1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete_from_hw - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ice_fltr_remove_all(vsi);
295 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 	if (!ctxt)
297 		return;
298 
299 	if (vsi->type == ICE_VSI_VF)
300 		ctxt->vf_num = vsi->vf->vf_id;
301 	ctxt->vsi_num = vsi->vsi_num;
302 
303 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304 
305 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 	if (status)
307 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 			vsi->vsi_num, status);
309 
310 	kfree(ctxt);
311 }
312 
313 /**
314  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315  * @vsi: pointer to VSI being cleared
316  */
317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 	struct ice_pf *pf = vsi->back;
320 	struct device *dev;
321 
322 	dev = ice_pf_to_dev(pf);
323 
324 	bitmap_free(vsi->af_xdp_zc_qps);
325 	vsi->af_xdp_zc_qps = NULL;
326 	/* free the ring and vector containers */
327 	devm_kfree(dev, vsi->q_vectors);
328 	vsi->q_vectors = NULL;
329 	devm_kfree(dev, vsi->tx_rings);
330 	vsi->tx_rings = NULL;
331 	devm_kfree(dev, vsi->rx_rings);
332 	vsi->rx_rings = NULL;
333 	devm_kfree(dev, vsi->txq_map);
334 	vsi->txq_map = NULL;
335 	devm_kfree(dev, vsi->rxq_map);
336 	vsi->rxq_map = NULL;
337 }
338 
339 /**
340  * ice_vsi_free_stats - Free the ring statistics structures
341  * @vsi: VSI pointer
342  */
343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 	struct ice_vsi_stats *vsi_stat;
346 	struct ice_pf *pf = vsi->back;
347 	int i;
348 
349 	if (vsi->type == ICE_VSI_CHNL)
350 		return;
351 	if (!pf->vsi_stats)
352 		return;
353 
354 	vsi_stat = pf->vsi_stats[vsi->idx];
355 	if (!vsi_stat)
356 		return;
357 
358 	ice_for_each_alloc_txq(vsi, i) {
359 		if (vsi_stat->tx_ring_stats[i]) {
360 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 		}
363 	}
364 
365 	ice_for_each_alloc_rxq(vsi, i) {
366 		if (vsi_stat->rx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	kfree(vsi_stat->tx_ring_stats);
373 	kfree(vsi_stat->rx_ring_stats);
374 	kfree(vsi_stat);
375 	pf->vsi_stats[vsi->idx] = NULL;
376 }
377 
378 /**
379  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380  * @vsi: VSI which is having stats allocated
381  */
382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 	struct ice_ring_stats **tx_ring_stats;
385 	struct ice_ring_stats **rx_ring_stats;
386 	struct ice_vsi_stats *vsi_stats;
387 	struct ice_pf *pf = vsi->back;
388 	u16 i;
389 
390 	vsi_stats = pf->vsi_stats[vsi->idx];
391 	tx_ring_stats = vsi_stats->tx_ring_stats;
392 	rx_ring_stats = vsi_stats->rx_ring_stats;
393 
394 	/* Allocate Tx ring stats */
395 	ice_for_each_alloc_txq(vsi, i) {
396 		struct ice_ring_stats *ring_stats;
397 		struct ice_tx_ring *ring;
398 
399 		ring = vsi->tx_rings[i];
400 		ring_stats = tx_ring_stats[i];
401 
402 		if (!ring_stats) {
403 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 			if (!ring_stats)
405 				goto err_out;
406 
407 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 		}
409 
410 		ring->ring_stats = ring_stats;
411 	}
412 
413 	/* Allocate Rx ring stats */
414 	ice_for_each_alloc_rxq(vsi, i) {
415 		struct ice_ring_stats *ring_stats;
416 		struct ice_rx_ring *ring;
417 
418 		ring = vsi->rx_rings[i];
419 		ring_stats = rx_ring_stats[i];
420 
421 		if (!ring_stats) {
422 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 			if (!ring_stats)
424 				goto err_out;
425 
426 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 		}
428 
429 		ring->ring_stats = ring_stats;
430 	}
431 
432 	return 0;
433 
434 err_out:
435 	ice_vsi_free_stats(vsi);
436 	return -ENOMEM;
437 }
438 
439 /**
440  * ice_vsi_free - clean up and deallocate the provided VSI
441  * @vsi: pointer to VSI being cleared
442  *
443  * This deallocates the VSI's queue resources, removes it from the PF's
444  * VSI array if necessary, and deallocates the VSI
445  */
446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = NULL;
449 	struct device *dev;
450 
451 	if (!vsi || !vsi->back)
452 		return;
453 
454 	pf = vsi->back;
455 	dev = ice_pf_to_dev(pf);
456 
457 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 		return;
460 	}
461 
462 	mutex_lock(&pf->sw_mutex);
463 	/* updates the PF for this cleared VSI */
464 
465 	pf->vsi[vsi->idx] = NULL;
466 	pf->next_vsi = vsi->idx;
467 
468 	ice_vsi_free_stats(vsi);
469 	ice_vsi_free_arrays(vsi);
470 	mutex_unlock(&pf->sw_mutex);
471 	devm_kfree(dev, vsi);
472 }
473 
474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 	ice_vsi_delete_from_hw(vsi);
477 	ice_vsi_free(vsi);
478 }
479 
480 /**
481  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482  * @irq: interrupt number
483  * @data: pointer to a q_vector
484  */
485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488 
489 	if (!q_vector->tx.tx_ring)
490 		return IRQ_HANDLED;
491 
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * ice_msix_clean_rings - MSIX mode Interrupt Handler
501  * @irq: interrupt number
502  * @data: pointer to a q_vector
503  */
504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507 
508 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 		return IRQ_HANDLED;
510 
511 	q_vector->total_events++;
512 
513 	napi_schedule(&q_vector->napi);
514 
515 	return IRQ_HANDLED;
516 }
517 
518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 	struct ice_pf *pf = q_vector->vsi->back;
522 	struct ice_vf *vf;
523 	unsigned int bkt;
524 
525 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 		return IRQ_HANDLED;
527 
528 	rcu_read_lock();
529 	ice_for_each_vf_rcu(pf, bkt, vf)
530 		napi_schedule(&vf->repr->q_vector->napi);
531 	rcu_read_unlock();
532 
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538  * @vsi: VSI pointer
539  */
540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 	struct ice_vsi_stats *vsi_stat;
543 	struct ice_pf *pf = vsi->back;
544 
545 	if (vsi->type == ICE_VSI_CHNL)
546 		return 0;
547 	if (!pf->vsi_stats)
548 		return -ENOENT;
549 
550 	if (pf->vsi_stats[vsi->idx])
551 	/* realloc will happen in rebuild path */
552 		return 0;
553 
554 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 	if (!vsi_stat)
556 		return -ENOMEM;
557 
558 	vsi_stat->tx_ring_stats =
559 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 			GFP_KERNEL);
561 	if (!vsi_stat->tx_ring_stats)
562 		goto err_alloc_tx;
563 
564 	vsi_stat->rx_ring_stats =
565 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 			GFP_KERNEL);
567 	if (!vsi_stat->rx_ring_stats)
568 		goto err_alloc_rx;
569 
570 	pf->vsi_stats[vsi->idx] = vsi_stat;
571 
572 	return 0;
573 
574 err_alloc_rx:
575 	kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 	kfree(vsi_stat->tx_ring_stats);
578 	kfree(vsi_stat);
579 	pf->vsi_stats[vsi->idx] = NULL;
580 	return -ENOMEM;
581 }
582 
583 /**
584  * ice_vsi_alloc_def - set default values for already allocated VSI
585  * @vsi: ptr to VSI
586  * @ch: ptr to channel
587  */
588 static int
589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 	if (vsi->type != ICE_VSI_CHNL) {
592 		ice_vsi_set_num_qs(vsi);
593 		if (ice_vsi_alloc_arrays(vsi))
594 			return -ENOMEM;
595 	}
596 
597 	switch (vsi->type) {
598 	case ICE_VSI_SWITCHDEV_CTRL:
599 		/* Setup eswitch MSIX irq handler for VSI */
600 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 		break;
602 	case ICE_VSI_PF:
603 		/* Setup default MSIX irq handler for VSI */
604 		vsi->irq_handler = ice_msix_clean_rings;
605 		break;
606 	case ICE_VSI_CTRL:
607 		/* Setup ctrl VSI MSIX irq handler */
608 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 		break;
610 	case ICE_VSI_CHNL:
611 		if (!ch)
612 			return -EINVAL;
613 
614 		vsi->num_rxq = ch->num_rxq;
615 		vsi->num_txq = ch->num_txq;
616 		vsi->next_base_q = ch->base_q;
617 		break;
618 	case ICE_VSI_VF:
619 	case ICE_VSI_LB:
620 		break;
621 	default:
622 		ice_vsi_free_arrays(vsi);
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631  * @pf: board private structure
632  *
633  * Reserves a VSI index from the PF and allocates an empty VSI structure
634  * without a type. The VSI structure must later be initialized by calling
635  * ice_vsi_cfg().
636  *
637  * returns a pointer to a VSI on success, NULL on failure.
638  */
639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 	struct device *dev = ice_pf_to_dev(pf);
642 	struct ice_vsi *vsi = NULL;
643 
644 	/* Need to protect the allocation of the VSIs at the PF level */
645 	mutex_lock(&pf->sw_mutex);
646 
647 	/* If we have already allocated our maximum number of VSIs,
648 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 	 * is available to be populated
650 	 */
651 	if (pf->next_vsi == ICE_NO_VSI) {
652 		dev_dbg(dev, "out of VSI slots!\n");
653 		goto unlock_pf;
654 	}
655 
656 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 	if (!vsi)
658 		goto unlock_pf;
659 
660 	vsi->back = pf;
661 	set_bit(ICE_VSI_DOWN, vsi->state);
662 
663 	/* fill slot and make note of the index */
664 	vsi->idx = pf->next_vsi;
665 	pf->vsi[pf->next_vsi] = vsi;
666 
667 	/* prepare pf->next_vsi for next use */
668 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 					 pf->next_vsi);
670 
671 unlock_pf:
672 	mutex_unlock(&pf->sw_mutex);
673 	return vsi;
674 }
675 
676 /**
677  * ice_alloc_fd_res - Allocate FD resource for a VSI
678  * @vsi: pointer to the ice_vsi
679  *
680  * This allocates the FD resources
681  *
682  * Returns 0 on success, -EPERM on no-op or -EIO on failure
683  */
684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 	struct ice_pf *pf = vsi->back;
687 	u32 g_val, b_val;
688 
689 	/* Flow Director filters are only allocated/assigned to the PF VSI or
690 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 	 * add/delete filters so resources are not allocated to it
692 	 */
693 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 		return -EPERM;
695 
696 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 	      vsi->type == ICE_VSI_CHNL))
698 		return -EPERM;
699 
700 	/* FD filters from guaranteed pool per VSI */
701 	g_val = pf->hw.func_caps.fd_fltr_guar;
702 	if (!g_val)
703 		return -EPERM;
704 
705 	/* FD filters from best effort pool */
706 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 	if (!b_val)
708 		return -EPERM;
709 
710 	/* PF main VSI gets only 64 FD resources from guaranteed pool
711 	 * when ADQ is configured.
