1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 return 0; 121 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SWITCHDEV_CTRL: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 /** 161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 162 * @vsi: the VSI being configured 163 * 164 * Return 0 on success and a negative value on error 165 */ 166 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 167 { 168 enum ice_vsi_type vsi_type = vsi->type; 169 struct ice_pf *pf = vsi->back; 170 struct ice_vf *vf = vsi->vf; 171 172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 173 return; 174 175 switch (vsi_type) { 176 case ICE_VSI_PF: 177 if (vsi->req_txq) { 178 vsi->alloc_txq = vsi->req_txq; 179 vsi->num_txq = vsi->req_txq; 180 } else { 181 vsi->alloc_txq = min3(pf->num_lan_msix, 182 ice_get_avail_txq_count(pf), 183 (u16)num_online_cpus()); 184 } 185 186 pf->num_lan_tx = vsi->alloc_txq; 187 188 /* only 1 Rx queue unless RSS is enabled */ 189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 190 vsi->alloc_rxq = 1; 191 } else { 192 if (vsi->req_rxq) { 193 vsi->alloc_rxq = vsi->req_rxq; 194 vsi->num_rxq = vsi->req_rxq; 195 } else { 196 vsi->alloc_rxq = min3(pf->num_lan_msix, 197 ice_get_avail_rxq_count(pf), 198 (u16)num_online_cpus()); 199 } 200 } 201 202 pf->num_lan_rx = vsi->alloc_rxq; 203 204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 205 max_t(int, vsi->alloc_rxq, 206 vsi->alloc_txq)); 207 break; 208 case ICE_VSI_SWITCHDEV_CTRL: 209 /* The number of queues for ctrl VSI is equal to number of VFs. 210 * Each ring is associated to the corresponding VF_PR netdev. 211 */ 212 vsi->alloc_txq = ice_get_num_vfs(pf); 213 vsi->alloc_rxq = vsi->alloc_txq; 214 vsi->num_q_vectors = 1; 215 break; 216 case ICE_VSI_VF: 217 if (vf->num_req_qs) 218 vf->num_vf_qs = vf->num_req_qs; 219 vsi->alloc_txq = vf->num_vf_qs; 220 vsi->alloc_rxq = vf->num_vf_qs; 221 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 222 * data queue interrupts). Since vsi->num_q_vectors is number 223 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 224 * original vector count 225 */ 226 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 227 break; 228 case ICE_VSI_CTRL: 229 vsi->alloc_txq = 1; 230 vsi->alloc_rxq = 1; 231 vsi->num_q_vectors = 1; 232 break; 233 case ICE_VSI_CHNL: 234 vsi->alloc_txq = 0; 235 vsi->alloc_rxq = 0; 236 break; 237 case ICE_VSI_LB: 238 vsi->alloc_txq = 1; 239 vsi->alloc_rxq = 1; 240 break; 241 default: 242 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 243 break; 244 } 245 246 ice_vsi_set_num_desc(vsi); 247 } 248 249 /** 250 * ice_get_free_slot - get the next non-NULL location index in array 251 * @array: array to search 252 * @size: size of the array 253 * @curr: last known occupied index to be used as a search hint 254 * 255 * void * is being used to keep the functionality generic. This lets us use this 256 * function on any array of pointers. 257 */ 258 static int ice_get_free_slot(void *array, int size, int curr) 259 { 260 int **tmp_array = (int **)array; 261 int next; 262 263 if (curr < (size - 1) && !tmp_array[curr + 1]) { 264 next = curr + 1; 265 } else { 266 int i = 0; 267 268 while ((i < size) && (tmp_array[i])) 269 i++; 270 if (i == size) 271 next = ICE_NO_VSI; 272 else 273 next = i; 274 } 275 return next; 276 } 277 278 /** 279 * ice_vsi_delete_from_hw - delete a VSI from the switch 280 * @vsi: pointer to VSI being removed 281 */ 282 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 283 { 284 struct ice_pf *pf = vsi->back; 285 struct ice_vsi_ctx *ctxt; 286 int status; 287 288 ice_fltr_remove_all(vsi); 289 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 290 if (!ctxt) 291 return; 292 293 if (vsi->type == ICE_VSI_VF) 294 ctxt->vf_num = vsi->vf->vf_id; 295 ctxt->vsi_num = vsi->vsi_num; 296 297 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 298 299 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 300 if (status) 301 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 302 vsi->vsi_num, status); 303 304 kfree(ctxt); 305 } 306 307 /** 308 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 309 * @vsi: pointer to VSI being cleared 310 */ 311 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 312 { 313 struct ice_pf *pf = vsi->back; 314 struct device *dev; 315 316 dev = ice_pf_to_dev(pf); 317 318 /* free the ring and vector containers */ 319 devm_kfree(dev, vsi->q_vectors); 320 vsi->q_vectors = NULL; 321 devm_kfree(dev, vsi->tx_rings); 322 vsi->tx_rings = NULL; 323 devm_kfree(dev, vsi->rx_rings); 324 vsi->rx_rings = NULL; 325 devm_kfree(dev, vsi->txq_map); 326 vsi->txq_map = NULL; 327 devm_kfree(dev, vsi->rxq_map); 328 vsi->rxq_map = NULL; 329 } 330 331 /** 332 * ice_vsi_free_stats - Free the ring statistics structures 333 * @vsi: VSI pointer 334 */ 335 static void ice_vsi_free_stats(struct ice_vsi *vsi) 336 { 337 struct ice_vsi_stats *vsi_stat; 338 struct ice_pf *pf = vsi->back; 339 int i; 340 341 if (vsi->type == ICE_VSI_CHNL) 342 return; 343 if (!pf->vsi_stats) 344 return; 345 346 vsi_stat = pf->vsi_stats[vsi->idx]; 347 if (!vsi_stat) 348 return; 349 350 ice_for_each_alloc_txq(vsi, i) { 351 if (vsi_stat->tx_ring_stats[i]) { 352 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 353 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 354 } 355 } 356 357 ice_for_each_alloc_rxq(vsi, i) { 358 if (vsi_stat->rx_ring_stats[i]) { 359 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 360 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 361 } 362 } 363 364 kfree(vsi_stat->tx_ring_stats); 365 kfree(vsi_stat->rx_ring_stats); 366 kfree(vsi_stat); 367 pf->vsi_stats[vsi->idx] = NULL; 368 } 369 370 /** 371 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 372 * @vsi: VSI which is having stats allocated 373 */ 374 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 375 { 376 struct ice_ring_stats **tx_ring_stats; 377 struct ice_ring_stats **rx_ring_stats; 378 struct ice_vsi_stats *vsi_stats; 379 struct ice_pf *pf = vsi->back; 380 u16 i; 381 382 vsi_stats = pf->vsi_stats[vsi->idx]; 383 tx_ring_stats = vsi_stats->tx_ring_stats; 384 rx_ring_stats = vsi_stats->rx_ring_stats; 385 386 /* Allocate Tx ring stats */ 387 ice_for_each_alloc_txq(vsi, i) { 388 struct ice_ring_stats *ring_stats; 389 struct ice_tx_ring *ring; 390 391 ring = vsi->tx_rings[i]; 392 ring_stats = tx_ring_stats[i]; 393 394 if (!ring_stats) { 395 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 396 if (!ring_stats) 397 goto err_out; 398 399 WRITE_ONCE(tx_ring_stats[i], ring_stats); 400 } 401 402 ring->ring_stats = ring_stats; 403 } 404 405 /* Allocate Rx ring stats */ 406 ice_for_each_alloc_rxq(vsi, i) { 407 struct ice_ring_stats *ring_stats; 408 struct ice_rx_ring *ring; 409 410 ring = vsi->rx_rings[i]; 411 ring_stats = rx_ring_stats[i]; 412 413 if (!ring_stats) { 414 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 415 if (!ring_stats) 416 goto err_out; 417 418 WRITE_ONCE(rx_ring_stats[i], ring_stats); 419 } 420 421 ring->ring_stats = ring_stats; 422 } 423 424 return 0; 425 426 err_out: 427 ice_vsi_free_stats(vsi); 428 return -ENOMEM; 429 } 430 431 /** 432 * ice_vsi_free - clean up and deallocate the provided VSI 433 * @vsi: pointer to VSI being cleared 434 * 435 * This deallocates the VSI's queue resources, removes it from the PF's 436 * VSI array if necessary, and deallocates the VSI 437 */ 438 static void ice_vsi_free(struct ice_vsi *vsi) 439 { 440 struct ice_pf *pf = NULL; 441 struct device *dev; 442 443 if (!vsi || !vsi->back) 444 return; 445 446 pf = vsi->back; 447 dev = ice_pf_to_dev(pf); 448 449 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 450 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 451 return; 452 } 453 454 mutex_lock(&pf->sw_mutex); 455 /* updates the PF for this cleared VSI */ 456 457 pf->vsi[vsi->idx] = NULL; 458 pf->next_vsi = vsi->idx; 459 460 ice_vsi_free_stats(vsi); 461 ice_vsi_free_arrays(vsi); 462 mutex_unlock(&pf->sw_mutex); 463 devm_kfree(dev, vsi); 464 } 465 466 void ice_vsi_delete(struct ice_vsi *vsi) 467 { 468 ice_vsi_delete_from_hw(vsi); 469 ice_vsi_free(vsi); 470 } 471 472 /** 473 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 474 * @irq: interrupt number 475 * @data: pointer to a q_vector 476 */ 477 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 478 { 479 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 480 481 if (!q_vector->tx.tx_ring) 482 return IRQ_HANDLED; 483 484 #define FDIR_RX_DESC_CLEAN_BUDGET 64 485 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 486 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 487 488 return IRQ_HANDLED; 489 } 490 491 /** 492 * ice_msix_clean_rings - MSIX mode Interrupt Handler 493 * @irq: interrupt number 494 * @data: pointer to a q_vector 495 */ 496 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 497 { 498 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 499 500 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 501 return IRQ_HANDLED; 502 503 q_vector->total_events++; 504 505 napi_schedule(&q_vector->napi); 506 507 return IRQ_HANDLED; 508 } 509 510 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 511 { 512 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 513 struct ice_pf *pf = q_vector->vsi->back; 514 struct ice_vf *vf; 515 unsigned int bkt; 516 517 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 518 return IRQ_HANDLED; 519 520 rcu_read_lock(); 521 ice_for_each_vf_rcu(pf, bkt, vf) 522 napi_schedule(&vf->repr->q_vector->napi); 523 rcu_read_unlock(); 524 525 return IRQ_HANDLED; 526 } 527 528 /** 529 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 530 * @vsi: VSI pointer 531 */ 532 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 533 { 534 struct ice_vsi_stats *vsi_stat; 535 struct ice_pf *pf = vsi->back; 536 537 if (vsi->type == ICE_VSI_CHNL) 538 return 0; 539 if (!pf->vsi_stats) 540 return -ENOENT; 541 542 if (pf->vsi_stats[vsi->idx]) 543 /* realloc will happen in rebuild path */ 544 return 0; 545 546 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 547 if (!vsi_stat) 548 return -ENOMEM; 549 550 vsi_stat->tx_ring_stats = 551 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 552 GFP_KERNEL); 553 if (!vsi_stat->tx_ring_stats) 554 goto err_alloc_tx; 555 556 vsi_stat->rx_ring_stats = 557 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 558 GFP_KERNEL); 559 if (!vsi_stat->rx_ring_stats) 560 goto err_alloc_rx; 561 562 pf->vsi_stats[vsi->idx] = vsi_stat; 563 564 return 0; 565 566 err_alloc_rx: 567 kfree(vsi_stat->rx_ring_stats); 568 err_alloc_tx: 569 kfree(vsi_stat->tx_ring_stats); 570 kfree(vsi_stat); 571 pf->vsi_stats[vsi->idx] = NULL; 572 return -ENOMEM; 573 } 574 575 /** 576 * ice_vsi_alloc_def - set default values for already allocated VSI 577 * @vsi: ptr to VSI 578 * @ch: ptr to channel 579 */ 580 static int 581 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 582 { 583 if (vsi->type != ICE_VSI_CHNL) { 584 ice_vsi_set_num_qs(vsi); 585 if (ice_vsi_alloc_arrays(vsi)) 586 return -ENOMEM; 587 } 588 589 switch (vsi->type) { 590 case ICE_VSI_SWITCHDEV_CTRL: 591 /* Setup eswitch MSIX irq handler for VSI */ 592 vsi->irq_handler = ice_eswitch_msix_clean_rings; 593 break; 594 case ICE_VSI_PF: 595 /* Setup default MSIX irq handler for VSI */ 596 vsi->irq_handler = ice_msix_clean_rings; 597 break; 598 case ICE_VSI_CTRL: 599 /* Setup ctrl VSI MSIX irq handler */ 600 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 601 break; 602 case ICE_VSI_CHNL: 603 if (!ch) 604 return -EINVAL; 605 606 vsi->num_rxq = ch->num_rxq; 607 vsi->num_txq = ch->num_txq; 608 vsi->next_base_q = ch->base_q; 609 break; 610 case ICE_VSI_VF: 611 case ICE_VSI_LB: 612 break; 613 default: 614 ice_vsi_free_arrays(vsi); 615 return -EINVAL; 616 } 617 618 return 0; 619 } 620 621 /** 622 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 623 * @pf: board private structure 624 * 625 * Reserves a VSI index from the PF and allocates an empty VSI structure 626 * without a type. The VSI structure must later be initialized by calling 627 * ice_vsi_cfg(). 628 * 629 * returns a pointer to a VSI on success, NULL on failure. 630 */ 631 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_vsi *vsi = NULL; 635 636 /* Need to protect the allocation of the VSIs at the PF level */ 637 mutex_lock(&pf->sw_mutex); 638 639 /* If we have already allocated our maximum number of VSIs, 640 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 641 * is available to be populated 642 */ 643 if (pf->next_vsi == ICE_NO_VSI) { 644 dev_dbg(dev, "out of VSI slots!\n"); 645 goto unlock_pf; 646 } 647 648 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 649 if (!vsi) 650 goto unlock_pf; 651 652 vsi->back = pf; 653 set_bit(ICE_VSI_DOWN, vsi->state); 654 655 /* fill slot and make note of the index */ 656 vsi->idx = pf->next_vsi; 657 pf->vsi[pf->next_vsi] = vsi; 658 659 /* prepare pf->next_vsi for next use */ 660 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 661 pf->next_vsi); 662 663 unlock_pf: 664 mutex_unlock(&pf->sw_mutex); 665 return vsi; 666 } 667 668 /** 669 * ice_alloc_fd_res - Allocate FD resource for a VSI 670 * @vsi: pointer to the ice_vsi 671 * 672 * This allocates the FD resources 673 * 674 * Returns 0 on success, -EPERM on no-op or -EIO on failure 675 */ 676 static int ice_alloc_fd_res(struct ice_vsi *vsi) 677 { 678 struct ice_pf *pf = vsi->back; 679 u32 g_val, b_val; 680 681 /* Flow Director filters are only allocated/assigned to the PF VSI or 682 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 683 * add/delete filters so resources are not allocated to it 684 */ 685 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 686 return -EPERM; 687 688 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 689 vsi->type == ICE_VSI_CHNL)) 690 return -EPERM; 691 692 /* FD filters from guaranteed pool per VSI */ 693 g_val = pf->hw.func_caps.fd_fltr_guar; 694 if (!g_val) 695 return -EPERM; 696 697 /* FD filters from best effort pool */ 698 b_val = pf->hw.func_caps.fd_fltr_best_effort; 699 if (!b_val) 700 return -EPERM; 701 702 /* PF main VSI gets only 64 FD resources from guaranteed pool 703 * when ADQ is configured. 