1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flow.h" 6 #include <net/gre.h> 7 8 /* Describe properties of a protocol header field */ 9 struct ice_flow_field_info { 10 enum ice_flow_seg_hdr hdr; 11 s16 off; /* Offset from start of a protocol header, in bits */ 12 u16 size; /* Size of fields in bits */ 13 u16 mask; /* 16-bit mask for field */ 14 }; 15 16 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \ 17 .hdr = _hdr, \ 18 .off = (_offset_bytes) * BITS_PER_BYTE, \ 19 .size = (_size_bytes) * BITS_PER_BYTE, \ 20 .mask = 0, \ 21 } 22 23 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \ 24 .hdr = _hdr, \ 25 .off = (_offset_bytes) * BITS_PER_BYTE, \ 26 .size = (_size_bytes) * BITS_PER_BYTE, \ 27 .mask = _mask, \ 28 } 29 30 /* Table containing properties of supported protocol header fields */ 31 static const 32 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = { 33 /* Ether */ 34 /* ICE_FLOW_FIELD_IDX_ETH_DA */ 35 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN), 36 /* ICE_FLOW_FIELD_IDX_ETH_SA */ 37 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN), 38 /* ICE_FLOW_FIELD_IDX_S_VLAN */ 39 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)), 40 /* ICE_FLOW_FIELD_IDX_C_VLAN */ 41 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)), 42 /* ICE_FLOW_FIELD_IDX_ETH_TYPE */ 43 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)), 44 /* IPv4 / IPv6 */ 45 /* ICE_FLOW_FIELD_IDX_IPV4_DSCP */ 46 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc), 47 /* ICE_FLOW_FIELD_IDX_IPV6_DSCP */ 48 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0), 49 /* ICE_FLOW_FIELD_IDX_IPV4_TTL */ 50 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00), 51 /* ICE_FLOW_FIELD_IDX_IPV4_PROT */ 52 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff), 53 /* ICE_FLOW_FIELD_IDX_IPV6_TTL */ 54 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff), 55 /* ICE_FLOW_FIELD_IDX_IPV6_PROT */ 56 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00), 57 /* ICE_FLOW_FIELD_IDX_IPV4_SA */ 58 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)), 59 /* ICE_FLOW_FIELD_IDX_IPV4_DA */ 60 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)), 61 /* ICE_FLOW_FIELD_IDX_IPV6_SA */ 62 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)), 63 /* ICE_FLOW_FIELD_IDX_IPV6_DA */ 64 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)), 65 /* Transport */ 66 /* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */ 67 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)), 68 /* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */ 69 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)), 70 /* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */ 71 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)), 72 /* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */ 73 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)), 74 /* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */ 75 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)), 76 /* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */ 77 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)), 78 /* ICE_FLOW_FIELD_IDX_TCP_FLAGS */ 79 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1), 80 /* ARP */ 81 /* ICE_FLOW_FIELD_IDX_ARP_SIP */ 82 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)), 83 /* ICE_FLOW_FIELD_IDX_ARP_DIP */ 84 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)), 85 /* ICE_FLOW_FIELD_IDX_ARP_SHA */ 86 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN), 87 /* ICE_FLOW_FIELD_IDX_ARP_DHA */ 88 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN), 89 /* ICE_FLOW_FIELD_IDX_ARP_OP */ 90 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)), 91 /* ICMP */ 92 /* ICE_FLOW_FIELD_IDX_ICMP_TYPE */ 93 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1), 94 /* ICE_FLOW_FIELD_IDX_ICMP_CODE */ 95 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1), 96 /* GRE */ 97 /* ICE_FLOW_FIELD_IDX_GRE_KEYID */ 98 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12, 99 sizeof_field(struct gre_full_hdr, key)), 100 /* GTP */ 101 /* ICE_FLOW_FIELD_IDX_GTPC_TEID */ 102 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)), 103 /* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */ 104 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)), 105 /* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */ 106 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)), 107 /* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */ 108 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16), 109 0x3f00), 110 /* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */ 111 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)), 112 /* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */ 113 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)), 114 /* PPPoE */ 115 /* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */ 116 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)), 117 /* PFCP */ 118 /* ICE_FLOW_FIELD_IDX_PFCP_SEID */ 119 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)), 120 /* L2TPv3 */ 121 /* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */ 122 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)), 123 /* ESP */ 124 /* ICE_FLOW_FIELD_IDX_ESP_SPI */ 125 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)), 126 /* AH */ 127 /* ICE_FLOW_FIELD_IDX_AH_SPI */ 128 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)), 129 /* NAT_T_ESP */ 130 /* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */ 131 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)), 132 }; 133 134 /* Bitmaps indicating relevant packet types for a particular protocol header 135 * 136 * Packet types for packets with an Outer/First/Single MAC header 137 */ 138 static const u32 ice_ptypes_mac_ofos[] = { 139 0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB, 140 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 141 0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000, 142 0x00000000, 0x00000000, 0x00000000, 0x00000000, 143 0x00000000, 0x00000000, 0x00000000, 0x00000000, 144 0x00000000, 0x00000000, 0x00000000, 0x00000000, 145 0x00000000, 0x00000000, 0x00000000, 0x00000000, 146 0x00000000, 0x00000000, 0x00000000, 0x00000000, 147 }; 148 149 /* Packet types for packets with an Innermost/Last MAC VLAN header */ 150 static const u32 ice_ptypes_macvlan_il[] = { 151 0x00000000, 0xBC000000, 0x000001DF, 0xF0000000, 152 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 153 0x00000000, 0x00000000, 0x00000000, 0x00000000, 154 0x00000000, 0x00000000, 0x00000000, 0x00000000, 155 0x00000000, 0x00000000, 0x00000000, 0x00000000, 156 0x00000000, 0x00000000, 0x00000000, 0x00000000, 157 0x00000000, 0x00000000, 0x00000000, 0x00000000, 158 0x00000000, 0x00000000, 0x00000000, 0x00000000, 159 }; 160 161 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT 162 * include IPv4 other PTYPEs 163 */ 164 static const u32 ice_ptypes_ipv4_ofos[] = { 165 0x1DC00000, 0x04000800, 0x00000000, 0x00000000, 166 0x00000000, 0x00000155, 0x00000000, 0x00000000, 167 0x00000000, 0x000FC000, 0x00000000, 0x00000000, 168 0x00000000, 0x00000000, 0x00000000, 0x00000000, 169 0x00000000, 0x00000000, 0x00000000, 0x00000000, 170 0x00000000, 0x00000000, 0x00000000, 0x00000000, 171 0x00000000, 0x00000000, 0x00000000, 0x00000000, 172 0x00000000, 0x00000000, 0x00000000, 0x00000000, 173 }; 174 175 /* Packet types for packets with an Outer/First/Single IPv4 header, includes 176 * IPv4 other PTYPEs 177 */ 178 static const u32 ice_ptypes_ipv4_ofos_all[] = { 179 0x1DC00000, 0x04000800, 0x00000000, 0x00000000, 180 0x00000000, 0x00000155, 0x00000000, 0x00000000, 181 0x00000000, 0x000FC000, 0x83E0F800, 0x00000101, 182 0x00000000, 0x00000000, 0x00000000, 0x00000000, 183 0x00000000, 0x00000000, 0x00000000, 0x00000000, 184 0x00000000, 0x00000000, 0x00000000, 0x00000000, 185 0x00000000, 0x00000000, 0x00000000, 0x00000000, 186 0x00000000, 0x00000000, 0x00000000, 0x00000000, 187 }; 188 189 /* Packet types for packets with an Innermost/Last IPv4 header */ 190 static const u32 ice_ptypes_ipv4_il[] = { 191 0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B, 192 0x0000000E, 0x00000000, 0x00000000, 0x00000000, 193 0x00000000, 0x00000000, 0x001FF800, 0x00000000, 194 0x00000000, 0x00000000, 0x00000000, 0x00000000, 195 0x00000000, 0x00000000, 0x00000000, 0x00000000, 196 0x00000000, 0x00000000, 0x00000000, 0x00000000, 197 0x00000000, 0x00000000, 0x00000000, 0x00000000, 198 0x00000000, 0x00000000, 0x00000000, 0x00000000, 199 }; 200 201 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT 202 * include IPv6 other PTYPEs 203 */ 204 static const u32 ice_ptypes_ipv6_ofos[] = { 205 0x00000000, 0x00000000, 0x77000000, 0x10002000, 206 0x00000000, 0x000002AA, 0x00000000, 0x00000000, 207 0x00000000, 0x03F00000, 0x00000000, 0x00000000, 208 0x00000000, 0x00000000, 0x00000000, 0x00000000, 209 0x00000000, 0x00000000, 0x00000000, 0x00000000, 210 0x00000000, 0x00000000, 0x00000000, 0x00000000, 211 0x00000000, 0x00000000, 0x00000000, 0x00000000, 212 0x00000000, 0x00000000, 0x00000000, 0x00000000, 213 }; 214 215 /* Packet types for packets with an Outer/First/Single IPv6 header, includes 216 * IPv6 other PTYPEs 217 */ 218 static const u32 ice_ptypes_ipv6_ofos_all[] = { 219 0x00000000, 0x00000000, 0x77000000, 0x10002000, 220 0x00000000, 0x000002AA, 0x00000000, 0x00000000, 221 0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206, 222 0x00000000, 0x00000000, 0x00000000, 0x00000000, 223 0x00000000, 0x00000000, 0x00000000, 0x00000000, 224 0x00000000, 0x00000000, 0x00000000, 0x00000000, 225 0x00000000, 0x00000000, 0x00000000, 0x00000000, 226 0x00000000, 0x00000000, 0x00000000, 0x00000000, 227 }; 228 229 /* Packet types for packets with an Innermost/Last IPv6 header */ 230 static const u32 ice_ptypes_ipv6_il[] = { 231 0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000, 232 0x00000770, 0x00000000, 0x00000000, 0x00000000, 233 0x00000000, 0x00000000, 0x7FE00000, 0x00000000, 234 0x00000000, 0x00000000, 0x00000000, 0x00000000, 235 0x00000000, 0x00000000, 0x00000000, 0x00000000, 236 0x00000000, 0x00000000, 0x00000000, 0x00000000, 237 0x00000000, 0x00000000, 0x00000000, 0x00000000, 238 0x00000000, 0x00000000, 0x00000000, 0x00000000, 239 }; 240 241 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */ 242 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = { 243 0x10C00000, 0x04000800, 0x00000000, 0x00000000, 244 0x00000000, 0x00000000, 0x00000000, 0x00000000, 245 0x00000000, 0x00000000, 0x00000000, 0x00000000, 246 0x00000000, 0x00000000, 0x00000000, 0x00000000, 247 0x00000000, 0x00000000, 0x00000000, 0x00000000, 248 0x00000000, 0x00000000, 0x00000000, 0x00000000, 249 0x00000000, 0x00000000, 0x00000000, 0x00000000, 250 0x00000000, 0x00000000, 0x00000000, 0x00000000, 251 }; 252 253 /* Packet types for packets with an Outermost/First ARP header */ 254 static const u32 ice_ptypes_arp_of[] = { 255 0x00000800, 0x00000000, 0x00000000, 0x00000000, 256 0x00000000, 0x00000000, 0x00000000, 0x00000000, 257 0x00000000, 0x00000000, 0x00000000, 0x00000000, 258 0x00000000, 