1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 11 /** 12 * ice_vsi_type_str - maps VSI type enum to string equivalents 13 * @vsi_type: VSI type enum 14 */ 15 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 16 { 17 switch (vsi_type) { 18 case ICE_VSI_PF: 19 return "ICE_VSI_PF"; 20 case ICE_VSI_VF: 21 return "ICE_VSI_VF"; 22 case ICE_VSI_CTRL: 23 return "ICE_VSI_CTRL"; 24 case ICE_VSI_LB: 25 return "ICE_VSI_LB"; 26 default: 27 return "unknown"; 28 } 29 } 30 31 /** 32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 33 * @vsi: the VSI being configured 34 * @ena: start or stop the Rx rings 35 * 36 * First enable/disable all of the Rx rings, flush any remaining writes, and 37 * then verify that they have all been enabled/disabled successfully. This will 38 * let all of the register writes complete when enabling/disabling the Rx rings 39 * before waiting for the change in hardware to complete. 40 */ 41 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 42 { 43 int ret = 0; 44 u16 i; 45 46 for (i = 0; i < vsi->num_rxq; i++) 47 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 48 49 ice_flush(&vsi->back->hw); 50 51 for (i = 0; i < vsi->num_rxq; i++) { 52 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 53 if (ret) 54 break; 55 } 56 57 return ret; 58 } 59 60 /** 61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 62 * @vsi: VSI pointer 63 * 64 * On error: returns error code (negative) 65 * On success: returns 0 66 */ 67 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 68 { 69 struct ice_pf *pf = vsi->back; 70 struct device *dev; 71 72 dev = ice_pf_to_dev(pf); 73 74 /* allocate memory for both Tx and Rx ring pointers */ 75 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 76 sizeof(*vsi->tx_rings), GFP_KERNEL); 77 if (!vsi->tx_rings) 78 return -ENOMEM; 79 80 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 81 sizeof(*vsi->rx_rings), GFP_KERNEL); 82 if (!vsi->rx_rings) 83 goto err_rings; 84 85 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 86 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 87 sizeof(*vsi->txq_map), GFP_KERNEL); 88 89 if (!vsi->txq_map) 90 goto err_txq_map; 91 92 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 93 sizeof(*vsi->rxq_map), GFP_KERNEL); 94 if (!vsi->rxq_map) 95 goto err_rxq_map; 96 97 /* There is no need to allocate q_vectors for a loopback VSI. */ 98 if (vsi->type == ICE_VSI_LB) 99 return 0; 100 101 /* allocate memory for q_vector pointers */ 102 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 103 sizeof(*vsi->q_vectors), GFP_KERNEL); 104 if (!vsi->q_vectors) 105 goto err_vectors; 106 107 return 0; 108 109 err_vectors: 110 devm_kfree(dev, vsi->rxq_map); 111 err_rxq_map: 112 devm_kfree(dev, vsi->txq_map); 113 err_txq_map: 114 devm_kfree(dev, vsi->rx_rings); 115 err_rings: 116 devm_kfree(dev, vsi->tx_rings); 117 return -ENOMEM; 118 } 119 120 /** 121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 122 * @vsi: the VSI being configured 123 */ 124 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 125 { 126 switch (vsi->type) { 127 case ICE_VSI_PF: 128 case ICE_VSI_CTRL: 129 case ICE_VSI_LB: 130 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 131 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 132 break; 133 default: 134 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 135 vsi->type); 136 break; 137 } 138 } 139 140 /** 141 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 142 * @vsi: the VSI being configured 143 * @vf_id: ID of the VF being configured 144 * 145 * Return 0 on success and a negative value on error 146 */ 147 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 148 { 149 struct ice_pf *pf = vsi->back; 150 struct ice_vf *vf = NULL; 151 152 if (vsi->type == ICE_VSI_VF) 153 vsi->vf_id = vf_id; 154 155 switch (vsi->type) { 156 case ICE_VSI_PF: 157 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 158 num_online_cpus()); 159 if (vsi->req_txq) { 160 vsi->alloc_txq = vsi->req_txq; 161 vsi->num_txq = vsi->req_txq; 162 } 163 164 pf->num_lan_tx = vsi->alloc_txq; 165 166 /* only 1 Rx queue unless RSS is enabled */ 167 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 168 vsi->alloc_rxq = 1; 169 } else { 170 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 171 num_online_cpus()); 172 if (vsi->req_rxq) { 173 vsi->alloc_rxq = vsi->req_rxq; 174 vsi->num_rxq = vsi->req_rxq; 175 } 176 } 177 178 pf->num_lan_rx = vsi->alloc_rxq; 179 180 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 181 break; 182 case ICE_VSI_VF: 183 vf = &pf->vf[vsi->vf_id]; 184 vsi->alloc_txq = vf->num_vf_qs; 185 vsi->alloc_rxq = vf->num_vf_qs; 186 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 187 * data queue interrupts). Since vsi->num_q_vectors is number 188 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 189 * original vector count 190 */ 191 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 192 break; 193 case ICE_VSI_CTRL: 194 vsi->alloc_txq = 1; 195 vsi->alloc_rxq = 1; 196 vsi->num_q_vectors = 1; 197 break; 198 case ICE_VSI_LB: 199 vsi->alloc_txq = 1; 200 vsi->alloc_rxq = 1; 201 break; 202 default: 203 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 204 break; 205 } 206 207 ice_vsi_set_num_desc(vsi); 208 } 209 210 /** 211 * ice_get_free_slot - get the next non-NULL location index in array 212 * @array: array to search 213 * @size: size of the array 214 * @curr: last known occupied index to be used as a search hint 215 * 216 * void * is being used to keep the functionality generic. This lets us use this 217 * function on any array of pointers. 218 */ 219 static int ice_get_free_slot(void *array, int size, int curr) 220 { 221 int **tmp_array = (int **)array; 222 int next; 223 224 if (curr < (size - 1) && !tmp_array[curr + 1]) { 225 next = curr + 1; 226 } else { 227 int i = 0; 228 229 while ((i < size) && (tmp_array[i])) 230 i++; 231 if (i == size) 232 next = ICE_NO_VSI; 233 else 234 next = i; 235 } 236 return next; 237 } 238 239 /** 240 * ice_vsi_delete - delete a VSI from the switch 241 * @vsi: pointer to VSI being removed 242 */ 243 void ice_vsi_delete(struct ice_vsi *vsi) 244 { 245 struct ice_pf *pf = vsi->back; 246 struct ice_vsi_ctx *ctxt; 247 enum ice_status status; 248 249 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 250 if (!ctxt) 251 return; 252 253 if (vsi->type == ICE_VSI_VF) 254 ctxt->vf_num = vsi->vf_id; 255 ctxt->vsi_num = vsi->vsi_num; 256 257 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 258 259 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 260 if (status) 261 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 262 vsi->vsi_num, ice_stat_str(status)); 263 264 kfree(ctxt); 265 } 266 267 /** 268 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 269 * @vsi: pointer to VSI being cleared 270 */ 271 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 272 { 273 struct ice_pf *pf = vsi->back; 274 struct device *dev; 275 276 dev = ice_pf_to_dev(pf); 277 278 /* free the ring and vector containers */ 279 if (vsi->q_vectors) { 280 devm_kfree(dev, vsi->q_vectors); 281 vsi->q_vectors = NULL; 282 } 283 if (vsi->tx_rings) { 284 devm_kfree(dev, vsi->tx_rings); 285 vsi->tx_rings = NULL; 286 } 287 if (vsi->rx_rings) { 288 devm_kfree(dev, vsi->rx_rings); 289 vsi->rx_rings = NULL; 290 } 291 if (vsi->txq_map) { 292 devm_kfree(dev, vsi->txq_map); 293 vsi->txq_map = NULL; 294 } 295 if (vsi->rxq_map) { 296 devm_kfree(dev, vsi->rxq_map); 297 vsi->rxq_map = NULL; 298 } 299 } 300 301 /** 302 * ice_vsi_clear - clean up and deallocate the provided VSI 303 * @vsi: pointer to VSI being cleared 304 * 305 * This deallocates the VSI's queue resources, removes it from the PF's 306 * VSI array if necessary, and deallocates the VSI 307 * 308 * Returns 0 on success, negative on failure 309 */ 310 int ice_vsi_clear(struct ice_vsi *vsi) 311 { 312 struct ice_pf *pf = NULL; 313 struct device *dev; 314 315 if (!vsi) 316 return 0; 317 318 if (!vsi->back) 319 return -EINVAL; 320 321 pf = vsi->back; 322 dev = ice_pf_to_dev(pf); 323 324 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 325 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 326 return -EINVAL; 327 } 328 329 mutex_lock(&pf->sw_mutex); 330 /* updates the PF for this cleared VSI */ 331 332 pf->vsi[vsi->idx] = NULL; 333 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 334 pf->next_vsi = vsi->idx; 335 336 ice_vsi_free_arrays(vsi); 337 mutex_unlock(&pf->sw_mutex); 338 devm_kfree(dev, vsi); 339 340 return 0; 341 } 342 343 /** 344 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 345 * @irq: interrupt number 346 * @data: pointer to a q_vector 347 */ 348 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 349 { 350 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 351 352 if (!q_vector->tx.ring) 353 return IRQ_HANDLED; 354 355 #define FDIR_RX_DESC_CLEAN_BUDGET 64 356 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 357 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 358 359 return IRQ_HANDLED; 360 } 361 362 /** 363 * ice_msix_clean_rings - MSIX mode Interrupt Handler 364 * @irq: interrupt number 365 * @data: pointer to a q_vector 366 */ 367 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 368 { 369 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 370 371 if (!q_vector->tx.ring && !q_vector->rx.ring) 372 return IRQ_HANDLED; 373 374 napi_schedule(&q_vector->napi); 375 376 return IRQ_HANDLED; 377 } 378 379 /** 380 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 381 * @pf: board private structure 382 * @vsi_type: type of VSI 383 * @vf_id: ID of the VF being configured 384 * 385 * returns a pointer to a VSI on success, NULL on failure. 386 */ 387 static struct ice_vsi * 388 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 389 { 390 struct device *dev = ice_pf_to_dev(pf); 391 struct ice_vsi *vsi = NULL; 392 393 /* Need to protect the allocation of the VSIs at the PF level */ 394 mutex_lock(&pf->sw_mutex); 395 396 /* If we have already allocated our maximum number of VSIs, 397 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 398 * is available to be populated 399 */ 400 if (pf->next_vsi == ICE_NO_VSI) { 401 dev_dbg(dev, "out of VSI slots!