1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 /* cppcheck-suppress nullPointer */ 338 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 339 return NULL; 340 341 if (offset) 342 *offset = 0; 343 344 boost = section; 345 if (index >= le16_to_cpu(boost->count)) 346 return NULL; 347 348 return boost->tcam + index; 349 } 350 351 /** 352 * ice_find_boost_entry 353 * @ice_seg: pointer to the ice segment (non-NULL) 354 * @addr: Boost TCAM address of entry to search for 355 * @entry: returns pointer to the entry 356 * 357 * Finds a particular Boost TCAM entry and returns a pointer to that entry 358 * if it is found. The ice_seg parameter must not be NULL since the first call 359 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 360 */ 361 static enum ice_status 362 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 363 struct ice_boost_tcam_entry **entry) 364 { 365 struct ice_boost_tcam_entry *tcam; 366 struct ice_pkg_enum state; 367 368 memset(&state, 0, sizeof(state)); 369 370 if (!ice_seg) 371 return ICE_ERR_PARAM; 372 373 do { 374 tcam = ice_pkg_enum_entry(ice_seg, &state, 375 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 376 ice_boost_tcam_handler); 377 if (tcam && le16_to_cpu(tcam->addr) == addr) { 378 *entry = tcam; 379 return 0; 380 } 381 382 ice_seg = NULL; 383 } while (tcam); 384 385 *entry = NULL; 386 return ICE_ERR_CFG; 387 } 388 389 /** 390 * ice_label_enum_handler 391 * @sect_type: section type 392 * @section: pointer to section 393 * @index: index of the label entry to be returned 394 * @offset: pointer to receive absolute offset, always zero for label sections 395 * 396 * This is a callback function that can be passed to ice_pkg_enum_entry. 397 * Handles enumeration of individual label entries. 398 */ 399 static void * 400 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 401 u32 *offset) 402 { 403 struct ice_label_section *labels; 404 405 if (!section) 406 return NULL; 407 408 /* cppcheck-suppress nullPointer */ 409 if (index > ICE_MAX_LABELS_IN_BUF) 410 return NULL; 411 412 if (offset) 413 *offset = 0; 414 415 labels = section; 416 if (index >= le16_to_cpu(labels->count)) 417 return NULL; 418 419 return labels->label + index; 420 } 421 422 /** 423 * ice_enum_labels 424 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 425 * @type: the section type that will contain the label (0 on subsequent calls) 426 * @state: ice_pkg_enum structure that will hold the state of the enumeration 427 * @value: pointer to a value that will return the label's value if found 428 * 429 * Enumerates a list of labels in the package. The caller will call 430 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 431 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 432 * the end of the list has been reached. 433 */ 434 static char * 435 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 436 u16 *value) 437 { 438 struct ice_label *label; 439 440 /* Check for valid label section on first call */ 441 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 442 return NULL; 443 444 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 445 ice_label_enum_handler); 446 if (!label) 447 return NULL; 448 449 *value = le16_to_cpu(label->value); 450 return label->name; 451 } 452 453 /** 454 * ice_init_pkg_hints 455 * @hw: pointer to the HW structure 456 * @ice_seg: pointer to the segment of the package scan (non-NULL) 457 * 458 * This function will scan the package and save off relevant information 459 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 460 * since the first call to ice_enum_labels requires a pointer to an actual 461 * ice_seg structure. 462 */ 463 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 464 { 465 struct ice_pkg_enum state; 466 char *label_name; 467 u16 val; 468 int i; 469 470 memset(&hw->tnl, 0, sizeof(hw->tnl)); 471 memset(&state, 0, sizeof(state)); 472 473 if (!ice_seg) 474 return; 475 476 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 477 &val); 478 479 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 480 for (i = 0; tnls[i].type != TNL_LAST; i++) { 481 size_t len = strlen(tnls[i].label_prefix); 482 483 /* Look for matching label start, before continuing */ 484 if (strncmp(label_name, tnls[i].label_prefix, len)) 485 continue; 486 487 /* Make sure this label matches our PF. Note that the PF 488 * character ('0' - '7') will be located where our 489 * prefix string's null terminator is located. 490 */ 491 if ((label_name[len] - '0') == hw->pf_id) { 492 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 493 hw->tnl.tbl[hw->tnl.count].valid = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) { 509 hw->tnl.tbl[i].valid = true; 510 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 511 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 512 } 513 } 514 } 515 516 /* Key creation */ 517 518 #define ICE_DC_KEY 0x1 /* don't care */ 519 #define ICE_DC_KEYINV 0x1 520 #define ICE_NM_KEY 0x0 /* never match */ 521 #define ICE_NM_KEYINV 0x0 522 #define ICE_0_KEY 0x1 /* match 0 */ 523 #define ICE_0_KEYINV 0x0 524 #define ICE_1_KEY 0x0 /* match 1 */ 525 #define ICE_1_KEYINV 0x1 526 527 /** 528 * ice_gen_key_word - generate 16-bits of a key/mask word 529 * @val: the value 530 * @valid: valid bits mask (change only the valid bits) 531 * @dont_care: don't care mask 532 * @nvr_mtch: never match mask 533 * @key: pointer to an array of where the resulting key portion 534 * @key_inv: pointer to an array of where the resulting key invert portion 535 * 536 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 537 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 538 * of key and 8 bits of key invert. 539 * 540 * '0' = b01, always match a 0 bit 541 * '1' = b10, always match a 1 bit 542 * '?' = b11, don't care bit (always matches) 543 * '~' = b00, never match bit 544 * 545 * Input: 546 * val: b0 1 0 1 0 1 547 * dont_care: b0 0 1 1 0 0 548 * never_mtch: b0 0 0 0 1 1 549 * ------------------------------ 550 * Result: key: b01 10 11 11 00 00 551 */ 552 static enum ice_status 553 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 554 u8 *key_inv) 555 { 556 u8 in_key = *key, in_key_inv = *key_inv; 557 u8 i; 558 559 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 560 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 561 return ICE_ERR_CFG; 562 563 *key = 0; 564 *key_inv = 0; 565 566 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 567 for (i = 0; i < 8; i++) { 568 *key >>= 1; 569 *key_inv >>= 1; 570 571 if (!(valid & 0x1)) { /* change only valid bits */ 572 *key |= (in_key & 0x1) << 7; 573 *key_inv |= (in_key_inv & 0x1) << 7; 574 } else if (dont_care & 0x1) { /* don't care bit */ 575 *key |= ICE_DC_KEY << 7; 576 *key_inv |= ICE_DC_KEYINV << 7; 577 } else if (nvr_mtch & 0x1) { /* never match bit */ 578 *key |= ICE_NM_KEY << 7; 579 *key_inv |= ICE_NM_KEYINV << 7; 580 } else if (val & 0x01) { /* exact 1 match */ 581 *key |= ICE_1_KEY << 7; 582 *key_inv |= ICE_1_KEYINV << 7; 583 } else { /* exact 0 match */ 584 *key |= ICE_0_KEY << 7; 585 *key_inv |= ICE_0_KEYINV << 7; 586 } 587 588 dont_care >>= 1; 589 nvr_mtch >>= 1; 590 valid >>= 1; 591 val >>= 1; 592 in_key >>= 1; 593 in_key_inv >>= 1; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ice_bits_max_set - determine if the number of bits set is within a maximum 601 * @mask: pointer to the byte array which is the mask 602 * @size: the number of bytes in the mask 603 * @max: the max number of set bits 604 * 605 * This function determines if there are at most 'max' number of bits set in an 606 * array. Returns true if the number for bits set is <= max or will return false 607 * otherwise. 608 */ 609 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 610 { 611 u16 count = 0; 612 u16 i; 613 614 /* check each byte */ 615 for (i = 0; i < size; i++) { 616 /* if 0, go to next byte */ 617 if (!mask[i]) 618 continue; 619 620 /* We know there is at least one set bit in this byte because of 621 * the above check; if we already have found 'max' number of 622 * bits set, then we can return failure now. 623 */ 624 if (count == max) 625 return false; 626 627 /* count the bits in this byte, checking threshold */ 628 count += hweight8(mask[i]); 629 if (count > max) 630 return false; 631 } 632 633 return true; 634 } 635 636 /** 637 * ice_set_key - generate a variable sized key with multiples of 16-bits 638 * @key: pointer to where the key will be stored 639 * @size: the size of the complete key in bytes (must be even) 640 * @val: array of 8-bit values that makes up the value portion of the key 641 * @upd: array of 8-bit masks that determine what key portion to update 642 * @dc: array of 8-bit masks that make up the don't care mask 643 * @nm: array of 8-bit masks that make up the never match mask 644 * @off: the offset of the first byte in the key to update 645 * @len: the number of bytes in the key update 646 * 647 * This function generates a key from a value, a don't care mask and a never 648 * match mask. 649 * upd, dc, and nm are optional parameters, and can be NULL: 650 * upd == NULL --> upd mask is all 1's (update all bits) 651 * dc == NULL --> dc mask is all 0's (no don't care bits) 652 * nm == NULL --> nm mask is all 0's (no never match bits) 653 */ 654 static enum ice_status 655 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 656 u16 len) 657 { 658 u16 half_size; 659 u16 i; 660 661 /* size must be a multiple of 2 bytes. */ 662 if (size % 2) 663 return ICE_ERR_CFG; 664 665 half_size = size / 2; 666 if (off + len > half_size) 667 return ICE_ERR_CFG; 668 669 /* Make sure at most one bit is set in the never match mask. Having more 670 * than one never match mask bit set will cause HW to consume excessive 671 * power otherwise; this is a power management efficiency check. 