704 */ 705 #define ICE_PF_VSI_GFLTR 64 706 707 /* determine FD filter resources per VSI from shared(best effort) and 708 * dedicated pool 709 */ 710 if (vsi->type == ICE_VSI_PF) { 711 vsi->num_gfltr = g_val; 712 /* if MQPRIO is configured, main VSI doesn't get all FD 713 * resources from guaranteed pool. PF VSI gets 64 FD resources 714 */ 715 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 716 if (g_val < ICE_PF_VSI_GFLTR) 717 return -EPERM; 718 /* allow bare minimum entries for PF VSI */ 719 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 720 } 721 722 /* each VSI gets same "best_effort" quota */ 723 vsi->num_bfltr = b_val; 724 } else if (vsi->type == ICE_VSI_VF) { 725 vsi->num_gfltr = 0; 726 727 /* each VSI gets same "best_effort" quota */ 728 vsi->num_bfltr = b_val; 729 } else { 730 struct ice_vsi *main_vsi; 731 int numtc; 732 733 main_vsi = ice_get_main_vsi(pf); 734 if (!main_vsi) 735 return -EPERM; 736 737 if (!main_vsi->all_numtc) 738 return -EINVAL; 739 740 /* figure out ADQ numtc */ 741 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 742 743 /* only one TC but still asking resources for channels, 744 * invalid config 745 */ 746 if (numtc < ICE_CHNL_START_TC) 747 return -EPERM; 748 749 g_val -= ICE_PF_VSI_GFLTR; 750 /* channel VSIs gets equal share from guaranteed pool */ 751 vsi->num_gfltr = g_val / numtc; 752 753 /* each VSI gets same "best_effort" quota */ 754 vsi->num_bfltr = b_val; 755 } 756 757 return 0; 758 } 759 760 /** 761 * ice_vsi_get_qs - Assign queues from PF to VSI 762 * @vsi: the VSI to assign queues to 763 * 764 * Returns 0 on success and a negative value on error 765 */ 766 static int ice_vsi_get_qs(struct ice_vsi *vsi) 767 { 768 struct ice_pf *pf = vsi->back; 769 struct ice_qs_cfg tx_qs_cfg = { 770 .qs_mutex = &pf->avail_q_mutex, 771 .pf_map = pf->avail_txqs, 772 .pf_map_size = pf->max_pf_txqs, 773 .q_count = vsi->alloc_txq, 774 .scatter_count = ICE_MAX_SCATTER_TXQS, 775 .vsi_map = vsi->txq_map, 776 .vsi_map_offset = 0, 777 .mapping_mode = ICE_VSI_MAP_CONTIG 778 }; 779 struct ice_qs_cfg rx_qs_cfg = { 780 .qs_mutex = &pf->avail_q_mutex, 781 .pf_map = pf->avail_rxqs, 782 .pf_map_size = pf->max_pf_rxqs, 783 .q_count = vsi->alloc_rxq, 784 .scatter_count = ICE_MAX_SCATTER_RXQS, 785 .vsi_map = vsi->rxq_map, 786 .vsi_map_offset = 0, 787 .mapping_mode = ICE_VSI_MAP_CONTIG 788 }; 789 int ret; 790 791 if (vsi->type == ICE_VSI_CHNL) 792 return 0; 793 794 ret = __ice_vsi_get_qs(&tx_qs_cfg); 795 if (ret) 796 return ret; 797 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 798 799 ret = __ice_vsi_get_qs(&rx_qs_cfg); 800 if (ret) 801 return ret; 802 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 803 804 return 0; 805 } 806 807 /** 808 * ice_vsi_put_qs - Release queues from VSI to PF 809 * @vsi: the VSI that is going to release queues 810 */ 811 static void ice_vsi_put_qs(struct ice_vsi *vsi) 812 { 813 struct ice_pf *pf = vsi->back; 814 int i; 815 816 mutex_lock(&pf->avail_q_mutex); 817 818 ice_for_each_alloc_txq(vsi, i) { 819 clear_bit(vsi->txq_map[i], pf->avail_txqs); 820 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 821 } 822 823 ice_for_each_alloc_rxq(vsi, i) { 824 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 825 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 826 } 827 828 mutex_unlock(&pf->avail_q_mutex); 829 } 830 831 /** 832 * ice_is_safe_mode 833 * @pf: pointer to the PF struct 834 * 835 * returns true if driver is in safe mode, false otherwise 836 */ 837 bool ice_is_safe_mode(struct ice_pf *pf) 838 { 839 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 840 } 841 842 /** 843 * ice_is_rdma_ena 844 * @pf: pointer to the PF struct 845 * 846 * returns true if RDMA is currently supported, false otherwise 847 */ 848 bool ice_is_rdma_ena(struct ice_pf *pf) 849 { 850 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 851 } 852 853 /** 854 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 855 * @vsi: the VSI being cleaned up 856 * 857 * This function deletes RSS input set for all flows that were configured 858 * for this VSI 859 */ 860 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 861 { 862 struct ice_pf *pf = vsi->back; 863 int status; 864 865 if (ice_is_safe_mode(pf)) 866 return; 867 868 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 869 if (status) 870 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 871 vsi->vsi_num, status); 872 } 873 874 /** 875 * ice_rss_clean - Delete RSS related VSI structures and configuration 876 * @vsi: the VSI being removed 877 */ 878 static void ice_rss_clean(struct ice_vsi *vsi) 879 { 880 struct ice_pf *pf = vsi->back; 881 struct device *dev; 882 883 dev = ice_pf_to_dev(pf); 884 885 devm_kfree(dev, vsi->rss_hkey_user); 886 devm_kfree(dev, vsi->rss_lut_user); 887 888 ice_vsi_clean_rss_flow_fld(vsi); 889 /* remove RSS replay list */ 890 if (!ice_is_safe_mode(pf)) 891 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 892 } 893 894 /** 895 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 896 * @vsi: the VSI being configured 897 */ 898 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 899 { 900 struct ice_hw_common_caps *cap; 901 struct ice_pf *pf = vsi->back; 902 u16 max_rss_size; 903 904 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 905 vsi->rss_size = 1; 906 return; 907 } 908 909 cap = &pf->hw.func_caps.common_cap; 910 max_rss_size = BIT(cap->rss_table_entry_width); 911 switch (vsi->type) { 912 case ICE_VSI_CHNL: 913 case ICE_VSI_PF: 914 /* PF VSI will inherit RSS instance of PF */ 915 vsi->rss_table_size = (u16)cap->rss_table_size; 916 if (vsi->type == ICE_VSI_CHNL) 917 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 918 else 919 vsi->rss_size = min_t(u16, num_online_cpus(), 920 max_rss_size); 921 vsi->rss_lut_type = ICE_LUT_PF; 922 break; 923 case ICE_VSI_SWITCHDEV_CTRL: 924 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 925 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 926 vsi->rss_lut_type = ICE_LUT_VSI; 927 break; 928 case ICE_VSI_VF: 929 /* VF VSI will get a small RSS table. 930 * For VSI_LUT, LUT size should be set to 64 bytes. 931 */ 932 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 933 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 934 vsi->rss_lut_type = ICE_LUT_VSI; 935 break; 936 case ICE_VSI_LB: 937 break; 938 default: 939 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 940 ice_vsi_type_str(vsi->type)); 941 break; 942 } 943 } 944 945 /** 946 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 947 * @hw: HW structure used to determine the VLAN mode of the device 948 * @ctxt: the VSI context being set 949 * 950 * This initializes a default VSI context for all sections except the Queues. 951 */ 952 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 953 { 954 u32 table = 0; 955 956 memset(&ctxt->info, 0, sizeof(ctxt->info)); 957 /* VSI's should be allocated from shared pool */ 958 ctxt->alloc_from_pool = true; 959 /* Src pruning enabled by default */ 960 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 961 /* Traffic from VSI can be sent to LAN */ 962 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 963 /* allow all untagged/tagged packets by default on Tx */ 964 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 965 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 966 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 967 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 968 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 969 * 970 * DVM - leave inner VLAN in packet by default 971 */ 972 if (ice_is_dvm_ena(hw)) { 973 ctxt->info.inner_vlan_flags |= 974 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, 975 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); 976 ctxt->info.outer_vlan_flags = 977 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 978 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 979 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 980 ctxt->info.outer_vlan_flags |= 981 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 982 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 983 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 984 ctxt->info.outer_vlan_flags |= 985 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 986 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 987 } 988 /* Have 1:1 UP mapping for both ingress/egress tables */ 989 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 990 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 991 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 992 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 993 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 994 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 995 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 996 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 997 ctxt->info.ingress_table = cpu_to_le32(table); 998 ctxt->info.egress_table = cpu_to_le32(table); 999 /* Have 1:1 UP mapping for outer to inner UP table */ 1000 ctxt->info.outer_up_table = cpu_to_le32(table); 1001 /* No Outer tag support outer_tag_flags remains to zero */ 1002 } 1003 1004 /** 1005 * ice_vsi_setup_q_map - Setup a VSI queue map 1006 * @vsi: the VSI being configured 1007 * @ctxt: VSI context structure 1008 */ 1009 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1010 { 1011 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1012 u16 num_txq_per_tc, num_rxq_per_tc; 1013 u16 qcount_tx = vsi->alloc_txq; 1014 u16 qcount_rx = vsi->alloc_rxq; 1015 u8 netdev_tc = 0; 1016 int i; 1017 1018 if (!vsi->tc_cfg.numtc) { 1019 /* at least TC0 should be enabled by default */ 1020 vsi->tc_cfg.numtc = 1; 1021 vsi->tc_cfg.ena_tc = 1; 1022 } 1023 1024 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1025 if (!num_rxq_per_tc) 1026 num_rxq_per_tc = 1; 1027 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1028 if (!num_txq_per_tc) 1029 num_txq_per_tc = 1; 1030 1031 /* find the (rounded up) power-of-2 of qcount */ 1032 pow = (u16)order_base_2(num_rxq_per_tc); 1033 1034 /* TC mapping is a function of the number of Rx queues assigned to the 1035 * VSI for each traffic class and the offset of these queues. 1036 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1037 * queues allocated to TC0. No:of queues is a power-of-2. 1038 * 1039 * If TC is not enabled, the queue offset is set to 0, and allocate one 1040 * queue, this way, traffic for the given TC will be sent to the default 1041 * queue. 1042 * 1043 * Setup number and offset of Rx queues for all TCs for the VSI 1044 */ 1045 ice_for_each_traffic_class(i) { 1046 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1047 /* TC is not enabled */ 1048 vsi->tc_cfg.tc_info[i].qoffset = 0; 1049 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1050 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1051 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1052 ctxt->info.tc_mapping[i] = 0; 1053 continue; 1054 } 1055 1056 /* TC is enabled */ 1057 vsi->tc_cfg.tc_info[i].qoffset = offset; 1058 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1059 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1060 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1061 1062 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1063 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1064 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1065 ICE_AQ_VSI_TC_Q_NUM_M); 1066 offset += num_rxq_per_tc; 1067 tx_count += num_txq_per_tc; 1068 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1069 } 1070 1071 /* if offset is non-zero, means it is calculated correctly based on 1072 * enabled TCs for a given VSI otherwise qcount_rx will always 1073 * be correct and non-zero because it is based off - VSI's 1074 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1075 * at least 1) 1076 */ 1077 if (offset) 1078 rx_count = offset; 1079 else 1080 rx_count = num_rxq_per_tc; 1081 1082 if (rx_count > vsi->alloc_rxq) { 1083 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1084 rx_count, vsi->alloc_rxq); 1085 return -EINVAL; 1086 } 1087 1088 if (tx_count > vsi->alloc_txq) { 1089 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1090 tx_count, vsi->alloc_txq); 1091 return -EINVAL; 1092 } 1093 1094 vsi->num_txq = tx_count; 1095 vsi->num_rxq = rx_count; 1096 1097 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1098 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1099 /* since there is a chance that num_rxq could have been changed 1100 * in the above for loop, make num_txq equal to num_rxq. 1101 */ 1102 vsi->num_txq = vsi->num_rxq; 1103 } 1104 1105 /* Rx queue mapping */ 1106 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1107 /* q_mapping buffer holds the info for the first queue allocated for 1108 * this VSI in the PF space and also the number of queues associated 1109 * with this VSI. 1110 */ 1111 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1112 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1119 * @ctxt: the VSI context being set 1120 * @vsi: the VSI being configured 1121 */ 1122 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1123 { 1124 u8 dflt_q_group, dflt_q_prio; 1125 u16 dflt_q, report_q, val; 1126 1127 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1128 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1129 return; 1130 1131 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1132 ctxt->info.valid_sections |= cpu_to_le16(val); 1133 dflt_q = 0; 1134 dflt_q_group = 0; 1135 report_q = 0; 1136 dflt_q_prio = 0; 1137 1138 /* enable flow director filtering/programming */ 1139 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1140 ctxt->info.fd_options = cpu_to_le16(val); 1141 /* max of allocated flow director filters */ 1142 ctxt->info.max_fd_fltr_dedicated = 1143 cpu_to_le16(vsi->num_gfltr); 1144 /* max of shared flow director filters any VSI may program */ 1145 ctxt->info.max_fd_fltr_shared = 1146 cpu_to_le16(vsi->num_bfltr); 1147 /* default queue index within the VSI of the default FD */ 1148 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1149 ICE_AQ_VSI_FD_DEF_Q_M); 1150 /* target queue or queue group to the FD filter */ 1151 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1152 ICE_AQ_VSI_FD_DEF_GRP_M); 1153 ctxt->info.fd_def_q = cpu_to_le16(val); 1154 /* queue index on which FD filter completion is reported */ 1155 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1156 ICE_AQ_VSI_FD_REPORT_Q_M); 1157 /* priority of the default qindex action */ 1158 