712 	 */
713 #define ICE_PF_VSI_GFLTR	64
714 
715 	/* determine FD filter resources per VSI from shared(best effort) and
716 	 * dedicated pool
717 	 */
718 	if (vsi->type == ICE_VSI_PF) {
719 		vsi->num_gfltr = g_val;
720 		/* if MQPRIO is configured, main VSI doesn't get all FD
721 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 		 */
723 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 			if (g_val < ICE_PF_VSI_GFLTR)
725 				return -EPERM;
726 			/* allow bare minimum entries for PF VSI */
727 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 		}
729 
730 		/* each VSI gets same "best_effort" quota */
731 		vsi->num_bfltr = b_val;
732 	} else if (vsi->type == ICE_VSI_VF) {
733 		vsi->num_gfltr = 0;
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else {
738 		struct ice_vsi *main_vsi;
739 		int numtc;
740 
741 		main_vsi = ice_get_main_vsi(pf);
742 		if (!main_vsi)
743 			return -EPERM;
744 
745 		if (!main_vsi->all_numtc)
746 			return -EINVAL;
747 
748 		/* figure out ADQ numtc */
749 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750 
751 		/* only one TC but still asking resources for channels,
752 		 * invalid config
753 		 */
754 		if (numtc < ICE_CHNL_START_TC)
755 			return -EPERM;
756 
757 		g_val -= ICE_PF_VSI_GFLTR;
758 		/* channel VSIs gets equal share from guaranteed pool */
759 		vsi->num_gfltr = g_val / numtc;
760 
761 		/* each VSI gets same "best_effort" quota */
762 		vsi->num_bfltr = b_val;
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ice_vsi_get_qs - Assign queues from PF to VSI
770  * @vsi: the VSI to assign queues to
771  *
772  * Returns 0 on success and a negative value on error
773  */
774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 	struct ice_pf *pf = vsi->back;
777 	struct ice_qs_cfg tx_qs_cfg = {
778 		.qs_mutex = &pf->avail_q_mutex,
779 		.pf_map = pf->avail_txqs,
780 		.pf_map_size = pf->max_pf_txqs,
781 		.q_count = vsi->alloc_txq,
782 		.scatter_count = ICE_MAX_SCATTER_TXQS,
783 		.vsi_map = vsi->txq_map,
784 		.vsi_map_offset = 0,
785 		.mapping_mode = ICE_VSI_MAP_CONTIG
786 	};
787 	struct ice_qs_cfg rx_qs_cfg = {
788 		.qs_mutex = &pf->avail_q_mutex,
789 		.pf_map = pf->avail_rxqs,
790 		.pf_map_size = pf->max_pf_rxqs,
791 		.q_count = vsi->alloc_rxq,
792 		.scatter_count = ICE_MAX_SCATTER_RXQS,
793 		.vsi_map = vsi->rxq_map,
794 		.vsi_map_offset = 0,
795 		.mapping_mode = ICE_VSI_MAP_CONTIG
796 	};
797 	int ret;
798 
799 	if (vsi->type == ICE_VSI_CHNL)
800 		return 0;
801 
802 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 	if (ret)
804 		return ret;
805 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806 
807 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811 
812 	return 0;
813 }
814 
815 /**
816  * ice_vsi_put_qs - Release queues from VSI to PF
817  * @vsi: the VSI that is going to release queues
818  */
819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 	struct ice_pf *pf = vsi->back;
822 	int i;
823 
824 	mutex_lock(&pf->avail_q_mutex);
825 
826 	ice_for_each_alloc_txq(vsi, i) {
827 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 	}
830 
831 	ice_for_each_alloc_rxq(vsi, i) {
832 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	mutex_unlock(&pf->avail_q_mutex);
837 }
838 
839 /**
840  * ice_is_safe_mode
841  * @pf: pointer to the PF struct
842  *
843  * returns true if driver is in safe mode, false otherwise
844  */
845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849 
850 /**
851  * ice_is_rdma_ena
852  * @pf: pointer to the PF struct
853  *
854  * returns true if RDMA is currently supported, false otherwise
855  */
856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860 
861 /**
862  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863  * @vsi: the VSI being cleaned up
864  *
865  * This function deletes RSS input set for all flows that were configured
866  * for this VSI
867  */
868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	int status;
872 
873 	if (ice_is_safe_mode(pf))
874 		return;
875 
876 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 	if (status)
878 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 			vsi->vsi_num, status);
880 }
881 
882 /**
883  * ice_rss_clean - Delete RSS related VSI structures and configuration
884  * @vsi: the VSI being removed
885  */
886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 	struct ice_pf *pf = vsi->back;
889 	struct device *dev;
890 
891 	dev = ice_pf_to_dev(pf);
892 
893 	devm_kfree(dev, vsi->rss_hkey_user);
894 	devm_kfree(dev, vsi->rss_lut_user);
895 
896 	ice_vsi_clean_rss_flow_fld(vsi);
897 	/* remove RSS replay list */
898 	if (!ice_is_safe_mode(pf))
899 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901 
902 /**
903  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904  * @vsi: the VSI being configured
905  */
906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 	struct ice_hw_common_caps *cap;
909 	struct ice_pf *pf = vsi->back;
910 	u16 max_rss_size;
911 
912 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 		vsi->rss_size = 1;
914 		return;
915 	}
916 
917 	cap = &pf->hw.func_caps.common_cap;
918 	max_rss_size = BIT(cap->rss_table_entry_width);
919 	switch (vsi->type) {
920 	case ICE_VSI_CHNL:
921 	case ICE_VSI_PF:
922 		/* PF VSI will inherit RSS instance of PF */
923 		vsi->rss_table_size = (u16)cap->rss_table_size;
924 		if (vsi->type == ICE_VSI_CHNL)
925 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 		else
927 			vsi->rss_size = min_t(u16, num_online_cpus(),
928 					      max_rss_size);
929 		vsi->rss_lut_type = ICE_LUT_PF;
930 		break;
931 	case ICE_VSI_SWITCHDEV_CTRL:
932 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_VSI;
935 		break;
936 	case ICE_VSI_VF:
937 		/* VF VSI will get a small RSS table.
938 		 * For VSI_LUT, LUT size should be set to 64 bytes.
939 		 */
940 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 		vsi->rss_lut_type = ICE_LUT_VSI;
943 		break;
944 	case ICE_VSI_LB:
945 		break;
946 	default:
947 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 			ice_vsi_type_str(vsi->type));
949 		break;
950 	}
951 }
952 
953 /**
954  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955  * @hw: HW structure used to determine the VLAN mode of the device
956  * @ctxt: the VSI context being set
957  *
958  * This initializes a default VSI context for all sections except the Queues.
959  */
960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 	u32 table = 0;
963 
964 	memset(&ctxt->info, 0, sizeof(ctxt->info));
965 	/* VSI's should be allocated from shared pool */
966 	ctxt->alloc_from_pool = true;
967 	/* Src pruning enabled by default */
968 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 	/* Traffic from VSI can be sent to LAN */
970 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 	/* allow all untagged/tagged packets by default on Tx */
972 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 	 *
978 	 * DVM - leave inner VLAN in packet by default
979 	 */
980 	if (ice_is_dvm_ena(hw)) {
981 		ctxt->info.inner_vlan_flags |=
982 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
983 		ctxt->info.outer_vlan_flags =
984 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
985 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
986 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
987 		ctxt->info.outer_vlan_flags |=
988 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
989 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
990 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
993 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
994 	}
995 	/* Have 1:1 UP mapping for both ingress/egress tables */
996 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
997 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
998 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
999 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1000 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1001 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1002 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1003 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1004 	ctxt->info.ingress_table = cpu_to_le32(table);
1005 	ctxt->info.egress_table = cpu_to_le32(table);
1006 	/* Have 1:1 UP mapping for outer to inner UP table */
1007 	ctxt->info.outer_up_table = cpu_to_le32(table);
1008 	/* No Outer tag support outer_tag_flags remains to zero */
1009 }
1010 
1011 /**
1012  * ice_vsi_setup_q_map - Setup a VSI queue map
1013  * @vsi: the VSI being configured
1014  * @ctxt: VSI context structure
1015  */
1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1017 {
1018 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1019 	u16 num_txq_per_tc, num_rxq_per_tc;
1020 	u16 qcount_tx = vsi->alloc_txq;
1021 	u16 qcount_rx = vsi->alloc_rxq;
1022 	u8 netdev_tc = 0;
1023 	int i;
1024 
1025 	if (!vsi->tc_cfg.numtc) {
1026 		/* at least TC0 should be enabled by default */
1027 		vsi->tc_cfg.numtc = 1;
1028 		vsi->tc_cfg.ena_tc = 1;
1029 	}
1030 
1031 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1032 	if (!num_rxq_per_tc)
1033 		num_rxq_per_tc = 1;
1034 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1035 	if (!num_txq_per_tc)
1036 		num_txq_per_tc = 1;
1037 
1038 	/* find the (rounded up) power-of-2 of qcount */
1039 	pow = (u16)order_base_2(num_rxq_per_tc);
1040 
1041 	/* TC mapping is a function of the number of Rx queues assigned to the
1042 	 * VSI for each traffic class and the offset of these queues.
1043 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1044 	 * queues allocated to TC0. No:of queues is a power-of-2.
1045 	 *
1046 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1047 	 * queue, this way, traffic for the given TC will be sent to the default
1048 	 * queue.
1049 	 *
1050 	 * Setup number and offset of Rx queues for all TCs for the VSI
1051 	 */
1052 	ice_for_each_traffic_class(i) {
1053 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1054 			/* TC is not enabled */
1055 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1056 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1057 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1058 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1059 			ctxt->info.tc_mapping[i] = 0;
1060 			continue;
1061 		}
1062 
1063 		/* TC is enabled */
1064 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1065 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1066 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1067 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1068 
1069 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1070 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1071 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1072 			 ICE_AQ_VSI_TC_Q_NUM_M);
1073 		offset += num_rxq_per_tc;
1074 		tx_count += num_txq_per_tc;
1075 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1076 	}
1077 
1078 	/* if offset is non-zero, means it is calculated correctly based on
1079 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1080 	 * be correct and non-zero because it is based off - VSI's
1081 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1082 	 * at least 1)
1083 	 */
1084 	if (offset)
1085 		rx_count = offset;
1086 	else
1087 		rx_count = num_rxq_per_tc;
1088 
1089 	if (rx_count > vsi->alloc_rxq) {
1090 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1091 			rx_count, vsi->alloc_rxq);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (tx_count > vsi->alloc_txq) {
1096 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1097 			tx_count, vsi->alloc_txq);
1098 		return -EINVAL;
1099 	}
1100 
1101 	vsi->num_txq = tx_count;
1102 	vsi->num_rxq = rx_count;
1103 
1104 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1105 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1106 		/* since there is a chance that num_rxq could have been changed
1107 		 * in the above for loop, make num_txq equal to num_rxq.
1108 		 */
1109 		vsi->num_txq = vsi->num_rxq;
1110 	}
1111 
1112 	/* Rx queue mapping */
1113 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1114 	/* q_mapping buffer holds the info for the first queue allocated for
1115 	 * this VSI in the PF space and also the number of queues associated
1116 	 * with this VSI.
1117 	 */
1118 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1119 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1126  * @ctxt: the VSI context being set
1127  * @vsi: the VSI being configured
1128  */
1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1130 {
1131 	u8 dflt_q_group, dflt_q_prio;
1132 	u16 dflt_q, report_q, val;
1133 
1134 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1135 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1136 		return;
1137 
1138 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1139 	ctxt->info.valid_sections |= cpu_to_le16(val);
1140 	dflt_q = 0;
1141 	dflt_q_group = 0;
1142 	report_q = 0;
1143 	dflt_q_prio = 0;
1144 
1145 	/* enable flow director filtering/programming */
1146 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1147 	ctxt->info.fd_options = cpu_to_le16(val);
1148 	/* max of allocated flow director filters */
1149 	ctxt->info.max_fd_fltr_dedicated =
1150 			cpu_to_le16(vsi->num_gfltr);
1151 	/* max of shared flow director filters any VSI may program */
1152 	ctxt->info.max_fd_fltr_shared =
1153 			cpu_to_le16(vsi->num_bfltr);
1154 	/* default queue index within the VSI of the default FD */
1155 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1156 	       ICE_AQ_VSI_FD_DEF_Q_M);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1159 		ICE_AQ_VSI_FD_DEF_GRP_M);
1160 	ctxt->info.fd_def_q = cpu_to_le16(val);
1161 	/* queue index on which FD filter completion is reported */
1162 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1163 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1164 	/* priority of the default qindex action */
1165 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1166 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1167 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1168 }
1169 
1170 /**
1171  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1172  * @ctxt: the VSI context being set
1173  * @vsi: the VSI being configured
1174  */
1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1176 {
1177 	u8 lut_type, hash_type;
1178 	struct device *dev;
1179 	struct ice_pf *pf;
1180 
1181 	pf = vsi->back;
1182 	dev = ice_pf_to_dev(pf);
1183 
1184 	switch (vsi->type) {
1185 	case ICE_VSI_CHNL:
1186 	case ICE_VSI_PF:
1187 		/* PF VSI will inherit RSS instance of PF */
1188 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1189 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1190 		break;
1191 	case ICE_VSI_VF:
1192 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1194 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1195 		break;
1196 	default:
1197 		dev_dbg(dev, "Unsupported VSI type %s\n",
1198 			ice_vsi_type_str(vsi->type));
1199 		return;
1200 	}
1201 
1202 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1203 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1204 				(hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1205 }
1206 
1207 static void
1208 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1209 {
1210 	struct ice_pf *pf = vsi->back;
1211 	u16 qcount, qmap;
1212 	u8 offset = 0;
1213 	int pow;
1214 
1215 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1216 
1217 	pow = order_base_2(qcount);
1218 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1219 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1220 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1221 		   ICE_AQ_VSI_TC_Q_NUM_M);
1222 
1223 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1224 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1225 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1226 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1227 }
1228 
1229 /**
1230  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1231  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1232  *
1233  * returns true if Rx VLAN pruning is enabled and false otherwise.
1234  */
1235 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1236 {
1237 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1238 }
1239 
1240 /**
1241  * ice_vsi_init - Create and initialize a VSI
1242  * @vsi: the VSI being configured
1243  * @vsi_flags: VSI configuration flags
1244  *
1245  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1246  * reconfigure an existing context.
1247  *
1248  * This initializes a VSI context depending on the VSI type to be added and
1249  * passes it down to the add_vsi aq command to create a new VSI.