0x00000000, 0x00000000, 0x00000000, 259 0x00000000, 0x00000000, 0x00000000, 0x00000000, 260 0x00000000, 0x00000000, 0x00000000, 0x00000000, 261 0x00000000, 0x00000000, 0x00000000, 0x00000000, 262 0x00000000, 0x00000000, 0x00000000, 0x00000000, 263 }; 264 265 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */ 266 static const u32 ice_ptypes_ipv4_il_no_l4[] = { 267 0x60000000, 0x18043008, 0x80000002, 0x6010c021, 268 0x00000008, 0x00000000, 0x00000000, 0x00000000, 269 0x00000000, 0x00000000, 0x00000000, 0x00000000, 270 0x00000000, 0x00000000, 0x00000000, 0x00000000, 271 0x00000000, 0x00000000, 0x00000000, 0x00000000, 272 0x00000000, 0x00000000, 0x00000000, 0x00000000, 273 0x00000000, 0x00000000, 0x00000000, 0x00000000, 274 0x00000000, 0x00000000, 0x00000000, 0x00000000, 275 }; 276 277 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */ 278 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = { 279 0x00000000, 0x00000000, 0x43000000, 0x10002000, 280 0x00000000, 0x00000000, 0x00000000, 0x00000000, 281 0x00000000, 0x00000000, 0x00000000, 0x00000000, 282 0x00000000, 0x00000000, 0x00000000, 0x00000000, 283 0x00000000, 0x00000000, 0x00000000, 0x00000000, 284 0x00000000, 0x00000000, 0x00000000, 0x00000000, 285 0x00000000, 0x00000000, 0x00000000, 0x00000000, 286 0x00000000, 0x00000000, 0x00000000, 0x00000000, 287 }; 288 289 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */ 290 static const u32 ice_ptypes_ipv6_il_no_l4[] = { 291 0x00000000, 0x02180430, 0x0000010c, 0x086010c0, 292 0x00000430, 0x00000000, 0x00000000, 0x00000000, 293 0x00000000, 0x00000000, 0x00000000, 0x00000000, 294 0x00000000, 0x00000000, 0x00000000, 0x00000000, 295 0x00000000, 0x00000000, 0x00000000, 0x00000000, 296 0x00000000, 0x00000000, 0x00000000, 0x00000000, 297 0x00000000, 0x00000000, 0x00000000, 0x00000000, 298 0x00000000, 0x00000000, 0x00000000, 0x00000000, 299 }; 300 301 /* UDP Packet types for non-tunneled packets or tunneled 302 * packets with inner UDP. 303 */ 304 static const u32 ice_ptypes_udp_il[] = { 305 0x81000000, 0x20204040, 0x04000010, 0x80810102, 306 0x00000040, 0x00000000, 0x00000000, 0x00000000, 307 0x00000000, 0x00410000, 0x90842000, 0x00000007, 308 0x00000000, 0x00000000, 0x00000000, 0x00000000, 309 0x00000000, 0x00000000, 0x00000000, 0x00000000, 310 0x00000000, 0x00000000, 0x00000000, 0x00000000, 311 0x00000000, 0x00000000, 0x00000000, 0x00000000, 312 0x00000000, 0x00000000, 0x00000000, 0x00000000, 313 }; 314 315 /* Packet types for packets with an Innermost/Last TCP header */ 316 static const u32 ice_ptypes_tcp_il[] = { 317 0x04000000, 0x80810102, 0x10000040, 0x02040408, 318 0x00000102, 0x00000000, 0x00000000, 0x00000000, 319 0x00000000, 0x00820000, 0x21084000, 0x00000000, 320 0x00000000, 0x00000000, 0x00000000, 0x00000000, 321 0x00000000, 0x00000000, 0x00000000, 0x00000000, 322 0x00000000, 0x00000000, 0x00000000, 0x00000000, 323 0x00000000, 0x00000000, 0x00000000, 0x00000000, 324 0x00000000, 0x00000000, 0x00000000, 0x00000000, 325 }; 326 327 /* Packet types for packets with an Innermost/Last SCTP header */ 328 static const u32 ice_ptypes_sctp_il[] = { 329 0x08000000, 0x01020204, 0x20000081, 0x04080810, 330 0x00000204, 0x00000000, 0x00000000, 0x00000000, 331 0x00000000, 0x01040000, 0x00000000, 0x00000000, 332 0x00000000, 0x00000000, 0x00000000, 0x00000000, 333 0x00000000, 0x00000000, 0x00000000, 0x00000000, 334 0x00000000, 0x00000000, 0x00000000, 0x00000000, 335 0x00000000, 0x00000000, 0x00000000, 0x00000000, 336 0x00000000, 0x00000000, 0x00000000, 0x00000000, 337 }; 338 339 /* Packet types for packets with an Outermost/First ICMP header */ 340 static const u32 ice_ptypes_icmp_of[] = { 341 0x10000000, 0x00000000, 0x00000000, 0x00000000, 342 0x00000000, 0x00000000, 0x00000000, 0x00000000, 343 0x00000000, 0x00000000, 0x00000000, 0x00000000, 344 0x00000000, 0x00000000, 0x00000000, 0x00000000, 345 0x00000000, 0x00000000, 0x00000000, 0x00000000, 346 0x00000000, 0x00000000, 0x00000000, 0x00000000, 347 0x00000000, 0x00000000, 0x00000000, 0x00000000, 348 0x00000000, 0x00000000, 0x00000000, 0x00000000, 349 }; 350 351 /* Packet types for packets with an Innermost/Last ICMP header */ 352 static const u32 ice_ptypes_icmp_il[] = { 353 0x00000000, 0x02040408, 0x40000102, 0x08101020, 354 0x00000408, 0x00000000, 0x00000000, 0x00000000, 355 0x00000000, 0x00000000, 0x42108000, 0x00000000, 356 0x00000000, 0x00000000, 0x00000000, 0x00000000, 357 0x00000000, 0x00000000, 0x00000000, 0x00000000, 358 0x00000000, 0x00000000, 0x00000000, 0x00000000, 359 0x00000000, 0x00000000, 0x00000000, 0x00000000, 360 0x00000000, 0x00000000, 0x00000000, 0x00000000, 361 }; 362 363 /* Packet types for packets with an Outermost/First GRE header */ 364 static const u32 ice_ptypes_gre_of[] = { 365 0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000, 366 0x0000017E, 0x00000000, 0x00000000, 0x00000000, 367 0x00000000, 0x00000000, 0x00000000, 0x00000000, 368 0x00000000, 0x00000000, 0x00000000, 0x00000000, 369 0x00000000, 0x00000000, 0x00000000, 0x00000000, 370 0x00000000, 0x00000000, 0x00000000, 0x00000000, 371 0x00000000, 0x00000000, 0x00000000, 0x00000000, 372 0x00000000, 0x00000000, 0x00000000, 0x00000000, 373 }; 374 375 /* Packet types for packets with an Innermost/Last MAC header */ 376 static const u32 ice_ptypes_mac_il[] = { 377 0x00000000, 0x00000000, 0x00000000, 0x00000000, 378 0x00000000, 0x00000000, 0x00000000, 0x00000000, 379 0x00000000, 0x00000000, 0x00000000, 0x00000000, 380 0x00000000, 0x00000000, 0x00000000, 0x00000000, 381 0x00000000, 0x00000000, 0x00000000, 0x00000000, 382 0x00000000, 0x00000000, 0x00000000, 0x00000000, 383 0x00000000, 0x00000000, 0x00000000, 0x00000000, 384 0x00000000, 0x00000000, 0x00000000, 0x00000000, 385 }; 386 387 /* Packet types for GTPC */ 388 static const u32 ice_ptypes_gtpc[] = { 389 0x00000000, 0x00000000, 0x00000000, 0x00000000, 390 0x00000000, 0x00000000, 0x00000000, 0x00000000, 391 0x00000000, 0x00000000, 0x00000180, 0x00000000, 392 0x00000000, 0x00000000, 0x00000000, 0x00000000, 393 0x00000000, 0x00000000, 0x00000000, 0x00000000, 394 0x00000000, 0x00000000, 0x00000000, 0x00000000, 395 0x00000000, 0x00000000, 0x00000000, 0x00000000, 396 0x00000000, 0x00000000, 0x00000000, 0x00000000, 397 }; 398 399 /* Packet types for GTPC with TEID */ 400 static const u32 ice_ptypes_gtpc_tid[] = { 401 0x00000000, 0x00000000, 0x00000000, 0x00000000, 402 0x00000000, 0x00000000, 0x00000000, 0x00000000, 403 0x00000000, 0x00000000, 0x00000060, 0x00000000, 404 0x00000000, 0x00000000, 0x00000000, 0x00000000, 405 0x00000000, 0x00000000, 0x00000000, 0x00000000, 406 0x00000000, 0x00000000, 0x00000000, 0x00000000, 407 0x00000000, 0x00000000, 0x00000000, 0x00000000, 408 0x00000000, 0x00000000, 0x00000000, 0x00000000, 409 }; 410 411 /* Packet types for GTPU */ 412 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = { 413 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 414 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 415 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 416 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 417 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 418 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 419 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 420 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 421 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 422 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 423 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 424 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 425 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 426 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 427 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH }, 428 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 429 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 430 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 431 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 432 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH }, 433 }; 434 435 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = { 436 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 437 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 438 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 439 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 440 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 441 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 442 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 443 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 444 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 445 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 446 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 447 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 448 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 449 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 450 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 451 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 452 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 453 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 454 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 455 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 456 }; 457 458 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = { 459 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 460 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 461 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 462 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 463 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK }, 464 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 465 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 466 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 467 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 468 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK }, 469 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 470 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 471 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 472 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 473 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK }, 474 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 475 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 476 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 477 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 478 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK }, 479 }; 480 481 static const u32 ice_ptypes_gtpu[] = { 482 0x00000000, 0x00000000, 0x00000000, 0x00000000, 483 0x00000000, 0x00000000, 0x00000000, 0x00000000, 484 0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000, 485 0x00000000, 0x00000000, 0x00000000, 0x00000000, 486 0x00000000, 0x00000000, 0x00000000, 0x00000000, 487 0x00000000, 0x00000000, 0x00000000, 0x00000000, 488 0x00000000, 0x00000000, 0x00000000, 0x00000000, 489 0x00000000, 0x00000000, 0x00000000, 0x00000000, 490 }; 491 492 /* Packet types for PPPoE */ 493 static const u32 ice_ptypes_pppoe[] = { 494 0x00000000, 0x00000000, 0x00000000, 0x00000000, 495 