1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 return 0; 109 110 err_vectors: 111 devm_kfree(dev, vsi->rxq_map); 112 err_rxq_map: 113 devm_kfree(dev, vsi->txq_map); 114 err_txq_map: 115 devm_kfree(dev, vsi->rx_rings); 116 err_rings: 117 devm_kfree(dev, vsi->tx_rings); 118 return -ENOMEM; 119 } 120 121 /** 122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 123 * @vsi: the VSI being configured 124 */ 125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 126 { 127 switch (vsi->type) { 128 case ICE_VSI_PF: 129 case ICE_VSI_CTRL: 130 case ICE_VSI_LB: 131 /* a user could change the values of num_[tr]x_desc using 132 * ethtool -G so we should keep those values instead of 133 * overwriting them with the defaults. 134 */ 135 if (!vsi->num_rx_desc) 136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 137 if (!vsi->num_tx_desc) 138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 139 break; 140 default: 141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 142 vsi->type); 143 break; 144 } 145 } 146 147 /** 148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 149 * @vsi: the VSI being configured 150 * @vf_id: ID of the VF being configured 151 * 152 * Return 0 on success and a negative value on error 153 */ 154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 155 { 156 struct ice_pf *pf = vsi->back; 157 struct ice_vf *vf = NULL; 158 159 if (vsi->type == ICE_VSI_VF) 160 vsi->vf_id = vf_id; 161 162 switch (vsi->type) { 163 case ICE_VSI_PF: 164 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 165 num_online_cpus()); 166 if (vsi->req_txq) { 167 vsi->alloc_txq = vsi->req_txq; 168 vsi->num_txq = vsi->req_txq; 169 } 170 171 pf->num_lan_tx = vsi->alloc_txq; 172 173 /* only 1 Rx queue unless RSS is enabled */ 174 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 175 vsi->alloc_rxq = 1; 176 } else { 177 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 178 num_online_cpus()); 179 if (vsi->req_rxq) { 180 vsi->alloc_rxq = vsi->req_rxq; 181 vsi->num_rxq = vsi->req_rxq; 182 } 183 } 184 185 pf->num_lan_rx = vsi->alloc_rxq; 186 187 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 188 break; 189 case ICE_VSI_VF: 190 vf = &pf->vf[vsi->vf_id]; 191 vsi->alloc_txq = vf->num_vf_qs; 192 vsi->alloc_rxq = vf->num_vf_qs; 193 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 194 * data queue interrupts). Since vsi->num_q_vectors is number 195 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 196 * original vector count 197 */ 198 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 199 break; 200 case ICE_VSI_CTRL: 201 vsi->alloc_txq = 1; 202 vsi->alloc_rxq = 1; 203 vsi->num_q_vectors = 1; 204 break; 205 case ICE_VSI_LB: 206 vsi->alloc_txq = 1; 207 vsi->alloc_rxq = 1; 208 break; 209 default: 210 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 211 break; 212 } 213 214 ice_vsi_set_num_desc(vsi); 215 } 216 217 /** 218 * ice_get_free_slot - get the next non-NULL location index in array 219 * @array: array to search 220 * @size: size of the array 221 * @curr: last known occupied index to be used as a search hint 222 * 223 * void * is being used to keep the functionality generic. This lets us use this 224 * function on any array of pointers. 225 */ 226 static int ice_get_free_slot(void *array, int size, int curr) 227 { 228 int **tmp_array = (int **)array; 229 int next; 230 231 if (curr < (size - 1) && !tmp_array[curr + 1]) { 232 next = curr + 1; 233 } else { 234 int i = 0; 235 236 while ((i < size) && (tmp_array[i])) 237 i++; 238 if (i == size) 239 next = ICE_NO_VSI; 240 else 241 next = i; 242 } 243 return next; 244 } 245 246 /** 247 * ice_vsi_delete - delete a VSI from the switch 248 * @vsi: pointer to VSI being removed 249 */ 250 static void ice_vsi_delete(struct ice_vsi *vsi) 251 { 252 struct ice_pf *pf = vsi->back; 253 struct ice_vsi_ctx *ctxt; 254 enum ice_status status; 255 256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 257 if (!ctxt) 258 return; 259 260 if (vsi->type == ICE_VSI_VF) 261 ctxt->vf_num = vsi->vf_id; 262 ctxt->vsi_num = vsi->vsi_num; 263 264 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 265 266 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 267 if (status) 268 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 269 vsi->vsi_num, ice_stat_str(status)); 270 271 kfree(ctxt); 272 } 273 274 /** 275 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 276 * @vsi: pointer to VSI being cleared 277 */ 278 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 279 { 280 struct ice_pf *pf = vsi->back; 281 struct device *dev; 282 283 dev = ice_pf_to_dev(pf); 284 285 /* free the ring and vector containers */ 286 if (vsi->q_vectors) { 287 devm_kfree(dev, vsi->q_vectors); 288 vsi->q_vectors = NULL; 289 } 290 if (vsi->tx_rings) { 291 devm_kfree(dev, vsi->tx_rings); 292 vsi->tx_rings = NULL; 293 } 294 if (vsi->rx_rings) { 295 devm_kfree(dev, vsi->rx_rings); 296 vsi->rx_rings = NULL; 297 } 298 if (vsi->txq_map) { 299 devm_kfree(dev, vsi->txq_map); 300 vsi->txq_map = NULL; 301 } 302 if (vsi->rxq_map) { 303 devm_kfree(dev, vsi->rxq_map); 304 vsi->rxq_map = NULL; 305 } 306 } 307 308 /** 309 * ice_vsi_clear - clean up and deallocate the provided VSI 310 * @vsi: pointer to VSI being cleared 311 * 312 * This deallocates the VSI's queue resources, removes it from the PF's 313 * VSI array if necessary, and deallocates the VSI 314 * 315 * Returns 0 on success, negative on failure 316 */ 317 static int ice_vsi_clear(struct ice_vsi *vsi) 318 { 319 struct ice_pf *pf = NULL; 320 struct device *dev; 321 322 if (!vsi) 323 return 0; 324 325 if (!vsi->back) 326 return -EINVAL; 327 328 pf = vsi->back; 329 dev = ice_pf_to_dev(pf); 330 331 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 332 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 333 return -EINVAL; 334 } 335 336 mutex_lock(&pf->sw_mutex); 337 /* updates the PF for this cleared VSI */ 338 339 pf->vsi[vsi->idx] = NULL; 340 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 341 pf->next_vsi = vsi->idx; 342 343 ice_vsi_free_arrays(vsi); 344 mutex_unlock(&pf->sw_mutex); 345 devm_kfree(dev, vsi); 346 347 return 0; 348 } 349 350 /** 351 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 352 * @irq: interrupt number 353 * @data: pointer to a q_vector 354 */ 355 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 356 { 357 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 358 359 if (!q_vector->tx.ring) 360 return IRQ_HANDLED; 361 362 #define FDIR_RX_DESC_CLEAN_BUDGET 64 363 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 364 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 365 366 return IRQ_HANDLED; 367 } 368 369 /** 370 * ice_msix_clean_rings - MSIX mode Interrupt Handler 371 * @irq: interrupt number 372 * @data: pointer to a q_vector 373 */ 374 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 375 { 376 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 377 378 if (!q_vector->tx.ring && !q_vector->rx.ring) 379 return IRQ_HANDLED; 380 381 napi_schedule(&q_vector->napi); 382 383 return IRQ_HANDLED; 384 } 385 386 /** 387 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 388 * @pf: board private structure 389 * @vsi_type: type of VSI 390 * @vf_id: ID of the VF being configured 391 * 392 * returns a pointer to a VSI on success, NULL on failure. 393 */ 394 static struct ice_vsi * 395 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 396 { 397 struct device *dev = ice_pf_to_dev(pf); 398 struct ice_vsi *vsi = NULL; 399 400 /* Need to protect the allocation of the VSIs at the PF level */ 401 mutex_lock(&pf->sw_mutex); 402 403 /* If we have already allocated our maximum number of VSIs, 404 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 405 * is available to be populated 406 */ 407 if (pf->next_vsi == ICE_NO_VSI) { 408 dev_dbg(dev, "out of VSI slots!\n"); 409 goto unlock_pf; 410 } 411 412 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 413 if (!vsi) 414 goto unlock_pf; 415 416 vsi->type = vsi_type; 417 vsi->back = pf; 418 set_bit(__ICE_DOWN, vsi->state); 419 420 if (vsi_type == ICE_VSI_VF) 421 ice_vsi_set_num_qs(vsi, vf_id); 422 else 423 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 424 425 switch (vsi->type) { 426 case ICE_VSI_PF: 427 if (ice_vsi_alloc_arrays(vsi)) 428 goto err_rings; 429 430 /* Setup default MSIX irq handler for VSI */ 431 vsi->irq_handler = ice_msix_clean_rings; 432 break; 433 case ICE_VSI_CTRL: 434 if (ice_vsi_alloc_arrays(vsi)) 435 goto err_rings; 436 437 /* Setup ctrl VSI MSIX irq handler */ 438 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 439 break; 440 case ICE_VSI_VF: 441 if (ice_vsi_alloc_arrays(vsi)) 442 goto err_rings; 443 break; 444 case ICE_VSI_LB: 445 if (ice_vsi_alloc_arrays(vsi)) 446 goto err_rings; 447 break; 448 default: 449 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 450 goto unlock_pf; 451 } 452 453 if (vsi->type == ICE_VSI_CTRL) { 454 /* Use the last VSI slot as the index for the control VSI */ 455 vsi->idx = pf->num_alloc_vsi - 1; 456 pf->ctrl_vsi_idx = vsi->idx; 457 pf->vsi[vsi->idx] = vsi; 458 } else { 459 /* fill slot and make note of the index */ 460 vsi->idx = pf->next_vsi; 461 pf->vsi[pf->next_vsi] = vsi; 462 463 /* prepare pf->next_vsi for next use */ 464 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 465 pf->next_vsi); 466 } 467 goto unlock_pf; 468 469 err_rings: 470 devm_kfree(dev, vsi); 471 vsi = NULL; 472 unlock_pf: 473 mutex_unlock(&pf->sw_mutex); 474 return vsi; 475 } 476 477 /** 478 * ice_alloc_fd_res - Allocate FD resource for a VSI 479 * @vsi: pointer to the ice_vsi 480 * 481 * This allocates the FD resources 482 * 483 * Returns 0 on success, -EPERM on no-op or -EIO on failure 484 */ 485 static int ice_alloc_fd_res(struct ice_vsi *vsi) 486 { 487 struct ice_pf *pf = vsi->back; 488 u32 g_val, b_val; 489 490 /* Flow Director filters are only allocated/assigned to the PF VSI which 491 * passes the traffic. The CTRL VSI is only used to add/delete filters 492 * so we don't allocate resources to it 493 */ 494 495 /* FD filters from guaranteed pool per VSI */ 496 g_val = pf->hw.func_caps.fd_fltr_guar; 497 if (!g_val) 498 return -EPERM; 499 500 /* FD filters from best effort pool */ 501 b_val = pf->hw.func_caps.fd_fltr_best_effort; 502 if (!b_val) 503 return -EPERM; 504 505 if (vsi->type != ICE_VSI_PF) 506 return -EPERM; 507 508 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 509 return -EPERM; 510 511 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 512 513 /* each VSI gets same "best_effort" quota */ 514 vsi->num_bfltr = b_val; 515 516 return 0; 517 } 518 519 /** 520 * ice_vsi_get_qs - Assign queues from PF to VSI 521 * @vsi: the VSI to assign queues to 522 * 523 * Returns 0 on success and a negative value on error 524 */ 525 static int ice_vsi_get_qs(struct ice_vsi *vsi) 526 { 527 struct ice_pf *pf = vsi->back; 528 struct ice_qs_cfg tx_qs_cfg = { 529 .qs_mutex = &pf->avail_q_mutex, 530 .pf_map = pf->avail_txqs, 531 .pf_map_size = pf->max_pf_txqs, 532 .q_count = vsi->alloc_txq, 533 .scatter_count = ICE_MAX_SCATTER_TXQS, 534 .vsi_map = vsi->txq_map, 535 .vsi_map_offset = 0, 536 .mapping_mode = ICE_VSI_MAP_CONTIG 537 }; 538 struct ice_qs_cfg rx_qs_cfg = { 539 .qs_mutex = &pf->avail_q_mutex, 540 .pf_map = pf->avail_rxqs, 541 .pf_map_size = pf->max_pf_rxqs, 542 .q_count = vsi->alloc_rxq, 543 .scatter_count = ICE_MAX_SCATTER_RXQS, 544 .vsi_map = vsi->rxq_map, 545 .vsi_map_offset = 0, 546 .mapping_mode = ICE_VSI_MAP_CONTIG 547 }; 548 int ret; 549 550 ret = __ice_vsi_get_qs(&tx_qs_cfg); 551 if (ret) 552 return ret; 553 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 554 555 ret = __ice_vsi_get_qs(&rx_qs_cfg); 556 if (ret) 557 return ret; 558 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 559 560 return 0; 561 } 562 563 /** 564 * ice_vsi_put_qs - Release queues from VSI to PF 565 * @vsi: the VSI that is going to release queues 566 */ 567 static void ice_vsi_put_qs(struct ice_vsi *vsi) 568 { 569 struct ice_pf *pf = vsi->back; 570 int i; 571 572 mutex_lock(&pf->avail_q_mutex); 573 574 for (i = 0; i < vsi->alloc_txq; i++) { 575 clear_bit(vsi->txq_map[i], pf->avail_txqs); 576 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 577 } 578 579 for (i = 0; i < vsi->alloc_rxq; i++) { 580 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 581 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 582 } 583 584 mutex_unlock(&pf->avail_q_mutex); 585 } 586 587 /** 588 * ice_is_safe_mode 589 * @pf: pointer to the PF struct 590 * 591 * returns true if driver is in safe mode, false otherwise 592 */ 593 bool ice_is_safe_mode(struct ice_pf *pf) 594 { 595 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 596 } 597 598 /** 599 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 600 * @vsi: the VSI being cleaned up 601 * 602 * This function deletes RSS input set for all flows that were configured 603 * for this VSI 604 */ 605 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 606 { 607 struct ice_pf *pf = vsi->back; 608 enum ice_status status; 609 610 if (ice_is_safe_mode(pf)) 611 return; 612 613 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 614 if (status) 615 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 616 vsi->vsi_num, ice_stat_str(status)); 617 } 618 619 /** 620 * ice_rss_clean - Delete RSS related VSI structures and configuration 621 * @vsi: the VSI being removed 622 */ 623 static void ice_rss_clean(struct ice_vsi *vsi) 624 { 625 struct ice_pf *pf = vsi->back; 626 struct device *dev; 627 628 dev = ice_pf_to_dev(pf); 629 630 if (vsi->rss_hkey_user) 631 devm_kfree(dev, vsi->rss_hkey_user); 632 if (vsi->rss_lut_user) 633 devm_kfree(dev, vsi->rss_lut_user); 634 635 ice_vsi_clean_rss_flow_fld(vsi); 636 /* remove RSS replay list */ 637 if (!ice_is_safe_mode(pf)) 638 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 639 } 640 641 /** 642 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 643 * @vsi: the VSI being configured 644 */ 645 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 646 { 647 struct ice_hw_common_caps *cap; 648 struct ice_pf *pf = vsi->back; 649 650 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 651 vsi->rss_size = 1; 652 return; 653 } 654 655 cap = &pf->hw.func_caps.common_cap; 656 switch (vsi->type) { 657 case ICE_VSI_PF: 658 /* PF VSI will inherit RSS instance of PF */ 659 vsi->rss_table_size = (u16)cap->rss_table_size; 660 vsi->rss_size = min_t(u16, num_online_cpus(), 661 BIT(cap->rss_table_entry_width)); 662 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 663 break; 664 case ICE_VSI_VF: 665 /* VF VSI will get a small RSS table. 666 * For VSI_LUT, LUT size should be set to 64 bytes. 667 */ 668 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 669 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 670 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 671 break; 672 case ICE_VSI_LB: 673 break; 674 default: 675 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 676 ice_vsi_type_str(vsi->type)); 677 break; 678 } 679 } 680 681 /** 682 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 683 * @ctxt: the VSI context being set 684 * 685 * This initializes a default VSI context for all sections except the Queues. 686 */ 687 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 688 { 689 u32 table = 0; 690 691 memset(&ctxt->info, 0, sizeof(ctxt->info)); 692 /* VSI's should be allocated from shared pool */ 693 ctxt->alloc_from_pool = true; 694 /* Src pruning enabled by default */ 695 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 696 /* Traffic from VSI can be sent to LAN */ 697 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 698 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 699 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 700 * packets untagged/tagged. 701 */ 702 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 703 ICE_AQ_VSI_VLAN_MODE_M) >> 704 ICE_AQ_VSI_VLAN_MODE_S); 705 /* Have 1:1 UP mapping for both ingress/egress tables */ 706 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 707 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 708 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 709 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 710 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 711 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 712 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 713 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 714 ctxt->info.ingress_table = cpu_to_le32(table); 715 ctxt->info.egress_table = cpu_to_le32(table); 716 /* Have 1:1 UP mapping for outer to inner UP table */ 717 ctxt->info.outer_up_table = cpu_to_le32(table); 718 /* No Outer tag support outer_tag_flags remains to zero */ 719 } 720 721 /** 722 * ice_vsi_setup_q_map - Setup a VSI queue map 723 * @vsi: the VSI being configured 724 * @ctxt: VSI context structure 725 */ 726 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 727 { 728 u16 offset = 0, qmap = 0, tx_count = 0; 729 u16 qcount_tx = vsi->alloc_txq; 730 u16 qcount_rx = vsi->alloc_rxq; 731 u16 tx_numq_tc, rx_numq_tc; 732 u16 pow = 0, max_rss = 0; 733 bool ena_tc0 = false; 734 u8 netdev_tc = 0; 735 int i; 736 737 /* at least TC0 should be enabled by default */ 738 if (vsi->tc_cfg.numtc) { 739 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 740 ena_tc0 = true; 741 } else { 742 ena_tc0 = true; 743 } 744 745 if (ena_tc0) { 746 vsi->tc_cfg.numtc++; 747 vsi->tc_cfg.ena_tc |= 1; 748 } 749 750 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 751 if (!rx_numq_tc) 752 rx_numq_tc = 1; 753 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 754 if (!tx_numq_tc) 755 tx_numq_tc = 1; 756 757 /* TC mapping is a function of the number of Rx queues assigned to the 758 * VSI for each traffic class and the offset of these queues. 759 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 760 * queues allocated to TC0. No:of queues is a power-of-2. 761 * 762 * If TC is not enabled, the queue offset is set to 0, and allocate one 763 * queue, this way, traffic for the given TC will be sent to the default 764 * queue. 765 * 766 * Setup number and offset of Rx queues for all TCs for the VSI 767 */ 768 769 qcount_rx = rx_numq_tc; 770 771 /* qcount will change if RSS is enabled */ 772 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 773 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 774 if (vsi->type == ICE_VSI_PF) 775 max_rss = ICE_MAX_LG_RSS_QS; 776 else 777 max_rss = ICE_MAX_RSS_QS_PER_VF; 778 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 779 if (!vsi->req_rxq) 780 qcount_rx = min_t(u16, qcount_rx, 781 vsi->rss_size); 782 } 783 } 784 785 /* find the (rounded up) power-of-2 of qcount */ 786 pow = (u16)order_base_2(qcount_rx); 787 788 ice_for_each_traffic_class(i) { 789 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 790 /* TC is not enabled */ 791 vsi->tc_cfg.tc_info[i].qoffset = 0; 792 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 793 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 794 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 795 ctxt->info.tc_mapping[i] = 0; 796 continue; 797 } 798 799 /* TC is enabled */ 800 vsi->tc_cfg.tc_info[i].qoffset = offset; 801 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 802 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 803 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 804 805 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 806 ICE_AQ_VSI_TC_Q_OFFSET_M) | 807 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 808 ICE_AQ_VSI_TC_Q_NUM_M); 809 offset += qcount_rx; 810 tx_count += tx_numq_tc; 811 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 812 } 813 814 /* if offset is non-zero, means it is calculated correctly based on 815 * enabled TCs for a given VSI otherwise qcount_rx will always 816 * be correct and non-zero because it is based off - VSI's 817 * allocated Rx queues which is at least 1 (hence qcount_tx will be 818 * at least 1) 819 */ 820 if (offset) 821 vsi->num_rxq = offset; 822 else 823 vsi->num_rxq = qcount_rx; 824 825 vsi->num_txq = tx_count; 826 827 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 828 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 829 /* since there is a chance that num_rxq could have been changed 830 * in the above for loop, make num_txq equal to num_rxq. 831 */ 832 vsi->num_txq = vsi->num_rxq; 833 } 834 835 /* Rx queue mapping */ 836 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 837 /* q_mapping buffer holds the info for the first queue allocated for 838 * this VSI in the PF space and also the number of queues associated 839 * with this VSI. 840 */ 841 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 842 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 843 } 844 845 /** 846 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 847 * @ctxt: the VSI context being set 848 * @vsi: the VSI being configured 849 */ 850 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 851 { 852 u8 dflt_q_group, dflt_q_prio; 853 u16 dflt_q, report_q, val; 854 855 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 856 return; 857 858 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 859 ctxt->info.valid_sections |= cpu_to_le16(val); 860 dflt_q = 0; 861 dflt_q_group = 0; 862 report_q = 0; 863 dflt_q_prio = 0; 864 865 /* enable flow director filtering/programming */ 866 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 867 ctxt->info.fd_options = cpu_to_le16(val); 868 /* max of allocated flow director filters */ 869 ctxt->info.max_fd_fltr_dedicated = 870 cpu_to_le16(vsi->num_gfltr); 871 /* max of shared flow director filters any VSI may program */ 872 ctxt->info.max_fd_fltr_shared = 873 cpu_to_le16(vsi->num_bfltr); 874 /* default queue index within the VSI of the default FD */ 875 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 876 ICE_AQ_VSI_FD_DEF_Q_M); 877 /* target queue or queue group to the FD filter */ 878 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 879 ICE_AQ_VSI_FD_DEF_GRP_M); 880 ctxt->info.fd_def_q = cpu_to_le16(val); 881 /* queue index on which FD filter completion is reported */ 882 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 883 ICE_AQ_VSI_FD_REPORT_Q_M); 884 /* priority of the default qindex action */ 