\n"); 402 goto unlock_pf; 403 } 404 405 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 406 if (!vsi) 407 goto unlock_pf; 408 409 vsi->type = vsi_type; 410 vsi->back = pf; 411 set_bit(__ICE_DOWN, vsi->state); 412 413 if (vsi_type == ICE_VSI_VF) 414 ice_vsi_set_num_qs(vsi, vf_id); 415 else 416 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 417 418 switch (vsi->type) { 419 case ICE_VSI_PF: 420 if (ice_vsi_alloc_arrays(vsi)) 421 goto err_rings; 422 423 /* Setup default MSIX irq handler for VSI */ 424 vsi->irq_handler = ice_msix_clean_rings; 425 break; 426 case ICE_VSI_CTRL: 427 if (ice_vsi_alloc_arrays(vsi)) 428 goto err_rings; 429 430 /* Setup ctrl VSI MSIX irq handler */ 431 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 432 break; 433 case ICE_VSI_VF: 434 if (ice_vsi_alloc_arrays(vsi)) 435 goto err_rings; 436 break; 437 case ICE_VSI_LB: 438 if (ice_vsi_alloc_arrays(vsi)) 439 goto err_rings; 440 break; 441 default: 442 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 443 goto unlock_pf; 444 } 445 446 if (vsi->type == ICE_VSI_CTRL) { 447 /* Use the last VSI slot as the index for the control VSI */ 448 vsi->idx = pf->num_alloc_vsi - 1; 449 pf->ctrl_vsi_idx = vsi->idx; 450 pf->vsi[vsi->idx] = vsi; 451 } else { 452 /* fill slot and make note of the index */ 453 vsi->idx = pf->next_vsi; 454 pf->vsi[pf->next_vsi] = vsi; 455 456 /* prepare pf->next_vsi for next use */ 457 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 458 pf->next_vsi); 459 } 460 goto unlock_pf; 461 462 err_rings: 463 devm_kfree(dev, vsi); 464 vsi = NULL; 465 unlock_pf: 466 mutex_unlock(&pf->sw_mutex); 467 return vsi; 468 } 469 470 /** 471 * ice_alloc_fd_res - Allocate FD resource for a VSI 472 * @vsi: pointer to the ice_vsi 473 * 474 * This allocates the FD resources 475 * 476 * Returns 0 on success, -EPERM on no-op or -EIO on failure 477 */ 478 static int ice_alloc_fd_res(struct ice_vsi *vsi) 479 { 480 struct ice_pf *pf = vsi->back; 481 u32 g_val, b_val; 482 483 /* Flow Director filters are only allocated/assigned to the PF VSI which 484 * passes the traffic. The CTRL VSI is only used to add/delete filters 485 * so we don't allocate resources to it 486 */ 487 488 /* FD filters from guaranteed pool per VSI */ 489 g_val = pf->hw.func_caps.fd_fltr_guar; 490 if (!g_val) 491 return -EPERM; 492 493 /* FD filters from best effort pool */ 494 b_val = pf->hw.func_caps.fd_fltr_best_effort; 495 if (!b_val) 496 return -EPERM; 497 498 if (vsi->type != ICE_VSI_PF) 499 return -EPERM; 500 501 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 502 return -EPERM; 503 504 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 505 506 /* each VSI gets same "best_effort" quota */ 507 vsi->num_bfltr = b_val; 508 509 return 0; 510 } 511 512 /** 513 * ice_vsi_get_qs - Assign queues from PF to VSI 514 * @vsi: the VSI to assign queues to 515 * 516 * Returns 0 on success and a negative value on error 517 */ 518 static int ice_vsi_get_qs(struct ice_vsi *vsi) 519 { 520 struct ice_pf *pf = vsi->back; 521 struct ice_qs_cfg tx_qs_cfg = { 522 .qs_mutex = &pf->avail_q_mutex, 523 .pf_map = pf->avail_txqs, 524 .pf_map_size = pf->max_pf_txqs, 525 .q_count = vsi->alloc_txq, 526 .scatter_count = ICE_MAX_SCATTER_TXQS, 527 .vsi_map = vsi->txq_map, 528 .vsi_map_offset = 0, 529 .mapping_mode = ICE_VSI_MAP_CONTIG 530 }; 531 struct ice_qs_cfg rx_qs_cfg = { 532 .qs_mutex = &pf->avail_q_mutex, 533 .pf_map = pf->avail_rxqs, 534 .pf_map_size = pf->max_pf_rxqs, 535 .q_count = vsi->alloc_rxq, 536 .scatter_count = ICE_MAX_SCATTER_RXQS, 537 .vsi_map = vsi->rxq_map, 538 .vsi_map_offset = 0, 539 .mapping_mode = ICE_VSI_MAP_CONTIG 540 }; 541 int ret; 542 543 ret = __ice_vsi_get_qs(&tx_qs_cfg); 544 if (ret) 545 return ret; 546 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 547 548 ret = __ice_vsi_get_qs(&rx_qs_cfg); 549 if (ret) 550 return ret; 551 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 552 553 return 0; 554 } 555 556 /** 557 * ice_vsi_put_qs - Release queues from VSI to PF 558 * @vsi: the VSI that is going to release queues 559 */ 560 void ice_vsi_put_qs(struct ice_vsi *vsi) 561 { 562 struct ice_pf *pf = vsi->back; 563 int i; 564 565 mutex_lock(&pf->avail_q_mutex); 566 567 for (i = 0; i < vsi->alloc_txq; i++) { 568 clear_bit(vsi->txq_map[i], pf->avail_txqs); 569 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 570 } 571 572 for (i = 0; i < vsi->alloc_rxq; i++) { 573 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 574 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 575 } 576 577 mutex_unlock(&pf->avail_q_mutex); 578 } 579 580 /** 581 * ice_is_safe_mode 582 * @pf: pointer to the PF struct 583 * 584 * returns true if driver is in safe mode, false otherwise 585 */ 586 bool ice_is_safe_mode(struct ice_pf *pf) 587 { 588 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 589 } 590 591 /** 592 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 593 * @vsi: the VSI being cleaned up 594 * 595 * This function deletes RSS input set for all flows that were configured 596 * for this VSI 597 */ 598 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 599 { 600 struct ice_pf *pf = vsi->back; 601 enum ice_status status; 602 603 if (ice_is_safe_mode(pf)) 604 return; 605 606 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 607 if (status) 608 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 609 vsi->vsi_num, ice_stat_str(status)); 610 } 611 612 /** 613 * ice_rss_clean - Delete RSS related VSI structures and configuration 614 * @vsi: the VSI being removed 615 */ 616 static void ice_rss_clean(struct ice_vsi *vsi) 617 { 618 struct ice_pf *pf = vsi->back; 619 struct device *dev; 620 621 dev = ice_pf_to_dev(pf); 622 623 if (vsi->rss_hkey_user) 624 devm_kfree(dev, vsi->rss_hkey_user); 625 if (vsi->rss_lut_user) 626 devm_kfree(dev, vsi->rss_lut_user); 627 628 ice_vsi_clean_rss_flow_fld(vsi); 629 /* remove RSS replay list */ 630 if (!ice_is_safe_mode(pf)) 631 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 632 } 633 634 /** 635 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 636 * @vsi: the VSI being configured 637 */ 638 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 639 { 640 struct ice_hw_common_caps *cap; 641 struct ice_pf *pf = vsi->back; 642 643 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 644 vsi->rss_size = 1; 645 return; 646 } 647 648 cap = &pf->hw.func_caps.common_cap; 649 switch (vsi->type) { 650 case ICE_VSI_PF: 651 /* PF VSI will inherit RSS instance of PF */ 652 vsi->rss_table_size = (u16)cap->rss_table_size; 653 vsi->rss_size = min_t(u16, num_online_cpus(), 654 BIT(cap->rss_table_entry_width)); 655 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 656 break; 657 case ICE_VSI_VF: 658 /* VF VSI will get a small RSS table. 659 * For VSI_LUT, LUT size should be set to 64 bytes. 660 */ 661 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 662 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 663 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 664 break; 665 case ICE_VSI_LB: 666 break; 667 default: 668 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 669 ice_vsi_type_str(vsi->type)); 670 break; 671 } 672 } 673 674 /** 675 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 676 * @ctxt: the VSI context being set 677 * 678 * This initializes a default VSI context for all sections except the Queues. 679 */ 680 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 681 { 682 u32 table = 0; 683 684 memset(&ctxt->info, 0, sizeof(ctxt->info)); 685 /* VSI's should be allocated from shared pool */ 686 ctxt->alloc_from_pool = true; 687 /* Src pruning enabled by default */ 688 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 689 /* Traffic from VSI can be sent to LAN */ 690 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 691 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 692 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 693 * packets untagged/tagged. 694 */ 695 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 696 ICE_AQ_VSI_VLAN_MODE_M) >> 697 ICE_AQ_VSI_VLAN_MODE_S); 698 /* Have 1:1 UP mapping for both ingress/egress tables */ 699 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 700 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 701 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 702 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 703 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 704 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 705 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 706 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 707 ctxt->info.ingress_table = cpu_to_le32(table); 708 ctxt->info.egress_table = cpu_to_le32(table); 709 /* Have 1:1 UP mapping for outer to inner UP table */ 710 ctxt->info.outer_up_table = cpu_to_le32(table); 711 /* No Outer tag support outer_tag_flags remains to zero */ 712 } 713 714 /** 715 * ice_vsi_setup_q_map - Setup a VSI queue map 716 * @vsi: the VSI being configured 717 * @ctxt: VSI context structure 718 */ 719 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 720 { 721 u16 offset = 0, qmap = 0, tx_count = 0; 722 u16 qcount_tx = vsi->alloc_txq; 723 u16 qcount_rx = vsi->alloc_rxq; 724 u16 tx_numq_tc, rx_numq_tc; 725 u16 pow = 0, max_rss = 0; 726 bool ena_tc0 = false; 727 u8 netdev_tc = 0; 728 int i; 729 730 /* at least TC0 should be enabled by default */ 731 if (vsi->tc_cfg.numtc) { 732 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 733 ena_tc0 = true; 734 } else { 735 ena_tc0 = true; 736 } 737 738 if (ena_tc0) { 739 vsi->tc_cfg.numtc++; 740 vsi->tc_cfg.ena_tc |= 1; 741 } 742 743 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 744 if (!rx_numq_tc) 745 rx_numq_tc = 1; 746 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 747 if (!tx_numq_tc) 748 tx_numq_tc = 1; 749 750 /* TC mapping is a function of the number of Rx queues assigned to the 751 * VSI for each traffic class and the offset of these queues. 752 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 753 * queues allocated to TC0. No:of queues is a power-of-2. 754 * 755 * If TC is not enabled, the queue offset is set to 0, and allocate one 756 * queue, this way, traffic for the given TC will be sent to the default 757 * queue. 758 * 759 * Setup number and offset of Rx queues for all TCs for the VSI 760 */ 761 762 qcount_rx = rx_numq_tc; 763 764 /* qcount will change if RSS is enabled */ 765 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 766 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 767 if (vsi->type == ICE_VSI_PF) 768 max_rss = ICE_MAX_LG_RSS_QS; 769 else 770 max_rss = ICE_MAX_RSS_QS_PER_VF; 771 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 772 if (!vsi->req_rxq) 773 qcount_rx = min_t(u16, qcount_rx, 774 vsi->rss_size); 775 } 776 } 777 778 /* find the (rounded up) power-of-2 of qcount */ 779 pow = (u16)order_base_2(qcount_rx); 780 781 ice_for_each_traffic_class(i) { 782 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 783 /* TC is not enabled */ 784 vsi->tc_cfg.tc_info[i].qoffset = 0; 785 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 786 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 787 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 788 ctxt->info.tc_mapping[i] = 0; 789 continue; 790 } 791 792 /* TC is enabled */ 793 vsi->tc_cfg.tc_info[i].qoffset = offset; 794 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 795 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 796 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 797 798 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 799 ICE_AQ_VSI_TC_Q_OFFSET_M) | 800 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 801 ICE_AQ_VSI_TC_Q_NUM_M); 802 offset += qcount_rx; 803 tx_count += tx_numq_tc; 804 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 805 } 806 807 /* if offset is non-zero, means it is calculated correctly based on 808 * enabled TCs for a given VSI otherwise qcount_rx will always 809 * be correct and non-zero because it is based off - VSI's 810 * allocated Rx queues which is at least 1 (hence qcount_tx will be 811 * at least 1) 812 */ 813 if (offset) 814 vsi->num_rxq = offset; 815 else 816 vsi->num_rxq = qcount_rx; 817 818 vsi->num_txq = tx_count; 819 820 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 821 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 822 /* since there is a chance