672 */ 673 #define ICE_NVR_MTCH_BITS_MAX 1 674 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 675 return ICE_ERR_CFG; 676 677 for (i = 0; i < len; i++) 678 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 679 dc ? dc[i] : 0, nm ? nm[i] : 0, 680 key + off + i, key + half_size + off + i)) 681 return ICE_ERR_CFG; 682 683 return 0; 684 } 685 686 /** 687 * ice_acquire_global_cfg_lock 688 * @hw: pointer to the HW structure 689 * @access: access type (read or write) 690 * 691 * This function will request ownership of the global config lock for reading 692 * or writing of the package. When attempting to obtain write access, the 693 * caller must check for the following two return values: 694 * 695 * ICE_SUCCESS - Means the caller has acquired the global config lock 696 * and can perform writing of the package. 697 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 698 * package or has found that no update was necessary; in 699 * this case, the caller can just skip performing any 700 * update of the package. 701 */ 702 static enum ice_status 703 ice_acquire_global_cfg_lock(struct ice_hw *hw, 704 enum ice_aq_res_access_type access) 705 { 706 enum ice_status status; 707 708 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 709 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 710 711 if (!status) 712 mutex_lock(&ice_global_cfg_lock_sw); 713 else if (status == ICE_ERR_AQ_NO_WORK) 714 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 715 716 return status; 717 } 718 719 /** 720 * ice_release_global_cfg_lock 721 * @hw: pointer to the HW structure 722 * 723 * This function will release the global config lock. 724 */ 725 static void ice_release_global_cfg_lock(struct ice_hw *hw) 726 { 727 mutex_unlock(&ice_global_cfg_lock_sw); 728 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 729 } 730 731 /** 732 * ice_acquire_change_lock 733 * @hw: pointer to the HW structure 734 * @access: access type (read or write) 735 * 736 * This function will request ownership of the change lock. 737 */ 738 enum ice_status 739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 740 { 741 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 742 ICE_CHANGE_LOCK_TIMEOUT); 743 } 744 745 /** 746 * ice_release_change_lock 747 * @hw: pointer to the HW structure 748 * 749 * This function will release the change lock using the proper Admin Command. 750 */ 751 void ice_release_change_lock(struct ice_hw *hw) 752 { 753 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 754 } 755 756 /** 757 * ice_aq_download_pkg 758 * @hw: pointer to the hardware structure 759 * @pkg_buf: the package buffer to transfer 760 * @buf_size: the size of the package buffer 761 * @last_buf: last buffer indicator 762 * @error_offset: returns error offset 763 * @error_info: returns error information 764 * @cd: pointer to command details structure or NULL 765 * 766 * Download Package (0x0C40) 767 */ 768 static enum ice_status 769 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 770 u16 buf_size, bool last_buf, u32 *error_offset, 771 u32 *error_info, struct ice_sq_cd *cd) 772 { 773 struct ice_aqc_download_pkg *cmd; 774 struct ice_aq_desc desc; 775 enum ice_status status; 776 777 if (error_offset) 778 *error_offset = 0; 779 if (error_info) 780 *error_info = 0; 781 782 cmd = &desc.params.download_pkg; 783 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 784 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 785 786 if (last_buf) 787 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 788 789 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 790 if (status == ICE_ERR_AQ_ERROR) { 791 /* Read error from buffer only when the FW returned an error */ 792 struct ice_aqc_download_pkg_resp *resp; 793 794 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 795 if (error_offset) 796 *error_offset = le32_to_cpu(resp->error_offset); 797 if (error_info) 798 *error_info = le32_to_cpu(resp->error_info); 799 } 800 801 return status; 802 } 803 804 /** 805 * ice_aq_update_pkg 806 * @hw: pointer to the hardware structure 807 * @pkg_buf: the package cmd buffer 808 * @buf_size: the size of the package cmd buffer 809 * @last_buf: last buffer indicator 810 * @error_offset: returns error offset 811 * @error_info: returns error information 812 * @cd: pointer to command details structure or NULL 813 * 814 * Update Package (0x0C42) 815 */ 816 static enum ice_status 817 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 818 bool last_buf, u32 *error_offset, u32 *error_info, 819 struct ice_sq_cd *cd) 820 { 821 struct ice_aqc_download_pkg *cmd; 822 struct ice_aq_desc desc; 823 enum ice_status status; 824 825 if (error_offset) 826 *error_offset = 0; 827 if (error_info) 828 *error_info = 0; 829 830 cmd = &desc.params.download_pkg; 831 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 832 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 833 834 if (last_buf) 835 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 836 837 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 838 if (status == ICE_ERR_AQ_ERROR) { 839 /* Read error from buffer only when the FW returned an error */ 840 struct ice_aqc_download_pkg_resp *resp; 841 842 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 843 if (error_offset) 844 *error_offset = le32_to_cpu(resp->error_offset); 845 if (error_info) 846 *error_info = le32_to_cpu(resp->error_info); 847 } 848 849 return status; 850 } 851 852 /** 853 * ice_find_seg_in_pkg 854 * @hw: pointer to the hardware structure 855 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 856 * @pkg_hdr: pointer to the package header to be searched 857 * 858 * This function searches a package file for a particular segment type. On 859 * success it returns a pointer to the segment header, otherwise it will 860 * return NULL. 861 */ 862 static struct ice_generic_seg_hdr * 863 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 864 struct ice_pkg_hdr *pkg_hdr) 865 { 866 u32 i; 867 868 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 869 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 870 pkg_hdr->pkg_format_ver.update, 871 pkg_hdr->pkg_format_ver.draft); 872 873 /* Search all package segments for the requested segment type */ 874 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 875 struct ice_generic_seg_hdr *seg; 876 877 seg = (struct ice_generic_seg_hdr *) 878 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 879 880 if (le32_to_cpu(seg->seg_type) == seg_type) 881 return seg; 882 } 883 884 return NULL; 885 } 886 887 /** 888 * ice_update_pkg 889 * @hw: pointer to the hardware structure 890 * @bufs: pointer to an array of buffers 891 * @count: the number of buffers in the array 892 * 893 * Obtains change lock and updates package. 894 */ 895 static enum ice_status 896 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 897 { 898 enum ice_status status; 899 u32 offset, info, i; 900 901 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 902 if (status) 903 return status; 904 905 for (i = 0; i < count; i++) { 906 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 907 bool last = ((i + 1) == count); 908 909 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 910 last, &offset, &info, NULL); 911 912 if (status) { 913 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 914 status, offset, info); 915 break; 916 } 917 } 918 919 ice_release_change_lock(hw); 920 921 return status; 922 } 923 924 /** 925 * ice_dwnld_cfg_bufs 926 * @hw: pointer to the hardware structure 927 * @bufs: pointer to an array of buffers 928 * @count: the number of buffers in the array 929 * 930 * Obtains global config lock and downloads the package configuration buffers 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 932 * found indicates that the rest of the buffers are all metadata buffers. 933 */ 934 static enum ice_status 935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 936 { 937 enum ice_status status; 938 struct ice_buf_hdr *bh; 939 u32 offset, info, i; 940 941 if (!bufs || !count) 942 return ICE_ERR_PARAM; 943 944 /* If the first buffer's first section has its metadata bit set 945 * then there are no buffers to be downloaded, and the operation is 946 * considered a success. 947 */ 948 bh = (struct ice_buf_hdr *)bufs; 949 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 950 return 0; 951 952 /* reset pkg_dwnld_status in case this function is called in the 953 * reset/rebuild flow 954 */ 955 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 956 957 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 958 if (status) { 959 if (status == ICE_ERR_AQ_NO_WORK) 960 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 961 else 962 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 963 return status; 964 } 965 966 for (i = 0; i < count; i++) { 967 bool last = ((i + 1) == count); 968 969 if (!last) { 970 /* check next buffer for metadata flag */ 971 bh = (struct ice_buf_hdr *)(bufs + i + 1); 972 973 /* A set metadata flag in the next buffer will signal 974 * that the current buffer will be the last buffer 975 * downloaded 976 */ 977 if (le16_to_cpu(bh->section_count)) 978 if (le32_to_cpu(bh->section_entry[0].type) & 979 ICE_METADATA_BUF) 980 last = true; 981 } 982 983 bh = (struct ice_buf_hdr *)(bufs + i); 984 985 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 986 &offset, &info, NULL); 987 988 /* Save AQ status from download package */ 989 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 990 if (status) { 991 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_generic_seg_hdr *seg_hdr; 1069 1070 if (!pkg_hdr) 1071 return ICE_ERR_PARAM; 1072 1073 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1074 if (seg_hdr) { 1075 struct ice_meta_sect *meta; 1076 struct ice_pkg_enum state; 1077 1078 memset(&state, 0, sizeof(state)); 1079 1080 /* Get package information from the Metadata Section */ 1081 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1082 ICE_SID_METADATA); 1083 if (!meta) { 1084 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1085 return ICE_ERR_CFG; 1086 } 1087 1088 hw->pkg_ver = meta->ver; 1089 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1090 1091 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1092 meta->ver.major, meta->ver.minor, meta->ver.update, 1093 meta->ver.draft, meta->name); 1094 1095 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1096 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1097 sizeof(hw->ice_seg_id)); 1098 1099 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1100 seg_hdr->seg_format_ver.major, 1101 seg_hdr->seg_format_ver.minor, 1102 seg_hdr->seg_format_ver.update, 1103 seg_hdr->seg_format_ver.draft, 1104 seg_hdr->seg_id); 1105 } else { 1106 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1107 return ICE_ERR_CFG; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * ice_get_pkg_info 1115 * @hw: pointer to the hardware structure 1116 * 1117 * Store details of the package currently loaded in HW into the HW structure. 