1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_dcb_lib.h" 9 10 /** 11 * ice_vsi_type_str - maps VSI type enum to string equivalents 12 * @vsi_type: VSI type enum 13 */ 14 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 15 { 16 switch (vsi_type) { 17 case ICE_VSI_PF: 18 return "ICE_VSI_PF"; 19 case ICE_VSI_VF: 20 return "ICE_VSI_VF"; 21 case ICE_VSI_LB: 22 return "ICE_VSI_LB"; 23 default: 24 return "unknown"; 25 } 26 } 27 28 /** 29 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 30 * @vsi: the VSI being configured 31 * @ena: start or stop the Rx rings 32 * 33 * First enable/disable all of the Rx rings, flush any remaining writes, and 34 * then verify that they have all been enabled/disabled successfully. This will 35 * let all of the register writes complete when enabling/disabling the Rx rings 36 * before waiting for the change in hardware to complete. 37 */ 38 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 39 { 40 int i, ret = 0; 41 42 for (i = 0; i < vsi->num_rxq; i++) 43 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 44 45 ice_flush(&vsi->back->hw); 46 47 for (i = 0; i < vsi->num_rxq; i++) { 48 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 49 if (ret) 50 break; 51 } 52 53 return ret; 54 } 55 56 /** 57 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 58 * @vsi: VSI pointer 59 * 60 * On error: returns error code (negative) 61 * On success: returns 0 62 */ 63 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 64 { 65 struct ice_pf *pf = vsi->back; 66 struct device *dev; 67 68 dev = ice_pf_to_dev(pf); 69 70 /* allocate memory for both Tx and Rx ring pointers */ 71 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 72 sizeof(*vsi->tx_rings), GFP_KERNEL); 73 if (!vsi->tx_rings) 74 return -ENOMEM; 75 76 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 77 sizeof(*vsi->rx_rings), GFP_KERNEL); 78 if (!vsi->rx_rings) 79 goto err_rings; 80 81 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 82 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 83 sizeof(*vsi->txq_map), GFP_KERNEL); 84 85 if (!vsi->txq_map) 86 goto err_txq_map; 87 88 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rxq_map), GFP_KERNEL); 90 if (!vsi->rxq_map) 91 goto err_rxq_map; 92 93 /* There is no need to allocate q_vectors for a loopback VSI. */ 94 if (vsi->type == ICE_VSI_LB) 95 return 0; 96 97 /* allocate memory for q_vector pointers */ 98 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 99 sizeof(*vsi->q_vectors), GFP_KERNEL); 100 if (!vsi->q_vectors) 101 goto err_vectors; 102 103 return 0; 104 105 err_vectors: 106 devm_kfree(dev, vsi->rxq_map); 107 err_rxq_map: 108 devm_kfree(dev, vsi->txq_map); 109 err_txq_map: 110 devm_kfree(dev, vsi->rx_rings); 111 err_rings: 112 devm_kfree(dev, vsi->tx_rings); 113 return -ENOMEM; 114 } 115 116 /** 117 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 118 * @vsi: the VSI being configured 119 */ 120 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 121 { 122 switch (vsi->type) { 123 case ICE_VSI_PF: 124 case ICE_VSI_LB: 125 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 126 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 127 break; 128 default: 129 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 130 vsi->type); 131 break; 132 } 133 } 134 135 /** 136 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 137 * @vsi: the VSI being configured 138 * @vf_id: ID of the VF being configured 139 * 140 * Return 0 on success and a negative value on error 141 */ 142 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 143 { 144 struct ice_pf *pf = vsi->back; 145 struct ice_vf *vf = NULL; 146 147 if (vsi->type == ICE_VSI_VF) 148 vsi->vf_id = vf_id; 149 150 switch (vsi->type) { 151 case ICE_VSI_PF: 152 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 153 num_online_cpus()); 154 if (vsi->req_txq) { 155 vsi->alloc_txq = vsi->req_txq; 156 vsi->num_txq = vsi->req_txq; 157 } 158 159 pf->num_lan_tx = vsi->alloc_txq; 160 161 /* only 1 Rx queue unless RSS is enabled */ 162 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 163 vsi->alloc_rxq = 1; 164 } else { 165 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 166 num_online_cpus()); 167 if (vsi->req_rxq) { 168 vsi->alloc_rxq = vsi->req_rxq; 169 vsi->num_rxq = vsi->req_rxq; 170 } 171 } 172 173 pf->num_lan_rx = vsi->alloc_rxq; 174 175 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 176 break; 177 case ICE_VSI_VF: 178 vf = &pf->vf[vsi->vf_id]; 179 vsi->alloc_txq = vf->num_vf_qs; 180 vsi->alloc_rxq = vf->num_vf_qs; 181 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 182 * data queue interrupts). Since vsi->num_q_vectors is number 183 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 184 * original vector count 185 */ 186 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 187 break; 188 case ICE_VSI_LB: 189 vsi->alloc_txq = 1; 190 vsi->alloc_rxq = 1; 191 break; 192 default: 193 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 194 break; 195 } 196 197 ice_vsi_set_num_desc(vsi); 198 } 199 200 /** 201 * ice_get_free_slot - get the next non-NULL location index in array 202 * @array: array to search 203 * @size: size of the array 204 * @curr: last known occupied index to be used as a search hint 205 * 206 * void * is being used to keep the functionality generic. This lets us use this 207 * function on any array of pointers. 208 */ 209 static int ice_get_free_slot(void *array, int size, int curr) 210 { 211 int **tmp_array = (int **)array; 212 int next; 213 214 if (curr < (size - 1) && !tmp_array[curr + 1]) { 215 next = curr + 1; 216 } else { 217 int i = 0; 218 219 while ((i < size) && (tmp_array[i])) 220 i++; 221 if (i == size) 222 next = ICE_NO_VSI; 223 else 224 next = i; 225 } 226 return next; 227 } 228 229 /** 230 * ice_vsi_delete - delete a VSI from the switch 231 * @vsi: pointer to VSI being removed 232 */ 233 void ice_vsi_delete(struct ice_vsi *vsi) 234 { 235 struct ice_pf *pf = vsi->back; 236 struct ice_vsi_ctx *ctxt; 237 enum ice_status status; 238 239 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 240 if (!ctxt) 241 return; 242 243 if (vsi->type == ICE_VSI_VF) 244 ctxt->vf_num = vsi->vf_id; 245 ctxt->vsi_num = vsi->vsi_num; 246 247 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 248 249 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 250 if (status) 251 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 252 vsi->vsi_num, status); 253 254 kfree(ctxt); 255 } 256 257 /** 258 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 259 * @vsi: pointer to VSI being cleared 260 */ 261 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 262 { 263 struct ice_pf *pf = vsi->back; 264 struct device *dev; 265 266 dev = ice_pf_to_dev(pf); 267 268 /* free the ring and vector containers */ 269 if (vsi->q_vectors) { 270 devm_kfree(dev, vsi->q_vectors); 271 vsi->q_vectors = NULL; 272 } 273 if (vsi->tx_rings) { 274 devm_kfree(dev, vsi->tx_rings); 275 vsi->tx_rings = NULL; 276 } 277 if (vsi->rx_rings) { 278 devm_kfree(dev, vsi->rx_rings); 279 vsi->rx_rings = NULL; 280 } 281 if (vsi->txq_map) { 282 devm_kfree(dev, vsi->txq_map); 283 vsi->txq_map = NULL; 284 } 285 if (vsi->rxq_map) { 286 devm_kfree(dev, vsi->rxq_map); 287 vsi->rxq_map = NULL; 288 } 289 } 290 291 /** 292 * ice_vsi_clear - clean up and deallocate the provided VSI 293 * @vsi: pointer to VSI being cleared 294 * 295 * This deallocates the VSI's queue resources, removes it from the PF's 296 * VSI array if necessary, and deallocates the VSI 297 * 298 * Returns 0 on success, negative on failure 299 */ 300 int ice_vsi_clear(struct ice_vsi *vsi) 301 { 302 struct ice_pf *pf = NULL; 303 struct device *dev; 304 305 if (!vsi) 306 return 0; 307 308 if (!vsi->back) 309 return -EINVAL; 310 311 pf = vsi->back; 312 dev = ice_pf_to_dev(pf); 313 314 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 315 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 316 return -EINVAL; 317 } 318 319 mutex_lock(&pf->sw_mutex); 320 /* updates the PF for this cleared VSI */ 321 322 pf->vsi[vsi->idx] = NULL; 323 if (vsi->idx < pf->next_vsi) 324 pf->next_vsi = vsi->idx; 325 326 ice_vsi_free_arrays(vsi); 327 mutex_unlock(&pf->sw_mutex); 328 devm_kfree(dev, vsi); 329 330 return 0; 331 } 332 333 /** 334 * ice_msix_clean_rings - MSIX mode Interrupt Handler 335 * @irq: interrupt number 336 * @data: pointer to a q_vector 337 */ 338 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 339 { 340 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 341 342 if (!q_vector->tx.ring && !q_vector->rx.ring) 343 return IRQ_HANDLED; 344 345 napi_schedule(&q_vector->napi); 346 347 return IRQ_HANDLED; 348 } 349 350 /** 351 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 352 * @pf: board private structure 353 * @vsi_type: type of VSI 354 * @vf_id: ID of the VF being configured 355 * 356 * returns a pointer to a VSI on success, NULL on failure. 357 */ 358 static struct ice_vsi * 359 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 360 { 361 struct device *dev = ice_pf_to_dev(pf); 362 struct ice_vsi *vsi = NULL; 363 364 /* Need to protect the allocation of the VSIs at the PF level */ 365 mutex_lock(&pf->sw_mutex); 366 367 /* If we have already allocated our maximum number of VSIs, 368 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 369 * is available to be populated 370 */ 371 if (pf->next_vsi == ICE_NO_VSI) { 372 dev_dbg(dev, "out of VSI slots!\n"); 373 goto unlock_pf; 374 } 375 376 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 377 if (!vsi) 378 goto unlock_pf; 379 380 vsi->type = vsi_type; 381 vsi->back = pf; 382 set_bit(__ICE_DOWN, vsi->state); 383 384 vsi->idx = pf->next_vsi; 385 386 if (vsi_type == ICE_VSI_VF) 387 ice_vsi_set_num_qs(vsi, vf_id); 388 else 389 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 390 391 switch (vsi->type) { 392 case ICE_VSI_PF: 393 if (ice_vsi_alloc_arrays(vsi)) 394 goto err_rings; 395 396 /* Setup default MSIX irq handler for VSI */ 397 vsi->irq_handler = ice_msix_clean_rings; 398 break; 399 case ICE_VSI_VF: 400 if (ice_vsi_alloc_arrays(vsi)) 401 goto err_rings; 402 break; 403 case ICE_VSI_LB: 404 if (ice_vsi_alloc_arrays(vsi)) 405 goto err_rings; 406 break; 407 default: 408 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 409 goto unlock_pf; 410 } 411 412 /* fill VSI slot in the PF struct */ 413 pf->vsi[pf->next_vsi] = vsi; 414 415 /* prepare pf->next_vsi for next use */ 416 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 417 pf->next_vsi); 418 goto unlock_pf; 419 420 err_rings: 421 devm_kfree(dev, vsi); 422 vsi = NULL; 423 unlock_pf: 424 mutex_unlock(&pf->sw_mutex); 425 return vsi; 426 } 427 428 /** 429 * ice_vsi_get_qs - Assign queues from PF to VSI 430 * @vsi: the VSI to assign queues to 431 * 432 * Returns 0 on success and a negative value on error 433 */ 434 static int ice_vsi_get_qs(struct ice_vsi *vsi) 435 { 436 struct ice_pf *pf = vsi->back; 437 struct ice_qs_cfg tx_qs_cfg = { 438 .qs_mutex = &pf->avail_q_mutex, 439 .pf_map = pf->avail_txqs, 440 .pf_map_size = pf->max_pf_txqs, 441 .q_count = vsi->alloc_txq, 442 .scatter_count = ICE_MAX_SCATTER_TXQS, 443 .vsi_map = vsi->txq_map, 444 .vsi_map_offset = 0, 445 .mapping_mode = ICE_VSI_MAP_CONTIG 446 }; 447 struct ice_qs_cfg rx_qs_cfg = { 448 .qs_mutex = &pf->avail_q_mutex, 449 .pf_map = pf->avail_rxqs, 450 .pf_map_size = pf->max_pf_rxqs, 451 .q_count = vsi->alloc_rxq, 452 .scatter_count = ICE_MAX_SCATTER_RXQS, 453 .vsi_map = vsi->rxq_map, 454 .vsi_map_offset = 0, 455 .mapping_mode = ICE_VSI_MAP_CONTIG 456 }; 457 int ret; 458 459 ret = __ice_vsi_get_qs(&tx_qs_cfg); 460 if (ret) 461 return ret; 462 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 463 464 ret = __ice_vsi_get_qs(&rx_qs_cfg); 465 if (ret) 466 return ret; 467 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 468 469 return 0; 470 } 471 472 /** 473 * ice_vsi_put_qs - Release queues from VSI to PF 474 * @vsi: the VSI that is going to release queues 475 */ 476 void ice_vsi_put_qs(struct ice_vsi *vsi) 477 { 478 struct ice_pf *pf = vsi->back; 479 int i; 480 481 mutex_lock(&pf->avail_q_mutex); 482 483 for (i = 0; i < vsi->alloc_txq; i++) { 484 clear_bit(vsi->txq_map[i], pf->avail_txqs); 485 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 486 } 487 488 for (i = 0; i < vsi->alloc_rxq; i++) { 489 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 490 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 491 } 492 493 mutex_unlock(&pf->avail_q_mutex); 494 } 495 496 /** 497 * ice_is_safe_mode 498 * @pf: pointer to the PF struct 499 * 500 * returns true if driver is in safe mode, false otherwise 501 */ 502 bool ice_is_safe_mode(struct ice_pf *pf) 503 { 504 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 505 } 506 507 /** 508 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 509 * @vsi: the VSI being cleaned up 510 * 511 * This function deletes RSS input set for all flows that were configured 512 * for this VSI 513 */ 514 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 515 { 516 struct ice_pf *pf = vsi->back; 517 enum ice_status status; 518 519 if (ice_is_safe_mode(pf)) 520 return; 521 522 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 523 if (status) 524 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 525 vsi->vsi_num, status); 526 } 527 528 /** 529 * ice_rss_clean - Delete RSS related VSI structures and configuration 530 * @vsi: the VSI being removed 531 */ 532 static void ice_rss_clean(struct ice_vsi *vsi) 533 { 534 struct ice_pf *pf = vsi->back; 535 struct device *dev; 536 537 dev = ice_pf_to_dev(pf); 538 539 if (vsi->rss_hkey_user) 540 devm_kfree(dev, vsi->rss_hkey_user); 541 if (vsi->rss_lut_user) 542 devm_kfree(dev, vsi->rss_lut_user); 543 544 ice_vsi_clean_rss_flow_fld(vsi); 545 /* remove RSS replay list */ 546 if (!ice_is_safe_mode(pf)) 547 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 548 } 549 550 /** 551 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 552 * @vsi: the VSI being configured 553 */ 554 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 555 { 556 struct ice_hw_common_caps *cap; 557 struct ice_pf *pf = vsi->back; 558 559 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 560 vsi->rss_size = 1; 561 return; 562 } 563 564 cap = &pf->hw.func_caps.common_cap; 565 switch (vsi->type) { 566 case ICE_VSI_PF: 567 /* PF VSI will inherit RSS instance of PF */ 568 vsi->rss_table_size = cap->rss_table_size; 569 vsi->rss_size = min_t(int, num_online_cpus(), 570 BIT(cap->rss_table_entry_width)); 571 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 572 break; 573 case ICE_VSI_VF: 574 /* VF VSI will get a small RSS table. 575 * For VSI_LUT, LUT size should be set to 64 bytes. 576 */ 577 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 578 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 579 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 580 break; 581 case ICE_VSI_LB: 582 break; 583 default: 584 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", 585 vsi->type); 586 break; 587 } 588 } 589 590 /** 591 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 592 * @ctxt: the VSI context being set 593 * 594 * This initializes a default VSI context for all sections except the Queues. 595 */ 596 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 597 { 598 u32 table = 0; 599 600 memset(&ctxt->info, 0, sizeof(ctxt->info)); 601 /* VSI's should be allocated from shared pool */ 602 ctxt->alloc_from_pool = true; 603 /* Src pruning enabled by default */ 604 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 605 /* Traffic from VSI can be sent to LAN */ 606 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 607 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 608 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 609 * packets untagged/tagged. 610 */ 611 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 612 ICE_AQ_VSI_VLAN_MODE_M) >> 613 ICE_AQ_VSI_VLAN_MODE_S); 614 /* Have 1:1 UP mapping for both ingress/egress tables */ 615 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 616 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 617 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 618 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 619 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 620 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 621 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 622 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 623 ctxt->info.ingress_table = cpu_to_le32(table); 624 ctxt->info.egress_table = cpu_to_le32(table); 625 /* Have 1:1 UP mapping for outer to inner UP table */ 626 ctxt->info.outer_up_table = cpu_to_le32(table); 627 /* No Outer tag support outer_tag_flags remains to zero */ 628 } 629 630 /** 631 * ice_vsi_setup_q_map - Setup a VSI queue map 632 * @vsi: the VSI being configured 633 * @ctxt: VSI context structure 634 */ 635 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 636 { 637 u16 offset = 0, qmap = 0, tx_count = 0; 638 u16 qcount_tx = vsi->alloc_txq; 639 u16 qcount_rx = vsi->alloc_rxq; 640 u16 tx_numq_tc, rx_numq_tc; 641 u16 pow = 0, max_rss = 0; 642 bool ena_tc0 = false; 643 u8 netdev_tc = 0; 644 int i; 645 646 /* at least TC0 should be enabled by default */ 647 if (vsi->tc_cfg.numtc) { 648 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 649 ena_tc0 = true; 650 } else { 651 ena_tc0 = true; 652 } 653 654 if (ena_tc0) { 655 vsi->tc_cfg.numtc++; 656 vsi->tc_cfg.ena_tc |= 1; 657 } 658 659 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 660 if (!rx_numq_tc) 661 rx_numq_tc = 1; 662 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 663 if (!tx_numq_tc) 664 tx_numq_tc = 1; 665 666 /* TC mapping is a function of the number of Rx queues assigned to the 667 * VSI for each traffic class and the offset of these queues. 668 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 669 * queues allocated to TC0. No:of queues is a power-of-2. 670 * 671 * If TC is not enabled, the queue offset is set to 0, and allocate one 672 * queue, this way, traffic for the given TC will be sent to the default 673 * queue. 674 * 675 * Setup number and offset of Rx queues for all TCs for the VSI 676 */ 677 678 qcount_rx = rx_numq_tc; 679 680 /* qcount will change if RSS is enabled */ 681 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 682 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 683 if (vsi->type == ICE_VSI_PF) 684 max_rss = ICE_MAX_LG_RSS_QS; 685 else 686 max_rss = ICE_MAX_RSS_QS_PER_VF; 687 qcount_rx = min_t(int, rx_numq_tc, max_rss); 688 if (!vsi->req_rxq) 689 qcount_rx = min_t(int, qcount_rx, 690 vsi->rss_size); 691 } 692 } 693 694 /* find the (rounded up) power-of-2 of qcount */ 695 pow = order_base_2(qcount_rx); 696 697 ice_for_each_traffic_class(i) { 698 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 699 /* TC is not enabled */ 700 vsi->tc_cfg.tc_info[i].qoffset = 0; 701 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 702 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 703 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 704 ctxt->info.tc_mapping[i] = 0; 705 continue; 706 } 707 708 /* TC is enabled */ 709 vsi->tc_cfg.tc_info[i].qoffset = offset; 710 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 711 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 712 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 713 714 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 715 ICE_AQ_VSI_TC_Q_OFFSET_M) | 716 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 717 ICE_AQ_VSI_TC_Q_NUM_M); 718 offset += qcount_rx; 719 tx_count += tx_numq_tc; 720 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 721 } 722 723 /* if offset is non-zero, means it is calculated correctly based on 724 * enabled TCs for a given VSI otherwise qcount_rx will always 725 * be correct and non-zero because it is based off - VSI's 726 * allocated Rx queues which is at least 1 (hence qcount_tx will be 727 * at least 1) 728 */ 729 if (offset) 730 vsi->num_rxq = offset; 731 else 732 vsi->num_rxq = qcount_rx; 733 734 vsi->num_txq = tx_count; 735 736 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 737 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 738 /* since there is a chance that num_rxq could have been changed 739 * in the above for loop, make num_txq equal to num_rxq. 740 */ 741 vsi->num_txq = vsi->num_rxq; 742 } 743 744 /* Rx queue mapping */ 745 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 746 /* q_mapping buffer holds the info for the first queue allocated for 747 * this VSI in the PF space and also the number of queues associated 748 * with this VSI. 749 */ 750 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 751 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 752 } 753 754 /** 755 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 756 * @ctxt: the VSI context being set 757 * @vsi: the VSI being configured 758 */ 759 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 760 { 761 u8 lut_type, hash_type; 762 struct device *dev; 763 struct ice_pf *pf; 764 765 pf = vsi->back; 766 dev = ice_pf_to_dev(pf); 767 768 switch (vsi->type) { 769 case ICE_VSI_PF: 770 /* PF VSI will inherit RSS instance of PF */ 771 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 772 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 773 break; 774 case ICE_VSI_VF: 775 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 776 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 777 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 778 break; 779 case ICE_VSI_LB: 780 dev_dbg(dev, "Unsupported VSI type %s\n", 781 ice_vsi_type_str(vsi->type)); 782 return; 783 default: 784 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 785 return; 786 } 787 788 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 789 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 790 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 791 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 792 } 793 794 /** 795 * ice_vsi_init - Create and initialize a VSI 796 * @vsi: the VSI being configured 797 * @init_vsi: is this call creating a VSI 798 * 799 * This initializes a VSI context depending on the VSI type to be added and 800 * passes it down to the add_vsi aq command to create a new VSI. 801 */ 802 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 803 { 804 struct ice_pf *pf = vsi->back; 805 struct ice_hw *hw = &pf->hw; 806 struct ice_vsi_ctx *ctxt; 807 struct device *dev; 808 int ret = 0; 809 810 dev = ice_pf_to_dev(pf); 811 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 812 if (!ctxt) 813 return -ENOMEM; 814 815 ctxt->info = vsi->info; 816 switch (vsi->type) { 817 case ICE_VSI_LB: 818 case ICE_VSI_PF: 819 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 820 break; 821 case ICE_VSI_VF: 822 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 823 /* VF number here is the absolute VF number (0-255) */ 824 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 825 break; 826 default: 827 ret = -ENODEV; 828 goto out; 829 } 830 831 ice_set_dflt_vsi_ctx(ctxt); 832 /* if the switch is in VEB mode, allow VSI loopback */ 833 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 834 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 835 836 /* Set LUT type and HASH type if RSS is enabled */ 837 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 838 ice_set_rss_vsi_ctx(ctxt, vsi); 839 /* if updating VSI context, make sure to set valid_section: 840 * to indicate which section of VSI context being updated 841 */ 842 if (!init_vsi) 843 ctxt->info.valid_sections |= 844 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 845 } 846 847 ctxt->info.sw_id = vsi->port_info->sw_id; 848 ice_vsi_setup_q_map(vsi, ctxt); 849 if (!init_vsi) /* means VSI being updated */ 850 /* must to indicate which section of VSI context are 851 * being modified 852 */ 853 ctxt->info.valid_sections |= 854 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 855 856 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 857 * respectively 858 */ 859 if (vsi->type == ICE_VSI_VF) { 860 ctxt->info.valid_sections |= 861 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 862 if (pf->vf[vsi->vf_id].spoofchk) { 863 ctxt->info.sec_flags |= 864 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 865 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 866 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 867 } else { 868 ctxt->info.sec_flags &= 869 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 870 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 871 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 872 } 873 } 874 875 /* Allow control frames out of main VSI */ 876 if (vsi->type == ICE_VSI_PF) { 877 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 878 ctxt->info.valid_sections |= 879 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 880 } 881 882 if (init_vsi) { 883 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 884 if (ret) { 885 dev_err(dev, "Add VSI failed, err %d\n", ret); 886 ret = -EIO; 887 goto out; 888 } 889 } else { 890 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 891 if (ret) { 892 dev_err(dev, "Update VSI failed, err %d\n", ret); 893 ret = -EIO; 894 goto out; 895 } 896 } 897 898 /* keep context for update VSI operations */ 899 vsi->info = ctxt->info; 900 901 /* record VSI number returned */ 902 vsi->vsi_num = ctxt->vsi_num; 903 904 out: 905 kfree(ctxt); 906 return ret; 907 } 908 909 /** 910 * ice_free_res - free a block of resources 911 * @res: pointer to the resource 912 * @index: starting index previously returned by ice_get_res 913 * @id: identifier to track owner 914 * 915 * Returns number of resources freed 916 */ 917 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 918 { 919 int count = 0; 920 int i; 921 922 if (!res || index >= res->end) 923 return -EINVAL; 924 925 id |= ICE_RES_VALID_BIT; 926 for (i = index; i < res->end && res->list[i] == id; i++) { 927 res->list[i] = 0; 928 count++; 929 } 930 931 return count; 932 } 933 934 /** 935 * ice_search_res - Search the tracker for a block of resources 936 * @res: pointer to the resource 937 * @needed: size of the block needed 938 * @id: identifier to track owner 939 * 940 * Returns the base item index of the block, or -ENOMEM for error 941 */ 942 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 943 { 944 int start = 0, end = 0; 945 946 if (needed > res->end) 947 return -ENOMEM; 948 949 id |= ICE_RES_VALID_BIT; 950 951 do { 952 /* skip already allocated entries */ 953 if (res->list[end++] & ICE_RES_VALID_BIT) { 954 start = end; 955 if ((start + needed) > res->end) 956 break; 957 } 958 959 if (end == (start + needed)) { 960 int i = start; 961 962 /* there was enough, so assign it to the requestor */ 963 while (i != end) 964 res->list[i++] = id; 965 966 return start; 967 } 968 } while (end < res->end); 969 970 return -ENOMEM; 971 } 972 973 /** 974 * ice_get_free_res_count - Get free count from a resource tracker 975 * @res: Resource tracker instance 976 */ 977 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 978 { 979 u16 i, count = 0; 980 981 for (i = 0; i < res->end; i++) 982 if (!(res->list[i] & ICE_RES_VALID_BIT)) 983 count++; 984 985 return count; 986 } 987 988 /** 989 * ice_get_res - get a block of resources 990 * @pf: board private structure 991 * @res: pointer to the resource 992 * @needed: size of the block needed 993 * @id: identifier to track owner 994 * 995 * Returns the base item index of the block, or negative for error 996 */ 997 int 998 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 999 { 1000 if (!res || !pf) 1001 return -EINVAL; 1002 1003 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1004 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1005 needed, res->num_entries, id); 1006 return -EINVAL; 1007 } 1008 1009 return ice_search_res(res, needed, id); 1010 } 1011 1012 /** 1013 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1014 * @vsi: ptr to the VSI 1015 * 1016 * This should only be called after ice_vsi_alloc() which allocates the 1017 * corresponding SW VSI structure and initializes num_queue_pairs for the 1018 * newly allocated VSI. 1019 * 1020 * Returns 0 on success or negative on failure 1021 */ 1022 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1023 { 1024 struct ice_pf *pf = vsi->back; 1025 struct device *dev; 1026 u16 num_q_vectors; 1027 1028 dev = ice_pf_to_dev(pf); 1029 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1030 if (vsi->type == ICE_VSI_VF) 1031 return 0; 1032 1033 if (vsi->base_vector) { 1034 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1035 vsi->vsi_num, vsi->base_vector); 1036 return -EEXIST; 1037 } 1038 1039 num_q_vectors = vsi->num_q_vectors; 1040 /* reserve slots from OS requested IRQs */ 1041 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1042 vsi->idx); 1043 if (vsi->base_vector < 0) { 1044 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1045 ice_get_free_res_count(pf->irq_tracker), 1046 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1047 return -ENOENT; 1048 } 1049 pf->num_avail_sw_msix -= num_q_vectors; 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1056 * @vsi: the VSI having rings deallocated 1057 */ 1058 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1059 { 1060 int i; 1061 1062 if (vsi->tx_rings) { 1063 for (i = 0; i < vsi->alloc_txq; i++) { 1064 if (vsi->tx_rings[i]) { 1065 kfree_rcu(vsi->tx_rings[i], rcu); 1066 vsi->tx_rings[i] = NULL; 1067 } 1068 } 1069 } 1070 if (vsi->rx_rings) { 1071 for (i = 0; i < vsi->alloc_rxq; i++) { 1072 if (vsi->rx_rings[i]) { 1073 kfree_rcu(vsi->rx_rings[i], rcu); 1074 vsi->rx_rings[i] = NULL; 1075 } 1076 } 1077 } 1078 } 1079 1080 /** 1081 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1082 * @vsi: VSI which is having rings allocated 1083 */ 1084 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1085 { 1086 struct ice_pf *pf = vsi->back; 1087 struct device *dev; 1088 int i; 1089 1090 dev = ice_pf_to_dev(pf); 1091 /* Allocate Tx rings */ 1092 for (i = 0; i < vsi->alloc_txq; i++) { 1093 struct ice_ring *ring; 1094 1095 /* allocate with kzalloc(), free with kfree_rcu() */ 1096 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1097 1098 if (!ring) 1099 goto err_out; 1100 1101 ring->q_index = i; 1102 ring->reg_idx = vsi->txq_map[i]; 1103 ring->ring_active = false; 1104 ring->vsi = vsi; 1105 ring->dev = dev; 1106 ring->count = vsi->num_tx_desc; 1107 vsi->tx_rings[i] = ring; 1108 } 1109 1110 /* Allocate Rx rings */ 1111 for (i = 0; i < vsi->alloc_rxq; i++) { 1112 struct ice_ring *ring; 1113 1114 /* allocate with kzalloc(), free with kfree_rcu() */ 1115 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1116 if (!ring) 1117 goto err_out; 1118 1119 ring->q_index = i; 1120 ring->reg_idx = vsi->rxq_map[i]; 1121 ring->ring_active = false; 1122 ring->vsi = vsi; 1123 ring->netdev = vsi->netdev; 1124 ring->dev = dev; 1125 ring->count = vsi->num_rx_desc; 1126 vsi->rx_rings[i] = ring; 1127 } 1128 1129 return 0; 1130 1131 err_out: 1132 ice_vsi_clear_rings(vsi); 1133 return -ENOMEM; 1134 } 1135 1136 /** 1137 * ice_vsi_manage_rss_lut - disable/enable RSS 1138 * @vsi: the VSI being changed 1139 * @ena: boolean value indicating if this is an enable or disable request 1140 * 1141 * In the event of disable request for RSS, this function will zero out RSS 1142 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1143 * LUT. 1144 */ 1145 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1146 { 1147 int err = 0; 1148 u8 *lut; 1149 1150 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1151 if (!lut) 1152 return -ENOMEM; 1153 1154 if (ena) { 1155 if (vsi->rss_lut_user) 1156 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1157 else 1158 ice_fill_rss_lut(lut, vsi->rss_table_size, 1159 vsi->rss_size); 1160 } 1161 1162 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1163 kfree(lut); 1164 return err; 1165 } 1166 1167 /** 1168 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1169 * @vsi: VSI to be configured 1170 */ 1171 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1172 { 1173 struct ice_aqc_get_set_rss_keys *key; 1174 struct ice_pf *pf = vsi->back; 1175 enum ice_status status; 1176 struct device *dev; 1177 int err = 0; 1178 u8 *lut; 1179 1180 dev = ice_pf_to_dev(pf); 1181 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1182 1183 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1184 if (!lut) 1185 return -ENOMEM; 1186 1187 if (vsi->rss_lut_user) 1188 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1189 else 1190 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1191 1192 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1193 vsi->rss_table_size); 1194 1195 if (status) { 1196 dev_err(dev, "set_rss_lut failed, error %d\n", status); 1197 err = -EIO; 1198 goto ice_vsi_cfg_rss_exit; 1199 } 1200 1201 key = kzalloc(sizeof(*key), GFP_KERNEL); 1202 if (!key) { 1203 err = -ENOMEM; 1204 goto ice_vsi_cfg_rss_exit; 1205 } 1206 1207 if (vsi->rss_hkey_user) 1208 memcpy(key, 1209 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1210 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1211 else 1212 netdev_rss_key_fill((void *)key, 1213 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1214 1215 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1216 1217 if (status) { 1218 dev_err(dev, "set_rss_key failed, error %d\n", status); 1219 err = -EIO; 1220 } 1221 1222 kfree(key); 1223 ice_vsi_cfg_rss_exit: 1224 kfree(lut); 1225 return err; 1226 } 1227 1228 /** 1229 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1230 * @vsi: VSI to be configured 1231 * 1232 * This function will only be called during the VF VSI setup. Upon successful 1233 * completion of package download, this function will configure default RSS 1234 * input sets for VF VSI. 1235 */ 1236 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1237 { 1238 struct ice_pf *pf = vsi->back; 1239 enum ice_status status; 1240 struct device *dev; 1241 1242 dev = ice_pf_to_dev(pf); 1243 if (ice_is_safe_mode(pf)) { 1244 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1245 vsi->vsi_num); 1246 return; 1247 } 1248 1249 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1250 if (status) 1251 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1252 vsi->vsi_num, status); 1253 } 1254 1255 /** 1256 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1257 * @vsi: VSI to be configured 1258 * 1259 * This function will only be called after successful download package call 1260 * during initialization of PF. Since the downloaded package will erase the 1261 * RSS section, this function will configure RSS input sets for different 1262 * flow types. The last profile added has the highest priority, therefore 2 1263 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1264 * (i.e. IPv4 src/dst TCP src/dst port). 