1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 109 if (!vsi->af_xdp_zc_qps) 110 goto err_zc_qps; 111 112 return 0; 113 114 err_zc_qps: 115 devm_kfree(dev, vsi->q_vectors); 116 err_vectors: 117 devm_kfree(dev, vsi->rxq_map); 118 err_rxq_map: 119 devm_kfree(dev, vsi->txq_map); 120 err_txq_map: 121 devm_kfree(dev, vsi->rx_rings); 122 err_rings: 123 devm_kfree(dev, vsi->tx_rings); 124 return -ENOMEM; 125 } 126 127 /** 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 129 * @vsi: the VSI being configured 130 */ 131 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 132 { 133 switch (vsi->type) { 134 case ICE_VSI_PF: 135 case ICE_VSI_CTRL: 136 case ICE_VSI_LB: 137 /* a user could change the values of num_[tr]x_desc using 138 * ethtool -G so we should keep those values instead of 139 * overwriting them with the defaults. 140 */ 141 if (!vsi->num_rx_desc) 142 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 143 if (!vsi->num_tx_desc) 144 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 145 break; 146 default: 147 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 148 vsi->type); 149 break; 150 } 151 } 152 153 /** 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 155 * @vsi: the VSI being configured 156 * @vf_id: ID of the VF being configured 157 * 158 * Return 0 on success and a negative value on error 159 */ 160 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 161 { 162 struct ice_pf *pf = vsi->back; 163 struct ice_vf *vf = NULL; 164 165 if (vsi->type == ICE_VSI_VF) 166 vsi->vf_id = vf_id; 167 else 168 vsi->vf_id = ICE_INVAL_VFID; 169 170 switch (vsi->type) { 171 case ICE_VSI_PF: 172 vsi->alloc_txq = min3(pf->num_lan_msix, 173 ice_get_avail_txq_count(pf), 174 (u16)num_online_cpus()); 175 if (vsi->req_txq) { 176 vsi->alloc_txq = vsi->req_txq; 177 vsi->num_txq = vsi->req_txq; 178 } 179 180 pf->num_lan_tx = vsi->alloc_txq; 181 182 /* only 1 Rx queue unless RSS is enabled */ 183 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 184 vsi->alloc_rxq = 1; 185 } else { 186 vsi->alloc_rxq = min3(pf->num_lan_msix, 187 ice_get_avail_rxq_count(pf), 188 (u16)num_online_cpus()); 189 if (vsi->req_rxq) { 190 vsi->alloc_rxq = vsi->req_rxq; 191 vsi->num_rxq = vsi->req_rxq; 192 } 193 } 194 195 pf->num_lan_rx = vsi->alloc_rxq; 196 197 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 198 max_t(int, vsi->alloc_rxq, 199 vsi->alloc_txq)); 200 break; 201 case ICE_VSI_VF: 202 vf = &pf->vf[vsi->vf_id]; 203 if (vf->num_req_qs) 204 vf->num_vf_qs = vf->num_req_qs; 205 vsi->alloc_txq = vf->num_vf_qs; 206 vsi->alloc_rxq = vf->num_vf_qs; 207 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 208 * data queue interrupts). Since vsi->num_q_vectors is number 209 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 210 * original vector count 211 */ 212 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 213 break; 214 case ICE_VSI_CTRL: 215 vsi->alloc_txq = 1; 216 vsi->alloc_rxq = 1; 217 vsi->num_q_vectors = 1; 218 break; 219 case ICE_VSI_LB: 220 vsi->alloc_txq = 1; 221 vsi->alloc_rxq = 1; 222 break; 223 default: 224 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 225 break; 226 } 227 228 ice_vsi_set_num_desc(vsi); 229 } 230 231 /** 232 * ice_get_free_slot - get the next non-NULL location index in array 233 * @array: array to search 234 * @size: size of the array 235 * @curr: last known occupied index to be used as a search hint 236 * 237 * void * is being used to keep the functionality generic. This lets us use this 238 * function on any array of pointers. 239 */ 240 static int ice_get_free_slot(void *array, int size, int curr) 241 { 242 int **tmp_array = (int **)array; 243 int next; 244 245 if (curr < (size - 1) && !tmp_array[curr + 1]) { 246 next = curr + 1; 247 } else { 248 int i = 0; 249 250 while ((i < size) && (tmp_array[i])) 251 i++; 252 if (i == size) 253 next = ICE_NO_VSI; 254 else 255 next = i; 256 } 257 return next; 258 } 259 260 /** 261 * ice_vsi_delete - delete a VSI from the switch 262 * @vsi: pointer to VSI being removed 263 */ 264 static void ice_vsi_delete(struct ice_vsi *vsi) 265 { 266 struct ice_pf *pf = vsi->back; 267 struct ice_vsi_ctx *ctxt; 268 enum ice_status status; 269 270 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 271 if (!ctxt) 272 return; 273 274 if (vsi->type == ICE_VSI_VF) 275 ctxt->vf_num = vsi->vf_id; 276 ctxt->vsi_num = vsi->vsi_num; 277 278 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 279 280 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 281 if (status) 282 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 283 vsi->vsi_num, ice_stat_str(status)); 284 285 kfree(ctxt); 286 } 287 288 /** 289 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 290 * @vsi: pointer to VSI being cleared 291 */ 292 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 293 { 294 struct ice_pf *pf = vsi->back; 295 struct device *dev; 296 297 dev = ice_pf_to_dev(pf); 298 299 if (vsi->af_xdp_zc_qps) { 300 bitmap_free(vsi->af_xdp_zc_qps); 301 vsi->af_xdp_zc_qps = NULL; 302 } 303 /* free the ring and vector containers */ 304 if (vsi->q_vectors) { 305 devm_kfree(dev, vsi->q_vectors); 306 vsi->q_vectors = NULL; 307 } 308 if (vsi->tx_rings) { 309 devm_kfree(dev, vsi->tx_rings); 310 vsi->tx_rings = NULL; 311 } 312 if (vsi->rx_rings) { 313 devm_kfree(dev, vsi->rx_rings); 314 vsi->rx_rings = NULL; 315 } 316 if (vsi->txq_map) { 317 devm_kfree(dev, vsi->txq_map); 318 vsi->txq_map = NULL; 319 } 320 if (vsi->rxq_map) { 321 devm_kfree(dev, vsi->rxq_map); 322 vsi->rxq_map = NULL; 323 } 324 } 325 326 /** 327 * ice_vsi_clear - clean up and deallocate the provided VSI 328 * @vsi: pointer to VSI being cleared 329 * 330 * This deallocates the VSI's queue resources, removes it from the PF's 331 * VSI array if necessary, and deallocates the VSI 332 * 333 * Returns 0 on success, negative on failure 334 */ 335 static int ice_vsi_clear(struct ice_vsi *vsi) 336 { 337 struct ice_pf *pf = NULL; 338 struct device *dev; 339 340 if (!vsi) 341 return 0; 342 343 if (!vsi->back) 344 return -EINVAL; 345 346 pf = vsi->back; 347 dev = ice_pf_to_dev(pf); 348 349 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 350 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 351 return -EINVAL; 352 } 353 354 mutex_lock(&pf->sw_mutex); 355 /* updates the PF for this cleared VSI */ 356 357 pf->vsi[vsi->idx] = NULL; 358 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 359 pf->next_vsi = vsi->idx; 360 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 361 vsi->vf_id != ICE_INVAL_VFID) 362 pf->next_vsi = vsi->idx; 363 364 ice_vsi_free_arrays(vsi); 365 mutex_unlock(&pf->sw_mutex); 366 devm_kfree(dev, vsi); 367 368 return 0; 369 } 370 371 /** 372 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 373 * @irq: interrupt number 374 * @data: pointer to a q_vector 375 */ 376 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 377 { 378 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 379 380 if (!q_vector->tx.ring) 381 return IRQ_HANDLED; 382 383 #define FDIR_RX_DESC_CLEAN_BUDGET 64 384 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 385 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 386 387 return IRQ_HANDLED; 388 } 389 390 /** 391 * ice_msix_clean_rings - MSIX mode Interrupt Handler 392 * @irq: interrupt number 393 * @data: pointer to a q_vector 394 */ 395 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 396 { 397 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 398 399 if (!q_vector->tx.ring && !q_vector->rx.ring) 400 return IRQ_HANDLED; 401 402 q_vector->total_events++; 403 404 napi_schedule(&q_vector->napi); 405 406 return IRQ_HANDLED; 407 } 408 409 /** 410 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 411 * @pf: board private structure 412 * @vsi_type: type of VSI 413 * @vf_id: ID of the VF being configured 414 * 415 * returns a pointer to a VSI on success, NULL on failure. 416 */ 417 static struct ice_vsi * 418 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 419 { 420 struct device *dev = ice_pf_to_dev(pf); 421 struct ice_vsi *vsi = NULL; 422 423 /* Need to protect the allocation of the VSIs at the PF level */ 424 mutex_lock(&pf->sw_mutex); 425 426 /* If we have already allocated our maximum number of VSIs, 427 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 428 * is available to be populated 429 */ 430 if (pf->next_vsi == ICE_NO_VSI) { 431 dev_dbg(dev, "out of VSI slots!\n"); 432 goto unlock_pf; 433 } 434 435 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 436 if (!vsi) 437 goto unlock_pf; 438 439 vsi->type = vsi_type; 440 vsi->back = pf; 441 set_bit(ICE_VSI_DOWN, vsi->state); 442 443 if (vsi_type == ICE_VSI_VF) 444 ice_vsi_set_num_qs(vsi, vf_id); 445 else 446 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 447 448 switch (vsi->type) { 449 case ICE_VSI_PF: 450 if (ice_vsi_alloc_arrays(vsi)) 451 goto err_rings; 452 453 /* Setup default MSIX irq handler for VSI */ 454 vsi->irq_handler = ice_msix_clean_rings; 455 break; 456 case ICE_VSI_CTRL: 457 if (ice_vsi_alloc_arrays(vsi)) 458 goto err_rings; 459 460 /* Setup ctrl VSI MSIX irq handler */ 461 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 462 break; 463 case ICE_VSI_VF: 464 if (ice_vsi_alloc_arrays(vsi)) 465 goto err_rings; 466 break; 467 case ICE_VSI_LB: 468 if (ice_vsi_alloc_arrays(vsi)) 469 goto err_rings; 470 break; 471 default: 472 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 473 goto unlock_pf; 474 } 475 476 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 477 /* Use the last VSI slot as the index for PF control VSI */ 478 vsi->idx = pf->num_alloc_vsi - 1; 479 pf->ctrl_vsi_idx = vsi->idx; 480 pf->vsi[vsi->idx] = vsi; 481 } else { 482 /* fill slot and make note of the index */ 483 vsi->idx = pf->next_vsi; 484 pf->vsi[pf->next_vsi] = vsi; 485 486 /* prepare pf->next_vsi for next use */ 487 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 488 pf->next_vsi); 489 } 490 491 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 492 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 493 goto unlock_pf; 494 495 err_rings: 496 devm_kfree(dev, vsi); 497 vsi = NULL; 498 unlock_pf: 499 mutex_unlock(&pf->sw_mutex); 500 return vsi; 501 } 502 503 /** 504 * ice_alloc_fd_res - Allocate FD resource for a VSI 505 * @vsi: pointer to the ice_vsi 506 * 507 * This allocates the FD resources 508 * 509 * Returns 0 on success, -EPERM on no-op or -EIO on failure 510 */ 511 static int ice_alloc_fd_res(struct ice_vsi *vsi) 512 { 513 struct ice_pf *pf = vsi->back; 514 u32 g_val, b_val; 515 516 /* Flow Director filters are only allocated/assigned to the PF VSI which 517 * passes the traffic. The CTRL VSI is only used to add/delete filters 518 * so we don't allocate resources to it 519 */ 520 521 /* FD filters from guaranteed pool per VSI */ 522 g_val = pf->hw.func_caps.fd_fltr_guar; 523 if (!g_val) 524 return -EPERM; 525 526 /* FD filters from best effort pool */ 527 b_val = pf->hw.func_caps.fd_fltr_best_effort; 528 if (!b_val) 529 return -EPERM; 530 531 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 532 return -EPERM; 533 534 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 535 return -EPERM; 536 537 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 538 539 /* each VSI gets same "best_effort" quota */ 540 vsi->num_bfltr = b_val; 541 542 if (vsi->type == ICE_VSI_VF) { 543 vsi->num_gfltr = 0; 544 545 /* each VSI gets same "best_effort" quota */ 546 vsi->num_bfltr = b_val; 547 } 548 549 return 0; 550 } 551 552 /** 553 * ice_vsi_get_qs - Assign queues from PF to VSI 554 * @vsi: the VSI to assign queues to 555 * 556 * Returns 0 on success and a negative value on error 557 */ 558 static int ice_vsi_get_qs(struct ice_vsi *vsi) 559 { 560 struct ice_pf *pf = vsi->back; 561 struct ice_qs_cfg tx_qs_cfg = { 562 .qs_mutex = &pf->avail_q_mutex, 563 .pf_map = pf->avail_txqs, 564 .pf_map_size = pf->max_pf_txqs, 565 .q_count = vsi->alloc_txq, 566 .scatter_count = ICE_MAX_SCATTER_TXQS, 567 .vsi_map = vsi->txq_map, 568 .vsi_map_offset = 0, 569 .mapping_mode = ICE_VSI_MAP_CONTIG 570 }; 571 struct ice_qs_cfg rx_qs_cfg = { 572 .qs_mutex = &pf->avail_q_mutex, 573 .pf_map = pf->avail_rxqs, 574 .pf_map_size = pf->max_pf_rxqs, 575 .q_count = vsi->alloc_rxq, 576 .scatter_count = ICE_MAX_SCATTER_RXQS, 577 .vsi_map = vsi->rxq_map, 578 .vsi_map_offset = 0, 579 .mapping_mode = ICE_VSI_MAP_CONTIG 580 }; 581 int ret; 582 583 ret = __ice_vsi_get_qs(&tx_qs_cfg); 584 if (ret) 585 return ret; 586 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 587 588 ret = __ice_vsi_get_qs(&rx_qs_cfg); 589 if (ret) 590 return ret; 591 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 592 593 return 0; 594 } 595 596 /** 597 * ice_vsi_put_qs - Release queues from VSI to PF 598 * @vsi: the VSI that is going to release queues 599 */ 600 static void ice_vsi_put_qs(struct ice_vsi *vsi) 601 { 602 struct ice_pf *pf = vsi->back; 603 int i; 604 605 mutex_lock(&pf->avail_q_mutex); 606 607 for (i = 0; i < vsi->alloc_txq; i++) { 608 clear_bit(vsi->txq_map[i], pf->avail_txqs); 609 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 610 } 611 612 for (i = 0; i < vsi->alloc_rxq; i++) { 613 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 614 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 615 } 616 617 mutex_unlock(&pf->avail_q_mutex); 618 } 619 620 /** 621 * ice_is_safe_mode 622 * @pf: pointer to the PF struct 623 * 624 * returns true if driver is in safe mode, false otherwise 625 */ 626 bool ice_is_safe_mode(struct ice_pf *pf) 627 { 628 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 629 } 630 631 /** 632 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 633 * @vsi: the VSI being cleaned up 634 * 635 * This function deletes RSS input set for all flows that were configured 636 * for this VSI 637 */ 638 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 639 { 640 struct ice_pf *pf = vsi->back; 641 enum ice_status status; 642 643 if (ice_is_safe_mode(pf)) 644 return; 645 646 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 647 if (status) 648 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 649 vsi->vsi_num, ice_stat_str(status)); 650 } 651 652 /** 653 * ice_rss_clean - Delete RSS related VSI structures and configuration 654 * @vsi: the VSI being removed 655 */ 656 static void ice_rss_clean(struct ice_vsi *vsi) 657 { 658 struct ice_pf *pf = vsi->back; 659 struct device *dev; 660 661 dev = ice_pf_to_dev(pf); 662 663 if (vsi->rss_hkey_user) 664 devm_kfree(dev, vsi->rss_hkey_user); 665 if (vsi->rss_lut_user) 666 devm_kfree(dev, vsi->rss_lut_user); 667 668 ice_vsi_clean_rss_flow_fld(vsi); 669 /* remove RSS replay list */ 670 if (!ice_is_safe_mode(pf)) 671 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 672 } 673 674 /** 675 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 676 * @vsi: the VSI being configured 677 */ 678 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 679 { 680 struct ice_hw_common_caps *cap; 681 struct ice_pf *pf = vsi->back; 682 683 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 684 vsi->rss_size = 1; 685 return; 686 } 687 688 cap = &pf->hw.func_caps.common_cap; 689 switch (vsi->type) { 690 case ICE_VSI_PF: 691 /* PF VSI will inherit RSS instance of PF */ 692 vsi->rss_table_size = (u16)cap->rss_table_size; 693 vsi->rss_size = min_t(u16, num_online_cpus(), 694 BIT(cap->rss_table_entry_width)); 695 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 696 break; 697 case ICE_VSI_VF: 698 /* VF VSI will get a small RSS table. 699 * For VSI_LUT, LUT size should be set to 64 bytes. 700 */ 701 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 702 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 703 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 704 break; 705 case ICE_VSI_LB: 706 break; 707 default: 708 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 709 ice_vsi_type_str(vsi->type)); 710 break; 711 } 712 } 713 714 /** 715 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 716 * @ctxt: the VSI context being set 717 * 718 * This initializes a default VSI context for all sections except the Queues. 719 */ 720 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 721 { 722 u32 table = 0; 723 724 memset(&ctxt->info, 0, sizeof(ctxt->info)); 725 /* VSI's should be allocated from shared pool */ 726 ctxt->alloc_from_pool = true; 727 /* Src pruning enabled by default */ 728 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 729 /* Traffic from VSI can be sent to LAN */ 730 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 731 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 732 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 733 * packets untagged/tagged. 734 */ 735 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 736 ICE_AQ_VSI_VLAN_MODE_M) >> 737 ICE_AQ_VSI_VLAN_MODE_S); 738 /* Have 1:1 UP mapping for both ingress/egress tables */ 739 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 740 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 741 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 742 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 743 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 744 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 745 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 746 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 747 ctxt->info.ingress_table = cpu_to_le32(table); 748 ctxt->info.egress_table = cpu_to_le32(table); 749 /* Have 1:1 UP mapping for outer to inner UP table */ 750 ctxt->info.outer_up_table = cpu_to_le32(table); 751 /* No Outer tag support outer_tag_flags remains to zero */ 752 } 753 754 /** 755 * ice_vsi_setup_q_map - Setup a VSI queue map 756 * @vsi: the VSI being configured 757 * @ctxt: VSI context structure 758 */ 759 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 760 { 761 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 762 u16 num_txq_per_tc, num_rxq_per_tc; 763 u16 qcount_tx = vsi->alloc_txq; 764 u16 qcount_rx = vsi->alloc_rxq; 765 bool ena_tc0 = false; 766 u8 netdev_tc = 0; 767 int i; 768 769 /* at least TC0 should be enabled by default */ 770 if (vsi->tc_cfg.numtc) { 771 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 772 ena_tc0 = true; 773 } else { 774 ena_tc0 = true; 775 } 776 777 if (ena_tc0) { 778 vsi->tc_cfg.numtc++; 779 vsi->tc_cfg.ena_tc |= 1; 780 } 781 782 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 783 if (!num_rxq_per_tc) 784 num_rxq_per_tc = 1; 785 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 786 if (!num_txq_per_tc) 787 num_txq_per_tc = 1; 788 789 /* find the (rounded up) power-of-2 of qcount */ 790 pow = (u16)order_base_2(num_rxq_per_tc); 791 792 /* TC mapping is a function of the number of Rx queues assigned to the 793 * VSI for each traffic class and the offset of these queues. 794 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 795 * queues allocated to TC0. No:of queues is a power-of-2. 796 * 797 * If TC is not enabled, the queue offset is set to 0, and allocate one 798 * queue, this way, traffic for the given TC will be sent to the default 799 * queue. 800 * 801 * Setup number and offset of Rx queues for all TCs for the VSI 802 */ 803 ice_for_each_traffic_class(i) { 804 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 805 /* TC is not enabled */ 806 vsi->tc_cfg.tc_info[i].qoffset = 0; 807 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 808 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 809 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 810 ctxt->info.tc_mapping[i] = 0; 811 continue; 812 } 813 814 /* TC is enabled */ 815 vsi->tc_cfg.tc_info[i].qoffset = offset; 816 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 817 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 818 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 819 820 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 821 ICE_AQ_VSI_TC_Q_OFFSET_M) | 822 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 823 ICE_AQ_VSI_TC_Q_NUM_M); 824 offset += num_rxq_per_tc; 825 tx_count += num_txq_per_tc; 826 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 827 } 828 829 /* if offset is non-zero, means it is calculated correctly based on 830 * enabled TCs for a given VSI otherwise qcount_rx will always 831 * be correct and non-zero because it is based off - VSI's 832 * allocated Rx queues which is at least 1 (hence qcount_tx will be 833 * at least 1) 834 */ 835 if (offset) 836 vsi->num_rxq = offset; 837 else 838 vsi->num_rxq = num_rxq_per_tc; 839 840 vsi->num_txq = tx_count; 841 842 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 843 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 844 /* since there is a chance that num_rxq could have been changed 845 * in the above for loop, make num_txq equal to num_rxq. 846 */ 847 vsi->num_txq = vsi->num_rxq; 848 } 849 850 /* Rx queue mapping */ 851 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 852 /* q_mapping buffer holds the info for the first queue allocated for 853 * this VSI in the PF space and also the number of queues associated 854 * with this VSI. 855 */ 856 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 857 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 858 } 859 860 /** 861 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 862 * @ctxt: the VSI context being set 863 * @vsi: the VSI being configured 864 */ 865 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 866 { 867 u8 dflt_q_group, dflt_q_prio; 868 u16 dflt_q, report_q, val; 869 870 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 871 vsi->type != ICE_VSI_VF) 872 return; 873 874 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 875 ctxt->info.valid_sections |= cpu_to_le16(val); 876 dflt_q = 0; 877 dflt_q_group = 0; 878 report_q = 0; 879 dflt_q_prio = 0; 880 881 /* enable flow director filtering/programming */ 882 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 883 ctxt->info.fd_options = cpu_to_le16(val); 884 /* max of allocated flow director filters */ 885 ctxt->info.max_fd_fltr_dedicated = 886 cpu_to_le16(vsi->num_gfltr); 887 /* max of shared flow director filters any VSI may program */ 888 ctxt->info.max_fd_fltr_shared = 889 cpu_to_le16(vsi->num_bfltr); 890 /* default queue index within the VSI of the default FD */ 891 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 892 ICE_AQ_VSI_FD_DEF_Q_M); 893 /* target queue or queue group to the FD filter */ 894 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 895 ICE_AQ_VSI_FD_DEF_GRP_M); 896 ctxt->info.fd_def_q = cpu_to_le16(val); 897 /* queue index on which FD filter completion is reported */ 898 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 899 ICE_AQ_VSI_FD_REPORT_Q_M); 900 /* priority of the default qindex action */ 901 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 902 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 903 ctxt->info.fd_report_opt = cpu_to_le16(val); 904 } 905 906 /** 907 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 908 * @ctxt: the VSI context being set 909 * @vsi: the VSI being configured 910 */ 911 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 912 { 913 u8 lut_type, hash_type; 914 struct device *dev; 915 struct ice_pf *pf; 916 917 pf = vsi->back; 918 dev = ice_pf_to_dev(pf); 919 920 switch (vsi->type) { 921 case ICE_VSI_PF: 922 /* PF VSI will inherit RSS instance of PF */ 923 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 924 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 925 break; 926 case ICE_VSI_VF: 927 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 928 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 929 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 930 break; 931 default: 932 dev_dbg(dev, "Unsupported VSI type %s\n", 933 ice_vsi_type_str(vsi->type)); 934 return; 935 } 936 937 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 938 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 939 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 940 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 941 } 942 943 /** 944 * ice_vsi_init - Create and initialize a VSI 945 * @vsi: the VSI being configured 946 * @init_vsi: is this call creating a VSI 947 * 948 * This initializes a VSI context depending on the VSI type to be added and 949 * passes it down to the add_vsi aq command to create a new VSI. 950 */ 951 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 952 { 953 struct ice_pf *pf = vsi->back; 954 struct ice_hw *hw = &pf->hw; 955 struct ice_vsi_ctx *ctxt; 956 struct device *dev; 957 int ret = 0; 958 959 dev = ice_pf_to_dev(pf); 960 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 961 if (!ctxt) 962 return -ENOMEM; 963 964 switch (vsi->type) { 965 case ICE_VSI_CTRL: 966 case ICE_VSI_LB: 967 case ICE_VSI_PF: 968 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 969 break; 970 case ICE_VSI_VF: 971 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 972 /* VF number here is the absolute VF number (0-255) */ 973 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 974 break; 975 default: 976 ret = -ENODEV; 977 goto out; 978 } 979 980 ice_set_dflt_vsi_ctx(ctxt); 981 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 982 ice_set_fd_vsi_ctx(ctxt, vsi); 983 /* if the switch is in VEB mode, allow VSI loopback */ 984 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 985 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 986 987 /* Set LUT type and HASH type if RSS is enabled */ 988 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 989 vsi->type != ICE_VSI_CTRL) { 990 ice_set_rss_vsi_ctx(ctxt, vsi); 991 /* if updating VSI context, make sure to set valid_section: 992 * to indicate which section of VSI context being updated 993 */ 994 if (!init_vsi) 995 ctxt->info.valid_sections |= 996 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 997 } 998 999 ctxt->info.sw_id = vsi->port_info->sw_id; 1000 ice_vsi_setup_q_map(vsi, ctxt); 1001 if (!init_vsi) /* means VSI being updated */ 1002 /* must to indicate which section of VSI context are 1003 * being modified 1004 */ 1005 ctxt->info.valid_sections |= 1006 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1007 1008 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1009 * respectively 1010 */ 1011 if (vsi->type == ICE_VSI_VF) { 1012 ctxt->info.valid_sections |= 1013 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1014 if (pf->vf[vsi->vf_id].spoofchk) { 1015 ctxt->info.sec_flags |= 1016 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1017 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1018 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1019 } else { 1020 ctxt->info.sec_flags &= 1021 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1022 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1023 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1024 } 1025 } 1026 1027 /* Allow control frames out of main VSI */ 1028 if (vsi->type == ICE_VSI_PF) { 1029 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1030 ctxt->info.valid_sections |= 1031 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1032 } 1033 1034 if (init_vsi) { 1035 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1036 if (ret) { 1037 dev_err(dev, "Add VSI failed, err %d\n", ret); 1038 ret = -EIO; 1039 goto out; 1040 } 1041 } else { 1042 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1043 if (ret) { 1044 dev_err(dev, "Update VSI failed, err %d\n", ret); 1045 ret = -EIO; 1046 goto out; 1047 } 1048 } 1049 1050 /* keep context for update VSI operations */ 1051 vsi->info = ctxt->info; 1052 1053 /* record VSI number returned */ 1054 vsi->vsi_num = ctxt->vsi_num; 1055 1056 out: 1057 kfree(ctxt); 1058 return ret; 1059 } 1060 1061 /** 1062 * ice_free_res - free a block of resources 1063 * @res: pointer to the resource 1064 * @index: starting index previously returned by ice_get_res 1065 * @id: identifier to track owner 1066 * 1067 * Returns number of resources freed 1068 */ 1069 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1070 { 1071 int count = 0; 1072 int i; 1073 1074 if (!res || index >= res->end) 1075 return -EINVAL; 1076 1077 id |= ICE_RES_VALID_BIT; 1078 for (i = index; i < res->end && res->list[i] == id; i++) { 1079 res->list[i] = 0; 1080 count++; 1081 } 1082 1083 return count; 1084 } 1085 1086 /** 1087 * ice_search_res - Search the tracker for a block of resources 1088 * @res: pointer to the resource 1089 * @needed: size of the block needed 1090 * @id: identifier to track owner 1091 * 1092 * Returns the base item index of the block, or -ENOMEM for error 1093 */ 1094 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1095 { 1096 u16 start = 0, end = 0; 1097 1098 if (needed > res->end) 1099 return -ENOMEM; 1100 1101 id |= ICE_RES_VALID_BIT; 1102 1103 do { 1104 /* skip already allocated entries */ 1105 if (res->list[end++] & ICE_RES_VALID_BIT) { 1106 start = end; 1107 if ((start + needed) > res->end) 1108 break; 1109 } 1110 1111 if (end == (start + needed)) { 1112 int i = start; 1113 1114 /* there was enough, so assign it to the requestor */ 1115 while (i != end) 1116 res->list[i++] = id; 1117 1118 return start; 1119 } 1120 } while (end < res->end); 1121 1122 return -ENOMEM; 1123 } 1124 1125 /** 1126 * ice_get_free_res_count - Get free count from a resource tracker 1127 * @res: Resource tracker instance 1128 */ 1129 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1130 { 1131 u16 i, count = 0; 1132 1133 for (i = 0; i < res->end; i++) 1134 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1135 count++; 1136 1137 return count; 1138 } 1139 1140 /** 1141 * ice_get_res - get a block of resources 1142 * @pf: board private structure 1143 * @res: pointer to the resource 1144 * @needed: size of the block needed 1145 * @id: identifier to track owner 1146 * 1147 * Returns the base item index of the block, or negative for error 1148 */ 1149 int 1150 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1151 { 1152 if (!res || !pf) 1153 return -EINVAL; 1154 1155 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1156 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1157 needed, res->num_entries, id); 1158 return -EINVAL; 1159 } 1160 1161 return ice_search_res(res, needed, id); 1162 } 1163 1164 /** 1165 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1166 * @vsi: ptr to the VSI 1167 * 1168 * This should only be called after ice_vsi_alloc() which allocates the 1169 * corresponding SW VSI structure and initializes num_queue_pairs for the 1170 * newly allocated VSI. 1171 * 1172 * Returns 0 on success or negative on failure 1173 */ 1174 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1175 { 1176 struct ice_pf *pf = vsi->back; 1177 struct device *dev; 1178 u16 num_q_vectors; 1179 int base; 1180 1181 dev = ice_pf_to_dev(pf); 1182 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1183 if (vsi->type == ICE_VSI_VF) 1184 return 0; 1185 1186 if (vsi->base_vector) { 1187 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1188 vsi->vsi_num, vsi->base_vector); 1189 return -EEXIST; 1190 } 1191 1192 num_q_vectors = vsi->num_q_vectors; 1193 /* reserve slots from OS requested IRQs */ 1194 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1195 struct ice_vf *vf; 1196 int i; 1197 1198 ice_for_each_vf(pf, i) { 1199 vf = &pf->vf[i]; 1200 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1201 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1202 break; 1203 } 1204 } 1205 if (i == pf->num_alloc_vfs) 1206 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1207 ICE_RES_VF_CTRL_VEC_ID); 1208 } else { 1209 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1210 vsi->idx); 1211 } 1212 1213 if (base < 0) { 1214 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1215 ice_get_free_res_count(pf->irq_tracker), 1216 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1217 return -ENOENT; 1218 } 1219 vsi->base_vector = (u16)base; 1220 pf->num_avail_sw_msix -= num_q_vectors; 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1227 * @vsi: the VSI having rings deallocated 1228 */ 1229 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1230 { 1231 int i; 1232 1233 /* Avoid stale references by clearing map from vector to ring */ 1234 if (vsi->q_vectors) { 1235 ice_for_each_q_vector(vsi, i) { 1236 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1237 1238 if (q_vector) { 1239 q_vector->tx.ring = NULL; 1240 q_vector->rx.ring = NULL; 1241 } 1242 } 1243 } 1244 1245 if (vsi->tx_rings) { 1246 for (i = 0; i < vsi->alloc_txq; i++) { 1247 if (vsi->tx_rings[i]) { 1248 kfree_rcu(vsi->tx_rings[i], rcu); 1249 WRITE_ONCE(vsi->tx_rings[i], NULL); 1250 } 1251 } 1252 } 1253 if (vsi->rx_rings) { 1254 for (i = 0; i < vsi->alloc_rxq; i++) { 1255 if (vsi->rx_rings[i]) { 1256 kfree_rcu(vsi->rx_rings[i], rcu); 1257 WRITE_ONCE(vsi->rx_rings[i], NULL); 1258 } 1259 } 1260 } 1261 } 1262 1263 /** 1264 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1265 * @vsi: VSI which is having rings allocated 1266 */ 1267 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1268 { 1269 struct ice_pf *pf = vsi->back; 1270 struct device *dev; 1271 u16 i; 1272 1273 dev = ice_pf_to_dev(pf); 1274 /* Allocate Tx rings */ 1275 for (i = 0; i < vsi->alloc_txq; i++) { 1276 struct ice_ring *ring; 1277 1278 /* allocate with kzalloc(), free with kfree_rcu() */ 1279 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1280 1281 if (!ring) 1282 goto err_out; 1283 1284 ring->q_index = i; 1285 ring->reg_idx = vsi->txq_map[i]; 1286 ring->ring_active = false; 1287 ring->vsi = vsi; 1288 ring->dev = dev; 1289 ring->count = vsi->num_tx_desc; 1290 WRITE_ONCE(vsi->tx_rings[i], ring); 1291 } 1292 1293 /* Allocate Rx rings */ 1294 for (i = 0; i < vsi->alloc_rxq; i++) { 1295 struct ice_ring *ring; 1296 1297 /* allocate with kzalloc(), free with kfree_rcu() */ 1298 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1299 if (!ring) 1300 goto err_out; 1301 1302 ring->q_index = i; 1303 ring->reg_idx = vsi->rxq_map[i]; 1304 ring->ring_active = false; 1305 ring->vsi = vsi; 1306 ring->netdev = vsi->netdev; 1307 ring->dev = dev; 1308 ring->count = vsi->num_rx_desc; 1309 WRITE_ONCE(vsi->rx_rings[i], ring); 1310 } 1311 1312 return 0; 1313 1314 err_out: 1315 ice_vsi_clear_rings(vsi); 1316 return -ENOMEM; 1317 } 1318 1319 /** 1320 * ice_vsi_manage_rss_lut - disable/enable RSS 1321 * @vsi: the VSI being changed 1322 * @ena: boolean value indicating if this is an enable or disable request 1323 * 1324 * In the event of disable request for RSS, this function will zero out RSS 1325 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1326 * LUT. 1327 */ 1328 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1329 { 1330 u8 *lut; 1331 1332 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1333 if (!lut) 1334 return; 1335 1336 if (ena) { 1337 if (vsi->rss_lut_user) 1338 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1339 else 1340 ice_fill_rss_lut(lut, vsi->rss_table_size, 1341 vsi->rss_size); 1342 } 1343 1344 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1345 kfree(lut); 1346 } 1347 1348 /** 1349 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1350 * @vsi: VSI to be configured 1351 */ 1352 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1353 { 1354 struct ice_pf *pf = vsi->back; 1355 struct device *dev; 1356 u8 *lut, *key; 1357 int err; 1358 1359 dev = ice_pf_to_dev(pf); 1360 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1361 1362 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1363 if (!lut) 1364 return -ENOMEM; 1365 1366 if (vsi->rss_lut_user) 1367 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1368 else 1369 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1370 1371 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1372 if (err) { 1373 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1374 goto ice_vsi_cfg_rss_exit; 1375 } 1376 1377 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1378 if (!key) { 1379 err = -ENOMEM; 1380 goto ice_vsi_cfg_rss_exit; 1381 } 1382 1383 if (vsi->rss_hkey_user) 1384 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1385 else 1386 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1387 1388 err = ice_set_rss_key(vsi, key); 1389 if (err) 1390 dev_err(dev, "set_rss_key failed, error %d\n", err); 1391 1392 kfree(key); 1393 ice_vsi_cfg_rss_exit: 1394 kfree(lut); 1395 return err; 1396 } 1397 1398 /** 1399 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1400 * @vsi: VSI to be configured 1401 * 1402 * This function will only be called during the VF VSI setup. Upon successful 1403 * completion of package download, this function will configure default RSS 1404 * input sets for VF VSI. 1405 */ 1406 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1407 { 1408 struct ice_pf *pf = vsi->back; 1409 enum ice_status status; 1410 struct device *dev; 1411 1412 dev = ice_pf_to_dev(pf); 1413 if (ice_is_safe_mode(pf)) { 1414 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1415 vsi->vsi_num); 1416 return; 1417 } 1418 1419 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1420 if (status) 1421 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1422 vsi->vsi_num, ice_stat_str(status)); 1423 } 1424 1425 /** 1426 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1427 * @vsi: VSI to be configured 1428 * 1429 * This function will only be called after successful download package call 1430 * during initialization of PF. Since the downloaded package will erase the 1431 * RSS section, this function will configure RSS input sets for different 1432 * flow types. The last profile added has the highest priority, therefore 2 1433 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1434 * (i.e. IPv4 src/dst TCP src/dst port). 