885 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 886 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 887 ctxt->info.fd_report_opt = cpu_to_le16(val); 888 } 889 890 /** 891 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 892 * @ctxt: the VSI context being set 893 * @vsi: the VSI being configured 894 */ 895 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 896 { 897 u8 lut_type, hash_type; 898 struct device *dev; 899 struct ice_pf *pf; 900 901 pf = vsi->back; 902 dev = ice_pf_to_dev(pf); 903 904 switch (vsi->type) { 905 case ICE_VSI_PF: 906 /* PF VSI will inherit RSS instance of PF */ 907 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 908 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 909 break; 910 case ICE_VSI_VF: 911 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 912 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 913 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 914 break; 915 default: 916 dev_dbg(dev, "Unsupported VSI type %s\n", 917 ice_vsi_type_str(vsi->type)); 918 return; 919 } 920 921 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 922 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 923 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 924 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 925 } 926 927 /** 928 * ice_vsi_init - Create and initialize a VSI 929 * @vsi: the VSI being configured 930 * @init_vsi: is this call creating a VSI 931 * 932 * This initializes a VSI context depending on the VSI type to be added and 933 * passes it down to the add_vsi aq command to create a new VSI. 934 */ 935 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 936 { 937 struct ice_pf *pf = vsi->back; 938 struct ice_hw *hw = &pf->hw; 939 struct ice_vsi_ctx *ctxt; 940 struct device *dev; 941 int ret = 0; 942 943 dev = ice_pf_to_dev(pf); 944 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 945 if (!ctxt) 946 return -ENOMEM; 947 948 switch (vsi->type) { 949 case ICE_VSI_CTRL: 950 case ICE_VSI_LB: 951 case ICE_VSI_PF: 952 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 953 break; 954 case ICE_VSI_VF: 955 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 956 /* VF number here is the absolute VF number (0-255) */ 957 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 958 break; 959 default: 960 ret = -ENODEV; 961 goto out; 962 } 963 964 ice_set_dflt_vsi_ctx(ctxt); 965 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 966 ice_set_fd_vsi_ctx(ctxt, vsi); 967 /* if the switch is in VEB mode, allow VSI loopback */ 968 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 969 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 970 971 /* Set LUT type and HASH type if RSS is enabled */ 972 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 973 vsi->type != ICE_VSI_CTRL) { 974 ice_set_rss_vsi_ctx(ctxt, vsi); 975 /* if updating VSI context, make sure to set valid_section: 976 * to indicate which section of VSI context being updated 977 */ 978 if (!init_vsi) 979 ctxt->info.valid_sections |= 980 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 981 } 982 983 ctxt->info.sw_id = vsi->port_info->sw_id; 984 ice_vsi_setup_q_map(vsi, ctxt); 985 if (!init_vsi) /* means VSI being updated */ 986 /* must to indicate which section of VSI context are 987 * being modified 988 */ 989 ctxt->info.valid_sections |= 990 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 991 992 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 993 * respectively 994 */ 995 if (vsi->type == ICE_VSI_VF) { 996 ctxt->info.valid_sections |= 997 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 998 if (pf->vf[vsi->vf_id].spoofchk) { 999 ctxt->info.sec_flags |= 1000 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1001 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1002 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1003 } else { 1004 ctxt->info.sec_flags &= 1005 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1006 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1008 } 1009 } 1010 1011 /* Allow control frames out of main VSI */ 1012 if (vsi->type == ICE_VSI_PF) { 1013 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1014 ctxt->info.valid_sections |= 1015 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1016 } 1017 1018 if (init_vsi) { 1019 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1020 if (ret) { 1021 dev_err(dev, "Add VSI failed, err %d\n", ret); 1022 ret = -EIO; 1023 goto out; 1024 } 1025 } else { 1026 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1027 if (ret) { 1028 dev_err(dev, "Update VSI failed, err %d\n", ret); 1029 ret = -EIO; 1030 goto out; 1031 } 1032 } 1033 1034 /* keep context for update VSI operations */ 1035 vsi->info = ctxt->info; 1036 1037 /* record VSI number returned */ 1038 vsi->vsi_num = ctxt->vsi_num; 1039 1040 out: 1041 kfree(ctxt); 1042 return ret; 1043 } 1044 1045 /** 1046 * ice_free_res - free a block of resources 1047 * @res: pointer to the resource 1048 * @index: starting index previously returned by ice_get_res 1049 * @id: identifier to track owner 1050 * 1051 * Returns number of resources freed 1052 */ 1053 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1054 { 1055 int count = 0; 1056 int i; 1057 1058 if (!res || index >= res->end) 1059 return -EINVAL; 1060 1061 id |= ICE_RES_VALID_BIT; 1062 for (i = index; i < res->end && res->list[i] == id; i++) { 1063 res->list[i] = 0; 1064 count++; 1065 } 1066 1067 return count; 1068 } 1069 1070 /** 1071 * ice_search_res - Search the tracker for a block of resources 1072 * @res: pointer to the resource 1073 * @needed: size of the block needed 1074 * @id: identifier to track owner 1075 * 1076 * Returns the base item index of the block, or -ENOMEM for error 1077 */ 1078 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1079 { 1080 u16 start = 0, end = 0; 1081 1082 if (needed > res->end) 1083 return -ENOMEM; 1084 1085 id |= ICE_RES_VALID_BIT; 1086 1087 do { 1088 /* skip already allocated entries */ 1089 if (res->list[end++] & ICE_RES_VALID_BIT) { 1090 start = end; 1091 if ((start + needed) > res->end) 1092 break; 1093 } 1094 1095 if (end == (start + needed)) { 1096 int i = start; 1097 1098 /* there was enough, so assign it to the requestor */ 1099 while (i != end) 1100 res->list[i++] = id; 1101 1102 return start; 1103 } 1104 } while (end < res->end); 1105 1106 return -ENOMEM; 1107 } 1108 1109 /** 1110 * ice_get_free_res_count - Get free count from a resource tracker 1111 * @res: Resource tracker instance 1112 */ 1113 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1114 { 1115 u16 i, count = 0; 1116 1117 for (i = 0; i < res->end; i++) 1118 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1119 count++; 1120 1121 return count; 1122 } 1123 1124 /** 1125 * ice_get_res - get a block of resources 1126 * @pf: board private structure 1127 * @res: pointer to the resource 1128 * @needed: size of the block needed 1129 * @id: identifier to track owner 1130 * 1131 * Returns the base item index of the block, or negative for error 1132 */ 1133 int 1134 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1135 { 1136 if (!res || !pf) 1137 return -EINVAL; 1138 1139 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1140 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1141 needed, res->num_entries, id); 1142 return -EINVAL; 1143 } 1144 1145 return ice_search_res(res, needed, id); 1146 } 1147 1148 /** 1149 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1150 * @vsi: ptr to the VSI 1151 * 1152 * This should only be called after ice_vsi_alloc() which allocates the 1153 * corresponding SW VSI structure and initializes num_queue_pairs for the 1154 * newly allocated VSI. 1155 * 1156 * Returns 0 on success or negative on failure 1157 */ 1158 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1159 { 1160 struct ice_pf *pf = vsi->back; 1161 struct device *dev; 1162 u16 num_q_vectors; 1163 int base; 1164 1165 dev = ice_pf_to_dev(pf); 1166 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1167 if (vsi->type == ICE_VSI_VF) 1168 return 0; 1169 1170 if (vsi->base_vector) { 1171 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1172 vsi->vsi_num, vsi->base_vector); 1173 return -EEXIST; 1174 } 1175 1176 num_q_vectors = vsi->num_q_vectors; 1177 /* reserve slots from OS requested IRQs */ 1178 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1179 1180 if (base < 0) { 1181 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1182 ice_get_free_res_count(pf->irq_tracker), 1183 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1184 return -ENOENT; 1185 } 1186 vsi->base_vector = (u16)base; 1187 pf->num_avail_sw_msix -= num_q_vectors; 1188 1189 return 0; 1190 } 1191 1192 /** 1193 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1194 * @vsi: the VSI having rings deallocated 1195 */ 1196 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1197 { 1198 int i; 1199 1200 /* Avoid stale references by clearing map from vector to ring */ 1201 if (vsi->q_vectors) { 1202 ice_for_each_q_vector(vsi, i) { 1203 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1204 1205 if (q_vector) { 1206 q_vector->tx.ring = NULL; 1207 q_vector->rx.ring = NULL; 1208 } 1209 } 1210 } 1211 1212 if (vsi->tx_rings) { 1213 for (i = 0; i < vsi->alloc_txq; i++) { 1214 if (vsi->tx_rings[i]) { 1215 kfree_rcu(vsi->tx_rings[i], rcu); 1216 WRITE_ONCE(vsi->tx_rings[i], NULL); 1217 } 1218 } 1219 } 1220 if (vsi->rx_rings) { 1221 for (i = 0; i < vsi->alloc_rxq; i++) { 1222 if (vsi->rx_rings[i]) { 1223 kfree_rcu(vsi->rx_rings[i], rcu); 1224 WRITE_ONCE(vsi->rx_rings[i], NULL); 1225 } 1226 } 1227 } 1228 } 1229 1230 /** 1231 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1232 * @vsi: VSI which is having rings allocated 1233 */ 1234 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1235 { 1236 struct ice_pf *pf = vsi->back; 1237 struct device *dev; 1238 u16 i; 1239 1240 dev = ice_pf_to_dev(pf); 1241 /* Allocate Tx rings */ 1242 for (i = 0; i < vsi->alloc_txq; i++) { 1243 struct ice_ring *ring; 1244 1245 /* allocate with kzalloc(), free with kfree_rcu() */ 1246 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1247 1248 if (!ring) 1249 goto err_out; 1250 1251 ring->q_index = i; 1252 ring->reg_idx = vsi->txq_map[i]; 1253 ring->ring_active = false; 1254 ring->vsi = vsi; 1255 ring->dev = dev; 1256 ring->count = vsi->num_tx_desc; 1257 WRITE_ONCE(vsi->tx_rings[i], ring); 1258 } 1259 1260 /* Allocate Rx rings */ 1261 for (i = 0; i < vsi->alloc_rxq; i++) { 1262 struct ice_ring *ring; 1263 1264 /* allocate with kzalloc(), free with kfree_rcu() */ 1265 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1266 if (!ring) 1267 goto err_out; 1268 1269 ring->q_index = i; 1270 ring->reg_idx = vsi->rxq_map[i]; 1271 ring->ring_active = false; 1272 ring->vsi = vsi; 1273 ring->netdev = vsi->netdev; 1274 ring->dev = dev; 1275 ring->count = vsi->num_rx_desc; 1276 WRITE_ONCE(vsi->rx_rings[i], ring); 1277 } 1278 1279 return 0; 1280 1281 err_out: 1282 ice_vsi_clear_rings(vsi); 1283 return -ENOMEM; 1284 } 1285 1286 /** 1287 * ice_vsi_manage_rss_lut - disable/enable RSS 1288 * @vsi: the VSI being