1265 */ 1266 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1267 { 1268 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1269 struct ice_pf *pf = vsi->back; 1270 struct ice_hw *hw = &pf->hw; 1271 enum ice_status status; 1272 struct device *dev; 1273 1274 dev = ice_pf_to_dev(pf); 1275 if (ice_is_safe_mode(pf)) { 1276 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1277 vsi_num); 1278 return; 1279 } 1280 /* configure RSS for IPv4 with input set IP src/dst */ 1281 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1282 ICE_FLOW_SEG_HDR_IPV4); 1283 if (status) 1284 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1285 vsi_num, status); 1286 1287 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1288 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1289 ICE_FLOW_SEG_HDR_IPV6); 1290 if (status) 1291 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1292 vsi_num, status); 1293 1294 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1295 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1296 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1297 if (status) 1298 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1299 vsi_num, status); 1300 1301 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1302 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1303 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1304 if (status) 1305 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1306 vsi_num, status); 1307 1308 /* configure RSS for sctp4 with input set IP src/dst */ 1309 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1310 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1311 if (status) 1312 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1313 vsi_num, status); 1314 1315 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1316 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1317 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1318 if (status) 1319 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1320 vsi_num, status); 1321 1322 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1323 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1324 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1325 if (status) 1326 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1327 vsi_num, status); 1328 1329 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1330 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1331 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1332 if (status) 1333 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1334 vsi_num, status); 1335 } 1336 1337 /** 1338 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1339 * @vsi: the VSI to be forwarded to 1340 * @add_list: pointer to the list which contains MAC filter entries 1341 * @macaddr: the MAC address to be added. 1342 * 1343 * Adds MAC address filter entry to the temp list 1344 * 1345 * Returns 0 on success or ENOMEM on failure. 1346 */ 1347 int 1348 ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1349 const u8 *macaddr) 1350 { 1351 struct ice_fltr_list_entry *tmp; 1352 struct ice_pf *pf = vsi->back; 1353 1354 tmp = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*tmp), GFP_ATOMIC); 1355 if (!tmp) 1356 return -ENOMEM; 1357 1358 tmp->fltr_info.flag = ICE_FLTR_TX; 1359 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1360 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1361 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1362 tmp->fltr_info.vsi_handle = vsi->idx; 1363 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1364 1365 INIT_LIST_HEAD(&tmp->list_entry); 1366 list_add(&tmp->list_entry, add_list); 1367 1368 return 0; 1369 } 1370 1371 /** 1372 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1373 * @vsi: the VSI to be updated 1374 */ 1375 void ice_update_eth_stats(struct ice_vsi *vsi) 1376 { 1377 struct ice_eth_stats *prev_es, *cur_es; 1378 struct ice_hw *hw = &vsi->back->hw; 1379 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1380 1381 prev_es = &vsi->eth_stats_prev; 1382 cur_es = &vsi->eth_stats; 1383 1384 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1385 &prev_es->rx_bytes, &cur_es->rx_bytes); 1386 1387 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1388 &prev_es->rx_unicast, &cur_es->rx_unicast); 1389 1390 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1391 &prev_es->rx_multicast, &cur_es->rx_multicast); 1392 1393 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1394 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1395 1396 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1397 &prev_es->rx_discards, &cur_es->rx_discards); 1398 1399 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1400 &prev_es->tx_bytes, &cur_es->tx_bytes); 1401 1402 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1403 &prev_es->tx_unicast, &cur_es->tx_unicast); 1404 1405 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1406 &prev_es->tx_multicast, &cur_es->tx_multicast); 1407 1408 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1409 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1410 1411 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1412 &prev_es->tx_errors, &cur_es->tx_errors); 1413 1414 vsi->stat_offsets_loaded = true; 1415 } 1416 1417 /** 1418 * ice_free_fltr_list - free filter lists helper 1419 * @dev: pointer to the device struct 1420 * @h: pointer to the list head to be freed 1421 * 1422 * Helper function to free filter lists previously created using 1423 * ice_add_mac_to_list 1424 */ 1425 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1426 { 1427 struct ice_fltr_list_entry *e, *tmp; 1428 1429 list_for_each_entry_safe(e, tmp, h, list_entry) { 1430 list_del(&e->list_entry); 1431 devm_kfree(dev, e); 1432 } 1433 } 1434 1435 /** 1436 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1437 * @vsi: the VSI being configured 1438 * @vid: VLAN ID to be added 1439 */ 1440 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1441 { 1442 struct ice_fltr_list_entry *tmp; 1443 struct ice_pf *pf = vsi->back; 1444 LIST_HEAD(tmp_add_list); 1445 enum ice_status status; 1446 struct device *dev; 1447 int err = 0; 1448 1449 dev = ice_pf_to_dev(pf); 1450 tmp = devm_kzalloc(dev, sizeof(*tmp), GFP_KERNEL); 1451 if (!tmp) 1452 return -ENOMEM; 1453 1454 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1455 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1456 tmp->fltr_info.flag = ICE_FLTR_TX; 1457 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1458 tmp->fltr_info.vsi_handle = vsi->idx; 1459 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1460 1461 INIT_LIST_HEAD(&tmp->list_entry); 1462 list_add(&tmp->list_entry, &tmp_add_list); 1463 1464 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1465 if (!status) { 1466 vsi->num_vlan++; 1467 } else { 1468 err = -ENODEV; 1469 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1470 vsi->vsi_num); 1471 } 1472 1473 ice_free_fltr_list(dev, &tmp_add_list); 1474 return err; 1475 } 1476 1477 /** 1478 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1479 * @vsi: the VSI being configured 1480 * @vid: VLAN ID to be removed 1481 * 1482 * Returns 0 on success and negative on failure 1483 */ 1484 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1485 { 1486 struct ice_fltr_list_entry *list; 1487 struct ice_pf *pf = vsi->back; 1488 LIST_HEAD(tmp_add_list); 1489 enum ice_status status; 1490 struct device *dev; 1491 int err = 0; 1492 1493 dev = ice_pf_to_dev(pf); 1494 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1495 if (!list) 1496 return -ENOMEM; 1497 1498 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1499 list->fltr_info.vsi_handle = vsi->idx; 1500 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1501 list->fltr_info.l_data.vlan.vlan_id = vid; 1502 list->fltr_info.flag = ICE_FLTR_TX; 1503 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1504 1505 INIT_LIST_HEAD(&list->list_entry); 1506 list_add(&list->list_entry, &tmp_add_list); 1507 1508 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1509 if (!status) { 1510 vsi->num_vlan--; 1511 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1512 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1513 vid, vsi->vsi_num, status); 1514 } else { 1515 dev_err(dev, "Error removing VLAN %d on vsi %i error: %d\n", 1516 vid, vsi->vsi_num, status); 1517 err = -EIO; 1518 } 1519 1520 ice_free_fltr_list(dev, &tmp_add_list); 1521 return err; 1522 } 1523 1524 /** 1525 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1526 * @vsi: VSI 1527 */ 1528 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1529 { 1530 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1531 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1532 vsi->rx_buf_len = ICE_RXBUF_2048; 1533 #if (PAGE_SIZE < 8192) 1534 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1535 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1536 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1537 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1538 #endif 1539 } else { 1540 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1541 #if (PAGE_SIZE < 8192) 1542 vsi->rx_buf_len = ICE_RXBUF_3072; 1543 #else 1544 vsi->rx_buf_len = ICE_RXBUF_2048; 1545 #endif 1546 } 1547 } 1548 1549 /** 1550 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1551 * @vsi: the VSI being configured 1552 * 1553 * Return 0 on success and a negative value on error 1554 * Configure the Rx VSI for operation. 