1118 */ 1119 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1120 { 1121 struct ice_aqc_get_pkg_info_resp *pkg_info; 1122 enum ice_status status; 1123 u16 size; 1124 u32 i; 1125 1126 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1127 pkg_info = kzalloc(size, GFP_KERNEL); 1128 if (!pkg_info) 1129 return ICE_ERR_NO_MEMORY; 1130 1131 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1132 if (status) 1133 goto init_pkg_free_alloc; 1134 1135 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1136 #define ICE_PKG_FLAG_COUNT 4 1137 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1138 u8 place = 0; 1139 1140 if (pkg_info->pkg_info[i].is_active) { 1141 flags[place++] = 'A'; 1142 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1143 hw->active_track_id = 1144 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1145 memcpy(hw->active_pkg_name, 1146 pkg_info->pkg_info[i].name, 1147 sizeof(pkg_info->pkg_info[i].name)); 1148 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1149 } 1150 if (pkg_info->pkg_info[i].is_active_at_boot) 1151 flags[place++] = 'B'; 1152 if (pkg_info->pkg_info[i].is_modified) 1153 flags[place++] = 'M'; 1154 if (pkg_info->pkg_info[i].is_in_nvm) 1155 flags[place++] = 'N'; 1156 1157 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1158 i, pkg_info->pkg_info[i].ver.major, 1159 pkg_info->pkg_info[i].ver.minor, 1160 pkg_info->pkg_info[i].ver.update, 1161 pkg_info->pkg_info[i].ver.draft, 1162 pkg_info->pkg_info[i].name, flags); 1163 } 1164 1165 init_pkg_free_alloc: 1166 kfree(pkg_info); 1167 1168 return status; 1169 } 1170 1171 /** 1172 * ice_verify_pkg - verify package 1173 * @pkg: pointer to the package buffer 1174 * @len: size of the package buffer 1175 * 1176 * Verifies various attributes of the package file, including length, format 1177 * version, and the requirement of at least one segment. 1178 */ 1179 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1180 { 1181 u32 seg_count; 1182 u32 i; 1183 1184 if (len < struct_size(pkg, seg_offset, 1)) 1185 return ICE_ERR_BUF_TOO_SHORT; 1186 1187 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1188 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1189 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1190 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1191 return ICE_ERR_CFG; 1192 1193 /* pkg must have at least one segment */ 1194 seg_count = le32_to_cpu(pkg->seg_count); 1195 if (seg_count < 1) 1196 return ICE_ERR_CFG; 1197 1198 /* make sure segment array fits in package length */ 1199 if (len < struct_size(pkg, seg_offset, seg_count)) 1200 return ICE_ERR_BUF_TOO_SHORT; 1201 1202 /* all segments must fit within length */ 1203 for (i = 0; i < seg_count; i++) { 1204 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1205 struct ice_generic_seg_hdr *seg; 1206 1207 /* segment header must fit */ 1208 if (len < off + sizeof(*seg)) 1209 return ICE_ERR_BUF_TOO_SHORT; 1210 1211 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1212 1213 /* segment body must fit */ 1214 if (len < off + le32_to_cpu(seg->seg_size)) 1215 return ICE_ERR_BUF_TOO_SHORT; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * ice_free_seg - free package segment pointer 1223 * @hw: pointer to the hardware structure 1224 * 1225 * Frees the package segment pointer in the proper manner, depending on if the 1226 * segment was allocated or just the passed in pointer was stored. 1227 */ 1228 void ice_free_seg(struct ice_hw *hw) 1229 { 1230 if (hw->pkg_copy) { 1231 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1232 hw->pkg_copy = NULL; 1233 hw->pkg_size = 0; 1234 } 1235 hw->seg = NULL; 1236 } 1237 1238 /** 1239 * ice_init_pkg_regs - initialize additional package registers 1240 * @hw: pointer to the hardware structure 1241 */ 1242 static void ice_init_pkg_regs(struct ice_hw *hw) 1243 { 1244 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1245 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1246 #define ICE_SW_BLK_IDX 0 1247 1248 /* setup Switch block input mask, which is 48-bits in two parts */ 1249 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1250 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1251 } 1252 1253 /** 1254 * ice_chk_pkg_version - check package version for compatibility with driver 1255 * @pkg_ver: pointer to a version structure to check 1256 * 1257 * Check to make sure that the package about to be downloaded is compatible with 1258 * the driver. To be compatible, the major and minor components of the package 1259 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1260 * definitions. 1261 */ 1262 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1263 { 1264 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1265 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1266 return ICE_ERR_NOT_SUPPORTED; 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * ice_chk_pkg_compat 1273 * @hw: pointer to the hardware structure 1274 * @ospkg: pointer to the package hdr 1275 * @seg: pointer to the package segment hdr 1276 * 1277 * This function checks the package version compatibility with driver and NVM 1278 */ 1279 static enum ice_status 1280 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1281 struct ice_seg **seg) 1282 { 1283 struct ice_aqc_get_pkg_info_resp *pkg; 1284 enum ice_status status; 1285 u16 size; 1286 u32 i; 1287 1288 /* Check package version compatibility */ 1289 status = ice_chk_pkg_version(&hw->pkg_ver); 1290 if (status) { 1291 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1292 return status; 1293 } 1294 1295 /* find ICE segment in given package */ 1296 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1297 ospkg); 1298 if (!*seg) { 1299 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1300 return ICE_ERR_CFG; 1301 } 1302 1303 /* Check if FW is compatible with the OS package */ 1304 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1305 pkg = kzalloc(size, GFP_KERNEL); 1306 if (!pkg) 1307 return ICE_ERR_NO_MEMORY; 1308 1309 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1310 if (status) 1311 goto fw_ddp_compat_free_alloc; 1312 1313 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1314 /* loop till we find the NVM package */ 1315 if (!pkg->pkg_info[i].is_in_nvm) 1316 continue; 1317 if ((*seg)->hdr.seg_format_ver.major != 1318 pkg->pkg_info[i].ver.major || 1319 (*seg)->hdr.seg_format_ver.minor > 1320 pkg->pkg_info[i].ver.minor) { 1321 status = ICE_ERR_FW_DDP_MISMATCH; 1322 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_sw_fv_handler 1334 * @sect_type: section type 1335 * @section: pointer to section 1336 * @index: index of the field vector entry to be returned 1337 * @offset: ptr to variable that receives the offset in the field vector table 1338 * 1339 * This is a callback function that can be passed to ice_pkg_enum_entry. 1340 * This function treats the given section as of type ice_sw_fv_section and 1341 * enumerates offset field. "offset" is an index into the field vector table. 1342 */ 1343 static void * 1344 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1345 { 1346 struct ice_sw_fv_section *fv_section = section; 1347 1348 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1349 return NULL; 1350 if (index >= le16_to_cpu(fv_section->count)) 1351 return NULL; 1352 if (offset) 1353 /* "index" passed in to this function is relative to a given 1354 * 4k block. To get to the true index into the field vector 1355 * table need to add the relative index to the base_offset 1356 * field of this section 1357 */ 1358 *offset = le16_to_cpu(fv_section->base_offset) + index; 1359 return fv_section->fv + index; 1360 } 1361 1362 /** 1363 * ice_get_prof_index_max - get the max profile index for used profile 1364 * @hw: pointer to the HW struct 1365 * 1366 * Calling this function will get the max profile index for used profile 1367 * and store the index number in struct ice_switch_info *switch_info 1368 * in HW for following use. 1369 */ 1370 static enum ice_status ice_get_prof_index_max(struct ice_hw *hw) 1371 { 1372 u16 prof_index = 0, j, max_prof_index = 0; 1373 struct ice_pkg_enum state; 1374 struct ice_seg *ice_seg; 1375 bool flag = false; 1376 struct ice_fv *fv; 1377 u32 offset; 1378 1379 memset(&state, 0, sizeof(state)); 1380 1381 if (!hw->seg) 1382 return ICE_ERR_PARAM; 1383 1384 ice_seg = hw->seg; 1385 1386 do { 1387 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1388 &offset, ice_sw_fv_handler); 1389 if (!fv) 1390 break; 1391 ice_seg = NULL; 1392 1393 /* in the profile that not be used, the prot_id is set to 0xff 1394 * and the off is set to 0x1ff for all the field vectors. 1395 */ 1396 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1397 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1398 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1399 flag = true; 1400 if (flag && prof_index > max_prof_index) 1401 max_prof_index = prof_index; 1402 1403 prof_index++; 1404 flag = false; 1405 } while (fv); 1406 1407 hw->switch_info->max_used_prof_index = max_prof_index; 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * ice_init_pkg - initialize/download package 1414 * @hw: pointer to the hardware structure 1415 * @buf: pointer to the package buffer 1416 * @len: size of the package buffer 1417 * 1418 * This function initializes a package. The package contains HW tables 1419 * required to do packet processing. First, the function extracts package 1420 * information such as version. Then it finds the ice configuration segment 1421 * within the package; this function then saves a copy of the segment pointer 1422 * within the supplied package buffer. Next, the function will cache any hints 1423 * from the package, followed by downloading the package itself. Note, that if 1424 * a previous PF driver has already downloaded the package successfully, then 1425 * the current driver will not have to download the package again. 