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1159 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1160 ctxt->info.fd_report_opt = cpu_to_le16(val); 1161 } 1162 1163 /** 1164 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1165 * @ctxt: the VSI context being set 1166 * @vsi: the VSI being configured 1167 */ 1168 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1169 { 1170 u8 lut_type, hash_type; 1171 struct device *dev; 1172 struct ice_pf *pf; 1173 1174 pf = vsi->back; 1175 dev = ice_pf_to_dev(pf); 1176 1177 switch (vsi->type) { 1178 case ICE_VSI_CHNL: 1179 case ICE_VSI_PF: 1180 /* PF VSI will inherit RSS instance of PF */ 1181 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1182 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1183 break; 1184 case ICE_VSI_VF: 1185 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1186 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1187 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1188 break; 1189 default: 1190 dev_dbg(dev, "Unsupported VSI type %s\n", 1191 ice_vsi_type_str(vsi->type)); 1192 return; 1193 } 1194 1195 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1196 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1197 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1198 } 1199 1200 static void 1201 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1202 { 1203 struct ice_pf *pf = vsi->back; 1204 u16 qcount, qmap; 1205 u8 offset = 0; 1206 int pow; 1207 1208 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1209 1210 pow = order_base_2(qcount); 1211 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1212 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1213 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1214 ICE_AQ_VSI_TC_Q_NUM_M); 1215 1216 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1217 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1218 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1219 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1220 } 1221 1222 /** 1223 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1224 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1225 * 1226 * returns true if Rx VLAN pruning is enabled and false otherwise. 1227 */ 1228 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1229 { 1230 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1231 } 1232 1233 /** 1234 * ice_vsi_init - Create and initialize a VSI 1235 * @vsi: the VSI being configured 1236 * @vsi_flags: VSI configuration flags 1237 * 1238 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1239 * reconfigure an existing context. 1240 * 1241 * This initializes a VSI context depending on the VSI type to be added and 1242 * passes it down to the add_vsi aq command to create a new VSI. 1243 */ 1244 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1245 { 1246 struct ice_pf *pf = vsi->back; 1247 struct ice_hw *hw = &pf->hw; 1248 struct ice_vsi_ctx *ctxt; 1249 struct device *dev; 1250 int ret = 0; 1251 1252 dev = ice_pf_to_dev(pf); 1253 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1254 if (!ctxt) 1255 return -ENOMEM; 1256 1257 switch (vsi->type) { 1258 case ICE_VSI_CTRL: 1259 case ICE_VSI_LB: 1260 case ICE_VSI_PF: 1261 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1262 break; 1263 case ICE_VSI_SWITCHDEV_CTRL: 1264 case ICE_VSI_CHNL: 1265 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1266 break; 1267 case ICE_VSI_VF: 1268 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1269 /* VF number here is the absolute VF number (0-255) */ 1270 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1271 break; 1272 default: 1273 ret = -ENODEV; 1274 goto out; 1275 } 1276 1277 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1278 * prune enabled 1279 */ 1280 if (vsi->type == ICE_VSI_CHNL) { 1281 struct ice_vsi *main_vsi; 1282 1283 main_vsi = ice_get_main_vsi(pf); 1284 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1285 ctxt->info.sw_flags2 |= 1286 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1287 else 1288 ctxt->info.sw_flags2 &= 1289 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1290 } 1291 1292 ice_set_dflt_vsi_ctx(hw, ctxt); 1293 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1294 ice_set_fd_vsi_ctx(ctxt, vsi); 1295 /* if the switch is in VEB mode, allow VSI loopback */ 1296 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1297 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1298 1299 /* Set LUT type and HASH type if RSS is enabled */ 1300 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1301 vsi->type != ICE_VSI_CTRL) { 1302 ice_set_rss_vsi_ctx(ctxt, vsi); 1303 /* if updating VSI context, make sure to set valid_section: 1304 * to indicate which section of VSI context being updated 1305 */ 1306 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1307 ctxt->info.valid_sections |= 1308 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1309 } 1310 1311 ctxt->info.sw_id = vsi->port_info->sw_id; 1312 if (vsi->type == ICE_VSI_CHNL) { 1313 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1314 } else { 1315 ret = ice_vsi_setup_q_map(vsi, ctxt); 1316 if (ret) 1317 goto out; 1318 1319 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1320 /* means VSI being updated */ 1321 /* must to indicate which section of VSI context are 1322 * being modified 1323 */ 1324 ctxt->info.valid_sections |= 1325 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1326 } 1327 1328 /* Allow control frames out of main VSI */ 1329 if (vsi->type == ICE_VSI_PF) { 1330 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1331 ctxt->info.valid_sections |= 1332 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1333 } 1334 1335 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1336 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1337 if (ret) { 1338 dev_err(dev, "Add VSI failed, err %d\n", ret); 1339 ret = -EIO; 1340 goto out; 1341 } 1342 } else { 1343 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1344 if (ret) { 1345 dev_err(dev, "Update VSI failed, err %d\n", ret); 1346 ret = -EIO; 1347 goto out; 1348 } 1349 } 1350 1351 /* keep context for update VSI operations */ 1352 vsi->info = ctxt->info; 1353 1354 /* record VSI number returned */ 1355 vsi->vsi_num = ctxt->vsi_num; 1356 1357 out: 1358 kfree(ctxt); 1359 return ret; 1360 } 1361 1362 /** 1363 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1364 * @vsi: the VSI having rings deallocated 1365 */ 1366 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1367 { 1368 int i; 1369 1370 /* Avoid stale references by clearing map from vector to ring */ 1371 if (vsi->q_vectors) { 1372 ice_for_each_q_vector(vsi, i) { 1373 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1374 1375 if (q_vector) { 1376 q_vector->tx.tx_ring = NULL; 1377 q_vector->rx.rx_ring = NULL; 1378 } 1379 } 1380 } 1381 1382 if (vsi->tx_rings) { 1383 ice_for_each_alloc_txq(vsi, i) { 1384 if (vsi->tx_rings[i]) { 1385 kfree_rcu(vsi->tx_rings[i], rcu); 1386 WRITE_ONCE(vsi->tx_rings[i], NULL); 1387 } 1388 } 1389 } 1390 if (vsi->rx_rings) { 1391 ice_for_each_alloc_rxq(vsi, i) { 1392 if (vsi->rx_rings[i]) { 1393 kfree_rcu(vsi->rx_rings[i], rcu); 1394 WRITE_ONCE(vsi->rx_rings[i], NULL); 1395 } 1396 } 1397 } 1398 } 1399 1400 /** 1401 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1402 * @vsi: VSI which is having rings allocated 1403 */ 1404 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1405 { 1406 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1407 struct ice_pf *pf = vsi->back; 1408 struct device *dev; 1409 u16 i; 1410 1411 dev = ice_pf_to_dev(pf); 1412 /* Allocate Tx rings */ 1413 ice_for_each_alloc_txq(vsi, i) { 1414 struct ice_tx_ring *ring; 1415 1416 /* allocate with kzalloc(), free with kfree_rcu() */ 1417 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1418 1419 if (!ring) 1420 goto err_out; 1421 1422 ring->q_index = i; 1423 ring->reg_idx = vsi->txq_map[i]; 1424 ring->vsi = vsi; 1425 ring->tx_tstamps = &pf->ptp.port.tx; 1426 ring->dev = dev; 1427 ring->count = vsi->num_tx_desc; 1428 ring->txq_teid = ICE_INVAL_TEID; 1429 if (dvm_ena) 1430 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1431 else 1432 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1433 WRITE_ONCE(vsi->tx_rings[i], ring); 1434 } 1435 1436 /* Allocate Rx rings */ 1437 ice_for_each_alloc_rxq(vsi, i) { 1438 struct ice_rx_ring *ring; 1439 1440 /* allocate with kzalloc(), free with kfree_rcu() */ 1441 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1442 if (!ring) 1443 goto err_out; 1444 1445 ring->q_index = i; 1446 ring->reg_idx = vsi->rxq_map[i]; 1447 ring->vsi = vsi; 1448 ring->netdev = vsi->netdev; 1449 ring->dev = dev; 1450 ring->count = vsi->num_rx_desc; 1451 ring->cached_phctime = pf->ptp.cached_phc_time; 1452 WRITE_ONCE(vsi->rx_rings[i], ring); 1453 } 1454 1455 return 0; 1456 1457 err_out: 1458 ice_vsi_clear_rings(vsi); 1459 return -ENOMEM; 1460 } 1461 1462 /** 1463 * ice_vsi_manage_rss_lut - disable/enable RSS 1464 * @vsi: the VSI being changed 1465 * @ena: boolean value indicating if this is an enable or disable request 1466 * 1467 * In the event of disable request for RSS, this function will zero out RSS 1468 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1469 * LUT. 1470 */ 1471 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1472 { 1473 u8 *lut; 1474 1475 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1476 if (!lut) 1477 return; 1478 1479 if (ena) { 1480 if (vsi->rss_lut_user) 1481 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1482 else 1483 ice_fill_rss_lut(lut, vsi->rss_table_size, 1484 vsi->rss_size); 1485 } 1486 1487 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1488 kfree(lut); 1489 } 1490 1491 /** 1492 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1493 * @vsi: VSI to be configured 1494 * @disable: set to true to have FCS / CRC in the frame data 1495 */ 1496 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1497 { 1498 int i; 1499 1500 ice_for_each_rxq(vsi, i) 1501 if (disable) 1502 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1503 else 1504 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1505 } 1506 1507 /** 1508 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1509 * @vsi: VSI to be configured 1510 */ 1511 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1512 { 1513 struct ice_pf *pf = vsi->back; 1514 struct device *dev; 1515 u8 *lut, *key; 1516 int err; 1517 1518 dev = ice_pf_to_dev(pf); 1519 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1520 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1521 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1522 } else { 1523 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1524 1525 /* If orig_rss_size is valid and it is less than determined 1526 * main VSI's rss_size, update main VSI's rss_size to be 1527 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1528 * RSS table gets programmed to be correct (whatever it was 1529 * to begin with (prior to setup-tc for ADQ config) 1530 */ 1531 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1532 vsi->orig_rss_size <= vsi->num_rxq) { 1533 vsi->rss_size = vsi->orig_rss_size; 1534 /* now orig_rss_size is used, reset it to zero */ 1535 vsi->orig_rss_size = 0; 1536 } 1537 } 1538 1539 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1540 if (!lut) 1541 return -ENOMEM; 1542 1543 if (vsi->rss_lut_user) 1544 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1545 else 1546 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1547 1548 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1549 if (err) { 1550 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1551 goto ice_vsi_cfg_rss_exit; 1552 } 1553 1554 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1555 if (!key) { 1556 err = -ENOMEM; 1557 goto ice_vsi_cfg_rss_exit; 1558 } 1559 1560 if (vsi->rss_hkey_user) 1561 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1562 else 1563 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1564 1565 err = ice_set_rss_key(vsi, key); 1566 if (err) 1567 dev_err(dev, "set_rss_key failed, error %d\n", err); 1568 1569 kfree(key); 1570 ice_vsi_cfg_rss_exit: 1571 kfree(lut); 1572 return err; 1573 } 1574 1575 /** 1576 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1577 * @vsi: VSI to be configured 1578 * 1579 * This function will only be called during the VF VSI setup. Upon successful 1580 * completion of package download, this function will configure default RSS 1581 * input sets for VF VSI. 1582 */ 1583 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1584 { 1585 struct ice_pf *pf = vsi->back; 1586 struct device *dev; 1587 int status; 1588 1589 dev = ice_pf_to_dev(pf); 1590 if (ice_is_safe_mode(pf)) { 1591 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1592 vsi->vsi_num); 1593 return; 1594 } 1595 1596 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1597 if (status) 1598 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1599 vsi->vsi_num, status); 1600 } 1601 1602 /** 1603 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1604 * @vsi: VSI to be configured 1605 * 1606 * This function will only be called after successful download package call 1607 * during initialization of PF. Since the downloaded package will erase the 1608 * RSS section, this function will configure RSS input sets for different 1609 * flow types. The last profile added has the highest priority, therefore 2 1610 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1611 * (i.e. IPv4 src/dst TCP src/dst port). 