changed 1289 * @ena: boolean value indicating if this is an enable or disable request 1290 * 1291 * In the event of disable request for RSS, this function will zero out RSS 1292 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1293 * LUT. 1294 */ 1295 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1296 { 1297 int err = 0; 1298 u8 *lut; 1299 1300 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1301 if (!lut) 1302 return -ENOMEM; 1303 1304 if (ena) { 1305 if (vsi->rss_lut_user) 1306 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1307 else 1308 ice_fill_rss_lut(lut, vsi->rss_table_size, 1309 vsi->rss_size); 1310 } 1311 1312 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1313 kfree(lut); 1314 return err; 1315 } 1316 1317 /** 1318 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1319 * @vsi: VSI to be configured 1320 */ 1321 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1322 { 1323 struct ice_aqc_get_set_rss_keys *key; 1324 struct ice_pf *pf = vsi->back; 1325 enum ice_status status; 1326 struct device *dev; 1327 int err = 0; 1328 u8 *lut; 1329 1330 dev = ice_pf_to_dev(pf); 1331 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1332 1333 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1334 if (!lut) 1335 return -ENOMEM; 1336 1337 if (vsi->rss_lut_user) 1338 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1339 else 1340 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1341 1342 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1343 vsi->rss_table_size); 1344 1345 if (status) { 1346 dev_err(dev, "set_rss_lut failed, error %s\n", 1347 ice_stat_str(status)); 1348 err = -EIO; 1349 goto ice_vsi_cfg_rss_exit; 1350 } 1351 1352 key = kzalloc(sizeof(*key), GFP_KERNEL); 1353 if (!key) { 1354 err = -ENOMEM; 1355 goto ice_vsi_cfg_rss_exit; 1356 } 1357 1358 if (vsi->rss_hkey_user) 1359 memcpy(key, 1360 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1361 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1362 else 1363 netdev_rss_key_fill((void *)key, 1364 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1365 1366 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1367 1368 if (status) { 1369 dev_err(dev, "set_rss_key failed, error %s\n", 1370 ice_stat_str(status)); 1371 err = -EIO; 1372 } 1373 1374 kfree(key); 1375 ice_vsi_cfg_rss_exit: 1376 kfree(lut); 1377 return err; 1378 } 1379 1380 /** 1381 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1382 * @vsi: VSI to be configured 1383 * 1384 * This function will only be called during the VF VSI setup. Upon successful 1385 * completion of package download, this function will configure default RSS 1386 * input sets for VF VSI. 1387 */ 1388 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1389 { 1390 struct ice_pf *pf = vsi->back; 1391 enum ice_status status; 1392 struct device *dev; 1393 1394 dev = ice_pf_to_dev(pf); 1395 if (ice_is_safe_mode(pf)) { 1396 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1397 vsi->vsi_num); 1398 return; 1399 } 1400 1401 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1402 if (status) 1403 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1404 vsi->vsi_num, ice_stat_str(status)); 1405 } 1406 1407 /** 1408 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1409 * @vsi: VSI to be configured 1410 * 1411 * This function will only be called after successful download package call 1412 * during initialization of PF. Since the downloaded package will erase the 1413 * RSS section, this function will configure RSS input sets for different 1414 * flow types. The last profile added has the highest priority, therefore 2 1415 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1416 * (i.e. IPv4 src/dst TCP src/dst port). 1417 */ 1418 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1419 { 1420 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1421 struct ice_pf *pf = vsi->back; 1422 struct ice_hw *hw = &pf->hw; 1423 enum ice_status status; 1424 struct device *dev; 1425 1426 dev = ice_pf_to_dev(pf); 1427 if (ice_is_safe_mode(pf)) { 1428 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1429 vsi_num); 1430 return; 1431 } 1432 /* configure RSS for IPv4 with input set IP src/dst */ 1433 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1434 ICE_FLOW_SEG_HDR_IPV4); 1435 if (status) 1436 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1437 vsi_num, ice_stat_str(status)); 1438 1439 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1440 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1441 ICE_FLOW_SEG_HDR_IPV6); 1442 if (status) 1443 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1444 vsi_num, ice_stat_str(status)); 1445 1446 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1447 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1448 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1449 if (status) 1450 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1451 vsi_num, ice_stat_str(status)); 1452 1453 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1454 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1455 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1456 if (status) 1457 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1458 vsi_num, ice_stat_str(status)); 1459 1460 /* configure RSS for sctp4 with input set IP src/dst */ 1461 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1462 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1463 if (status) 1464 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1465 vsi_num, ice_stat_str(status)); 1466 1467 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1468 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1469 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1470 if (status) 1471 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1472 vsi_num, ice_stat_str(status)); 1473 1474 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1475 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1476 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1477 if (status) 1478 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1479 vsi_num, ice_stat_str(status)); 1480 1481 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1482 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1483 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1484 if (status) 1485 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1486 vsi_num, ice_stat_str(status)); 1487 } 1488 1489 /** 1490 * ice_pf_state_is_nominal - checks the PF for nominal state 1491 * @pf: pointer to PF to check 1492 * 1493 * Check the PF's state for a collection of bits that would indicate 1494 * the PF is in a state that would inhibit normal operation for 1495 * driver functionality. 1496 * 1497 * Returns true if PF is in a nominal state, false otherwise 1498 */ 1499 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1500 { 1501 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1502 1503 if (!pf) 1504 return false; 1505 1506 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1507 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1508 return false; 1509 1510 return true; 1511 } 1512 1513 /** 1514 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1515 * @vsi: the VSI to be updated 1516 */ 1517 void ice_update_eth_stats(struct ice_vsi *vsi) 1518 { 1519 struct ice_eth_stats *prev_es, *cur_es; 1520 struct ice_hw *hw = &vsi->back->hw; 1521 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1522 1523 prev_es = &vsi->eth_stats_prev; 1524 cur_es = &vsi->eth_stats; 1525 1526 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1527 &prev_es->rx_bytes, &cur_es->rx_bytes); 1528 1529 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1530 &prev_es->rx_unicast, &cur_es->rx_unicast); 1531 1532 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1533 &prev_es->rx_multicast, &cur_es->rx_multicast); 1534 1535 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1536 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1537 1538 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1539 &prev_es->rx_discards, &cur_es->rx_discards); 1540 1541 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1542 &prev_es->tx_bytes, &cur_es->tx_bytes); 1543 1544 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1545 &prev_es->tx_unicast, &cur_es->tx_unicast); 1546 1547 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1548 &prev_es->tx_multicast, &cur_es->tx_multicast); 1549 1550 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1551 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1552 1553 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1554 &prev_es->tx_errors, &cur_es->tx_errors); 1555 1556 vsi->stat_offsets_loaded = true; 1557 } 1558 1559 /** 1560 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1561 * @vsi: the VSI being configured 1562 * @vid: VLAN ID to be added 1563 * @action: filter action to be performed on match 1564 */ 1565 int 1566 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1567 { 1568 struct ice_pf *pf = vsi->back; 1569 struct device *dev; 1570 int err = 0; 1571 1572 dev = ice_pf_to_dev(pf); 1573 1574 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1575 vsi->num_vlan++; 1576 } else { 1577 err = -ENODEV; 1578 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1579 vsi->vsi_num); 1580 } 1581 1582 return err; 1583 } 1584 1585 /** 1586 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1587 * @vsi: the VSI being configured 1588 * @vid: VLAN ID to be removed 1589 * 1590 * Returns 0 on success and negative on failure 1591 */ 1592 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1593 { 1594 struct ice_pf *pf = vsi->back; 1595 enum ice_status status; 1596 struct device *dev; 1597 int err = 0; 1598 1599 dev = ice_pf_to_dev(pf); 1600 1601 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1602 if (!status) { 1603 vsi->num_vlan--; 1604 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1605 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1606 vid, vsi->vsi_num, ice_stat_str(status)); 1607 } else { 1608 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1609 vid, vsi->vsi_num, ice_stat_str(status)); 1610 err = -EIO; 1611 } 1612 1613 return err; 1614 } 1615 1616 /** 1617 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1618 * @vsi: VSI 1619 */ 1620 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1621 { 1622 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1623 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1624 vsi->rx_buf_len = ICE_RXBUF_2048; 1625 #if (PAGE_SIZE < 8192) 1626 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1627 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1628 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1629 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1630 #endif 1631 } else { 1632 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1633 #if (PAGE_SIZE < 8192) 1634 vsi->rx_buf_len = ICE_RXBUF_3072; 1635 #else 1636 vsi->rx_buf_len = ICE_RXBUF_2048; 1637 #endif 1638 } 1639 } 1640 1641 /** 1642 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1643 * @hw: HW pointer 1644 * @pf_q: index of the Rx queue in the PF's queue space 1645 * @rxdid: flexible descriptor RXDID 1646 * @prio: priority for the RXDID for this queue 1647 */ 1648 void 1649 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1650 { 1651 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1652 1653 /* clear any previous values */ 1654 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1655 QRXFLXP_CNTXT_RXDID_PRIO_M | 1656 QRXFLXP_CNTXT_TS_M); 1657 1658 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1659 QRXFLXP_CNTXT_RXDID_IDX_M; 1660 1661 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1662 QRXFLXP_CNTXT_RXDID_PRIO_M; 1663 1664 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1665 } 1666 1667 /** 1668 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1669 * @vsi: the VSI being configured 1670 * 1671 * Return 0 on success and a negative value on error 1672 * Configure the Rx VSI for operation. 