1250  */
1251 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1252 {
1253 	struct ice_pf *pf = vsi->back;
1254 	struct ice_hw *hw = &pf->hw;
1255 	struct ice_vsi_ctx *ctxt;
1256 	struct device *dev;
1257 	int ret = 0;
1258 
1259 	dev = ice_pf_to_dev(pf);
1260 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1261 	if (!ctxt)
1262 		return -ENOMEM;
1263 
1264 	switch (vsi->type) {
1265 	case ICE_VSI_CTRL:
1266 	case ICE_VSI_LB:
1267 	case ICE_VSI_PF:
1268 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1269 		break;
1270 	case ICE_VSI_SWITCHDEV_CTRL:
1271 	case ICE_VSI_CHNL:
1272 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1273 		break;
1274 	case ICE_VSI_VF:
1275 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1276 		/* VF number here is the absolute VF number (0-255) */
1277 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1278 		break;
1279 	default:
1280 		ret = -ENODEV;
1281 		goto out;
1282 	}
1283 
1284 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1285 	 * prune enabled
1286 	 */
1287 	if (vsi->type == ICE_VSI_CHNL) {
1288 		struct ice_vsi *main_vsi;
1289 
1290 		main_vsi = ice_get_main_vsi(pf);
1291 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1292 			ctxt->info.sw_flags2 |=
1293 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1294 		else
1295 			ctxt->info.sw_flags2 &=
1296 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1297 	}
1298 
1299 	ice_set_dflt_vsi_ctx(hw, ctxt);
1300 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1301 		ice_set_fd_vsi_ctx(ctxt, vsi);
1302 	/* if the switch is in VEB mode, allow VSI loopback */
1303 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1304 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1305 
1306 	/* Set LUT type and HASH type if RSS is enabled */
1307 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1308 	    vsi->type != ICE_VSI_CTRL) {
1309 		ice_set_rss_vsi_ctx(ctxt, vsi);
1310 		/* if updating VSI context, make sure to set valid_section:
1311 		 * to indicate which section of VSI context being updated
1312 		 */
1313 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1314 			ctxt->info.valid_sections |=
1315 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1316 	}
1317 
1318 	ctxt->info.sw_id = vsi->port_info->sw_id;
1319 	if (vsi->type == ICE_VSI_CHNL) {
1320 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1321 	} else {
1322 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1323 		if (ret)
1324 			goto out;
1325 
1326 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1327 			/* means VSI being updated */
1328 			/* must to indicate which section of VSI context are
1329 			 * being modified
1330 			 */
1331 			ctxt->info.valid_sections |=
1332 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1333 	}
1334 
1335 	/* Allow control frames out of main VSI */
1336 	if (vsi->type == ICE_VSI_PF) {
1337 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1338 		ctxt->info.valid_sections |=
1339 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1340 	}
1341 
1342 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1343 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1344 		if (ret) {
1345 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1346 			ret = -EIO;
1347 			goto out;
1348 		}
1349 	} else {
1350 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1351 		if (ret) {
1352 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1353 			ret = -EIO;
1354 			goto out;
1355 		}
1356 	}
1357 
1358 	/* keep context for update VSI operations */
1359 	vsi->info = ctxt->info;
1360 
1361 	/* record VSI number returned */
1362 	vsi->vsi_num = ctxt->vsi_num;
1363 
1364 out:
1365 	kfree(ctxt);
1366 	return ret;
1367 }
1368 
1369 /**
1370  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1371  * @vsi: the VSI having rings deallocated
1372  */
1373 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1374 {
1375 	int i;
1376 
1377 	/* Avoid stale references by clearing map from vector to ring */
1378 	if (vsi->q_vectors) {
1379 		ice_for_each_q_vector(vsi, i) {
1380 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1381 
1382 			if (q_vector) {
1383 				q_vector->tx.tx_ring = NULL;
1384 				q_vector->rx.rx_ring = NULL;
1385 			}
1386 		}
1387 	}
1388 
1389 	if (vsi->tx_rings) {
1390 		ice_for_each_alloc_txq(vsi, i) {
1391 			if (vsi->tx_rings[i]) {
1392 				kfree_rcu(vsi->tx_rings[i], rcu);
1393 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1394 			}
1395 		}
1396 	}
1397 	if (vsi->rx_rings) {
1398 		ice_for_each_alloc_rxq(vsi, i) {
1399 			if (vsi->rx_rings[i]) {
1400 				kfree_rcu(vsi->rx_rings[i], rcu);
1401 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1402 			}
1403 		}
1404 	}
1405 }
1406 
1407 /**
1408  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1409  * @vsi: VSI which is having rings allocated
1410  */
1411 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1412 {
1413 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1414 	struct ice_pf *pf = vsi->back;
1415 	struct device *dev;
1416 	u16 i;
1417 
1418 	dev = ice_pf_to_dev(pf);
1419 	/* Allocate Tx rings */
1420 	ice_for_each_alloc_txq(vsi, i) {
1421 		struct ice_tx_ring *ring;
1422 
1423 		/* allocate with kzalloc(), free with kfree_rcu() */
1424 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1425 
1426 		if (!ring)
1427 			goto err_out;
1428 
1429 		ring->q_index = i;
1430 		ring->reg_idx = vsi->txq_map[i];
1431 		ring->vsi = vsi;
1432 		ring->tx_tstamps = &pf->ptp.port.tx;
1433 		ring->dev = dev;
1434 		ring->count = vsi->num_tx_desc;
1435 		ring->txq_teid = ICE_INVAL_TEID;
1436 		if (dvm_ena)
1437 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1438 		else
1439 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1440 		WRITE_ONCE(vsi->tx_rings[i], ring);
1441 	}
1442 
1443 	/* Allocate Rx rings */
1444 	ice_for_each_alloc_rxq(vsi, i) {
1445 		struct ice_rx_ring *ring;
1446 
1447 		/* allocate with kzalloc(), free with kfree_rcu() */
1448 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1449 		if (!ring)
1450 			goto err_out;
1451 
1452 		ring->q_index = i;
1453 		ring->reg_idx = vsi->rxq_map[i];
1454 		ring->vsi = vsi;
1455 		ring->netdev = vsi->netdev;
1456 		ring->dev = dev;
1457 		ring->count = vsi->num_rx_desc;
1458 		ring->cached_phctime = pf->ptp.cached_phc_time;
1459 		WRITE_ONCE(vsi->rx_rings[i], ring);
1460 	}
1461 
1462 	return 0;
1463 
1464 err_out:
1465 	ice_vsi_clear_rings(vsi);
1466 	return -ENOMEM;
1467 }
1468 
1469 /**
1470  * ice_vsi_manage_rss_lut - disable/enable RSS
1471  * @vsi: the VSI being changed
1472  * @ena: boolean value indicating if this is an enable or disable request
1473  *
1474  * In the event of disable request for RSS, this function will zero out RSS
1475  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1476  * LUT.
1477  */
1478 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1479 {
1480 	u8 *lut;
1481 
1482 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1483 	if (!lut)
1484 		return;
1485 
1486 	if (ena) {
1487 		if (vsi->rss_lut_user)
1488 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1489 		else
1490 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1491 					 vsi->rss_size);
1492 	}
1493 
1494 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1495 	kfree(lut);
1496 }
1497 
1498 /**
1499  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1500  * @vsi: VSI to be configured
1501  * @disable: set to true to have FCS / CRC in the frame data
1502  */
1503 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1504 {
1505 	int i;
1506 
1507 	ice_for_each_rxq(vsi, i)
1508 		if (disable)
1509 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1510 		else
1511 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1512 }
1513 
1514 /**
1515  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1516  * @vsi: VSI to be configured
1517  */
1518 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1519 {
1520 	struct ice_pf *pf = vsi->back;
1521 	struct device *dev;
1522 	u8 *lut, *key;
1523 	int err;
1524 
1525 	dev = ice_pf_to_dev(pf);
1526 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1527 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1528 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1529 	} else {
1530 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1531 
1532 		/* If orig_rss_size is valid and it is less than determined
1533 		 * main VSI's rss_size, update main VSI's rss_size to be
1534 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1535 		 * RSS table gets programmed to be correct (whatever it was
1536 		 * to begin with (prior to setup-tc for ADQ config)
1537 		 */
1538 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1539 		    vsi->orig_rss_size <= vsi->num_rxq) {
1540 			vsi->rss_size = vsi->orig_rss_size;
1541 			/* now orig_rss_size is used, reset it to zero */
1542 			vsi->orig_rss_size = 0;
1543 		}
1544 	}
1545 
1546 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1547 	if (!lut)
1548 		return -ENOMEM;
1549 
1550 	if (vsi->rss_lut_user)
1551 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1552 	else
1553 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1554 
1555 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1556 	if (err) {
1557 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1558 		goto ice_vsi_cfg_rss_exit;
1559 	}
1560 
1561 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1562 	if (!key) {
1563 		err = -ENOMEM;
1564 		goto ice_vsi_cfg_rss_exit;
1565 	}
1566 
1567 	if (vsi->rss_hkey_user)
1568 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1569 	else
1570 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1571 
1572 	err = ice_set_rss_key(vsi, key);
1573 	if (err)
1574 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1575 
1576 	kfree(key);
1577 ice_vsi_cfg_rss_exit:
1578 	kfree(lut);
1579 	return err;
1580 }
1581 
1582 /**
1583  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1584  * @vsi: VSI to be configured
1585  *
1586  * This function will only be called during the VF VSI setup. Upon successful
1587  * completion of package download, this function will configure default RSS
1588  * input sets for VF VSI.
1589  */
1590 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1591 {
1592 	struct ice_pf *pf = vsi->back;
1593 	struct device *dev;
1594 	int status;
1595 
1596 	dev = ice_pf_to_dev(pf);
1597 	if (ice_is_safe_mode(pf)) {
1598 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1599 			vsi->vsi_num);
1600 		return;
1601 	}
1602 
1603 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1604 	if (status)
1605 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1606 			vsi->vsi_num, status);
1607 }
1608 
1609 /**
1610  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1611  * @vsi: VSI to be configured
1612  *
1613  * This function will only be called after successful download package call
1614  * during initialization of PF. Since the downloaded package will erase the
1615  * RSS section, this function will configure RSS input sets for different
1616  * flow types. The last profile added has the highest priority, therefore 2
1617  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1618  * (i.e. IPv4 src/dst TCP src/dst port).
1619  */
1620 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1621 {
1622 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1623 	struct ice_pf *pf = vsi->back;
1624 	struct ice_hw *hw = &pf->hw;
1625 	struct device *dev;
1626 	int status;
1627 
1628 	dev = ice_pf_to_dev(pf);
1629 	if (ice_is_safe_mode(pf)) {
1630 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1631 			vsi_num);
1632 		return;
1633 	}
1634 	/* configure RSS for IPv4 with input set IP src/dst */
1635 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1636 				 ICE_FLOW_SEG_HDR_IPV4);
1637 	if (status)
1638 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1639 			vsi_num, status);
1640 
1641 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1642 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1643 				 ICE_FLOW_SEG_HDR_IPV6);
1644 	if (status)
1645 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1646 			vsi_num, status);
1647 
1648 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1649 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1650 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1651 	if (status)
1652 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1653 			vsi_num, status);
1654 
1655 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1656 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1657 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1658 	if (status)
1659 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1660 			vsi_num, status);
1661 
1662 	/* configure RSS for sctp4 with input set IP src/dst */
1663 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1664 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1665 	if (status)
1666 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1667 			vsi_num, status);
1668 
1669 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1670 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1671 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1672 	if (status)
1673 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1674 			vsi_num, status);
1675 
1676 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1677 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1678 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1679 	if (status)
1680 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1681 			vsi_num, status);
1682 
1683 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1684 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1685 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1686 	if (status)
1687 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1688 			vsi_num, status);
1689 
1690 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1691 				 ICE_FLOW_SEG_HDR_ESP);
1692 	if (status)
1693 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1694 			vsi_num, status);
1695 }
1696 
1697 /**
1698  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1699  * @vsi: VSI
1700  */
1701 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1702 {
1703 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1704 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1705 		vsi->rx_buf_len = ICE_RXBUF_1664;
1706 #if (PAGE_SIZE < 8192)
1707 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1708 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1709 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1710 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1711 #endif
1712 	} else {
1713 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1714 		vsi->rx_buf_len = ICE_RXBUF_3072;
1715 	}
1716 }
1717 
1718 /**
1719  * ice_pf_state_is_nominal - checks the PF for nominal state
1720  * @pf: pointer to PF to check
1721  *
1722  * Check the PF's state for a collection of bits that would indicate
1723  * the PF is in a state that would inhibit normal operation for
1724  * driver functionality.