1612 */ 1613 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1614 { 1615 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1616 struct ice_pf *pf = vsi->back; 1617 struct ice_hw *hw = &pf->hw; 1618 struct device *dev; 1619 int status; 1620 1621 dev = ice_pf_to_dev(pf); 1622 if (ice_is_safe_mode(pf)) { 1623 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1624 vsi_num); 1625 return; 1626 } 1627 /* configure RSS for IPv4 with input set IP src/dst */ 1628 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1629 ICE_FLOW_SEG_HDR_IPV4); 1630 if (status) 1631 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1632 vsi_num, status); 1633 1634 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1635 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1636 ICE_FLOW_SEG_HDR_IPV6); 1637 if (status) 1638 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1639 vsi_num, status); 1640 1641 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1642 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1643 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1644 if (status) 1645 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1646 vsi_num, status); 1647 1648 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1649 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1650 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1651 if (status) 1652 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1653 vsi_num, status); 1654 1655 /* configure RSS for sctp4 with input set IP src/dst */ 1656 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1657 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1658 if (status) 1659 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1660 vsi_num, status); 1661 1662 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1663 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1664 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1665 if (status) 1666 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1667 vsi_num, status); 1668 1669 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1670 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1671 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1672 if (status) 1673 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1674 vsi_num, status); 1675 1676 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1677 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1678 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1679 if (status) 1680 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1681 vsi_num, status); 1682 1683 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1684 ICE_FLOW_SEG_HDR_ESP); 1685 if (status) 1686 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1687 vsi_num, status); 1688 } 1689 1690 /** 1691 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1692 * @vsi: VSI 1693 */ 1694 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1695 { 1696 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1697 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1698 vsi->rx_buf_len = ICE_RXBUF_1664; 1699 #if (PAGE_SIZE < 8192) 1700 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1701 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1702 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1703 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1704 #endif 1705 } else { 1706 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1707 vsi->rx_buf_len = ICE_RXBUF_3072; 1708 } 1709 } 1710 1711 /** 1712 * ice_pf_state_is_nominal - checks the PF for nominal state 1713 * @pf: pointer to PF to check 1714 * 1715 * Check the PF's state for a collection of bits that would indicate 1716 * the PF is in a state that would inhibit normal operation for 1717 * driver functionality. 1718 * 1719 * Returns true if PF is in a nominal state, false otherwise 1720 */ 1721 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1722 { 1723 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1724 1725 if (!pf) 1726 return false; 1727 1728 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1729 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1730 return false; 1731 1732 return true; 1733 } 1734 1735 /** 1736 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1737 * @vsi: the VSI to be updated 1738 */ 1739 void ice_update_eth_stats(struct ice_vsi *vsi) 1740 { 1741 struct ice_eth_stats *prev_es, *cur_es; 1742 struct ice_hw *hw = &vsi->back->hw; 1743 struct ice_pf *pf = vsi->back; 1744 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1745 1746 prev_es = &vsi->eth_stats_prev; 1747 cur_es = &vsi->eth_stats; 1748 1749 if (ice_is_reset_in_progress(pf->state)) 1750 vsi->stat_offsets_loaded = false; 1751 1752 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1753 &prev_es->rx_bytes, &cur_es->rx_bytes); 1754 1755 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1756 &prev_es->rx_unicast, &cur_es->rx_unicast); 1757 1758 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1759 &prev_es->rx_multicast, &cur_es->rx_multicast); 1760 1761 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1762 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1763 1764 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1765 &prev_es->rx_discards, &cur_es->rx_discards); 1766 1767 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1768 &prev_es->tx_bytes, &cur_es->tx_bytes); 1769 1770 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1771 &prev_es->tx_unicast, &cur_es->tx_unicast); 1772 1773 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1774 &prev_es->tx_multicast, &cur_es->tx_multicast); 1775 1776 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1777 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1778 1779 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1780 &prev_es->tx_errors, &cur_es->tx_errors); 1781 1782 vsi->stat_offsets_loaded = true; 1783 } 1784 1785 /** 1786 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1787 * @hw: HW pointer 1788 * @pf_q: index of the Rx queue in the PF's queue space 1789 * @rxdid: flexible descriptor RXDID 1790 * @prio: priority for the RXDID for this queue 1791 * @ena_ts: true to enable timestamp and false to disable timestamp 1792 */ 1793 void 1794 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1795 bool ena_ts) 1796 { 1797 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1798 1799 /* clear any previous values */ 1800 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1801 QRXFLXP_CNTXT_RXDID_PRIO_M | 1802 QRXFLXP_CNTXT_TS_M); 1803 1804 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1805 QRXFLXP_CNTXT_RXDID_IDX_M; 1806 1807 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1808 QRXFLXP_CNTXT_RXDID_PRIO_M; 1809 1810 if (ena_ts) 1811 /* Enable TimeSync on this queue */ 1812 regval |= QRXFLXP_CNTXT_TS_M; 1813 1814 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1815 } 1816 1817 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1818 { 1819 if (q_idx >= vsi->num_rxq) 1820 return -EINVAL; 1821 1822 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1823 } 1824 1825 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1826 { 1827 struct ice_aqc_add_tx_qgrp *qg_buf; 1828 int err; 1829 1830 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1831 return -EINVAL; 1832 1833 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1834 if (!qg_buf) 1835 return -ENOMEM; 1836 1837 qg_buf->num_txqs = 1; 1838 1839 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1840 kfree(qg_buf); 1841 return err; 1842 } 1843 1844 /** 1845 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1846 * @vsi: the VSI being configured 1847 * 1848 * Return 0 on success and a negative value on error 1849 * Configure the Rx VSI for operation. 1850 */ 1851 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1852 { 1853 u16 i; 1854 1855 if (vsi->type == ICE_VSI_VF) 1856 goto setup_rings; 1857 1858 ice_vsi_cfg_frame_size(vsi); 1859 setup_rings: 1860 /* set up individual rings */ 1861 ice_for_each_rxq(vsi, i) { 1862 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1863 1864 if (err) 1865 return err; 1866 } 1867 1868 return 0; 1869 } 1870 1871 /** 1872 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1873 * @vsi: the VSI being configured 1874 * @rings: Tx ring array to be configured 1875 * @count: number of Tx ring array elements 1876 * 1877 * Return 0 on success and a negative value on error 1878 * Configure the Tx VSI for operation. 1879 */ 1880 static int 1881 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1882 { 1883 struct ice_aqc_add_tx_qgrp *qg_buf; 1884 u16 q_idx = 0; 1885 int err = 0; 1886 1887 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1888 if (!qg_buf) 1889 return -ENOMEM; 1890 1891 qg_buf->num_txqs = 1; 1892 1893 for (q_idx = 0; q_idx < count; q_idx++) { 1894 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1895 if (err) 1896 goto err_cfg_txqs; 1897 } 1898 1899 err_cfg_txqs: 1900 kfree(qg_buf); 1901 return err; 1902 } 1903 1904 /** 1905 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1906 * @vsi: the VSI being configured 1907 * 1908 * Return 0 on success and a negative value on error 1909 * Configure the Tx VSI for operation. 1910 */ 1911 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1912 { 1913 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1914 } 1915 1916 /** 1917 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1918 * @vsi: the VSI being configured 1919 * 1920 * Return 0 on success and a negative value on error 1921 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1922 */ 1923 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1924 { 1925 int ret; 1926 int i; 1927 1928 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1929 if (ret) 1930 return ret; 1931 1932 ice_for_each_rxq(vsi, i) 1933 ice_tx_xsk_pool(vsi, i); 1934 1935 return 0; 1936 } 1937 1938 /** 1939 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1940 * @intrl: interrupt rate limit in usecs 1941 * @gran: interrupt rate limit granularity in usecs 1942 * 1943 * This function converts a decimal interrupt rate limit in usecs to the format 1944 * expected by firmware. 1945 */ 1946 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1947 { 1948 u32 val = intrl / gran; 1949 1950 if (val) 1951 return val | GLINT_RATE_INTRL_ENA_M; 1952 return 0; 1953 } 1954 1955 /** 1956 * ice_write_intrl - write throttle rate limit to interrupt specific register 1957 * @q_vector: pointer to interrupt specific structure 1958 * @intrl: throttle rate limit in microseconds to write 1959 */ 1960 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1961 { 1962 struct ice_hw *hw = &q_vector->vsi->back->hw; 1963 1964 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1965 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1966 } 1967 1968 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1969 { 1970 switch (rc->type) { 1971 case ICE_RX_CONTAINER: 1972 if (rc->rx_ring) 1973 return rc->rx_ring->q_vector; 1974 break; 1975 case ICE_TX_CONTAINER: 1976 if (rc->tx_ring) 1977 return rc->tx_ring->q_vector; 1978 break; 1979 default: 1980 break; 1981 } 1982 1983 return NULL; 1984 } 1985 1986 /** 1987 * __ice_write_itr - write throttle rate to register 1988 * @q_vector: pointer to interrupt data structure 1989 * @rc: pointer to ring container 1990 * @itr: throttle rate in microseconds to write 1991 */ 1992 static void __ice_write_itr(struct ice_q_vector *q_vector, 1993 struct ice_ring_container *rc, u16 itr) 1994 { 1995 struct ice_hw *hw = &q_vector->vsi->back->hw; 1996 1997 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1998 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1999 } 2000 2001 /** 2002 * ice_write_itr - write throttle rate to queue specific register 2003 * @rc: pointer to ring container 2004 * @itr: throttle rate in microseconds to write 2005 */ 2006 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2007 { 2008 struct ice_q_vector *q_vector; 2009 2010 q_vector = ice_pull_qvec_from_rc(rc); 2011 if (!q_vector) 2012 return; 2013 2014 __ice_write_itr(q_vector, rc, itr); 2015 } 2016 2017 /** 2018 * ice_set_q_vector_intrl - set up interrupt rate limiting 2019 * @q_vector: the vector to be configured 2020 * 2021 * Interrupt rate limiting is local to the vector, not per-queue so we must 2022 * detect if either ring container has dynamic moderation enabled to decide 2023 * what to set the interrupt rate limit to via INTRL settings. In the case that 2024 * dynamic moderation is disabled on both, write the value with the cached 2025 * setting to make sure INTRL register matches the user visible value. 2026 */ 2027 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2028 { 2029 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2030 /* in the case of dynamic enabled, cap each vector to no more 2031 * than (4 us) 250,000 ints/sec, which allows low latency 2032 * but still less than 500,000 interrupts per second, which 2033 * reduces CPU a bit in the case of the lowest latency 2034 * setting. The 4 here is a value in microseconds. 2035 */ 2036 ice_write_intrl(q_vector, 4); 2037 } else { 2038 ice_write_intrl(q_vector, q_vector->intrl); 2039 } 2040 } 2041 2042 /** 2043 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2044 * @vsi: the VSI being configured 2045 * 2046 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2047 * for the VF VSI. 2048 */ 2049 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2050 { 2051 struct ice_pf *pf = vsi->back; 2052 struct ice_hw *hw = &pf->hw; 2053 u16 txq = 0, rxq = 0; 2054 int i, q; 2055 2056 ice_for_each_q_vector(vsi, i) { 2057 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2058 u16 reg_idx = q_vector->reg_idx; 2059 2060 ice_cfg_itr(hw, q_vector); 2061 2062 /* Both Transmit Queue Interrupt Cause Control register 2063 * and Receive Queue Interrupt Cause control register 2064 * expects MSIX_INDX field to be the vector index 2065 * within the function space and not the absolute 2066 * vector index across PF or across device. 