1673 */ 1674 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1675 { 1676 u16 i; 1677 1678 if (vsi->type == ICE_VSI_VF) 1679 goto setup_rings; 1680 1681 ice_vsi_cfg_frame_size(vsi); 1682 setup_rings: 1683 /* set up individual rings */ 1684 for (i = 0; i < vsi->num_rxq; i++) { 1685 int err; 1686 1687 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1688 if (err) { 1689 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1690 i, err); 1691 return err; 1692 } 1693 } 1694 1695 return 0; 1696 } 1697 1698 /** 1699 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1700 * @vsi: the VSI being configured 1701 * @rings: Tx ring array to be configured 1702 * 1703 * Return 0 on success and a negative value on error 1704 * Configure the Tx VSI for operation. 1705 */ 1706 static int 1707 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1708 { 1709 struct ice_aqc_add_tx_qgrp *qg_buf; 1710 u16 q_idx = 0; 1711 int err = 0; 1712 1713 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1714 if (!qg_buf) 1715 return -ENOMEM; 1716 1717 qg_buf->num_txqs = 1; 1718 1719 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1720 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1721 if (err) 1722 goto err_cfg_txqs; 1723 } 1724 1725 err_cfg_txqs: 1726 kfree(qg_buf); 1727 return err; 1728 } 1729 1730 /** 1731 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1732 * @vsi: the VSI being configured 1733 * 1734 * Return 0 on success and a negative value on error 1735 * Configure the Tx VSI for operation. 1736 */ 1737 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1738 { 1739 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1740 } 1741 1742 /** 1743 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1744 * @vsi: the VSI being configured 1745 * 1746 * Return 0 on success and a negative value on error 1747 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1748 */ 1749 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1750 { 1751 int ret; 1752 int i; 1753 1754 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1755 if (ret) 1756 return ret; 1757 1758 for (i = 0; i < vsi->num_xdp_txq; i++) 1759 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1766 * @intrl: interrupt rate limit in usecs 1767 * @gran: interrupt rate limit granularity in usecs 1768 * 1769 * This function converts a decimal interrupt rate limit in usecs to the format 1770 * expected by firmware. 1771 */ 1772 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1773 { 1774 u32 val = intrl / gran; 1775 1776 if (val) 1777 return val | GLINT_RATE_INTRL_ENA_M; 1778 return 0; 1779 } 1780 1781 /** 1782 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1783 * @vsi: the VSI being configured 1784 * 1785 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1786 * for the VF VSI. 1787 */ 1788 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1789 { 1790 struct ice_pf *pf = vsi->back; 1791 struct ice_hw *hw = &pf->hw; 1792 u16 txq = 0, rxq = 0; 1793 int i, q; 1794 1795 for (i = 0; i < vsi->num_q_vectors; i++) { 1796 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1797 u16 reg_idx = q_vector->reg_idx; 1798 1799 ice_cfg_itr(hw, q_vector); 1800 1801 wr32(hw, GLINT_RATE(reg_idx), 1802 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1803 1804 /* Both Transmit Queue Interrupt Cause Control register 1805 * and Receive Queue Interrupt Cause control register 1806 * expects MSIX_INDX field to be the vector index 1807 * within the function space and not the absolute 1808 * vector index across PF or across device. 1809 * For SR-IOV VF VSIs queue vector index always starts 1810 * with 1 since first vector index(0) is used for OICR 1811 * in VF space. Since VMDq and other PF VSIs are within 1812 * the PF function space, use the vector index that is 1813 * tracked for this PF. 1814 */ 1815 for (q = 0; q < q_vector->num_ring_tx; q++) { 1816 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1817 q_vector->tx.itr_idx); 1818 txq++; 1819 } 1820 1821 for (q = 0; q < q_vector->num_ring_rx; q++) { 1822 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1823 q_vector->rx.itr_idx); 1824 rxq++; 1825 } 1826 } 1827 } 1828 1829 /** 1830 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1831 * @vsi: the VSI being changed 1832 */ 1833 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1834 { 1835 struct ice_hw *hw = &vsi->back->hw; 1836 struct ice_vsi_ctx *ctxt; 1837 enum ice_status status; 1838 int ret = 0; 1839 1840 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1841 if (!ctxt) 1842 return -ENOMEM; 1843 1844 /* Here we are configuring the VSI to let the driver add VLAN tags by 1845 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1846 * insertion happens in the Tx hot path, in ice_tx_map. 1847 */ 1848 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1849 1850 /* Preserve existing VLAN strip setting */ 1851 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1852 ICE_AQ_VSI_VLAN_EMOD_M); 1853 1854 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1855 1856 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1857 if (status) { 1858 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1859 ice_stat_str(status), 1860 ice_aq_str(hw->adminq.sq_last_status)); 1861 ret = -EIO; 1862 goto out; 1863 } 1864 1865 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1866 out: 1867 kfree(ctxt); 1868 return ret; 1869 } 1870 1871 /** 1872 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1873 * @vsi: the VSI being changed 1874 * @ena: boolean value indicating if this is a enable or disable request 1875 */ 1876 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1877 { 1878 struct ice_hw *hw = &vsi->back->hw; 1879 struct ice_vsi_ctx *ctxt; 1880 enum ice_status status; 1881 int ret = 0; 1882 1883 /* do not allow modifying VLAN stripping when a port VLAN is configured 1884 * on this VSI 1885 */ 1886 if (vsi->info.pvid) 1887 return 0; 1888 1889 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1890 if (!ctxt) 1891 return -ENOMEM; 1892 1893 /* Here we are configuring what the VSI should do with the VLAN tag in 1894 * the Rx packet. We can either leave the tag in the packet or put it in 1895 * the Rx descriptor. 1896 */ 1897 if (ena) 1898 /* Strip VLAN tag from Rx packet and put it in the desc */ 1899 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1900 else 1901 /* Disable stripping. Leave tag in packet */ 1902 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1903 1904 /* Allow all packets untagged/tagged */ 1905 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1906 1907 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1908 1909 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1910 if (status) { 1911 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1912 ena, ice_stat_str(status), 1913 ice_aq_str(hw->adminq.sq_last_status)); 1914 ret = -EIO; 1915 goto out; 1916 } 1917 1918 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1919 out: 1920 kfree(ctxt); 1921 return ret; 1922 } 1923 1924 /** 1925 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1926 * @vsi: the VSI whose rings are to be enabled 1927 * 1928 * Returns 0 on success and a negative value on error 1929 */ 1930 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1931 { 1932 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1933 } 1934 1935 /** 1936 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1937 * @vsi: the VSI whose rings are to be disabled 1938 * 1939 * Returns 0 on success and a negative value on error 1940 */ 1941 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1942 { 1943 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1944 } 1945 1946 /** 1947 * ice_vsi_stop_tx_rings - Disable Tx rings 1948 * @vsi: the VSI being configured 1949 * @rst_src: reset source 1950 * @rel_vmvf_num: Relative ID of VF/VM 1951 * @rings: Tx ring array to be stopped 1952 */ 1953 static int 1954 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1955 u16 rel_vmvf_num, struct ice_ring **rings) 1956 { 1957 u16 q_idx; 1958 1959 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1960 return -EINVAL; 1961 1962 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1963 struct ice_txq_meta txq_meta = { }; 1964 int status; 1965 1966 if (!rings || !rings[q_idx]) 1967 return -EINVAL; 1968 1969 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1970 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1971 rings[q_idx], &txq_meta); 1972 1973 if (status) 1974 return status; 1975 } 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1982 * @vsi: the VSI being configured 1983 * @rst_src: reset source 1984 * @rel_vmvf_num: Relative ID of VF/VM 1985 */ 1986 int 1987 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1988 u16 rel_vmvf_num) 1989 { 1990 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1991 } 1992 1993 /** 1994 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1995 * @vsi: the VSI being configured 1996 */ 1997 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1998 { 1999 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2000 } 2001 2002 /** 2003 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2004 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2005 * 2006 * returns true if Rx VLAN pruning is enabled and false otherwise. 2007 */ 2008 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2009 { 2010 if (!vsi) 2011 return false; 2012 2013 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2014 } 2015 2016 /** 2017 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2018 * @vsi: VSI to enable or disable VLAN pruning on 2019 * @ena: set to true to enable VLAN pruning and false to disable it 2020 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2021 * 2022 * returns 0 if VSI is updated, negative otherwise 2023 */ 2024 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2025 { 2026 struct ice_vsi_ctx *ctxt; 2027 struct ice_pf *pf; 2028 int status; 2029 2030 if (!vsi) 2031 return -EINVAL; 2032 2033 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2034 * mode. VLAN pruning will be enabled when the interface exits 2035 * promiscuous mode if any VLAN filters are active. 