1435 */ 1436 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1437 { 1438 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1439 struct ice_pf *pf = vsi->back; 1440 struct ice_hw *hw = &pf->hw; 1441 enum ice_status status; 1442 struct device *dev; 1443 1444 dev = ice_pf_to_dev(pf); 1445 if (ice_is_safe_mode(pf)) { 1446 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1447 vsi_num); 1448 return; 1449 } 1450 /* configure RSS for IPv4 with input set IP src/dst */ 1451 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1452 ICE_FLOW_SEG_HDR_IPV4); 1453 if (status) 1454 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1455 vsi_num, ice_stat_str(status)); 1456 1457 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1458 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1459 ICE_FLOW_SEG_HDR_IPV6); 1460 if (status) 1461 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1462 vsi_num, ice_stat_str(status)); 1463 1464 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1466 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1467 if (status) 1468 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1469 vsi_num, ice_stat_str(status)); 1470 1471 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1473 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1474 if (status) 1475 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1476 vsi_num, ice_stat_str(status)); 1477 1478 /* configure RSS for sctp4 with input set IP src/dst */ 1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1480 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1481 if (status) 1482 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1483 vsi_num, ice_stat_str(status)); 1484 1485 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1487 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1488 if (status) 1489 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1490 vsi_num, ice_stat_str(status)); 1491 1492 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1493 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1494 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1495 if (status) 1496 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1497 vsi_num, ice_stat_str(status)); 1498 1499 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1500 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1501 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1502 if (status) 1503 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1504 vsi_num, ice_stat_str(status)); 1505 } 1506 1507 /** 1508 * ice_pf_state_is_nominal - checks the PF for nominal state 1509 * @pf: pointer to PF to check 1510 * 1511 * Check the PF's state for a collection of bits that would indicate 1512 * the PF is in a state that would inhibit normal operation for 1513 * driver functionality. 1514 * 1515 * Returns true if PF is in a nominal state, false otherwise 1516 */ 1517 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1518 { 1519 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1520 1521 if (!pf) 1522 return false; 1523 1524 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1525 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1526 return false; 1527 1528 return true; 1529 } 1530 1531 /** 1532 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1533 * @vsi: the VSI to be updated 1534 */ 1535 void ice_update_eth_stats(struct ice_vsi *vsi) 1536 { 1537 struct ice_eth_stats *prev_es, *cur_es; 1538 struct ice_hw *hw = &vsi->back->hw; 1539 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1540 1541 prev_es = &vsi->eth_stats_prev; 1542 cur_es = &vsi->eth_stats; 1543 1544 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1545 &prev_es->rx_bytes, &cur_es->rx_bytes); 1546 1547 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1548 &prev_es->rx_unicast, &cur_es->rx_unicast); 1549 1550 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1551 &prev_es->rx_multicast, &cur_es->rx_multicast); 1552 1553 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1554 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1555 1556 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1557 &prev_es->rx_discards, &cur_es->rx_discards); 1558 1559 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1560 &prev_es->tx_bytes, &cur_es->tx_bytes); 1561 1562 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1563 &prev_es->tx_unicast, &cur_es->tx_unicast); 1564 1565 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1566 &prev_es->tx_multicast, &cur_es->tx_multicast); 1567 1568 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1569 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1570 1571 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1572 &prev_es->tx_errors, &cur_es->tx_errors); 1573 1574 vsi->stat_offsets_loaded = true; 1575 } 1576 1577 /** 1578 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1579 * @vsi: the VSI being configured 1580 * @vid: VLAN ID to be added 1581 * @action: filter action to be performed on match 1582 */ 1583 int 1584 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1585 { 1586 struct ice_pf *pf = vsi->back; 1587 struct device *dev; 1588 int err = 0; 1589 1590 dev = ice_pf_to_dev(pf); 1591 1592 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1593 vsi->num_vlan++; 1594 } else { 1595 err = -ENODEV; 1596 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1597 vsi->vsi_num); 1598 } 1599 1600 return err; 1601 } 1602 1603 /** 1604 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1605 * @vsi: the VSI being configured 1606 * @vid: VLAN ID to be removed 1607 * 1608 * Returns 0 on success and negative on failure 1609 */ 1610 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1611 { 1612 struct ice_pf *pf = vsi->back; 1613 enum ice_status status; 1614 struct device *dev; 1615 int err = 0; 1616 1617 dev = ice_pf_to_dev(pf); 1618 1619 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1620 if (!status) { 1621 vsi->num_vlan--; 1622 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1623 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1624 vid, vsi->vsi_num, ice_stat_str(status)); 1625 } else { 1626 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1627 vid, vsi->vsi_num, ice_stat_str(status)); 1628 err = -EIO; 1629 } 1630 1631 return err; 1632 } 1633 1634 /** 1635 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1636 * @vsi: VSI 1637 */ 1638 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1639 { 1640 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1641 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1642 vsi->rx_buf_len = ICE_RXBUF_2048; 1643 #if (PAGE_SIZE < 8192) 1644 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1645 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1646 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1647 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1648 #endif 1649 } else { 1650 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1651 #if (PAGE_SIZE < 8192) 1652 vsi->rx_buf_len = ICE_RXBUF_3072; 1653 #else 1654 vsi->rx_buf_len = ICE_RXBUF_2048; 1655 #endif 1656 } 1657 } 1658 1659 /** 1660 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1661 * @hw: HW pointer 1662 * @pf_q: index of the Rx queue in the PF's queue space 1663 * @rxdid: flexible descriptor RXDID 1664 * @prio: priority for the RXDID for this queue 1665 */ 1666 void 1667 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1668 { 1669 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1670 1671 /* clear any previous values */ 1672 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1673 QRXFLXP_CNTXT_RXDID_PRIO_M | 1674 QRXFLXP_CNTXT_TS_M); 1675 1676 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1677 QRXFLXP_CNTXT_RXDID_IDX_M; 1678 1679 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1680 QRXFLXP_CNTXT_RXDID_PRIO_M; 1681 1682 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1683 } 1684 1685 /** 1686 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1687 * @vsi: the VSI being configured 1688 * 1689 * Return 0 on success and a negative value on error 1690 * Configure the Rx VSI for operation. 1691 */ 1692 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1693 { 1694 u16 i; 1695 1696 if (vsi->type == ICE_VSI_VF) 1697 goto setup_rings; 1698 1699 ice_vsi_cfg_frame_size(vsi); 1700 setup_rings: 1701 /* set up individual rings */ 1702 for (i = 0; i < vsi->num_rxq; i++) { 1703 int err; 1704 1705 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1706 if (err) { 1707 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1708 i, err); 1709 return err; 1710 } 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1718 * @vsi: the VSI being configured 1719 * @rings: Tx ring array to be configured 1720 * @count: number of Tx ring array elements 1721 * 1722 * Return 0 on success and a negative value on error 1723 * Configure the Tx VSI for operation. 1724 */ 1725 static int 1726 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count) 1727 { 1728 struct ice_aqc_add_tx_qgrp *qg_buf; 1729 u16 q_idx = 0; 1730 int err = 0; 1731 1732 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1733 if (!qg_buf) 1734 return -ENOMEM; 1735 1736 qg_buf->num_txqs = 1; 1737 1738 for (q_idx = 0; q_idx < count; q_idx++) { 1739 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1740 if (err) 1741 goto err_cfg_txqs; 1742 } 1743 1744 err_cfg_txqs: 1745 kfree(qg_buf); 1746 return err; 1747 } 1748 1749 /** 1750 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1751 * @vsi: the VSI being configured 1752 * 1753 * Return 0 on success and a negative value on error 1754 * Configure the Tx VSI for operation. 1755 */ 1756 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1757 { 1758 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1759 } 1760 1761 /** 1762 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1763 * @vsi: the VSI being configured 1764 * 1765 * Return 0 on success and a negative value on error 1766 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1767 */ 1768 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1769 { 1770 int ret; 1771 int i; 1772 1773 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1774 if (ret) 1775 return ret; 1776 1777 for (i = 0; i < vsi->num_xdp_txq; i++) 1778 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1779 1780 return ret; 1781 } 1782 1783 /** 1784 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1785 * @intrl: interrupt rate limit in usecs 1786 * @gran: interrupt rate limit granularity in usecs 1787 * 1788 * This function converts a decimal interrupt rate limit in usecs to the format 1789 * expected by firmware. 