1426 * 1427 * The local package contents will be used to query default behavior and to 1428 * update specific sections of the HW's version of the package (e.g. to update 1429 * the parse graph to understand new protocols). 1430 * 1431 * This function stores a pointer to the package buffer memory, and it is 1432 * expected that the supplied buffer will not be freed immediately. If the 1433 * package buffer needs to be freed, such as when read from a file, use 1434 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1435 * case. 1436 */ 1437 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1438 { 1439 struct ice_pkg_hdr *pkg; 1440 enum ice_status status; 1441 struct ice_seg *seg; 1442 1443 if (!buf || !len) 1444 return ICE_ERR_PARAM; 1445 1446 pkg = (struct ice_pkg_hdr *)buf; 1447 status = ice_verify_pkg(pkg, len); 1448 if (status) { 1449 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1450 status); 1451 return status; 1452 } 1453 1454 /* initialize package info */ 1455 status = ice_init_pkg_info(hw, pkg); 1456 if (status) 1457 return status; 1458 1459 /* before downloading the package, check package version for 1460 * compatibility with driver 1461 */ 1462 status = ice_chk_pkg_compat(hw, pkg, &seg); 1463 if (status) 1464 return status; 1465 1466 /* initialize package hints and then download package */ 1467 ice_init_pkg_hints(hw, seg); 1468 status = ice_download_pkg(hw, seg); 1469 if (status == ICE_ERR_AQ_NO_WORK) { 1470 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1471 status = 0; 1472 } 1473 1474 /* Get information on the package currently loaded in HW, then make sure 1475 * the driver is compatible with this version. 1476 */ 1477 if (!status) { 1478 status = ice_get_pkg_info(hw); 1479 if (!status) 1480 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1481 } 1482 1483 if (!status) { 1484 hw->seg = seg; 1485 /* on successful package download update other required 1486 * registers to support the package and fill HW tables 1487 * with package content. 1488 */ 1489 ice_init_pkg_regs(hw); 1490 ice_fill_blk_tbls(hw); 1491 ice_get_prof_index_max(hw); 1492 } else { 1493 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1494 status); 1495 } 1496 1497 return status; 1498 } 1499 1500 /** 1501 * ice_copy_and_init_pkg - initialize/download a copy of the package 1502 * @hw: pointer to the hardware structure 1503 * @buf: pointer to the package buffer 1504 * @len: size of the package buffer 1505 * 1506 * This function copies the package buffer, and then calls ice_init_pkg() to 1507 * initialize the copied package contents. 1508 * 1509 * The copying is necessary if the package buffer supplied is constant, or if 1510 * the memory may disappear shortly after calling this function. 1511 * 1512 * If the package buffer resides in the data segment and can be modified, the 1513 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1514 * 1515 * However, if the package buffer needs to be copied first, such as when being 1516 * read from a file, the caller should use ice_copy_and_init_pkg(). 1517 * 1518 * This function will first copy the package buffer, before calling 1519 * ice_init_pkg(). The caller is free to immediately destroy the original 1520 * package buffer, as the new copy will be managed by this function and 1521 * related routines. 1522 */ 1523 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1524 { 1525 enum ice_status status; 1526 u8 *buf_copy; 1527 1528 if (!buf || !len) 1529 return ICE_ERR_PARAM; 1530 1531 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1532 1533 status = ice_init_pkg(hw, buf_copy, len); 1534 if (status) { 1535 /* Free the copy, since we failed to initialize the package */ 1536 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1537 } else { 1538 /* Track the copied pkg so we can free it later */ 1539 hw->pkg_copy = buf_copy; 1540 hw->pkg_size = len; 1541 } 1542 1543 return status; 1544 } 1545 1546 /** 1547 * ice_pkg_buf_alloc 1548 * @hw: pointer to the HW structure 1549 * 1550 * Allocates a package buffer and returns a pointer to the buffer header. 1551 * Note: all package contents must be in Little Endian form. 1552 */ 1553 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1554 { 1555 struct ice_buf_build *bld; 1556 struct ice_buf_hdr *buf; 1557 1558 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1559 if (!bld) 1560 return NULL; 1561 1562 buf = (struct ice_buf_hdr *)bld; 1563 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1564 section_entry)); 1565 return bld; 1566 } 1567 1568 /** 1569 * ice_get_sw_prof_type - determine switch profile type 1570 * @hw: pointer to the HW structure 1571 * @fv: pointer to the switch field vector 1572 */ 1573 static enum ice_prof_type 1574 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1575 { 1576 u16 i; 1577 1578 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1579 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1580 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1581 fv->ew[i].off == ICE_VNI_OFFSET) 1582 return ICE_PROF_TUN_UDP; 1583 1584 /* GRE tunnel will have GRE protocol */ 1585 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1586 return ICE_PROF_TUN_GRE; 1587 } 1588 1589 return ICE_PROF_NON_TUN; 1590 } 1591 1592 /** 1593 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1594 * @hw: pointer to hardware structure 1595 * @req_profs: type of profiles requested 1596 * @bm: pointer to memory for returning the bitmap of field vectors 1597 */ 1598 void 1599 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1600 unsigned long *bm) 1601 { 1602 struct ice_pkg_enum state; 1603 struct ice_seg *ice_seg; 1604 struct ice_fv *fv; 1605 1606 if (req_profs == ICE_PROF_ALL) { 1607 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1608 return; 1609 } 1610 1611 memset(&state, 0, sizeof(state)); 1612 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1613 ice_seg = hw->seg; 1614 do { 1615 enum ice_prof_type prof_type; 1616 u32 offset; 1617 1618 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1619 &offset, ice_sw_fv_handler); 1620 ice_seg = NULL; 1621 1622 if (fv) { 1623 /* Determine field vector type */ 1624 prof_type = ice_get_sw_prof_type(hw, fv); 1625 1626 if (req_profs & prof_type) 1627 set_bit((u16)offset, bm); 1628 } 1629 } while (fv); 1630 } 1631 1632 /** 1633 * ice_get_sw_fv_list 1634 * @hw: pointer to the HW structure 1635 * @prot_ids: field vector to search for with a given protocol ID 1636 * @ids_cnt: lookup/protocol count 1637 * @bm: bitmap of field vectors to consider 1638 * @fv_list: Head of a list 1639 * 1640 * Finds all the field vector entries from switch block that contain 1641 * a given protocol ID and returns a list of structures of type 1642 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1643 * definition and profile ID information 1644 * NOTE: The caller of the function is responsible for freeing the memory 1645 * allocated for every list entry. 1646 */ 1647 enum ice_status 1648 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1649 unsigned long *bm, struct list_head *fv_list) 1650 { 1651 struct ice_sw_fv_list_entry *fvl; 1652 struct ice_sw_fv_list_entry *tmp; 1653 struct ice_pkg_enum state; 1654 struct ice_seg *ice_seg; 1655 struct ice_fv *fv; 1656 u32 offset; 1657 1658 memset(&state, 0, sizeof(state)); 1659 1660 if (!ids_cnt || !hw->seg) 1661 return ICE_ERR_PARAM; 1662 1663 ice_seg = hw->seg; 1664 do { 1665 u16 i; 1666 1667 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1668 &offset, ice_sw_fv_handler); 1669 if (!fv) 1670 break; 1671 ice_seg = NULL; 1672 1673 /* If field vector is not in the bitmap list, then skip this 1674 * profile. 1675 */ 1676 if (!test_bit((u16)offset, bm)) 1677 continue; 1678 1679 for (i = 0; i < ids_cnt; i++) { 1680 int j; 1681 1682 /* This code assumes that if a switch field vector line 1683 * has a matching protocol, then this line will contain 1684 * the entries necessary to represent every field in 1685 * that protocol header. 1686 */ 1687 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1688 if (fv->ew[j].prot_id == prot_ids[i]) 1689 break; 1690 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1691 break; 1692 if (i + 1 == ids_cnt) { 1693 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1694 sizeof(*fvl), GFP_KERNEL); 1695 if (!fvl) 1696 goto err; 1697 fvl->fv_ptr = fv; 1698 fvl->profile_id = offset; 1699 list_add(&fvl->list_entry, fv_list); 1700 break; 1701 } 1702 } 1703 } while (fv); 1704 if (list_empty(fv_list)) 1705 return ICE_ERR_CFG; 1706 return 0; 1707 1708 err: 1709 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1710 list_del(&fvl->list_entry); 1711 devm_kfree(ice_hw_to_dev(hw), fvl); 1712 } 1713 1714 return ICE_ERR_NO_MEMORY; 1715 } 1716 1717 /** 1718 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1719 * @hw: pointer to hardware structure 1720 */ 1721 void ice_init_prof_result_bm(struct ice_hw *hw) 1722 { 1723 struct ice_pkg_enum state; 1724 struct ice_seg *ice_seg; 1725 struct ice_fv *fv; 1726 1727 memset(&state, 0, sizeof(state)); 1728 1729 if (!hw->seg) 1730 return; 1731 1732 ice_seg = hw->seg; 1733 do { 1734 u32 off; 1735 u16 i; 1736 1737 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1738 &off, ice_sw_fv_handler); 1739 ice_seg = NULL; 1740 if (!fv) 1741 break; 1742 1743 bitmap_zero(hw->switch_info->prof_res_bm[off], 1744 ICE_MAX_FV_WORDS); 1745 1746 /* Determine empty field vector indices, these can be 1747 * used for recipe results. Skip index 0, since it is 1748 * always used for Switch ID. 1749 */ 1750 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1751 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1752 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1753 set_bit(i, hw->switch_info->prof_res_bm[off]); 1754 } while (fv); 1755 } 1756 1757 /** 1758 * ice_pkg_buf_free 1759 * @hw: pointer to the HW structure 1760 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1761 * 1762 * Frees a package buffer 1763 */ 1764 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1765 { 1766 devm_kfree(ice_hw_to_dev(hw), bld); 1767 } 1768 1769 /** 1770 * ice_pkg_buf_reserve_section 1771 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1772 * @count: the number of sections to reserve 1773 * 1774 * Reserves one or more section table entries in a package buffer. This routine 1775 * can be called multiple times as long as they are made before calling 1776 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1777 * is called once, the number of sections that can be allocated will not be able 1778 * to be increased; not using all reserved sections is fine, but this will 1779 * result in some wasted space in the buffer. 