0x00000000, 0x00000000, 0x00000000, 0x00000000, 496 0x00000000, 0x03ffe000, 0x00000000, 0x00000000, 497 0x00000000, 0x00000000, 0x00000000, 0x00000000, 498 0x00000000, 0x00000000, 0x00000000, 0x00000000, 499 0x00000000, 0x00000000, 0x00000000, 0x00000000, 500 0x00000000, 0x00000000, 0x00000000, 0x00000000, 501 0x00000000, 0x00000000, 0x00000000, 0x00000000, 502 }; 503 504 /* Packet types for packets with PFCP NODE header */ 505 static const u32 ice_ptypes_pfcp_node[] = { 506 0x00000000, 0x00000000, 0x00000000, 0x00000000, 507 0x00000000, 0x00000000, 0x00000000, 0x00000000, 508 0x00000000, 0x00000000, 0x80000000, 0x00000002, 509 0x00000000, 0x00000000, 0x00000000, 0x00000000, 510 0x00000000, 0x00000000, 0x00000000, 0x00000000, 511 0x00000000, 0x00000000, 0x00000000, 0x00000000, 512 0x00000000, 0x00000000, 0x00000000, 0x00000000, 513 0x00000000, 0x00000000, 0x00000000, 0x00000000, 514 }; 515 516 /* Packet types for packets with PFCP SESSION header */ 517 static const u32 ice_ptypes_pfcp_session[] = { 518 0x00000000, 0x00000000, 0x00000000, 0x00000000, 519 0x00000000, 0x00000000, 0x00000000, 0x00000000, 520 0x00000000, 0x00000000, 0x00000000, 0x00000005, 521 0x00000000, 0x00000000, 0x00000000, 0x00000000, 522 0x00000000, 0x00000000, 0x00000000, 0x00000000, 523 0x00000000, 0x00000000, 0x00000000, 0x00000000, 524 0x00000000, 0x00000000, 0x00000000, 0x00000000, 525 0x00000000, 0x00000000, 0x00000000, 0x00000000, 526 }; 527 528 /* Packet types for L2TPv3 */ 529 static const u32 ice_ptypes_l2tpv3[] = { 530 0x00000000, 0x00000000, 0x00000000, 0x00000000, 531 0x00000000, 0x00000000, 0x00000000, 0x00000000, 532 0x00000000, 0x00000000, 0x00000000, 0x00000300, 533 0x00000000, 0x00000000, 0x00000000, 0x00000000, 534 0x00000000, 0x00000000, 0x00000000, 0x00000000, 535 0x00000000, 0x00000000, 0x00000000, 0x00000000, 536 0x00000000, 0x00000000, 0x00000000, 0x00000000, 537 0x00000000, 0x00000000, 0x00000000, 0x00000000, 538 }; 539 540 /* Packet types for ESP */ 541 static const u32 ice_ptypes_esp[] = { 542 0x00000000, 0x00000000, 0x00000000, 0x00000000, 543 0x00000000, 0x00000003, 0x00000000, 0x00000000, 544 0x00000000, 0x00000000, 0x00000000, 0x00000000, 545 0x00000000, 0x00000000, 0x00000000, 0x00000000, 546 0x00000000, 0x00000000, 0x00000000, 0x00000000, 547 0x00000000, 0x00000000, 0x00000000, 0x00000000, 548 0x00000000, 0x00000000, 0x00000000, 0x00000000, 549 0x00000000, 0x00000000, 0x00000000, 0x00000000, 550 }; 551 552 /* Packet types for AH */ 553 static const u32 ice_ptypes_ah[] = { 554 0x00000000, 0x00000000, 0x00000000, 0x00000000, 555 0x00000000, 0x0000000C, 0x00000000, 0x00000000, 556 0x00000000, 0x00000000, 0x00000000, 0x00000000, 557 0x00000000, 0x00000000, 0x00000000, 0x00000000, 558 0x00000000, 0x00000000, 0x00000000, 0x00000000, 559 0x00000000, 0x00000000, 0x00000000, 0x00000000, 560 0x00000000, 0x00000000, 0x00000000, 0x00000000, 561 0x00000000, 0x00000000, 0x00000000, 0x00000000, 562 }; 563 564 /* Packet types for packets with NAT_T ESP header */ 565 static const u32 ice_ptypes_nat_t_esp[] = { 566 0x00000000, 0x00000000, 0x00000000, 0x00000000, 567 0x00000000, 0x00000030, 0x00000000, 0x00000000, 568 0x00000000, 0x00000000, 0x00000000, 0x00000000, 569 0x00000000, 0x00000000, 0x00000000, 0x00000000, 570 0x00000000, 0x00000000, 0x00000000, 0x00000000, 571 0x00000000, 0x00000000, 0x00000000, 0x00000000, 572 0x00000000, 0x00000000, 0x00000000, 0x00000000, 573 0x00000000, 0x00000000, 0x00000000, 0x00000000, 574 }; 575 576 static const u32 ice_ptypes_mac_non_ip_ofos[] = { 577 0x00000846, 0x00000000, 0x00000000, 0x00000000, 578 0x00000000, 0x00000000, 0x00000000, 0x00000000, 579 0x00400000, 0x03FFF000, 0x00000000, 0x00000000, 580 0x00000000, 0x00000000, 0x00000000, 0x00000000, 581 0x00000000, 0x00000000, 0x00000000, 0x00000000, 582 0x00000000, 0x00000000, 0x00000000, 0x00000000, 583 0x00000000, 0x00000000, 0x00000000, 0x00000000, 584 0x00000000, 0x00000000, 0x00000000, 0x00000000, 585 }; 586 587 /* Manage parameters and info. used during the creation of a flow profile */ 588 struct ice_flow_prof_params { 589 enum ice_block blk; 590 u16 entry_length; /* # of bytes formatted entry will require */ 591 u8 es_cnt; 592 struct ice_flow_prof *prof; 593 594 /* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0 595 * This will give us the direction flags. 596 */ 597 struct ice_fv_word es[ICE_MAX_FV_WORDS]; 598 /* attributes can be used to add attributes to a particular PTYPE */ 599 const struct ice_ptype_attributes *attr; 600 u16 attr_cnt; 601 602 u16 mask[ICE_MAX_FV_WORDS]; 603 DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX); 604 }; 605 606 #define ICE_FLOW_RSS_HDRS_INNER_MASK \ 607 (ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \ 608 ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \ 609 ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \ 610 ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \ 611 ICE_FLOW_SEG_HDR_NAT_T_ESP) 612 613 #define ICE_FLOW_SEG_HDRS_L3_MASK \ 614 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP) 615 #define ICE_FLOW_SEG_HDRS_L4_MASK \ 616 (ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \ 617 ICE_FLOW_SEG_HDR_SCTP) 618 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */ 619 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER \ 620 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 621 622 /** 623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers 624 * @segs: array of one or more packet segments that describe the flow 625 * @segs_cnt: number of packet segments provided 626 */ 627 static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt) 628 { 629 u8 i; 630 631 for (i = 0; i < segs_cnt; i++) { 632 /* Multiple L3 headers */ 633 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK && 634 !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK)) 635 return -EINVAL; 636 637 /* Multiple L4 headers */ 638 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK && 639 !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)) 640 return -EINVAL; 641 } 642 643 return 0; 644 } 645 646 /* Sizes of fixed known protocol headers without header options */ 647 #define ICE_FLOW_PROT_HDR_SZ_MAC 14 648 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN (ICE_FLOW_PROT_HDR_SZ_MAC + 2) 649 #define ICE_FLOW_PROT_HDR_SZ_IPV4 20 650 #define ICE_FLOW_PROT_HDR_SZ_IPV6 40 651 #define ICE_FLOW_PROT_HDR_SZ_ARP 28 652 #define ICE_FLOW_PROT_HDR_SZ_ICMP 8 653 #define ICE_FLOW_PROT_HDR_SZ_TCP 20 654 #define ICE_FLOW_PROT_HDR_SZ_UDP 8 655 #define ICE_FLOW_PROT_HDR_SZ_SCTP 12 656 657 /** 658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers 659 * @params: information about the flow to be processed 660 * @seg: index of packet segment whose header size is to be determined 661 */ 662 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg) 663 { 664 u16 sz; 665 666 /* L2 headers */ 667 sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ? 668 ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC; 669 670 /* L3 headers */ 671 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) 672 sz += ICE_FLOW_PROT_HDR_SZ_IPV4; 673 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6) 674 sz += ICE_FLOW_PROT_HDR_SZ_IPV6; 675 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP) 676 sz += ICE_FLOW_PROT_HDR_SZ_ARP; 677 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK) 678 /* An L3 header is required if L4 is specified */ 679 return 0; 680 681 /* L4 headers */ 682 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP) 683 sz += ICE_FLOW_PROT_HDR_SZ_ICMP; 684 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP) 685 sz += ICE_FLOW_PROT_HDR_SZ_TCP; 686 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP) 687 sz += ICE_FLOW_PROT_HDR_SZ_UDP; 688 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP) 689 sz += ICE_FLOW_PROT_HDR_SZ_SCTP; 690 691 return sz; 692 } 693 694 /** 695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments 696 * @params: information about the flow to be processed 697 * 698 * This function identifies the packet types associated with the protocol 699 * headers being present in packet segments of the specified flow profile. 700 */ 701 static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params) 702 { 703 struct ice_flow_prof *prof; 704 u8 i; 705 706 memset(params->ptypes, 0xff, sizeof(params->ptypes)); 707 708 prof = params->prof; 709 710 for (i = 0; i < params->prof->segs_cnt; i++) { 711 const unsigned long *src; 712 u32 hdrs; 713 714 hdrs = prof->segs[i].hdrs; 715 716 if (hdrs & ICE_FLOW_SEG_HDR_ETH) { 717 src = !i ? (const unsigned long *)ice_ptypes_mac_ofos : 718 (const unsigned long *)ice_ptypes_mac_il; 719 bitmap_and(params->ptypes, params->ptypes, src, 720 ICE_FLOW_PTYPE_MAX); 721 } 722 723 if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) { 724 src = (const unsigned long *)ice_ptypes_macvlan_il; 725 bitmap_and(params->ptypes, params->ptypes, src, 726 ICE_FLOW_PTYPE_MAX); 727 } 728 729 if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) { 730 bitmap_and(params->ptypes, params->ptypes, 731 (const unsigned long *)ice_ptypes_arp_of, 732 ICE_FLOW_PTYPE_MAX); 733 } 734 735 if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 736 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 737 src = i ? (const unsigned long *)ice_ptypes_ipv4_il : 738 (const unsigned long *)ice_ptypes_ipv4_ofos_all; 739 bitmap_and(params->ptypes, params->ptypes, src, 740 ICE_FLOW_PTYPE_MAX); 741 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 742 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 743 src = i ? (const unsigned long *)ice_ptypes_ipv6_il : 744 (const unsigned long *)ice_ptypes_ipv6_ofos_all; 745 bitmap_and(params->ptypes, params->ptypes, src, 746 ICE_FLOW_PTYPE_MAX); 747 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 748 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 749 src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 : 750 (const unsigned long *)ice_ptypes_ipv4_il_no_l4; 751 bitmap_and(params->ptypes, params->ptypes, src, 752 ICE_FLOW_PTYPE_MAX); 753 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) { 754 src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos : 755 (const unsigned long *)ice_ptypes_ipv4_il; 756 bitmap_and(params->ptypes, params->ptypes, src, 757 ICE_FLOW_PTYPE_MAX); 758 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 759 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 760 src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 : 761 (const unsigned long *)ice_ptypes_ipv6_il_no_l4; 762 bitmap_and(params->ptypes, params->ptypes, src, 763 ICE_FLOW_PTYPE_MAX); 764 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) { 765 src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos : 766 (const unsigned long *)ice_ptypes_ipv6_il; 767 bitmap_and(params->ptypes, params->ptypes, src, 768 ICE_FLOW_PTYPE_MAX); 769 } 770 771 if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) { 772 src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos; 773 bitmap_and(params->ptypes, params->ptypes, src, 774 ICE_FLOW_PTYPE_MAX); 775 } else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) { 776 src = (const unsigned long *)ice_ptypes_pppoe; 777 bitmap_and(params->ptypes, params->ptypes, src, 778 ICE_FLOW_PTYPE_MAX); 779 } else { 780 src = (const unsigned long *)ice_ptypes_pppoe; 781 bitmap_andnot(params->ptypes, params->ptypes, src, 782 ICE_FLOW_PTYPE_MAX); 783 } 784 785 if (hdrs & ICE_FLOW_SEG_HDR_UDP) { 786 src = (const unsigned long *)ice_ptypes_udp_il; 787 bitmap_and(params->ptypes, params->ptypes, src, 788 ICE_FLOW_PTYPE_MAX); 789 } else if (hdrs & ICE_FLOW_SEG_HDR_TCP) { 790 bitmap_and(params->ptypes, params->ptypes, 791 (const unsigned long *)ice_ptypes_tcp_il, 792 ICE_FLOW_PTYPE_MAX); 793 } else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) { 794 src = (const unsigned long *)ice_ptypes_sctp_il; 795 bitmap_and(params->ptypes, params->ptypes, src, 796 ICE_FLOW_PTYPE_MAX); 797 } 798 799 if (hdrs & ICE_FLOW_SEG_HDR_ICMP) { 800 src = !i ? (const unsigned long *)ice_ptypes_icmp_of : 801 (const unsigned long *)ice_ptypes_icmp_il; 802 bitmap_and(params->ptypes, params->ptypes, src, 803 ICE_FLOW_PTYPE_MAX); 804 } else if (hdrs & ICE_FLOW_SEG_HDR_GRE) { 805 if (!i) { 806 src = (const unsigned long *)ice_ptypes_gre_of; 807 bitmap_and(params->ptypes, params->ptypes, 808 src, ICE_FLOW_PTYPE_MAX); 809 } 810 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) { 811 src = (const unsigned long *)ice_ptypes_gtpc; 812 bitmap_and(params->ptypes, params->ptypes, src, 813 ICE_FLOW_PTYPE_MAX); 814 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) { 815 src = (const unsigned long *)ice_ptypes_gtpc_tid; 816 bitmap_and(params->ptypes, params->ptypes, src, 817 ICE_FLOW_PTYPE_MAX); 818 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) { 819 src = (const unsigned long *)ice_ptypes_gtpu; 820 bitmap_and(params->ptypes, params->ptypes, src, 821 ICE_FLOW_PTYPE_MAX); 822 823 /* Attributes for GTP packet with downlink */ 824 params->attr = ice_attr_gtpu_down; 825 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down); 826 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) { 827 src = (const unsigned long *)ice_ptypes_gtpu; 828 bitmap_and(params->ptypes, params->ptypes, src, 829 ICE_FLOW_PTYPE_MAX); 830 831 /* Attributes for GTP packet with uplink */ 832 params->attr = ice_attr_gtpu_up; 833 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up); 834 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) { 835 src = (const unsigned long *)ice_ptypes_gtpu; 836 bitmap_and(params->ptypes, params->ptypes, src, 837 ICE_FLOW_PTYPE_MAX); 838 839 /* Attributes for GTP packet with Extension Header */ 840 params->attr = ice_attr_gtpu_eh; 841 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh); 842 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) { 843 src = (const unsigned long *)ice_ptypes_gtpu; 844 bitmap_and(params->ptypes, params->ptypes, src, 845 ICE_FLOW_PTYPE_MAX); 846 } else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) { 847 src = (const unsigned long *)ice_ptypes_l2tpv3; 848 bitmap_and(params->ptypes, params->ptypes, src, 849 ICE_FLOW_PTYPE_MAX); 850 } else if (hdrs & ICE_FLOW_SEG_HDR_ESP) { 851 src = (const unsigned long *)ice_ptypes_esp; 852 bitmap_and(params->ptypes, params->ptypes, src, 853 ICE_FLOW_PTYPE_MAX); 854 } else if (hdrs & ICE_FLOW_SEG_HDR_AH) { 855 src = (const unsigned long *)ice_ptypes_ah; 856 bitmap_and(params->ptypes, params->ptypes, src, 857 ICE_FLOW_PTYPE_MAX); 858 } else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) { 859 src = (const unsigned long *)ice_ptypes_nat_t_esp; 860 bitmap_and(params->ptypes, params->ptypes, src, 861 ICE_FLOW_PTYPE_MAX); 862 } 863 864 if (hdrs & ICE_FLOW_SEG_HDR_PFCP) { 865 if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE) 866 src = (const unsigned long *)ice_ptypes_pfcp_node; 867 else 868 src = (const unsigned long *)ice_ptypes_pfcp_session; 869 870 bitmap_and(params->ptypes, params->ptypes, src, 871 ICE_FLOW_PTYPE_MAX); 872 } else { 873 src = (const unsigned long *)ice_ptypes_pfcp_node; 874 bitmap_andnot(params->ptypes, params->ptypes, src, 875 ICE_FLOW_PTYPE_MAX); 876 877 src = (const unsigned long *)ice_ptypes_pfcp_session; 878 bitmap_andnot(params->ptypes, params->ptypes, src, 879 ICE_FLOW_PTYPE_MAX); 880 } 881 } 882 883 return 0; 884 } 885 886 /** 887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field 888 * @hw: pointer to the HW struct 889 * @params: information about the flow to be processed 890 * @seg: packet segment index of the field to be extracted 891 * @fld: ID of field to be extracted 892 * @match: bit field of all fields 893 * 894 * This function determines the protocol ID, offset, and size of the given 895 * field. It then allocates one or more extraction sequence entries for the 896 * given field, and fill the entries with protocol ID and offset information. 897 */ 898 static int 899 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params, 900 u8 seg, enum ice_flow_field fld, u64 match) 901 { 902 enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX; 903 enum ice_prot_id prot_id = ICE_PROT_ID_INVAL; 904 u8 fv_words = hw->blk[params->blk].es.fvw; 905 struct ice_flow_fld_info *flds; 906 u16 cnt, ese_bits, i; 907 u16 sib_mask = 0; 908 u16 mask; 909 u16 off; 910 911 flds = params->prof->segs[seg].fields; 912 913 switch (fld) { 914 case ICE_FLOW_FIELD_IDX_ETH_DA: 915 case ICE_FLOW_FIELD_IDX_ETH_SA: 916 case ICE_FLOW_FIELD_IDX_S_VLAN: 917 case ICE_FLOW_FIELD_IDX_C_VLAN: 918 prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL; 919 break; 920 case ICE_FLOW_FIELD_IDX_ETH_TYPE: 921 prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL; 922 break; 923 case ICE_FLOW_FIELD_IDX_IPV4_DSCP: 924 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 925 break; 926 case ICE_FLOW_FIELD_IDX_IPV6_DSCP: 927 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 928 break; 929 case ICE_FLOW_FIELD_IDX_IPV4_TTL: 930 case ICE_FLOW_FIELD_IDX_IPV4_PROT: 931 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 932 933 /* TTL and PROT share the same extraction seq. entry. 934 * Each is considered a sibling to the other in terms of sharing 935 * the same extraction sequence entry. 936 */ 937 if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL) 938 sib = ICE_FLOW_FIELD_IDX_IPV4_PROT; 939 else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT) 940 sib = ICE_FLOW_FIELD_IDX_IPV4_TTL; 941 942 /* If the sibling field is also included, that field's 943 * mask needs to be included. 944 */ 945 if (match & BIT(sib)) 946 sib_mask = ice_flds_info[sib].mask; 947 break; 948 case ICE_FLOW_FIELD_IDX_IPV6_TTL: 949 case ICE_FLOW_FIELD_IDX_IPV6_PROT: 950 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 951 952 /* TTL and PROT share the same extraction seq. entry. 953 * Each is considered a sibling to the other in terms of sharing 954 * the same extraction sequence entry. 955 */ 956 if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL) 957 sib = ICE_FLOW_FIELD_IDX_IPV6_PROT; 958 else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT) 959 sib = ICE_FLOW_FIELD_IDX_IPV6_TTL; 960 961 /* If the sibling field is also included, that field's 962 * mask needs to be included. 963 */ 964 if (match & BIT(sib)) 965 sib_mask = ice_flds_info[sib].mask; 966 break; 967 case ICE_FLOW_FIELD_IDX_IPV4_SA: 968 case ICE_FLOW_FIELD_IDX_IPV4_DA: 969 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 970 break; 971 case ICE_FLOW_FIELD_IDX_IPV6_SA: 972 case ICE_FLOW_FIELD_IDX_IPV6_DA: 973 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 974 break; 975 case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT: 976 case ICE_FLOW_FIELD_IDX_TCP_DST_PORT: 977 case ICE_FLOW_FIELD_IDX_TCP_FLAGS: 978 prot_id = ICE_PROT_TCP_IL; 979 break; 980 case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT: 981 case ICE_FLOW_FIELD_IDX_UDP_DST_PORT: 982 prot_id = ICE_PROT_UDP_IL_OR_S; 983 break; 984 case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT: 985 case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT: 986 prot_id = ICE_PROT_SCTP_IL; 987 break; 988 case ICE_FLOW_FIELD_IDX_GTPC_TEID: 989 case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID: 990 case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID: 991 case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID: 992 case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID: 993 case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI: 994 /* GTP is accessed through UDP OF protocol */ 995 prot_id = ICE_PROT_UDP_OF; 996 break; 997 case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID: 998 prot_id = ICE_PROT_PPPOE; 999 break; 1000 case ICE_FLOW_FIELD_IDX_PFCP_SEID: 1001 prot_id = ICE_PROT_UDP_IL_OR_S; 1002 break; 1003 case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID: 1004 prot_id = ICE_PROT_L2TPV3; 1005 break; 1006 case ICE_FLOW_FIELD_IDX_ESP_SPI: 1007 prot_id = ICE_PROT_ESP_F; 1008 break; 1009 case ICE_FLOW_FIELD_IDX_AH_SPI: 1010 prot_id = ICE_PROT_ESP_2; 1011 break; 1012 case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI: 1013 prot_id = ICE_PROT_UDP_IL_OR_S; 1014 break; 1015 case ICE_FLOW_FIELD_IDX_ARP_SIP: 1016 case ICE_FLOW_FIELD_IDX_ARP_DIP: 1017 case ICE_FLOW_FIELD_IDX_ARP_SHA: 1018 case ICE_FLOW_FIELD_IDX_ARP_DHA: 1019 case ICE_FLOW_FIELD_IDX_ARP_OP: 1020 prot_id = ICE_PROT_ARP_OF; 1021 break; 1022 case ICE_FLOW_FIELD_IDX_ICMP_TYPE: 1023 case ICE_FLOW_FIELD_IDX_ICMP_CODE: 1024 /* ICMP type and code share the same extraction seq. entry */ 1025 prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ? 1026 ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL; 1027 sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ? 1028 ICE_FLOW_FIELD_IDX_ICMP_CODE : 1029 ICE_FLOW_FIELD_IDX_ICMP_TYPE; 1030 break; 1031 case ICE_FLOW_FIELD_IDX_GRE_KEYID: 1032 prot_id = ICE_PROT_GRE_OF; 1033 break; 1034 default: 1035 return -EOPNOTSUPP; 1036 } 1037 1038 /* Each extraction sequence entry is a word in size, and extracts a 1039 * word-aligned offset from a protocol header. 1040 */ 1041 ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE; 1042 1043 flds[fld].xtrct.prot_id = prot_id; 1044 flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) * 1045 ICE_FLOW_FV_EXTRACT_SZ; 1046 flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits); 1047 flds[fld].xtrct.idx = params->es_cnt; 1048 flds[fld].xtrct.mask = ice_flds_info[fld].mask; 1049 1050 /* Adjust the next field-entry index after accommodating the number of 1051 * entries this field consumes 1052 */ 1053 cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size, 1054 ese_bits); 1055 1056 /* Fill in the extraction sequence entries needed for this field */ 1057 off = flds[fld].xtrct.off; 1058 mask = flds[fld].xtrct.mask; 1059 for (i = 0; i < cnt; i++) { 1060 /* Only consume an extraction sequence entry if there is no 1061 * sibling field associated with this field or the sibling entry 1062 * already extracts the word shared with this field. 