2036 */ 2037 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2038 return 0; 2039 2040 pf = vsi->back; 2041 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2042 if (!ctxt) 2043 return -ENOMEM; 2044 2045 ctxt->info = vsi->info; 2046 2047 if (ena) 2048 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2049 else 2050 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2051 2052 if (!vlan_promisc) 2053 ctxt->info.valid_sections = 2054 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2055 2056 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2057 if (status) { 2058 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2059 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2060 ice_stat_str(status), 2061 ice_aq_str(pf->hw.adminq.sq_last_status)); 2062 goto err_out; 2063 } 2064 2065 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2066 2067 kfree(ctxt); 2068 return 0; 2069 2070 err_out: 2071 kfree(ctxt); 2072 return -EIO; 2073 } 2074 2075 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2076 { 2077 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2078 2079 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2080 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2081 } 2082 2083 /** 2084 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2085 * @vsi: VSI to set the q_vectors register index on 2086 */ 2087 static int 2088 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2089 { 2090 u16 i; 2091 2092 if (!vsi || !vsi->q_vectors) 2093 return -EINVAL; 2094 2095 ice_for_each_q_vector(vsi, i) { 2096 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2097 2098 if (!q_vector) { 2099 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2100 i, vsi->vsi_num); 2101 goto clear_reg_idx; 2102 } 2103 2104 if (vsi->type == ICE_VSI_VF) { 2105 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2106 2107 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2108 } else { 2109 q_vector->reg_idx = 2110 q_vector->v_idx + vsi->base_vector; 2111 } 2112 } 2113 2114 return 0; 2115 2116 clear_reg_idx: 2117 ice_for_each_q_vector(vsi, i) { 2118 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2119 2120 if (q_vector) 2121 q_vector->reg_idx = 0; 2122 } 2123 2124 return -EINVAL; 2125 } 2126 2127 /** 2128 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2129 * @vsi: the VSI being configured 2130 * @tx: bool to determine Tx or Rx rule 2131 * @create: bool to determine create or remove Rule 2132 */ 2133 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2134 { 2135 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2136 enum ice_sw_fwd_act_type act); 2137 struct ice_pf *pf = vsi->back; 2138 enum ice_status status; 2139 struct device *dev; 2140 2141 dev = ice_pf_to_dev(pf); 2142 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2143 2144 if (tx) 2145 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2146 ICE_DROP_PACKET); 2147 else 2148 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); 2149 2150 if (status) 2151 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2152 create ? "adding" : "removing", tx ? "TX" : "RX", 2153 vsi->vsi_num, ice_stat_str(status)); 2154 } 2155 2156 /** 2157 * ice_vsi_setup - Set up a VSI by a given type 2158 * @pf: board private structure 2159 * @pi: pointer to the port_info instance 2160 * @vsi_type: VSI type 2161 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2162 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2163 * fill-in ICE_INVAL_VFID as input. 2164 * 2165 * This allocates the sw VSI structure and its queue resources. 2166 * 2167 * Returns pointer to the successfully allocated and configured VSI sw struct on 2168 * success, NULL on failure. 2169 */ 2170 struct ice_vsi * 2171 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2172 enum ice_vsi_type vsi_type, u16 vf_id) 2173 { 2174 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2175 struct device *dev = ice_pf_to_dev(pf); 2176 enum ice_status status; 2177 struct ice_vsi *vsi; 2178 int ret, i; 2179 2180 if (vsi_type == ICE_VSI_VF) 2181 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2182 else 2183 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2184 2185 if (!vsi) { 2186 dev_err(dev, "could not allocate VSI\n"); 2187 return NULL; 2188 } 2189 2190 vsi->port_info = pi; 2191 vsi->vsw = pf->first_sw; 2192 if (vsi->type == ICE_VSI_PF) 2193 vsi->ethtype = ETH_P_PAUSE; 2194 2195 if (vsi->type == ICE_VSI_VF) 2196 vsi->vf_id = vf_id; 2197 2198 ice_alloc_fd_res(vsi); 2199 2200 if (ice_vsi_get_qs(vsi)) { 2201 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2202 vsi->idx); 2203 goto unroll_vsi_alloc; 2204 } 2205 2206 /* set RSS capabilities */ 2207 ice_vsi_set_rss_params(vsi); 2208 2209 /* set TC configuration */ 2210 ice_vsi_set_tc_cfg(vsi); 2211 2212 /* create the VSI */ 2213 ret = ice_vsi_init(vsi, true); 2214 if (ret) 2215 goto unroll_get_qs; 2216 2217 switch (vsi->type) { 2218 case ICE_VSI_CTRL: 2219 case ICE_VSI_PF: 2220 ret = ice_vsi_alloc_q_vectors(vsi); 2221 if (ret) 2222 goto unroll_vsi_init; 2223 2224 ret = ice_vsi_setup_vector_base(vsi); 2225 if (ret) 2226 goto unroll_alloc_q_vector; 2227 2228 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2229 if (ret) 2230 goto unroll_vector_base; 2231 2232 ret = ice_vsi_alloc_rings(vsi); 2233 if (ret) 2234 goto unroll_vector_base; 2235 2236 /* Always add VLAN ID 0 switch rule by default. This is needed 2237 * in order to allow all untagged and 0 tagged priority traffic 2238 * if Rx VLAN pruning is enabled. Also there are cases where we 2239 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2240 * so this handles those cases (i.e. adding the PF to a bridge 2241 * without the 8021q module loaded). 2242 */ 2243 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2244 if (ret) 2245 goto unroll_clear_rings; 2246 2247 ice_vsi_map_rings_to_vectors(vsi); 2248 2249 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2250 if (vsi->type != ICE_VSI_CTRL) 2251 /* Do not exit if configuring RSS had an issue, at 2252 * least receive traffic on first queue. Hence no 2253 * need to capture return value 2254 */ 2255 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2256 ice_vsi_cfg_rss_lut_key(vsi); 2257 ice_vsi_set_rss_flow_fld(vsi); 2258 } 2259 ice_init_arfs(vsi); 2260 break; 2261 case ICE_VSI_VF: 2262 /* VF driver will take care of creating netdev for this type and 2263 * map queues to vectors through Virtchnl, PF driver only 2264 * creates a VSI and corresponding structures for bookkeeping 2265 * purpose 2266 */ 2267 ret = ice_vsi_alloc_q_vectors(vsi); 2268 if (ret) 2269 goto unroll_vsi_init; 2270 2271 ret = ice_vsi_alloc_rings(vsi); 2272 if (ret) 2273 goto unroll_alloc_q_vector; 2274 2275 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2276 if (ret) 2277 goto unroll_vector_base; 2278 2279 /* Do not exit if configuring RSS had an issue, at least 2280 * receive traffic on first queue. Hence no need to capture 2281 * return value 2282 */ 2283 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2284 ice_vsi_cfg_rss_lut_key(vsi); 2285 ice_vsi_set_vf_rss_flow_fld(vsi); 2286 } 2287 break; 2288 case ICE_VSI_LB: 2289 ret = ice_vsi_alloc_rings(vsi); 2290 if (ret) 2291 goto unroll_vsi_init; 2292 break; 2293 default: 2294 /* clean up the resources and exit */ 2295 goto unroll_vsi_init; 2296 } 2297 2298 /* configure VSI nodes based on number of queues and TC's */ 2299 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2300 max_txqs[i] = vsi->alloc_txq; 2301 2302 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2303 max_txqs); 2304 if (status) { 2305 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2306 vsi->vsi_num, ice_stat_str(status)); 2307 goto unroll_clear_rings; 2308 } 2309 2310 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2311 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2312 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2313 * The rule is added once for PF VSI in order to create appropriate 2314 * recipe, since VSI/VSI list is ignored with drop action... 2315 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2316 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2317 * settings in the HW. 2318 */ 2319 if (!ice_is_safe_mode(pf)) 2320 if (vsi->type == ICE_VSI_PF) { 2321 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2322 ICE_DROP_PACKET); 2323 ice_cfg_sw_lldp(vsi, true, true); 2324 } 2325 2326 return vsi; 2327 2328 unroll_clear_rings: 2329 ice_vsi_clear_rings(vsi); 2330 unroll_vector_base: 2331 /* reclaim SW interrupts back to the common pool */ 2332 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2333 pf->num_avail_sw_msix += vsi->num_q_vectors; 2334 unroll_alloc_q_vector: 2335 ice_vsi_free_q_vectors(vsi); 2336 unroll_vsi_init: 2337 ice_vsi_delete(vsi); 2338 unroll_get_qs: 2339 ice_vsi_put_qs(vsi); 2340 unroll_vsi_alloc: 2341 ice_vsi_clear(vsi); 2342 2343 return NULL; 2344 } 2345 2346 /** 2347 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2348 * @vsi: the VSI being cleaned up 2349 */ 2350 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2351 { 2352 struct ice_pf *pf = vsi->back; 2353 struct ice_hw *hw = &pf->hw; 2354 u32 txq = 0; 2355 u32 rxq = 0; 2356 int i, q; 2357 2358 for (i = 0; i < vsi->num_q_vectors; i++) { 2359 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2360 u16 reg_idx = q_vector->reg_idx; 2361 2362 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2363 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2364 for (q = 0; q < q_vector->num_ring_tx; q++) { 2365 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2366 if (ice_is_xdp_ena_vsi(vsi)) { 2367 u32 xdp_txq = txq + vsi->num_xdp_txq; 2368 2369 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2370 } 2371 txq++; 2372 } 2373 2374 for (q = 0; q < q_vector->num_ring_rx; q++) { 2375 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2376 rxq++; 2377 } 2378 } 2379 2380 ice_flush(hw); 2381 } 2382 2383 /** 2384 * ice_vsi_free_irq - Free the IRQ association with the OS 2385 * @vsi: the VSI being configured 2386 */ 2387 void ice_vsi_free_irq(struct ice_vsi *vsi) 2388 { 2389 struct ice_pf *pf = vsi->back; 2390 int base = vsi->base_vector; 2391 int i; 2392 2393 if (!vsi->q_vectors || !vsi->irqs_ready) 2394 return; 2395 2396 ice_vsi_release_msix(vsi); 2397 if (vsi->type == ICE_VSI_VF) 2398 return; 2399 2400 vsi->irqs_ready = false; 2401 ice_for_each_q_vector(vsi, i) { 2402 u16 vector = i + base; 2403 int irq_num; 2404 2405 irq_num = pf->msix_entries[vector].vector; 2406 2407 /* free only the irqs that were actually requested */ 2408 if (!vsi->q_vectors[i] || 2409 !