1780 * Note: all package contents must be in Little Endian form. 1781 */ 1782 static enum ice_status 1783 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1784 { 1785 struct ice_buf_hdr *buf; 1786 u16 section_count; 1787 u16 data_end; 1788 1789 if (!bld) 1790 return ICE_ERR_PARAM; 1791 1792 buf = (struct ice_buf_hdr *)&bld->buf; 1793 1794 /* already an active section, can't increase table size */ 1795 section_count = le16_to_cpu(buf->section_count); 1796 if (section_count > 0) 1797 return ICE_ERR_CFG; 1798 1799 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1800 return ICE_ERR_CFG; 1801 bld->reserved_section_table_entries += count; 1802 1803 data_end = le16_to_cpu(buf->data_end) + 1804 flex_array_size(buf, section_entry, count); 1805 buf->data_end = cpu_to_le16(data_end); 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * ice_pkg_buf_alloc_section 1812 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1813 * @type: the section type value 1814 * @size: the size of the section to reserve (in bytes) 1815 * 1816 * Reserves memory in the buffer for a section's content and updates the 1817 * buffers' status accordingly. This routine returns a pointer to the first 1818 * byte of the section start within the buffer, which is used to fill in the 1819 * section contents. 1820 * Note: all package contents must be in Little Endian form. 1821 */ 1822 static void * 1823 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1824 { 1825 struct ice_buf_hdr *buf; 1826 u16 sect_count; 1827 u16 data_end; 1828 1829 if (!bld || !type || !size) 1830 return NULL; 1831 1832 buf = (struct ice_buf_hdr *)&bld->buf; 1833 1834 /* check for enough space left in buffer */ 1835 data_end = le16_to_cpu(buf->data_end); 1836 1837 /* section start must align on 4 byte boundary */ 1838 data_end = ALIGN(data_end, 4); 1839 1840 if ((data_end + size) > ICE_MAX_S_DATA_END) 1841 return NULL; 1842 1843 /* check for more available section table entries */ 1844 sect_count = le16_to_cpu(buf->section_count); 1845 if (sect_count < bld->reserved_section_table_entries) { 1846 void *section_ptr = ((u8 *)buf) + data_end; 1847 1848 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1849 buf->section_entry[sect_count].size = cpu_to_le16(size); 1850 buf->section_entry[sect_count].type = cpu_to_le32(type); 1851 1852 data_end += size; 1853 buf->data_end = cpu_to_le16(data_end); 1854 1855 buf->section_count = cpu_to_le16(sect_count + 1); 1856 return section_ptr; 1857 } 1858 1859 /* no free section table entries */ 1860 return NULL; 1861 } 1862 1863 /** 1864 * ice_pkg_buf_get_active_sections 1865 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1866 * 1867 * Returns the number of active sections. Before using the package buffer 1868 * in an update package command, the caller should make sure that there is at 1869 * least one active section - otherwise, the buffer is not legal and should 1870 * not be used. 1871 * Note: all package contents must be in Little Endian form. 1872 */ 1873 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1874 { 1875 struct ice_buf_hdr *buf; 1876 1877 if (!bld) 1878 return 0; 1879 1880 buf = (struct ice_buf_hdr *)&bld->buf; 1881 return le16_to_cpu(buf->section_count); 1882 } 1883 1884 /** 1885 * ice_pkg_buf 1886 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1887 * 1888 * Return a pointer to the buffer's header 1889 */ 1890 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1891 { 1892 if (!bld) 1893 return NULL; 1894 1895 return &bld->buf; 1896 } 1897 1898 /** 1899 * ice_get_open_tunnel_port - retrieve an open tunnel port 1900 * @hw: pointer to the HW structure 1901 * @port: returns open port 1902 */ 1903 bool 1904 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) 1905 { 1906 bool res = false; 1907 u16 i; 1908 1909 mutex_lock(&hw->tnl_lock); 1910 1911 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1912 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { 1913 *port = hw->tnl.tbl[i].port; 1914 res = true; 1915 break; 1916 } 1917 1918 mutex_unlock(&hw->tnl_lock); 1919 1920 return res; 1921 } 1922 1923 /** 1924 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1925 * @hw: pointer to the HW structure 1926 * @type: type of tunnel 1927 * @idx: linear index 1928 * 1929 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1930 * but really the port table may be sprase, and types are mixed, so convert 1931 * the stack index into the device index. 1932 */ 1933 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1934 u16 idx) 1935 { 1936 u16 i; 1937 1938 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1939 if (hw->tnl.tbl[i].valid && 1940 hw->tnl.tbl[i].type == type && 1941 idx-- == 0) 1942 return i; 1943 1944 WARN_ON_ONCE(1); 1945 return 0; 1946 } 1947 1948 /** 1949 * ice_create_tunnel 1950 * @hw: pointer to the HW structure 1951 * @index: device table entry 1952 * @type: type of tunnel 1953 * @port: port of tunnel to create 1954 * 1955 * Create a tunnel by updating the parse graph in the parser. We do that by 1956 * creating a package buffer with the tunnel info and issuing an update package 1957 * command. 1958 */ 1959 static enum ice_status 1960 ice_create_tunnel(struct ice_hw *hw, u16 index, 1961 enum ice_tunnel_type type, u16 port) 1962 { 1963 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1964 enum ice_status status = ICE_ERR_MAX_LIMIT; 1965 struct ice_buf_build *bld; 1966 1967 mutex_lock(&hw->tnl_lock); 1968 1969 bld = ice_pkg_buf_alloc(hw); 1970 if (!bld) { 1971 status = ICE_ERR_NO_MEMORY; 1972 goto ice_create_tunnel_end; 1973 } 1974 1975 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1976 if (ice_pkg_buf_reserve_section(bld, 2)) 1977 goto ice_create_tunnel_err; 1978 1979 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1980 struct_size(sect_rx, tcam, 1)); 1981 if (!sect_rx) 1982 goto ice_create_tunnel_err; 1983 sect_rx->count = cpu_to_le16(1); 1984 1985 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1986 struct_size(sect_tx, tcam, 1)); 1987 if (!sect_tx) 1988 goto ice_create_tunnel_err; 1989 sect_tx->count = cpu_to_le16(1); 1990 1991 /* copy original boost entry to update package buffer */ 1992 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1993 sizeof(*sect_rx->tcam)); 1994 1995 /* over-write the never-match dest port key bits with the encoded port 1996 * bits 1997 */ 1998 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1999 (u8 *)&port, NULL, NULL, NULL, 2000 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2001 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2002 2003 /* exact copy of entry to Tx section entry */ 2004 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2005 2006 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2007 if (!status) 2008 hw->tnl.tbl[index].port = port; 2009 2010 ice_create_tunnel_err: 2011 ice_pkg_buf_free(hw, bld); 2012 2013 ice_create_tunnel_end: 2014 mutex_unlock(&hw->tnl_lock); 2015 2016 return status; 2017 } 2018 2019 /** 2020 * ice_destroy_tunnel 2021 * @hw: pointer to the HW structure 2022 * @index: device table entry 2023 * @type: type of tunnel 2024 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2025 * 2026 * Destroys a tunnel or all tunnels by creating an update package buffer 2027 * targeting the specific updates requested and then performing an update 2028 * package. 2029 */ 2030 static enum ice_status 2031 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2032 u16 port) 2033 { 2034 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2035 enum ice_status status = ICE_ERR_MAX_LIMIT; 2036 struct ice_buf_build *bld; 2037 2038 mutex_lock(&hw->tnl_lock); 2039 2040 if (WARN_ON(!hw->tnl.tbl[index].valid || 2041 hw->tnl.tbl[index].type != type || 2042 hw->tnl.tbl[index].port != port)) { 2043 status = ICE_ERR_OUT_OF_RANGE; 2044 goto ice_destroy_tunnel_end; 2045 } 2046 2047 bld = ice_pkg_buf_alloc(hw); 2048 if (!bld) { 2049 status = ICE_ERR_NO_MEMORY; 2050 goto ice_destroy_tunnel_end; 2051 } 2052 2053 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2054 if (ice_pkg_buf_reserve_section(bld, 2)) 2055 goto ice_destroy_tunnel_err; 2056 2057 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2058 struct_size(sect_rx, tcam, 1)); 2059 if (!sect_rx) 2060 goto ice_destroy_tunnel_err; 2061 sect_rx->count = cpu_to_le16(1); 2062 2063 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2064 struct_size(sect_tx, tcam, 1)); 2065 if (!sect_tx) 2066 goto ice_destroy_tunnel_err; 2067 sect_tx->count = cpu_to_le16(1); 2068 2069 /* copy original boost entry to update package buffer, one copy to Rx 2070 * section, another copy to the Tx section 2071 */ 2072 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2073 sizeof(*sect_rx->tcam)); 2074 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2075 sizeof(*sect_tx->tcam)); 2076 2077 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2078 if (!status) 2079 hw->tnl.tbl[index].port = 0; 2080 2081 ice_destroy_tunnel_err: 2082 ice_pkg_buf_free(hw, bld); 2083 2084 ice_destroy_tunnel_end: 2085 mutex_unlock(&hw->tnl_lock); 2086 