2067 * For SR-IOV VF VSIs queue vector index always starts 2068 * with 1 since first vector index(0) is used for OICR 2069 * in VF space. Since VMDq and other PF VSIs are within 2070 * the PF function space, use the vector index that is 2071 * tracked for this PF. 2072 */ 2073 for (q = 0; q < q_vector->num_ring_tx; q++) { 2074 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2075 q_vector->tx.itr_idx); 2076 txq++; 2077 } 2078 2079 for (q = 0; q < q_vector->num_ring_rx; q++) { 2080 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2081 q_vector->rx.itr_idx); 2082 rxq++; 2083 } 2084 } 2085 } 2086 2087 /** 2088 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2089 * @vsi: the VSI whose rings are to be enabled 2090 * 2091 * Returns 0 on success and a negative value on error 2092 */ 2093 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2094 { 2095 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2096 } 2097 2098 /** 2099 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2100 * @vsi: the VSI whose rings are to be disabled 2101 * 2102 * Returns 0 on success and a negative value on error 2103 */ 2104 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2105 { 2106 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2107 } 2108 2109 /** 2110 * ice_vsi_stop_tx_rings - Disable Tx rings 2111 * @vsi: the VSI being configured 2112 * @rst_src: reset source 2113 * @rel_vmvf_num: Relative ID of VF/VM 2114 * @rings: Tx ring array to be stopped 2115 * @count: number of Tx ring array elements 2116 */ 2117 static int 2118 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2119 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2120 { 2121 u16 q_idx; 2122 2123 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2124 return -EINVAL; 2125 2126 for (q_idx = 0; q_idx < count; q_idx++) { 2127 struct ice_txq_meta txq_meta = { }; 2128 int status; 2129 2130 if (!rings || !rings[q_idx]) 2131 return -EINVAL; 2132 2133 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2134 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2135 rings[q_idx], &txq_meta); 2136 2137 if (status) 2138 return status; 2139 } 2140 2141 return 0; 2142 } 2143 2144 /** 2145 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2146 * @vsi: the VSI being configured 2147 * @rst_src: reset source 2148 * @rel_vmvf_num: Relative ID of VF/VM 2149 */ 2150 int 2151 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2152 u16 rel_vmvf_num) 2153 { 2154 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2155 } 2156 2157 /** 2158 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2159 * @vsi: the VSI being configured 2160 */ 2161 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2162 { 2163 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2164 } 2165 2166 /** 2167 * ice_vsi_is_rx_queue_active 2168 * @vsi: the VSI being configured 2169 * 2170 * Return true if at least one queue is active. 2171 */ 2172 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2173 { 2174 struct ice_pf *pf = vsi->back; 2175 struct ice_hw *hw = &pf->hw; 2176 int i; 2177 2178 ice_for_each_rxq(vsi, i) { 2179 u32 rx_reg; 2180 int pf_q; 2181 2182 pf_q = vsi->rxq_map[i]; 2183 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2184 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2185 return true; 2186 } 2187 2188 return false; 2189 } 2190 2191 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2192 { 2193 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2194 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2195 vsi->tc_cfg.numtc = 1; 2196 return; 2197 } 2198 2199 /* set VSI TC information based on DCB config */ 2200 ice_vsi_set_dcb_tc_cfg(vsi); 2201 } 2202 2203 /** 2204 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2205 * @vsi: the VSI being configured 2206 * @tx: bool to determine Tx or Rx rule 2207 * @create: bool to determine create or remove Rule 2208 */ 2209 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2210 { 2211 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2212 enum ice_sw_fwd_act_type act); 2213 struct ice_pf *pf = vsi->back; 2214 struct device *dev; 2215 int status; 2216 2217 dev = ice_pf_to_dev(pf); 2218 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2219 2220 if (tx) { 2221 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2222 ICE_DROP_PACKET); 2223 } else { 2224 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2225 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2226 create); 2227 } else { 2228 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2229 ICE_FWD_TO_VSI); 2230 } 2231 } 2232 2233 if (status) 2234 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2235 create ? "adding" : "removing", tx ? "TX" : "RX", 2236 vsi->vsi_num, status); 2237 } 2238 2239 /** 2240 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2241 * @vsi: pointer to the VSI 2242 * 2243 * This function will allocate new scheduler aggregator now if needed and will 2244 * move specified VSI into it. 2245 */ 2246 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2247 { 2248 struct device *dev = ice_pf_to_dev(vsi->back); 2249 struct ice_agg_node *agg_node_iter = NULL; 2250 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2251 struct ice_agg_node *agg_node = NULL; 2252 int node_offset, max_agg_nodes = 0; 2253 struct ice_port_info *port_info; 2254 struct ice_pf *pf = vsi->back; 2255 u32 agg_node_id_start = 0; 2256 int status; 2257 2258 /* create (as needed) scheduler aggregator node and move VSI into 2259 * corresponding aggregator node 2260 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2261 * - VF aggregator nodes will contain VF VSI 2262 */ 2263 port_info = pf->hw.port_info; 2264 if (!port_info) 2265 return; 2266 2267 switch (vsi->type) { 2268 case ICE_VSI_CTRL: 2269 case ICE_VSI_CHNL: 2270 case ICE_VSI_LB: 2271 case ICE_VSI_PF: 2272 case ICE_VSI_SWITCHDEV_CTRL: 2273 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2274 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2275 agg_node_iter = &pf->pf_agg_node[0]; 2276 break; 2277 case ICE_VSI_VF: 2278 /* user can create 'n' VFs on a given PF, but since max children 2279 * per aggregator node can be only 64. Following code handles 2280 * aggregator(s) for VF VSIs, either selects a agg_node which 2281 * was already created provided num_vsis < 64, otherwise 2282 * select next available node, which will be created 2283 */ 2284 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2285 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2286 agg_node_iter = &pf->vf_agg_node[0]; 2287 break; 2288 default: 2289 /* other VSI type, handle later if needed */ 2290 dev_dbg(dev, "unexpected VSI type %s\n", 2291 ice_vsi_type_str(vsi->type)); 2292 return; 2293 } 2294 2295 /* find the appropriate aggregator node */ 2296 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2297 /* see if we can find space in previously created 2298 * node if num_vsis < 64, otherwise skip 2299 */ 2300 if (agg_node_iter->num_vsis && 2301 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2302 agg_node_iter++; 2303 continue; 2304 } 2305 2306 if (agg_node_iter->valid && 2307 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2308 agg_id = agg_node_iter->agg_id; 2309 agg_node = agg_node_iter; 2310 break; 2311 } 2312 2313 /* find unclaimed agg_id */ 2314 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2315 agg_id = node_offset + agg_node_id_start; 2316 agg_node = agg_node_iter; 2317 break; 2318 } 2319 /* move to next agg_node */ 2320 agg_node_iter++; 2321 } 2322 2323 if (!agg_node) 2324 return; 2325 2326 /* if selected aggregator node was not created, create it */ 2327 if (!agg_node->valid) { 2328 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2329 (u8)vsi->tc_cfg.ena_tc); 2330 if (status) { 2331 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2332 agg_id); 2333 return; 2334 } 2335 /* aggregator node is created, store the needed info */ 2336 agg_node->valid = true; 2337 agg_node->agg_id = agg_id; 2338 } 2339 2340 /* move VSI to corresponding aggregator node */ 2341 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2342 (u8)vsi->tc_cfg.ena_tc); 2343 if (status) { 2344 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2345 vsi->idx, agg_id); 2346 return; 2347 } 2348 2349 /* keep active children count for aggregator node */ 2350 agg_node->num_vsis++; 2351 2352 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2353 * to aggregator node 2354 */ 2355 vsi->agg_node = agg_node; 2356 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2357 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2358 vsi->agg_node->num_vsis); 2359 } 2360 2361 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2362 { 2363 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2364 struct device *dev = ice_pf_to_dev(pf); 2365 int ret, i; 2366 2367 /* configure VSI nodes based on number of queues and TC's */ 2368 ice_for_each_traffic_class(i) { 2369 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2370 continue; 2371 2372 if (vsi->type == ICE_VSI_CHNL) { 2373 if (!vsi->alloc_txq && vsi->num_txq) 2374 max_txqs[i] = vsi->num_txq; 2375 else 2376 max_txqs[i] = pf->num_lan_tx; 2377 } else { 2378 max_txqs[i] = vsi->alloc_txq; 2379 } 2380 2381 if (vsi->type == ICE_VSI_PF) 2382 max_txqs[i] += vsi->num_xdp_txq; 2383 } 2384 2385 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2386 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2387 max_txqs); 2388 if (ret) { 2389 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2390 vsi->vsi_num, ret); 2391 return ret; 2392 } 2393 2394 return 0; 2395 } 2396 2397 /** 2398 * ice_vsi_cfg_def - configure default VSI based on the type 2399 * @vsi: pointer to VSI 2400 * @params: the parameters to configure this VSI with 2401 */ 2402 static int 2403 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2404 { 2405 struct device *dev = ice_pf_to_dev(vsi->back); 2406 struct ice_pf *pf = vsi->back; 2407 int ret; 2408 2409 vsi->vsw = pf->first_sw; 2410 2411 ret = ice_vsi_alloc_def(vsi, params->ch); 2412 if (ret) 2413 return ret; 2414 2415 /* allocate memory for Tx/Rx ring stat pointers */ 2416 ret = ice_vsi_alloc_stat_arrays(vsi); 2417 if (ret) 2418 goto unroll_vsi_alloc; 2419 2420 ice_alloc_fd_res(vsi); 2421 2422 ret = ice_vsi_get_qs(vsi); 2423 if (ret) { 2424 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2425 vsi->idx); 2426 goto unroll_vsi_alloc_stat; 2427 } 2428 2429 /* set RSS capabilities */ 2430 ice_vsi_set_rss_params(vsi); 2431 2432 /* set TC configuration */ 2433 ice_vsi_set_tc_cfg(vsi); 2434 2435 /* create the VSI */ 2436 ret = ice_vsi_init(vsi, params->flags); 2437 if (ret) 2438 goto unroll_get_qs; 2439 2440 ice_vsi_init_vlan_ops(vsi); 2441 2442 switch (vsi->type) { 2443 case ICE_VSI_CTRL: 2444 case ICE_VSI_SWITCHDEV_CTRL: 2445 case ICE_VSI_PF: 2446 ret = ice_vsi_alloc_q_vectors(vsi); 2447 if (ret) 2448 goto unroll_vsi_init; 2449 2450 ret = ice_vsi_alloc_rings(vsi); 2451 if (ret) 2452 goto unroll_vector_base; 2453 2454 ret = ice_vsi_alloc_ring_stats(vsi); 2455 if (ret) 2456 goto unroll_vector_base; 2457 2458 ice_vsi_map_rings_to_vectors(vsi); 2459 vsi->stat_offsets_loaded = false; 2460 2461 if (ice_is_xdp_ena_vsi(vsi)) { 2462 ret = ice_vsi_determine_xdp_res(vsi); 2463 if (ret) 2464 goto unroll_vector_base; 2465 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog, 2466 ICE_XDP_CFG_PART); 2467 if (ret) 2468 goto unroll_vector_base; 2469 } 2470 2471 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2472 if (vsi->type != ICE_VSI_CTRL) 2473 /* Do not exit if configuring RSS had an issue, at 2474 * least receive traffic on first queue. Hence no 2475 * need to capture return value 2476 */ 2477 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2478 ice_vsi_cfg_rss_lut_key(vsi); 2479 ice_vsi_set_rss_flow_fld(vsi); 2480 } 2481 ice_init_arfs(vsi); 2482 break; 2483 case ICE_VSI_CHNL: 2484 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2485 ice_vsi_cfg_rss_lut_key(vsi); 2486 ice_vsi_set_rss_flow_fld(vsi); 2487 } 2488 break; 2489 case ICE_VSI_VF: 2490 /* VF driver will take care of creating netdev for this type and 2491 * map queues to vectors through Virtchnl, PF driver only 2492 * creates a VSI and corresponding structures for bookkeeping 2493 * purpose 2494 */ 2495 ret = ice_vsi_alloc_q_vectors(vsi); 2496 if (ret) 2497 goto unroll_vsi_init; 2498 2499 ret = ice_vsi_alloc_rings(vsi); 2500 if (ret) 2501 goto unroll_alloc_q_vector; 2502 2503 ret = ice_vsi_alloc_ring_stats(vsi); 2504 if (ret) 2505 goto unroll_vector_base; 2506 2507 vsi->stat_offsets_loaded = false; 2508 2509 /* Do not exit if configuring RSS had an issue, at least 2510 * receive traffic on first queue. Hence no need to capture 2511 * return value 2512 */ 2513 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2514 ice_vsi_cfg_rss_lut_key(vsi); 2515 ice_vsi_set_vf_rss_flow_fld(vsi); 2516 } 2517 break; 2518 case ICE_VSI_LB: 2519 ret = ice_vsi_alloc_rings(vsi); 2520 if (ret) 2521 goto unroll_vsi_init; 2522 2523 ret = ice_vsi_alloc_ring_stats(vsi); 2524 if (ret) 2525 goto unroll_vector_base; 2526 2527 break; 2528 default: 2529 /* clean up the resources and exit */ 2530 ret = -EINVAL; 2531 goto unroll_vsi_init; 2532 } 2533 2534 return 0; 2535 2536 unroll_vector_base: 2537 /* reclaim SW interrupts back to the common pool */ 2538 unroll_alloc_q_vector: 2539 ice_vsi_free_q_vectors(vsi); 2540 unroll_vsi_init: 2541 ice_vsi_delete_from_hw(vsi); 2542 unroll_get_qs: 2543 ice_vsi_put_qs(vsi); 2544 unroll_vsi_alloc_stat: 2545 ice_vsi_free_stats(vsi); 2546 unroll_vsi_alloc: 2547 ice_vsi_free_arrays(vsi); 2548 return ret; 2549 } 2550 2551 /** 2552 * ice_vsi_cfg - configure a previously allocated VSI 2553 * @vsi: pointer to VSI 2554 * @params: parameters used to configure this VSI 2555 */ 2556 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2557 { 2558 struct ice_pf *pf = vsi->back; 2559 int ret; 2560 2561 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2562 return -EINVAL; 2563 2564 vsi->type = params->type; 2565 vsi->port_info = params->pi; 2566 2567 /* For VSIs which don't have a connected VF, this will be NULL */ 2568 vsi->vf = params->vf; 2569 2570 ret = ice_vsi_cfg_def(vsi, params); 2571 if (ret) 2572 return ret; 2573 2574 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2575 if (ret) 2576 ice_vsi_decfg(vsi); 2577 2578 if (vsi->type == ICE_VSI_CTRL) { 2579 if (vsi->vf) { 2580 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2581 vsi->vf->ctrl_vsi_idx = vsi->idx; 2582 } else { 2583 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2584 pf->ctrl_vsi_idx = vsi->idx; 2585 } 2586 } 2587 2588 return ret; 2589 } 2590 2591 /** 2592 * ice_vsi_decfg - remove all VSI configuration 2593 * @vsi: pointer to VSI 2594 */ 2595 void ice_vsi_decfg(struct ice_vsi *vsi) 2596 { 2597 struct ice_pf *pf = vsi->back; 2598 int err; 2599 2600 /* The Rx rule will only exist to remove if the LLDP FW 2601 * engine is currently stopped 2602 */ 2603 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2604 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2605 ice_cfg_sw_lldp(vsi, false, false); 2606 2607 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2608 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2609 if (err) 2610 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2611 vsi->vsi_num, err); 2612 2613 if (ice_is_xdp_ena_vsi(vsi)) 2614 /* return value check can be skipped here, it always returns 2615 * 0 if reset is in progress 2616 */ 2617 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART); 2618 2619 ice_vsi_clear_rings(vsi); 2620 ice_vsi_free_q_vectors(vsi); 2621 ice_vsi_put_qs(vsi); 2622 ice_vsi_free_arrays(vsi); 2623 2624 /* SR-IOV determines needed MSIX resources all at once instead of per 2625 * VSI since when VFs are spawned we know how many VFs there are and how 2626 * many interrupts each VF needs. SR-IOV MSIX resources are also 2627 * cleared in the same manner. 