(vsi->q_vectors[i]->num_ring_tx || 2410 vsi->q_vectors[i]->num_ring_rx)) 2411 continue; 2412 2413 /* clear the affinity notifier in the IRQ descriptor */ 2414 irq_set_affinity_notifier(irq_num, NULL); 2415 2416 /* clear the affinity_mask in the IRQ descriptor */ 2417 irq_set_affinity_hint(irq_num, NULL); 2418 synchronize_irq(irq_num); 2419 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2420 } 2421 } 2422 2423 /** 2424 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2425 * @vsi: the VSI having resources freed 2426 */ 2427 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2428 { 2429 int i; 2430 2431 if (!vsi->tx_rings) 2432 return; 2433 2434 ice_for_each_txq(vsi, i) 2435 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2436 ice_free_tx_ring(vsi->tx_rings[i]); 2437 } 2438 2439 /** 2440 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2441 * @vsi: the VSI having resources freed 2442 */ 2443 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2444 { 2445 int i; 2446 2447 if (!vsi->rx_rings) 2448 return; 2449 2450 ice_for_each_rxq(vsi, i) 2451 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2452 ice_free_rx_ring(vsi->rx_rings[i]); 2453 } 2454 2455 /** 2456 * ice_vsi_close - Shut down a VSI 2457 * @vsi: the VSI being shut down 2458 */ 2459 void ice_vsi_close(struct ice_vsi *vsi) 2460 { 2461 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2462 ice_down(vsi); 2463 2464 ice_vsi_free_irq(vsi); 2465 ice_vsi_free_tx_rings(vsi); 2466 ice_vsi_free_rx_rings(vsi); 2467 } 2468 2469 /** 2470 * ice_ena_vsi - resume a VSI 2471 * @vsi: the VSI being resume 2472 * @locked: is the rtnl_lock already held 2473 */ 2474 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2475 { 2476 int err = 0; 2477 2478 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2479 return 0; 2480 2481 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2482 2483 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2484 if (netif_running(vsi->netdev)) { 2485 if (!locked) 2486 rtnl_lock(); 2487 2488 err = ice_open(vsi->netdev); 2489 2490 if (!locked) 2491 rtnl_unlock(); 2492 } 2493 } else if (vsi->type == ICE_VSI_CTRL) { 2494 err = ice_vsi_open_ctrl(vsi); 2495 } 2496 2497 return err; 2498 } 2499 2500 /** 2501 * ice_dis_vsi - pause a VSI 2502 * @vsi: the VSI being paused 2503 * @locked: is the rtnl_lock already held 2504 */ 2505 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2506 { 2507 if (test_bit(__ICE_DOWN, vsi->state)) 2508 return; 2509 2510 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2511 2512 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2513 if (netif_running(vsi->netdev)) { 2514 if (!locked) 2515 rtnl_lock(); 2516 2517 ice_stop(vsi->netdev); 2518 2519 if (!locked) 2520 rtnl_unlock(); 2521 } else { 2522 ice_vsi_close(vsi); 2523 } 2524 } else if (vsi->type == ICE_VSI_CTRL) { 2525 ice_vsi_close(vsi); 2526 } 2527 } 2528 2529 /** 2530 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2531 * @vsi: the VSI being un-configured 2532 */ 2533 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2534 { 2535 int base = vsi->base_vector; 2536 struct ice_pf *pf = vsi->back; 2537 struct ice_hw *hw = &pf->hw; 2538 u32 val; 2539 int i; 2540 2541 /* disable interrupt causation from each queue */ 2542 if (vsi->tx_rings) { 2543 ice_for_each_txq(vsi, i) { 2544 if (vsi->tx_rings[i]) { 2545 u16 reg; 2546 2547 reg = vsi->tx_rings[i]->reg_idx; 2548 val = rd32(hw, QINT_TQCTL(reg)); 2549 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2550 wr32(hw, QINT_TQCTL(reg), val); 2551 } 2552 } 2553 } 2554 2555 if (vsi->rx_rings) { 2556 ice_for_each_rxq(vsi, i) { 2557 if (vsi->rx_rings[i]) { 2558 u16 reg; 2559 2560 reg = vsi->rx_rings[i]->reg_idx; 2561 val = rd32(hw, QINT_RQCTL(reg)); 2562 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2563 wr32(hw, QINT_RQCTL(reg), val); 2564 } 2565 } 2566 } 2567 2568 /* disable each interrupt */ 2569 ice_for_each_q_vector(vsi, i) { 2570 if (!vsi->q_vectors[i]) 2571 continue; 2572 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2573 } 2574 2575 ice_flush(hw); 2576 2577 /* don't call synchronize_irq() for VF's from the host */ 2578 if (vsi->type == ICE_VSI_VF) 2579 return; 2580 2581 ice_for_each_q_vector(vsi, i) 2582 synchronize_irq(pf->msix_entries[i + base].vector); 2583 } 2584 2585 /** 2586 * ice_napi_del - Remove NAPI handler for the VSI 2587 * @vsi: VSI for which NAPI handler is to be removed 2588 */ 2589 void ice_napi_del(struct ice_vsi *vsi) 2590 { 2591 int v_idx; 2592 2593 if (!vsi->netdev) 2594 return; 2595 2596 ice_for_each_q_vector(vsi, v_idx) 2597 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2598 } 2599 2600 /** 2601 * ice_vsi_release - Delete a VSI and free its resources 2602 * @vsi: the VSI being removed 2603 * 2604 * Returns 0 on success or < 0 on error 2605 */ 2606 int ice_vsi_release(struct ice_vsi *vsi) 2607 { 2608 struct ice_pf *pf; 2609 2610 if (!vsi->back) 2611 return -ENODEV; 2612 pf = vsi->back; 2613 2614 /* do not unregister while driver is in the reset recovery pending 2615 * state. Since reset/rebuild happens through PF service task workqueue, 2616 * it's not a good idea to unregister netdev that is associated to the 2617 * PF that is running the work queue items currently. This is done to 2618 * avoid check_flush_dependency() warning on this wq 2619 */ 2620 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2621 unregister_netdev(vsi->netdev); 2622 ice_devlink_destroy_port(vsi); 2623 } 2624 2625 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2626 ice_rss_clean(vsi); 2627 2628 /* Disable VSI and free resources */ 2629 if (vsi->type != ICE_VSI_LB) 2630 ice_vsi_dis_irq(vsi); 2631 ice_vsi_close(vsi); 2632 2633 /* SR-IOV determines needed MSIX resources all at once instead of per 2634 * VSI since when VFs are spawned we know how many VFs there are and how 2635 * many interrupts each VF needs. SR-IOV MSIX resources are also 2636 * cleared in the same manner. 2637 */ 2638 if (vsi->type != ICE_VSI_VF) { 2639 /* reclaim SW interrupts back to the common pool */ 2640 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2641 pf->num_avail_sw_msix += vsi->num_q_vectors; 2642 } 2643 2644 if (!ice_is_safe_mode(pf)) { 2645 if (vsi->type == ICE_VSI_PF) { 2646 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2647 ICE_DROP_PACKET); 2648 ice_cfg_sw_lldp(vsi, true, false); 2649 /* The Rx rule will only exist to remove if the LLDP FW 2650 * engine is currently stopped 2651 */ 2652 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2653 ice_cfg_sw_lldp(vsi, false, false); 2654 } 2655 } 2656 2657 ice_fltr_remove_all(vsi); 2658 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2659 ice_vsi_delete(vsi); 2660 ice_vsi_free_q_vectors(vsi); 2661 2662 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2663 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2664 free_netdev(vsi->netdev); 2665 vsi->netdev = NULL; 2666 } 2667 2668 ice_vsi_clear_rings(vsi); 2669 2670 ice_vsi_put_qs(vsi); 2671 2672 /* retain SW VSI data structure since it is needed to unregister and 2673 * free VSI netdev when PF is not in reset recovery pending state,\ 2674 * for ex: during rmmod. 2675 */ 2676 if (!ice_is_reset_in_progress(pf->state)) 2677 ice_vsi_clear(vsi); 2678 2679 return 0; 2680 } 2681 2682 /** 2683 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2684 * @q_vector: pointer to q_vector which is being updated 2685 * @coalesce: pointer to array of struct with stored coalesce 2686 * 2687 * Set coalesce param in q_vector and update these parameters in HW. 2688 */ 2689 static void 2690 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2691 struct ice_coalesce_stored *coalesce) 2692 { 2693 struct ice_ring_container *rx_rc = &q_vector->rx; 2694 struct ice_ring_container *tx_rc = &q_vector->tx; 2695 struct ice_hw *hw = &q_vector->vsi->back->hw; 2696 2697 tx_rc->itr_setting = coalesce->itr_tx; 2698 rx_rc->itr_setting = coalesce->itr_rx; 2699 2700 /* dynamic ITR values will be updated during Tx/Rx */ 2701 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2702 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2703 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2704 ICE_ITR_GRAN_S); 2705 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2706 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2707 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2708 ICE_ITR_GRAN_S); 2709 2710 q_vector->intrl = coalesce->intrl; 2711 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2712 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2713 } 2714 2715 /** 2716 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2717 * @vsi: VSI connected with q_vectors 2718 * @coalesce: array of struct with stored coalesce 2719 * 2720 * Returns array size. 2721 */ 2722 static int 2723 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2724 struct ice_coalesce_stored *coalesce) 2725 { 2726 int i; 2727 2728 ice_for_each_q_vector(vsi, i) { 2729 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2730 2731 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2732 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2733 coalesce[i].intrl = q_vector->intrl; 2734 } 2735 2736 return vsi->num_q_vectors; 2737 } 2738 2739 /** 2740 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2741 * @vsi: VSI connected with q_vectors 2742 * @coalesce: pointer to array of struct with stored coalesce 2743 * @size: size of coalesce array 2744 * 2745 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2746 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2747 * to default value. 2748 */ 2749 static void 2750 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2751 struct ice_coalesce_stored *coalesce, int size) 2752 { 2753 int i; 2754 2755 if ((size && !coalesce) || !vsi) 2756 return; 2757 2758 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2759 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2760 &coalesce[i]); 2761 2762 /* number of q_vectors increased, so assume coalesce settings were 2763 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2764 * the previous settings from q_vector 0 for all of the new q_vectors 2765 */ 2766 for (; i < vsi->num_q_vectors; i++) 2767 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2768 &coalesce[0]); 2769 } 2770 2771 /** 2772 * ice_vsi_rebuild - Rebuild VSI after reset 2773 * @vsi: VSI to be rebuild 2774 * @init_vsi: is this an initialization or a reconfigure of the VSI 2775 * 2776 * Returns 0 on success and negative value on failure 2777 */ 2778 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2779 { 2780 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2781 struct ice_coalesce_stored *coalesce; 2782 int prev_num_q_vectors = 0; 2783 struct ice_vf *vf = NULL; 2784 enum ice_status status; 2785 struct ice_pf *pf; 2786 int ret, i; 2787 2788 if (!vsi) 2789 return -EINVAL; 2790 2791 pf = vsi->back; 2792 if (vsi->type == ICE_VSI_VF) 2793 vf = &pf->vf[vsi->vf_id]; 2794 2795 coalesce = kcalloc(vsi->num_q_vectors, 2796 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2797 if (coalesce) 2798 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2799 coalesce); 2800 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2801 ice_vsi_free_q_vectors(vsi); 2802 2803 /* SR-IOV determines needed MSIX resources all at once instead of per 2804 * VSI since when VFs are spawned we know how many VFs there are and how 2805 * many interrupts each VF needs. SR-IOV MSIX resources are also 2806 * cleared in the same manner. 