2087 return status; 2088 } 2089 2090 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2091 unsigned int idx, struct udp_tunnel_info *ti) 2092 { 2093 struct ice_netdev_priv *np = netdev_priv(netdev); 2094 struct ice_vsi *vsi = np->vsi; 2095 struct ice_pf *pf = vsi->back; 2096 enum ice_tunnel_type tnl_type; 2097 enum ice_status status; 2098 u16 index; 2099 2100 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2101 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2102 2103 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2104 if (status) { 2105 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 2106 ice_stat_str(status)); 2107 return -EIO; 2108 } 2109 2110 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2111 return 0; 2112 } 2113 2114 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2115 unsigned int idx, struct udp_tunnel_info *ti) 2116 { 2117 struct ice_netdev_priv *np = netdev_priv(netdev); 2118 struct ice_vsi *vsi = np->vsi; 2119 struct ice_pf *pf = vsi->back; 2120 enum ice_tunnel_type tnl_type; 2121 enum ice_status status; 2122 2123 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2124 2125 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2126 ntohs(ti->port)); 2127 if (status) { 2128 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 2129 ice_stat_str(status)); 2130 return -EIO; 2131 } 2132 2133 return 0; 2134 } 2135 2136 /** 2137 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2138 * @hw: pointer to the hardware structure 2139 * @blk: hardware block 2140 * @prof: profile ID 2141 * @fv_idx: field vector word index 2142 * @prot: variable to receive the protocol ID 2143 * @off: variable to receive the protocol offset 2144 */ 2145 enum ice_status 2146 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2147 u8 *prot, u16 *off) 2148 { 2149 struct ice_fv_word *fv_ext; 2150 2151 if (prof >= hw->blk[blk].es.count) 2152 return ICE_ERR_PARAM; 2153 2154 if (fv_idx >= hw->blk[blk].es.fvw) 2155 return ICE_ERR_PARAM; 2156 2157 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2158 2159 *prot = fv_ext[fv_idx].prot_id; 2160 *off = fv_ext[fv_idx].off; 2161 2162 return 0; 2163 } 2164 2165 /* PTG Management */ 2166 2167 /** 2168 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2169 * @hw: pointer to the hardware structure 2170 * @blk: HW block 2171 * @ptype: the ptype to search for 2172 * @ptg: pointer to variable that receives the PTG 2173 * 2174 * This function will search the PTGs for a particular ptype, returning the 2175 * PTG ID that contains it through the PTG parameter, with the value of 2176 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2177 */ 2178 static enum ice_status 2179 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2180 { 2181 if (ptype >= ICE_XLT1_CNT || !ptg) 2182 return ICE_ERR_PARAM; 2183 2184 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2185 return 0; 2186 } 2187 2188 /** 2189 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2190 * @hw: pointer to the hardware structure 2191 * @blk: HW block 2192 * @ptg: the PTG to allocate 2193 * 2194 * This function allocates a given packet type group ID specified by the PTG 2195 * parameter. 2196 */ 2197 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2198 { 2199 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2200 } 2201 2202 /** 2203 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2204 * @hw: pointer to the hardware structure 2205 * @blk: HW block 2206 * @ptype: the ptype to remove 2207 * @ptg: the PTG to remove the ptype from 2208 * 2209 * This function will remove the ptype from the specific PTG, and move it to 2210 * the default PTG (ICE_DEFAULT_PTG). 2211 */ 2212 static enum ice_status 2213 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2214 { 2215 struct ice_ptg_ptype **ch; 2216 struct ice_ptg_ptype *p; 2217 2218 if (ptype > ICE_XLT1_CNT - 1) 2219 return ICE_ERR_PARAM; 2220 2221 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2222 return ICE_ERR_DOES_NOT_EXIST; 2223 2224 /* Should not happen if .in_use is set, bad config */ 2225 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2226 return ICE_ERR_CFG; 2227 2228 /* find the ptype within this PTG, and bypass the link over it */ 2229 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2230 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2231 while (p) { 2232 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2233 *ch = p->next_ptype; 2234 break; 2235 } 2236 2237 ch = &p->next_ptype; 2238 p = p->next_ptype; 2239 } 2240 2241 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2242 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2243 2244 return 0; 2245 } 2246 2247 /** 2248 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2249 * @hw: pointer to the hardware structure 2250 * @blk: HW block 2251 * @ptype: the ptype to add or move 2252 * @ptg: the PTG to add or move the ptype to 2253 * 2254 * This function will either add or move a ptype to a particular PTG depending 2255 * on if the ptype is already part of another group. Note that using a 2256 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2257 * default PTG. 2258 */ 2259 static enum ice_status 2260 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2261 { 2262 enum ice_status status; 2263 u8 original_ptg; 2264 2265 if (ptype > ICE_XLT1_CNT - 1) 2266 return ICE_ERR_PARAM; 2267 2268 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2269 return ICE_ERR_DOES_NOT_EXIST; 2270 2271 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2272 if (status) 2273 return status; 2274 2275 /* Is ptype already in the correct PTG? */ 2276 if (original_ptg == ptg) 2277 return 0; 2278 2279 /* Remove from original PTG and move back to the default PTG */ 2280 if (original_ptg != ICE_DEFAULT_PTG) 2281 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2282 2283 /* Moving to default PTG? Then we're done with this request */ 2284 if (ptg == ICE_DEFAULT_PTG) 2285 return 0; 2286 2287 /* Add ptype to PTG at beginning of list */ 2288 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2289 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2290 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2291 &hw->blk[blk].xlt1.ptypes[ptype]; 2292 2293 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2294 hw->blk[blk].xlt1.t[ptype] = ptg; 2295 2296 return 0; 2297 } 2298 2299 /* Block / table size info */ 2300 struct ice_blk_size_details { 2301 u16 xlt1; /* # XLT1 entries */ 2302 u16 xlt2; /* # XLT2 entries */ 2303 u16 prof_tcam; /* # profile ID TCAM entries */ 2304 u16 prof_id; /* # profile IDs */ 2305 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2306 u16 prof_redir; /* # profile redirection entries */ 2307 u16 es; /* # extraction sequence entries */ 2308 u16 fvw; /* # field vector words */ 2309 u8 overwrite; /* overwrite existing entries allowed */ 2310 u8 reverse; /* reverse FV order */ 2311 }; 2312 2313 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2314 /** 2315 * Table Definitions 2316 * XLT1 - Number of entries in XLT1 table 2317 * XLT2 - Number of entries in XLT2 table 2318 * TCAM - Number of entries Profile ID TCAM table 2319 * CDID - Control Domain ID of the hardware block 2320 * PRED - Number of entries in the Profile Redirection Table 2321 * FV - Number of entries in the Field Vector 2322 * FVW - Width (in WORDs) of the Field Vector 2323 * OVR - Overwrite existing table entries 2324 * REV - Reverse FV 2325 */ 2326 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2327 /* Overwrite , Reverse FV */ 2328 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2329 false, false }, 2330 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2331 false, false }, 2332 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2333 false, true }, 2334 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2335 true, true }, 2336 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2337 false, false }, 2338 }; 2339 2340 enum ice_sid_all { 2341 ICE_SID_XLT1_OFF = 0, 2342 ICE_SID_XLT2_OFF, 2343 ICE_SID_PR_OFF, 2344 ICE_SID_PR_REDIR_OFF, 2345 ICE_SID_ES_OFF, 2346 ICE_SID_OFF_COUNT, 2347 }; 2348 2349 /* Characteristic handling */ 2350 2351 /** 2352 * ice_match_prop_lst - determine if properties of two lists match 2353 * @list1: first properties list 2354 * @list2: second properties list 2355 * 2356 * Count, cookies and the order must match in order to be considered equivalent. 2357 */ 2358 static bool 2359 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2360 { 2361 struct ice_vsig_prof *tmp1; 2362 struct ice_vsig_prof *tmp2; 2363 u16 chk_count = 0; 2364 u16 count = 0; 2365 2366 /* compare counts */ 2367 list_for_each_entry(tmp1, list1, list) 2368 count++; 2369 list_for_each_entry(tmp2, list2, list) 2370 chk_count++; 2371 /* cppcheck-suppress knownConditionTrueFalse */ 2372 if (!count || count != chk_count) 2373 return false; 2374 2375 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2376 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2377 2378 /* profile cookies must compare, and in the exact same order to take 2379 * into account priority 2380 */ 2381 while (count--) { 2382 if (tmp2->profile_cookie != tmp1->profile_cookie) 2383 return false; 2384 2385 tmp1 = list_next_entry(tmp1, list); 2386 tmp2 = list_next_entry(tmp2, list); 2387 } 2388 2389 return true; 2390 } 2391 2392 /* VSIG Management */ 2393 2394 /** 2395 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2396 * @hw: pointer to the hardware structure 2397 * @blk: HW block 2398 * @vsi: VSI of interest 2399 * @vsig: pointer to receive the VSI group 2400 * 2401 * This function will lookup the VSI entry in the XLT2 list and return 2402 * the VSI group its associated with. 2403 */ 2404 static enum ice_status 2405 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2406 { 2407 if (!vsig || vsi >= ICE_MAX_VSI) 2408 return ICE_ERR_PARAM; 2409 2410 /* As long as there's a default or valid VSIG associated with the input 2411 * VSI, the functions returns a success. Any handling of VSIG will be 2412 * done by the following add, update or remove functions. 