that num_rxq could have been changed 823 * in the above for loop, make num_txq equal to num_rxq. 824 */ 825 vsi->num_txq = vsi->num_rxq; 826 } 827 828 /* Rx queue mapping */ 829 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 830 /* q_mapping buffer holds the info for the first queue allocated for 831 * this VSI in the PF space and also the number of queues associated 832 * with this VSI. 833 */ 834 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 835 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 836 } 837 838 /** 839 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 840 * @ctxt: the VSI context being set 841 * @vsi: the VSI being configured 842 */ 843 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 844 { 845 u8 dflt_q_group, dflt_q_prio; 846 u16 dflt_q, report_q, val; 847 848 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 849 return; 850 851 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 852 ctxt->info.valid_sections |= cpu_to_le16(val); 853 dflt_q = 0; 854 dflt_q_group = 0; 855 report_q = 0; 856 dflt_q_prio = 0; 857 858 /* enable flow director filtering/programming */ 859 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 860 ctxt->info.fd_options = cpu_to_le16(val); 861 /* max of allocated flow director filters */ 862 ctxt->info.max_fd_fltr_dedicated = 863 cpu_to_le16(vsi->num_gfltr); 864 /* max of shared flow director filters any VSI may program */ 865 ctxt->info.max_fd_fltr_shared = 866 cpu_to_le16(vsi->num_bfltr); 867 /* default queue index within the VSI of the default FD */ 868 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 869 ICE_AQ_VSI_FD_DEF_Q_M); 870 /* target queue or queue group to the FD filter */ 871 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 872 ICE_AQ_VSI_FD_DEF_GRP_M); 873 ctxt->info.fd_def_q = cpu_to_le16(val); 874 /* queue index on which FD filter completion is reported */ 875 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 876 ICE_AQ_VSI_FD_REPORT_Q_M); 877 /* priority of the default qindex action */ 878 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 879 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 880 ctxt->info.fd_report_opt = cpu_to_le16(val); 881 } 882 883 /** 884 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 885 * @ctxt: the VSI context being set 886 * @vsi: the VSI being configured 887 */ 888 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 889 { 890 u8 lut_type, hash_type; 891 struct device *dev; 892 struct ice_pf *pf; 893 894 pf = vsi->back; 895 dev = ice_pf_to_dev(pf); 896 897 switch (vsi->type) { 898 case ICE_VSI_PF: 899 /* PF VSI will inherit RSS instance of PF */ 900 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 901 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 902 break; 903 case ICE_VSI_VF: 904 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 905 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 906 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 907 break; 908 default: 909 dev_dbg(dev, "Unsupported VSI type %s\n", 910 ice_vsi_type_str(vsi->type)); 911 return; 912 } 913 914 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 915 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 916 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 917 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 918 } 919 920 /** 921 * ice_vsi_init - Create and initialize a VSI 922 * @vsi: the VSI being configured 923 * @init_vsi: is this call creating a VSI 924 * 925 * This initializes a VSI context depending on the VSI type to be added and 926 * passes it down to the add_vsi aq command to create a new VSI. 927 */ 928 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 929 { 930 struct ice_pf *pf = vsi->back; 931 struct ice_hw *hw = &pf->hw; 932 struct ice_vsi_ctx *ctxt; 933 struct device *dev; 934 int ret = 0; 935 936 dev = ice_pf_to_dev(pf); 937 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 938 if (!ctxt) 939 return -ENOMEM; 940 941 switch (vsi->type) { 942 case ICE_VSI_CTRL: 943 case ICE_VSI_LB: 944 case ICE_VSI_PF: 945 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 946 break; 947 case ICE_VSI_VF: 948 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 949 /* VF number here is the absolute VF number (0-255) */ 950 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 951 break; 952 default: 953 ret = -ENODEV; 954 goto out; 955 } 956 957 ice_set_dflt_vsi_ctx(ctxt); 958 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 959 ice_set_fd_vsi_ctx(ctxt, vsi); 960 /* if the switch is in VEB mode, allow VSI loopback */ 961 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 962 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 963 964 /* Set LUT type and HASH type if RSS is enabled */ 965 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 966 vsi->type != ICE_VSI_CTRL) { 967 ice_set_rss_vsi_ctx(ctxt, vsi); 968 /* if updating VSI context, make sure to set valid_section: 969 * to indicate which section of VSI context being updated 970 */ 971 if (!init_vsi) 972 ctxt->info.valid_sections |= 973 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 974 } 975 976 ctxt->info.sw_id = vsi->port_info->sw_id; 977 ice_vsi_setup_q_map(vsi, ctxt); 978 if (!init_vsi) /* means VSI being updated */ 979 /* must to indicate which section of VSI context are 980 * being modified 981 */ 982 ctxt->info.valid_sections |= 983 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 984 985 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 986 * respectively 987 */ 988 if (vsi->type == ICE_VSI_VF) { 989 ctxt->info.valid_sections |= 990 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 991 if (pf->vf[vsi->vf_id].spoofchk) { 992 ctxt->info.sec_flags |= 993 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 994 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 995 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 996 } else { 997 ctxt->info.sec_flags &= 998 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 999 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1000 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1001 } 1002 } 1003 1004 /* Allow control frames out of main VSI */ 1005 if (vsi->type == ICE_VSI_PF) { 1006 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1007 ctxt->info.valid_sections |= 1008 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1009 } 1010 1011 if (init_vsi) { 1012 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1013 if (ret) { 1014 dev_err(dev, "Add VSI failed, err %d\n", ret); 1015 ret = -EIO; 1016 goto out; 1017 } 1018 } else { 1019 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1020 if (ret) { 1021 dev_err(dev, "Update VSI failed, err %d\n", ret); 1022 ret = -EIO; 1023 goto out; 1024 } 1025 } 1026 1027 /* keep context for update VSI operations */ 1028 vsi->info = ctxt->info; 1029 1030 /* record VSI number returned */ 1031 vsi->vsi_num = ctxt->vsi_num; 1032 1033 out: 1034 kfree(ctxt); 1035 return ret; 1036 } 1037 1038 /** 1039 * ice_free_res - free a block of resources 1040 * @res: pointer to the resource 1041 * @index: starting index previously returned by ice_get_res 1042 * @id: identifier to track owner 1043 * 1044 * Returns number of resources freed 1045 */ 1046 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1047 { 1048 int count = 0; 1049 int i; 1050 1051 if (!res || index >= res->end) 1052 return -EINVAL; 1053 1054 id |= ICE_RES_VALID_BIT; 1055 for (i = index; i < res->end && res->list[i] == id; i++) { 1056 res->list[i] = 0; 1057 count++; 1058 } 1059 1060 return count; 1061 } 1062 1063 /** 1064 * ice_search_res - Search the tracker for a block of resources 1065 * @res: pointer to the resource 1066 * @needed: size of the block needed 1067 * @id: identifier to track owner 1068 * 1069 * Returns the base item index of the block, or -ENOMEM for error 1070 */ 1071 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1072 { 1073 u16 start = 0, end = 0; 1074 1075 if (needed > res->end) 1076 return -ENOMEM; 1077 1078 id |= ICE_RES_VALID_BIT; 1079 1080 do { 1081 /* skip already allocated entries */ 1082 if (res->list[end++] & ICE_RES_VALID_BIT) { 1083 start = end; 1084 if ((start + needed) > res->end) 1085 break; 1086 } 1087 1088 if (end == (start + needed)) { 1089 int i = start; 1090 1091 /* there was enough, so assign it to the requestor */ 1092 while (i != end) 1093 res->list[i++] = id; 1094 1095 return start; 1096 } 1097 } while (end < res->end); 1098 1099 return -ENOMEM; 1100 } 1101 1102 /** 1103 * ice_get_free_res_count - Get free count from a resource tracker 1104 * @res: Resource tracker instance 1105 */ 1106 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1107 { 1108 u16 i, count = 0; 1109 1110 for (i = 0; i < res->end; i++) 1111 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1112 count++; 1113 1114 return count; 1115 } 1116 1117 /** 1118 * ice_get_res - get a block of resources 1119 * @pf: board private structure 1120 * @res: pointer to the resource 1121 * @needed: size of the block needed 1122 * @id: identifier to track owner 1123 * 1124 * Returns the base item index of the block, or negative for error 1125 */ 1126 int 1127 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1128 { 1129 if (!res || !pf) 1130 return -EINVAL; 1131 1132 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1133 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1134 needed, res->num_entries, id); 1135 return -EINVAL; 1136 } 1137 1138 return ice_search_res(res, needed, id); 1139 } 1140 1141 /** 1142 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1143 * @vsi: ptr to the VSI 1144 * 1145 * This should only be called after ice_vsi_alloc() which allocates the 1146 * corresponding SW VSI structure and initializes num_queue_pairs for the 1147 * newly allocated VSI. 1148 * 1149 * Returns 0 on success or negative on failure 1150 */ 1151 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1152 { 1153 struct ice_pf *pf = vsi->back; 1154 struct device *dev; 1155 u16 num_q_vectors; 1156 int base; 1157 1158 dev = ice_pf_to_dev(pf); 1159 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1160 if (vsi->type == ICE_VSI_VF) 1161 return 0; 1162 1163 if (vsi->base_vector) { 1164 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1165 vsi->vsi_num, vsi->base_vector); 1166 return -EEXIST; 1167 } 1168 1169 num_q_vectors = vsi->num_q_vectors; 1170 /* reserve slots from OS requested IRQs */ 1171 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1172 1173 if (base < 0) { 1174 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1175 ice_get_free_res_count(pf->irq_tracker), 1176 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1177 return -ENOENT; 1178 } 1179 vsi->base_vector = (u16)base; 1180 pf->num_avail_sw_msix -= num_q_vectors; 1181 1182 return 0; 1183 } 1184 1185 /** 1186 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1187 * @vsi: the VSI having rings deallocated 1188 */ 1189 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1190 { 1191 int i; 1192 1193 if (vsi->tx_rings) { 1194 for (i = 0; i < vsi->alloc_txq; i++) { 1195 if (vsi->tx_rings[i]) { 1196 kfree_rcu(vsi->tx_rings[i], rcu); 1197 WRITE_ONCE(vsi->tx_rings[i], NULL); 1198 } 1199 } 1200 } 1201 if (vsi->rx_rings) { 1202 for (i = 0; i < vsi->alloc_rxq; i++) { 1203 if (vsi->rx_rings[i]) { 1204 kfree_rcu(vsi->rx_rings[i], rcu); 1205 WRITE_ONCE(vsi->rx_rings[i], NULL); 1206 } 1207 } 1208 } 1209 } 1210 1211 /** 1212 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1213 * @vsi: VSI which is having rings allocated 1214 */ 1215 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1216 { 1217 struct ice_pf *pf = vsi->back; 1218 struct device *dev; 1219 u16 i; 1220 1221 dev = ice_pf_to_dev(pf); 1222 /* Allocate Tx rings */ 1223 for (i = 0; i < vsi->alloc_txq; i++) { 1224 struct ice_ring *ring; 1225 1226 /* allocate with kzalloc(), free with kfree_rcu() */ 1227 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1228 1229 if (!ring) 1230 goto err_out; 1231 1232 ring->q_index = i; 1233 ring->reg_idx = vsi->txq_map[i]; 1234 ring->ring_active = false; 1235 ring->vsi = vsi; 1236 ring->dev = dev; 1237 ring->count = vsi->num_tx_desc; 1238 WRITE_ONCE(vsi->tx_rings[i], ring); 1239 } 1240 1241 /* Allocate Rx rings */ 1242 for (i = 0; i < vsi->alloc_rxq; i++) { 1243 struct ice_ring *ring; 1244 1245 /* allocate with kzalloc(), free with kfree_rcu() */ 1246 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1247 if (!ring) 1248 goto err_out; 1249 1250 ring->q_index = i; 1251 ring->reg_idx = vsi->rxq_map[i]; 1252 ring->ring_active = false; 1253 ring->vsi = vsi; 1254 ring->netdev = vsi->netdev; 1255 ring->dev = dev; 1256 ring->count = vsi->num_rx_desc; 1257 WRITE_ONCE(vsi->rx_rings[i], ring); 1258 } 1259 1260 return 0; 1261 1262 err_out: 1263 ice_vsi_clear_rings(vsi); 1264 return -ENOMEM; 1265 } 1266 1267 /** 1268 * ice_vsi_manage_rss_lut - disable/enable RSS 1269 * @vsi: the VSI being changed 1270 * @ena: boolean value indicating if this is an enable or disable request 1271 * 1272 * In the event of disable request for RSS, this function will zero out RSS 1273 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1274 * LUT. 1275 */ 1276 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1277 { 1278 int err = 0; 1279 u8 *lut; 1280 1281 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1282 if (!lut) 1283 return -ENOMEM; 1284 1285 if (ena) { 1286 if (vsi->rss_lut_user) 1287 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1288 else 1289 ice_fill_rss_lut(lut, vsi->rss_table_size, 1290 vsi->rss_size); 1291 } 1292 1293 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1294 kfree(lut); 1295 return err; 1296 } 1297 1298 /** 1299 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1300 * @vsi: VSI to be configured 1301 */ 1302 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1303 { 1304 struct ice_aqc_get_set_rss_keys *key; 1305 struct ice_pf *pf = vsi->back; 1306 enum ice_status status; 1307 struct device *dev; 1308 int err = 0; 1309 u8 *lut; 1310 1311 dev = ice_pf_to_dev(pf); 1312 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1313 1314 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1315 if (!lut) 1316 return -ENOMEM; 1317 1318 if (vsi->rss_lut_user) 1319 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1320 else 1321 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1322 1323 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1324 vsi->rss_table_size); 1325 1326 if (status) { 1327 dev_err(dev, "set_rss_lut failed, error %s\n", 1328 ice_stat_str(status)); 1329 err = -EIO; 1330 goto ice_vsi_cfg_rss_exit; 1331 } 1332 1333 key = kzalloc(sizeof(*key), GFP_KERNEL); 1334 if (!key) { 1335 err = -ENOMEM; 1336 goto ice_vsi_cfg_rss_exit; 1337 } 1338 1339 if (vsi->rss_hkey_user) 1340 memcpy(key, 1341 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1342 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1343 else 1344 netdev_rss_key_fill((void *)key, 1345 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1346 1347 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1348 1349 if (status) { 1350 dev_err(dev, "set_rss_key failed, error %s\n", 1351 ice_stat_str(status)); 1352 err = -EIO; 1353 } 1354 1355 kfree(key); 1356 ice_vsi_cfg_rss_exit: 1357 kfree(lut); 1358 return err; 1359 } 1360 1361 /** 1362 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1363 * @vsi: VSI to be configured 1364 * 1365 * This function will only be called during the VF VSI setup. Upon successful 1366 * completion of package download, this function will configure default RSS 1367 * input sets for VF VSI. 1368 */ 1369 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1370 { 1371 struct ice_pf *pf = vsi->back; 1372 enum ice_status status; 1373 struct device *dev; 1374 1375 dev = ice_pf_to_dev(pf); 1376 if (ice_is_safe_mode(pf)) { 1377 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1378 vsi->vsi_num); 1379 return; 1380 } 1381 1382 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1383 if (status) 1384 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1385 vsi->vsi_num, ice_stat_str(status)); 1386 } 1387 1388 /** 1389 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1390 * @vsi: VSI to be configured 1391 * 1392 * This function will only be called after successful download package call 1393 * during initialization of PF. Since the downloaded package will erase the 1394 * RSS section, this function will configure RSS input sets for different 1395 * flow types. The last profile added has the highest priority, therefore 2 1396 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1397 * (i.e. IPv4 src/dst TCP src/dst port). 1398 */ 1399 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1400 { 1401 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1402 struct ice_pf *pf = vsi->back; 1403 struct ice_hw *hw = &pf->hw; 1404 enum ice_status status; 1405 struct device *dev; 1406 1407 dev = ice_pf_to_dev(pf); 1408 if (ice_is_safe_mode(pf)) { 1409 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1410 vsi_num); 1411 return; 1412 } 1413 /* configure RSS for IPv4 with input set IP src/dst */ 1414 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1415 ICE_FLOW_SEG_HDR_IPV4); 1416 if (status) 1417 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1418 vsi_num, ice_stat_str(status)); 1419 1420 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1421 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1422 ICE_FLOW_SEG_HDR_IPV6); 1423 if (status) 1424 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1425 vsi_num, ice_stat_str(status)); 1426 1427 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1428 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1429 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1430 if (status) 1431 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1432 vsi_num, ice_stat_str(status)); 1433 1434 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1435 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1436 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1437 if (status) 1438 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1439 vsi_num, ice_stat_str(status)); 1440 1441 /* configure RSS for sctp4 with input set IP src/dst */ 1442 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1443 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1444 if (status) 1445 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1446 vsi_num, ice_stat_str(status)); 1447 1448 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1449 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1450 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1451 if (status) 1452 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1453 vsi_num, ice_stat_str(status)); 1454 1455 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1456 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1457 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1458 if (status) 1459 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1460 vsi_num, ice_stat_str(status)); 1461 1462 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1463 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1464 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1465 if (status) 1466 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1467 vsi_num, ice_stat_str(status)); 1468 } 1469 1470 /** 1471 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1472 * @vsi: the VSI to be updated 1473 */ 1474 void ice_update_eth_stats(struct ice_vsi *vsi) 1475 { 1476 struct ice_eth_stats *prev_es, *cur_es; 1477 struct ice_hw *hw = &vsi->back->hw; 1478 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1479 1480 prev_es = &vsi->eth_stats_prev; 1481 cur_es = &vsi->eth_stats; 1482 1483 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1484 &prev_es->rx_bytes, &cur_es->rx_bytes); 1485 1486 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1487 &prev_es->rx_unicast, &cur_es->rx_unicast); 1488 1489 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1490 &prev_es->rx_multicast, &cur_es->rx_multicast); 1491 1492 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1493 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1494 1495 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1496 &prev_es->rx_discards, &cur_es->rx_discards); 1497 1498 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1499 &prev_es->tx_bytes, &cur_es->tx_bytes); 1500 1501 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1502 &prev_es->tx_unicast, &cur_es->tx_unicast); 1503 1504 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1505 &prev_es->tx_multicast, &cur_es->tx_multicast); 1506 1507 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1508 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1509 1510 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1511 &prev_es->tx_errors, &cur_es->tx_errors); 1512 1513 vsi->stat_offsets_loaded = true; 1514 } 1515 1516 /** 1517 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1518 * @vsi: the VSI being configured 1519 * @vid: VLAN ID to be added 1520 * @action: filter action to be performed on match 1521 */ 1522 int 1523 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1524 { 1525 struct ice_pf *pf = vsi->back; 1526 struct device *dev; 1527 int err = 0; 1528 1529 dev = ice_pf_to_dev(pf); 1530 1531 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1532 vsi->num_vlan++; 1533 } else { 1534 err = -ENODEV; 1535 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1536 vsi->vsi_num); 1537 } 1538 1539 return err; 1540 } 1541 1542 /** 1543 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1544 * @vsi: the VSI being configured 1545 * @vid: VLAN ID to be removed 1546 * 1547 * Returns 0 on success and negative on failure 1548 */ 1549 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1550 { 1551 struct ice_pf *pf = vsi->back; 1552 enum ice_status status; 1553 struct device *dev; 1554 int err = 0; 1555 1556 dev = ice_pf_to_dev(pf); 1557 1558 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1559 if (!status) { 1560 vsi->num_vlan--; 1561 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1562 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1563 vid, vsi->vsi_num, ice_stat_str(status)); 1564 } else { 1565 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1566 vid, vsi->vsi_num, ice_stat_str(status)); 1567 err = -EIO; 1568 } 1569 1570 return err; 1571 } 1572 1573 /** 1574 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1575 * @vsi: VSI 1576 */ 1577 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1578 { 1579 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1580 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1581 vsi->rx_buf_len = ICE_RXBUF_2048; 1582 #if (PAGE_SIZE < 8192) 1583 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1584 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1585 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1586 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1587 #endif 1588 } else { 1589 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1590 #if (PAGE_SIZE < 8192) 1591 vsi->rx_buf_len = ICE_RXBUF_3072; 1592 #else 1593 vsi->rx_buf_len = ICE_RXBUF_2048; 1594 #endif 1595 } 1596 } 1597 1598 /** 1599 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1600 * @hw: HW pointer 1601 * @pf_q: index of the Rx queue in the PF's queue space 1602 * @rxdid: flexible descriptor RXDID 1603 * @prio: priority for the RXDID for this queue 1604 */ 1605 void 1606 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1607 { 1608 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1609 1610 /* clear any previous values */ 1611 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1612 QRXFLXP_CNTXT_RXDID_PRIO_M | 1613 QRXFLXP_CNTXT_TS_M); 1614 1615 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1616 QRXFLXP_CNTXT_RXDID_IDX_M; 1617 1618 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1619 QRXFLXP_CNTXT_RXDID_PRIO_M; 1620 1621 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1622 } 1623 1624 /** 1625 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1626 * @vsi: the VSI being configured 1627 * 1628 * Return 0 on success and a negative value on error 1629 * Configure the Rx VSI for operation. 