { 2919 err = ice_vsi_open_ctrl(vsi); 2920 } 2921 2922 return err; 2923 } 2924 2925 /** 2926 * ice_dis_vsi - pause a VSI 2927 * @vsi: the VSI being paused 2928 * @locked: is the rtnl_lock already held 2929 */ 2930 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2931 { 2932 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2933 return; 2934 2935 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2936 2937 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2938 if (netif_running(vsi->netdev)) { 2939 if (!locked) 2940 rtnl_lock(); 2941 2942 ice_vsi_close(vsi); 2943 2944 if (!locked) 2945 rtnl_unlock(); 2946 } else { 2947 ice_vsi_close(vsi); 2948 } 2949 } else if (vsi->type == ICE_VSI_CTRL || 2950 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2951 ice_vsi_close(vsi); 2952 } 2953 } 2954 2955 /** 2956 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2957 * @vsi: the VSI being un-configured 2958 */ 2959 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2960 { 2961 int base = vsi->base_vector; 2962 struct ice_pf *pf = vsi->back; 2963 struct ice_hw *hw = &pf->hw; 2964 u32 val; 2965 int i; 2966 2967 /* disable interrupt causation from each queue */ 2968 if (vsi->tx_rings) { 2969 ice_for_each_txq(vsi, i) { 2970 if (vsi->tx_rings[i]) { 2971 u16 reg; 2972 2973 reg = vsi->tx_rings[i]->reg_idx; 2974 val = rd32(hw, QINT_TQCTL(reg)); 2975 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2976 wr32(hw, QINT_TQCTL(reg), val); 2977 } 2978 } 2979 } 2980 2981 if (vsi->rx_rings) { 2982 ice_for_each_rxq(vsi, i) { 2983 if (vsi->rx_rings[i]) { 2984 u16 reg; 2985 2986 reg = vsi->rx_rings[i]->reg_idx; 2987 val = rd32(hw, QINT_RQCTL(reg)); 2988 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2989 wr32(hw, QINT_RQCTL(reg), val); 2990 } 2991 } 2992 } 2993 2994 /* disable each interrupt */ 2995 ice_for_each_q_vector(vsi, i) { 2996 if (!vsi->q_vectors[i]) 2997 continue; 2998 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2999 } 3000 3001 ice_flush(hw); 3002 3003 /* don't call synchronize_irq() for VF's from the host */ 3004 if (vsi->type == ICE_VSI_VF) 3005 return; 3006 3007 ice_for_each_q_vector(vsi, i) 3008 synchronize_irq(pf->msix_entries[i + base].vector); 3009 } 3010 3011 /** 3012 * ice_napi_del - Remove NAPI handler for the VSI 3013 * @vsi: VSI for which NAPI handler is to be removed 3014 */ 3015 void ice_napi_del(struct ice_vsi *vsi) 3016 { 3017 int v_idx; 3018 3019 if (!vsi->netdev) 3020 return; 3021 3022 ice_for_each_q_vector(vsi, v_idx) 3023 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3024 } 3025 3026 /** 3027 * ice_vsi_release - Delete a VSI and free its resources 3028 * @vsi: the VSI being removed 3029 * 3030 * Returns 0 on success or < 0 on error 3031 */ 3032 int ice_vsi_release(struct ice_vsi *vsi) 3033 { 3034 enum ice_status err; 3035 struct ice_pf *pf; 3036 3037 if (!vsi->back) 3038 return -ENODEV; 3039 pf = vsi->back; 3040 3041 /* do not unregister while driver is in the reset recovery pending 3042 * state. Since reset/rebuild happens through PF service task workqueue, 3043 * it's not a good idea to unregister netdev that is associated to the 3044 * PF that is running the work queue items currently. This is done to 3045 * avoid check_flush_dependency() warning on this wq 3046 */ 3047 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3048 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3049 unregister_netdev(vsi->netdev); 3050 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3051 } 3052 3053 if (vsi->type == ICE_VSI_PF) 3054 ice_devlink_destroy_pf_port(pf); 3055 3056 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3057 ice_rss_clean(vsi); 3058 3059 /* Disable VSI and free resources */ 3060 if (vsi->type != ICE_VSI_LB) 3061 ice_vsi_dis_irq(vsi); 3062 ice_vsi_close(vsi); 3063 3064 /* SR-IOV determines needed MSIX resources all at once instead of per 3065 * VSI since when VFs are spawned we know how many VFs there are and how 3066 * many interrupts each VF needs. SR-IOV MSIX resources are also 3067 * cleared in the same manner. 3068 */ 3069 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 3070 int i; 3071 3072 ice_for_each_vf(pf, i) { 3073 struct ice_vf *vf = &pf->vf[i]; 3074 3075 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 3076 break; 3077 } 3078 if (i == pf->num_alloc_vfs) { 3079 /* No other VFs left that have control VSI, reclaim SW 3080 * interrupts back to the common pool 3081 */ 3082 ice_free_res(pf->irq_tracker, vsi->base_vector, 3083 ICE_RES_VF_CTRL_VEC_ID); 3084 pf->num_avail_sw_msix += vsi->num_q_vectors; 3085 } 3086 } else if (vsi->type != ICE_VSI_VF) { 3087 /* reclaim SW interrupts back to the common pool */ 3088 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3089 pf->num_avail_sw_msix += vsi->num_q_vectors; 3090 } 3091 3092 if (!ice_is_safe_mode(pf)) { 3093 if (vsi->type == ICE_VSI_PF) { 3094 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3095 