1555 */ 1556 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1557 { 1558 u16 i; 1559 1560 if (vsi->type == ICE_VSI_VF) 1561 goto setup_rings; 1562 1563 ice_vsi_cfg_frame_size(vsi); 1564 setup_rings: 1565 /* set up individual rings */ 1566 for (i = 0; i < vsi->num_rxq; i++) { 1567 int err; 1568 1569 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1570 if (err) { 1571 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1572 i, err); 1573 return err; 1574 } 1575 } 1576 1577 return 0; 1578 } 1579 1580 /** 1581 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1582 * @vsi: the VSI being configured 1583 * @rings: Tx ring array to be configured 1584 * 1585 * Return 0 on success and a negative value on error 1586 * Configure the Tx VSI for operation. 1587 */ 1588 static int 1589 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1590 { 1591 struct ice_aqc_add_tx_qgrp *qg_buf; 1592 u16 q_idx = 0; 1593 int err = 0; 1594 1595 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1596 if (!qg_buf) 1597 return -ENOMEM; 1598 1599 qg_buf->num_txqs = 1; 1600 1601 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1602 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1603 if (err) 1604 goto err_cfg_txqs; 1605 } 1606 1607 err_cfg_txqs: 1608 kfree(qg_buf); 1609 return err; 1610 } 1611 1612 /** 1613 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1614 * @vsi: the VSI being configured 1615 * 1616 * Return 0 on success and a negative value on error 1617 * Configure the Tx VSI for operation. 1618 */ 1619 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1620 { 1621 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1622 } 1623 1624 /** 1625 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1626 * @vsi: the VSI being configured 1627 * 1628 * Return 0 on success and a negative value on error 1629 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1630 */ 1631 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1632 { 1633 int ret; 1634 int i; 1635 1636 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1637 if (ret) 1638 return ret; 1639 1640 for (i = 0; i < vsi->num_xdp_txq; i++) 1641 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1642 1643 return ret; 1644 } 1645 1646 /** 1647 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1648 * @intrl: interrupt rate limit in usecs 1649 * @gran: interrupt rate limit granularity in usecs 1650 * 1651 * This function converts a decimal interrupt rate limit in usecs to the format 1652 * expected by firmware. 1653 */ 1654 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1655 { 1656 u32 val = intrl / gran; 1657 1658 if (val) 1659 return val | GLINT_RATE_INTRL_ENA_M; 1660 return 0; 1661 } 1662 1663 /** 1664 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1665 * @vsi: the VSI being configured 1666 * 1667 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1668 * for the VF VSI. 1669 */ 1670 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1671 { 1672 struct ice_pf *pf = vsi->back; 1673 struct ice_hw *hw = &pf->hw; 1674 u32 txq = 0, rxq = 0; 1675 int i, q; 1676 1677 for (i = 0; i < vsi->num_q_vectors; i++) { 1678 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1679 u16 reg_idx = q_vector->reg_idx; 1680 1681 ice_cfg_itr(hw, q_vector); 1682 1683 wr32(hw, GLINT_RATE(reg_idx), 1684 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1685 1686 /* Both Transmit Queue Interrupt Cause Control register 1687 * and Receive Queue Interrupt Cause control register 1688 * expects MSIX_INDX field to be the vector index 1689 * within the function space and not the absolute 1690 * vector index across PF or across device. 1691 * For SR-IOV VF VSIs queue vector index always starts 1692 * with 1 since first vector index(0) is used for OICR 1693 * in VF space. Since VMDq and other PF VSIs are within 1694 * the PF function space, use the vector index that is 1695 * tracked for this PF. 1696 */ 1697 for (q = 0; q < q_vector->num_ring_tx; q++) { 1698 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1699 q_vector->tx.itr_idx); 1700 txq++; 1701 } 1702 1703 for (q = 0; q < q_vector->num_ring_rx; q++) { 1704 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1705 q_vector->rx.itr_idx); 1706 rxq++; 1707 } 1708 } 1709 } 1710 1711 /** 1712 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1713 * @vsi: the VSI being changed 1714 */ 1715 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1716 { 1717 struct ice_hw *hw = &vsi->back->hw; 1718 struct ice_vsi_ctx *ctxt; 1719 enum ice_status status; 1720 int ret = 0; 1721 1722 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1723 if (!ctxt) 1724 return -ENOMEM; 1725 1726 /* Here we are configuring the VSI to let the driver add VLAN tags by 1727 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1728 * insertion happens in the Tx hot path, in ice_tx_map. 1729 */ 1730 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1731 1732 /* Preserve existing VLAN strip setting */ 1733 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1734 ICE_AQ_VSI_VLAN_EMOD_M); 1735 1736 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1737 1738 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1739 if (status) { 1740 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %d aq_err %d\n", 1741 status, hw->adminq.sq_last_status); 1742 ret = -EIO; 1743 goto out; 1744 } 1745 1746 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1747 out: 1748 kfree(ctxt); 1749 return ret; 1750 } 1751 1752 /** 1753 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1754 * @vsi: the VSI being changed 1755 * @ena: boolean value indicating if this is a enable or disable request 1756 */ 1757 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1758 { 1759 struct ice_hw *hw = &vsi->back->hw; 1760 struct ice_vsi_ctx *ctxt; 1761 enum ice_status status; 1762 int ret = 0; 1763 1764 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1765 if (!ctxt) 1766 return -ENOMEM; 1767 1768 /* Here we are configuring what the VSI should do with the VLAN tag in 1769 * the Rx packet. We can either leave the tag in the packet or put it in 1770 * the Rx descriptor. 1771 */ 1772 if (ena) 1773 /* Strip VLAN tag from Rx packet and put it in the desc */ 1774 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1775 else 1776 /* Disable stripping. Leave tag in packet */ 1777 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1778 1779 /* Allow all packets untagged/tagged */ 1780 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1781 1782 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1783 1784 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1785 if (status) { 1786 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1787 ena, status, hw->adminq.sq_last_status); 1788 ret = -EIO; 1789 goto out; 1790 } 1791 1792 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1793 out: 1794 kfree(ctxt); 1795 return ret; 1796 } 1797 1798 /** 1799 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1800 * @vsi: the VSI whose rings are to be enabled 1801 * 1802 * Returns 0 on success and a negative value on error 1803 */ 1804 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1805 { 1806 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1807 } 1808 1809 /** 1810 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1811 * @vsi: the VSI whose rings are to be disabled 1812 * 1813 * Returns 0 on success and a negative value on error 1814 */ 1815 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1816 { 1817 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1818 } 1819 1820 /** 1821 * ice_vsi_stop_tx_rings - Disable Tx rings 1822 * @vsi: the VSI being configured 1823 * @rst_src: reset source 1824 * @rel_vmvf_num: Relative ID of VF/VM 1825 * @rings: Tx ring array to be stopped 1826 */ 1827 static int 1828 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1829 u16 rel_vmvf_num, struct ice_ring **rings) 1830 { 1831 u16 q_idx; 1832 1833 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1834 return -EINVAL; 1835 1836 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1837 struct ice_txq_meta txq_meta = { }; 1838 int status; 1839 1840 if (!rings || !rings[q_idx]) 1841 return -EINVAL; 1842 1843 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1844 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1845 rings[q_idx], &txq_meta); 1846 1847 if (status) 1848 return status; 1849 } 1850 1851 return 0; 1852 } 1853 1854 /** 1855 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1856 * @vsi: the VSI being configured 1857 * @rst_src: reset source 1858 * @rel_vmvf_num: Relative ID of VF/VM 1859 */ 1860 int 1861 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1862 u16 rel_vmvf_num) 1863 { 1864 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1865 } 1866 1867 /** 1868 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1869 * @vsi: the VSI being configured 1870 */ 1871 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1872 { 1873 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1874 } 1875 1876 /** 1877 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1878 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1879 * 1880 * returns true if Rx VLAN pruning is enabled and false otherwise. 1881 */ 1882 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1883 { 1884 if (!vsi) 1885 return false; 1886 1887 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 1888 } 1889 1890 /** 1891 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1892 * @vsi: VSI to enable or disable VLAN pruning on 1893 * @ena: set to true to enable VLAN pruning and false to disable it 1894 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1895 * 1896 * returns 0 if VSI is updated, negative otherwise 1897 */ 1898 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1899 { 1900 struct ice_vsi_ctx *ctxt; 1901 struct ice_pf *pf; 1902 int status; 1903 1904 if (!vsi) 1905 return -EINVAL; 1906 1907 pf = vsi->back; 1908 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1909 if (!ctxt) 1910 return -ENOMEM; 1911 1912 ctxt->info = vsi->info; 1913 1914 if (ena) 1915 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1916 else 1917 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1918 1919 if (!vlan_promisc) 1920 ctxt->info.valid_sections = 1921 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 1922 1923 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1924 if (status) { 1925 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1926 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1927 pf->hw.adminq.sq_last_status); 1928 goto err_out; 1929 } 1930 1931 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1932 1933 kfree(ctxt); 1934 return 0; 1935 1936 err_out: 1937 kfree(ctxt); 1938 return -EIO; 1939 } 1940 1941 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1942 { 1943 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1944 1945 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1946 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1947 } 1948 1949 /** 1950 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1951 * @vsi: VSI to set the q_vectors register index on 1952 */ 1953 static int 1954 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1955 { 1956 u16 i; 1957 1958 if (!vsi || !vsi->q_vectors) 1959 return -EINVAL; 1960 1961 ice_for_each_q_vector(vsi, i) { 1962 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1963 