1790 */ 1791 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1792 { 1793 u32 val = intrl / gran; 1794 1795 if (val) 1796 return val | GLINT_RATE_INTRL_ENA_M; 1797 return 0; 1798 } 1799 1800 /** 1801 * ice_write_intrl - write throttle rate limit to interrupt specific register 1802 * @q_vector: pointer to interrupt specific structure 1803 * @intrl: throttle rate limit in microseconds to write 1804 */ 1805 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1806 { 1807 struct ice_hw *hw = &q_vector->vsi->back->hw; 1808 1809 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1810 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1811 } 1812 1813 /** 1814 * __ice_write_itr - write throttle rate to register 1815 * @q_vector: pointer to interrupt data structure 1816 * @rc: pointer to ring container 1817 * @itr: throttle rate in microseconds to write 1818 */ 1819 static void __ice_write_itr(struct ice_q_vector *q_vector, 1820 struct ice_ring_container *rc, u16 itr) 1821 { 1822 struct ice_hw *hw = &q_vector->vsi->back->hw; 1823 1824 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1825 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1826 } 1827 1828 /** 1829 * ice_write_itr - write throttle rate to queue specific register 1830 * @rc: pointer to ring container 1831 * @itr: throttle rate in microseconds to write 1832 */ 1833 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1834 { 1835 struct ice_q_vector *q_vector; 1836 1837 if (!rc->ring) 1838 return; 1839 1840 q_vector = rc->ring->q_vector; 1841 1842 __ice_write_itr(q_vector, rc, itr); 1843 } 1844 1845 /** 1846 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1847 * @vsi: the VSI being configured 1848 * 1849 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1850 * for the VF VSI. 1851 */ 1852 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1853 { 1854 struct ice_pf *pf = vsi->back; 1855 struct ice_hw *hw = &pf->hw; 1856 u16 txq = 0, rxq = 0; 1857 int i, q; 1858 1859 for (i = 0; i < vsi->num_q_vectors; i++) { 1860 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1861 u16 reg_idx = q_vector->reg_idx; 1862 1863 ice_cfg_itr(hw, q_vector); 1864 1865 /* Both Transmit Queue Interrupt Cause Control register 1866 * and Receive Queue Interrupt Cause control register 1867 * expects MSIX_INDX field to be the vector index 1868 * within the function space and not the absolute 1869 * vector index across PF or across device. 1870 * For SR-IOV VF VSIs queue vector index always starts 1871 * with 1 since first vector index(0) is used for OICR 1872 * in VF space. Since VMDq and other PF VSIs are within 1873 * the PF function space, use the vector index that is 1874 * tracked for this PF. 1875 */ 1876 for (q = 0; q < q_vector->num_ring_tx; q++) { 1877 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1878 q_vector->tx.itr_idx); 1879 txq++; 1880 } 1881 1882 for (q = 0; q < q_vector->num_ring_rx; q++) { 1883 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1884 q_vector->rx.itr_idx); 1885 rxq++; 1886 } 1887 } 1888 } 1889 1890 /** 1891 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1892 * @vsi: the VSI being changed 1893 */ 1894 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1895 { 1896 struct ice_hw *hw = &vsi->back->hw; 1897 struct ice_vsi_ctx *ctxt; 1898 enum ice_status status; 1899 int ret = 0; 1900 1901 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1902 if (!ctxt) 1903 return -ENOMEM; 1904 1905 /* Here we are configuring the VSI to let the driver add VLAN tags by 1906 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1907 * insertion happens in the Tx hot path, in ice_tx_map. 1908 */ 1909 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1910 1911 /* Preserve existing VLAN strip setting */ 1912 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1913 ICE_AQ_VSI_VLAN_EMOD_M); 1914 1915 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1916 1917 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1918 if (status) { 1919 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1920 ice_stat_str(status), 1921 ice_aq_str(hw->adminq.sq_last_status)); 1922 ret = -EIO; 1923 goto out; 1924 } 1925 1926 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1927 out: 1928 kfree(ctxt); 1929 return ret; 1930 } 1931 1932 /** 1933 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1934 * @vsi: the VSI being changed 1935 * @ena: boolean value indicating if this is a enable or disable request 1936 */ 1937 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1938 { 1939 struct ice_hw *hw = &vsi->back->hw; 1940 struct ice_vsi_ctx *ctxt; 1941 enum ice_status status; 1942 int ret = 0; 1943 1944 /* do not allow modifying VLAN stripping when a port VLAN is configured 1945 * on this VSI 1946 */ 1947 if (vsi->info.pvid) 1948 return 0; 1949 1950 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1951 if (!ctxt) 1952 return -ENOMEM; 1953 1954 /* Here we are configuring what the VSI should do with the VLAN tag in 1955 * the Rx packet. We can either leave the tag in the packet or put it in 1956 * the Rx descriptor. 1957 */ 1958 if (ena) 1959 /* Strip VLAN tag from Rx packet and put it in the desc */ 1960 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1961 else 1962 /* Disable stripping. Leave tag in packet */ 1963 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1964 1965 /* Allow all packets untagged/tagged */ 1966 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1967 1968 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1969 1970 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1971 if (status) { 1972 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1973 ena, ice_stat_str(status), 1974 ice_aq_str(hw->adminq.sq_last_status)); 1975 ret = -EIO; 1976 goto out; 1977 } 1978 1979 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1980 out: 1981 kfree(ctxt); 1982 return ret; 1983 } 1984 1985 /** 1986 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1987 * @vsi: the VSI whose rings are to be enabled 1988 * 1989 * Returns 0 on success and a negative value on error 1990 */ 1991 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1992 { 1993 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1994 } 1995 1996 /** 1997 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1998 * @vsi: the VSI whose rings are to be disabled 1999 * 2000 * Returns 0 on success and a negative value on error 2001 */ 2002 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2003 { 2004 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2005 } 2006 2007 /** 2008 * ice_vsi_stop_tx_rings - Disable Tx rings 2009 * @vsi: the VSI being configured 2010 * @rst_src: reset source 2011 * @rel_vmvf_num: Relative ID of VF/VM 2012 * @rings: Tx ring array to be stopped 2013 * @count: number of Tx ring array elements 2014 */ 2015 static int 2016 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2017 u16 rel_vmvf_num, struct ice_ring **rings, u16 count) 2018 { 2019 u16 q_idx; 2020 2021 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2022 return -EINVAL; 2023 2024 for (q_idx = 0; q_idx < count; q_idx++) { 2025 struct ice_txq_meta txq_meta = { }; 2026 int status; 2027 2028 if (!rings || !rings[q_idx]) 2029 return -EINVAL; 2030 2031 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2032 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2033 rings[q_idx], &txq_meta); 2034 2035 if (status) 2036 return status; 2037 } 2038 2039 return 0; 2040 } 2041 2042 /** 2043 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2044 * @vsi: the VSI being configured 2045 * @rst_src: reset source 2046 * @rel_vmvf_num: Relative ID of VF/VM 2047 */ 2048 int 2049 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2050 u16 rel_vmvf_num) 2051 { 2052 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2053 } 2054 2055 /** 2056 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2057 * @vsi: the VSI being configured 2058 */ 2059 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2060 { 2061 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2062 } 2063 2064 /** 2065 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2066 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2067 * 2068 * returns true if Rx VLAN pruning is enabled and false otherwise. 2069 */ 2070 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2071 { 2072 if (!vsi) 2073 return false; 2074 2075 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2076 } 2077 2078 /** 2079 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2080 * @vsi: VSI to enable or disable VLAN pruning on 2081 * @ena: set to true to enable VLAN pruning and false to disable it 2082 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2083 * 2084 * returns 0 if VSI is updated, negative otherwise 2085 */ 2086 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2087 { 2088 struct ice_vsi_ctx *ctxt; 2089 struct ice_pf *pf; 2090 int status; 2091 2092 if (!vsi) 2093 return -EINVAL; 2094 2095 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2096 * mode. VLAN pruning will be enabled when the interface exits 2097 * promiscuous mode if any VLAN filters are active. 2098 */ 2099 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2100 return 0; 2101 2102 pf = vsi->back; 2103 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2104 if (!ctxt) 2105 return -ENOMEM; 2106 2107 ctxt->info = vsi->info; 2108 2109 if (ena) 2110 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2111 else 2112 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2113 2114 if (!vlan_promisc) 2115 ctxt->info.valid_sections = 2116 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2117 2118 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2119 if (status) { 2120 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2121 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2122 ice_stat_str(status), 2123 ice_aq_str(pf->hw.adminq.sq_last_status)); 2124 goto err_out; 2125 } 2126 2127 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2128 2129 kfree(ctxt); 2130 return 0; 2131 2132 err_out: 2133 kfree(ctxt); 2134 return -EIO; 2135 } 2136 2137 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2138 { 2139 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2140 2141 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2142 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2143 } 2144 2145 /** 2146 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2147 * @vsi: VSI to set the q_vectors register index on 2148 */ 2149 static int 2150 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2151 { 2152 u16 i; 2153 2154 if (!vsi || !vsi->q_vectors) 2155 return -EINVAL; 2156 2157 ice_for_each_q_vector(vsi, i) { 2158 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2159 2160 if (!q_vector) { 2161 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2162 i, vsi->vsi_num); 2163 goto clear_reg_idx; 2164 } 2165 2166 if (vsi->type == ICE_VSI_VF) { 2167 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2168 2169 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2170 } else { 2171 q_vector->reg_idx = 2172 q_vector->v_idx + vsi->base_vector; 2173 } 2174 } 2175 2176 return 0; 2177 2178 clear_reg_idx: 2179 ice_for_each_q_vector(vsi, i) { 2180 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2181 2182 if (q_vector) 2183 q_vector->reg_idx = 0; 2184 } 2185 2186 return -EINVAL; 2187 } 2188 2189 /** 2190 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2191 * @vsi: the VSI being configured 2192 * @tx: bool to determine Tx or Rx rule 2193 * @create: bool to determine create or remove Rule 2194 */ 2195 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2196 { 2197 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2198 enum ice_sw_fwd_act_type act); 2199 struct ice_pf *pf = vsi->back; 2200 enum ice_status status; 2201 struct device *dev; 2202 2203 dev = ice_pf_to_dev(pf); 2204 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2205 2206 if (tx) { 2207 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2208 ICE_DROP_PACKET); 2209 } else { 2210 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2211 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2212 create); 2213 } else { 2214 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2215 ICE_FWD_TO_VSI); 2216 } 2217 } 2218 2219 if (status) 2220 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2221 create ? "adding" : "removing", tx ? "TX" : "RX", 2222 vsi->vsi_num, ice_stat_str(status)); 2223 } 2224 2225 /** 2226 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2227 * @vsi: pointer to the VSI 2228 * 2229 * This function will allocate new scheduler aggregator now if needed and will 2230 * move specified VSI into it. 2231 */ 2232 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2233 { 2234 struct device *dev = ice_pf_to_dev(vsi->back); 2235 struct