ICE_DROP_PACKET); 3096 ice_cfg_sw_lldp(vsi, true, false); 3097 /* The Rx rule will only exist to remove if the LLDP FW 3098 * engine is currently stopped 3099 */ 3100 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3101 ice_cfg_sw_lldp(vsi, false, false); 3102 } 3103 } 3104 3105 ice_fltr_remove_all(vsi); 3106 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3107 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3108 if (err) 3109 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3110 vsi->vsi_num, err); 3111 ice_vsi_delete(vsi); 3112 ice_vsi_free_q_vectors(vsi); 3113 3114 if (vsi->netdev) { 3115 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3116 unregister_netdev(vsi->netdev); 3117 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3118 } 3119 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3120 free_netdev(vsi->netdev); 3121 vsi->netdev = NULL; 3122 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3123 } 3124 } 3125 3126 if (vsi->type == ICE_VSI_VF && 3127 vsi->agg_node && vsi->agg_node->valid) 3128 vsi->agg_node->num_vsis--; 3129 ice_vsi_clear_rings(vsi); 3130 3131 ice_vsi_put_qs(vsi); 3132 3133 /* retain SW VSI data structure since it is needed to unregister and 3134 * free VSI netdev when PF is not in reset recovery pending state,\ 3135 * for ex: during rmmod. 3136 */ 3137 if (!ice_is_reset_in_progress(pf->state)) 3138 ice_vsi_clear(vsi); 3139 3140 return 0; 3141 } 3142 3143 /** 3144 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3145 * @vsi: VSI connected with q_vectors 3146 * @coalesce: array of struct with stored coalesce 3147 * 3148 * Returns array size. 3149 */ 3150 static int 3151 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3152 struct ice_coalesce_stored *coalesce) 3153 { 3154 int i; 3155 3156 ice_for_each_q_vector(vsi, i) { 3157 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3158 3159 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3160 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3161 coalesce[i].intrl = q_vector->intrl; 3162 3163 if (i < vsi->num_txq) 3164 coalesce[i].tx_valid = true; 3165 if (i < vsi->num_rxq) 3166 coalesce[i].rx_valid = true; 3167 } 3168 3169 return vsi->num_q_vectors; 3170 } 3171 3172 /** 3173 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3174 * @vsi: VSI connected with q_vectors 3175 * @coalesce: pointer to array of struct with stored coalesce 3176 * @size: size of coalesce array 3177 * 3178 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3179 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3180 * to default value. 3181 */ 3182 static void 3183 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3184 struct ice_coalesce_stored *coalesce, int size) 3185 { 3186 struct ice_ring_container *rc; 3187 int i; 3188 3189 if ((size && !coalesce) || !vsi) 3190 return; 3191 3192 /* There are a couple of cases that have to be handled here: 3193 * 1. The case where the number of queue vectors stays the same, but 3194 * the number of Tx or Rx rings changes (the first for loop) 3195 * 2. The case where the number of queue vectors increased (the 3196 * second for loop) 3197 */ 3198 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3199 /* There are 2 cases to handle here and they are the same for 3200 * both Tx and Rx: 3201 * if the entry was valid previously (coalesce[i].[tr]x_valid 3202 * and the loop variable is less than the number of rings 3203 * allocated, then write the previous values 3204 * 3205 * if the entry was not valid previously, but the number of 3206 * rings is less than are allocated (this means the number of 3207 * rings increased from previously), then write out the 3208 * values in the first element 3209 * 3210 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3211 * as there is no harm because the dynamic algorithm 3212 * will just overwrite. 3213 */ 3214 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3215 rc = &vsi->q_vectors[i]->rx; 3216 rc->itr_setting = coalesce[i].itr_rx; 3217 ice_write_itr(rc, rc->itr_setting); 3218 } else if (i < vsi->alloc_rxq) { 3219 rc = &vsi->q_vectors[i]->rx; 3220 rc->itr_setting = coalesce[0].itr_rx; 3221 ice_write_itr(rc, rc->itr_setting); 3222 } 3223 3224 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3225 rc = &vsi->q_vectors[i]->tx; 3226 rc->itr_setting = coalesce[i].itr_tx; 3227 ice_write_itr(rc, rc->itr_setting); 3228 } else if (i < vsi->alloc_txq) { 3229 rc = &vsi->q_vectors[i]->tx; 3230 rc->itr_setting = coalesce[0].itr_tx; 3231 ice_write_itr(rc, rc->itr_setting); 3232 } 3233 3234 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3235 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3236 } 3237 3238 /* the number of queue vectors increased so write whatever is in 3239 * the first element 3240 */ 3241 for (; i < vsi->num_q_vectors; i++) { 3242 /* transmit */ 3243 rc = &vsi->q_vectors[i]->tx; 3244 rc->itr_setting = coalesce[0].itr_tx; 3245 