2628 */ 2629 2630 if (vsi->type == ICE_VSI_VF && 2631 vsi->agg_node && vsi->agg_node->valid) 2632 vsi->agg_node->num_vsis--; 2633 } 2634 2635 /** 2636 * ice_vsi_setup - Set up a VSI by a given type 2637 * @pf: board private structure 2638 * @params: parameters to use when creating the VSI 2639 * 2640 * This allocates the sw VSI structure and its queue resources. 2641 * 2642 * Returns pointer to the successfully allocated and configured VSI sw struct on 2643 * success, NULL on failure. 2644 */ 2645 struct ice_vsi * 2646 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2647 { 2648 struct device *dev = ice_pf_to_dev(pf); 2649 struct ice_vsi *vsi; 2650 int ret; 2651 2652 /* ice_vsi_setup can only initialize a new VSI, and we must have 2653 * a port_info structure for it. 2654 */ 2655 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2656 WARN_ON(!params->pi)) 2657 return NULL; 2658 2659 vsi = ice_vsi_alloc(pf); 2660 if (!vsi) { 2661 dev_err(dev, "could not allocate VSI\n"); 2662 return NULL; 2663 } 2664 2665 ret = ice_vsi_cfg(vsi, params); 2666 if (ret) 2667 goto err_vsi_cfg; 2668 2669 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2670 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2671 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2672 * The rule is added once for PF VSI in order to create appropriate 2673 * recipe, since VSI/VSI list is ignored with drop action... 2674 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2675 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2676 * settings in the HW. 2677 */ 2678 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2679 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2680 ICE_DROP_PACKET); 2681 ice_cfg_sw_lldp(vsi, true, true); 2682 } 2683 2684 if (!vsi->agg_node) 2685 ice_set_agg_vsi(vsi); 2686 2687 return vsi; 2688 2689 err_vsi_cfg: 2690 ice_vsi_free(vsi); 2691 2692 return NULL; 2693 } 2694 2695 /** 2696 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2697 * @vsi: the VSI being cleaned up 2698 */ 2699 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2700 { 2701 struct ice_pf *pf = vsi->back; 2702 struct ice_hw *hw = &pf->hw; 2703 u32 txq = 0; 2704 u32 rxq = 0; 2705 int i, q; 2706 2707 ice_for_each_q_vector(vsi, i) { 2708 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2709 2710 ice_write_intrl(q_vector, 0); 2711 for (q = 0; q < q_vector->num_ring_tx; q++) { 2712 ice_write_itr(&q_vector->tx, 0); 2713 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2714 if (ice_is_xdp_ena_vsi(vsi)) { 2715 u32 xdp_txq = txq + vsi->num_xdp_txq; 2716 2717 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2718 } 2719 txq++; 2720 } 2721 2722 for (q = 0; q < q_vector->num_ring_rx; q++) { 2723 ice_write_itr(&q_vector->rx, 0); 2724 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2725 rxq++; 2726 } 2727 } 2728 2729 ice_flush(hw); 2730 } 2731 2732 /** 2733 * ice_vsi_free_irq - Free the IRQ association with the OS 2734 * @vsi: the VSI being configured 2735 */ 2736 void ice_vsi_free_irq(struct ice_vsi *vsi) 2737 { 2738 struct ice_pf *pf = vsi->back; 2739 int i; 2740 2741 if (!vsi->q_vectors || !vsi->irqs_ready) 2742 return; 2743 2744 ice_vsi_release_msix(vsi); 2745 if (vsi->type == ICE_VSI_VF) 2746 return; 2747 2748 vsi->irqs_ready = false; 2749 ice_free_cpu_rx_rmap(vsi); 2750 2751 ice_for_each_q_vector(vsi, i) { 2752 int irq_num; 2753 2754 irq_num = vsi->q_vectors[i]->irq.virq; 2755 2756 /* free only the irqs that were actually requested */ 2757 if (!vsi->q_vectors[i] || 2758 !(vsi->q_vectors[i]->num_ring_tx || 2759 vsi->q_vectors[i]->num_ring_rx)) 2760 continue; 2761 2762 /* clear the affinity notifier in the IRQ descriptor */ 2763 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2764 irq_set_affinity_notifier(irq_num, NULL); 2765 2766 /* clear the affinity_mask in the IRQ descriptor */ 2767 irq_set_affinity_hint(irq_num, NULL); 2768 synchronize_irq(irq_num); 2769 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2770 } 2771 } 2772 2773 /** 2774 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2775 * @vsi: the VSI having resources freed 2776 */ 2777 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2778 { 2779 int i; 2780 2781 if (!vsi->tx_rings) 2782 return; 2783 2784 ice_for_each_txq(vsi, i) 2785 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2786 ice_free_tx_ring(vsi->tx_rings[i]); 2787 } 2788 2789 /** 2790 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2791 * @vsi: the VSI having resources freed 2792 */ 2793 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2794 { 2795 int i; 2796 2797 if (!vsi->rx_rings) 2798 return; 2799 2800 ice_for_each_rxq(vsi, i) 2801 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2802 ice_free_rx_ring(vsi->rx_rings[i]); 2803 } 2804 2805 /** 2806 * ice_vsi_close - Shut down a VSI 2807 * @vsi: the VSI being shut down 2808 */ 2809 void ice_vsi_close(struct ice_vsi *vsi) 2810 { 2811 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2812 ice_down(vsi); 2813 2814 ice_vsi_free_irq(vsi); 2815 ice_vsi_free_tx_rings(vsi); 2816 ice_vsi_free_rx_rings(vsi); 2817 } 2818 2819 /** 2820 * ice_ena_vsi - resume a VSI 2821 * @vsi: the VSI being resume 2822 * @locked: is the rtnl_lock already held 2823 */ 2824 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2825 { 2826 int err = 0; 2827 2828 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2829 return 0; 2830 2831 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2832 2833 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2834 if (netif_running(vsi->netdev)) { 2835 if (!locked) 2836 rtnl_lock(); 2837 2838 err = ice_open_internal(vsi->netdev); 2839 2840 if (!locked) 2841 rtnl_unlock(); 2842 } 2843 } else if (vsi->type == ICE_VSI_CTRL) { 2844 err = ice_vsi_open_ctrl(vsi); 2845 } 2846 2847 return err; 2848 } 2849 2850 /** 2851 * ice_dis_vsi - pause a VSI 2852 * @vsi: the VSI being paused 2853 * @locked: is the rtnl_lock already held 2854 */ 2855 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2856 { 2857 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2858 return; 2859 2860 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2861 2862 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2863 if (netif_running(vsi->netdev)) { 2864 if (!locked) 2865 rtnl_lock(); 2866 2867 ice_vsi_close(vsi); 2868 2869 if (!locked) 2870 rtnl_unlock(); 2871 } else { 2872 ice_vsi_close(vsi); 2873 } 2874 } else if (vsi->type == ICE_VSI_CTRL || 2875 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2876 ice_vsi_close(vsi); 2877 } 2878 } 2879 2880 /** 2881 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2882 * @vsi: the VSI being un-configured 2883 */ 2884 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2885 { 2886 struct ice_pf *pf = vsi->back; 2887 struct ice_hw *hw = &pf->hw; 2888 u32 val; 2889 int i; 2890 2891 /* disable interrupt causation from each queue */ 2892 if (vsi->tx_rings) { 2893 ice_for_each_txq(vsi, i) { 2894 if (vsi->tx_rings[i]) { 2895 u16 reg; 2896 2897 reg = vsi->tx_rings[i]->reg_idx; 2898 val = rd32(hw, QINT_TQCTL(reg)); 2899 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2900 wr32(hw, QINT_TQCTL(reg), val); 2901 } 2902 } 2903 } 2904 2905 if (vsi->rx_rings) { 2906 ice_for_each_rxq(vsi, i) { 2907 if (vsi->rx_rings[i]) { 2908 u16 reg; 2909 2910 reg = vsi->rx_rings[i]->reg_idx; 2911 val = rd32(hw, QINT_RQCTL(reg)); 2912 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2913 wr32(hw, QINT_RQCTL(reg), val); 2914 } 2915 } 2916 } 2917 2918 /* disable each interrupt */ 2919 ice_for_each_q_vector(vsi, i) { 2920 if (!vsi->q_vectors[i]) 2921 continue; 2922 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2923 } 2924 2925 ice_flush(hw); 2926 2927 /* don't call synchronize_irq() for VF's from the host */ 2928 if (vsi->type == ICE_VSI_VF) 2929 return; 2930 2931 ice_for_each_q_vector(vsi, i) 2932 synchronize_irq(vsi->q_vectors[i]->irq.virq); 2933 } 2934 2935 /** 2936 * ice_vsi_release - Delete a VSI and free its resources 2937 * @vsi: the VSI being removed 2938 * 2939 * Returns 0 on success or < 0 on error 2940 */ 2941 int ice_vsi_release(struct ice_vsi *vsi) 2942 { 2943 struct ice_pf *pf; 2944 2945 if (!vsi->back) 2946 return -ENODEV; 2947 pf = vsi->back; 2948 2949 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2950 ice_rss_clean(vsi); 2951 2952 ice_vsi_close(vsi); 2953 ice_vsi_decfg(vsi); 2954 2955 /* retain SW VSI data structure since it is needed to unregister and 2956 * free VSI netdev when PF is not in reset recovery pending state,\ 2957 * for ex: during rmmod. 2958 */ 2959 if (!ice_is_reset_in_progress(pf->state)) 2960 ice_vsi_delete(vsi); 2961 2962 return 0; 2963 } 2964 2965 /** 2966 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2967 * @vsi: VSI connected with q_vectors 2968 * @coalesce: array of struct with stored coalesce 2969 * 2970 * Returns array size. 2971 */ 2972 static int 2973 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2974 struct ice_coalesce_stored *coalesce) 2975 { 2976 int i; 2977 2978 ice_for_each_q_vector(vsi, i) { 2979 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2980 2981 coalesce[i].itr_tx = q_vector->tx.itr_settings; 2982 coalesce[i].itr_rx = q_vector->rx.itr_settings; 2983 coalesce[i].intrl = q_vector->intrl; 2984 2985 if (i < vsi->num_txq) 2986 coalesce[i].tx_valid = true; 2987 if (i < vsi->num_rxq) 2988 coalesce[i].rx_valid = true; 2989 } 2990 2991 return vsi->num_q_vectors; 2992 } 2993 2994 /** 2995 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2996 * @vsi: VSI connected with q_vectors 2997 * @coalesce: pointer to array of struct with stored coalesce 2998 * @size: size of coalesce array 2999 * 3000 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3001 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3002 * to default value. 3003 */ 3004 static void 3005 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3006 struct ice_coalesce_stored *coalesce, int size) 3007 { 3008 struct ice_ring_container *rc; 3009 int i; 3010 3011 if ((size && !coalesce) || !vsi) 3012 return; 3013 3014 /* There are a couple of cases that have to be handled here: 3015 * 1. The case where the number of queue vectors stays the same, but 3016 * the number of Tx or Rx rings changes (the first for loop) 3017 * 2. The case where the number of queue vectors increased (the 3018 * second for loop) 3019 */ 3020 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3021 /* There are 2 cases to handle here and they are the same for 3022 * both Tx and Rx: 3023 * if the entry was valid previously (coalesce[i].[tr]x_valid 3024 * and the loop variable is less than the number of rings 3025 * allocated, then write the previous values 3026 * 3027 * if the entry was not valid previously, but the number of 3028 * rings is less than are allocated (this means the number of 3029 * rings increased from previously), then write out the 3030 * values in the first element 3031 * 3032 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3033 * as there is no harm because the dynamic algorithm 3034 * will just overwrite. 3035 */ 3036 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3037 rc = &vsi->q_vectors[i]->rx; 3038 rc->itr_settings = coalesce[i].itr_rx; 3039 ice_write_itr(rc, rc->itr_setting); 3040 } else if (i < vsi->alloc_rxq) { 3041 rc = &vsi->q_vectors[i]->rx; 3042 rc->itr_settings = coalesce[0].itr_rx; 3043 ice_write_itr(rc, rc->itr_setting); 3044 } 3045 3046 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3047 rc = &vsi->q_vectors[i]->tx; 3048 rc->itr_settings = coalesce[i].itr_tx; 3049 ice_write_itr(rc, rc->itr_setting); 3050 } else if (i < vsi->alloc_txq) { 3051 rc = &vsi->q_vectors[i]->tx; 3052 rc->itr_settings = coalesce[0].itr_tx; 3053 ice_write_itr(rc, rc->itr_setting); 3054 } 3055 3056 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3057 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3058 } 3059 3060 /* the number of queue vectors increased so write whatever is in 3061 * the first element 3062 */ 3063 for (; i < vsi->num_q_vectors; i++) { 3064 /* transmit */ 3065 rc = &vsi->q_vectors[i]->tx; 3066 rc->itr_settings = coalesce[0].itr_tx; 3067 ice_write_itr(rc, rc->itr_setting); 3068 3069 /* receive */ 3070 rc = &vsi->q_vectors[i]->rx; 3071 rc->itr_settings = coalesce[0].itr_rx; 3072 ice_write_itr(rc, rc->itr_setting); 3073 3074 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3075 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3076 } 3077 } 3078 3079 /** 3080 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 3081 * @vsi: VSI pointer 3082 */ 3083 static int 3084 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 3085 { 3086 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 3087 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 3088 struct ice_ring_stats **tx_ring_stats; 3089 struct ice_ring_stats **rx_ring_stats; 3090 struct ice_vsi_stats *vsi_stat; 3091 struct ice_pf *pf = vsi->back; 3092 u16 prev_txq = vsi->alloc_txq; 3093 u16 prev_rxq = vsi->alloc_rxq; 3094 int i; 3095 3096 vsi_stat = pf->vsi_stats[vsi->idx]; 3097 3098 if (req_txq < prev_txq) { 3099 for (i = req_txq; i < prev_txq; i++) { 3100 if (vsi_stat->tx_ring_stats[i]) { 3101 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3102 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3103 } 3104 } 3105 } 3106 3107 tx_ring_stats = vsi_stat->tx_ring_stats; 3108 vsi_stat->tx_ring_stats = 3109 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 3110 sizeof(*vsi_stat->tx_ring_stats), 3111 GFP_KERNEL | __GFP_ZERO); 3112 if (!vsi_stat->tx_ring_stats) { 3113 vsi_stat->tx_ring_stats = tx_ring_stats; 3114 return -ENOMEM; 3115 } 3116 3117 if (req_rxq < prev_rxq) { 3118 for (i = req_rxq; i < prev_rxq; i++) { 3119 if (vsi_stat->rx_ring_stats[i]) { 3120 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3121 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3122 } 