ice_agg_node *agg_node_iter = NULL; 2236 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2237 struct ice_agg_node *agg_node = NULL; 2238 int node_offset, max_agg_nodes = 0; 2239 struct ice_port_info *port_info; 2240 struct ice_pf *pf = vsi->back; 2241 u32 agg_node_id_start = 0; 2242 enum ice_status status; 2243 2244 /* create (as needed) scheduler aggregator node and move VSI into 2245 * corresponding aggregator node 2246 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2247 * - VF aggregator nodes will contain VF VSI 2248 */ 2249 port_info = pf->hw.port_info; 2250 if (!port_info) 2251 return; 2252 2253 switch (vsi->type) { 2254 case ICE_VSI_CTRL: 2255 case ICE_VSI_LB: 2256 case ICE_VSI_PF: 2257 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2258 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2259 agg_node_iter = &pf->pf_agg_node[0]; 2260 break; 2261 case ICE_VSI_VF: 2262 /* user can create 'n' VFs on a given PF, but since max children 2263 * per aggregator node can be only 64. Following code handles 2264 * aggregator(s) for VF VSIs, either selects a agg_node which 2265 * was already created provided num_vsis < 64, otherwise 2266 * select next available node, which will be created 2267 */ 2268 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2269 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2270 agg_node_iter = &pf->vf_agg_node[0]; 2271 break; 2272 default: 2273 /* other VSI type, handle later if needed */ 2274 dev_dbg(dev, "unexpected VSI type %s\n", 2275 ice_vsi_type_str(vsi->type)); 2276 return; 2277 } 2278 2279 /* find the appropriate aggregator node */ 2280 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2281 /* see if we can find space in previously created 2282 * node if num_vsis < 64, otherwise skip 2283 */ 2284 if (agg_node_iter->num_vsis && 2285 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2286 agg_node_iter++; 2287 continue; 2288 } 2289 2290 if (agg_node_iter->valid && 2291 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2292 agg_id = agg_node_iter->agg_id; 2293 agg_node = agg_node_iter; 2294 break; 2295 } 2296 2297 /* find unclaimed agg_id */ 2298 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2299 agg_id = node_offset + agg_node_id_start; 2300 agg_node = agg_node_iter; 2301 break; 2302 } 2303 /* move to next agg_node */ 2304 agg_node_iter++; 2305 } 2306 2307 if (!agg_node) 2308 return; 2309 2310 /* if selected aggregator node was not created, create it */ 2311 if (!agg_node->valid) { 2312 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2313 (u8)vsi->tc_cfg.ena_tc); 2314 if (status) { 2315 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2316 agg_id); 2317 return; 2318 } 2319 /* aggregator node is created, store the neeeded info */ 2320 agg_node->valid = true; 2321 agg_node->agg_id = agg_id; 2322 } 2323 2324 /* move VSI to corresponding aggregator node */ 2325 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2326 (u8)vsi->tc_cfg.ena_tc); 2327 if (status) { 2328 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2329 vsi->idx, agg_id); 2330 return; 2331 } 2332 2333 /* keep active children count for aggregator node */ 2334 agg_node->num_vsis++; 2335 2336 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2337 * to aggregator node 2338 */ 2339 vsi->agg_node = agg_node; 2340 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2341 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2342 vsi->agg_node->num_vsis); 2343 } 2344 2345 /** 2346 * ice_vsi_setup - Set up a VSI by a given type 2347 * @pf: board private structure 2348 * @pi: pointer to the port_info instance 2349 * @vsi_type: VSI type 2350 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2351 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2352 * fill-in ICE_INVAL_VFID as input. 2353 * 2354 * This allocates the sw VSI structure and its queue resources. 2355 * 2356 * Returns pointer to the successfully allocated and configured VSI sw struct on 2357 * success, NULL on failure. 2358 */ 2359 struct ice_vsi * 2360 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2361 enum ice_vsi_type vsi_type, u16 vf_id) 2362 { 2363 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2364 struct device *dev = ice_pf_to_dev(pf); 2365 enum ice_status status; 2366 struct ice_vsi *vsi; 2367 int ret, i; 2368 2369 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2370 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2371 else 2372 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2373 2374 if (!vsi) { 2375 dev_err(dev, "could not allocate VSI\n"); 2376 return NULL; 2377 } 2378 2379 vsi->port_info = pi; 2380 vsi->vsw = pf->first_sw; 2381 if (vsi->type == ICE_VSI_PF) 2382 vsi->ethtype = ETH_P_PAUSE; 2383 2384 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2385 vsi->vf_id = vf_id; 2386 2387 ice_alloc_fd_res(vsi); 2388 2389 if (ice_vsi_get_qs(vsi)) { 2390 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2391 vsi->idx); 2392 goto unroll_vsi_alloc; 2393 } 2394 2395 /* set RSS capabilities */ 2396 ice_vsi_set_rss_params(vsi); 2397 2398 /* set TC configuration */ 2399 ice_vsi_set_tc_cfg(vsi); 2400 2401 /* create the VSI */ 2402 ret = ice_vsi_init(vsi, true); 2403 if (ret) 2404 goto unroll_get_qs; 2405 2406 switch (vsi->type) { 2407 case ICE_VSI_CTRL: 2408 case ICE_VSI_PF: 2409 ret = ice_vsi_alloc_q_vectors(vsi); 2410 if (ret) 2411 goto unroll_vsi_init; 2412 2413 ret = ice_vsi_setup_vector_base(vsi); 2414 if (ret) 2415 goto unroll_alloc_q_vector; 2416 2417 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2418 if (ret) 2419 goto unroll_vector_base; 2420 2421 ret = ice_vsi_alloc_rings(vsi); 2422 if (ret) 2423 goto unroll_vector_base; 2424 2425 /* Always add VLAN ID 0 switch rule by default. This is needed 2426 * in order to allow all untagged and 0 tagged priority traffic 2427 * if Rx VLAN pruning is enabled. Also there are cases where we 2428 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2429 * so this handles those cases (i.e. adding the PF to a bridge 2430 * without the 8021q module loaded). 2431 */ 2432 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2433 if (ret) 2434 goto unroll_clear_rings; 2435 2436 ice_vsi_map_rings_to_vectors(vsi); 2437 2438 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2439 if (vsi->type != ICE_VSI_CTRL) 2440 /* Do not exit if configuring RSS had an issue, at 2441 * least receive traffic on first queue. Hence no 2442 * need to capture return value 2443 */ 2444 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2445 ice_vsi_cfg_rss_lut_key(vsi); 2446 ice_vsi_set_rss_flow_fld(vsi); 2447 } 2448 ice_init_arfs(vsi); 2449 break; 2450 case ICE_VSI_VF: 2451 /* VF driver will take care of creating netdev for this type and 2452 * map queues to vectors through Virtchnl, PF driver only 2453 * creates a VSI and corresponding structures for bookkeeping 2454 * purpose 2455 */ 2456 ret = ice_vsi_alloc_q_vectors(vsi); 2457 if (ret) 2458 goto unroll_vsi_init; 2459 2460 ret = ice_vsi_alloc_rings(vsi); 2461 if (ret) 2462 goto unroll_alloc_q_vector; 2463 2464 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2465 if (ret) 2466 goto unroll_vector_base; 2467 2468 /* Do not exit if configuring RSS had an issue, at least 2469 * receive traffic on first queue. Hence no need to capture 2470 * return value 2471 */ 2472 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2473 ice_vsi_cfg_rss_lut_key(vsi); 2474 ice_vsi_set_vf_rss_flow_fld(vsi); 2475 } 2476 break; 2477 case ICE_VSI_LB: 2478 ret = ice_vsi_alloc_rings(vsi); 2479 if (ret) 2480 goto unroll_vsi_init; 2481 break; 2482 default: 2483 /* clean up the resources and exit */ 2484 goto unroll_vsi_init; 2485 } 2486 2487 /* configure VSI nodes based on number of queues and TC's */ 2488 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2489 max_txqs[i] = vsi->alloc_txq; 2490 2491 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2492 max_txqs); 2493 if (status) { 2494 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2495 vsi->vsi_num, ice_stat_str(status)); 2496 goto unroll_clear_rings; 2497 } 2498 2499 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2500 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2501 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2502 * The rule is added once for PF VSI in order to create appropriate 2503 * recipe, since VSI/VSI list is ignored with drop action... 2504 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2505 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2506 * settings in the HW. 2507 */ 2508 if (!ice_is_safe_mode(pf)) 2509 if (vsi->type == ICE_VSI_PF) { 2510 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2511 ICE_DROP_PACKET); 2512 ice_cfg_sw_lldp(vsi, true, true); 2513 } 2514 2515 if (!vsi->agg_node) 2516 ice_set_agg_vsi(vsi); 2517 return vsi; 2518 2519 unroll_clear_rings: 2520 ice_vsi_clear_rings(vsi); 2521 unroll_vector_base: 2522 /* reclaim SW interrupts back to the common pool */ 2523 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2524 pf->num_avail_sw_msix += vsi->num_q_vectors; 2525 unroll_alloc_q_vector: 2526 ice_vsi_free_q_vectors(vsi); 2527 unroll_vsi_init: 2528 ice_vsi_delete(vsi); 2529 unroll_get_qs: 2530 ice_vsi_put_qs(vsi); 2531 unroll_vsi_alloc: 2532 if (vsi_type == ICE_VSI_VF) 2533 ice_enable_lag(pf->lag); 2534 ice_vsi_clear(vsi); 2535 2536 return NULL; 2537 } 2538 2539 /** 2540 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2541 * @vsi: the VSI being cleaned up 2542 */ 2543 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2544 { 2545 struct ice_pf *pf = vsi->back; 2546 struct ice_hw *hw = &pf->hw; 2547 u32 txq = 0; 2548 u32 rxq = 0; 2549 int i, q; 2550 2551 for (i = 0; i < vsi->num_q_vectors; i++) { 2552 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2553 2554 ice_write_intrl(q_vector, 0); 2555 for (q = 0; q < q_vector->num_ring_tx; q++) { 2556 ice_write_itr(&q_vector->tx, 0); 2557 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2558 if (ice_is_xdp_ena_vsi(vsi)) { 2559 u32 xdp_txq = txq + vsi->num_xdp_txq; 2560 2561 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2562 } 2563 txq++; 2564 } 2565 2566 for (q = 0; q < q_vector->num_ring_rx; q++) { 2567 ice_write_itr(&q_vector->rx, 0); 2568 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2569 rxq++; 2570 } 2571 } 2572 2573 ice_flush(hw); 2574 } 2575 2576 /** 2577 * ice_vsi_free_irq - Free the IRQ association with the OS 2578 * @vsi: the VSI being configured 2579 */ 2580 void ice_vsi_free_irq(struct ice_vsi *vsi) 2581 { 2582 struct ice_pf *pf = vsi->back; 2583 int base = vsi->base_vector; 2584 int i; 2585 2586 if (!vsi->q_vectors || !vsi->irqs_ready) 2587 return; 2588 2589 ice_vsi_release_msix(vsi); 2590 if (vsi->type == ICE_VSI_VF) 2591 return; 2592 2593 vsi->irqs_ready = false; 2594 ice_for_each_q_vector(vsi, i) { 2595 u16 vector = i + base; 2596 int irq_num; 2597 2598 irq_num = pf->msix_entries[vector].vector; 2599 2600 /* free only the irqs that were actually requested */ 2601 if (!vsi->q_vectors[i] || 2602 !