1964 if (!q_vector) { 1965 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 1966 i, vsi->vsi_num); 1967 goto clear_reg_idx; 1968 } 1969 1970 if (vsi->type == ICE_VSI_VF) { 1971 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1972 1973 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1974 } else { 1975 q_vector->reg_idx = 1976 q_vector->v_idx + vsi->base_vector; 1977 } 1978 } 1979 1980 return 0; 1981 1982 clear_reg_idx: 1983 ice_for_each_q_vector(vsi, i) { 1984 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1985 1986 if (q_vector) 1987 q_vector->reg_idx = 0; 1988 } 1989 1990 return -EINVAL; 1991 } 1992 1993 /** 1994 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1995 * @vsi: the VSI being configured 1996 * @add_rule: boolean value to add or remove ethertype filter rule 1997 */ 1998 static void 1999 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 2000 { 2001 struct ice_fltr_list_entry *list; 2002 struct ice_pf *pf = vsi->back; 2003 LIST_HEAD(tmp_add_list); 2004 enum ice_status status; 2005 struct device *dev; 2006 2007 dev = ice_pf_to_dev(pf); 2008 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 2009 if (!list) 2010 return; 2011 2012 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2013 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2014 list->fltr_info.flag = ICE_FLTR_TX; 2015 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2016 list->fltr_info.vsi_handle = vsi->idx; 2017 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 2018 2019 INIT_LIST_HEAD(&list->list_entry); 2020 list_add(&list->list_entry, &tmp_add_list); 2021 2022 if (add_rule) 2023 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2024 else 2025 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2026 2027 if (status) 2028 dev_err(dev, "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 2029 vsi->vsi_num, status); 2030 2031 ice_free_fltr_list(dev, &tmp_add_list); 2032 } 2033 2034 /** 2035 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2036 * @vsi: the VSI being configured 2037 * @tx: bool to determine Tx or Rx rule 2038 * @create: bool to determine create or remove Rule 2039 */ 2040 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2041 { 2042 struct ice_fltr_list_entry *list; 2043 struct ice_pf *pf = vsi->back; 2044 LIST_HEAD(tmp_add_list); 2045 enum ice_status status; 2046 struct device *dev; 2047 2048 dev = ice_pf_to_dev(pf); 2049 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 2050 if (!list) 2051 return; 2052 2053 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 2054 list->fltr_info.vsi_handle = vsi->idx; 2055 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 2056 2057 if (tx) { 2058 list->fltr_info.fltr_act = ICE_DROP_PACKET; 2059 list->fltr_info.flag = ICE_FLTR_TX; 2060 list->fltr_info.src_id = ICE_SRC_ID_VSI; 2061 } else { 2062 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 2063 list->fltr_info.flag = ICE_FLTR_RX; 2064 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 2065 } 2066 2067 INIT_LIST_HEAD(&list->list_entry); 2068 list_add(&list->list_entry, &tmp_add_list); 2069 2070 if (create) 2071 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 2072 else 2073 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 2074 2075 if (status) 2076 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2077 create ? "adding" : "removing", tx ? "TX" : "RX", 2078 vsi->vsi_num, status); 2079 2080 ice_free_fltr_list(dev, &tmp_add_list); 2081 } 2082 2083 /** 2084 * ice_vsi_setup - Set up a VSI by a given type 2085 * @pf: board private structure 2086 * @pi: pointer to the port_info instance 2087 * @vsi_type: VSI type 2088 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2089 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2090 * fill-in ICE_INVAL_VFID as input. 2091 * 2092 * This allocates the sw VSI structure and its queue resources. 2093 * 2094 * Returns pointer to the successfully allocated and configured VSI sw struct on 2095 * success, NULL on failure. 2096 */ 2097 struct ice_vsi * 2098 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2099 enum ice_vsi_type vsi_type, u16 vf_id) 2100 { 2101 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2102 struct device *dev = ice_pf_to_dev(pf); 2103 enum ice_status status; 2104 struct ice_vsi *vsi; 2105 int ret, i; 2106 2107 if (vsi_type == ICE_VSI_VF) 2108 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2109 else 2110 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2111 2112 if (!vsi) { 2113 dev_err(dev, "could not allocate VSI\n"); 2114 return NULL; 2115 } 2116 2117 vsi->port_info = pi; 2118 vsi->vsw = pf->first_sw; 2119 if (vsi->type == ICE_VSI_PF) 2120 vsi->ethtype = ETH_P_PAUSE; 2121 2122 if (vsi->type == ICE_VSI_VF) 2123 vsi->vf_id = vf_id; 2124 2125 if (ice_vsi_get_qs(vsi)) { 2126 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2127 vsi->idx); 2128 goto unroll_get_qs; 2129 } 2130 2131 /* set RSS capabilities */ 2132 ice_vsi_set_rss_params(vsi); 2133 2134 /* set TC configuration */ 2135 ice_vsi_set_tc_cfg(vsi); 2136 2137 /* create the VSI */ 2138 ret = ice_vsi_init(vsi, true); 2139 if (ret) 2140 goto unroll_get_qs; 2141 2142 switch (vsi->type) { 2143 case ICE_VSI_PF: 2144 ret = ice_vsi_alloc_q_vectors(vsi); 2145 if (ret) 2146 goto unroll_vsi_init; 2147 2148 ret = ice_vsi_setup_vector_base(vsi); 2149 if (ret) 2150 goto unroll_alloc_q_vector; 2151 2152 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2153 if (ret) 2154 goto unroll_vector_base; 2155 2156 ret = ice_vsi_alloc_rings(vsi); 2157 if (ret) 2158 goto unroll_vector_base; 2159 2160 /* Always add VLAN ID 0 switch rule by default. This is needed 2161 * in order to allow all untagged and 0 tagged priority traffic 2162 * if Rx VLAN pruning is enabled. Also there are cases where we 2163 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2164 * so this handles those cases (i.e. adding the PF to a bridge 2165 * without the 8021q module loaded). 2166 */ 2167 ret = ice_vsi_add_vlan(vsi, 0); 2168 if (ret) 2169 goto unroll_clear_rings; 2170 2171 ice_vsi_map_rings_to_vectors(vsi); 2172 2173 /* Do not exit if configuring RSS had an issue, at least 2174 * receive traffic on first queue. Hence no need to capture 2175 * return value 2176 */ 2177 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2178 ice_vsi_cfg_rss_lut_key(vsi); 2179 ice_vsi_set_rss_flow_fld(vsi); 2180 } 2181 break; 2182 case ICE_VSI_VF: 2183 /* VF driver will take care of creating netdev for this type and 2184 * map queues to vectors through Virtchnl, PF driver only 2185 * creates a VSI and corresponding structures for bookkeeping 2186 * purpose 2187 */ 2188 ret = ice_vsi_alloc_q_vectors(vsi); 2189 if (ret) 2190 goto unroll_vsi_init; 2191 2192 ret = ice_vsi_alloc_rings(vsi); 2193 if (ret) 2194 goto unroll_alloc_q_vector; 2195 2196 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2197 if (ret) 2198 goto unroll_vector_base; 2199 2200 /* Do not exit if configuring RSS had an issue, at least 2201 * receive traffic on first queue. Hence no need to capture 2202 * return value 2203 */ 2204 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2205 ice_vsi_cfg_rss_lut_key(vsi); 2206 ice_vsi_set_vf_rss_flow_fld(vsi); 2207 } 2208 break; 2209 case ICE_VSI_LB: 2210 ret = ice_vsi_alloc_rings(vsi); 2211 if (ret) 2212 goto unroll_vsi_init; 2213 break; 2214 default: 2215 /* clean up the resources and exit */ 2216 goto unroll_vsi_init; 2217 } 2218 2219 /* configure VSI nodes based on number of queues and TC's */ 2220 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2221 max_txqs[i] = vsi->alloc_txq; 2222 2223 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2224 max_txqs); 2225 if (status) { 2226 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2227 vsi->vsi_num, status); 2228 goto unroll_vector_base; 2229 } 2230 2231 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2232 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2233 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2234 * The rule is added once for PF VSI in order to create appropriate 2235 * recipe, since VSI/VSI list is ignored with drop action... 2236 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2237 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2238 * settings in the HW. 2239 */ 2240 if (!ice_is_safe_mode(pf)) 2241 if (vsi->type == ICE_VSI_PF) { 2242 ice_vsi_add_rem_eth_mac(vsi, true); 2243 2244 /* Tx LLDP packets */ 2245 ice_cfg_sw_lldp(vsi, true, true); 2246 } 2247 2248 return vsi; 2249 2250 unroll_clear_rings: 2251 ice_vsi_clear_rings(vsi); 2252 unroll_vector_base: 2253 /* reclaim SW interrupts back to the common pool */ 2254 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2255 pf->num_avail_sw_msix += vsi->num_q_vectors; 2256 unroll_alloc_q_vector: 2257 ice_vsi_free_q_vectors(vsi); 2258 unroll_vsi_init: 2259 ice_vsi_delete(vsi); 2260 unroll_get_qs: 2261 ice_vsi_put_qs(vsi); 2262 ice_vsi_clear(vsi); 2263 2264 return NULL; 2265 } 2266 2267 /** 2268 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2269 * @vsi: the VSI being cleaned up 2270 */ 2271 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2272 { 2273 struct ice_pf *pf = vsi->back; 2274 struct ice_hw *hw = &pf->hw; 2275 u32 txq = 0; 2276 u32 rxq = 0; 2277 int i, q; 2278 2279 for (i = 0; i < vsi->num_q_vectors; i++) { 2280 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2281 u16 reg_idx = q_vector->reg_idx; 2282 2283 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2284 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2285 for (q = 0; q < q_vector->num_ring_tx; q++) { 2286 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2287 if (ice_is_xdp_ena_vsi(vsi)) { 2288 u32 xdp_txq = txq + vsi->num_xdp_txq; 2289 2290 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2291 } 2292 txq++; 2293 } 2294 2295 for (q = 0; q < q_vector->num_ring_rx; q++) { 2296 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2297 rxq++; 2298 } 2299 } 2300 2301 ice_flush(hw); 2302 } 2303 2304 /** 2305 * ice_vsi_free_irq - Free the IRQ association with the OS 2306 * @vsi: the VSI being configured 2307 */ 2308 void ice_vsi_free_irq(struct ice_vsi *vsi) 2309 { 2310 struct ice_pf *pf = vsi->back; 2311 int base = vsi->base_vector; 2312 int i; 2313 2314 if (!vsi->q_vectors || !vsi->irqs_ready) 2315 return; 2316 2317 ice_vsi_release_msix(vsi); 2318 if (vsi->type == ICE_VSI_VF) 2319 return; 2320 2321 vsi->irqs_ready = false; 2322 ice_for_each_q_vector(vsi, i) { 2323 u16 vector = i + base; 2324 int irq_num; 2325 2326 irq_num = pf->msix_entries[vector].vector; 2327 2328 /* free only the irqs that were actually requested */ 2329 if (!vsi->q_vectors[i] || 2330 !