ice_write_itr(rc, rc->itr_setting); 3246 3247 /* receive */ 3248 rc = &vsi->q_vectors[i]->rx; 3249 rc->itr_setting = coalesce[0].itr_rx; 3250 ice_write_itr(rc, rc->itr_setting); 3251 3252 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3253 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3254 } 3255 } 3256 3257 /** 3258 * ice_vsi_rebuild - Rebuild VSI after reset 3259 * @vsi: VSI to be rebuild 3260 * @init_vsi: is this an initialization or a reconfigure of the VSI 3261 * 3262 * Returns 0 on success and negative value on failure 3263 */ 3264 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3265 { 3266 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3267 struct ice_coalesce_stored *coalesce; 3268 int prev_num_q_vectors = 0; 3269 struct ice_vf *vf = NULL; 3270 enum ice_vsi_type vtype; 3271 enum ice_status status; 3272 struct ice_pf *pf; 3273 int ret, i; 3274 3275 if (!vsi) 3276 return -EINVAL; 3277 3278 pf = vsi->back; 3279 vtype = vsi->type; 3280 if (vtype == ICE_VSI_VF) 3281 vf = &pf->vf[vsi->vf_id]; 3282 3283 coalesce = kcalloc(vsi->num_q_vectors, 3284 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3285 if (!coalesce) 3286 return -ENOMEM; 3287 3288 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3289 3290 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3291 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3292 if (ret) 3293 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3294 vsi->vsi_num, ret); 3295 ice_vsi_free_q_vectors(vsi); 3296 3297 /* SR-IOV determines needed MSIX resources all at once instead of per 3298 * VSI since when VFs are spawned we know how many VFs there are and how 3299 * many interrupts each VF needs. SR-IOV MSIX resources are also 3300 * cleared in the same manner. 3301 */ 3302 if (vtype != ICE_VSI_VF) { 3303 /* reclaim SW interrupts back to the common pool */ 3304 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3305 pf->num_avail_sw_msix += vsi->num_q_vectors; 3306 vsi->base_vector = 0; 3307 } 3308 3309 if (ice_is_xdp_ena_vsi(vsi)) 3310 /* return value check can be skipped here, it always returns 3311 * 0 if reset is in progress 3312 */ 3313 ice_destroy_xdp_rings(vsi); 3314 ice_vsi_put_qs(vsi); 3315 ice_vsi_clear_rings(vsi); 3316 ice_vsi_free_arrays(vsi); 3317 if (vtype == ICE_VSI_VF) 3318 ice_vsi_set_num_qs(vsi, vf->vf_id); 3319 else 3320 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3321 3322 ret = ice_vsi_alloc_arrays(vsi); 3323 if (ret < 0) 3324 goto err_vsi; 3325 3326 ice_vsi_get_qs(vsi); 3327 3328 ice_alloc_fd_res(vsi); 3329 ice_vsi_set_tc_cfg(vsi); 3330 3331 /* Initialize VSI struct elements and create VSI in FW */ 3332 ret = ice_vsi_init(vsi, init_vsi); 3333 if (ret < 0) 3334 goto err_vsi; 3335 3336 switch (vtype) { 3337 case ICE_VSI_CTRL: 3338 case ICE_VSI_SWITCHDEV_CTRL: 3339 case ICE_VSI_PF: 3340 ret = ice_vsi_alloc_q_vectors(vsi); 3341 if (ret) 3342 goto err_rings; 3343 3344 ret = ice_vsi_setup_vector_base(vsi); 3345 if (ret) 3346 goto err_vectors; 3347 3348 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3349 if (ret) 3350 goto err_vectors; 3351 3352 ret = ice_vsi_alloc_rings(vsi); 3353 if (ret) 3354 goto err_vectors; 3355 3356 ice_vsi_map_rings_to_vectors(vsi); 3357 if (ice_is_xdp_ena_vsi(vsi)) { 3358 ret = ice_vsi_determine_xdp_res(vsi); 3359 if (ret) 3360 goto err_vectors; 3361 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3362 if (ret) 3363 goto err_vectors; 3364 } 3365 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3366 if (vtype != ICE_VSI_CTRL) 3367 /* Do not exit if configuring RSS had an issue, at 3368 * least receive traffic on first queue. Hence no 3369 * need to capture return value 3370 */ 3371 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3372 ice_vsi_cfg_rss_lut_key(vsi); 3373 break; 3374 case ICE_VSI_VF: 3375 ret = ice_vsi_alloc_q_vectors(vsi); 3376 if (ret) 3377 goto err_rings; 3378 3379 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3380 if (ret) 3381 goto err_vectors; 3382 3383 ret = ice_vsi_alloc_rings(vsi); 3384 if (ret) 3385 goto err_vectors; 3386 3387 break; 3388 case ICE_VSI_CHNL: 3389 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3390 ice_vsi_cfg_rss_lut_key(vsi); 3391 ice_vsi_set_rss_flow_fld(vsi); 3392 } 3393 break; 3394 default: 3395 break; 3396 } 3397 3398 /* configure VSI nodes based on number of queues and TC's */ 3399 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3400 /* configure VSI nodes based on number of queues and TC's. 3401 * ADQ creates VSIs for each TC/Channel but doesn't 3402 * allocate queues instead it reconfigures the PF queues 3403 * as per the TC command. So max_txqs should point to the 3404 * PF Tx queues. 