(vsi->q_vectors[i]->num_ring_tx || 2603 vsi->q_vectors[i]->num_ring_rx)) 2604 continue; 2605 2606 /* clear the affinity notifier in the IRQ descriptor */ 2607 irq_set_affinity_notifier(irq_num, NULL); 2608 2609 /* clear the affinity_mask in the IRQ descriptor */ 2610 irq_set_affinity_hint(irq_num, NULL); 2611 synchronize_irq(irq_num); 2612 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2613 } 2614 } 2615 2616 /** 2617 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2618 * @vsi: the VSI having resources freed 2619 */ 2620 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2621 { 2622 int i; 2623 2624 if (!vsi->tx_rings) 2625 return; 2626 2627 ice_for_each_txq(vsi, i) 2628 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2629 ice_free_tx_ring(vsi->tx_rings[i]); 2630 } 2631 2632 /** 2633 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2634 * @vsi: the VSI having resources freed 2635 */ 2636 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2637 { 2638 int i; 2639 2640 if (!vsi->rx_rings) 2641 return; 2642 2643 ice_for_each_rxq(vsi, i) 2644 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2645 ice_free_rx_ring(vsi->rx_rings[i]); 2646 } 2647 2648 /** 2649 * ice_vsi_close - Shut down a VSI 2650 * @vsi: the VSI being shut down 2651 */ 2652 void ice_vsi_close(struct ice_vsi *vsi) 2653 { 2654 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2655 ice_down(vsi); 2656 2657 ice_vsi_free_irq(vsi); 2658 ice_vsi_free_tx_rings(vsi); 2659 ice_vsi_free_rx_rings(vsi); 2660 } 2661 2662 /** 2663 * ice_ena_vsi - resume a VSI 2664 * @vsi: the VSI being resume 2665 * @locked: is the rtnl_lock already held 2666 */ 2667 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2668 { 2669 int err = 0; 2670 2671 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2672 return 0; 2673 2674 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2675 2676 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2677 if (netif_running(vsi->netdev)) { 2678 if (!locked) 2679 rtnl_lock(); 2680 2681 err = ice_open_internal(vsi->netdev); 2682 2683 if (!locked) 2684 rtnl_unlock(); 2685 } 2686 } else if (vsi->type == ICE_VSI_CTRL) { 2687 err = ice_vsi_open_ctrl(vsi); 2688 } 2689 2690 return err; 2691 } 2692 2693 /** 2694 * ice_dis_vsi - pause a VSI 2695 * @vsi: the VSI being paused 2696 * @locked: is the rtnl_lock already held 2697 */ 2698 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2699 { 2700 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2701 return; 2702 2703 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2704 2705 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2706 if (netif_running(vsi->netdev)) { 2707 if (!locked) 2708 rtnl_lock(); 2709 2710 ice_vsi_close(vsi); 2711 2712 if (!locked) 2713 rtnl_unlock(); 2714 } else { 2715 ice_vsi_close(vsi); 2716 } 2717 } else if (vsi->type == ICE_VSI_CTRL) { 2718 ice_vsi_close(vsi); 2719 } 2720 } 2721 2722 /** 2723 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2724 * @vsi: the VSI being un-configured 2725 */ 2726 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2727 { 2728 int base = vsi->base_vector; 2729 struct ice_pf *pf = vsi->back; 2730 struct ice_hw *hw = &pf->hw; 2731 u32 val; 2732 int i; 2733 2734 /* disable interrupt causation from each queue */ 2735 if (vsi->tx_rings) { 2736 ice_for_each_txq(vsi, i) { 2737 if (vsi->tx_rings[i]) { 2738 u16 reg; 2739 2740 reg = vsi->tx_rings[i]->reg_idx; 2741 val = rd32(hw, QINT_TQCTL(reg)); 2742 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2743 wr32(hw, QINT_TQCTL(reg), val); 2744 } 2745 } 2746 } 2747 2748 if (vsi->rx_rings) { 2749 ice_for_each_rxq(vsi, i) { 2750 if (vsi->rx_rings[i]) { 2751 u16 reg; 2752 2753 reg = vsi->rx_rings[i]->reg_idx; 2754 val = rd32(hw, QINT_RQCTL(reg)); 2755 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2756 wr32(hw, QINT_RQCTL(reg), val); 2757 } 2758 } 2759 } 2760 2761 /* disable each interrupt */ 2762 ice_for_each_q_vector(vsi, i) { 2763 if (!vsi->q_vectors[i]) 2764 continue; 2765 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2766 } 2767 2768 ice_flush(hw); 2769 2770 /* don't call synchronize_irq() for VF's from the host */ 2771 if (vsi->type == ICE_VSI_VF) 2772 return; 2773 2774 ice_for_each_q_vector(vsi, i) 2775 synchronize_irq(pf->msix_entries[i + base].vector); 2776 } 2777 2778 /** 2779 * ice_napi_del - Remove NAPI handler for the VSI 2780 * @vsi: VSI for which NAPI handler is to be removed 2781 */ 2782 void ice_napi_del(struct ice_vsi *vsi) 2783 { 2784 int v_idx; 2785 2786 if (!vsi->netdev) 2787 return; 2788 2789 ice_for_each_q_vector(vsi, v_idx) 2790 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2791 } 2792 2793 /** 2794 * ice_vsi_release - Delete a VSI and free its resources 2795 * @vsi: the VSI being removed 2796 * 2797 * Returns 0 on success or < 0 on error 2798 */ 2799 int ice_vsi_release(struct ice_vsi *vsi) 2800 { 2801 struct ice_pf *pf; 2802 2803 if (!vsi->back) 2804 return -ENODEV; 2805 pf = vsi->back; 2806 2807 /* do not unregister while driver is in the reset recovery pending 2808 * state. Since reset/rebuild happens through PF service task workqueue, 2809 * it's not a good idea to unregister netdev that is associated to the 2810 * PF that is running the work queue items currently. This is done to 2811 * avoid check_flush_dependency() warning on this wq 2812 */ 2813 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2814 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2815 unregister_netdev(vsi->netdev); 2816 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2817 } 2818 2819 ice_devlink_destroy_port(vsi); 2820 2821 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2822 ice_rss_clean(vsi); 2823 2824 /* Disable VSI and free resources */ 2825 if (vsi->type != ICE_VSI_LB) 2826 ice_vsi_dis_irq(vsi); 2827 ice_vsi_close(vsi); 2828 2829 /* SR-IOV determines needed MSIX resources all at once instead of per 2830 * VSI since when VFs are spawned we know how many VFs there are and how 2831 * many interrupts each VF needs. SR-IOV MSIX resources are also 2832 * cleared in the same manner. 2833 */ 2834 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2835 struct ice_vf *vf; 2836 int i; 2837 2838 ice_for_each_vf(pf, i) { 2839 vf = &pf->vf[i]; 2840 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2841 break; 2842 } 2843 if (i == pf->num_alloc_vfs) { 2844 /* No other VFs left that have control VSI, reclaim SW 2845 * interrupts back to the common pool 2846 */ 2847 ice_free_res(pf->irq_tracker, vsi->base_vector, 2848 ICE_RES_VF_CTRL_VEC_ID); 2849 pf->num_avail_sw_msix += vsi->num_q_vectors; 2850 } 2851 } else if (vsi->type != ICE_VSI_VF) { 2852 /* reclaim SW interrupts back to the common pool */ 2853 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2854 pf->num_avail_sw_msix += vsi->num_q_vectors; 2855 } 2856 2857 if (!ice_is_safe_mode(pf)) { 2858 if (vsi->type == ICE_VSI_PF) { 2859 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2860 ICE_DROP_PACKET); 2861 ice_cfg_sw_lldp(vsi, true, false); 2862 /* The Rx rule will only exist to remove if the LLDP FW 2863 * engine is currently stopped 2864 */ 2865 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2866 ice_cfg_sw_lldp(vsi, false, false); 2867 } 2868 } 2869 2870 ice_fltr_remove_all(vsi); 2871 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2872 ice_vsi_delete(vsi); 2873 ice_vsi_free_q_vectors(vsi); 2874 2875 if (vsi->netdev) { 2876 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2877 unregister_netdev(vsi->netdev); 2878 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2879 } 2880 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2881 free_netdev(vsi->netdev); 2882 vsi->netdev = NULL; 2883 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2884 } 2885 } 2886 2887 if (vsi->type == ICE_VSI_VF && 2888 vsi->agg_node && vsi->agg_node->valid) 2889 vsi->agg_node->num_vsis--; 2890 ice_vsi_clear_rings(vsi); 2891 2892 ice_vsi_put_qs(vsi); 2893 2894 /* retain SW VSI data structure since it is needed to unregister and 2895 * free VSI netdev when PF is not in reset recovery pending state,\ 2896 * for ex: during rmmod. 2897 */ 2898 if (!ice_is_reset_in_progress(pf->state)) 2899 ice_vsi_clear(vsi); 2900 2901 return 0; 2902 } 2903 2904 /** 2905 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2906 * @vsi: VSI connected with q_vectors 2907 * @coalesce: array of struct with stored coalesce 2908 * 2909 * Returns array size. 2910 */ 2911 static int 2912 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2913 struct ice_coalesce_stored *coalesce) 2914 { 2915 int i; 2916 2917 ice_for_each_q_vector(vsi, i) { 2918 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2919 2920 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2921 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2922 coalesce[i].intrl = q_vector->intrl; 2923 2924 if (i < vsi->num_txq) 2925 coalesce[i].tx_valid = true; 2926 if (i < vsi->num_rxq) 2927 coalesce[i].rx_valid = true; 2928 } 2929 2930 return vsi->num_q_vectors; 2931 } 2932 2933 /** 2934 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2935 * @vsi: VSI connected with q_vectors 2936 * @coalesce: pointer to array of struct with stored coalesce 2937 * @size: size of coalesce array 2938 * 2939 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2940 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2941 * to default value. 2942 */ 2943 static void 2944 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2945 struct ice_coalesce_stored *coalesce, int size) 2946 { 2947 struct ice_ring_container *rc; 2948 int i; 2949 2950 if ((size && !coalesce) || !vsi) 2951 return; 2952 2953 /* There are a couple of cases that have to be handled here: 2954 * 1. The case where the number of queue vectors stays the same, but 2955 * the number of Tx or Rx rings changes (the first for loop) 2956 * 2. The case where the number of queue vectors increased (the 2957 * second for loop) 2958 */ 2959 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2960 /* There are 2 cases to handle here and they are the same for 2961 * both Tx and Rx: 2962 * if the entry was valid previously (coalesce[i].[tr]x_valid 2963 * and the loop variable is less than the number of rings 2964 * allocated, then write the previous values 2965 * 2966 * if the entry was not valid previously, but the number of 2967 * rings is less than are allocated (this means the number of 2968 * rings increased from previously), then write out the 2969 * values in the first element 2970 * 2971 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2972 * as there is no harm because the dynamic algorithm 2973 * will just overwrite. 2974 */ 2975 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2976 rc = &vsi->q_vectors[i]->rx; 2977 rc->itr_setting = coalesce[i].itr_rx; 2978 ice_write_itr(rc, rc->itr_setting); 2979 } else if (i < vsi->alloc_rxq) { 2980 rc = &vsi->q_vectors[i]->rx; 2981 rc->itr_setting = coalesce[0].itr_rx; 2982 ice_write_itr(rc, rc->itr_setting); 2983 } 2984 2985 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2986 rc = &vsi->q_vectors[i]->tx; 2987 rc->itr_setting = coalesce[i].itr_tx; 2988 ice_write_itr(rc, rc->itr_setting); 2989 } else if (i < vsi->alloc_txq) { 2990 rc = &vsi->q_vectors[i]->tx; 2991 rc->itr_setting = coalesce[0].itr_tx; 2992 ice_write_itr(rc, rc->itr_setting); 2993 } 2994 2995 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2996 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 2997 } 2998 2999 /* the number of queue vectors increased so write whatever is in 3000 * the first element 3001 */ 3002 for (; i < vsi->num_q_vectors; i++) { 3003 /* transmit */ 3004 rc = &vsi->q_vectors[i]->tx; 3005 rc->itr_setting = coalesce[0].itr_tx; 3006 ice_write_itr(rc, rc->itr_setting); 3007 3008 /* receive */ 3009 rc = &vsi->q_vectors[i]->rx; 3010 rc->itr_setting = coalesce[0].itr_rx; 3011 ice_write_itr(rc, rc->itr_setting); 3012 3013 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3014 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3015 } 3016 } 3017 3018 /** 3019 * ice_vsi_rebuild - Rebuild VSI after reset 3020 * @vsi: VSI to be rebuild 3021 * @init_vsi: is this an initialization or a reconfigure of the VSI 3022 * 3023 * Returns 0 on success and negative value on failure 3024 */ 3025 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3026 { 3027 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3028 struct ice_coalesce_stored *coalesce; 3029 int prev_num_q_vectors = 0; 3030 struct ice_vf *vf = NULL; 3031 enum ice_vsi_type vtype; 3032 enum ice_status status; 3033 struct ice_pf *pf; 3034 int ret, i; 3035 3036 if (!vsi) 3037 return -EINVAL; 3038 3039 pf = vsi->back; 3040 vtype = vsi->type; 3041 if (vtype == ICE_VSI_VF) 3042 vf = &pf->vf[vsi->vf_id]; 3043 3044 coalesce = kcalloc(vsi->num_q_vectors, 3045 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3046 if (!coalesce) 3047 return -ENOMEM; 3048 3049 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3050 3051 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3052 ice_vsi_free_q_vectors(vsi); 3053 3054 /* SR-IOV determines needed MSIX resources all at once instead of per 3055 * VSI since when VFs are spawned we know how many VFs there are and how 3056 * many interrupts each VF needs. SR-IOV MSIX resources are also 3057 * cleared in the same manner. 