3123 } 3124 } 3125 3126 rx_ring_stats = vsi_stat->rx_ring_stats; 3127 vsi_stat->rx_ring_stats = 3128 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 3129 sizeof(*vsi_stat->rx_ring_stats), 3130 GFP_KERNEL | __GFP_ZERO); 3131 if (!vsi_stat->rx_ring_stats) { 3132 vsi_stat->rx_ring_stats = rx_ring_stats; 3133 return -ENOMEM; 3134 } 3135 3136 return 0; 3137 } 3138 3139 /** 3140 * ice_vsi_rebuild - Rebuild VSI after reset 3141 * @vsi: VSI to be rebuild 3142 * @vsi_flags: flags used for VSI rebuild flow 3143 * 3144 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3145 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3146 * 3147 * Returns 0 on success and negative value on failure 3148 */ 3149 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3150 { 3151 struct ice_vsi_cfg_params params = {}; 3152 struct ice_coalesce_stored *coalesce; 3153 int prev_num_q_vectors; 3154 struct ice_pf *pf; 3155 int ret; 3156 3157 if (!vsi) 3158 return -EINVAL; 3159 3160 params = ice_vsi_to_params(vsi); 3161 params.flags = vsi_flags; 3162 3163 pf = vsi->back; 3164 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3165 return -EINVAL; 3166 3167 ret = ice_vsi_realloc_stat_arrays(vsi); 3168 if (ret) 3169 goto err_vsi_cfg; 3170 3171 ice_vsi_decfg(vsi); 3172 ret = ice_vsi_cfg_def(vsi, ¶ms); 3173 if (ret) 3174 goto err_vsi_cfg; 3175 3176 coalesce = kcalloc(vsi->num_q_vectors, 3177 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3178 if (!coalesce) 3179 return -ENOMEM; 3180 3181 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3182 3183 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3184 if (ret) { 3185 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3186 ret = -EIO; 3187 goto err_vsi_cfg_tc_lan; 3188 } 3189 3190 kfree(coalesce); 3191 return ice_schedule_reset(pf, ICE_RESET_PFR); 3192 } 3193 3194 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3195 kfree(coalesce); 3196 3197 return 0; 3198 3199 err_vsi_cfg_tc_lan: 3200 ice_vsi_decfg(vsi); 3201 kfree(coalesce); 3202 err_vsi_cfg: 3203 return ret; 3204 } 3205 3206 /** 3207 * ice_is_reset_in_progress - check for a reset in progress 3208 * @state: PF state field 3209 */ 3210 bool ice_is_reset_in_progress(unsigned long *state) 3211 { 3212 return test_bit(ICE_RESET_OICR_RECV, state) || 3213 test_bit(ICE_PFR_REQ, state) || 3214 test_bit(ICE_CORER_REQ, state) || 3215 test_bit(ICE_GLOBR_REQ, state); 3216 } 3217 3218 /** 3219 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3220 * @pf: pointer to the PF structure 3221 * @timeout: length of time to wait, in jiffies 3222 * 3223 * Wait (sleep) for a short time until the driver finishes cleaning up from 3224 * a device reset. The caller must be able to sleep. Use this to delay 3225 * operations that could fail while the driver is cleaning up after a device 3226 * reset. 3227 * 3228 * Returns 0 on success, -EBUSY if the reset is not finished within the 3229 * timeout, and -ERESTARTSYS if the thread was interrupted. 3230 */ 3231 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3232 { 3233 long ret; 3234 3235 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3236 !ice_is_reset_in_progress(pf->state), 3237 timeout); 3238 if (ret < 0) 3239 return ret; 3240 else if (!ret) 3241 return -EBUSY; 3242 else 3243 return 0; 3244 } 3245 3246 /** 3247 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3248 * @vsi: VSI being configured 3249 * @ctx: the context buffer returned from AQ VSI update command 3250 */ 3251 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3252 { 3253 vsi->info.mapping_flags = ctx->info.mapping_flags; 3254 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3255 sizeof(vsi->info.q_mapping)); 3256 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3257 sizeof(vsi->info.tc_mapping)); 3258 } 3259 3260 /** 3261 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3262 * @vsi: the VSI being configured 3263 * @ena_tc: TC map to be enabled 3264 */ 3265 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3266 { 3267 struct net_device *netdev = vsi->netdev; 3268 struct ice_pf *pf = vsi->back; 3269 int numtc = vsi->tc_cfg.numtc; 3270 struct ice_dcbx_cfg *dcbcfg; 3271 u8 netdev_tc; 3272 int i; 3273 3274 if (!netdev) 3275 return; 3276 3277 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3278 if (vsi->type == ICE_VSI_CHNL) 3279 return; 3280 3281 if (!ena_tc) { 3282 netdev_reset_tc(netdev); 3283 return; 3284 } 3285 3286 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3287 numtc = vsi->all_numtc; 3288 3289 if (netdev_set_num_tc(netdev, numtc)) 3290 return; 3291 3292 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3293 3294 ice_for_each_traffic_class(i) 3295 if (vsi->tc_cfg.ena_tc & BIT(i)) 3296 netdev_set_tc_queue(netdev, 3297 vsi->tc_cfg.tc_info[i].netdev_tc, 3298 vsi->tc_cfg.tc_info[i].qcount_tx, 3299 vsi->tc_cfg.tc_info[i].qoffset); 3300 /* setup TC queue map for CHNL TCs */ 3301 ice_for_each_chnl_tc(i) { 3302 if (!(vsi->all_enatc & BIT(i))) 3303 break; 3304 if (!vsi->mqprio_qopt.qopt.count[i]) 3305 break; 3306 netdev_set_tc_queue(netdev, i, 3307 vsi->mqprio_qopt.qopt.count[i], 3308 vsi->mqprio_qopt.qopt.offset[i]); 3309 } 3310 3311 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3312 return; 3313 3314 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3315 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3316 3317 /* Get the mapped netdev TC# for the UP */ 3318 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3319 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3320 } 3321 } 3322 3323 /** 3324 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3325 * @vsi: the VSI being configured, 3326 * @ctxt: VSI context structure 3327 * @ena_tc: number of traffic classes to enable 3328 * 3329 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3330 */ 3331 static int 3332 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3333 u8 ena_tc) 3334 { 3335 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3336 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3337 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3338 u16 new_txq, new_rxq; 3339 u8 netdev_tc = 0; 3340 int i; 3341 3342 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3343 3344 pow = order_base_2(tc0_qcount); 3345 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3346 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3347 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3348 3349 ice_for_each_traffic_class(i) { 3350 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3351 /* TC is not enabled */ 3352 vsi->tc_cfg.tc_info[i].qoffset = 0; 3353 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3354 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3355 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3356 ctxt->info.tc_mapping[i] = 0; 3357 continue; 3358 } 3359 3360 offset = vsi->mqprio_qopt.qopt.offset[i]; 3361 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3362 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3363 vsi->tc_cfg.tc_info[i].qoffset = offset; 3364 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3365 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3366 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3367 } 3368 3369 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3370 ice_for_each_chnl_tc(i) { 3371 if (!(vsi->all_enatc & BIT(i))) 3372 continue; 3373 offset = vsi->mqprio_qopt.qopt.offset[i]; 3374 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3375 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3376 } 3377 } 3378 3379 new_txq = offset + qcount_tx; 3380 if (new_txq > vsi->alloc_txq) { 3381 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3382 new_txq, vsi->alloc_txq); 3383 return -EINVAL; 3384 } 3385 3386 new_rxq = offset + qcount_rx; 3387 if (new_rxq > vsi->alloc_rxq) { 3388 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3389 new_rxq, vsi->alloc_rxq); 3390 return -EINVAL; 3391 } 3392 3393 /* Set actual Tx/Rx queue pairs */ 3394 vsi->num_txq = new_txq; 3395 vsi->num_rxq = new_rxq; 3396 3397 /* Setup queue TC[0].qmap for given VSI context */ 3398 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3399 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3400 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3401 3402 /* Find queue count available for channel VSIs and starting offset 3403 * for channel VSIs 3404 */ 3405 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3406 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3407 vsi->next_base_q = tc0_qcount; 3408 } 3409 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3410 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3411 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3412 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3413 3414 return 0; 3415 } 3416 3417 /** 3418 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3419 * @vsi: VSI to be configured 3420 * @ena_tc: TC bitmap 3421 * 3422 * VSI queues expected to be quiesced before calling this function 3423 */ 3424 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3425 { 3426 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3427 struct ice_pf *pf = vsi->back; 3428 struct ice_tc_cfg old_tc_cfg; 3429 struct ice_vsi_ctx *ctx; 3430 struct device *dev; 3431 int i, ret = 0; 3432 u8 num_tc = 0; 3433 3434 dev = ice_pf_to_dev(pf); 3435 if (vsi->tc_cfg.ena_tc == ena_tc && 3436 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3437 return 0; 3438 3439 ice_for_each_traffic_class(i) { 3440 /* build bitmap of enabled TCs */ 3441 if (ena_tc & BIT(i)) 3442 num_tc++; 3443 /* populate max_txqs per TC */ 3444 max_txqs[i] = vsi->alloc_txq; 3445 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3446 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3447 */ 3448 if (vsi->type == ICE_VSI_CHNL && 3449 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3450 max_txqs[i] = vsi->num_txq; 3451 } 3452 3453 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3454 vsi->tc_cfg.ena_tc = ena_tc; 3455 vsi->tc_cfg.numtc = num_tc; 3456 3457 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3458 if (!ctx) 3459 return -ENOMEM; 3460 3461 ctx->vf_num = 0; 3462 ctx->info = vsi->info; 3463 3464 if (vsi->type == ICE_VSI_PF && 3465 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3466 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3467 else 3468 ret = ice_vsi_setup_q_map(vsi, ctx); 3469 3470 if (ret) { 3471 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3472 goto out; 3473 } 3474 3475 /* must to indicate which section of VSI context are being modified */ 3476 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3477 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3478 if (ret) { 3479 dev_info(dev, "Failed VSI Update\n"); 3480 goto out; 3481 } 3482 3483 if (vsi->type == ICE_VSI_PF && 3484 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3485 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3486 else 3487 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3488 vsi->tc_cfg.ena_tc, max_txqs); 3489 3490 if (ret) { 3491 dev_err(dev, "VSI %d failed TC config, error %d\n", 3492 vsi->vsi_num, ret); 3493 goto out; 3494 } 3495 ice_vsi_update_q_map(vsi, ctx); 3496 vsi->info.valid_sections = 0; 3497 3498 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3499 out: 3500 kfree(ctx); 3501 return ret; 3502 } 3503 3504 /** 3505 * ice_update_ring_stats - Update ring statistics 3506 * @stats: stats to be updated 3507 * @pkts: number of processed packets 3508 * @bytes: number of processed bytes 3509 * 3510 * This function assumes that caller has acquired a u64_stats_sync lock. 3511 */ 3512 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3513 { 3514 stats->bytes += bytes; 3515 stats->pkts += pkts; 3516 } 3517 3518 /** 3519 * ice_update_tx_ring_stats - Update Tx ring specific counters 3520 * @tx_ring: ring to update 3521 * @pkts: number of processed packets 3522 * @bytes: number of processed bytes 3523 */ 3524 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3525 { 3526 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3527 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3528 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3529 } 3530 3531 /** 3532 * ice_update_rx_ring_stats - Update Rx ring specific counters 3533 * @rx_ring: ring to update 3534 * @pkts: number of processed packets 3535 * @bytes: number of processed bytes 3536 */ 3537 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3538 { 3539 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3540 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3541 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3542 } 3543 3544 /** 3545 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3546 * @pi: port info of the switch with default VSI 3547 * 3548 * Return true if the there is a single VSI in default forwarding VSI list 3549 */ 3550 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3551 { 3552 bool exists = false; 3553 3554 ice_check_if_dflt_vsi(pi, 0, &exists); 3555 return exists; 3556 } 3557 3558 /** 3559 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3560 * @vsi: VSI to compare against default forwarding VSI 3561 * 3562 * If this VSI passed in is the default forwarding VSI then return true, else 3563 * return false 3564 */ 3565 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3566 { 3567 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3568 } 3569 3570 /** 3571 * ice_set_dflt_vsi - set the default forwarding VSI 3572 * @vsi: VSI getting set as the default forwarding VSI on the switch 3573 * 3574 * If the VSI passed in is already the default VSI and it's enabled just return 3575 * success. 3576 * 3577 * Otherwise try to set the VSI passed in as the switch's default VSI and 3578 * return the result. 3579 */ 3580 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3581 { 3582 struct device *dev; 3583 int status; 3584 3585 if (!vsi) 3586 return -EINVAL; 3587 3588 dev = ice_pf_to_dev(vsi->back); 3589 3590 if (ice_lag_is_switchdev_running(vsi->back)) { 3591 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3592 vsi->vsi_num); 3593 return 0; 3594 } 3595 3596 /* the VSI passed in is already the default VSI */ 3597 if (ice_is_vsi_dflt_vsi(vsi)) { 3598 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3599 vsi->vsi_num); 3600 return 0; 3601 } 3602 3603 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3604 if (status) { 3605 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3606 vsi->vsi_num, status); 3607 return status; 3608 } 3609 3610 return 0; 3611 } 3612 3613 /** 3614 * ice_clear_dflt_vsi - clear the default forwarding VSI 3615 * @vsi: VSI to remove from filter list 3616 * 3617 * If the switch has no default VSI or it's not enabled then return error. 