3405 */ 3406 if (vtype == ICE_VSI_CHNL) 3407 max_txqs[i] = pf->num_lan_tx; 3408 else 3409 max_txqs[i] = vsi->alloc_txq; 3410 3411 if (ice_is_xdp_ena_vsi(vsi)) 3412 max_txqs[i] += vsi->num_xdp_txq; 3413 } 3414 3415 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3416 /* If MQPRIO is set, means channel code path, hence for main 3417 * VSI's, use TC as 1 3418 */ 3419 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3420 else 3421 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3422 vsi->tc_cfg.ena_tc, max_txqs); 3423 3424 if (status) { 3425 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3426 vsi->vsi_num, ice_stat_str(status)); 3427 if (init_vsi) { 3428 ret = -EIO; 3429 goto err_vectors; 3430 } else { 3431 return ice_schedule_reset(pf, ICE_RESET_PFR); 3432 } 3433 } 3434 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3435 kfree(coalesce); 3436 3437 return 0; 3438 3439 err_vectors: 3440 ice_vsi_free_q_vectors(vsi); 3441 err_rings: 3442 if (vsi->netdev) { 3443 vsi->current_netdev_flags = 0; 3444 unregister_netdev(vsi->netdev); 3445 free_netdev(vsi->netdev); 3446 vsi->netdev = NULL; 3447 } 3448 err_vsi: 3449 ice_vsi_clear(vsi); 3450 set_bit(ICE_RESET_FAILED, pf->state); 3451 kfree(coalesce); 3452 return ret; 3453 } 3454 3455 /** 3456 * ice_is_reset_in_progress - check for a reset in progress 3457 * @state: PF state field 3458 */ 3459 bool ice_is_reset_in_progress(unsigned long *state) 3460 { 3461 return test_bit(ICE_RESET_OICR_RECV, state) || 3462 test_bit(ICE_PFR_REQ, state) || 3463 test_bit(ICE_CORER_REQ, state) || 3464 test_bit(ICE_GLOBR_REQ, state); 3465 } 3466 3467 /** 3468 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3469 * @pf: pointer to the PF structure 3470 * @timeout: length of time to wait, in jiffies 3471 * 3472 * Wait (sleep) for a short time until the driver finishes cleaning up from 3473 * a device reset. The caller must be able to sleep. Use this to delay 3474 * operations that could fail while the driver is cleaning up after a device 3475 * reset. 3476 * 3477 * Returns 0 on success, -EBUSY if the reset is not finished within the 3478 * timeout, and -ERESTARTSYS if the thread was interrupted. 3479 */ 3480 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3481 { 3482 long ret; 3483 3484 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3485 !ice_is_reset_in_progress(pf->state), 3486 timeout); 3487 if (ret < 0) 3488 return ret; 3489 else if (!ret) 3490 return -EBUSY; 3491 else 3492 return 0; 3493 } 3494 3495 /** 3496 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3497 * @vsi: VSI being configured 3498 * @ctx: the context buffer returned from AQ VSI update command 3499 */ 3500 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3501 { 3502 vsi->info.mapping_flags = ctx->info.mapping_flags; 3503 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3504 sizeof(vsi->info.q_mapping)); 3505 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3506 sizeof(vsi->info.tc_mapping)); 3507 } 3508 3509 /** 3510 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3511 * @vsi: the VSI being configured 3512 * @ena_tc: TC map to be enabled 3513 */ 3514 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3515 { 3516 struct net_device *netdev = vsi->netdev; 3517 struct ice_pf *pf = vsi->back; 3518 int numtc = vsi->tc_cfg.numtc; 3519 struct ice_dcbx_cfg *dcbcfg; 3520 u8 netdev_tc; 3521 int i; 3522 3523 if (!netdev) 3524 return; 3525 3526 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3527 if (vsi->type == ICE_VSI_CHNL) 3528 return; 3529 3530 if (!ena_tc) { 3531 netdev_reset_tc(netdev); 3532 return; 3533 } 3534 3535 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3536 numtc = vsi->all_numtc; 3537 3538 if (netdev_set_num_tc(netdev, numtc)) 3539 return; 3540 3541 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3542 3543 ice_for_each_traffic_class(i) 3544 if (vsi->tc_cfg.ena_tc & BIT(i)) 3545 netdev_set_tc_queue(netdev, 3546 vsi->tc_cfg.tc_info[i].netdev_tc, 3547 vsi->tc_cfg.tc_info[i].qcount_tx, 3548 vsi->tc_cfg.tc_info[i].qoffset); 3549 /* setup TC queue map for CHNL TCs */ 3550 ice_for_each_chnl_tc(i) { 3551 if (!(vsi->all_enatc & BIT(i))) 3552 break; 3553 if (!vsi->mqprio_qopt.qopt.count[i]) 3554 break; 3555 netdev_set_tc_queue(netdev, i, 3556 vsi->mqprio_qopt.qopt.count[i], 3557 vsi->mqprio_qopt.qopt.offset[i]); 3558 } 3559 3560 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3561 return; 3562 3563 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3564 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3565 3566 /* Get the mapped netdev TC# for the UP */ 3567 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3568 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3569 } 3570 } 3571 3572 /** 3573 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3574 * @vsi: the VSI being configured, 3575 * @ctxt: VSI context structure 3576 * @ena_tc: number of traffic classes to enable 3577 * 3578 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3579 */ 3580 static void 3581 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3582 u8 ena_tc) 3583 { 3584 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3585 