1725  *
1726  * Returns true if PF is in a nominal state, false otherwise
1727  */
1728 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1729 {
1730 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1731 
1732 	if (!pf)
1733 		return false;
1734 
1735 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1736 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1737 		return false;
1738 
1739 	return true;
1740 }
1741 
1742 /**
1743  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1744  * @vsi: the VSI to be updated
1745  */
1746 void ice_update_eth_stats(struct ice_vsi *vsi)
1747 {
1748 	struct ice_eth_stats *prev_es, *cur_es;
1749 	struct ice_hw *hw = &vsi->back->hw;
1750 	struct ice_pf *pf = vsi->back;
1751 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1752 
1753 	prev_es = &vsi->eth_stats_prev;
1754 	cur_es = &vsi->eth_stats;
1755 
1756 	if (ice_is_reset_in_progress(pf->state))
1757 		vsi->stat_offsets_loaded = false;
1758 
1759 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1760 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1761 
1762 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1763 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1764 
1765 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1766 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1767 
1768 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1769 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1770 
1771 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1772 			  &prev_es->rx_discards, &cur_es->rx_discards);
1773 
1774 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1775 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1776 
1777 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1778 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1779 
1780 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1781 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1782 
1783 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1784 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1785 
1786 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1787 			  &prev_es->tx_errors, &cur_es->tx_errors);
1788 
1789 	vsi->stat_offsets_loaded = true;
1790 }
1791 
1792 /**
1793  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1794  * @hw: HW pointer
1795  * @pf_q: index of the Rx queue in the PF's queue space
1796  * @rxdid: flexible descriptor RXDID
1797  * @prio: priority for the RXDID for this queue
1798  * @ena_ts: true to enable timestamp and false to disable timestamp
1799  */
1800 void
1801 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1802 			bool ena_ts)
1803 {
1804 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1805 
1806 	/* clear any previous values */
1807 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1808 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1809 		    QRXFLXP_CNTXT_TS_M);
1810 
1811 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1812 		QRXFLXP_CNTXT_RXDID_IDX_M;
1813 
1814 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1815 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1816 
1817 	if (ena_ts)
1818 		/* Enable TimeSync on this queue */
1819 		regval |= QRXFLXP_CNTXT_TS_M;
1820 
1821 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1822 }
1823 
1824 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1825 {
1826 	if (q_idx >= vsi->num_rxq)
1827 		return -EINVAL;
1828 
1829 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1830 }
1831 
1832 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1833 {
1834 	struct ice_aqc_add_tx_qgrp *qg_buf;
1835 	int err;
1836 
1837 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1838 		return -EINVAL;
1839 
1840 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1841 	if (!qg_buf)
1842 		return -ENOMEM;
1843 
1844 	qg_buf->num_txqs = 1;
1845 
1846 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1847 	kfree(qg_buf);
1848 	return err;
1849 }
1850 
1851 /**
1852  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1853  * @vsi: the VSI being configured
1854  *
1855  * Return 0 on success and a negative value on error
1856  * Configure the Rx VSI for operation.
1857  */
1858 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1859 {
1860 	u16 i;
1861 
1862 	if (vsi->type == ICE_VSI_VF)
1863 		goto setup_rings;
1864 
1865 	ice_vsi_cfg_frame_size(vsi);
1866 setup_rings:
1867 	/* set up individual rings */
1868 	ice_for_each_rxq(vsi, i) {
1869 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1870 
1871 		if (err)
1872 			return err;
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1880  * @vsi: the VSI being configured
1881  * @rings: Tx ring array to be configured
1882  * @count: number of Tx ring array elements
1883  *
1884  * Return 0 on success and a negative value on error
1885  * Configure the Tx VSI for operation.
1886  */
1887 static int
1888 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1889 {
1890 	struct ice_aqc_add_tx_qgrp *qg_buf;
1891 	u16 q_idx = 0;
1892 	int err = 0;
1893 
1894 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1895 	if (!qg_buf)
1896 		return -ENOMEM;
1897 
1898 	qg_buf->num_txqs = 1;
1899 
1900 	for (q_idx = 0; q_idx < count; q_idx++) {
1901 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1902 		if (err)
1903 			goto err_cfg_txqs;
1904 	}
1905 
1906 err_cfg_txqs:
1907 	kfree(qg_buf);
1908 	return err;
1909 }
1910 
1911 /**
1912  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1913  * @vsi: the VSI being configured
1914  *
1915  * Return 0 on success and a negative value on error
1916  * Configure the Tx VSI for operation.
1917  */
1918 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1919 {
1920 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1921 }
1922 
1923 /**
1924  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1925  * @vsi: the VSI being configured
1926  *
1927  * Return 0 on success and a negative value on error
1928  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1929  */
1930 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1931 {
1932 	int ret;
1933 	int i;
1934 
1935 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1936 	if (ret)
1937 		return ret;
1938 
1939 	ice_for_each_rxq(vsi, i)
1940 		ice_tx_xsk_pool(vsi, i);
1941 
1942 	return 0;
1943 }
1944 
1945 /**
1946  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1947  * @intrl: interrupt rate limit in usecs
1948  * @gran: interrupt rate limit granularity in usecs
1949  *
1950  * This function converts a decimal interrupt rate limit in usecs to the format
1951  * expected by firmware.
1952  */
1953 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1954 {
1955 	u32 val = intrl / gran;
1956 
1957 	if (val)
1958 		return val | GLINT_RATE_INTRL_ENA_M;
1959 	return 0;
1960 }
1961 
1962 /**
1963  * ice_write_intrl - write throttle rate limit to interrupt specific register
1964  * @q_vector: pointer to interrupt specific structure
1965  * @intrl: throttle rate limit in microseconds to write
1966  */
1967 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1968 {
1969 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1970 
1971 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1972 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1973 }
1974 
1975 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1976 {
1977 	switch (rc->type) {
1978 	case ICE_RX_CONTAINER:
1979 		if (rc->rx_ring)
1980 			return rc->rx_ring->q_vector;
1981 		break;
1982 	case ICE_TX_CONTAINER:
1983 		if (rc->tx_ring)
1984 			return rc->tx_ring->q_vector;
1985 		break;
1986 	default:
1987 		break;
1988 	}
1989 
1990 	return NULL;
1991 }
1992 
1993 /**
1994  * __ice_write_itr - write throttle rate to register
1995  * @q_vector: pointer to interrupt data structure
1996  * @rc: pointer to ring container
1997  * @itr: throttle rate in microseconds to write
1998  */
1999 static void __ice_write_itr(struct ice_q_vector *q_vector,
2000 			    struct ice_ring_container *rc, u16 itr)
2001 {
2002 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2003 
2004 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2005 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2006 }
2007 
2008 /**
2009  * ice_write_itr - write throttle rate to queue specific register
2010  * @rc: pointer to ring container
2011  * @itr: throttle rate in microseconds to write
2012  */
2013 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2014 {
2015 	struct ice_q_vector *q_vector;
2016 
2017 	q_vector = ice_pull_qvec_from_rc(rc);
2018 	if (!q_vector)
2019 		return;
2020 
2021 	__ice_write_itr(q_vector, rc, itr);
2022 }
2023 
2024 /**
2025  * ice_set_q_vector_intrl - set up interrupt rate limiting
2026  * @q_vector: the vector to be configured
2027  *
2028  * Interrupt rate limiting is local to the vector, not per-queue so we must
2029  * detect if either ring container has dynamic moderation enabled to decide
2030  * what to set the interrupt rate limit to via INTRL settings. In the case that
2031  * dynamic moderation is disabled on both, write the value with the cached
2032  * setting to make sure INTRL register matches the user visible value.
2033  */
2034 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2035 {
2036 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2037 		/* in the case of dynamic enabled, cap each vector to no more
2038 		 * than (4 us) 250,000 ints/sec, which allows low latency
2039 		 * but still less than 500,000 interrupts per second, which
2040 		 * reduces CPU a bit in the case of the lowest latency
2041 		 * setting. The 4 here is a value in microseconds.
2042 		 */
2043 		ice_write_intrl(q_vector, 4);
2044 	} else {
2045 		ice_write_intrl(q_vector, q_vector->intrl);
2046 	}
2047 }
2048 
2049 /**
2050  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2051  * @vsi: the VSI being configured
2052  *
2053  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2054  * for the VF VSI.
2055  */
2056 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2057 {
2058 	struct ice_pf *pf = vsi->back;
2059 	struct ice_hw *hw = &pf->hw;
2060 	u16 txq = 0, rxq = 0;
2061 	int i, q;
2062 
2063 	ice_for_each_q_vector(vsi, i) {
2064 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2065 		u16 reg_idx = q_vector->reg_idx;
2066 
2067 		ice_cfg_itr(hw, q_vector);
2068 
2069 		/* Both Transmit Queue Interrupt Cause Control register
2070 		 * and Receive Queue Interrupt Cause control register
2071 		 * expects MSIX_INDX field to be the vector index
2072 		 * within the function space and not the absolute
2073 		 * vector index across PF or across device.
2074 		 * For SR-IOV VF VSIs queue vector index always starts
2075 		 * with 1 since first vector index(0) is used for OICR
2076 		 * in VF space. Since VMDq and other PF VSIs are within
2077 		 * the PF function space, use the vector index that is
2078 		 * tracked for this PF.
2079 		 */
2080 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2081 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2082 					      q_vector->tx.itr_idx);
2083 			txq++;
2084 		}
2085 
2086 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2087 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2088 					      q_vector->rx.itr_idx);
2089 			rxq++;
2090 		}
2091 	}
2092 }
2093 
2094 /**
2095  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2096  * @vsi: the VSI whose rings are to be enabled
2097  *
2098  * Returns 0 on success and a negative value on error
2099  */
2100 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2101 {
2102 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2103 }
2104 
2105 /**
2106  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2107  * @vsi: the VSI whose rings are to be disabled
2108  *
2109  * Returns 0 on success and a negative value on error
2110  */
2111 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2112 {
2113 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2114 }
2115 
2116 /**
2117  * ice_vsi_stop_tx_rings - Disable Tx rings
2118  * @vsi: the VSI being configured
2119  * @rst_src: reset source
2120  * @rel_vmvf_num: Relative ID of VF/VM
2121  * @rings: Tx ring array to be stopped
2122  * @count: number of Tx ring array elements
2123  */
2124 static int
2125 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2126 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2127 {
2128 	u16 q_idx;
2129 
2130 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2131 		return -EINVAL;
2132 
2133 	for (q_idx = 0; q_idx < count; q_idx++) {
2134 		struct ice_txq_meta txq_meta = { };
2135 		int status;
2136 
2137 		if (!rings || !rings[q_idx])
2138 			return -EINVAL;
2139 
2140 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2141 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2142 					      rings[q_idx], &txq_meta);
2143 
2144 		if (status)
2145 			return status;
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2153  * @vsi: the VSI being configured
2154  * @rst_src: reset source
2155  * @rel_vmvf_num: Relative ID of VF/VM
2156  */
2157 int
2158 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2159 			  u16 rel_vmvf_num)
2160 {
2161 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2162 }
2163 
2164 /**
2165  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2166  * @vsi: the VSI being configured
2167  */
2168 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2169 {
2170 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2171 }
2172 
2173 /**
2174  * ice_vsi_is_rx_queue_active
2175  * @vsi: the VSI being configured
2176  *
2177  * Return true if at least one queue is active.
2178  */
2179 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2180 {
2181 	struct ice_pf *pf = vsi->back;
2182 	struct ice_hw *hw = &pf->hw;
2183 	int i;
2184 
2185 	ice_for_each_rxq(vsi, i) {
2186 		u32 rx_reg;
2187 		int pf_q;
2188 
2189 		pf_q = vsi->rxq_map[i];
2190 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2191 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2192 			return true;
2193 	}
2194 
2195 	return false;
2196 }
2197 
2198 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2199 {
2200 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2201 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2202 		vsi->tc_cfg.numtc = 1;
2203 		return;
2204 	}
2205 
2206 	/* set VSI TC information based on DCB config */
2207 	ice_vsi_set_dcb_tc_cfg(vsi);
2208 }
2209 
2210 /**
2211  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2212  * @vsi: the VSI being configured
2213  * @tx: bool to determine Tx or Rx rule
2214  * @create: bool to determine create or remove Rule
2215  */
2216 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2217 {
2218 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2219 			enum ice_sw_fwd_act_type act);
2220 	struct ice_pf *pf = vsi->back;
2221 	struct device *dev;
2222 	int status;
2223 
2224 	dev = ice_pf_to_dev(pf);
2225 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2226 
2227 	if (tx) {
2228 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2229 				  ICE_DROP_PACKET);
2230 	} else {
2231 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2232 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2233 							  create);
2234 		} else {
2235 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2236 					  ICE_FWD_TO_VSI);
2237 		}
2238 	}
2239 
2240 	if (status)
2241 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2242 			create ? "adding" : "removing", tx ? "TX" : "RX",
2243 			vsi->vsi_num, status);
2244 }
2245 
2246 /**
2247  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2248  * @vsi: pointer to the VSI
2249  *
2250  * This function will allocate new scheduler aggregator now if needed and will
2251  * move specified VSI into it.