3618 * 3619 * Otherwise try to clear the default VSI and return the result. 3620 */ 3621 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3622 { 3623 struct device *dev; 3624 int status; 3625 3626 if (!vsi) 3627 return -EINVAL; 3628 3629 dev = ice_pf_to_dev(vsi->back); 3630 3631 /* there is no default VSI configured */ 3632 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3633 return -ENODEV; 3634 3635 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3636 ICE_FLTR_RX); 3637 if (status) { 3638 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3639 vsi->vsi_num, status); 3640 return -EIO; 3641 } 3642 3643 return 0; 3644 } 3645 3646 /** 3647 * ice_get_link_speed_mbps - get link speed in Mbps 3648 * @vsi: the VSI whose link speed is being queried 3649 * 3650 * Return current VSI link speed and 0 if the speed is unknown. 3651 */ 3652 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3653 { 3654 unsigned int link_speed; 3655 3656 link_speed = vsi->port_info->phy.link_info.link_speed; 3657 3658 return (int)ice_get_link_speed(fls(link_speed) - 1); 3659 } 3660 3661 /** 3662 * ice_get_link_speed_kbps - get link speed in Kbps 3663 * @vsi: the VSI whose link speed is being queried 3664 * 3665 * Return current VSI link speed and 0 if the speed is unknown. 3666 */ 3667 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3668 { 3669 int speed_mbps; 3670 3671 speed_mbps = ice_get_link_speed_mbps(vsi); 3672 3673 return speed_mbps * 1000; 3674 } 3675 3676 /** 3677 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3678 * @vsi: VSI to be configured 3679 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3680 * 3681 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3682 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3683 * on TC 0. 3684 */ 3685 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3686 { 3687 struct ice_pf *pf = vsi->back; 3688 struct device *dev; 3689 int status; 3690 int speed; 3691 3692 dev = ice_pf_to_dev(pf); 3693 if (!vsi->port_info) { 3694 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3695 vsi->idx, vsi->type); 3696 return -EINVAL; 3697 } 3698 3699 speed = ice_get_link_speed_kbps(vsi); 3700 if (min_tx_rate > (u64)speed) { 3701 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3702 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3703 speed); 3704 return -EINVAL; 3705 } 3706 3707 /* Configure min BW for VSI limit */ 3708 if (min_tx_rate) { 3709 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3710 ICE_MIN_BW, min_tx_rate); 3711 if (status) { 3712 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3713 min_tx_rate, ice_vsi_type_str(vsi->type), 3714 vsi->idx); 3715 return status; 3716 } 3717 3718 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3719 min_tx_rate, ice_vsi_type_str(vsi->type)); 3720 } else { 3721 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3722 vsi->idx, 0, 3723 ICE_MIN_BW); 3724 if (status) { 3725 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3726 ice_vsi_type_str(vsi->type), vsi->idx); 3727 return status; 3728 } 3729 3730 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3731 ice_vsi_type_str(vsi->type), vsi->idx); 3732 } 3733 3734 return 0; 3735 } 3736 3737 /** 3738 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3739 * @vsi: VSI to be configured 3740 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3741 * 3742 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3743 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3744 * on TC 0. 3745 */ 3746 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3747 { 3748 struct ice_pf *pf = vsi->back; 3749 struct device *dev; 3750 int status; 3751 int speed; 3752 3753 dev = ice_pf_to_dev(pf); 3754 if (!vsi->port_info) { 3755 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3756 vsi->idx, vsi->type); 3757 return -EINVAL; 3758 } 3759 3760 speed = ice_get_link_speed_kbps(vsi); 3761 if (max_tx_rate > (u64)speed) { 3762 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3763 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3764 speed); 3765 return -EINVAL; 3766 } 3767 3768 /* Configure max BW for VSI limit */ 3769 if (max_tx_rate) { 3770 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3771 ICE_MAX_BW, max_tx_rate); 3772 if (status) { 3773 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3774 max_tx_rate, ice_vsi_type_str(vsi->type), 3775 vsi->idx); 3776 return status; 3777 } 3778 3779 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3780 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3781 } else { 3782 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3783 vsi->idx, 0, 3784 ICE_MAX_BW); 3785 if (status) { 3786 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3787 ice_vsi_type_str(vsi->type), vsi->idx); 3788 return status; 3789 } 3790 3791 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3792 ice_vsi_type_str(vsi->type), vsi->idx); 3793 } 3794 3795 return 0; 3796 } 3797 3798 /** 3799 * ice_set_link - turn on/off physical link 3800 * @vsi: VSI to modify physical link on 3801 * @ena: turn on/off physical link 3802 */ 3803 int ice_set_link(struct ice_vsi *vsi, bool ena) 3804 { 3805 struct device *dev = ice_pf_to_dev(vsi->back); 3806 struct ice_port_info *pi = vsi->port_info; 3807 struct ice_hw *hw = pi->hw; 3808 int status; 3809 3810 if (vsi->type != ICE_VSI_PF) 3811 return -EINVAL; 3812 3813 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3814 3815 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3816 * this is not a fatal error, so print a warning message and return 3817 * a success code. Return an error if FW returns an error code other 3818 * than ICE_AQ_RC_EMODE 3819 */ 3820 if (status == -EIO) { 3821 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3822 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3823 (ena ? "ON" : "OFF"), status, 3824 ice_aq_str(hw->adminq.sq_last_status)); 3825 } else if (status) { 3826 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3827 (ena ? "ON" : "OFF"), status, 3828 ice_aq_str(hw->adminq.sq_last_status)); 3829 return status; 3830 } 3831 3832 return 0; 3833 } 3834 3835 /** 3836 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3837 * @vsi: VSI used to add VLAN filters 3838 * 3839 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3840 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3841 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3842 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3843 * 3844 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3845 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3846 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3847 * 3848 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3849 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3850 * part of filtering. 3851 */ 3852 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3853 { 3854 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3855 struct ice_vlan vlan; 3856 int err; 3857 3858 vlan = ICE_VLAN(0, 0, 0); 3859 err = vlan_ops->add_vlan(vsi, &vlan); 3860 if (err && err != -EEXIST) 3861 return err; 3862 3863 /* in SVM both VLAN 0 filters are identical */ 3864 if (!ice_is_dvm_ena(&vsi->back->hw)) 3865 return 0; 3866 3867 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3868 err = vlan_ops->add_vlan(vsi, &vlan); 3869 if (err && err != -EEXIST) 3870 return err; 3871 3872 return 0; 3873 } 3874 3875 /** 3876 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3877 * @vsi: VSI used to add VLAN filters 3878 * 3879 * Delete the VLAN 0 filters in the same manner that they were added in 3880 * ice_vsi_add_vlan_zero. 3881 */ 3882 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3883 { 3884 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3885 struct ice_vlan vlan; 3886 int err; 3887 3888 vlan = ICE_VLAN(0, 0, 0); 3889 err = vlan_ops->del_vlan(vsi, &vlan); 3890 if (err && err != -EEXIST) 3891 return err; 3892 3893 /* in SVM both VLAN 0 filters are identical */ 3894 if (!ice_is_dvm_ena(&vsi->back->hw)) 3895 return 0; 3896 3897 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3898 err = vlan_ops->del_vlan(vsi, &vlan); 3899 if (err && err != -EEXIST) 3900 return err; 3901 3902 /* when deleting the last VLAN filter, make sure to disable the VLAN 3903 * promisc mode so the filter isn't left by accident 3904 */ 3905 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3906 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3907 } 3908 3909 /** 3910 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3911 * @vsi: VSI used to get the VLAN mode 3912 * 3913 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3914 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3915 */ 3916 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3917 { 3918 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3919 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3920 /* no VLAN 0 filter is created when a port VLAN is active */ 3921 if (vsi->type == ICE_VSI_VF) { 3922 if (WARN_ON(!vsi->vf)) 3923 return 0; 3924 3925 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3926 return 0; 3927 } 3928 3929 if (ice_is_dvm_ena(&vsi->back->hw)) 3930 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3931 else 3932 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3933 } 3934 3935 /** 3936 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3937 * @vsi: VSI used to determine if any non-zero VLANs have been added 3938 */ 3939 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3940 { 3941 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3942 } 3943 3944 /** 3945 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3946 * @vsi: VSI used to get the number of non-zero VLANs added 3947 */ 3948 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3949 { 3950 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3951 } 3952 3953 /** 3954 * ice_is_feature_supported 3955 * @pf: pointer to the struct ice_pf instance 3956 * @f: feature enum to be checked 3957 * 3958 * returns true if feature is supported, false otherwise 3959 */ 3960 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3961 { 3962 if (f < 0 || f >= ICE_F_MAX) 3963 return false; 3964 3965 return test_bit(f, pf->features); 3966 } 3967 3968 /** 3969 * ice_set_feature_support 3970 * @pf: pointer to the struct ice_pf instance 3971 * @f: feature enum to set 3972 */ 3973 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3974 { 3975 if (f < 0 || f >= ICE_F_MAX) 3976 return; 3977 3978 set_bit(f, pf->features); 3979 } 3980 3981 /** 3982 * ice_clear_feature_support 3983 * @pf: pointer to the struct ice_pf instance 3984 * @f: feature enum to clear 3985 */ 3986 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 3987 { 3988 if (f < 0 || f >= ICE_F_MAX) 3989 return; 3990 3991 clear_bit(f, pf->features); 3992 } 3993 3994 /** 3995 * ice_init_feature_support 3996 * @pf: pointer to the struct ice_pf instance 3997 * 3998 * called during init to setup supported feature 3999 */ 4000 void ice_init_feature_support(struct ice_pf *pf) 4001 { 4002 switch (pf->hw.device_id) { 4003 case ICE_DEV_ID_E810C_BACKPLANE: 4004 case ICE_DEV_ID_E810C_QSFP: 4005 case ICE_DEV_ID_E810C_SFP: 4006 ice_set_feature_support(pf, ICE_F_DSCP); 4007 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4008 if (ice_is_e810t(&pf->hw)) { 4009 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4010 if (ice_gnss_is_gps_present(&pf->hw)) 4011 ice_set_feature_support(pf, ICE_F_GNSS); 4012 } 4013 break; 4014 default: 4015 break; 4016 } 4017 } 4018 4019 /** 4020 * ice_vsi_update_security - update security block in VSI 4021 * @vsi: pointer to VSI structure 4022 * @fill: function pointer to fill ctx 4023 */ 4024 int 4025 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4026 { 4027 struct ice_vsi_ctx ctx = { 0 }; 4028 4029 ctx.info = vsi->info; 4030 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4031 fill(&ctx); 4032 4033 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4034 return -ENODEV; 4035 4036 vsi->info = ctx.info; 4037 return 0; 4038 } 4039 4040 /** 4041 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4042 * @ctx: pointer to VSI ctx structure 4043 */ 4044 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4045 { 4046 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4047 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4048 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4049 } 4050 4051 /** 4052 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4053 * @ctx: pointer to VSI ctx structure 4054 */ 4055 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4056 { 4057 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4058 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4059 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4060 } 4061 4062 /** 4063 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4064 * @ctx: pointer to VSI ctx structure 4065 */ 4066 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4067 { 4068 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4069 } 4070 4071 /** 4072 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4073 * @ctx: pointer to VSI ctx structure 4074 */ 4075 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4076 { 4077 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4078 } 4079 4080 /** 4081 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4082 * @vsi: pointer to VSI structure 4083 * @set: set or unset the bit 4084 */ 4085 int 4086 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4087 { 4088 struct ice_vsi_ctx ctx = { 4089 .info = vsi->info, 4090 }; 4091 4092 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4093 if (set) 4094 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4095 else 4096 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4097 4098 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4099 return -ENODEV; 4100 4101 vsi->info = ctx.info; 4102 return 0; 4103 } 4104