2807 */ 2808 if (vsi->type != ICE_VSI_VF) { 2809 /* reclaim SW interrupts back to the common pool */ 2810 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2811 pf->num_avail_sw_msix += vsi->num_q_vectors; 2812 vsi->base_vector = 0; 2813 } 2814 2815 if (ice_is_xdp_ena_vsi(vsi)) 2816 /* return value check can be skipped here, it always returns 2817 * 0 if reset is in progress 2818 */ 2819 ice_destroy_xdp_rings(vsi); 2820 ice_vsi_put_qs(vsi); 2821 ice_vsi_clear_rings(vsi); 2822 ice_vsi_free_arrays(vsi); 2823 if (vsi->type == ICE_VSI_VF) 2824 ice_vsi_set_num_qs(vsi, vf->vf_id); 2825 else 2826 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2827 2828 ret = ice_vsi_alloc_arrays(vsi); 2829 if (ret < 0) 2830 goto err_vsi; 2831 2832 ice_vsi_get_qs(vsi); 2833 2834 ice_alloc_fd_res(vsi); 2835 ice_vsi_set_tc_cfg(vsi); 2836 2837 /* Initialize VSI struct elements and create VSI in FW */ 2838 ret = ice_vsi_init(vsi, init_vsi); 2839 if (ret < 0) 2840 goto err_vsi; 2841 2842 switch (vsi->type) { 2843 case ICE_VSI_CTRL: 2844 case ICE_VSI_PF: 2845 ret = ice_vsi_alloc_q_vectors(vsi); 2846 if (ret) 2847 goto err_rings; 2848 2849 ret = ice_vsi_setup_vector_base(vsi); 2850 if (ret) 2851 goto err_vectors; 2852 2853 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2854 if (ret) 2855 goto err_vectors; 2856 2857 ret = ice_vsi_alloc_rings(vsi); 2858 if (ret) 2859 goto err_vectors; 2860 2861 ice_vsi_map_rings_to_vectors(vsi); 2862 if (ice_is_xdp_ena_vsi(vsi)) { 2863 vsi->num_xdp_txq = vsi->alloc_rxq; 2864 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2865 if (ret) 2866 goto err_vectors; 2867 } 2868 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2869 if (vsi->type != ICE_VSI_CTRL) 2870 /* Do not exit if configuring RSS had an issue, at 2871 * least receive traffic on first queue. Hence no 2872 * need to capture return value 2873 */ 2874 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2875 ice_vsi_cfg_rss_lut_key(vsi); 2876 break; 2877 case ICE_VSI_VF: 2878 ret = ice_vsi_alloc_q_vectors(vsi); 2879 if (ret) 2880 goto err_rings; 2881 2882 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2883 if (ret) 2884 goto err_vectors; 2885 2886 ret = ice_vsi_alloc_rings(vsi); 2887 if (ret) 2888 goto err_vectors; 2889 2890 break; 2891 default: 2892 break; 2893 } 2894 2895 /* configure VSI nodes based on number of queues and TC's */ 2896 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2897 max_txqs[i] = vsi->alloc_txq; 2898 2899 if (ice_is_xdp_ena_vsi(vsi)) 2900 max_txqs[i] += vsi->num_xdp_txq; 2901 } 2902 2903 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2904 max_txqs); 2905 if (status) { 2906 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 2907 vsi->vsi_num, ice_stat_str(status)); 2908 if (init_vsi) { 2909 ret = -EIO; 2910 goto err_vectors; 2911 } else { 2912 return ice_schedule_reset(pf, ICE_RESET_PFR); 2913 } 2914 } 2915 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2916 kfree(coalesce); 2917 2918 return 0; 2919 2920 err_vectors: 2921 ice_vsi_free_q_vectors(vsi); 2922 err_rings: 2923 if (vsi->netdev) { 2924 vsi->current_netdev_flags = 0; 2925 unregister_netdev(vsi->netdev); 2926 free_netdev(vsi->netdev); 2927 vsi->netdev = NULL; 2928 } 2929 err_vsi: 2930 ice_vsi_clear(vsi); 2931 set_bit(__ICE_RESET_FAILED, pf->state); 2932 kfree(coalesce); 2933 return ret; 2934 } 2935 2936 /** 2937 * ice_is_reset_in_progress - check for a reset in progress 2938 * @state: PF state field 2939 */ 2940 bool ice_is_reset_in_progress(unsigned long *state) 2941 { 2942 return test_bit(__ICE_RESET_OICR_RECV, state) || 2943 test_bit(__ICE_DCBNL_DEVRESET, state) || 2944 test_bit(__ICE_PFR_REQ, state) || 2945 test_bit(__ICE_CORER_REQ, state) || 2946 test_bit(__ICE_GLOBR_REQ, state); 2947 } 2948 2949 #ifdef CONFIG_DCB 2950 /** 2951 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2952 * @vsi: VSI being configured 2953 * @ctx: the context buffer returned from AQ VSI update command 2954 */ 2955 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2956 { 2957 vsi->info.mapping_flags = ctx->info.mapping_flags; 2958 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2959 sizeof(vsi->info.q_mapping)); 2960 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2961 sizeof(vsi->info.tc_mapping)); 2962 } 2963 2964 /** 2965 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2966 * @vsi: VSI to be configured 2967 * @ena_tc: TC bitmap 2968 * 2969 * VSI queues expected to be quiesced before calling this function 2970 */ 2971 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2972 { 2973 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2974 struct ice_pf *pf = vsi->back; 2975 struct ice_vsi_ctx *ctx; 2976 enum ice_status status; 2977 struct device *dev; 2978 int i, ret = 0; 2979 u8 num_tc = 0; 2980 2981 dev = ice_pf_to_dev(pf); 2982 2983 ice_for_each_traffic_class(i) { 2984 /* build bitmap of enabled TCs */ 2985 if (ena_tc & BIT(i)) 2986 num_tc++; 2987 /* populate max_txqs per TC */ 2988 max_txqs[i] = vsi->alloc_txq; 2989 } 2990 2991 vsi->tc_cfg.ena_tc = ena_tc; 2992 vsi->tc_cfg.numtc = num_tc; 2993 2994 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2995 if (!ctx) 2996 return -ENOMEM; 2997 2998 ctx->vf_num = 0; 2999 ctx->info = vsi->info; 3000 3001 ice_vsi_setup_q_map(vsi, ctx); 3002 3003 /* must to indicate which section of VSI context are being modified */ 3004 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3005 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3006 if (status) { 3007 dev_info(dev, "Failed VSI Update\n"); 3008 ret = -EIO; 3009 goto out; 3010 } 3011 3012 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3013 max_txqs); 3014 3015 if (status) { 3016 dev_err(dev, "VSI %d failed TC config, error %s\n", 3017 vsi->vsi_num, ice_stat_str(status)); 3018 ret = -EIO; 3019 goto out; 3020 } 3021 ice_vsi_update_q_map(vsi, ctx); 3022 vsi->info.valid_sections = 0; 3023 3024 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3025 out: 3026 kfree(ctx); 3027 return ret; 3028 } 3029 #endif /* CONFIG_DCB */ 3030 3031 /** 3032 * ice_update_ring_stats - Update ring statistics 3033 * @ring: ring to update 3034 * @cont: used to increment per-vector counters 3035 * @pkts: number of processed packets 3036 * @bytes: number of processed bytes 3037 * 3038 * This function assumes that caller has acquired a u64_stats_sync lock. 3039 */ 3040 static void 3041 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3042 u64 pkts, u64 bytes) 3043 { 3044 ring->stats.bytes += bytes; 3045 ring->stats.pkts += pkts; 3046 cont->total_bytes += bytes; 3047 cont->total_pkts += pkts; 3048 } 3049 3050 /** 3051 * ice_update_tx_ring_stats - Update Tx ring specific counters 3052 * @tx_ring: ring to update 3053 * @pkts: number of processed packets 3054 * @bytes: number of processed bytes 3055 */ 3056 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3057 { 3058 u64_stats_update_begin(&tx_ring->syncp); 3059 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3060 u64_stats_update_end(&tx_ring->syncp); 3061 } 3062 3063 /** 3064 * ice_update_rx_ring_stats - Update Rx ring specific counters 3065 * @rx_ring: ring to update 3066 * @pkts: number of processed packets 3067 * @bytes: number of processed bytes 3068 */ 3069 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3070 { 3071 u64_stats_update_begin(&rx_ring->syncp); 3072 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3073 u64_stats_update_end(&rx_ring->syncp); 3074 } 3075 3076 /** 3077 * ice_status_to_errno - convert from enum ice_status to Linux errno 3078 * @err: ice_status value to convert 3079 */ 3080 int ice_status_to_errno(enum ice_status err) 3081 { 3082 switch (err) { 3083 case ICE_SUCCESS: 3084 return 0; 3085 case ICE_ERR_DOES_NOT_EXIST: 3086 return -ENOENT; 3087 case ICE_ERR_OUT_OF_RANGE: 3088 return -ENOTTY; 3089 case ICE_ERR_PARAM: 3090 return -EINVAL; 3091 case ICE_ERR_NO_MEMORY: 3092 return -ENOMEM; 3093 case ICE_ERR_MAX_LIMIT: 3094 return -EAGAIN; 3095 default: 3096 return -EINVAL; 3097 } 3098 } 3099 3100 /** 3101 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3102 * @sw: switch to check if its default forwarding VSI is free 3103 * 3104 * Return true if the default forwarding VSI is already being used, else returns 3105 * false signalling that it's available to use. 3106 */ 3107 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3108 { 3109 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3110 } 3111 3112 /** 3113 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3114 * @sw: switch for the default forwarding VSI to compare against 3115 * @vsi: VSI to compare against default forwarding VSI 3116 * 3117 * If this VSI passed in is the default forwarding VSI then return true, else 3118 * return false 3119 */ 3120 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3121 { 3122 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3123 } 3124 3125 /** 3126 * ice_set_dflt_vsi - set the default forwarding VSI 3127 * @sw: switch used to assign the default forwarding VSI 3128 * @vsi: VSI getting set as the default forwarding VSI on the switch 3129 * 3130 * If the VSI passed in is already the default VSI and it's enabled just return 3131 * success. 3132 * 3133 * If there is already a default VSI on the switch and it's enabled then return 3134 * -EEXIST since there can only be one default VSI per switch. 3135 * 3136 * Otherwise try to set the VSI passed in as the switch's default VSI and 3137 * return the result. 3138 */ 3139 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3140 { 3141 enum ice_status status; 3142 struct device *dev; 3143 3144 if (!sw || !vsi) 3145 return -EINVAL; 3146 3147 dev = ice_pf_to_dev(vsi->back); 3148 3149 /* the VSI passed in is already the default VSI */ 3150 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3151 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3152 vsi->vsi_num); 3153 return 0; 3154 } 3155 3156 /* another VSI is already the default VSI for this switch */ 3157 if (ice_is_dflt_vsi_in_use(sw)) { 3158 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3159 sw->dflt_vsi->vsi_num); 3160 return -EEXIST; 3161 } 3162 3163 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3164 if (status) { 3165 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3166 vsi->vsi_num, ice_stat_str(status)); 3167 return -EIO; 3168 } 3169 3170 sw->dflt_vsi = vsi; 3171 sw->dflt_vsi_ena = true; 3172 3173 return 0; 3174 } 3175 3176 /** 3177 * ice_clear_dflt_vsi - clear the default forwarding VSI 3178 * @sw: switch used to clear the default VSI 3179 * 3180 * If the switch has no default VSI or it's not enabled then return error. 3181 * 3182 * Otherwise try to clear the default VSI and return the result. 3183 */ 3184 int ice_clear_dflt_vsi(struct ice_sw *sw) 3185 { 3186 struct ice_vsi *dflt_vsi; 3187 enum ice_status status; 3188 struct device *dev; 3189 3190 if (!sw) 3191 return -EINVAL; 3192 3193 dev = ice_pf_to_dev(sw->pf); 3194 3195 dflt_vsi = sw->dflt_vsi; 3196 3197 /* there is no default VSI configured */ 3198 if (!ice_is_dflt_vsi_in_use(sw)) 3199 return -ENODEV; 3200 3201 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3202 ICE_FLTR_RX); 3203 if (status) { 3204 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3205 dflt_vsi->vsi_num, ice_stat_str(status)); 3206 return -EIO; 3207 } 3208 3209 sw->dflt_vsi = NULL; 3210 sw->dflt_vsi_ena = false; 3211 3212 return 0; 3213 } 3214