2252  */
2253 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2254 {
2255 	struct device *dev = ice_pf_to_dev(vsi->back);
2256 	struct ice_agg_node *agg_node_iter = NULL;
2257 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2258 	struct ice_agg_node *agg_node = NULL;
2259 	int node_offset, max_agg_nodes = 0;
2260 	struct ice_port_info *port_info;
2261 	struct ice_pf *pf = vsi->back;
2262 	u32 agg_node_id_start = 0;
2263 	int status;
2264 
2265 	/* create (as needed) scheduler aggregator node and move VSI into
2266 	 * corresponding aggregator node
2267 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2268 	 * - VF aggregator nodes will contain VF VSI
2269 	 */
2270 	port_info = pf->hw.port_info;
2271 	if (!port_info)
2272 		return;
2273 
2274 	switch (vsi->type) {
2275 	case ICE_VSI_CTRL:
2276 	case ICE_VSI_CHNL:
2277 	case ICE_VSI_LB:
2278 	case ICE_VSI_PF:
2279 	case ICE_VSI_SWITCHDEV_CTRL:
2280 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2281 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2282 		agg_node_iter = &pf->pf_agg_node[0];
2283 		break;
2284 	case ICE_VSI_VF:
2285 		/* user can create 'n' VFs on a given PF, but since max children
2286 		 * per aggregator node can be only 64. Following code handles
2287 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2288 		 * was already created provided num_vsis < 64, otherwise
2289 		 * select next available node, which will be created
2290 		 */
2291 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2292 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2293 		agg_node_iter = &pf->vf_agg_node[0];
2294 		break;
2295 	default:
2296 		/* other VSI type, handle later if needed */
2297 		dev_dbg(dev, "unexpected VSI type %s\n",
2298 			ice_vsi_type_str(vsi->type));
2299 		return;
2300 	}
2301 
2302 	/* find the appropriate aggregator node */
2303 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2304 		/* see if we can find space in previously created
2305 		 * node if num_vsis < 64, otherwise skip
2306 		 */
2307 		if (agg_node_iter->num_vsis &&
2308 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2309 			agg_node_iter++;
2310 			continue;
2311 		}
2312 
2313 		if (agg_node_iter->valid &&
2314 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2315 			agg_id = agg_node_iter->agg_id;
2316 			agg_node = agg_node_iter;
2317 			break;
2318 		}
2319 
2320 		/* find unclaimed agg_id */
2321 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2322 			agg_id = node_offset + agg_node_id_start;
2323 			agg_node = agg_node_iter;
2324 			break;
2325 		}
2326 		/* move to next agg_node */
2327 		agg_node_iter++;
2328 	}
2329 
2330 	if (!agg_node)
2331 		return;
2332 
2333 	/* if selected aggregator node was not created, create it */
2334 	if (!agg_node->valid) {
2335 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2336 				     (u8)vsi->tc_cfg.ena_tc);
2337 		if (status) {
2338 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2339 				agg_id);
2340 			return;
2341 		}
2342 		/* aggregator node is created, store the needed info */
2343 		agg_node->valid = true;
2344 		agg_node->agg_id = agg_id;
2345 	}
2346 
2347 	/* move VSI to corresponding aggregator node */
2348 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2349 				     (u8)vsi->tc_cfg.ena_tc);
2350 	if (status) {
2351 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2352 			vsi->idx, agg_id);
2353 		return;
2354 	}
2355 
2356 	/* keep active children count for aggregator node */
2357 	agg_node->num_vsis++;
2358 
2359 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2360 	 * to aggregator node
2361 	 */
2362 	vsi->agg_node = agg_node;
2363 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2364 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2365 		vsi->agg_node->num_vsis);
2366 }
2367 
2368 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2369 {
2370 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2371 	struct device *dev = ice_pf_to_dev(pf);
2372 	int ret, i;
2373 
2374 	/* configure VSI nodes based on number of queues and TC's */
2375 	ice_for_each_traffic_class(i) {
2376 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2377 			continue;
2378 
2379 		if (vsi->type == ICE_VSI_CHNL) {
2380 			if (!vsi->alloc_txq && vsi->num_txq)
2381 				max_txqs[i] = vsi->num_txq;
2382 			else
2383 				max_txqs[i] = pf->num_lan_tx;
2384 		} else {
2385 			max_txqs[i] = vsi->alloc_txq;
2386 		}
2387 	}
2388 
2389 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2390 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2391 			      max_txqs);
2392 	if (ret) {
2393 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2394 			vsi->vsi_num, ret);
2395 		return ret;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 /**
2402  * ice_vsi_cfg_def - configure default VSI based on the type
2403  * @vsi: pointer to VSI
2404  * @params: the parameters to configure this VSI with
2405  */
2406 static int
2407 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2408 {
2409 	struct device *dev = ice_pf_to_dev(vsi->back);
2410 	struct ice_pf *pf = vsi->back;
2411 	int ret;
2412 
2413 	vsi->vsw = pf->first_sw;
2414 
2415 	ret = ice_vsi_alloc_def(vsi, params->ch);
2416 	if (ret)
2417 		return ret;
2418 
2419 	/* allocate memory for Tx/Rx ring stat pointers */
2420 	ret = ice_vsi_alloc_stat_arrays(vsi);
2421 	if (ret)
2422 		goto unroll_vsi_alloc;
2423 
2424 	ice_alloc_fd_res(vsi);
2425 
2426 	ret = ice_vsi_get_qs(vsi);
2427 	if (ret) {
2428 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2429 			vsi->idx);
2430 		goto unroll_vsi_alloc_stat;
2431 	}
2432 
2433 	/* set RSS capabilities */
2434 	ice_vsi_set_rss_params(vsi);
2435 
2436 	/* set TC configuration */
2437 	ice_vsi_set_tc_cfg(vsi);
2438 
2439 	/* create the VSI */
2440 	ret = ice_vsi_init(vsi, params->flags);
2441 	if (ret)
2442 		goto unroll_get_qs;
2443 
2444 	ice_vsi_init_vlan_ops(vsi);
2445 
2446 	switch (vsi->type) {
2447 	case ICE_VSI_CTRL:
2448 	case ICE_VSI_SWITCHDEV_CTRL:
2449 	case ICE_VSI_PF:
2450 		ret = ice_vsi_alloc_q_vectors(vsi);
2451 		if (ret)
2452 			goto unroll_vsi_init;
2453 
2454 		ret = ice_vsi_alloc_rings(vsi);
2455 		if (ret)
2456 			goto unroll_vector_base;
2457 
2458 		ret = ice_vsi_alloc_ring_stats(vsi);
2459 		if (ret)
2460 			goto unroll_vector_base;
2461 
2462 		ice_vsi_map_rings_to_vectors(vsi);
2463 		vsi->stat_offsets_loaded = false;
2464 
2465 		if (ice_is_xdp_ena_vsi(vsi)) {
2466 			ret = ice_vsi_determine_xdp_res(vsi);
2467 			if (ret)
2468 				goto unroll_vector_base;
2469 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2470 			if (ret)
2471 				goto unroll_vector_base;
2472 		}
2473 
2474 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2475 		if (vsi->type != ICE_VSI_CTRL)
2476 			/* Do not exit if configuring RSS had an issue, at
2477 			 * least receive traffic on first queue. Hence no
2478 			 * need to capture return value
2479 			 */
2480 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2481 				ice_vsi_cfg_rss_lut_key(vsi);
2482 				ice_vsi_set_rss_flow_fld(vsi);
2483 			}
2484 		ice_init_arfs(vsi);
2485 		break;
2486 	case ICE_VSI_CHNL:
2487 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2488 			ice_vsi_cfg_rss_lut_key(vsi);
2489 			ice_vsi_set_rss_flow_fld(vsi);
2490 		}
2491 		break;
2492 	case ICE_VSI_VF:
2493 		/* VF driver will take care of creating netdev for this type and
2494 		 * map queues to vectors through Virtchnl, PF driver only
2495 		 * creates a VSI and corresponding structures for bookkeeping
2496 		 * purpose
2497 		 */
2498 		ret = ice_vsi_alloc_q_vectors(vsi);
2499 		if (ret)
2500 			goto unroll_vsi_init;
2501 
2502 		ret = ice_vsi_alloc_rings(vsi);
2503 		if (ret)
2504 			goto unroll_alloc_q_vector;
2505 
2506 		ret = ice_vsi_alloc_ring_stats(vsi);
2507 		if (ret)
2508 			goto unroll_vector_base;
2509 
2510 		vsi->stat_offsets_loaded = false;
2511 
2512 		/* Do not exit if configuring RSS had an issue, at least
2513 		 * receive traffic on first queue. Hence no need to capture
2514 		 * return value
2515 		 */
2516 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2517 			ice_vsi_cfg_rss_lut_key(vsi);
2518 			ice_vsi_set_vf_rss_flow_fld(vsi);
2519 		}
2520 		break;
2521 	case ICE_VSI_LB:
2522 		ret = ice_vsi_alloc_rings(vsi);
2523 		if (ret)
2524 			goto unroll_vsi_init;
2525 
2526 		ret = ice_vsi_alloc_ring_stats(vsi);
2527 		if (ret)
2528 			goto unroll_vector_base;
2529 
2530 		break;
2531 	default:
2532 		/* clean up the resources and exit */
2533 		ret = -EINVAL;
2534 		goto unroll_vsi_init;
2535 	}
2536 
2537 	return 0;
2538 
2539 unroll_vector_base:
2540 	/* reclaim SW interrupts back to the common pool */
2541 unroll_alloc_q_vector:
2542 	ice_vsi_free_q_vectors(vsi);
2543 unroll_vsi_init:
2544 	ice_vsi_delete_from_hw(vsi);
2545 unroll_get_qs:
2546 	ice_vsi_put_qs(vsi);
2547 unroll_vsi_alloc_stat:
2548 	ice_vsi_free_stats(vsi);
2549 unroll_vsi_alloc:
2550 	ice_vsi_free_arrays(vsi);
2551 	return ret;
2552 }
2553 
2554 /**
2555  * ice_vsi_cfg - configure a previously allocated VSI
2556  * @vsi: pointer to VSI
2557  * @params: parameters used to configure this VSI
2558  */
2559 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2560 {
2561 	struct ice_pf *pf = vsi->back;
2562 	int ret;
2563 
2564 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2565 		return -EINVAL;
2566 
2567 	vsi->type = params->type;
2568 	vsi->port_info = params->pi;
2569 
2570 	/* For VSIs which don't have a connected VF, this will be NULL */
2571 	vsi->vf = params->vf;
2572 
2573 	ret = ice_vsi_cfg_def(vsi, params);
2574 	if (ret)
2575 		return ret;
2576 
2577 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2578 	if (ret)
2579 		ice_vsi_decfg(vsi);
2580 
2581 	if (vsi->type == ICE_VSI_CTRL) {
2582 		if (vsi->vf) {
2583 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2584 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2585 		} else {
2586 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2587 			pf->ctrl_vsi_idx = vsi->idx;
2588 		}
2589 	}
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * ice_vsi_decfg - remove all VSI configuration
2596  * @vsi: pointer to VSI
2597  */
2598 void ice_vsi_decfg(struct ice_vsi *vsi)
2599 {
2600 	struct ice_pf *pf = vsi->back;
2601 	int err;
2602 
2603 	/* The Rx rule will only exist to remove if the LLDP FW
2604 	 * engine is currently stopped
2605 	 */
2606 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2607 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2608 		ice_cfg_sw_lldp(vsi, false, false);
2609 
2610 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2611 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2612 	if (err)
2613 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2614 			vsi->vsi_num, err);
2615 
2616 	if (ice_is_xdp_ena_vsi(vsi))
2617 		/* return value check can be skipped here, it always returns
2618 		 * 0 if reset is in progress
2619 		 */
2620 		ice_destroy_xdp_rings(vsi);
2621 
2622 	ice_vsi_clear_rings(vsi);
2623 	ice_vsi_free_q_vectors(vsi);
2624 	ice_vsi_put_qs(vsi);
2625 	ice_vsi_free_arrays(vsi);
2626 
2627 	/* SR-IOV determines needed MSIX resources all at once instead of per
2628 	 * VSI since when VFs are spawned we know how many VFs there are and how
2629 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2630 	 * cleared in the same manner.
2631 	 */
2632 
2633 	if (vsi->type == ICE_VSI_VF &&
2634 	    vsi->agg_node && vsi->agg_node->valid)
2635 		vsi->agg_node->num_vsis--;
2636 	if (vsi->agg_node) {
2637 		vsi->agg_node->valid = false;
2638 		vsi->agg_node->agg_id = 0;
2639 	}
2640 }
2641 
2642 /**
2643  * ice_vsi_setup - Set up a VSI by a given type
2644  * @pf: board private structure
2645  * @params: parameters to use when creating the VSI
2646  *
2647  * This allocates the sw VSI structure and its queue resources.
2648  *
2649  * Returns pointer to the successfully allocated and configured VSI sw struct on
2650  * success, NULL on failure.