1630 */ 1631 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1632 { 1633 u16 i; 1634 1635 if (vsi->type == ICE_VSI_VF) 1636 goto setup_rings; 1637 1638 ice_vsi_cfg_frame_size(vsi); 1639 setup_rings: 1640 /* set up individual rings */ 1641 for (i = 0; i < vsi->num_rxq; i++) { 1642 int err; 1643 1644 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1645 if (err) { 1646 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1647 i, err); 1648 return err; 1649 } 1650 } 1651 1652 return 0; 1653 } 1654 1655 /** 1656 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1657 * @vsi: the VSI being configured 1658 * @rings: Tx ring array to be configured 1659 * 1660 * Return 0 on success and a negative value on error 1661 * Configure the Tx VSI for operation. 1662 */ 1663 static int 1664 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1665 { 1666 struct ice_aqc_add_tx_qgrp *qg_buf; 1667 u16 q_idx = 0; 1668 int err = 0; 1669 1670 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1671 if (!qg_buf) 1672 return -ENOMEM; 1673 1674 qg_buf->num_txqs = 1; 1675 1676 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1677 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1678 if (err) 1679 goto err_cfg_txqs; 1680 } 1681 1682 err_cfg_txqs: 1683 kfree(qg_buf); 1684 return err; 1685 } 1686 1687 /** 1688 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1689 * @vsi: the VSI being configured 1690 * 1691 * Return 0 on success and a negative value on error 1692 * Configure the Tx VSI for operation. 1693 */ 1694 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1695 { 1696 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1697 } 1698 1699 /** 1700 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1701 * @vsi: the VSI being configured 1702 * 1703 * Return 0 on success and a negative value on error 1704 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1705 */ 1706 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1707 { 1708 int ret; 1709 int i; 1710 1711 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1712 if (ret) 1713 return ret; 1714 1715 for (i = 0; i < vsi->num_xdp_txq; i++) 1716 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1717 1718 return ret; 1719 } 1720 1721 /** 1722 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1723 * @intrl: interrupt rate limit in usecs 1724 * @gran: interrupt rate limit granularity in usecs 1725 * 1726 * This function converts a decimal interrupt rate limit in usecs to the format 1727 * expected by firmware. 1728 */ 1729 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1730 { 1731 u32 val = intrl / gran; 1732 1733 if (val) 1734 return val | GLINT_RATE_INTRL_ENA_M; 1735 return 0; 1736 } 1737 1738 /** 1739 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1740 * @vsi: the VSI being configured 1741 * 1742 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1743 * for the VF VSI. 1744 */ 1745 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1746 { 1747 struct ice_pf *pf = vsi->back; 1748 struct ice_hw *hw = &pf->hw; 1749 u16 txq = 0, rxq = 0; 1750 int i, q; 1751 1752 for (i = 0; i < vsi->num_q_vectors; i++) { 1753 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1754 u16 reg_idx = q_vector->reg_idx; 1755 1756 ice_cfg_itr(hw, q_vector); 1757 1758 wr32(hw, GLINT_RATE(reg_idx), 1759 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1760 1761 /* Both Transmit Queue Interrupt Cause Control register 1762 * and Receive Queue Interrupt Cause control register 1763 * expects MSIX_INDX field to be the vector index 1764 * within the function space and not the absolute 1765 * vector index across PF or across device. 1766 * For SR-IOV VF VSIs queue vector index always starts 1767 * with 1 since first vector index(0) is used for OICR 1768 * in VF space. Since VMDq and other PF VSIs are within 1769 * the PF function space, use the vector index that is 1770 * tracked for this PF. 1771 */ 1772 for (q = 0; q < q_vector->num_ring_tx; q++) { 1773 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1774 q_vector->tx.itr_idx); 1775 txq++; 1776 } 1777 1778 for (q = 0; q < q_vector->num_ring_rx; q++) { 1779 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1780 q_vector->rx.itr_idx); 1781 rxq++; 1782 } 1783 } 1784 } 1785 1786 /** 1787 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1788 * @vsi: the VSI being changed 1789 */ 1790 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1791 { 1792 struct ice_hw *hw = &vsi->back->hw; 1793 struct ice_vsi_ctx *ctxt; 1794 enum ice_status status; 1795 int ret = 0; 1796 1797 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1798 if (!ctxt) 1799 return -ENOMEM; 1800 1801 /* Here we are configuring the VSI to let the driver add VLAN tags by 1802 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1803 * insertion happens in the Tx hot path, in ice_tx_map. 1804 */ 1805 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1806 1807 /* Preserve existing VLAN strip setting */ 1808 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1809 ICE_AQ_VSI_VLAN_EMOD_M); 1810 1811 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1812 1813 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1814 if (status) { 1815 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1816 ice_stat_str(status), 1817 ice_aq_str(hw->adminq.sq_last_status)); 1818 ret = -EIO; 1819 goto out; 1820 } 1821 1822 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1823 out: 1824 kfree(ctxt); 1825 return ret; 1826 } 1827 1828 /** 1829 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1830 * @vsi: the VSI being changed 1831 * @ena: boolean value indicating if this is a enable or disable request 1832 */ 1833 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1834 { 1835 struct ice_hw *hw = &vsi->back->hw; 1836 struct ice_vsi_ctx *ctxt; 1837 enum ice_status status; 1838 int ret = 0; 1839 1840 /* do not allow modifying VLAN stripping when a port VLAN is configured 1841 * on this VSI 1842 */ 1843 if (vsi->info.pvid) 1844 return 0; 1845 1846 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1847 if (!ctxt) 1848 return -ENOMEM; 1849 1850 /* Here we are configuring what the VSI should do with the VLAN tag in 1851 * the Rx packet. We can either leave the tag in the packet or put it in 1852 * the Rx descriptor. 1853 */ 1854 if (ena) 1855 /* Strip VLAN tag from Rx packet and put it in the desc */ 1856 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1857 else 1858 /* Disable stripping. Leave tag in packet */ 1859 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1860 1861 /* Allow all packets untagged/tagged */ 1862 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1863 1864 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1865 1866 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1867 if (status) { 1868 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1869 ena, ice_stat_str(status), 1870 ice_aq_str(hw->adminq.sq_last_status)); 1871 ret = -EIO; 1872 goto out; 1873 } 1874 1875 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1876 out: 1877 kfree(ctxt); 1878 return ret; 1879 } 1880 1881 /** 1882 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1883 * @vsi: the VSI whose rings are to be enabled 1884 * 1885 * Returns 0 on success and a negative value on error 1886 */ 1887 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1888 { 1889 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1890 } 1891 1892 /** 1893 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1894 * @vsi: the VSI whose rings are to be disabled 1895 * 1896 * Returns 0 on success and a negative value on error 1897 */ 1898 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1899 { 1900 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1901 } 1902 1903 /** 1904 * ice_vsi_stop_tx_rings - Disable Tx rings 1905 * @vsi: the VSI being configured 1906 * @rst_src: reset source 1907 * @rel_vmvf_num: Relative ID of VF/VM 1908 * @rings: Tx ring array to be stopped 1909 */ 1910 static int 1911 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1912 u16 rel_vmvf_num, struct ice_ring **rings) 1913 { 1914 u16 q_idx; 1915 1916 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1917 return -EINVAL; 1918 1919 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1920 struct ice_txq_meta txq_meta = { }; 1921 int status; 1922 1923 if (!rings || !rings[q_idx]) 1924 return -EINVAL; 1925 1926 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1927 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1928 rings[q_idx], &txq_meta); 1929 1930 if (status) 1931 return status; 1932 } 1933 1934 return 0; 1935 } 1936 1937 /** 1938 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1939 * @vsi: the VSI being configured 1940 * @rst_src: reset source 1941 * @rel_vmvf_num: Relative ID of VF/VM 1942 */ 1943 int 1944 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1945 u16 rel_vmvf_num) 1946 { 1947 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1948 } 1949 1950 /** 1951 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1952 * @vsi: the VSI being configured 1953 */ 1954 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1955 { 1956 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1957 } 1958 1959 /** 1960 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1961 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1962 * 1963 * returns true if Rx VLAN pruning is enabled and false otherwise. 