1063 */ 1064 if (sib == ICE_FLOW_FIELD_IDX_MAX || 1065 flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL || 1066 flds[sib].xtrct.off != off) { 1067 u8 idx; 1068 1069 /* Make sure the number of extraction sequence required 1070 * does not exceed the block's capability 1071 */ 1072 if (params->es_cnt >= fv_words) 1073 return -ENOSPC; 1074 1075 /* some blocks require a reversed field vector layout */ 1076 if (hw->blk[params->blk].es.reverse) 1077 idx = fv_words - params->es_cnt - 1; 1078 else 1079 idx = params->es_cnt; 1080 1081 params->es[idx].prot_id = prot_id; 1082 params->es[idx].off = off; 1083 params->mask[idx] = mask | sib_mask; 1084 params->es_cnt++; 1085 } 1086 1087 off += ICE_FLOW_FV_EXTRACT_SZ; 1088 } 1089 1090 return 0; 1091 } 1092 1093 /** 1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes 1095 * @hw: pointer to the HW struct 1096 * @params: information about the flow to be processed 1097 * @seg: index of packet segment whose raw fields are to be extracted 1098 */ 1099 static int 1100 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params, 1101 u8 seg) 1102 { 1103 u16 fv_words; 1104 u16 hdrs_sz; 1105 u8 i; 1106 1107 if (!params->prof->segs[seg].raws_cnt) 1108 return 0; 1109 1110 if (params->prof->segs[seg].raws_cnt > 1111 ARRAY_SIZE(params->prof->segs[seg].raws)) 1112 return -ENOSPC; 1113 1114 /* Offsets within the segment headers are not supported */ 1115 hdrs_sz = ice_flow_calc_seg_sz(params, seg); 1116 if (!hdrs_sz) 1117 return -EINVAL; 1118 1119 fv_words = hw->blk[params->blk].es.fvw; 1120 1121 for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) { 1122 struct ice_flow_seg_fld_raw *raw; 1123 u16 off, cnt, j; 1124 1125 raw = ¶ms->prof->segs[seg].raws[i]; 1126 1127 /* Storing extraction information */ 1128 raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S; 1129 raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) * 1130 ICE_FLOW_FV_EXTRACT_SZ; 1131 raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) * 1132 BITS_PER_BYTE; 1133 raw->info.xtrct.idx = params->es_cnt; 1134 1135 /* Determine the number of field vector entries this raw field 1136 * consumes. 1137 */ 1138 cnt = DIV_ROUND_UP(raw->info.xtrct.disp + 1139 (raw->info.src.last * BITS_PER_BYTE), 1140 (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE)); 1141 off = raw->info.xtrct.off; 1142 for (j = 0; j < cnt; j++) { 1143 u16 idx; 1144 1145 /* Make sure the number of extraction sequence required 1146 * does not exceed the block's capability 1147 */ 1148 if (params->es_cnt >= hw->blk[params->blk].es.count || 1149 params->es_cnt >= ICE_MAX_FV_WORDS) 1150 return -ENOSPC; 1151 1152 /* some blocks require a reversed field vector layout */ 1153 if (hw->blk[params->blk].es.reverse) 1154 idx = fv_words - params->es_cnt - 1; 1155 else 1156 idx = params->es_cnt; 1157 1158 params->es[idx].prot_id = raw->info.xtrct.prot_id; 1159 params->es[idx].off = off; 1160 params->es_cnt++; 1161 off += ICE_FLOW_FV_EXTRACT_SZ; 1162 } 1163 } 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments 1170 * @hw: pointer to the HW struct 1171 * @params: information about the flow to be processed 1172 * 1173 * This function iterates through all matched fields in the given segments, and 1174 * creates an extraction sequence for the fields. 1175 */ 1176 static int 1177 ice_flow_create_xtrct_seq(struct ice_hw *hw, 1178 struct ice_flow_prof_params *params) 1179 { 1180 struct ice_flow_prof *prof = params->prof; 1181 int status = 0; 1182 u8 i; 1183 1184 for (i = 0; i < prof->segs_cnt; i++) { 1185 u64 match = params->prof->segs[i].match; 1186 enum ice_flow_field j; 1187 1188 for_each_set_bit(j, (unsigned long *)&match, 1189 ICE_FLOW_FIELD_IDX_MAX) { 1190 status = ice_flow_xtract_fld(hw, params, i, j, match); 1191 if (status) 1192 return status; 1193 clear_bit(j, (unsigned long *)&match); 1194 } 1195 1196 /* Process raw matching bytes */ 1197 status = ice_flow_xtract_raws(hw, params, i); 1198 if (status) 1199 return status; 1200 } 1201 1202 return status; 1203 } 1204 1205 /** 1206 * ice_flow_proc_segs - process all packet segments associated with a profile 1207 * @hw: pointer to the HW struct 1208 * @params: information about the flow to be processed 1209 */ 1210 static int 1211 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params) 1212 { 1213 int status; 1214 1215 status = ice_flow_proc_seg_hdrs(params); 1216 if (status) 1217 return status; 1218 1219 status = ice_flow_create_xtrct_seq(hw, params); 1220 if (status) 1221 return status; 1222 1223 switch (params->blk) { 1224 case ICE_BLK_FD: 1225 case ICE_BLK_RSS: 1226 status = 0; 1227 break; 1228 default: 1229 return -EOPNOTSUPP; 1230 } 1231 1232 return status; 1233 } 1234 1235 #define ICE_FLOW_FIND_PROF_CHK_FLDS 0x00000001 1236 #define ICE_FLOW_FIND_PROF_CHK_VSI 0x00000002 1237 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR 0x00000004 1238 1239 /** 1240 * ice_flow_find_prof_conds - Find a profile matching headers and conditions 1241 * @hw: pointer to the HW struct 1242 * @blk: classification stage 1243 * @dir: flow direction 1244 * @segs: array of one or more packet segments that describe the flow 1245 * @segs_cnt: number of packet segments provided 1246 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI) 1247 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*) 1248 */ 1249 static struct ice_flow_prof * 1250 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk, 1251 enum ice_flow_dir dir, struct ice_flow_seg_info *segs, 1252 u8 segs_cnt, u16 vsi_handle, u32 conds) 1253 { 1254 struct ice_flow_prof *p, *prof = NULL; 1255 1256 mutex_lock(&hw->fl_profs_locks[blk]); 1257 list_for_each_entry(p, &hw->fl_profs[blk], l_entry) 1258 if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) && 1259 segs_cnt && segs_cnt == p->segs_cnt) { 1260 u8 i; 1261 1262 /* Check for profile-VSI association if specified */ 1263 if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) && 1264 ice_is_vsi_valid(hw, vsi_handle) && 1265 !test_bit(vsi_handle, p->vsis)) 1266 continue; 1267 1268 /* Protocol headers must be checked. Matched fields are 1269 * checked if specified. 1270 */ 1271 for (i = 0; i < segs_cnt; i++) 1272 if (segs[i].hdrs != p->segs[i].hdrs || 1273 ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) && 1274 segs[i].match != p->segs[i].match)) 1275 break; 1276 1277 /* A match is found if all segments are matched */ 1278 if (i == segs_cnt) { 1279 prof = p; 1280 break; 1281 } 1282 } 1283 mutex_unlock(&hw->fl_profs_locks[blk]); 1284 1285 return prof; 1286 } 1287 1288 /** 1289 * ice_flow_find_prof_id - Look up a profile with given profile ID 1290 * @hw: pointer to the HW struct 1291 * @blk: classification stage 1292 * @prof_id: unique ID to identify this flow profile 1293 */ 1294 static struct ice_flow_prof * 1295 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 1296 { 1297 struct ice_flow_prof *p; 1298 1299 list_for_each_entry(p, &hw->fl_profs[blk], l_entry) 1300 if (p->id == prof_id) 1301 return p; 1302 1303 return NULL; 1304 } 1305 1306 /** 1307 * ice_flow_rem_entry_sync - Remove a flow entry 1308 * @hw: pointer to the HW struct 1309 * @blk: classification stage 1310 * @entry: flow entry to be removed 1311 */ 1312 static int 1313 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk, 1314 struct ice_flow_entry *entry) 1315 { 1316 if (!entry) 1317 return -EINVAL; 1318 1319 list_del(&entry->l_entry); 1320 1321 devm_kfree(ice_hw_to_dev(hw), entry->entry); 1322 devm_kfree(ice_hw_to_dev(hw), entry); 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields 1329 * @hw: pointer to the HW struct 1330 * @blk: classification stage 1331 * @dir: flow direction 1332 * @prof_id: unique ID to identify this flow profile 1333 * @segs: array of one or more packet segments that describe the flow 1334 * @segs_cnt: number of packet segments provided 1335 * @prof: stores the returned flow profile added 1336 * 1337 * Assumption: the caller has acquired the lock to the profile list 1338 */ 1339 static int 1340 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk, 1341 enum ice_flow_dir dir, u64 prof_id, 1342 struct ice_flow_seg_info *segs, u8 segs_cnt, 1343 struct ice_flow_prof **prof) 1344 { 1345 struct ice_flow_prof_params *params; 1346 int status; 1347 u8 i; 1348 1349 if (!prof) 1350 return -EINVAL; 1351 1352 params = kzalloc(sizeof(*params), GFP_KERNEL); 1353 if (!params) 1354 return -ENOMEM; 1355 1356 params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof), 1357 GFP_KERNEL); 1358 if (!params->prof) { 1359 status = -ENOMEM; 1360 goto free_params; 1361 } 1362 1363 /* initialize extraction sequence to all invalid (0xff) */ 1364 for (i = 0; i < ICE_MAX_FV_WORDS; i++) { 1365 params->es[i].prot_id = ICE_PROT_INVALID; 1366 params->es[i].off = ICE_FV_OFFSET_INVAL; 1367 } 1368 1369 params->blk = blk; 1370 params->prof->id = prof_id; 1371 params->prof->dir = dir; 1372 params->prof->segs_cnt = segs_cnt; 1373 1374 /* Make a copy of the segments that need to be persistent in the flow 1375 * profile instance 1376 */ 1377 for (i = 0; i < segs_cnt; i++) 1378 memcpy(¶ms->prof->segs[i], &segs[i], sizeof(*segs)); 1379 1380 status = ice_flow_proc_segs(hw, params); 1381 if (status) { 1382 ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n"); 1383 goto out; 1384 } 1385 1386 /* Add a HW profile for this flow profile */ 1387 status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes, 1388 params->attr, params->attr_cnt, params->es, 1389 params->mask); 1390 if (status) { 1391 ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n"); 1392 goto out; 1393 } 1394 1395 INIT_LIST_HEAD(¶ms->prof->entries); 1396 mutex_init(¶ms->prof->entries_lock); 1397 *prof = params->prof; 1398 1399 out: 1400 if (status) 1401 devm_kfree(ice_hw_to_dev(hw), params->prof); 1402 free_params: 1403 kfree(params); 1404 1405 return status; 1406 } 1407 1408 /** 1409 * ice_flow_rem_prof_sync - remove a flow profile 1410 * @hw: pointer to the hardware structure 1411 * @blk: classification stage 1412 * @prof: pointer to flow profile to remove 1413 * 1414 * Assumption: the caller has acquired the lock to the profile list 1415 */ 1416 static int 1417 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk, 1418 struct ice_flow_prof *prof) 1419 { 1420 int status; 1421 1422 /* Remove all remaining flow entries before removing the flow profile */ 1423 if (!list_empty(&prof->entries)) { 1424 struct ice_flow_entry *e, *t; 1425 1426 mutex_lock(&prof->entries_lock); 1427 1428 list_for_each_entry_safe(e, t, &prof->entries, l_entry) { 1429 status = ice_flow_rem_entry_sync(hw, blk, e); 1430 if (status) 1431 break; 1432 } 1433 1434 mutex_unlock(&prof->entries_lock); 1435 } 1436 1437 /* Remove all hardware profiles associated with this flow profile */ 1438 status = ice_rem_prof(hw, blk, prof->id); 1439 if (!status) { 1440 list_del(&prof->l_entry); 1441 mutex_destroy(&prof->entries_lock); 1442 devm_kfree(ice_hw_to_dev(hw), prof); 1443 } 1444 1445 return status; 1446 } 1447 1448 /** 1449 * ice_flow_assoc_prof - associate a VSI with a flow profile 1450 * @hw: pointer to the hardware structure 1451 * @blk: classification stage 1452 * @prof: pointer to flow profile 1453 * @vsi_handle: software VSI handle 1454 * 1455 * Assumption: the caller has acquired the lock to the profile list 1456 * and the software VSI