2651  */
2652 struct ice_vsi *
2653 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2654 {
2655 	struct device *dev = ice_pf_to_dev(pf);
2656 	struct ice_vsi *vsi;
2657 	int ret;
2658 
2659 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2660 	 * a port_info structure for it.
2661 	 */
2662 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2663 	    WARN_ON(!params->pi))
2664 		return NULL;
2665 
2666 	vsi = ice_vsi_alloc(pf);
2667 	if (!vsi) {
2668 		dev_err(dev, "could not allocate VSI\n");
2669 		return NULL;
2670 	}
2671 
2672 	ret = ice_vsi_cfg(vsi, params);
2673 	if (ret)
2674 		goto err_vsi_cfg;
2675 
2676 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2677 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2678 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2679 	 * The rule is added once for PF VSI in order to create appropriate
2680 	 * recipe, since VSI/VSI list is ignored with drop action...
2681 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2682 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2683 	 * settings in the HW.
2684 	 */
2685 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2686 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2687 				 ICE_DROP_PACKET);
2688 		ice_cfg_sw_lldp(vsi, true, true);
2689 	}
2690 
2691 	if (!vsi->agg_node)
2692 		ice_set_agg_vsi(vsi);
2693 
2694 	return vsi;
2695 
2696 err_vsi_cfg:
2697 	ice_vsi_free(vsi);
2698 
2699 	return NULL;
2700 }
2701 
2702 /**
2703  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2704  * @vsi: the VSI being cleaned up
2705  */
2706 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2707 {
2708 	struct ice_pf *pf = vsi->back;
2709 	struct ice_hw *hw = &pf->hw;
2710 	u32 txq = 0;
2711 	u32 rxq = 0;
2712 	int i, q;
2713 
2714 	ice_for_each_q_vector(vsi, i) {
2715 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2716 
2717 		ice_write_intrl(q_vector, 0);
2718 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2719 			ice_write_itr(&q_vector->tx, 0);
2720 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2721 			if (ice_is_xdp_ena_vsi(vsi)) {
2722 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2723 
2724 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2725 			}
2726 			txq++;
2727 		}
2728 
2729 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2730 			ice_write_itr(&q_vector->rx, 0);
2731 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2732 			rxq++;
2733 		}
2734 	}
2735 
2736 	ice_flush(hw);
2737 }
2738 
2739 /**
2740  * ice_vsi_free_irq - Free the IRQ association with the OS
2741  * @vsi: the VSI being configured
2742  */
2743 void ice_vsi_free_irq(struct ice_vsi *vsi)
2744 {
2745 	struct ice_pf *pf = vsi->back;
2746 	int i;
2747 
2748 	if (!vsi->q_vectors || !vsi->irqs_ready)
2749 		return;
2750 
2751 	ice_vsi_release_msix(vsi);
2752 	if (vsi->type == ICE_VSI_VF)
2753 		return;
2754 
2755 	vsi->irqs_ready = false;
2756 	ice_free_cpu_rx_rmap(vsi);
2757 
2758 	ice_for_each_q_vector(vsi, i) {
2759 		int irq_num;
2760 
2761 		irq_num = vsi->q_vectors[i]->irq.virq;
2762 
2763 		/* free only the irqs that were actually requested */
2764 		if (!vsi->q_vectors[i] ||
2765 		    !(vsi->q_vectors[i]->num_ring_tx ||
2766 		      vsi->q_vectors[i]->num_ring_rx))
2767 			continue;
2768 
2769 		/* clear the affinity notifier in the IRQ descriptor */
2770 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2771 			irq_set_affinity_notifier(irq_num, NULL);
2772 
2773 		/* clear the affinity_mask in the IRQ descriptor */
2774 		irq_set_affinity_hint(irq_num, NULL);
2775 		synchronize_irq(irq_num);
2776 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2777 	}
2778 }
2779 
2780 /**
2781  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2782  * @vsi: the VSI having resources freed
2783  */
2784 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2785 {
2786 	int i;
2787 
2788 	if (!vsi->tx_rings)
2789 		return;
2790 
2791 	ice_for_each_txq(vsi, i)
2792 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2793 			ice_free_tx_ring(vsi->tx_rings[i]);
2794 }
2795 
2796 /**
2797  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2798  * @vsi: the VSI having resources freed
2799  */
2800 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2801 {
2802 	int i;
2803 
2804 	if (!vsi->rx_rings)
2805 		return;
2806 
2807 	ice_for_each_rxq(vsi, i)
2808 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2809 			ice_free_rx_ring(vsi->rx_rings[i]);
2810 }
2811 
2812 /**
2813  * ice_vsi_close - Shut down a VSI
2814  * @vsi: the VSI being shut down
2815  */
2816 void ice_vsi_close(struct ice_vsi *vsi)
2817 {
2818 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2819 		ice_down(vsi);
2820 
2821 	ice_vsi_free_irq(vsi);
2822 	ice_vsi_free_tx_rings(vsi);
2823 	ice_vsi_free_rx_rings(vsi);
2824 }
2825 
2826 /**
2827  * ice_ena_vsi - resume a VSI
2828  * @vsi: the VSI being resume
2829  * @locked: is the rtnl_lock already held
2830  */
2831 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2832 {
2833 	int err = 0;
2834 
2835 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2836 		return 0;
2837 
2838 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2839 
2840 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2841 		if (netif_running(vsi->netdev)) {
2842 			if (!locked)
2843 				rtnl_lock();
2844 
2845 			err = ice_open_internal(vsi->netdev);
2846 
2847 			if (!locked)
2848 				rtnl_unlock();
2849 		}
2850 	} else if (vsi->type == ICE_VSI_CTRL) {
2851 		err = ice_vsi_open_ctrl(vsi);
2852 	}
2853 
2854 	return err;
2855 }
2856 
2857 /**
2858  * ice_dis_vsi - pause a VSI
2859  * @vsi: the VSI being paused
2860  * @locked: is the rtnl_lock already held
2861  */
2862 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2863 {
2864 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2865 		return;
2866 
2867 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2868 
2869 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2870 		if (netif_running(vsi->netdev)) {
2871 			if (!locked)
2872 				rtnl_lock();
2873 
2874 			ice_vsi_close(vsi);
2875 
2876 			if (!locked)
2877 				rtnl_unlock();
2878 		} else {
2879 			ice_vsi_close(vsi);
2880 		}
2881 	} else if (vsi->type == ICE_VSI_CTRL ||
2882 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2883 		ice_vsi_close(vsi);
2884 	}
2885 }
2886 
2887 /**
2888  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2889  * @vsi: the VSI being un-configured
2890  */
2891 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2892 {
2893 	struct ice_pf *pf = vsi->back;
2894 	struct ice_hw *hw = &pf->hw;
2895 	u32 val;
2896 	int i;
2897 
2898 	/* disable interrupt causation from each queue */
2899 	if (vsi->tx_rings) {
2900 		ice_for_each_txq(vsi, i) {
2901 			if (vsi->tx_rings[i]) {
2902 				u16 reg;
2903 
2904 				reg = vsi->tx_rings[i]->reg_idx;
2905 				val = rd32(hw, QINT_TQCTL(reg));
2906 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2907 				wr32(hw, QINT_TQCTL(reg), val);
2908 			}
2909 		}
2910 	}
2911 
2912 	if (vsi->rx_rings) {
2913 		ice_for_each_rxq(vsi, i) {
2914 			if (vsi->rx_rings[i]) {
2915 				u16 reg;
2916 
2917 				reg = vsi->rx_rings[i]->reg_idx;
2918 				val = rd32(hw, QINT_RQCTL(reg));
2919 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2920 				wr32(hw, QINT_RQCTL(reg), val);
2921 			}
2922 		}
2923 	}
2924 
2925 	/* disable each interrupt */
2926 	ice_for_each_q_vector(vsi, i) {
2927 		if (!vsi->q_vectors[i])
2928 			continue;
2929 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2930 	}
2931 
2932 	ice_flush(hw);
2933 
2934 	/* don't call synchronize_irq() for VF's from the host */
2935 	if (vsi->type == ICE_VSI_VF)
2936 		return;
2937 
2938 	ice_for_each_q_vector(vsi, i)
2939 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2940 }
2941 
2942 /**
2943  * ice_vsi_release - Delete a VSI and free its resources
2944  * @vsi: the VSI being removed
2945  *
2946  * Returns 0 on success or < 0 on error
2947  */
2948 int ice_vsi_release(struct ice_vsi *vsi)
2949 {
2950 	struct ice_pf *pf;
2951 
2952 	if (!vsi->back)
2953 		return -ENODEV;
2954 	pf = vsi->back;
2955 
2956 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2957 		ice_rss_clean(vsi);
2958 
2959 	ice_vsi_close(vsi);
2960 	ice_vsi_decfg(vsi);
2961 
2962 	/* retain SW VSI data structure since it is needed to unregister and
2963 	 * free VSI netdev when PF is not in reset recovery pending state,\
2964 	 * for ex: during rmmod.
2965 	 */
2966 	if (!ice_is_reset_in_progress(pf->state))
2967 		ice_vsi_delete(vsi);
2968 
2969 	return 0;
2970 }
2971 
2972 /**
2973  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2974  * @vsi: VSI connected with q_vectors
2975  * @coalesce: array of struct with stored coalesce
2976  *
2977  * Returns array size.
2978  */
2979 static int
2980 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2981 			     struct ice_coalesce_stored *coalesce)
2982 {
2983 	int i;
2984 
2985 	ice_for_each_q_vector(vsi, i) {
2986 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2987 
2988 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2989 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2990 		coalesce[i].intrl = q_vector->intrl;
2991 
2992 		if (i < vsi->num_txq)
2993 			coalesce[i].tx_valid = true;
2994 		if (i < vsi->num_rxq)
2995 			coalesce[i].rx_valid = true;
2996 	}
2997 
2998 	return vsi->num_q_vectors;
2999 }
3000 
3001 /**
3002  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3003  * @vsi: VSI connected with q_vectors
3004  * @coalesce: pointer to array of struct with stored coalesce
3005  * @size: size of coalesce array
3006  *
3007  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3008  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3009  * to default value.
3010  */
3011 static void
3012 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3013 			     struct ice_coalesce_stored *coalesce, int size)
3014 {
3015 	struct ice_ring_container *rc;
3016 	int i;
3017 
3018 	if ((size && !coalesce) || !vsi)
3019 		return;
3020 
3021 	/* There are a couple of cases that have to be handled here:
3022 	 *   1. The case where the number of queue vectors stays the same, but
3023 	 *      the number of Tx or Rx rings changes (the first for loop)
3024 	 *   2. The case where the number of queue vectors increased (the
3025 	 *      second for loop)
3026 	 */
3027 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3028 		/* There are 2 cases to handle here and they are the same for
3029 		 * both Tx and Rx:
3030 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3031 		 *   and the loop variable is less than the number of rings
3032 		 *   allocated, then write the previous values
3033 		 *
3034 		 *   if the entry was not valid previously, but the number of
3035 		 *   rings is less than are allocated (this means the number of
3036 		 *   rings increased from previously), then write out the
3037 		 *   values in the first element
3038 		 *
3039 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3040 		 *   as there is no harm because the dynamic algorithm
3041 		 *   will just overwrite.