1964 */ 1965 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1966 { 1967 if (!vsi) 1968 return false; 1969 1970 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 1971 } 1972 1973 /** 1974 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1975 * @vsi: VSI to enable or disable VLAN pruning on 1976 * @ena: set to true to enable VLAN pruning and false to disable it 1977 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1978 * 1979 * returns 0 if VSI is updated, negative otherwise 1980 */ 1981 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1982 { 1983 struct ice_vsi_ctx *ctxt; 1984 struct ice_pf *pf; 1985 int status; 1986 1987 if (!vsi) 1988 return -EINVAL; 1989 1990 pf = vsi->back; 1991 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1992 if (!ctxt) 1993 return -ENOMEM; 1994 1995 ctxt->info = vsi->info; 1996 1997 if (ena) 1998 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1999 else 2000 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2001 2002 if (!vlan_promisc) 2003 ctxt->info.valid_sections = 2004 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2005 2006 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2007 if (status) { 2008 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2009 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2010 ice_stat_str(status), 2011 ice_aq_str(pf->hw.adminq.sq_last_status)); 2012 goto err_out; 2013 } 2014 2015 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2016 2017 kfree(ctxt); 2018 return 0; 2019 2020 err_out: 2021 kfree(ctxt); 2022 return -EIO; 2023 } 2024 2025 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2026 { 2027 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 2028 2029 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2030 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2031 } 2032 2033 /** 2034 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2035 * @vsi: VSI to set the q_vectors register index on 2036 */ 2037 static int 2038 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2039 { 2040 u16 i; 2041 2042 if (!vsi || !vsi->q_vectors) 2043 return -EINVAL; 2044 2045 ice_for_each_q_vector(vsi, i) { 2046 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2047 2048 if (!q_vector) { 2049 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2050 i, vsi->vsi_num); 2051 goto clear_reg_idx; 2052 } 2053 2054 if (vsi->type == ICE_VSI_VF) { 2055 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2056 2057 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2058 } else { 2059 q_vector->reg_idx = 2060 q_vector->v_idx + vsi->base_vector; 2061 } 2062 } 2063 2064 return 0; 2065 2066 clear_reg_idx: 2067 ice_for_each_q_vector(vsi, i) { 2068 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2069 2070 if (q_vector) 2071 q_vector->reg_idx = 0; 2072 } 2073 2074 return -EINVAL; 2075 } 2076 2077 /** 2078 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2079 * @vsi: the VSI being configured 2080 * @tx: bool to determine Tx or Rx rule 2081 * @create: bool to determine create or remove Rule 2082 */ 2083 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2084 { 2085 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2086 enum ice_sw_fwd_act_type act); 2087 struct ice_pf *pf = vsi->back; 2088 enum ice_status status; 2089 struct device *dev; 2090 2091 dev = ice_pf_to_dev(pf); 2092 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2093 2094 if (tx) 2095 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2096 ICE_DROP_PACKET); 2097 else 2098 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); 2099 2100 if (status) 2101 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2102 create ? "adding" : "removing", tx ? "TX" : "RX", 2103 vsi->vsi_num, ice_stat_str(status)); 2104 } 2105 2106 /** 2107 * ice_vsi_setup - Set up a VSI by a given type 2108 * @pf: board private structure 2109 * @pi: pointer to the port_info instance 2110 * @vsi_type: VSI type 2111 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2112 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2113 * fill-in ICE_INVAL_VFID as input. 2114 * 2115 * This allocates the sw VSI structure and its queue resources. 2116 * 2117 * Returns pointer to the successfully allocated and configured VSI sw struct on 2118 * success, NULL on failure. 2119 */ 2120 struct ice_vsi * 2121 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2122 enum ice_vsi_type vsi_type, u16 vf_id) 2123 { 2124 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2125 struct device *dev = ice_pf_to_dev(pf); 2126 enum ice_status status; 2127 struct ice_vsi *vsi; 2128 int ret, i; 2129 2130 if (vsi_type == ICE_VSI_VF) 2131 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2132 else 2133 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2134 2135 if (!vsi) { 2136 dev_err(dev, "could not allocate VSI\n"); 2137 return NULL; 2138 } 2139 2140 vsi->port_info = pi; 2141 vsi->vsw = pf->first_sw; 2142 if (vsi->type == ICE_VSI_PF) 2143 vsi->ethtype = ETH_P_PAUSE; 2144 2145 if (vsi->type == ICE_VSI_VF) 2146 vsi->vf_id = vf_id; 2147 2148 ice_alloc_fd_res(vsi); 2149 2150 if (ice_vsi_get_qs(vsi)) { 2151 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2152 vsi->idx); 2153 goto unroll_vsi_alloc; 2154 } 2155 2156 /* set RSS capabilities */ 2157 ice_vsi_set_rss_params(vsi); 2158 2159 /* set TC configuration */ 2160 ice_vsi_set_tc_cfg(vsi); 2161 2162 /* create the VSI */ 2163 ret = ice_vsi_init(vsi, true); 2164 if (ret) 2165 goto unroll_get_qs; 2166 2167 switch (vsi->type) { 2168 case ICE_VSI_CTRL: 2169 case ICE_VSI_PF: 2170 ret = ice_vsi_alloc_q_vectors(vsi); 2171 if (ret) 2172 goto unroll_vsi_init; 2173 2174 ret = ice_vsi_setup_vector_base(vsi); 2175 if (ret) 2176 goto unroll_alloc_q_vector; 2177 2178 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2179 if (ret) 2180 goto unroll_vector_base; 2181 2182 ret = ice_vsi_alloc_rings(vsi); 2183 if (ret) 2184 goto unroll_vector_base; 2185 2186 /* Always add VLAN ID 0 switch rule by default. This is needed 2187 * in order to allow all untagged and 0 tagged priority traffic 2188 * if Rx VLAN pruning is enabled. Also there are cases where we 2189 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2190 * so this handles those cases (i.e. adding the PF to a bridge 2191 * without the 8021q module loaded). 2192 */ 2193 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2194 if (ret) 2195 goto unroll_clear_rings; 2196 2197 ice_vsi_map_rings_to_vectors(vsi); 2198 2199 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2200 if (vsi->type != ICE_VSI_CTRL) 2201 /* Do not exit if configuring RSS had an issue, at 2202 * least receive traffic on first queue. Hence no 2203 * need to capture return value 2204 */ 2205 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2206 ice_vsi_cfg_rss_lut_key(vsi); 2207 ice_vsi_set_rss_flow_fld(vsi); 2208 } 2209 ice_init_arfs(vsi); 2210 break; 2211 case ICE_VSI_VF: 2212 /* VF driver will take care of creating netdev for this type and 2213 * map queues to vectors through Virtchnl, PF driver only 2214 * creates a VSI and corresponding structures for bookkeeping 2215 * purpose 2216 */ 2217 ret = ice_vsi_alloc_q_vectors(vsi); 2218 if (ret) 2219 goto unroll_vsi_init; 2220 2221 ret = ice_vsi_alloc_rings(vsi); 2222 if (ret) 2223 goto unroll_alloc_q_vector; 2224 2225 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2226 if (ret) 2227 goto unroll_vector_base; 2228 2229 /* Do not exit if configuring RSS had an issue, at least 2230 * receive traffic on first queue. Hence no need to capture 2231 * return value 2232 */ 2233 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2234 ice_vsi_cfg_rss_lut_key(vsi); 2235 ice_vsi_set_vf_rss_flow_fld(vsi); 2236 } 2237 break; 2238 case ICE_VSI_LB: 2239 ret = ice_vsi_alloc_rings(vsi); 2240 if (ret) 2241 goto unroll_vsi_init; 2242 break; 2243 default: 2244 /* clean up the resources and exit */ 2245 goto unroll_vsi_init; 2246 } 2247 2248 /* configure VSI nodes based on number of queues and TC's */ 2249 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2250 max_txqs[i] = vsi->alloc_txq; 2251 2252 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2253 max_txqs); 2254 if (status) { 2255 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2256 vsi->vsi_num, ice_stat_str(status)); 2257 goto unroll_vector_base; 2258 } 2259 2260 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2261 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2262 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2263 * The rule is added once for PF VSI in order to create appropriate 2264 * recipe, since VSI/VSI list is ignored with drop action... 2265 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2266 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2267 * settings in the HW. 2268 */ 2269 if (!ice_is_safe_mode(pf)) 2270 if (vsi->type == ICE_VSI_PF) { 2271 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2272 ICE_DROP_PACKET); 2273 ice_cfg_sw_lldp(vsi, true, true); 2274 } 2275 2276 return vsi; 2277 2278 unroll_clear_rings: 2279 ice_vsi_clear_rings(vsi); 2280 unroll_vector_base: 2281 /* reclaim SW interrupts back to the common pool */ 2282 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2283 pf->num_avail_sw_msix += vsi->num_q_vectors; 2284 unroll_alloc_q_vector: 2285 ice_vsi_free_q_vectors(vsi); 2286 unroll_vsi_init: 2287 ice_vsi_delete(vsi); 2288 unroll_get_qs: 2289 ice_vsi_put_qs(vsi); 2290 unroll_vsi_alloc: 2291 ice_vsi_clear(vsi); 2292 2293 return NULL; 2294 } 2295 2296 /** 2297 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2298 * @vsi: the VSI being cleaned up 2299 */ 2300 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2301 { 2302 struct ice_pf *pf = vsi->back; 2303 struct ice_hw *hw = &pf->hw; 2304 u32 txq = 0; 2305 u32 rxq = 0; 2306 int i, q; 2307 2308 for (i = 0; i < vsi->num_q_vectors; i++) { 2309 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2310 u16 reg_idx = q_vector->reg_idx; 2311 2312 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2313 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2314 for (q = 0; q < q_vector->num_ring_tx; q++) { 2315 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2316 if (ice_is_xdp_ena_vsi(vsi)) { 2317 u32 xdp_txq = txq + vsi->num_xdp_txq; 2318 2319 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2320 } 2321 txq++; 2322 } 2323 2324 for (q = 0; q < q_vector->num_ring_rx; q++) { 2325 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2326 rxq++; 2327 } 2328 } 2329 2330 ice_flush(hw); 2331 } 2332 2333 /** 2334 * ice_vsi_free_irq - Free the IRQ association with the OS 2335 * @vsi: the VSI being configured 2336 */ 2337 void ice_vsi_free_irq(struct ice_vsi *vsi) 2338 { 2339 struct ice_pf *pf = vsi->back; 2340 int base = vsi->base_vector; 2341 int i; 2342 2343 if (!vsi->q_vectors || !vsi->irqs_ready) 2344 return; 2345 2346 ice_vsi_release_msix(vsi); 2347 if (vsi->type == ICE_VSI_VF) 2348 return; 2349 2350 vsi->irqs_ready = false; 2351 ice_for_each_q_vector(vsi, i) { 2352 u16 vector = i + base; 2353 int irq_num; 2354 2355 irq_num = pf->msix_entries[vector].vector; 2356 2357 /* free only the irqs that were actually requested */ 2358 if (!vsi->q_vectors[i] || 2359 !