(vsi->q_vectors[i]->num_ring_tx || 2331 vsi->q_vectors[i]->num_ring_rx)) 2332 continue; 2333 2334 /* clear the affinity notifier in the IRQ descriptor */ 2335 irq_set_affinity_notifier(irq_num, NULL); 2336 2337 /* clear the affinity_mask in the IRQ descriptor */ 2338 irq_set_affinity_hint(irq_num, NULL); 2339 synchronize_irq(irq_num); 2340 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2341 } 2342 } 2343 2344 /** 2345 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2346 * @vsi: the VSI having resources freed 2347 */ 2348 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2349 { 2350 int i; 2351 2352 if (!vsi->tx_rings) 2353 return; 2354 2355 ice_for_each_txq(vsi, i) 2356 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2357 ice_free_tx_ring(vsi->tx_rings[i]); 2358 } 2359 2360 /** 2361 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2362 * @vsi: the VSI having resources freed 2363 */ 2364 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2365 { 2366 int i; 2367 2368 if (!vsi->rx_rings) 2369 return; 2370 2371 ice_for_each_rxq(vsi, i) 2372 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2373 ice_free_rx_ring(vsi->rx_rings[i]); 2374 } 2375 2376 /** 2377 * ice_vsi_close - Shut down a VSI 2378 * @vsi: the VSI being shut down 2379 */ 2380 void ice_vsi_close(struct ice_vsi *vsi) 2381 { 2382 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2383 ice_down(vsi); 2384 2385 ice_vsi_free_irq(vsi); 2386 ice_vsi_free_tx_rings(vsi); 2387 ice_vsi_free_rx_rings(vsi); 2388 } 2389 2390 /** 2391 * ice_ena_vsi - resume a VSI 2392 * @vsi: the VSI being resume 2393 * @locked: is the rtnl_lock already held 2394 */ 2395 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2396 { 2397 int err = 0; 2398 2399 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2400 return 0; 2401 2402 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2403 2404 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2405 if (netif_running(vsi->netdev)) { 2406 if (!locked) 2407 rtnl_lock(); 2408 2409 err = ice_open(vsi->netdev); 2410 2411 if (!locked) 2412 rtnl_unlock(); 2413 } 2414 } 2415 2416 return err; 2417 } 2418 2419 /** 2420 * ice_dis_vsi - pause a VSI 2421 * @vsi: the VSI being paused 2422 * @locked: is the rtnl_lock already held 2423 */ 2424 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2425 { 2426 if (test_bit(__ICE_DOWN, vsi->state)) 2427 return; 2428 2429 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2430 2431 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2432 if (netif_running(vsi->netdev)) { 2433 if (!locked) 2434 rtnl_lock(); 2435 2436 ice_stop(vsi->netdev); 2437 2438 if (!locked) 2439 rtnl_unlock(); 2440 } else { 2441 ice_vsi_close(vsi); 2442 } 2443 } 2444 } 2445 2446 /** 2447 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2448 * @vsi: the VSI being un-configured 2449 */ 2450 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2451 { 2452 int base = vsi->base_vector; 2453 struct ice_pf *pf = vsi->back; 2454 struct ice_hw *hw = &pf->hw; 2455 u32 val; 2456 int i; 2457 2458 /* disable interrupt causation from each queue */ 2459 if (vsi->tx_rings) { 2460 ice_for_each_txq(vsi, i) { 2461 if (vsi->tx_rings[i]) { 2462 u16 reg; 2463 2464 reg = vsi->tx_rings[i]->reg_idx; 2465 val = rd32(hw, QINT_TQCTL(reg)); 2466 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2467 wr32(hw, QINT_TQCTL(reg), val); 2468 } 2469 } 2470 } 2471 2472 if (vsi->rx_rings) { 2473 ice_for_each_rxq(vsi, i) { 2474 if (vsi->rx_rings[i]) { 2475 u16 reg; 2476 2477 reg = vsi->rx_rings[i]->reg_idx; 2478 val = rd32(hw, QINT_RQCTL(reg)); 2479 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2480 wr32(hw, QINT_RQCTL(reg), val); 2481 } 2482 } 2483 } 2484 2485 /* disable each interrupt */ 2486 ice_for_each_q_vector(vsi, i) { 2487 if (!vsi->q_vectors[i]) 2488 continue; 2489 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2490 } 2491 2492 ice_flush(hw); 2493 2494 /* don't call synchronize_irq() for VF's from the host */ 2495 if (vsi->type == ICE_VSI_VF) 2496 return; 2497 2498 ice_for_each_q_vector(vsi, i) 2499 synchronize_irq(pf->msix_entries[i + base].vector); 2500 } 2501 2502 /** 2503 * ice_napi_del - Remove NAPI handler for the VSI 2504 * @vsi: VSI for which NAPI handler is to be removed 2505 */ 2506 void ice_napi_del(struct ice_vsi *vsi) 2507 { 2508 int v_idx; 2509 2510 if (!vsi->netdev) 2511 return; 2512 2513 ice_for_each_q_vector(vsi, v_idx) 2514 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2515 } 2516 2517 /** 2518 * ice_vsi_release - Delete a VSI and free its resources 2519 * @vsi: the VSI being removed 2520 * 2521 * Returns 0 on success or < 0 on error 2522 */ 2523 int ice_vsi_release(struct ice_vsi *vsi) 2524 { 2525 struct ice_pf *pf; 2526 2527 if (!vsi->back) 2528 return -ENODEV; 2529 pf = vsi->back; 2530 2531 /* do not unregister while driver is in the reset recovery pending 2532 * state. Since reset/rebuild happens through PF service task workqueue, 2533 * it's not a good idea to unregister netdev that is associated to the 2534 * PF that is running the work queue items currently. This is done to 2535 * avoid check_flush_dependency() warning on this wq 2536 */ 2537 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2538 unregister_netdev(vsi->netdev); 2539 2540 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2541 ice_rss_clean(vsi); 2542 2543 /* Disable VSI and free resources */ 2544 if (vsi->type != ICE_VSI_LB) 2545 ice_vsi_dis_irq(vsi); 2546 ice_vsi_close(vsi); 2547 2548 /* SR-IOV determines needed MSIX resources all at once instead of per 2549 * VSI since when VFs are spawned we know how many VFs there are and how 2550 * many interrupts each VF needs. SR-IOV MSIX resources are also 2551 * cleared in the same manner. 2552 */ 2553 if (vsi->type != ICE_VSI_VF) { 2554 /* reclaim SW interrupts back to the common pool */ 2555 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2556 pf->num_avail_sw_msix += vsi->num_q_vectors; 2557 } 2558 2559 if (!ice_is_safe_mode(pf)) { 2560 if (vsi->type == ICE_VSI_PF) { 2561 ice_vsi_add_rem_eth_mac(vsi, false); 2562 ice_cfg_sw_lldp(vsi, true, false); 2563 /* The Rx rule will only exist to remove if the LLDP FW 2564 * engine is currently stopped 2565 */ 2566 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2567 ice_cfg_sw_lldp(vsi, false, false); 2568 } 2569 } 2570 2571 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2572 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2573 ice_vsi_delete(vsi); 2574 ice_vsi_free_q_vectors(vsi); 2575 2576 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2577 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2578 free_netdev(vsi->netdev); 2579 vsi->netdev = NULL; 2580 } 2581 2582 ice_vsi_clear_rings(vsi); 2583 2584 ice_vsi_put_qs(vsi); 2585 2586 /* retain SW VSI data structure since it is needed to unregister and 2587 * free VSI netdev when PF is not in reset recovery pending state,\ 2588 * for ex: during rmmod. 2589 */ 2590 if (!ice_is_reset_in_progress(pf->state)) 2591 ice_vsi_clear(vsi); 2592 2593 return 0; 2594 } 2595 2596 /** 2597 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2598 * @q_vector: pointer to q_vector which is being updated 2599 * @coalesce: pointer to array of struct with stored coalesce 2600 * 2601 * Set coalesce param in q_vector and update these parameters in HW. 2602 */ 2603 static void 2604 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2605 struct ice_coalesce_stored *coalesce) 2606 { 2607 struct ice_ring_container *rx_rc = &q_vector->rx; 2608 struct ice_ring_container *tx_rc = &q_vector->tx; 2609 struct ice_hw *hw = &q_vector->vsi->back->hw; 2610 2611 tx_rc->itr_setting = coalesce->itr_tx; 2612 rx_rc->itr_setting = coalesce->itr_rx; 2613 2614 /* dynamic ITR values will be updated during Tx/Rx */ 2615 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2616 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2617 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2618 ICE_ITR_GRAN_S); 2619 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2620 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2621 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2622 ICE_ITR_GRAN_S); 2623 2624 q_vector->intrl = coalesce->intrl; 2625 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2626 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2627 } 2628 2629 /** 2630 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2631 * @vsi: VSI connected with q_vectors 2632 * @coalesce: array of struct with stored coalesce 2633 * 2634 * Returns array size. 2635 */ 2636 static int 2637 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2638 struct ice_coalesce_stored *coalesce) 2639 { 2640 int i; 2641 2642 ice_for_each_q_vector(vsi, i) { 2643 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2644 2645 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2646 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2647 coalesce[i].intrl = q_vector->intrl; 2648 } 2649 2650 return vsi->num_q_vectors; 2651 } 2652 2653 /** 2654 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2655 * @vsi: VSI connected with q_vectors 2656 * @coalesce: pointer to array of struct with stored coalesce 2657 * @size: size of coalesce array 2658 * 2659 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2660 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2661 * to default value. 2662 */ 2663 static void 2664 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2665 struct ice_coalesce_stored *coalesce, int size) 2666 { 2667 int i; 2668 2669 if ((size && !coalesce) || !vsi) 2670 return; 2671 2672 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2673 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2674 &coalesce[i]); 2675 2676 for (; i < vsi->num_q_vectors; i++) { 2677 struct ice_coalesce_stored coalesce_dflt = { 2678 .itr_tx = ICE_DFLT_TX_ITR, 2679 .itr_rx = ICE_DFLT_RX_ITR, 2680 .intrl = 0 2681 }; 2682 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2683 &coalesce_dflt); 2684 } 2685 } 2686 2687 /** 2688 * ice_vsi_rebuild - Rebuild VSI after reset 2689 * @vsi: VSI to be rebuild 2690 * @init_vsi: is this an initialization or a reconfigure of the VSI 2691 * 2692 * Returns 0 on success and negative value on failure 2693 */ 2694 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2695 { 2696 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2697 struct ice_coalesce_stored *coalesce; 2698 int prev_num_q_vectors = 0; 2699 struct ice_vf *vf = NULL; 2700 enum ice_status status; 2701 struct ice_pf *pf; 2702 int ret, i; 2703 2704 if (!vsi) 2705 return -EINVAL; 2706 2707 pf = vsi->back; 2708 if (vsi->type == ICE_VSI_VF) 2709 vf = &pf->vf[vsi->vf_id]; 2710 2711 coalesce = kcalloc(vsi->num_q_vectors, 2712 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2713 if (coalesce) 2714 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2715 coalesce); 2716 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2717 ice_vsi_free_q_vectors(vsi); 2718 2719 /* SR-IOV determines needed MSIX resources all at once instead of per 2720 * VSI since when VFs are spawned we know how many VFs there are and how 2721 * many interrupts each VF needs. SR-IOV MSIX resources are also 2722 * cleared in the same manner. 