2413 */ 2414 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2415 2416 return 0; 2417 } 2418 2419 /** 2420 * ice_vsig_alloc_val - allocate a new VSIG by value 2421 * @hw: pointer to the hardware structure 2422 * @blk: HW block 2423 * @vsig: the VSIG to allocate 2424 * 2425 * This function will allocate a given VSIG specified by the VSIG parameter. 2426 */ 2427 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2428 { 2429 u16 idx = vsig & ICE_VSIG_IDX_M; 2430 2431 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2432 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2433 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2434 } 2435 2436 return ICE_VSIG_VALUE(idx, hw->pf_id); 2437 } 2438 2439 /** 2440 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2441 * @hw: pointer to the hardware structure 2442 * @blk: HW block 2443 * 2444 * This function will iterate through the VSIG list and mark the first 2445 * unused entry for the new VSIG entry as used and return that value. 2446 */ 2447 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2448 { 2449 u16 i; 2450 2451 for (i = 1; i < ICE_MAX_VSIGS; i++) 2452 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2453 return ice_vsig_alloc_val(hw, blk, i); 2454 2455 return ICE_DEFAULT_VSIG; 2456 } 2457 2458 /** 2459 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2460 * @hw: pointer to the hardware structure 2461 * @blk: HW block 2462 * @chs: characteristic list 2463 * @vsig: returns the VSIG with the matching profiles, if found 2464 * 2465 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2466 * a group have the same characteristic set. To check if there exists a VSIG 2467 * which has the same characteristics as the input characteristics; this 2468 * function will iterate through the XLT2 list and return the VSIG that has a 2469 * matching configuration. In order to make sure that priorities are accounted 2470 * for, the list must match exactly, including the order in which the 2471 * characteristics are listed. 2472 */ 2473 static enum ice_status 2474 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2475 struct list_head *chs, u16 *vsig) 2476 { 2477 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2478 u16 i; 2479 2480 for (i = 0; i < xlt2->count; i++) 2481 if (xlt2->vsig_tbl[i].in_use && 2482 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2483 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2484 return 0; 2485 } 2486 2487 return ICE_ERR_DOES_NOT_EXIST; 2488 } 2489 2490 /** 2491 * ice_vsig_free - free VSI group 2492 * @hw: pointer to the hardware structure 2493 * @blk: HW block 2494 * @vsig: VSIG to remove 2495 * 2496 * The function will remove all VSIs associated with the input VSIG and move 2497 * them to the DEFAULT_VSIG and mark the VSIG available. 2498 */ 2499 static enum ice_status 2500 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2501 { 2502 struct ice_vsig_prof *dtmp, *del; 2503 struct ice_vsig_vsi *vsi_cur; 2504 u16 idx; 2505 2506 idx = vsig & ICE_VSIG_IDX_M; 2507 if (idx >= ICE_MAX_VSIGS) 2508 return ICE_ERR_PARAM; 2509 2510 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2511 return ICE_ERR_DOES_NOT_EXIST; 2512 2513 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2514 2515 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2516 /* If the VSIG has at least 1 VSI then iterate through the 2517 * list and remove the VSIs before deleting the group. 2518 */ 2519 if (vsi_cur) { 2520 /* remove all vsis associated with this VSIG XLT2 entry */ 2521 do { 2522 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2523 2524 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2525 vsi_cur->changed = 1; 2526 vsi_cur->next_vsi = NULL; 2527 vsi_cur = tmp; 2528 } while (vsi_cur); 2529 2530 /* NULL terminate head of VSI list */ 2531 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2532 } 2533 2534 /* free characteristic list */ 2535 list_for_each_entry_safe(del, dtmp, 2536 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2537 list) { 2538 list_del(&del->list); 2539 devm_kfree(ice_hw_to_dev(hw), del); 2540 } 2541 2542 /* if VSIG characteristic list was cleared for reset 2543 * re-initialize the list head 2544 */ 2545 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2546 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsig_remove_vsi - remove VSI from VSIG 2552 * @hw: pointer to the hardware structure 2553 * @blk: HW block 2554 * @vsi: VSI to remove 2555 * @vsig: VSI group to remove from 2556 * 2557 * The function will remove the input VSI from its VSI group and move it 2558 * to the DEFAULT_VSIG. 2559 */ 2560 static enum ice_status 2561 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2562 { 2563 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2564 u16 idx; 2565 2566 idx = vsig & ICE_VSIG_IDX_M; 2567 2568 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2569 return ICE_ERR_PARAM; 2570 2571 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2572 return ICE_ERR_DOES_NOT_EXIST; 2573 2574 /* entry already in default VSIG, don't have to remove */ 2575 if (idx == ICE_DEFAULT_VSIG) 2576 return 0; 2577 2578 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2579 if (!(*vsi_head)) 2580 return ICE_ERR_CFG; 2581 2582 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2583 vsi_cur = (*vsi_head); 2584 2585 /* iterate the VSI list, skip over the entry to be removed */ 2586 while (vsi_cur) { 2587 if (vsi_tgt == vsi_cur) { 2588 (*vsi_head) = vsi_cur->next_vsi; 2589 break; 2590 } 2591 vsi_head = &vsi_cur->next_vsi; 2592 vsi_cur = vsi_cur->next_vsi; 2593 } 2594 2595 /* verify if VSI was removed from group list */ 2596 if (!vsi_cur) 2597 return ICE_ERR_DOES_NOT_EXIST; 2598 2599 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2600 vsi_cur->changed = 1; 2601 vsi_cur->next_vsi = NULL; 2602 2603 return 0; 2604 } 2605 2606 /** 2607 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2608 * @hw: pointer to the hardware structure 2609 * @blk: HW block 2610 * @vsi: VSI to move 2611 * @vsig: destination VSI group 2612 * 2613 * This function will move or add the input VSI to the target VSIG. 2614 * The function will find the original VSIG the VSI belongs to and 2615 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2616 * then move entry to the new VSIG. 2617 */ 2618 static enum ice_status 2619 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2620 { 2621 struct ice_vsig_vsi *tmp; 2622 enum ice_status status; 2623 u16 orig_vsig, idx; 2624 2625 idx = vsig & ICE_VSIG_IDX_M; 2626 2627 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2628 return ICE_ERR_PARAM; 2629 2630 /* if VSIG not in use and VSIG is not default type this VSIG 2631 * doesn't exist. 2632 */ 2633 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2634 vsig != ICE_DEFAULT_VSIG) 2635 return ICE_ERR_DOES_NOT_EXIST; 2636 2637 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2638 if (status) 2639 return status; 2640 2641 /* no update required if vsigs match */ 2642 if (orig_vsig == vsig) 2643 return 0; 2644 2645 if (orig_vsig != ICE_DEFAULT_VSIG) { 2646 /* remove entry from orig_vsig and add to default VSIG */ 2647 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2648 if (status) 2649 return status; 2650 } 2651 2652 if (idx == ICE_DEFAULT_VSIG) 2653 return 0; 2654 2655 /* Create VSI entry and add VSIG and prop_mask values */ 2656 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2657 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2658 2659 /* Add new entry to the head of the VSIG list */ 2660 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2661 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2662 &hw->blk[blk].xlt2.vsis[vsi]; 2663 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2664 hw->blk[blk].xlt2.t[vsi] = vsig; 2665 2666 return 0; 2667 } 2668 2669 /** 2670 * ice_prof_has_mask_idx - determine if profile index masking is identical 2671 * @hw: pointer to the hardware structure 2672 * @blk: HW block 2673 * @prof: profile to check 2674 * @idx: profile index to check 2675 * @mask: mask to match 2676 */ 2677 static bool 2678 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2679 u16 mask) 2680 { 2681 bool expect_no_mask = false; 2682 bool found = false; 2683 bool match = false; 2684 u16 i; 2685 2686 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2687 if (mask == 0 || mask == 0xffff) 2688 expect_no_mask = true; 2689 2690 /* Scan the enabled masks on this profile, for the specified idx */ 2691 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2692 hw->blk[blk].masks.count; i++) 2693 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2694 if (hw->blk[blk].masks.masks[i].in_use && 2695 hw->blk[blk].masks.masks[i].idx == idx) { 2696 found = true; 2697 if (hw->blk[blk].masks.masks[i].mask == mask) 2698 match = true; 2699 break; 2700 } 2701 2702 if (expect_no_mask) { 2703 if (found) 2704 return false; 2705 } else { 2706 if (!match) 2707 return false; 2708 } 2709 2710 return true; 2711 } 2712 2713 /** 2714 * ice_prof_has_mask - determine if profile masking is identical 2715 * @hw: pointer to the hardware structure 2716 * @blk: HW block 2717 * @prof: profile to check 2718 * @masks: masks to match 2719 */ 2720 static bool 2721 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2722 { 2723 u16 i; 2724 2725 /* es->mask_ena[prof] will have the mask */ 2726 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2727 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2728 return false; 2729 2730 return true; 2731 } 2732 2733 /** 2734 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2735 * @hw: pointer to the hardware structure 2736 * @blk: HW block 2737 * @fv: field vector to search for 2738 * @masks: masks for FV 2739 * @prof_id: receives the profile ID 2740 */ 2741 static enum ice_status 2742 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2743 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2744 { 2745 struct ice_es *es = &hw->blk[blk].es; 2746 u8 i; 2747 2748 /* For FD, we don't want to re-use a existed profile with the same 2749 * field vector and mask. This will cause rule interference. 