(vsi->q_vectors[i]->num_ring_tx || 2360 vsi->q_vectors[i]->num_ring_rx)) 2361 continue; 2362 2363 /* clear the affinity notifier in the IRQ descriptor */ 2364 irq_set_affinity_notifier(irq_num, NULL); 2365 2366 /* clear the affinity_mask in the IRQ descriptor */ 2367 irq_set_affinity_hint(irq_num, NULL); 2368 synchronize_irq(irq_num); 2369 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2370 } 2371 } 2372 2373 /** 2374 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2375 * @vsi: the VSI having resources freed 2376 */ 2377 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2378 { 2379 int i; 2380 2381 if (!vsi->tx_rings) 2382 return; 2383 2384 ice_for_each_txq(vsi, i) 2385 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2386 ice_free_tx_ring(vsi->tx_rings[i]); 2387 } 2388 2389 /** 2390 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2391 * @vsi: the VSI having resources freed 2392 */ 2393 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2394 { 2395 int i; 2396 2397 if (!vsi->rx_rings) 2398 return; 2399 2400 ice_for_each_rxq(vsi, i) 2401 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2402 ice_free_rx_ring(vsi->rx_rings[i]); 2403 } 2404 2405 /** 2406 * ice_vsi_close - Shut down a VSI 2407 * @vsi: the VSI being shut down 2408 */ 2409 void ice_vsi_close(struct ice_vsi *vsi) 2410 { 2411 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2412 ice_down(vsi); 2413 2414 ice_vsi_free_irq(vsi); 2415 ice_vsi_free_tx_rings(vsi); 2416 ice_vsi_free_rx_rings(vsi); 2417 } 2418 2419 /** 2420 * ice_ena_vsi - resume a VSI 2421 * @vsi: the VSI being resume 2422 * @locked: is the rtnl_lock already held 2423 */ 2424 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2425 { 2426 int err = 0; 2427 2428 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2429 return 0; 2430 2431 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2432 2433 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2434 if (netif_running(vsi->netdev)) { 2435 if (!locked) 2436 rtnl_lock(); 2437 2438 err = ice_open(vsi->netdev); 2439 2440 if (!locked) 2441 rtnl_unlock(); 2442 } 2443 } else if (vsi->type == ICE_VSI_CTRL) { 2444 err = ice_vsi_open_ctrl(vsi); 2445 } 2446 2447 return err; 2448 } 2449 2450 /** 2451 * ice_dis_vsi - pause a VSI 2452 * @vsi: the VSI being paused 2453 * @locked: is the rtnl_lock already held 2454 */ 2455 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2456 { 2457 if (test_bit(__ICE_DOWN, vsi->state)) 2458 return; 2459 2460 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2461 2462 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2463 if (netif_running(vsi->netdev)) { 2464 if (!locked) 2465 rtnl_lock(); 2466 2467 ice_stop(vsi->netdev); 2468 2469 if (!locked) 2470 rtnl_unlock(); 2471 } else { 2472 ice_vsi_close(vsi); 2473 } 2474 } else if (vsi->type == ICE_VSI_CTRL) { 2475 ice_vsi_close(vsi); 2476 } 2477 } 2478 2479 /** 2480 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2481 * @vsi: the VSI being un-configured 2482 */ 2483 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2484 { 2485 int base = vsi->base_vector; 2486 struct ice_pf *pf = vsi->back; 2487 struct ice_hw *hw = &pf->hw; 2488 u32 val; 2489 int i; 2490 2491 /* disable interrupt causation from each queue */ 2492 if (vsi->tx_rings) { 2493 ice_for_each_txq(vsi, i) { 2494 if (vsi->tx_rings[i]) { 2495 u16 reg; 2496 2497 reg = vsi->tx_rings[i]->reg_idx; 2498 val = rd32(hw, QINT_TQCTL(reg)); 2499 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2500 wr32(hw, QINT_TQCTL(reg), val); 2501 } 2502 } 2503 } 2504 2505 if (vsi->rx_rings) { 2506 ice_for_each_rxq(vsi, i) { 2507 if (vsi->rx_rings[i]) { 2508 u16 reg; 2509 2510 reg = vsi->rx_rings[i]->reg_idx; 2511 val = rd32(hw, QINT_RQCTL(reg)); 2512 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2513 wr32(hw, QINT_RQCTL(reg), val); 2514 } 2515 } 2516 } 2517 2518 /* disable each interrupt */ 2519 ice_for_each_q_vector(vsi, i) { 2520 if (!vsi->q_vectors[i]) 2521 continue; 2522 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2523 } 2524 2525 ice_flush(hw); 2526 2527 /* don't call synchronize_irq() for VF's from the host */ 2528 if (vsi->type == ICE_VSI_VF) 2529 return; 2530 2531 ice_for_each_q_vector(vsi, i) 2532 synchronize_irq(pf->msix_entries[i + base].vector); 2533 } 2534 2535 /** 2536 * ice_napi_del - Remove NAPI handler for the VSI 2537 * @vsi: VSI for which NAPI handler is to be removed 2538 */ 2539 void ice_napi_del(struct ice_vsi *vsi) 2540 { 2541 int v_idx; 2542 2543 if (!vsi->netdev) 2544 return; 2545 2546 ice_for_each_q_vector(vsi, v_idx) 2547 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2548 } 2549 2550 /** 2551 * ice_vsi_release - Delete a VSI and free its resources 2552 * @vsi: the VSI being removed 2553 * 2554 * Returns 0 on success or < 0 on error 2555 */ 2556 int ice_vsi_release(struct ice_vsi *vsi) 2557 { 2558 struct ice_pf *pf; 2559 2560 if (!vsi->back) 2561 return -ENODEV; 2562 pf = vsi->back; 2563 2564 /* do not unregister while driver is in the reset recovery pending 2565 * state. Since reset/rebuild happens through PF service task workqueue, 2566 * it's not a good idea to unregister netdev that is associated to the 2567 * PF that is running the work queue items currently. This is done to 2568 * avoid check_flush_dependency() warning on this wq 2569 */ 2570 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2571 unregister_netdev(vsi->netdev); 2572 2573 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2574 ice_rss_clean(vsi); 2575 2576 /* Disable VSI and free resources */ 2577 if (vsi->type != ICE_VSI_LB) 2578 ice_vsi_dis_irq(vsi); 2579 ice_vsi_close(vsi); 2580 2581 /* SR-IOV determines needed MSIX resources all at once instead of per 2582 * VSI since when VFs are spawned we know how many VFs there are and how 2583 * many interrupts each VF needs. SR-IOV MSIX resources are also 2584 * cleared in the same manner. 2585 */ 2586 if (vsi->type != ICE_VSI_VF) { 2587 /* reclaim SW interrupts back to the common pool */ 2588 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2589 pf->num_avail_sw_msix += vsi->num_q_vectors; 2590 } 2591 2592 if (!ice_is_safe_mode(pf)) { 2593 if (vsi->type == ICE_VSI_PF) { 2594 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2595 ICE_DROP_PACKET); 2596 ice_cfg_sw_lldp(vsi, true, false); 2597 /* The Rx rule will only exist to remove if the LLDP FW 2598 * engine is currently stopped 2599 */ 2600 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2601 ice_cfg_sw_lldp(vsi, false, false); 2602 } 2603 } 2604 2605 ice_fltr_remove_all(vsi); 2606 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2607 ice_vsi_delete(vsi); 2608 ice_vsi_free_q_vectors(vsi); 2609 2610 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2611 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2612 free_netdev(vsi->netdev); 2613 vsi->netdev = NULL; 2614 } 2615 2616 ice_vsi_clear_rings(vsi); 2617 2618 ice_vsi_put_qs(vsi); 2619 2620 /* retain SW VSI data structure since it is needed to unregister and 2621 * free VSI netdev when PF is not in reset recovery pending state,\ 2622 * for ex: during rmmod. 2623 */ 2624 if (!ice_is_reset_in_progress(pf->state)) 2625 ice_vsi_clear(vsi); 2626 2627 return 0; 2628 } 2629 2630 /** 2631 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2632 * @q_vector: pointer to q_vector which is being updated 2633 * @coalesce: pointer to array of struct with stored coalesce 2634 * 2635 * Set coalesce param in q_vector and update these parameters in HW. 2636 */ 2637 static void 2638 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2639 struct ice_coalesce_stored *coalesce) 2640 { 2641 struct ice_ring_container *rx_rc = &q_vector->rx; 2642 struct ice_ring_container *tx_rc = &q_vector->tx; 2643 struct ice_hw *hw = &q_vector->vsi->back->hw; 2644 2645 tx_rc->itr_setting = coalesce->itr_tx; 2646 rx_rc->itr_setting = coalesce->itr_rx; 2647 2648 /* dynamic ITR values will be updated during Tx/Rx */ 2649 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2650 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2651 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2652 ICE_ITR_GRAN_S); 2653 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2654 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2655 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2656 ICE_ITR_GRAN_S); 2657 2658 q_vector->intrl = coalesce->intrl; 2659 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2660 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2661 } 2662 2663 /** 2664 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2665 * @vsi: VSI connected with q_vectors 2666 * @coalesce: array of struct with stored coalesce 2667 * 2668 * Returns array size. 2669 */ 2670 static int 2671 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2672 struct ice_coalesce_stored *coalesce) 2673 { 2674 int i; 2675 2676 ice_for_each_q_vector(vsi, i) { 2677 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2678 2679 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2680 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2681 coalesce[i].intrl = q_vector->intrl; 2682 } 2683 2684 return vsi->num_q_vectors; 2685 } 2686 2687 /** 2688 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2689 * @vsi: VSI connected with q_vectors 2690 * @coalesce: pointer to array of struct with stored coalesce 2691 * @size: size of coalesce array 2692 * 2693 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2694 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2695 * to default value. 2696 */ 2697 static void 2698 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2699 struct ice_coalesce_stored *coalesce, int size) 2700 { 2701 int i; 2702 2703 if ((size && !coalesce) || !vsi) 2704 return; 2705 2706 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2707 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2708 &coalesce[i]); 2709 2710 /* number of q_vectors increased, so assume coalesce settings were 2711 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2712 * the previous settings from q_vector 0 for all of the new q_vectors 2713 */ 2714 for (; i < vsi->num_q_vectors; i++) 2715 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2716 &coalesce[0]); 2717 } 2718 2719 /** 2720 * ice_vsi_rebuild - Rebuild VSI after reset 2721 * @vsi: VSI to be rebuild 2722 * @init_vsi: is this an initialization or a reconfigure of the VSI 2723 * 2724 * Returns 0 on success and negative value on failure 2725 */ 2726 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2727 { 2728 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2729 struct ice_coalesce_stored *coalesce; 2730 int prev_num_q_vectors = 0; 2731 struct ice_vf *vf = NULL; 2732 enum ice_status status; 2733 struct ice_pf *pf; 2734 int ret, i; 2735 2736 if (!vsi) 2737 return -EINVAL; 2738 2739 pf = vsi->back; 2740 if (vsi->type == ICE_VSI_VF) 2741 vf = &pf->vf[vsi->vf_id]; 2742 2743 coalesce = kcalloc(vsi->num_q_vectors, 2744 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2745 if (coalesce) 2746 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2747 coalesce); 2748 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2749 ice_vsi_free_q_vectors(vsi); 2750 2751 /* SR-IOV determines needed MSIX resources all at once instead of per 2752 * VSI since when VFs are spawned we know how many VFs there are and how 2753 * many interrupts each VF needs. SR-IOV MSIX resources are also 2754 * cleared in the same manner. 