handle has been validated 1457 */ 1458 static int 1459 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk, 1460 struct ice_flow_prof *prof, u16 vsi_handle) 1461 { 1462 int status = 0; 1463 1464 if (!test_bit(vsi_handle, prof->vsis)) { 1465 status = ice_add_prof_id_flow(hw, blk, 1466 ice_get_hw_vsi_num(hw, 1467 vsi_handle), 1468 prof->id); 1469 if (!status) 1470 set_bit(vsi_handle, prof->vsis); 1471 else 1472 ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n", 1473 status); 1474 } 1475 1476 return status; 1477 } 1478 1479 /** 1480 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile 1481 * @hw: pointer to the hardware structure 1482 * @blk: classification stage 1483 * @prof: pointer to flow profile 1484 * @vsi_handle: software VSI handle 1485 * 1486 * Assumption: the caller has acquired the lock to the profile list 1487 * and the software VSI handle has been validated 1488 */ 1489 static int 1490 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk, 1491 struct ice_flow_prof *prof, u16 vsi_handle) 1492 { 1493 int status = 0; 1494 1495 if (test_bit(vsi_handle, prof->vsis)) { 1496 status = ice_rem_prof_id_flow(hw, blk, 1497 ice_get_hw_vsi_num(hw, 1498 vsi_handle), 1499 prof->id); 1500 if (!status) 1501 clear_bit(vsi_handle, prof->vsis); 1502 else 1503 ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n", 1504 status); 1505 } 1506 1507 return status; 1508 } 1509 1510 /** 1511 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields 1512 * @hw: pointer to the HW struct 1513 * @blk: classification stage 1514 * @dir: flow direction 1515 * @prof_id: unique ID to identify this flow profile 1516 * @segs: array of one or more packet segments that describe the flow 1517 * @segs_cnt: number of packet segments provided 1518 * @prof: stores the returned flow profile added 1519 */ 1520 int 1521 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir, 1522 u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt, 1523 struct ice_flow_prof **prof) 1524 { 1525 int status; 1526 1527 if (segs_cnt > ICE_FLOW_SEG_MAX) 1528 return -ENOSPC; 1529 1530 if (!segs_cnt) 1531 return -EINVAL; 1532 1533 if (!segs) 1534 return -EINVAL; 1535 1536 status = ice_flow_val_hdrs(segs, segs_cnt); 1537 if (status) 1538 return status; 1539 1540 mutex_lock(&hw->fl_profs_locks[blk]); 1541 1542 status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt, 1543 prof); 1544 if (!status) 1545 list_add(&(*prof)->l_entry, &hw->fl_profs[blk]); 1546 1547 mutex_unlock(&hw->fl_profs_locks[blk]); 1548 1549 return status; 1550 } 1551 1552 /** 1553 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it 1554 * @hw: pointer to the HW struct 1555 * @blk: the block for which the flow profile is to be removed 1556 * @prof_id: unique ID of the flow profile to be removed 1557 */ 1558 int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 1559 { 1560 struct ice_flow_prof *prof; 1561 int status; 1562 1563 mutex_lock(&hw->fl_profs_locks[blk]); 1564 1565 prof = ice_flow_find_prof_id(hw, blk, prof_id); 1566 if (!prof) { 1567 status = -ENOENT; 1568 goto out; 1569 } 1570 1571 /* prof becomes invalid after the call */ 1572 status = ice_flow_rem_prof_sync(hw, blk, prof); 1573 1574 out: 1575 mutex_unlock(&hw->fl_profs_locks[blk]); 1576 1577 return status; 1578 } 1579 1580 /** 1581 * ice_flow_add_entry - Add a flow entry 1582 * @hw: pointer to the HW struct 1583 * @blk: classification stage 1584 * @prof_id: ID of the profile to add a new flow entry to 1585 * @entry_id: unique ID to identify this flow entry 1586 * @vsi_handle: software VSI handle for the flow entry 1587 * @prio: priority of the flow entry 1588 * @data: pointer to a data buffer containing flow entry's match values/masks 1589 * @entry_h: pointer to buffer that receives the new flow entry's handle 1590 */ 1591 int 1592 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id, 1593 u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio, 1594 void *data, u64 *entry_h) 1595 { 1596 struct ice_flow_entry *e = NULL; 1597 struct ice_flow_prof *prof; 1598 int status; 1599 1600 /* No flow entry data is expected for RSS */ 1601 if (!entry_h || (!data && blk != ICE_BLK_RSS)) 1602 return -EINVAL; 1603 1604 if (!ice_is_vsi_valid(hw, vsi_handle)) 1605 return -EINVAL; 1606 1607 mutex_lock(&hw->fl_profs_locks[blk]); 1608 1609 prof = ice_flow_find_prof_id(hw, blk, prof_id); 1610 if (!prof) { 1611 status = -ENOENT; 1612 } else { 1613 /* Allocate memory for the entry being added and associate 1614 * the VSI to the found flow profile 1615 */ 1616 e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL); 1617 if (!e) 1618 status = -ENOMEM; 1619 else 1620 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 1621 } 1622 1623 mutex_unlock(&hw->fl_profs_locks[blk]); 1624 if (status) 1625 goto out; 1626 1627 e->id = entry_id; 1628 e->vsi_handle = vsi_handle; 1629 e->prof = prof; 1630 e->priority = prio; 1631 1632 switch (blk) { 1633 case ICE_BLK_FD: 1634 case ICE_BLK_RSS: 1635 break; 1636 default: 1637 status = -EOPNOTSUPP; 1638 goto out; 1639 } 1640 1641 mutex_lock(&prof->entries_lock); 1642 list_add(&e->l_entry, &prof->entries); 1643 mutex_unlock(&prof->entries_lock); 1644 1645 *entry_h = ICE_FLOW_ENTRY_HNDL(e); 1646 1647 out: 1648 if (status && e) { 1649 devm_kfree(ice_hw_to_dev(hw), e->entry); 1650 devm_kfree(ice_hw_to_dev(hw), e); 1651 } 1652 1653 return status; 1654 } 1655 1656 /** 1657 * ice_flow_rem_entry - Remove a flow entry 1658 * @hw: pointer to the HW struct 1659 * @blk: classification stage 1660 * @entry_h: handle to the flow entry to be removed 1661 */ 1662 int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h) 1663 { 1664 struct ice_flow_entry *entry; 1665 struct ice_flow_prof *prof; 1666 int status = 0; 1667 1668 if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL) 1669 return -EINVAL; 1670 1671 entry = ICE_FLOW_ENTRY_PTR(entry_h); 1672 1673 /* Retain the pointer to the flow profile as the entry will be freed */ 1674 prof = entry->prof; 1675 1676 if (prof) { 1677 mutex_lock(&prof->entries_lock); 1678 status = ice_flow_rem_entry_sync(hw, blk, entry); 1679 mutex_unlock(&prof->entries_lock); 1680 } 1681 1682 return status; 1683 } 1684 1685 /** 1686 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer 1687 * @seg: packet segment the field being set belongs to 1688 * @fld: field to be set 1689 * @field_type: type of the field 1690 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1691 * entry's input buffer 1692 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1693 * input buffer 1694 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1695 * entry's input buffer 1696 * 1697 * This helper function stores information of a field being matched, including 1698 * the type of the field and the locations of the value to match, the mask, and 1699 * the upper-bound value in the start of the input buffer for a flow entry. 1700 * This function should only be used for fixed-size data structures. 1701 * 1702 * This function also opportunistically determines the protocol headers to be 1703 * present based on the fields being set. Some fields cannot be used alone to 1704 * determine the protocol headers present. Sometimes, fields for particular 1705 * protocol headers are not matched. In those cases, the protocol headers 1706 * must be explicitly set. 1707 */ 1708 static void 1709 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1710 enum ice_flow_fld_match_type field_type, u16 val_loc, 1711 u16 mask_loc, u16 last_loc) 1712 { 1713 u64 bit = BIT_ULL(fld); 1714 1715 seg->match |= bit; 1716 if (field_type == ICE_FLOW_FLD_TYPE_RANGE) 1717 seg->range |= bit; 1718 1719 seg->fields[fld].type = field_type; 1720 seg->fields[fld].src.val = val_loc; 1721 seg->fields[fld].src.mask = mask_loc; 1722 seg->fields[fld].src.last = last_loc; 1723 1724 ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr); 1725 } 1726 1727 /** 1728 * ice_flow_set_fld - specifies locations of field from entry's input buffer 1729 * @seg: packet segment the field being set belongs to 1730 * @fld: field to be set 1731 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1732 * entry's input buffer 1733 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1734 * input buffer 1735 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1736 * entry's input buffer 1737 * @range: indicate if field being matched is to be in a range 1738 * 1739 * This function specifies the locations, in the form of byte offsets from the 1740 * start of the input buffer for a flow entry, from where the value to match, 1741 * the mask value, and upper value can be extracted. These locations are then 1742 * stored in the flow profile. When adding a flow entry associated with the 1743 * flow profile, these locations will be used to quickly extract the values and 1744 * create the content of a match entry. This function should only be used for 1745 * fixed-size data structures. 1746 */ 1747 void 1748 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1749 u16 val_loc, u16 mask_loc, u16 last_loc, bool range) 1750 { 1751 enum ice_flow_fld_match_type t = range ? 1752 ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG; 1753 1754 ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc); 1755 } 1756 1757 /** 1758 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf 1759 * @seg: packet segment the field being set belongs to 1760 * @off: offset of the raw field from the beginning of the segment in bytes 1761 * @len: length of the raw pattern to be matched 1762 * @val_loc: location of the value to match from entry's input buffer 1763 * @mask_loc: location of mask value from entry's input buffer 1764 * 1765 * This function specifies the offset of the raw field to be match from the 1766 * beginning of the specified packet segment, and the locations, in the form of 1767 * byte offsets from the start of the input buffer for a flow entry, from where 1768 * the value to match and the mask value to be extracted. These locations are 1769 * then stored in the flow profile. When adding flow entries to the associated 1770 * flow profile, these locations can be used to quickly extract the values to 1771 * create the content of a match entry. This function should only be used for 1772 * fixed-size data structures. 1773 */ 1774 void 1775 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len, 1776 u16 val_loc, u16 mask_loc) 1777 { 1778 if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) { 1779 seg->raws[seg->raws_cnt].off = off; 1780 seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE; 1781 seg->raws[seg->raws_cnt].info.src.val = val_loc; 1782 seg->raws[seg->raws_cnt].info.src.mask = mask_loc; 1783 /* The "last" field is used to store the length of the field */ 1784 seg->raws[seg->raws_cnt].info.src.last = len; 1785 } 1786 1787 /* Overflows of "raws" will be handled as an error condition later in 1788 * the flow when this information is processed. 1789 */ 1790 seg->raws_cnt++; 1791 } 1792 1793 /** 1794 * ice_flow_rem_vsi_prof - remove VSI from flow profile 1795 * @hw: pointer to the hardware structure 1796 * @vsi_handle: software VSI handle 1797 * @prof_id: unique ID to identify this flow profile 1798 * 1799 * This function removes the flow entries associated to the input 1800 * VSI handle and disassociate the VSI from the flow profile. 