3042 		 */
3043 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3044 			rc = &vsi->q_vectors[i]->rx;
3045 			rc->itr_settings = coalesce[i].itr_rx;
3046 			ice_write_itr(rc, rc->itr_setting);
3047 		} else if (i < vsi->alloc_rxq) {
3048 			rc = &vsi->q_vectors[i]->rx;
3049 			rc->itr_settings = coalesce[0].itr_rx;
3050 			ice_write_itr(rc, rc->itr_setting);
3051 		}
3052 
3053 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3054 			rc = &vsi->q_vectors[i]->tx;
3055 			rc->itr_settings = coalesce[i].itr_tx;
3056 			ice_write_itr(rc, rc->itr_setting);
3057 		} else if (i < vsi->alloc_txq) {
3058 			rc = &vsi->q_vectors[i]->tx;
3059 			rc->itr_settings = coalesce[0].itr_tx;
3060 			ice_write_itr(rc, rc->itr_setting);
3061 		}
3062 
3063 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3064 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3065 	}
3066 
3067 	/* the number of queue vectors increased so write whatever is in
3068 	 * the first element
3069 	 */
3070 	for (; i < vsi->num_q_vectors; i++) {
3071 		/* transmit */
3072 		rc = &vsi->q_vectors[i]->tx;
3073 		rc->itr_settings = coalesce[0].itr_tx;
3074 		ice_write_itr(rc, rc->itr_setting);
3075 
3076 		/* receive */
3077 		rc = &vsi->q_vectors[i]->rx;
3078 		rc->itr_settings = coalesce[0].itr_rx;
3079 		ice_write_itr(rc, rc->itr_setting);
3080 
3081 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3082 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3083 	}
3084 }
3085 
3086 /**
3087  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3088  * @vsi: VSI pointer
3089  * @prev_txq: Number of Tx rings before ring reallocation
3090  * @prev_rxq: Number of Rx rings before ring reallocation
3091  */
3092 static void
3093 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3094 {
3095 	struct ice_vsi_stats *vsi_stat;
3096 	struct ice_pf *pf = vsi->back;
3097 	int i;
3098 
3099 	if (!prev_txq || !prev_rxq)
3100 		return;
3101 	if (vsi->type == ICE_VSI_CHNL)
3102 		return;
3103 
3104 	vsi_stat = pf->vsi_stats[vsi->idx];
3105 
3106 	if (vsi->num_txq < prev_txq) {
3107 		for (i = vsi->num_txq; i < prev_txq; i++) {
3108 			if (vsi_stat->tx_ring_stats[i]) {
3109 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3110 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3111 			}
3112 		}
3113 	}
3114 
3115 	if (vsi->num_rxq < prev_rxq) {
3116 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3117 			if (vsi_stat->rx_ring_stats[i]) {
3118 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3119 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3120 			}
3121 		}
3122 	}
3123 }
3124 
3125 /**
3126  * ice_vsi_rebuild - Rebuild VSI after reset
3127  * @vsi: VSI to be rebuild
3128  * @vsi_flags: flags used for VSI rebuild flow
3129  *
3130  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3131  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3132  *
3133  * Returns 0 on success and negative value on failure
3134  */
3135 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3136 {
3137 	struct ice_vsi_cfg_params params = {};
3138 	struct ice_coalesce_stored *coalesce;
3139 	int ret, prev_txq, prev_rxq;
3140 	int prev_num_q_vectors = 0;
3141 	struct ice_pf *pf;
3142 
3143 	if (!vsi)
3144 		return -EINVAL;
3145 
3146 	params = ice_vsi_to_params(vsi);
3147 	params.flags = vsi_flags;
3148 
3149 	pf = vsi->back;
3150 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3151 		return -EINVAL;
3152 
3153 	coalesce = kcalloc(vsi->num_q_vectors,
3154 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3155 	if (!coalesce)
3156 		return -ENOMEM;
3157 
3158 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3159 
3160 	prev_txq = vsi->num_txq;
3161 	prev_rxq = vsi->num_rxq;
3162 
3163 	ice_vsi_decfg(vsi);
3164 	ret = ice_vsi_cfg_def(vsi, &params);
3165 	if (ret)
3166 		goto err_vsi_cfg;
3167 
3168 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3169 	if (ret) {
3170 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3171 			ret = -EIO;
3172 			goto err_vsi_cfg_tc_lan;
3173 		}
3174 
3175 		kfree(coalesce);
3176 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3177 	}
3178 
3179 	ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3180 
3181 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3182 	kfree(coalesce);
3183 
3184 	return 0;
3185 
3186 err_vsi_cfg_tc_lan:
3187 	ice_vsi_decfg(vsi);
3188 err_vsi_cfg:
3189 	kfree(coalesce);
3190 	return ret;
3191 }
3192 
3193 /**
3194  * ice_is_reset_in_progress - check for a reset in progress
3195  * @state: PF state field
3196  */
3197 bool ice_is_reset_in_progress(unsigned long *state)
3198 {
3199 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3200 	       test_bit(ICE_PFR_REQ, state) ||
3201 	       test_bit(ICE_CORER_REQ, state) ||
3202 	       test_bit(ICE_GLOBR_REQ, state);
3203 }
3204 
3205 /**
3206  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3207  * @pf: pointer to the PF structure
3208  * @timeout: length of time to wait, in jiffies
3209  *
3210  * Wait (sleep) for a short time until the driver finishes cleaning up from
3211  * a device reset. The caller must be able to sleep. Use this to delay
3212  * operations that could fail while the driver is cleaning up after a device
3213  * reset.
3214  *
3215  * Returns 0 on success, -EBUSY if the reset is not finished within the
3216  * timeout, and -ERESTARTSYS if the thread was interrupted.
3217  */
3218 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3219 {
3220 	long ret;
3221 
3222 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3223 					       !ice_is_reset_in_progress(pf->state),
3224 					       timeout);
3225 	if (ret < 0)
3226 		return ret;
3227 	else if (!ret)
3228 		return -EBUSY;
3229 	else
3230 		return 0;
3231 }
3232 
3233 /**
3234  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3235  * @vsi: VSI being configured
3236  * @ctx: the context buffer returned from AQ VSI update command
3237  */
3238 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3239 {
3240 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3241 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3242 	       sizeof(vsi->info.q_mapping));
3243 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3244 	       sizeof(vsi->info.tc_mapping));
3245 }
3246 
3247 /**
3248  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3249  * @vsi: the VSI being configured
3250  * @ena_tc: TC map to be enabled
3251  */
3252 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3253 {
3254 	struct net_device *netdev = vsi->netdev;
3255 	struct ice_pf *pf = vsi->back;
3256 	int numtc = vsi->tc_cfg.numtc;
3257 	struct ice_dcbx_cfg *dcbcfg;
3258 	u8 netdev_tc;
3259 	int i;
3260 
3261 	if (!netdev)
3262 		return;
3263 
3264 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3265 	if (vsi->type == ICE_VSI_CHNL)
3266 		return;
3267 
3268 	if (!ena_tc) {
3269 		netdev_reset_tc(netdev);
3270 		return;
3271 	}
3272 
3273 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3274 		numtc = vsi->all_numtc;
3275 
3276 	if (netdev_set_num_tc(netdev, numtc))
3277 		return;
3278 
3279 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3280 
3281 	ice_for_each_traffic_class(i)
3282 		if (vsi->tc_cfg.ena_tc & BIT(i))
3283 			netdev_set_tc_queue(netdev,
3284 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3285 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3286 					    vsi->tc_cfg.tc_info[i].qoffset);
3287 	/* setup TC queue map for CHNL TCs */
3288 	ice_for_each_chnl_tc(i) {
3289 		if (!(vsi->all_enatc & BIT(i)))
3290 			break;
3291 		if (!vsi->mqprio_qopt.qopt.count[i])
3292 			break;
3293 		netdev_set_tc_queue(netdev, i,
3294 				    vsi->mqprio_qopt.qopt.count[i],
3295 				    vsi->mqprio_qopt.qopt.offset[i]);
3296 	}
3297 
3298 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3299 		return;
3300 
3301 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3302 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3303 
3304 		/* Get the mapped netdev TC# for the UP */
3305 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3306 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3307 	}
3308 }
3309 
3310 /**
3311  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3312  * @vsi: the VSI being configured,
3313  * @ctxt: VSI context structure
3314  * @ena_tc: number of traffic classes to enable
3315  *
3316  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3317  */
3318 static int
3319 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3320 			   u8 ena_tc)
3321 {
3322 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3323 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3324 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3325 	u16 new_txq, new_rxq;
3326 	u8 netdev_tc = 0;
3327 	int i;
3328 
3329 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3330 
3331 	pow = order_base_2(tc0_qcount);
3332 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3333 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3334 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3335 
3336 	ice_for_each_traffic_class(i) {
3337 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3338 			/* TC is not enabled */
3339 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3340 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3341 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3342 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3343 			ctxt->info.tc_mapping[i] = 0;
3344 			continue;
3345 		}
3346 
3347 		offset = vsi->mqprio_qopt.qopt.offset[i];
3348 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3349 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3350 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3351 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3352 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3353 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3354 	}
3355 
3356 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3357 		ice_for_each_chnl_tc(i) {
3358 			if (!(vsi->all_enatc & BIT(i)))
3359 				continue;
3360 			offset = vsi->mqprio_qopt.qopt.offset[i];
3361 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3362 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3363 		}
3364 	}
3365 
3366 	new_txq = offset + qcount_tx;
3367 	if (new_txq > vsi->alloc_txq) {
3368 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3369 			new_txq, vsi->alloc_txq);
3370 		return -EINVAL;
3371 	}
3372 
3373 	new_rxq = offset + qcount_rx;
3374 	if (new_rxq > vsi->alloc_rxq) {
3375 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3376 			new_rxq, vsi->alloc_rxq);
3377 		return -EINVAL;
3378 	}
3379 
3380 	/* Set actual Tx/Rx queue pairs */
3381 	vsi->num_txq = new_txq;
3382 	vsi->num_rxq = new_rxq;
3383 
3384 	/* Setup queue TC[0].qmap for given VSI context */
3385 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3386 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3387 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3388 
3389 	/* Find queue count available for channel VSIs and starting offset
3390 	 * for channel VSIs
3391 	 */
3392 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3393 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3394 		vsi->next_base_q = tc0_qcount;
3395 	}
3396 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3397 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3398 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3399 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3400 
3401 	return 0;
3402 }
3403 
3404 /**
3405  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3406  * @vsi: VSI to be configured
3407  * @ena_tc: TC bitmap
3408  *
3409  * VSI queues expected to be quiesced before calling this function
3410  */
3411 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3412 {
3413 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3414 	struct ice_pf *pf = vsi->back;
3415 	struct ice_tc_cfg old_tc_cfg;
3416 	struct ice_vsi_ctx *ctx;
3417 	struct device *dev;
3418 	int i, ret = 0;
3419 	u8 num_tc = 0;
3420 
3421 	dev = ice_pf_to_dev(pf);
3422 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3423 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3424 		return 0;
3425 
3426 	ice_for_each_traffic_class(i) {
3427 		/* build bitmap of enabled TCs */
3428 		if (ena_tc & BIT(i))
3429 			num_tc++;
3430 		/* populate max_txqs per TC */
3431 		max_txqs[i] = vsi->alloc_txq;
3432 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3433 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3434 		 */
3435 		if (vsi->type == ICE_VSI_CHNL &&
3436 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3437 			max_txqs[i] = vsi->num_txq;
3438 	}
3439 
3440 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3441 	vsi->tc_cfg.ena_tc = ena_tc;
3442 	vsi->tc_cfg.numtc = num_tc;
3443 
3444 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3445 	if (!ctx)
3446 		return -ENOMEM;
3447 
3448 	ctx->vf_num = 0;
3449 	ctx->info = vsi->info;
3450 
3451 	if (vsi->type == ICE_VSI_PF &&
3452 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3453 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3454 	else
3455 		ret = ice_vsi_setup_q_map(vsi, ctx);
3456 
3457 	if (ret) {
3458 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3459 		goto out;
3460 	}
3461 
3462 	/* must to indicate which section of VSI context are being modified */
3463 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3464 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3465 	if (ret) {
3466 		dev_info(dev, "Failed VSI Update\n");
3467 		goto out;
3468 	}
3469 
3470 	if (vsi->type == ICE_VSI_PF &&
3471 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3472 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3473 	else
3474 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3475 				      vsi->tc_cfg.ena_tc, max_txqs);
3476 
3477 	if (ret) {
3478 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3479 			vsi->vsi_num, ret);
3480 		goto out;
3481 	}
3482 	ice_vsi_update_q_map(vsi, ctx);
3483 	vsi->info.valid_sections = 0;
3484 
3485 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3486 out:
3487 	kfree(ctx);
3488 	return ret;
3489 }
3490 
3491 /**
3492  * ice_update_ring_stats - Update ring statistics
3493  * @stats: stats to be updated
3494  * @pkts: number of processed packets
3495  * @bytes: number of processed bytes
3496  *
3497  * This function assumes that caller has acquired a u64_stats_sync lock.
3498  */
3499 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3500 {
3501 	stats->bytes += bytes;
3502 	stats->pkts += pkts;
3503 }
3504 
3505 /**
3506  * ice_update_tx_ring_stats - Update Tx ring specific counters
3507  * @tx_ring: ring to update
3508  * @pkts: number of processed packets
3509  * @bytes: number of processed bytes
3510  */
3511 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3512 {
3513 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3514 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3515 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3516 }
3517 
3518 /**
3519  * ice_update_rx_ring_stats - Update Rx ring specific counters
3520  * @rx_ring: ring to update
3521  * @pkts: number of processed packets
3522  * @bytes: number of processed bytes
3523  */
3524 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3525 {
3526 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3527 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3528 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3529 }
3530 
3531 /**
3532  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3533  * @pi: port info of the switch with default VSI
3534  *
3535  * Return true if the there is a single VSI in default forwarding VSI list
3536  */
3537 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3538 {
3539 	bool exists = false;
3540 
3541 	ice_check_if_dflt_vsi(pi, 0, &exists);
3542 	return exists;
3543 }
3544 
3545 /**
3546  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3547  * @vsi: VSI to compare against default forwarding VSI
3548  *
3549  * If this VSI passed in is the default forwarding VSI then return true, else
3550  * return false
3551  */
3552 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3553 {
3554 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3555 }
3556 
3557 /**
3558  * ice_set_dflt_vsi - set the default forwarding VSI
3559  * @vsi: VSI getting set as the default forwarding VSI on the switch
3560  *
3561  * If the VSI passed in is already the default VSI and it's enabled just return
3562  * success.
3563  *
3564  * Otherwise try to set the VSI passed in as the switch's default VSI and
3565  * return the result.