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3586 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3587 u8 netdev_tc = 0; 3588 int i; 3589 3590 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3591 3592 pow = order_base_2(tc0_qcount); 3593 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3594 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3595 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3596 3597 ice_for_each_traffic_class(i) { 3598 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3599 /* TC is not enabled */ 3600 vsi->tc_cfg.tc_info[i].qoffset = 0; 3601 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3602 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3603 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3604 ctxt->info.tc_mapping[i] = 0; 3605 continue; 3606 } 3607 3608 offset = vsi->mqprio_qopt.qopt.offset[i]; 3609 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3610 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3611 vsi->tc_cfg.tc_info[i].qoffset = offset; 3612 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3613 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3614 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3615 } 3616 3617 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3618 ice_for_each_chnl_tc(i) { 3619 if (!(vsi->all_enatc & BIT(i))) 3620 continue; 3621 offset = vsi->mqprio_qopt.qopt.offset[i]; 3622 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3623 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3624 } 3625 } 3626 3627 /* Set actual Tx/Rx queue pairs */ 3628 vsi->num_txq = offset + qcount_tx; 3629 vsi->num_rxq = offset + qcount_rx; 3630 3631 /* Setup queue TC[0].qmap for given VSI context */ 3632 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3633 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3634 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3635 3636 /* Find queue count available for channel VSIs and starting offset 3637 * for channel VSIs 3638 */ 3639 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3640 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3641 vsi->next_base_q = tc0_qcount; 3642 } 3643 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3644 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3645 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3646 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3647 } 3648 3649 /** 3650 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3651 * @vsi: VSI to be configured 3652 * @ena_tc: TC bitmap 3653 * 3654 * VSI queues expected to be quiesced before calling this function 3655 */ 3656 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3657 { 3658 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3659 struct ice_pf *pf = vsi->back; 3660 struct ice_vsi_ctx *ctx; 3661 enum ice_status status; 3662 struct device *dev; 3663 int i, ret = 0; 3664 u8 num_tc = 0; 3665 3666 dev = ice_pf_to_dev(pf); 3667 if (vsi->tc_cfg.ena_tc == ena_tc && 3668 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3669 return ret; 3670 3671 ice_for_each_traffic_class(i) { 3672 /* build bitmap of enabled TCs */ 3673 if (ena_tc & BIT(i)) 3674 num_tc++; 3675 /* populate max_txqs per TC */ 3676 max_txqs[i] = vsi->alloc_txq; 3677 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3678 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3679 */ 3680 if (vsi->type == ICE_VSI_CHNL && 3681 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3682 max_txqs[i] = vsi->num_txq; 3683 } 3684 3685 vsi->tc_cfg.ena_tc = ena_tc; 3686 vsi->tc_cfg.numtc = num_tc; 3687 3688 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3689 if (!ctx) 3690 return -ENOMEM; 3691 3692 ctx->vf_num = 0; 3693 ctx->info = vsi->info; 3694 3695 if (vsi->type == ICE_VSI_PF && 3696 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3697 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3698 else 3699 ice_vsi_setup_q_map(vsi, ctx); 3700 3701 /* must to indicate which section of VSI context are being modified */ 3702 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3703 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3704 if (status) { 3705 dev_info(dev, "Failed VSI Update\n"); 3706 ret = -EIO; 3707 goto out; 3708 } 3709 3710 if (vsi->type == ICE_VSI_PF && 3711 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3712 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, 3713 max_txqs); 3714 else 3715 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3716 vsi->tc_cfg.ena_tc, max_txqs); 3717 3718 if (status) { 3719 dev_err(dev, "VSI %d failed TC config, error %s\n", 3720 vsi->vsi_num, ice_stat_str(status)); 3721 ret = -EIO; 3722 goto out; 3723 } 3724 ice_vsi_update_q_map(vsi, ctx); 3725 vsi->info.valid_sections = 0; 3726 3727 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3728 out: 3729 kfree(ctx); 3730 return ret; 3731 } 3732 3733 /** 3734 * ice_update_ring_stats - Update ring statistics 3735 * @stats: stats to be updated 3736 * @pkts: number of processed packets 3737 * @bytes: number of processed bytes 3738 * 3739 * This function assumes that caller has acquired a u64_stats_sync lock. 3740 */ 3741 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3742 { 3743 stats->bytes += bytes; 3744 stats->pkts += pkts; 3745 } 3746 3747 /** 3748 * ice_update_tx_ring_stats - Update Tx ring specific counters 3749 * @tx_ring: ring to update 3750 * @pkts: number of processed packets 3751 * @bytes: number of processed bytes 3752 */ 3753 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3754 { 3755 u64_stats_update_begin(&tx_ring->syncp); 3756 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3757 u64_stats_update_end(&tx_ring->syncp); 3758 } 3759 3760 /** 3761 * ice_update_rx_ring_stats - Update Rx ring specific counters 3762 * @rx_ring: ring to update 3763 * @pkts: number of processed packets 3764 * @bytes: number of processed bytes 3765 */ 3766 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3767 { 3768 u64_stats_update_begin(&rx_ring->syncp); 3769 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3770 u64_stats_update_end(&rx_ring->syncp); 3771 } 3772 3773 /** 3774 * ice_status_to_errno - convert from enum ice_status to Linux errno 3775 * @err: ice_status value to convert 3776 */ 3777 int ice_status_to_errno(enum ice_status err) 3778 { 3779 switch (err) { 3780 case ICE_SUCCESS: 3781 return 0; 3782 case ICE_ERR_DOES_NOT_EXIST: 3783 return -ENOENT; 3784 case ICE_ERR_OUT_OF_RANGE: 3785 case ICE_ERR_AQ_ERROR: 3786 case ICE_ERR_AQ_TIMEOUT: 3787 case ICE_ERR_AQ_EMPTY: 3788 case ICE_ERR_AQ_FW_CRITICAL: 3789 return -EIO; 3790 case ICE_ERR_PARAM: 3791 case ICE_ERR_INVAL_SIZE: 3792 return -EINVAL; 3793 case ICE_ERR_NO_MEMORY: 3794 return -ENOMEM; 3795 case ICE_ERR_MAX_LIMIT: 3796 return -EAGAIN; 3797 case ICE_ERR_RESET_ONGOING: 3798 return -EBUSY; 3799 case ICE_ERR_AQ_FULL: 3800 return -ENOSPC; 3801 default: 3802 return -EINVAL; 3803 } 3804 } 3805 3806 /** 3807 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3808 * @sw: switch to check if its default forwarding VSI is free 3809 * 3810 * Return true if the default forwarding VSI is already being used, else returns 3811 * false signalling that it's available to use. 3812 */ 3813 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3814 { 3815 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3816 } 3817 3818 /** 3819 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3820 * @sw: switch for the default forwarding VSI to compare against 3821 * @vsi: VSI to compare against default forwarding VSI 3822 * 3823 * If this VSI passed in is the default forwarding VSI then return true, else 3824 * return false 3825 */ 3826 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3827 { 3828 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3829 } 3830 3831 /** 3832 * ice_set_dflt_vsi - set the default forwarding VSI 3833 * @sw: switch used to assign the default forwarding VSI 3834 * @vsi: VSI getting set as the default forwarding VSI on the switch 3835 * 3836 * If the VSI passed in is already the default VSI and it's enabled just return 3837 * success. 3838 * 3839 * If there is already a default VSI on the switch and it's enabled then return 3840 * -EEXIST since there can only be one default VSI per switch. 3841 * 3842 * Otherwise try to set the VSI passed in as the switch's default VSI and 3843 * return the result. 3844 */ 3845 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3846 { 3847 enum ice_status status; 3848 struct device *dev; 3849 3850 if (!sw || !vsi) 3851 return -EINVAL; 3852 3853 dev = ice_pf_to_dev(vsi->back); 3854 3855 /* the VSI passed in is already the default VSI */ 3856 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3857 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3858 vsi->vsi_num); 3859 return 0; 3860 } 3861 3862 /* another VSI is already the default VSI for this switch */ 3863 if (ice_is_dflt_vsi_in_use(sw)) { 3864 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3865 sw->dflt_vsi->vsi_num); 3866 return -EEXIST; 3867 } 3868 3869 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3870 if (status) { 3871 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3872 vsi->vsi_num, ice_stat_str(status)); 3873 return -EIO; 3874 } 3875 3876 sw->dflt_vsi = vsi; 3877 sw->dflt_vsi_ena = true; 3878 3879 return 0; 3880 } 3881 3882 /** 3883 * ice_clear_dflt_vsi - clear the default forwarding VSI 3884 * @sw: switch used to clear the default VSI 3885 * 3886 * If the switch has no default VSI or it's not enabled then return error. 3887 * 3888 * Otherwise try to clear the default VSI and return the result. 