2755 */ 2756 if (vsi->type != ICE_VSI_VF) { 2757 /* reclaim SW interrupts back to the common pool */ 2758 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2759 pf->num_avail_sw_msix += vsi->num_q_vectors; 2760 vsi->base_vector = 0; 2761 } 2762 2763 if (ice_is_xdp_ena_vsi(vsi)) 2764 /* return value check can be skipped here, it always returns 2765 * 0 if reset is in progress 2766 */ 2767 ice_destroy_xdp_rings(vsi); 2768 ice_vsi_put_qs(vsi); 2769 ice_vsi_clear_rings(vsi); 2770 ice_vsi_free_arrays(vsi); 2771 if (vsi->type == ICE_VSI_VF) 2772 ice_vsi_set_num_qs(vsi, vf->vf_id); 2773 else 2774 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2775 2776 ret = ice_vsi_alloc_arrays(vsi); 2777 if (ret < 0) 2778 goto err_vsi; 2779 2780 ice_vsi_get_qs(vsi); 2781 2782 ice_alloc_fd_res(vsi); 2783 ice_vsi_set_tc_cfg(vsi); 2784 2785 /* Initialize VSI struct elements and create VSI in FW */ 2786 ret = ice_vsi_init(vsi, init_vsi); 2787 if (ret < 0) 2788 goto err_vsi; 2789 2790 switch (vsi->type) { 2791 case ICE_VSI_CTRL: 2792 case ICE_VSI_PF: 2793 ret = ice_vsi_alloc_q_vectors(vsi); 2794 if (ret) 2795 goto err_rings; 2796 2797 ret = ice_vsi_setup_vector_base(vsi); 2798 if (ret) 2799 goto err_vectors; 2800 2801 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2802 if (ret) 2803 goto err_vectors; 2804 2805 ret = ice_vsi_alloc_rings(vsi); 2806 if (ret) 2807 goto err_vectors; 2808 2809 ice_vsi_map_rings_to_vectors(vsi); 2810 if (ice_is_xdp_ena_vsi(vsi)) { 2811 vsi->num_xdp_txq = vsi->alloc_rxq; 2812 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2813 if (ret) 2814 goto err_vectors; 2815 } 2816 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2817 if (vsi->type != ICE_VSI_CTRL) 2818 /* Do not exit if configuring RSS had an issue, at 2819 * least receive traffic on first queue. Hence no 2820 * need to capture return value 2821 */ 2822 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2823 ice_vsi_cfg_rss_lut_key(vsi); 2824 break; 2825 case ICE_VSI_VF: 2826 ret = ice_vsi_alloc_q_vectors(vsi); 2827 if (ret) 2828 goto err_rings; 2829 2830 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2831 if (ret) 2832 goto err_vectors; 2833 2834 ret = ice_vsi_alloc_rings(vsi); 2835 if (ret) 2836 goto err_vectors; 2837 2838 break; 2839 default: 2840 break; 2841 } 2842 2843 /* configure VSI nodes based on number of queues and TC's */ 2844 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2845 max_txqs[i] = vsi->alloc_txq; 2846 2847 if (ice_is_xdp_ena_vsi(vsi)) 2848 max_txqs[i] += vsi->num_xdp_txq; 2849 } 2850 2851 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2852 max_txqs); 2853 if (status) { 2854 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 2855 vsi->vsi_num, ice_stat_str(status)); 2856 if (init_vsi) { 2857 ret = -EIO; 2858 goto err_vectors; 2859 } else { 2860 return ice_schedule_reset(pf, ICE_RESET_PFR); 2861 } 2862 } 2863 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2864 kfree(coalesce); 2865 2866 return 0; 2867 2868 err_vectors: 2869 ice_vsi_free_q_vectors(vsi); 2870 err_rings: 2871 if (vsi->netdev) { 2872 vsi->current_netdev_flags = 0; 2873 unregister_netdev(vsi->netdev); 2874 free_netdev(vsi->netdev); 2875 vsi->netdev = NULL; 2876 } 2877 err_vsi: 2878 ice_vsi_clear(vsi); 2879 set_bit(__ICE_RESET_FAILED, pf->state); 2880 kfree(coalesce); 2881 return ret; 2882 } 2883 2884 /** 2885 * ice_is_reset_in_progress - check for a reset in progress 2886 * @state: PF state field 2887 */ 2888 bool ice_is_reset_in_progress(unsigned long *state) 2889 { 2890 return test_bit(__ICE_RESET_OICR_RECV, state) || 2891 test_bit(__ICE_DCBNL_DEVRESET, state) || 2892 test_bit(__ICE_PFR_REQ, state) || 2893 test_bit(__ICE_CORER_REQ, state) || 2894 test_bit(__ICE_GLOBR_REQ, state); 2895 } 2896 2897 #ifdef CONFIG_DCB 2898 /** 2899 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2900 * @vsi: VSI being configured 2901 * @ctx: the context buffer returned from AQ VSI update command 2902 */ 2903 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2904 { 2905 vsi->info.mapping_flags = ctx->info.mapping_flags; 2906 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2907 sizeof(vsi->info.q_mapping)); 2908 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2909 sizeof(vsi->info.tc_mapping)); 2910 } 2911 2912 /** 2913 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2914 * @vsi: VSI to be configured 2915 * @ena_tc: TC bitmap 2916 * 2917 * VSI queues expected to be quiesced before calling this function 2918 */ 2919 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2920 { 2921 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2922 struct ice_pf *pf = vsi->back; 2923 struct ice_vsi_ctx *ctx; 2924 enum ice_status status; 2925 struct device *dev; 2926 int i, ret = 0; 2927 u8 num_tc = 0; 2928 2929 dev = ice_pf_to_dev(pf); 2930 2931 ice_for_each_traffic_class(i) { 2932 /* build bitmap of enabled TCs */ 2933 if (ena_tc & BIT(i)) 2934 num_tc++; 2935 /* populate max_txqs per TC */ 2936 max_txqs[i] = vsi->alloc_txq; 2937 } 2938 2939 vsi->tc_cfg.ena_tc = ena_tc; 2940 vsi->tc_cfg.numtc = num_tc; 2941 2942 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2943 if (!ctx) 2944 return -ENOMEM; 2945 2946 ctx->vf_num = 0; 2947 ctx->info = vsi->info; 2948 2949 ice_vsi_setup_q_map(vsi, ctx); 2950 2951 /* must to indicate which section of VSI context are being modified */ 2952 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2953 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2954 if (status) { 2955 dev_info(dev, "Failed VSI Update\n"); 2956 ret = -EIO; 2957 goto out; 2958 } 2959 2960 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2961 max_txqs); 2962 2963 if (status) { 2964 dev_err(dev, "VSI %d failed TC config, error %s\n", 2965 vsi->vsi_num, ice_stat_str(status)); 2966 ret = -EIO; 2967 goto out; 2968 } 2969 ice_vsi_update_q_map(vsi, ctx); 2970 vsi->info.valid_sections = 0; 2971 2972 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2973 out: 2974 kfree(ctx); 2975 return ret; 2976 } 2977 #endif /* CONFIG_DCB */ 2978 2979 /** 2980 * ice_update_ring_stats - Update ring statistics 2981 * @ring: ring to update 2982 * @cont: used to increment per-vector counters 2983 * @pkts: number of processed packets 2984 * @bytes: number of processed bytes 2985 * 2986 * This function assumes that caller has acquired a u64_stats_sync lock. 2987 */ 2988 static void 2989 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2990 u64 pkts, u64 bytes) 2991 { 2992 ring->stats.bytes += bytes; 2993 ring->stats.pkts += pkts; 2994 cont->total_bytes += bytes; 2995 cont->total_pkts += pkts; 2996 } 2997 2998 /** 2999 * ice_update_tx_ring_stats - Update Tx ring specific counters 3000 * @tx_ring: ring to update 3001 * @pkts: number of processed packets 3002 * @bytes: number of processed bytes 3003 */ 3004 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3005 { 3006 u64_stats_update_begin(&tx_ring->syncp); 3007 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3008 u64_stats_update_end(&tx_ring->syncp); 3009 } 3010 3011 /** 3012 * ice_update_rx_ring_stats - Update Rx ring specific counters 3013 * @rx_ring: ring to update 3014 * @pkts: number of processed packets 3015 * @bytes: number of processed bytes 3016 */ 3017 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3018 { 3019 u64_stats_update_begin(&rx_ring->syncp); 3020 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3021 u64_stats_update_end(&rx_ring->syncp); 3022 } 3023 3024 /** 3025 * ice_status_to_errno - convert from enum ice_status to Linux errno 3026 * @err: ice_status value to convert 3027 */ 3028 int ice_status_to_errno(enum ice_status err) 3029 { 3030 switch (err) { 3031 case ICE_SUCCESS: 3032 return 0; 3033 case ICE_ERR_DOES_NOT_EXIST: 3034 return -ENOENT; 3035 case ICE_ERR_OUT_OF_RANGE: 3036 return -ENOTTY; 3037 case ICE_ERR_PARAM: 3038 return -EINVAL; 3039 case ICE_ERR_NO_MEMORY: 3040 return -ENOMEM; 3041 case ICE_ERR_MAX_LIMIT: 3042 return -EAGAIN; 3043 default: 3044 return -EINVAL; 3045 } 3046 } 3047 3048 /** 3049 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3050 * @sw: switch to check if its default forwarding VSI is free 3051 * 3052 * Return true if the default forwarding VSI is already being used, else returns 3053 * false signalling that it's available to use. 3054 */ 3055 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3056 { 3057 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3058 } 3059 3060 /** 3061 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3062 * @sw: switch for the default forwarding VSI to compare against 3063 * @vsi: VSI to compare against default forwarding VSI 3064 * 3065 * If this VSI passed in is the default forwarding VSI then return true, else 3066 * return false 3067 */ 3068 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3069 { 3070 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3071 } 3072 3073 /** 3074 * ice_set_dflt_vsi - set the default forwarding VSI 3075 * @sw: switch used to assign the default forwarding VSI 3076 * @vsi: VSI getting set as the default forwarding VSI on the switch 3077 * 3078 * If the VSI passed in is already the default VSI and it's enabled just return 3079 * success. 3080 * 3081 * If there is already a default VSI on the switch and it's enabled then return 3082 * -EEXIST since there can only be one default VSI per switch. 3083 * 3084 * Otherwise try to set the VSI passed in as the switch's default VSI and 3085 * return the result. 3086 */ 3087 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3088 { 3089 enum ice_status status; 3090 struct device *dev; 3091 3092 if (!sw || !vsi) 3093 return -EINVAL; 3094 3095 dev = ice_pf_to_dev(vsi->back); 3096 3097 /* the VSI passed in is already the default VSI */ 3098 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3099 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3100 vsi->vsi_num); 3101 return 0; 3102 } 3103 3104 /* another VSI is already the default VSI for this switch */ 3105 if (ice_is_dflt_vsi_in_use(sw)) { 3106 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3107 sw->dflt_vsi->vsi_num); 3108 return -EEXIST; 3109 } 3110 3111 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3112 if (status) { 3113 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3114 vsi->vsi_num, ice_stat_str(status)); 3115 return -EIO; 3116 } 3117 3118 sw->dflt_vsi = vsi; 3119 sw->dflt_vsi_ena = true; 3120 3121 return 0; 3122 } 3123 3124 /** 3125 * ice_clear_dflt_vsi - clear the default forwarding VSI 3126 * @sw: switch used to clear the default VSI 3127 * 3128 * If the switch has no default VSI or it's not enabled then return error. 3129 * 3130 * Otherwise try to clear the default VSI and return the result. 3131 */ 3132 int ice_clear_dflt_vsi(struct ice_sw *sw) 3133 { 3134 struct ice_vsi *dflt_vsi; 3135 enum ice_status status; 3136 struct device *dev; 3137 3138 if (!sw) 3139 return -EINVAL; 3140 3141 dev = ice_pf_to_dev(sw->pf); 3142 3143 dflt_vsi = sw->dflt_vsi; 3144 3145 /* there is no default VSI configured */ 3146 if (!ice_is_dflt_vsi_in_use(sw)) 3147 return -ENODEV; 3148 3149 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3150 ICE_FLTR_RX); 3151 if (status) { 3152 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3153 dflt_vsi->vsi_num, ice_stat_str(status)); 3154 return -EIO; 3155 } 3156 3157 sw->dflt_vsi = NULL; 3158 sw->dflt_vsi_ena = false; 3159 3160 return 0; 3161 } 3162