3566  */
3567 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3568 {
3569 	struct device *dev;
3570 	int status;
3571 
3572 	if (!vsi)
3573 		return -EINVAL;
3574 
3575 	dev = ice_pf_to_dev(vsi->back);
3576 
3577 	if (ice_lag_is_switchdev_running(vsi->back)) {
3578 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3579 			vsi->vsi_num);
3580 		return 0;
3581 	}
3582 
3583 	/* the VSI passed in is already the default VSI */
3584 	if (ice_is_vsi_dflt_vsi(vsi)) {
3585 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3586 			vsi->vsi_num);
3587 		return 0;
3588 	}
3589 
3590 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3591 	if (status) {
3592 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3593 			vsi->vsi_num, status);
3594 		return status;
3595 	}
3596 
3597 	return 0;
3598 }
3599 
3600 /**
3601  * ice_clear_dflt_vsi - clear the default forwarding VSI
3602  * @vsi: VSI to remove from filter list
3603  *
3604  * If the switch has no default VSI or it's not enabled then return error.
3605  *
3606  * Otherwise try to clear the default VSI and return the result.
3607  */
3608 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3609 {
3610 	struct device *dev;
3611 	int status;
3612 
3613 	if (!vsi)
3614 		return -EINVAL;
3615 
3616 	dev = ice_pf_to_dev(vsi->back);
3617 
3618 	/* there is no default VSI configured */
3619 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3620 		return -ENODEV;
3621 
3622 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3623 				  ICE_FLTR_RX);
3624 	if (status) {
3625 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3626 			vsi->vsi_num, status);
3627 		return -EIO;
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 /**
3634  * ice_get_link_speed_mbps - get link speed in Mbps
3635  * @vsi: the VSI whose link speed is being queried
3636  *
3637  * Return current VSI link speed and 0 if the speed is unknown.
3638  */
3639 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3640 {
3641 	unsigned int link_speed;
3642 
3643 	link_speed = vsi->port_info->phy.link_info.link_speed;
3644 
3645 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3646 }
3647 
3648 /**
3649  * ice_get_link_speed_kbps - get link speed in Kbps
3650  * @vsi: the VSI whose link speed is being queried
3651  *
3652  * Return current VSI link speed and 0 if the speed is unknown.
3653  */
3654 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3655 {
3656 	int speed_mbps;
3657 
3658 	speed_mbps = ice_get_link_speed_mbps(vsi);
3659 
3660 	return speed_mbps * 1000;
3661 }
3662 
3663 /**
3664  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3665  * @vsi: VSI to be configured
3666  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3667  *
3668  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3669  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3670  * on TC 0.
3671  */
3672 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3673 {
3674 	struct ice_pf *pf = vsi->back;
3675 	struct device *dev;
3676 	int status;
3677 	int speed;
3678 
3679 	dev = ice_pf_to_dev(pf);
3680 	if (!vsi->port_info) {
3681 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3682 			vsi->idx, vsi->type);
3683 		return -EINVAL;
3684 	}
3685 
3686 	speed = ice_get_link_speed_kbps(vsi);
3687 	if (min_tx_rate > (u64)speed) {
3688 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3689 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3690 			speed);
3691 		return -EINVAL;
3692 	}
3693 
3694 	/* Configure min BW for VSI limit */
3695 	if (min_tx_rate) {
3696 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3697 						   ICE_MIN_BW, min_tx_rate);
3698 		if (status) {
3699 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3700 				min_tx_rate, ice_vsi_type_str(vsi->type),
3701 				vsi->idx);
3702 			return status;
3703 		}
3704 
3705 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3706 			min_tx_rate, ice_vsi_type_str(vsi->type));
3707 	} else {
3708 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3709 							vsi->idx, 0,
3710 							ICE_MIN_BW);
3711 		if (status) {
3712 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3713 				ice_vsi_type_str(vsi->type), vsi->idx);
3714 			return status;
3715 		}
3716 
3717 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3718 			ice_vsi_type_str(vsi->type), vsi->idx);
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 /**
3725  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3726  * @vsi: VSI to be configured
3727  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3728  *
3729  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3730  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3731  * on TC 0.
3732  */
3733 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3734 {
3735 	struct ice_pf *pf = vsi->back;
3736 	struct device *dev;
3737 	int status;
3738 	int speed;
3739 
3740 	dev = ice_pf_to_dev(pf);
3741 	if (!vsi->port_info) {
3742 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3743 			vsi->idx, vsi->type);
3744 		return -EINVAL;
3745 	}
3746 
3747 	speed = ice_get_link_speed_kbps(vsi);
3748 	if (max_tx_rate > (u64)speed) {
3749 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3750 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3751 			speed);
3752 		return -EINVAL;
3753 	}
3754 
3755 	/* Configure max BW for VSI limit */
3756 	if (max_tx_rate) {
3757 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3758 						   ICE_MAX_BW, max_tx_rate);
3759 		if (status) {
3760 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3761 				max_tx_rate, ice_vsi_type_str(vsi->type),
3762 				vsi->idx);
3763 			return status;
3764 		}
3765 
3766 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3767 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3768 	} else {
3769 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3770 							vsi->idx, 0,
3771 							ICE_MAX_BW);
3772 		if (status) {
3773 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3774 				ice_vsi_type_str(vsi->type), vsi->idx);
3775 			return status;
3776 		}
3777 
3778 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3779 			ice_vsi_type_str(vsi->type), vsi->idx);
3780 	}
3781 
3782 	return 0;
3783 }
3784 
3785 /**
3786  * ice_set_link - turn on/off physical link
3787  * @vsi: VSI to modify physical link on
3788  * @ena: turn on/off physical link
3789  */
3790 int ice_set_link(struct ice_vsi *vsi, bool ena)
3791 {
3792 	struct device *dev = ice_pf_to_dev(vsi->back);
3793 	struct ice_port_info *pi = vsi->port_info;
3794 	struct ice_hw *hw = pi->hw;
3795 	int status;
3796 
3797 	if (vsi->type != ICE_VSI_PF)
3798 		return -EINVAL;
3799 
3800 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3801 
3802 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3803 	 * this is not a fatal error, so print a warning message and return
3804 	 * a success code. Return an error if FW returns an error code other
3805 	 * than ICE_AQ_RC_EMODE
3806 	 */
3807 	if (status == -EIO) {
3808 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3809 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3810 				(ena ? "ON" : "OFF"), status,
3811 				ice_aq_str(hw->adminq.sq_last_status));
3812 	} else if (status) {
3813 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3814 			(ena ? "ON" : "OFF"), status,
3815 			ice_aq_str(hw->adminq.sq_last_status));
3816 		return status;
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 /**
3823  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3824  * @vsi: VSI used to add VLAN filters
3825  *
3826  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3827  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3828  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3829  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3830  *
3831  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3832  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3833  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3834  *
3835  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3836  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3837  * part of filtering.
3838  */
3839 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3840 {
3841 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3842 	struct ice_vlan vlan;
3843 	int err;
3844 
3845 	vlan = ICE_VLAN(0, 0, 0);
3846 	err = vlan_ops->add_vlan(vsi, &vlan);
3847 	if (err && err != -EEXIST)
3848 		return err;
3849 
3850 	/* in SVM both VLAN 0 filters are identical */
3851 	if (!ice_is_dvm_ena(&vsi->back->hw))
3852 		return 0;
3853 
3854 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3855 	err = vlan_ops->add_vlan(vsi, &vlan);
3856 	if (err && err != -EEXIST)
3857 		return err;
3858 
3859 	return 0;
3860 }
3861 
3862 /**
3863  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3864  * @vsi: VSI used to add VLAN filters
3865  *
3866  * Delete the VLAN 0 filters in the same manner that they were added in
3867  * ice_vsi_add_vlan_zero.
3868  */
3869 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3870 {
3871 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3872 	struct ice_vlan vlan;
3873 	int err;
3874 
3875 	vlan = ICE_VLAN(0, 0, 0);
3876 	err = vlan_ops->del_vlan(vsi, &vlan);
3877 	if (err && err != -EEXIST)
3878 		return err;
3879 
3880 	/* in SVM both VLAN 0 filters are identical */
3881 	if (!ice_is_dvm_ena(&vsi->back->hw))
3882 		return 0;
3883 
3884 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3885 	err = vlan_ops->del_vlan(vsi, &vlan);
3886 	if (err && err != -EEXIST)
3887 		return err;
3888 
3889 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3890 	 * promisc mode so the filter isn't left by accident
3891 	 */
3892 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3893 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3894 }
3895 
3896 /**
3897  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3898  * @vsi: VSI used to get the VLAN mode
3899  *
3900  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3901  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3902  */
3903 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3904 {
3905 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3906 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3907 	/* no VLAN 0 filter is created when a port VLAN is active */
3908 	if (vsi->type == ICE_VSI_VF) {
3909 		if (WARN_ON(!vsi->vf))
3910 			return 0;
3911 
3912 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3913 			return 0;
3914 	}
3915 
3916 	if (ice_is_dvm_ena(&vsi->back->hw))
3917 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3918 	else
3919 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3920 }
3921 
3922 /**
3923  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3924  * @vsi: VSI used to determine if any non-zero VLANs have been added
3925  */
3926 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3927 {
3928 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3929 }
3930 
3931 /**
3932  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3933  * @vsi: VSI used to get the number of non-zero VLANs added
3934  */
3935 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3936 {
3937 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3938 }
3939 
3940 /**
3941  * ice_is_feature_supported
3942  * @pf: pointer to the struct ice_pf instance
3943  * @f: feature enum to be checked
3944  *
3945  * returns true if feature is supported, false otherwise
3946  */
3947 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3948 {
3949 	if (f < 0 || f >= ICE_F_MAX)
3950 		return false;
3951 
3952 	return test_bit(f, pf->features);
3953 }
3954 
3955 /**
3956  * ice_set_feature_support
3957  * @pf: pointer to the struct ice_pf instance
3958  * @f: feature enum to set
3959  */
3960 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3961 {
3962 	if (f < 0 || f >= ICE_F_MAX)
3963 		return;
3964 
3965 	set_bit(f, pf->features);
3966 }
3967 
3968 /**
3969  * ice_clear_feature_support
3970  * @pf: pointer to the struct ice_pf instance
3971  * @f: feature enum to clear
3972  */
3973 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3974 {
3975 	if (f < 0 || f >= ICE_F_MAX)
3976 		return;
3977 
3978 	clear_bit(f, pf->features);
3979 }
3980 
3981 /**
3982  * ice_init_feature_support
3983  * @pf: pointer to the struct ice_pf instance
3984  *
3985  * called during init to setup supported feature
3986  */
3987 void ice_init_feature_support(struct ice_pf *pf)
3988 {
3989 	switch (pf->hw.device_id) {
3990 	case ICE_DEV_ID_E810C_BACKPLANE:
3991 	case ICE_DEV_ID_E810C_QSFP:
3992 	case ICE_DEV_ID_E810C_SFP:
3993 		ice_set_feature_support(pf, ICE_F_DSCP);
3994 		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
3995 		if (ice_is_e810t(&pf->hw)) {
3996 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3997 			if (ice_gnss_is_gps_present(&pf->hw))
3998 				ice_set_feature_support(pf, ICE_F_GNSS);
3999 		}
4000 		break;
4001 	default:
4002 		break;
4003 	}
4004 }
4005 
4006 /**
4007  * ice_vsi_update_security - update security block in VSI
4008  * @vsi: pointer to VSI structure
4009  * @fill: function pointer to fill ctx
4010  */
4011 int
4012 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4013 {
4014 	struct ice_vsi_ctx ctx = { 0 };
4015 
4016 	ctx.info = vsi->info;
4017 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4018 	fill(&ctx);
4019 
4020 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4021 		return -ENODEV;
4022 
4023 	vsi->info = ctx.info;
4024 	return 0;
4025 }
4026 
4027 /**
4028  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4029  * @ctx: pointer to VSI ctx structure
4030  */
4031 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4032 {
4033 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4034 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4035 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4036 }
4037 
4038 /**
4039  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4040  * @ctx: pointer to VSI ctx structure
4041  */
4042 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4043 {
4044 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4045 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4046 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4047 }
4048 
4049 /**
4050  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4051  * @ctx: pointer to VSI ctx structure
4052  */
4053 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4054 {
4055 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4056 }
4057 
4058 /**
4059  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4060  * @ctx: pointer to VSI ctx structure
4061  */
4062 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4063 {
4064 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4065 }
4066 
4067 /**
4068  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4069  * @vsi: pointer to VSI structure
4070  * @set: set or unset the bit
4071  */
4072 int
4073 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4074 {
4075 	struct ice_vsi_ctx ctx = {
4076 		.info	= vsi->info,
4077 	};
4078 
4079 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4080 	if (set)
4081 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4082 	else
4083 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4084 
4085 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4086 		return -ENODEV;
4087 
4088 	vsi->info = ctx.info;
4089 	return 0;
4090 }
4091