3889 */ 3890 int ice_clear_dflt_vsi(struct ice_sw *sw) 3891 { 3892 struct ice_vsi *dflt_vsi; 3893 enum ice_status status; 3894 struct device *dev; 3895 3896 if (!sw) 3897 return -EINVAL; 3898 3899 dev = ice_pf_to_dev(sw->pf); 3900 3901 dflt_vsi = sw->dflt_vsi; 3902 3903 /* there is no default VSI configured */ 3904 if (!ice_is_dflt_vsi_in_use(sw)) 3905 return -ENODEV; 3906 3907 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3908 ICE_FLTR_RX); 3909 if (status) { 3910 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3911 dflt_vsi->vsi_num, ice_stat_str(status)); 3912 return -EIO; 3913 } 3914 3915 sw->dflt_vsi = NULL; 3916 sw->dflt_vsi_ena = false; 3917 3918 return 0; 3919 } 3920 3921 /** 3922 * ice_get_link_speed_mbps - get link speed in Mbps 3923 * @vsi: the VSI whose link speed is being queried 3924 * 3925 * Return current VSI link speed and 0 if the speed is unknown. 3926 */ 3927 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3928 { 3929 switch (vsi->port_info->phy.link_info.link_speed) { 3930 case ICE_AQ_LINK_SPEED_100GB: 3931 return SPEED_100000; 3932 case ICE_AQ_LINK_SPEED_50GB: 3933 return SPEED_50000; 3934 case ICE_AQ_LINK_SPEED_40GB: 3935 return SPEED_40000; 3936 case ICE_AQ_LINK_SPEED_25GB: 3937 return SPEED_25000; 3938 case ICE_AQ_LINK_SPEED_20GB: 3939 return SPEED_20000; 3940 case ICE_AQ_LINK_SPEED_10GB: 3941 return SPEED_10000; 3942 case ICE_AQ_LINK_SPEED_5GB: 3943 return SPEED_5000; 3944 case ICE_AQ_LINK_SPEED_2500MB: 3945 return SPEED_2500; 3946 case ICE_AQ_LINK_SPEED_1000MB: 3947 return SPEED_1000; 3948 case ICE_AQ_LINK_SPEED_100MB: 3949 return SPEED_100; 3950 case ICE_AQ_LINK_SPEED_10MB: 3951 return SPEED_10; 3952 case ICE_AQ_LINK_SPEED_UNKNOWN: 3953 default: 3954 return 0; 3955 } 3956 } 3957 3958 /** 3959 * ice_get_link_speed_kbps - get link speed in Kbps 3960 * @vsi: the VSI whose link speed is being queried 3961 * 3962 * Return current VSI link speed and 0 if the speed is unknown. 3963 */ 3964 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3965 { 3966 int speed_mbps; 3967 3968 speed_mbps = ice_get_link_speed_mbps(vsi); 3969 3970 return speed_mbps * 1000; 3971 } 3972 3973 /** 3974 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3975 * @vsi: VSI to be configured 3976 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3977 * 3978 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3979 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3980 * on TC 0. 3981 */ 3982 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3983 { 3984 struct ice_pf *pf = vsi->back; 3985 enum ice_status status; 3986 struct device *dev; 3987 int speed; 3988 3989 dev = ice_pf_to_dev(pf); 3990 if (!vsi->port_info) { 3991 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3992 vsi->idx, vsi->type); 3993 return -EINVAL; 3994 } 3995 3996 speed = ice_get_link_speed_kbps(vsi); 3997 if (min_tx_rate > (u64)speed) { 3998 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3999 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4000 speed); 4001 return -EINVAL; 4002 } 4003 4004 /* Configure min BW for VSI limit */ 4005 if (min_tx_rate) { 4006 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4007 ICE_MIN_BW, min_tx_rate); 4008 if (status) { 4009 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4010 min_tx_rate, ice_vsi_type_str(vsi->type), 4011 vsi->idx); 4012 return -EIO; 4013 } 4014 4015 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4016 min_tx_rate, ice_vsi_type_str(vsi->type)); 4017 } else { 4018 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4019 vsi->idx, 0, 4020 ICE_MIN_BW); 4021 if (status) { 4022 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4023 ice_vsi_type_str(vsi->type), vsi->idx); 4024 return -EIO; 4025 } 4026 4027 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4028 ice_vsi_type_str(vsi->type), vsi->idx); 4029 } 4030 4031 return 0; 4032 } 4033 4034 /** 4035 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4036 * @vsi: VSI to be configured 4037 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4038 * 4039 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4040 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4041 * on TC 0. 4042 */ 4043 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4044 { 4045 struct ice_pf *pf = vsi->back; 4046 enum ice_status status; 4047 struct device *dev; 4048 int speed; 4049 4050 dev = ice_pf_to_dev(pf); 4051 if (!vsi->port_info) { 4052 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4053 vsi->idx, vsi->type); 4054 return -EINVAL; 4055 } 4056 4057 speed = ice_get_link_speed_kbps(vsi); 4058 if (max_tx_rate > (u64)speed) { 4059 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4060 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4061 speed); 4062 return -EINVAL; 4063 } 4064 4065 /* Configure max BW for VSI limit */ 4066 if (max_tx_rate) { 4067 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4068 ICE_MAX_BW, max_tx_rate); 4069 if (status) { 4070 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4071 max_tx_rate, ice_vsi_type_str(vsi->type), 4072 vsi->idx); 4073 return -EIO; 4074 } 4075 4076 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4077 