2723 */ 2724 if (vsi->type != ICE_VSI_VF) { 2725 /* reclaim SW interrupts back to the common pool */ 2726 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2727 pf->num_avail_sw_msix += vsi->num_q_vectors; 2728 vsi->base_vector = 0; 2729 } 2730 2731 if (ice_is_xdp_ena_vsi(vsi)) 2732 /* return value check can be skipped here, it always returns 2733 * 0 if reset is in progress 2734 */ 2735 ice_destroy_xdp_rings(vsi); 2736 ice_vsi_put_qs(vsi); 2737 ice_vsi_clear_rings(vsi); 2738 ice_vsi_free_arrays(vsi); 2739 if (vsi->type == ICE_VSI_VF) 2740 ice_vsi_set_num_qs(vsi, vf->vf_id); 2741 else 2742 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2743 2744 ret = ice_vsi_alloc_arrays(vsi); 2745 if (ret < 0) 2746 goto err_vsi; 2747 2748 ice_vsi_get_qs(vsi); 2749 ice_vsi_set_tc_cfg(vsi); 2750 2751 /* Initialize VSI struct elements and create VSI in FW */ 2752 ret = ice_vsi_init(vsi, init_vsi); 2753 if (ret < 0) 2754 goto err_vsi; 2755 2756 switch (vsi->type) { 2757 case ICE_VSI_PF: 2758 ret = ice_vsi_alloc_q_vectors(vsi); 2759 if (ret) 2760 goto err_rings; 2761 2762 ret = ice_vsi_setup_vector_base(vsi); 2763 if (ret) 2764 goto err_vectors; 2765 2766 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2767 if (ret) 2768 goto err_vectors; 2769 2770 ret = ice_vsi_alloc_rings(vsi); 2771 if (ret) 2772 goto err_vectors; 2773 2774 ice_vsi_map_rings_to_vectors(vsi); 2775 if (ice_is_xdp_ena_vsi(vsi)) { 2776 vsi->num_xdp_txq = vsi->alloc_txq; 2777 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2778 if (ret) 2779 goto err_vectors; 2780 } 2781 /* Do not exit if configuring RSS had an issue, at least 2782 * receive traffic on first queue. Hence no need to capture 2783 * return value 2784 */ 2785 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2786 ice_vsi_cfg_rss_lut_key(vsi); 2787 break; 2788 case ICE_VSI_VF: 2789 ret = ice_vsi_alloc_q_vectors(vsi); 2790 if (ret) 2791 goto err_rings; 2792 2793 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2794 if (ret) 2795 goto err_vectors; 2796 2797 ret = ice_vsi_alloc_rings(vsi); 2798 if (ret) 2799 goto err_vectors; 2800 2801 break; 2802 default: 2803 break; 2804 } 2805 2806 /* configure VSI nodes based on number of queues and TC's */ 2807 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2808 max_txqs[i] = vsi->alloc_txq; 2809 2810 if (ice_is_xdp_ena_vsi(vsi)) 2811 max_txqs[i] += vsi->num_xdp_txq; 2812 } 2813 2814 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2815 max_txqs); 2816 if (status) { 2817 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 2818 vsi->vsi_num, status); 2819 if (init_vsi) { 2820 ret = -EIO; 2821 goto err_vectors; 2822 } else { 2823 return ice_schedule_reset(pf, ICE_RESET_PFR); 2824 } 2825 } 2826 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2827 kfree(coalesce); 2828 2829 return 0; 2830 2831 err_vectors: 2832 ice_vsi_free_q_vectors(vsi); 2833 err_rings: 2834 if (vsi->netdev) { 2835 vsi->current_netdev_flags = 0; 2836 unregister_netdev(vsi->netdev); 2837 free_netdev(vsi->netdev); 2838 vsi->netdev = NULL; 2839 } 2840 err_vsi: 2841 ice_vsi_clear(vsi); 2842 set_bit(__ICE_RESET_FAILED, pf->state); 2843 kfree(coalesce); 2844 return ret; 2845 } 2846 2847 /** 2848 * ice_is_reset_in_progress - check for a reset in progress 2849 * @state: PF state field 2850 */ 2851 bool ice_is_reset_in_progress(unsigned long *state) 2852 { 2853 return test_bit(__ICE_RESET_OICR_RECV, state) || 2854 test_bit(__ICE_DCBNL_DEVRESET, state) || 2855 test_bit(__ICE_PFR_REQ, state) || 2856 test_bit(__ICE_CORER_REQ, state) || 2857 test_bit(__ICE_GLOBR_REQ, state); 2858 } 2859 2860 #ifdef CONFIG_DCB 2861 /** 2862 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2863 * @vsi: VSI being configured 2864 * @ctx: the context buffer returned from AQ VSI update command 2865 */ 2866 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2867 { 2868 vsi->info.mapping_flags = ctx->info.mapping_flags; 2869 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2870 sizeof(vsi->info.q_mapping)); 2871 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2872 sizeof(vsi->info.tc_mapping)); 2873 } 2874 2875 /** 2876 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2877 * @vsi: VSI to be configured 2878 * @ena_tc: TC bitmap 2879 * 2880 * VSI queues expected to be quiesced before calling this function 2881 */ 2882 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2883 { 2884 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2885 struct ice_pf *pf = vsi->back; 2886 struct ice_vsi_ctx *ctx; 2887 enum ice_status status; 2888 struct device *dev; 2889 int i, ret = 0; 2890 u8 num_tc = 0; 2891 2892 dev = ice_pf_to_dev(pf); 2893 2894 ice_for_each_traffic_class(i) { 2895 /* build bitmap of enabled TCs */ 2896 if (ena_tc & BIT(i)) 2897 num_tc++; 2898 /* populate max_txqs per TC */ 2899 max_txqs[i] = vsi->alloc_txq; 2900 } 2901 2902 vsi->tc_cfg.ena_tc = ena_tc; 2903 vsi->tc_cfg.numtc = num_tc; 2904 2905 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2906 if (!ctx) 2907 return -ENOMEM; 2908 2909 ctx->vf_num = 0; 2910 ctx->info = vsi->info; 2911 2912 ice_vsi_setup_q_map(vsi, ctx); 2913 2914 /* must to indicate which section of VSI context are being modified */ 2915 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2916 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2917 if (status) { 2918 dev_info(dev, "Failed VSI Update\n"); 2919 ret = -EIO; 2920 goto out; 2921 } 2922 2923 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2924 max_txqs); 2925 2926 if (status) { 2927 dev_err(dev, "VSI %d failed TC config, error %d\n", 2928 vsi->vsi_num, status); 2929 ret = -EIO; 2930 goto out; 2931 } 2932 ice_vsi_update_q_map(vsi, ctx); 2933 vsi->info.valid_sections = 0; 2934 2935 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2936 out: 2937 kfree(ctx); 2938 return ret; 2939 } 2940 #endif /* CONFIG_DCB */ 2941 2942 /** 2943 * ice_update_ring_stats - Update ring statistics 2944 * @ring: ring to update 2945 * @cont: used to increment per-vector counters 2946 * @pkts: number of processed packets 2947 * @bytes: number of processed bytes 2948 * 2949 * This function assumes that caller has acquired a u64_stats_sync lock. 2950 */ 2951 static void 2952 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2953 u64 pkts, u64 bytes) 2954 { 2955 ring->stats.bytes += bytes; 2956 ring->stats.pkts += pkts; 2957 cont->total_bytes += bytes; 2958 cont->total_pkts += pkts; 2959 } 2960 2961 /** 2962 * ice_update_tx_ring_stats - Update Tx ring specific counters 2963 * @tx_ring: ring to update 2964 * @pkts: number of processed packets 2965 * @bytes: number of processed bytes 2966 */ 2967 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2968 { 2969 u64_stats_update_begin(&tx_ring->syncp); 2970 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2971 u64_stats_update_end(&tx_ring->syncp); 2972 } 2973 2974 /** 2975 * ice_update_rx_ring_stats - Update Rx ring specific counters 2976 * @rx_ring: ring to update 2977 * @pkts: number of processed packets 2978 * @bytes: number of processed bytes 2979 */ 2980 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2981 { 2982 u64_stats_update_begin(&rx_ring->syncp); 2983 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2984 u64_stats_update_end(&rx_ring->syncp); 2985 } 2986 2987 /** 2988 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2989 * @vsi: the VSI being configured MAC filter 2990 * @macaddr: the MAC address to be added. 2991 * @set: Add or delete a MAC filter 2992 * 2993 * Adds or removes MAC address filter entry for VF VSI 2994 */ 2995 enum ice_status 2996 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2997 { 2998 LIST_HEAD(tmp_add_list); 2999 enum ice_status status; 3000 3001 /* Update MAC filter list to be added or removed for a VSI */ 3002 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 3003 status = ICE_ERR_NO_MEMORY; 3004 goto cfg_mac_fltr_exit; 3005 } 3006 3007 if (set) 3008 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 3009 else 3010 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 3011 3012 cfg_mac_fltr_exit: 3013 ice_free_fltr_list(ice_pf_to_dev(vsi->back), &tmp_add_list); 3014 return status; 3015 } 3016 3017 /** 3018 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3019 * @sw: switch to check if its default forwarding VSI is free 3020 * 3021 * Return true if the default forwarding VSI is already being used, else returns 3022 * false signalling that it's available to use. 3023 */ 3024 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3025 { 3026 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3027 } 3028 3029 /** 3030 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3031 * @sw: switch for the default forwarding VSI to compare against 3032 * @vsi: VSI to compare against default forwarding VSI 3033 * 3034 * If this VSI passed in is the default forwarding VSI then return true, else 3035 * return false 3036 */ 3037 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3038 { 3039 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3040 } 3041 3042 /** 3043 * ice_set_dflt_vsi - set the default forwarding VSI 3044 * @sw: switch used to assign the default forwarding VSI 3045 * @vsi: VSI getting set as the default forwarding VSI on the switch 3046 * 3047 * If the VSI passed in is already the default VSI and it's enabled just return 3048 * success. 3049 * 3050 * If there is already a default VSI on the switch and it's enabled then return 3051 * -EEXIST since there can only be one default VSI per switch. 3052 * 3053 * Otherwise try to set the VSI passed in as the switch's default VSI and 3054 * return the result. 3055 */ 3056 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3057 { 3058 enum ice_status status; 3059 struct device *dev; 3060 3061 if (!sw || !vsi) 3062 return -EINVAL; 3063 3064 dev = ice_pf_to_dev(vsi->back); 3065 3066 /* the VSI passed in is already the default VSI */ 3067 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3068 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3069 vsi->vsi_num); 3070 return 0; 3071 } 3072 3073 /* another VSI is already the default VSI for this switch */ 3074 if (ice_is_dflt_vsi_in_use(sw)) { 3075 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3076 sw->dflt_vsi->vsi_num); 3077 return -EEXIST; 3078 } 3079 3080 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3081 if (status) { 3082 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3083 vsi->vsi_num, status); 3084 return -EIO; 3085 } 3086 3087 sw->dflt_vsi = vsi; 3088 sw->dflt_vsi_ena = true; 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * ice_clear_dflt_vsi - clear the default forwarding VSI 3095 * @sw: switch used to clear the default VSI 3096 * 3097 * If the switch has no default VSI or it's not enabled then return error. 3098 * 3099 * Otherwise try to clear the default VSI and return the result. 3100 */ 3101 int ice_clear_dflt_vsi(struct ice_sw *sw) 3102 { 3103 struct ice_vsi *dflt_vsi; 3104 enum ice_status status; 3105 struct device *dev; 3106 3107 if (!sw) 3108 return -EINVAL; 3109 3110 dev = ice_pf_to_dev(sw->pf); 3111 3112 dflt_vsi = sw->dflt_vsi; 3113 3114 /* there is no default VSI configured */ 3115 if (!ice_is_dflt_vsi_in_use(sw)) 3116 return -ENODEV; 3117 3118 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3119 ICE_FLTR_RX); 3120 if (status) { 3121 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3122 dflt_vsi->vsi_num, status); 3123 return -EIO; 3124 } 3125 3126 sw->dflt_vsi = NULL; 3127 sw->dflt_vsi_ena = false; 3128 3129 return 0; 3130 } 3131