1801 */ 1802 int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id) 1803 { 1804 struct ice_flow_prof *prof; 1805 int status = 0; 1806 1807 if (!ice_is_vsi_valid(hw, vsi_handle)) 1808 return -EINVAL; 1809 1810 /* find flow profile pointer with input package block and profile ID */ 1811 prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id); 1812 if (!prof) { 1813 ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n", 1814 prof_id); 1815 return -ENOENT; 1816 } 1817 1818 /* Remove all remaining flow entries before removing the flow profile */ 1819 if (!list_empty(&prof->entries)) { 1820 struct ice_flow_entry *e, *t; 1821 1822 mutex_lock(&prof->entries_lock); 1823 list_for_each_entry_safe(e, t, &prof->entries, l_entry) { 1824 if (e->vsi_handle != vsi_handle) 1825 continue; 1826 1827 status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e); 1828 if (status) 1829 break; 1830 } 1831 mutex_unlock(&prof->entries_lock); 1832 } 1833 if (status) 1834 return status; 1835 1836 /* disassociate the flow profile from sw VSI handle */ 1837 status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle); 1838 if (status) 1839 ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n", 1840 status); 1841 return status; 1842 } 1843 1844 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \ 1845 (ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN) 1846 1847 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \ 1848 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6) 1849 1850 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \ 1851 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 1852 1853 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \ 1854 (ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \ 1855 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \ 1856 ICE_FLOW_RSS_SEG_HDR_L4_MASKS) 1857 1858 /** 1859 * ice_flow_set_rss_seg_info - setup packet segments for RSS 1860 * @segs: pointer to the flow field segment(s) 1861 * @hash_fields: fields to be hashed on for the segment(s) 1862 * @flow_hdr: protocol header fields within a packet segment 1863 * 1864 * Helper function to extract fields from hash bitmap and use flow 1865 * header value to set flow field segment for further use in flow 1866 * profile entry or removal. 1867 */ 1868 static int 1869 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields, 1870 u32 flow_hdr) 1871 { 1872 u64 val; 1873 u8 i; 1874 1875 for_each_set_bit(i, (unsigned long *)&hash_fields, 1876 ICE_FLOW_FIELD_IDX_MAX) 1877 ice_flow_set_fld(segs, (enum ice_flow_field)i, 1878 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, 1879 ICE_FLOW_FLD_OFF_INVAL, false); 1880 1881 ICE_FLOW_SET_HDRS(segs, flow_hdr); 1882 1883 if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS & 1884 ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER) 1885 return -EINVAL; 1886 1887 val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS); 1888 if (val && !is_power_of_2(val)) 1889 return -EIO; 1890 1891 val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS); 1892 if (val && !is_power_of_2(val)) 1893 return -EIO; 1894 1895 return 0; 1896 } 1897 1898 /** 1899 * ice_rem_vsi_rss_list - remove VSI from RSS list 1900 * @hw: pointer to the hardware structure 1901 * @vsi_handle: software VSI handle 1902 * 1903 * Remove the VSI from all RSS configurations in the list. 1904 */ 1905 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle) 1906 { 1907 struct ice_rss_cfg *r, *tmp; 1908 1909 if (list_empty(&hw->rss_list_head)) 1910 return; 1911 1912 mutex_lock(&hw->rss_locks); 1913 list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) 1914 if (test_and_clear_bit(vsi_handle, r->vsis)) 1915 if (bitmap_empty(r->vsis, ICE_MAX_VSI)) { 1916 list_del(&r->l_entry); 1917 devm_kfree(ice_hw_to_dev(hw), r); 1918 } 1919 mutex_unlock(&hw->rss_locks); 1920 } 1921 1922 /** 1923 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI 1924 * @hw: pointer to the hardware structure 1925 * @vsi_handle: software VSI handle 1926 * 1927 * This function will iterate through all flow profiles and disassociate 1928 * the VSI from that profile. If the flow profile has no VSIs it will 1929 * be removed. 1930 */ 1931 int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 1932 { 1933 const enum ice_block blk = ICE_BLK_RSS; 1934 struct ice_flow_prof *p, *t; 1935 int status = 0; 1936 1937 if (!ice_is_vsi_valid(hw, vsi_handle)) 1938 return -EINVAL; 1939 1940 if (list_empty(&hw->fl_profs[blk])) 1941 return 0; 1942 1943 mutex_lock(&hw->rss_locks); 1944 list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry) 1945 if (test_bit(vsi_handle, p->vsis)) { 1946 status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle); 1947 if (status) 1948 break; 1949 1950 if (bitmap_empty(p->vsis, ICE_MAX_VSI)) { 1951 status = ice_flow_rem_prof(hw, blk, p->id); 1952 if (status) 1953 break; 1954 } 1955 } 1956 mutex_unlock(&hw->rss_locks); 1957 1958 return status; 1959 } 1960 1961 /** 1962 * ice_rem_rss_list - remove RSS configuration from list 1963 * @hw: pointer to the hardware structure 1964 * @vsi_handle: software VSI handle 1965 * @prof: pointer to flow profile 1966 * 1967 * Assumption: lock has already been acquired for RSS list 1968 */ 1969 static void 1970 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 1971 { 1972 struct ice_rss_cfg *r, *tmp; 1973 1974 /* Search for RSS hash fields associated to the VSI that match the 1975 * hash configurations associated to the flow profile. If found 1976 * remove from the RSS entry list of the VSI context and delete entry. 1977 */ 1978 list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) 1979 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match && 1980 r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) { 1981 clear_bit(vsi_handle, r->vsis); 1982 if (bitmap_empty(r->vsis, ICE_MAX_VSI)) { 1983 list_del(&r->l_entry); 1984 devm_kfree(ice_hw_to_dev(hw), r); 1985 } 1986 return; 1987 } 1988 } 1989 1990 /** 1991 * ice_add_rss_list - add RSS configuration to list 1992 * @hw: pointer to the hardware structure 1993 * @vsi_handle: software VSI handle 1994 * @prof: pointer to flow profile 1995 * 1996 * Assumption: lock has already been acquired for RSS list 1997 */ 1998 static int 1999 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 2000 { 2001 struct ice_rss_cfg *r, *rss_cfg; 2002 2003 list_for_each_entry(r, &hw->rss_list_head, l_entry) 2004 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match && 2005 r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) { 2006 set_bit(vsi_handle, r->vsis); 2007 return 0; 2008 } 2009 2010 rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg), 2011 GFP_KERNEL); 2012 if (!rss_cfg) 2013 return -ENOMEM; 2014 2015 rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match; 2016 rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs; 2017 set_bit(vsi_handle, rss_cfg->vsis); 2018 2019 list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head); 2020 2021 return 0; 2022 } 2023 2024 #define ICE_FLOW_PROF_HASH_S 0 2025 #define ICE_FLOW_PROF_HASH_M (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S) 2026 #define ICE_FLOW_PROF_HDR_S 32 2027 #define ICE_FLOW_PROF_HDR_M (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S) 2028 #define ICE_FLOW_PROF_ENCAP_S 63 2029 #define ICE_FLOW_PROF_ENCAP_M (BIT_ULL(ICE_FLOW_PROF_ENCAP_S)) 2030 2031 #define ICE_RSS_OUTER_HEADERS 1 2032 #define ICE_RSS_INNER_HEADERS 2 2033 2034 /* Flow profile ID format: 2035 * [0:31] - Packet match fields 2036 * [32:62] - Protocol header 2037 * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled 2038 */ 2039 #define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \ 2040 ((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \ 2041 (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \ 2042 ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0))) 2043 2044 /** 2045 * ice_add_rss_cfg_sync - add an RSS configuration 2046 * @hw: pointer to the hardware structure 2047 * @vsi_handle: software VSI handle 2048 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure 2049 * @addl_hdrs: protocol header fields 2050 * @segs_cnt: packet segment count 2051 * 2052 * Assumption: lock has already been acquired for RSS list 2053 */ 2054 static int 2055 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds, 2056 u32 addl_hdrs, u8 segs_cnt) 2057 { 2058 const enum ice_block blk = ICE_BLK_RSS; 2059 struct ice_flow_prof *prof = NULL; 2060 struct ice_flow_seg_info *segs; 2061 int status; 2062 2063 if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX) 2064 return -EINVAL; 2065 2066 segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL); 2067 if (!segs) 2068 return -ENOMEM; 2069 2070 /* Construct the packet segment info from the hashed fields */ 2071 status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds, 2072 addl_hdrs); 2073 if (status) 2074 goto exit; 2075 2076 /* Search for a flow profile that has matching headers, hash fields 2077 * and has the input VSI associated to it. If found, no further 2078 * operations required and exit. 2079 */ 2080 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2081 vsi_handle, 2082 ICE_FLOW_FIND_PROF_CHK_FLDS | 2083 ICE_FLOW_FIND_PROF_CHK_VSI); 2084 if (prof) 2085 goto exit; 2086 2087 /* Check if a flow profile exists with the same protocol headers and 2088 * associated with the input VSI. If so disassociate the VSI from 2089 * this profile. The VSI will be added to a new profile created with 2090 * the protocol header and new hash field configuration. 2091 */ 2092 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2093 vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI); 2094 if (prof) { 2095 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 2096 if (!status) 2097 ice_rem_rss_list(hw, vsi_handle, prof); 2098 else 2099 goto exit; 2100 2101 /* Remove profile if it has no VSIs associated */ 2102 if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) { 2103 status = ice_flow_rem_prof(hw, blk, prof->id); 2104 if (status) 2105 goto exit; 2106 } 2107 } 2108 2109 /* Search for a profile that has same match fields only. If this 2110 * exists then associate the VSI to this profile. 2111 */ 2112 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2113 vsi_handle, 2114 ICE_FLOW_FIND_PROF_CHK_FLDS); 2115 if (prof) { 2116 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 2117 if (!status) 2118 status = ice_add_rss_list(hw, vsi_handle, prof); 2119 goto exit; 2120 } 2121 2122 /* Create a new flow profile with generated profile and packet 2123 * segment information. 2124 */ 2125 status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX, 2126 ICE_FLOW_GEN_PROFID(hashed_flds, 2127 segs[segs_cnt - 1].hdrs, 2128 segs_cnt), 2129 segs, segs_cnt, &prof); 2130 if (status) 2131 goto exit; 2132 2133 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 2134 /* If association to a new flow profile failed then this profile can 2135 * be removed. 