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4078 } else { 4079 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4080 vsi->idx, 0, 4081 ICE_MAX_BW); 4082 if (status) { 4083 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4084 ice_vsi_type_str(vsi->type), vsi->idx); 4085 return -EIO; 4086 } 4087 4088 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4089 ice_vsi_type_str(vsi->type), vsi->idx); 4090 } 4091 4092 return 0; 4093 } 4094 4095 /** 4096 * ice_set_link - turn on/off physical link 4097 * @vsi: VSI to modify physical link on 4098 * @ena: turn on/off physical link 4099 */ 4100 int ice_set_link(struct ice_vsi *vsi, bool ena) 4101 { 4102 struct device *dev = ice_pf_to_dev(vsi->back); 4103 struct ice_port_info *pi = vsi->port_info; 4104 struct ice_hw *hw = pi->hw; 4105 enum ice_status status; 4106 4107 if (vsi->type != ICE_VSI_PF) 4108 return -EINVAL; 4109 4110 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4111 4112 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4113 * this is not a fatal error, so print a warning message and return 4114 * a success code. Return an error if FW returns an error code other 4115 * than ICE_AQ_RC_EMODE 4116 */ 4117 if (status == ICE_ERR_AQ_ERROR) { 4118 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4119 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 4120 (ena ? "ON" : "OFF"), ice_stat_str(status), 4121 ice_aq_str(hw->adminq.sq_last_status)); 4122 } else if (status) { 4123 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 4124 (ena ? "ON" : "OFF"), ice_stat_str(status), 4125 ice_aq_str(hw->adminq.sq_last_status)); 4126 return -EIO; 4127 } 4128 4129 return 0; 4130 } 4131 4132 /** 4133 * ice_is_feature_supported 4134 * @pf: pointer to the struct ice_pf instance 4135 * @f: feature enum to be checked 4136 * 4137 * returns true if feature is supported, false otherwise 4138 */ 4139 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4140 { 4141 if (f < 0 || f >= ICE_F_MAX) 4142 return false; 4143 4144 return test_bit(f, pf->features); 4145 } 4146 4147 /** 4148 * ice_set_feature_support 4149 * @pf: pointer to the struct ice_pf instance 4150 * @f: feature enum to set 4151 */ 4152 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4153 { 4154 if (f < 0 || f >= ICE_F_MAX) 4155 return; 4156 4157 set_bit(f, pf->features); 4158 } 4159 4160 /** 4161 * ice_clear_feature_support 4162 * @pf: pointer to the struct ice_pf instance 4163 * @f: feature enum to clear 4164 */ 4165 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4166 { 4167 if (f < 0 || f >= ICE_F_MAX) 4168 return; 4169 4170 clear_bit(f, pf->features); 4171 } 4172 4173 /** 4174 * ice_init_feature_support 4175 * @pf: pointer to the struct ice_pf instance 4176 * 4177 * called during init to setup supported feature 4178 */ 4179 void ice_init_feature_support(struct ice_pf *pf) 4180 { 4181 switch (pf->hw.device_id) { 4182 case ICE_DEV_ID_E810C_BACKPLANE: 4183 case ICE_DEV_ID_E810C_QSFP: 4184 case ICE_DEV_ID_E810C_SFP: 4185 ice_set_feature_support(pf, ICE_F_DSCP); 4186 if (ice_is_e810t(&pf->hw)) 4187 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4188 break; 4189 default: 4190 break; 4191 } 4192 } 4193 4194 /** 4195 * ice_vsi_update_security - update security block in VSI 4196 * @vsi: pointer to VSI structure 4197 * @fill: function pointer to fill ctx 4198 */ 4199 int 4200 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4201 { 4202 struct ice_vsi_ctx ctx = { 0 }; 4203 4204 ctx.info = vsi->info; 4205 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4206 fill(&ctx); 4207 4208 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4209 return -ENODEV; 4210 4211 vsi->info = ctx.info; 4212 return 0; 4213 } 4214 4215 /** 4216 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4217 * @ctx: pointer to VSI ctx structure 4218 */ 4219 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4220 { 4221 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4222 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4223 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4224 } 4225 4226 /** 4227 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4228 * @ctx: pointer to VSI ctx structure 4229 */ 4230 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4231 { 4232 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4233 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4234 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4235 } 4236 4237 /** 4238 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4239 * @ctx: pointer to VSI ctx structure 4240 */ 4241 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4242 { 4243 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4244 } 4245 4246 /** 4247 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4248 * @ctx: pointer to VSI ctx structure 4249 */ 4250 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4251 { 4252 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4253 } 4254