3058 */ 3059 if (vtype != ICE_VSI_VF) { 3060 /* reclaim SW interrupts back to the common pool */ 3061 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3062 pf->num_avail_sw_msix += vsi->num_q_vectors; 3063 vsi->base_vector = 0; 3064 } 3065 3066 if (ice_is_xdp_ena_vsi(vsi)) 3067 /* return value check can be skipped here, it always returns 3068 * 0 if reset is in progress 3069 */ 3070 ice_destroy_xdp_rings(vsi); 3071 ice_vsi_put_qs(vsi); 3072 ice_vsi_clear_rings(vsi); 3073 ice_vsi_free_arrays(vsi); 3074 if (vtype == ICE_VSI_VF) 3075 ice_vsi_set_num_qs(vsi, vf->vf_id); 3076 else 3077 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3078 3079 ret = ice_vsi_alloc_arrays(vsi); 3080 if (ret < 0) 3081 goto err_vsi; 3082 3083 ice_vsi_get_qs(vsi); 3084 3085 ice_alloc_fd_res(vsi); 3086 ice_vsi_set_tc_cfg(vsi); 3087 3088 /* Initialize VSI struct elements and create VSI in FW */ 3089 ret = ice_vsi_init(vsi, init_vsi); 3090 if (ret < 0) 3091 goto err_vsi; 3092 3093 switch (vtype) { 3094 case ICE_VSI_CTRL: 3095 case ICE_VSI_PF: 3096 ret = ice_vsi_alloc_q_vectors(vsi); 3097 if (ret) 3098 goto err_rings; 3099 3100 ret = ice_vsi_setup_vector_base(vsi); 3101 if (ret) 3102 goto err_vectors; 3103 3104 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3105 if (ret) 3106 goto err_vectors; 3107 3108 ret = ice_vsi_alloc_rings(vsi); 3109 if (ret) 3110 goto err_vectors; 3111 3112 ice_vsi_map_rings_to_vectors(vsi); 3113 if (ice_is_xdp_ena_vsi(vsi)) { 3114 vsi->num_xdp_txq = vsi->alloc_rxq; 3115 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3116 if (ret) 3117 goto err_vectors; 3118 } 3119 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3120 if (vtype != ICE_VSI_CTRL) 3121 /* Do not exit if configuring RSS had an issue, at 3122 * least receive traffic on first queue. Hence no 3123 * need to capture return value 3124 */ 3125 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3126 ice_vsi_cfg_rss_lut_key(vsi); 3127 break; 3128 case ICE_VSI_VF: 3129 ret = ice_vsi_alloc_q_vectors(vsi); 3130 if (ret) 3131 goto err_rings; 3132 3133 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3134 if (ret) 3135 goto err_vectors; 3136 3137 ret = ice_vsi_alloc_rings(vsi); 3138 if (ret) 3139 goto err_vectors; 3140 3141 break; 3142 default: 3143 break; 3144 } 3145 3146 /* configure VSI nodes based on number of queues and TC's */ 3147 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3148 max_txqs[i] = vsi->alloc_txq; 3149 3150 if (ice_is_xdp_ena_vsi(vsi)) 3151 max_txqs[i] += vsi->num_xdp_txq; 3152 } 3153 3154 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3155 max_txqs); 3156 if (status) { 3157 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3158 vsi->vsi_num, ice_stat_str(status)); 3159 if (init_vsi) { 3160 ret = -EIO; 3161 goto err_vectors; 3162 } else { 3163 return ice_schedule_reset(pf, ICE_RESET_PFR); 3164 } 3165 } 3166 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3167 kfree(coalesce); 3168 3169 return 0; 3170 3171 err_vectors: 3172 ice_vsi_free_q_vectors(vsi); 3173 err_rings: 3174 if (vsi->netdev) { 3175 vsi->current_netdev_flags = 0; 3176 unregister_netdev(vsi->netdev); 3177 free_netdev(vsi->netdev); 3178 vsi->netdev = NULL; 3179 } 3180 err_vsi: 3181 ice_vsi_clear(vsi); 3182 set_bit(ICE_RESET_FAILED, pf->state); 3183 kfree(coalesce); 3184 return ret; 3185 } 3186 3187 /** 3188 * ice_is_reset_in_progress - check for a reset in progress 3189 * @state: PF state field 3190 */ 3191 bool ice_is_reset_in_progress(unsigned long *state) 3192 { 3193 return test_bit(ICE_RESET_OICR_RECV, state) || 3194 test_bit(ICE_PFR_REQ, state) || 3195 test_bit(ICE_CORER_REQ, state) || 3196 test_bit(ICE_GLOBR_REQ, state); 3197 } 3198 3199 #ifdef CONFIG_DCB 3200 /** 3201 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3202 * @vsi: VSI being configured 3203 * @ctx: the context buffer returned from AQ VSI update command 3204 */ 3205 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3206 { 3207 vsi->info.mapping_flags = ctx->info.mapping_flags; 3208 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3209 sizeof(vsi->info.q_mapping)); 3210 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3211 sizeof(vsi->info.tc_mapping)); 3212 } 3213 3214 /** 3215 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3216 * @vsi: VSI to be configured 3217 * @ena_tc: TC bitmap 3218 * 3219 * VSI queues expected to be quiesced before calling this function 3220 */ 3221 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3222 { 3223 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3224 struct ice_pf *pf = vsi->back; 3225 struct ice_vsi_ctx *ctx; 3226 enum ice_status status; 3227 struct device *dev; 3228 int i, ret = 0; 3229 u8 num_tc = 0; 3230 3231 dev = ice_pf_to_dev(pf); 3232 3233 ice_for_each_traffic_class(i) { 3234 /* build bitmap of enabled TCs */ 3235 if (ena_tc & BIT(i)) 3236 num_tc++; 3237 /* populate max_txqs per TC */ 3238 max_txqs[i] = vsi->alloc_txq; 3239 } 3240 3241 vsi->tc_cfg.ena_tc = ena_tc; 3242 vsi->tc_cfg.numtc = num_tc; 3243 3244 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3245 if (!ctx) 3246 return -ENOMEM; 3247 3248 ctx->vf_num = 0; 3249 ctx->info = vsi->info; 3250 3251 ice_vsi_setup_q_map(vsi, ctx); 3252 3253 /* must to indicate which section of VSI context are being modified */ 3254 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3255 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3256 if (status) { 3257 dev_info(dev, "Failed VSI Update\n"); 3258 ret = -EIO; 3259 goto out; 3260 } 3261 3262 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3263 max_txqs); 3264 3265 if (status) { 3266 dev_err(dev, "VSI %d failed TC config, error %s\n", 3267 vsi->vsi_num, ice_stat_str(status)); 3268 ret = -EIO; 3269 goto out; 3270 } 3271 ice_vsi_update_q_map(vsi, ctx); 3272 vsi->info.valid_sections = 0; 3273 3274 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3275 out: 3276 kfree(ctx); 3277 return ret; 3278 } 3279 #endif /* CONFIG_DCB */ 3280 3281 /** 3282 * ice_update_ring_stats - Update ring statistics 3283 * @ring: ring to update 3284 * @pkts: number of processed packets 3285 * @bytes: number of processed bytes 3286 * 3287 * This function assumes that caller has acquired a u64_stats_sync lock. 3288 */ 3289 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3290 { 3291 ring->stats.bytes += bytes; 3292 ring->stats.pkts += pkts; 3293 } 3294 3295 /** 3296 * ice_update_tx_ring_stats - Update Tx ring specific counters 3297 * @tx_ring: ring to update 3298 * @pkts: number of processed packets 3299 * @bytes: number of processed bytes 3300 */ 3301 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3302 { 3303 u64_stats_update_begin(&tx_ring->syncp); 3304 ice_update_ring_stats(tx_ring, pkts, bytes); 3305 u64_stats_update_end(&tx_ring->syncp); 3306 } 3307 3308 /** 3309 * ice_update_rx_ring_stats - Update Rx ring specific counters 3310 * @rx_ring: ring to update 3311 * @pkts: number of processed packets 3312 * @bytes: number of processed bytes 3313 */ 3314 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3315 { 3316 u64_stats_update_begin(&rx_ring->syncp); 3317 ice_update_ring_stats(rx_ring, pkts, bytes); 3318 u64_stats_update_end(&rx_ring->syncp); 3319 } 3320 3321 /** 3322 * ice_status_to_errno - convert from enum ice_status to Linux errno 3323 * @err: ice_status value to convert 3324 */ 3325 int ice_status_to_errno(enum ice_status err) 3326 { 3327 switch (err) { 3328 case ICE_SUCCESS: 3329 return 0; 3330 case ICE_ERR_DOES_NOT_EXIST: 3331 return -ENOENT; 3332 case ICE_ERR_OUT_OF_RANGE: 3333 return -ENOTTY; 3334 case ICE_ERR_PARAM: 3335 return -EINVAL; 3336 case ICE_ERR_NO_MEMORY: 3337 return -ENOMEM; 3338 case ICE_ERR_MAX_LIMIT: 3339 return -EAGAIN; 3340 default: 3341 return -EINVAL; 3342 } 3343 } 3344 3345 /** 3346 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3347 * @sw: switch to check if its default forwarding VSI is free 3348 * 3349 * Return true if the default forwarding VSI is already being used, else returns 3350 * false signalling that it's available to use. 3351 */ 3352 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3353 { 3354 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3355 } 3356 3357 /** 3358 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3359 * @sw: switch for the default forwarding VSI to compare against 3360 * @vsi: VSI to compare against default forwarding VSI 3361 * 3362 * If this VSI passed in is the default forwarding VSI then return true, else 3363 * return false 3364 */ 3365 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3366 { 3367 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3368 } 3369 3370 /** 3371 * ice_set_dflt_vsi - set the default forwarding VSI 3372 * @sw: switch used to assign the default forwarding VSI 3373 * @vsi: VSI getting set as the default forwarding VSI on the switch 3374 * 3375 * If the VSI passed in is already the default VSI and it's enabled just return 3376 * success. 3377 * 3378 * If there is already a default VSI on the switch and it's enabled then return 3379 * -EEXIST since there can only be one default VSI per switch. 3380 * 3381 * Otherwise try to set the VSI passed in as the switch's default VSI and 3382 * return the result. 3383 */ 3384 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3385 { 3386 enum ice_status status; 3387 struct device *dev; 3388 3389 if (!sw || !vsi) 3390 return -EINVAL; 3391 3392 dev = ice_pf_to_dev(vsi->back); 3393 3394 /* the VSI passed in is already the default VSI */ 3395 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3396 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3397 vsi->vsi_num); 3398 return 0; 3399 } 3400 3401 /* another VSI is already the default VSI for this switch */ 3402 if (ice_is_dflt_vsi_in_use(sw)) { 3403 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3404 sw->dflt_vsi->vsi_num); 3405 return -EEXIST; 3406 } 3407 3408 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3409 if (status) { 3410 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3411 vsi->vsi_num, ice_stat_str(status)); 3412 return -EIO; 3413 } 3414 3415 sw->dflt_vsi = vsi; 3416 sw->dflt_vsi_ena = true; 3417 3418 return 0; 3419 } 3420 3421 /** 3422 * ice_clear_dflt_vsi - clear the default forwarding VSI 3423 * @sw: switch used to clear the default VSI 3424 * 3425 * If the switch has no default VSI or it's not enabled then return error. 3426 * 3427 * Otherwise try to clear the default VSI and return the result. 3428 */ 3429 int ice_clear_dflt_vsi(struct ice_sw *sw) 3430 { 3431 struct ice_vsi *dflt_vsi; 3432 enum ice_status status; 3433 struct device *dev; 3434 3435 if (!sw) 3436 return -EINVAL; 3437 3438 dev = ice_pf_to_dev(sw->pf); 3439 3440 dflt_vsi = sw->dflt_vsi; 3441 3442 /* there is no default VSI configured */ 3443 if (!ice_is_dflt_vsi_in_use(sw)) 3444 return -ENODEV; 3445 3446 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3447 ICE_FLTR_RX); 3448 if (status) { 3449 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3450 dflt_vsi->vsi_num, ice_stat_str(status)); 3451 return -EIO; 3452 } 3453 3454 sw->dflt_vsi = NULL; 3455 sw->dflt_vsi_ena = false; 3456 3457 return 0; 3458 } 3459 3460 /** 3461 * ice_set_link - turn on/off physical link 3462 * @vsi: VSI to modify physical link on 3463 * @ena: turn on/off physical link 3464 */ 3465 int ice_set_link(struct ice_vsi *vsi, bool ena) 3466 { 3467 struct device *dev = ice_pf_to_dev(vsi->back); 3468 struct ice_port_info *pi = vsi->port_info; 3469 struct ice_hw *hw = pi->hw; 3470 enum ice_status status; 3471 3472 if (vsi->type != ICE_VSI_PF) 3473 return -EINVAL; 3474 3475 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3476 3477 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3478 * this is not a fatal error, so print a warning message and return 3479 * a success code. Return an error if FW returns an error code other 3480 * than ICE_AQ_RC_EMODE 3481 */ 3482 if (status == ICE_ERR_AQ_ERROR) { 3483 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3484 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3485 (ena ? "ON" : "OFF"), ice_stat_str(status), 3486 ice_aq_str(hw->adminq.sq_last_status)); 3487 } else if (status) { 3488 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3489 (ena ? "ON" : "OFF"), ice_stat_str(status), 3490 ice_aq_str(hw->adminq.sq_last_status)); 3491 return -EIO; 3492 } 3493 3494 return 0; 3495 } 3496