2136 */ 2137 if (status) { 2138 ice_flow_rem_prof(hw, blk, prof->id); 2139 goto exit; 2140 } 2141 2142 status = ice_add_rss_list(hw, vsi_handle, prof); 2143 2144 exit: 2145 kfree(segs); 2146 return status; 2147 } 2148 2149 /** 2150 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields 2151 * @hw: pointer to the hardware structure 2152 * @vsi_handle: software VSI handle 2153 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure 2154 * @addl_hdrs: protocol header fields 2155 * 2156 * This function will generate a flow profile based on fields associated with 2157 * the input fields to hash on, the flow type and use the VSI number to add 2158 * a flow entry to the profile. 2159 */ 2160 int 2161 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds, 2162 u32 addl_hdrs) 2163 { 2164 int status; 2165 2166 if (hashed_flds == ICE_HASH_INVALID || 2167 !ice_is_vsi_valid(hw, vsi_handle)) 2168 return -EINVAL; 2169 2170 mutex_lock(&hw->rss_locks); 2171 status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs, 2172 ICE_RSS_OUTER_HEADERS); 2173 if (!status) 2174 status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, 2175 addl_hdrs, ICE_RSS_INNER_HEADERS); 2176 mutex_unlock(&hw->rss_locks); 2177 2178 return status; 2179 } 2180 2181 /** 2182 * ice_rem_rss_cfg_sync - remove an existing RSS configuration 2183 * @hw: pointer to the hardware structure 2184 * @vsi_handle: software VSI handle 2185 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove 2186 * @addl_hdrs: Protocol header fields within a packet segment 2187 * @segs_cnt: packet segment count 2188 * 2189 * Assumption: lock has already been acquired for RSS list 2190 */ 2191 static int 2192 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds, 2193 u32 addl_hdrs, u8 segs_cnt) 2194 { 2195 const enum ice_block blk = ICE_BLK_RSS; 2196 struct ice_flow_seg_info *segs; 2197 struct ice_flow_prof *prof; 2198 int status; 2199 2200 segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL); 2201 if (!segs) 2202 return -ENOMEM; 2203 2204 /* Construct the packet segment info from the hashed fields */ 2205 status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds, 2206 addl_hdrs); 2207 if (status) 2208 goto out; 2209 2210 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2211 vsi_handle, 2212 ICE_FLOW_FIND_PROF_CHK_FLDS); 2213 if (!prof) { 2214 status = -ENOENT; 2215 goto out; 2216 } 2217 2218 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 2219 if (status) 2220 goto out; 2221 2222 /* Remove RSS configuration from VSI context before deleting 2223 * the flow profile. 2224 */ 2225 ice_rem_rss_list(hw, vsi_handle, prof); 2226 2227 if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) 2228 status = ice_flow_rem_prof(hw, blk, prof->id); 2229 2230 out: 2231 kfree(segs); 2232 return status; 2233 } 2234 2235 /** 2236 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields 2237 * @hw: pointer to the hardware structure 2238 * @vsi_handle: software VSI handle 2239 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove 2240 * @addl_hdrs: Protocol header fields within a packet segment 2241 * 2242 * This function will lookup the flow profile based on the input 2243 * hash field bitmap, iterate through the profile entry list of 2244 * that profile and find entry associated with input VSI to be 2245 * removed. Calls are made to underlying flow s which will APIs 2246 * turn build or update buffers for RSS XLT1 section. 2247 */ 2248 int __maybe_unused 2249 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds, 2250 u32 addl_hdrs) 2251 { 2252 int status; 2253 2254 if (hashed_flds == ICE_HASH_INVALID || 2255 !ice_is_vsi_valid(hw, vsi_handle)) 2256 return -EINVAL; 2257 2258 mutex_lock(&hw->rss_locks); 2259 status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs, 2260 ICE_RSS_OUTER_HEADERS); 2261 if (!status) 2262 status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, 2263 addl_hdrs, ICE_RSS_INNER_HEADERS); 2264 mutex_unlock(&hw->rss_locks); 2265 2266 return status; 2267 } 2268 2269 /* Mapping of AVF hash bit fields to an L3-L4 hash combination. 2270 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash, 2271 * convert its values to their appropriate flow L3, L4 values. 2272 */ 2273 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \ 2274 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \ 2275 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4)) 2276 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \ 2277 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \ 2278 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP)) 2279 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \ 2280 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \ 2281 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \ 2282 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP)) 2283 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \ 2284 (ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \ 2285 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) 2286 2287 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \ 2288 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \ 2289 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6)) 2290 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \ 2291 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \ 2292 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \ 2293 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP)) 2294 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \ 2295 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \ 2296 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP)) 2297 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \ 2298 (ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \ 2299 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) 2300 2301 /** 2302 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver 2303 * @hw: pointer to the hardware structure 2304 * @vsi_handle: software VSI handle 2305 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure 2306 * 2307 * This function will take the hash bitmap provided by the AVF driver via a 2308 * message, convert it to ICE-compatible values, and configure RSS flow 2309 * profiles. 2310 */ 2311 int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash) 2312 { 2313 int status = 0; 2314 u64 hash_flds; 2315 2316 if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID || 2317 !ice_is_vsi_valid(hw, vsi_handle)) 2318 return -EINVAL; 2319 2320 /* Make sure no unsupported bits are specified */ 2321 if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS | 2322 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)) 2323 return -EIO; 2324 2325 hash_flds = avf_hash; 2326 2327 /* Always create an L3 RSS configuration for any L4 RSS configuration */ 2328 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) 2329 hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS; 2330 2331 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) 2332 hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS; 2333 2334 /* Create the corresponding RSS configuration for each valid hash bit */ 2335 while (hash_flds) { 2336 u64 rss_hash = ICE_HASH_INVALID; 2337 2338 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) { 2339 if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) { 2340 rss_hash = ICE_FLOW_HASH_IPV4; 2341 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS; 2342 } else if (hash_flds & 2343 ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) { 2344 rss_hash = ICE_FLOW_HASH_IPV4 | 2345 ICE_FLOW_HASH_TCP_PORT; 2346 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS; 2347 } else if (hash_flds & 2348 ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) { 2349 rss_hash = ICE_FLOW_HASH_IPV4 | 2350 ICE_FLOW_HASH_UDP_PORT; 2351 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS; 2352 } else if (hash_flds & 2353 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) { 2354 rss_hash = ICE_FLOW_HASH_IPV4 | 2355 ICE_FLOW_HASH_SCTP_PORT; 2356 hash_flds &= 2357 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP); 2358 } 2359 } else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) { 2360 if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) { 2361 rss_hash = ICE_FLOW_HASH_IPV6; 2362 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS; 2363 } else if (hash_flds & 2364 ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) { 2365 rss_hash = ICE_FLOW_HASH_IPV6 | 2366 ICE_FLOW_HASH_TCP_PORT; 2367 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS; 2368 } else if (hash_flds & 2369 ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) { 2370 rss_hash = ICE_FLOW_HASH_IPV6 | 2371 ICE_FLOW_HASH_UDP_PORT; 2372 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS; 2373 } else if (hash_flds & 2374 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) { 2375 rss_hash = ICE_FLOW_HASH_IPV6 | 2376 ICE_FLOW_HASH_SCTP_PORT; 2377 hash_flds &= 2378 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP); 2379 } 2380 } 2381 2382 if (rss_hash == ICE_HASH_INVALID) 2383 return -EIO; 2384 2385 status = ice_add_rss_cfg(hw, vsi_handle, rss_hash, 2386 ICE_FLOW_SEG_HDR_NONE); 2387 if (status) 2388 break; 2389 } 2390 2391 return status; 2392 } 2393 2394 /** 2395 * ice_replay_rss_cfg - replay RSS configurations associated with VSI 2396 * @hw: pointer to the hardware structure 2397 * @vsi_handle: software VSI handle 2398 */ 2399 int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 2400 { 2401 struct ice_rss_cfg *r; 2402 int status = 0; 2403 2404 if (!ice_is_vsi_valid(hw, vsi_handle)) 2405 return -EINVAL; 2406 2407 mutex_lock(&hw->rss_locks); 2408 list_for_each_entry(r, &hw->rss_list_head, l_entry) { 2409 if (test_bit(vsi_handle, r->vsis)) { 2410 status = ice_add_rss_cfg_sync(hw, vsi_handle, 2411 r->hashed_flds, 2412 r->packet_hdr, 2413 ICE_RSS_OUTER_HEADERS); 2414 if (status) 2415 break; 2416 status = ice_add_rss_cfg_sync(hw, vsi_handle, 2417 r->hashed_flds, 2418 r->packet_hdr, 2419 ICE_RSS_INNER_HEADERS); 2420 if (status) 2421 break; 2422 } 2423 } 2424 mutex_unlock(&hw->rss_locks); 2425 2426 return status; 2427 } 2428 2429 /** 2430 * ice_get_rss_cfg - returns hashed fields for the given header types 2431 * @hw: pointer to the hardware structure 2432 * @vsi_handle: software VSI handle 2433 * @hdrs: protocol header type 2434 * 2435 * This function will return the match fields of the first instance of flow 2436 * profile having the given header types and containing input VSI 2437 */ 2438 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs) 2439 { 2440 u64 rss_hash = ICE_HASH_INVALID; 2441 struct ice_rss_cfg *r; 2442 2443 /* verify if the protocol header is non zero and VSI is valid */ 2444 if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle)) 2445 return ICE_HASH_INVALID; 2446 2447 mutex_lock(&hw->rss_locks); 2448 list_for_each_entry(r, &hw->rss_list_head, l_entry) 2449 if (test_bit(vsi_handle, r->vsis) && 2450 r->packet_hdr == hdrs) { 2451 rss_hash = r->hashed_flds; 2452 break; 2453 } 2454 mutex_unlock(&hw->rss_locks); 2455 2456 return rss_hash; 2457 } 2458