2750 */ 2751 if (blk == ICE_BLK_FD) 2752 return ICE_ERR_DOES_NOT_EXIST; 2753 2754 for (i = 0; i < (u8)es->count; i++) { 2755 u16 off = i * es->fvw; 2756 2757 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2758 continue; 2759 2760 /* check if masks settings are the same for this profile */ 2761 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2762 continue; 2763 2764 *prof_id = i; 2765 return 0; 2766 } 2767 2768 return ICE_ERR_DOES_NOT_EXIST; 2769 } 2770 2771 /** 2772 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2773 * @blk: the block type 2774 * @rsrc_type: pointer to variable to receive the resource type 2775 */ 2776 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2777 { 2778 switch (blk) { 2779 case ICE_BLK_FD: 2780 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2781 break; 2782 case ICE_BLK_RSS: 2783 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2784 break; 2785 default: 2786 return false; 2787 } 2788 return true; 2789 } 2790 2791 /** 2792 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2793 * @blk: the block type 2794 * @rsrc_type: pointer to variable to receive the resource type 2795 */ 2796 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2797 { 2798 switch (blk) { 2799 case ICE_BLK_FD: 2800 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2801 break; 2802 case ICE_BLK_RSS: 2803 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2804 break; 2805 default: 2806 return false; 2807 } 2808 return true; 2809 } 2810 2811 /** 2812 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2813 * @hw: pointer to the HW struct 2814 * @blk: the block to allocate the TCAM for 2815 * @btm: true to allocate from bottom of table, false to allocate from top 2816 * @tcam_idx: pointer to variable to receive the TCAM entry 2817 * 2818 * This function allocates a new entry in a Profile ID TCAM for a specific 2819 * block. 2820 */ 2821 static enum ice_status 2822 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2823 u16 *tcam_idx) 2824 { 2825 u16 res_type; 2826 2827 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2828 return ICE_ERR_PARAM; 2829 2830 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2831 } 2832 2833 /** 2834 * ice_free_tcam_ent - free hardware TCAM entry 2835 * @hw: pointer to the HW struct 2836 * @blk: the block from which to free the TCAM entry 2837 * @tcam_idx: the TCAM entry to free 2838 * 2839 * This function frees an entry in a Profile ID TCAM for a specific block. 2840 */ 2841 static enum ice_status 2842 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2843 { 2844 u16 res_type; 2845 2846 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2847 return ICE_ERR_PARAM; 2848 2849 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2850 } 2851 2852 /** 2853 * ice_alloc_prof_id - allocate profile ID 2854 * @hw: pointer to the HW struct 2855 * @blk: the block to allocate the profile ID for 2856 * @prof_id: pointer to variable to receive the profile ID 2857 * 2858 * This function allocates a new profile ID, which also corresponds to a Field 2859 * Vector (Extraction Sequence) entry. 2860 */ 2861 static enum ice_status 2862 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2863 { 2864 enum ice_status status; 2865 u16 res_type; 2866 u16 get_prof; 2867 2868 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2869 return ICE_ERR_PARAM; 2870 2871 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2872 if (!status) 2873 *prof_id = (u8)get_prof; 2874 2875 return status; 2876 } 2877 2878 /** 2879 * ice_free_prof_id - free profile ID 2880 * @hw: pointer to the HW struct 2881 * @blk: the block from which to free the profile ID 2882 * @prof_id: the profile ID to free 2883 * 2884 * This function frees a profile ID, which also corresponds to a Field Vector. 2885 */ 2886 static enum ice_status 2887 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2888 { 2889 u16 tmp_prof_id = (u16)prof_id; 2890 u16 res_type; 2891 2892 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2893 return ICE_ERR_PARAM; 2894 2895 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2896 } 2897 2898 /** 2899 * ice_prof_inc_ref - increment reference count for profile 2900 * @hw: pointer to the HW struct 2901 * @blk: the block from which to free the profile ID 2902 * @prof_id: the profile ID for which to increment the reference count 2903 */ 2904 static enum ice_status 2905 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2906 { 2907 if (prof_id > hw->blk[blk].es.count) 2908 return ICE_ERR_PARAM; 2909 2910 hw->blk[blk].es.ref_count[prof_id]++; 2911 2912 return 0; 2913 } 2914 2915 /** 2916 * ice_write_prof_mask_reg - write profile mask register 2917 * @hw: pointer to the HW struct 2918 * @blk: hardware block 2919 * @mask_idx: mask index 2920 * @idx: index of the FV which will use the mask 2921 * @mask: the 16-bit mask 2922 */ 2923 static void 2924 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 2925 u16 idx, u16 mask) 2926 { 2927 u32 offset; 2928 u32 val; 2929 2930 switch (blk) { 2931 case ICE_BLK_RSS: 2932 offset = GLQF_HMASK(mask_idx); 2933 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 2934 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 2935 break; 2936 case ICE_BLK_FD: 2937 offset = GLQF_FDMASK(mask_idx); 2938 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 2939 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 2940 break; 2941 default: 2942 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2943 blk); 2944 return; 2945 } 2946 2947 wr32(hw, offset, val); 2948 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 2949 blk, idx, offset, val); 2950 } 2951 2952 /** 2953 * ice_write_prof_mask_enable_res - write profile mask enable register 2954 * @hw: pointer to the HW struct 2955 * @blk: hardware block 2956 * @prof_id: profile ID 2957 * @enable_mask: enable mask 2958 */ 2959 static void 2960 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 2961 u16 prof_id, u32 enable_mask) 2962 { 2963 u32 offset; 2964 2965 switch (blk) { 2966 case ICE_BLK_RSS: 2967 offset = GLQF_HMASK_SEL(prof_id); 2968 break; 2969 case ICE_BLK_FD: 2970 offset = GLQF_FDMASK_SEL(prof_id); 2971 break; 2972 default: 2973 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2974 blk); 2975 return; 2976 } 2977 2978 wr32(hw, offset, enable_mask); 2979 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 2980 blk, prof_id, offset, enable_mask); 2981 } 2982 2983 /** 2984 * ice_init_prof_masks - initial prof masks 2985 * @hw: pointer to the HW struct 2986 * @blk: hardware block 2987 */ 2988 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 2989 { 2990 u16 per_pf; 2991 u16 i; 2992 2993 mutex_init(&hw->blk[blk].masks.lock); 2994 2995 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 2996 2997 hw->blk[blk].masks.count = per_pf; 2998 hw->blk[blk].masks.first = hw->pf_id * per_pf; 2999 3000 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3001 3002 for (i = hw->blk[blk].masks.first; 3003 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3004 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3005 } 3006 3007 /** 3008 * ice_init_all_prof_masks - initialize all prof masks 3009 * @hw: pointer to the HW struct 3010 */ 3011 static void ice_init_all_prof_masks(struct ice_hw *hw) 3012 { 3013 ice_init_prof_masks(hw, ICE_BLK_RSS); 3014 ice_init_prof_masks(hw, ICE_BLK_FD); 3015 } 3016 3017 /** 3018 * ice_alloc_prof_mask - allocate profile mask 3019 * @hw: pointer to the HW struct 3020 * @blk: hardware block 3021 * @idx: index of FV which will use the mask 3022 * @mask: the 16-bit mask 3023 * @mask_idx: variable to receive the mask index 3024 */ 3025 static enum ice_status 3026 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3027 u16 *mask_idx) 3028 { 3029 bool found_unused = false, found_copy = false; 3030 enum ice_status status = ICE_ERR_MAX_LIMIT; 3031 u16 unused_idx = 0, copy_idx = 0; 3032 u16 i; 3033 3034 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3035 return ICE_ERR_PARAM; 3036 3037 mutex_lock(&hw->blk[blk].masks.lock); 3038 3039 for (i = hw->blk[blk].masks.first; 3040 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3041 if (hw->blk[blk].masks.masks[i].in_use) { 3042 /* if mask is in use and it exactly duplicates the 3043 * desired mask and index, then in can be reused 3044 */ 3045 if (hw->blk[blk].masks.masks[i].mask == mask && 3046 hw->blk[blk].masks.masks[i].idx == idx) { 3047 found_copy = true; 3048 copy_idx = i; 3049 break; 3050 } 3051 } else { 3052 /* save off unused index, but keep searching in case 3053 * there is an exact match later on 3054 */ 3055 if (!found_unused) { 3056 found_unused = true; 3057 unused_idx = i; 3058 } 3059 } 3060 3061 if (found_copy) 3062 i = copy_idx; 3063 else if (found_unused) 3064 i = unused_idx; 3065 else 3066 goto err_ice_alloc_prof_mask; 3067 3068 /* update mask for a new entry */ 3069 if (found_unused) { 3070 hw->blk[blk].masks.masks[i].in_use = true; 3071 hw->blk[blk].masks.masks[i].mask = mask; 3072 hw->blk[blk].masks.masks[i].idx = idx; 3073 hw->blk[blk].masks.masks[i].ref = 0; 3074 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3075 } 3076 3077 hw->blk[blk].masks.masks[i].ref++; 3078 *mask_idx = i; 3079 status = 0; 3080 3081 err_ice_alloc_prof_mask: 3082 mutex_unlock(&hw->blk[blk].masks.lock); 3083 3084 return status; 3085 } 3086 3087 /** 3088 * ice_free_prof_mask - free profile mask 3089 * @hw: pointer to the HW struct 3090 * @blk: hardware block 3091 * @mask_idx: index of mask 3092 */ 3093 static enum ice_status 3094 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3095 { 3096 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3097 return ICE_ERR_PARAM; 3098 3099 if (!(mask_idx >= hw->blk[blk].masks.first && 3100 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3101 return ICE_ERR_DOES_NOT_EXIST; 3102 3103 mutex_lock(&hw->blk[blk].masks.lock); 3104 3105 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3106 goto exit_ice_free_prof_mask; 3107 3108 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3109 hw->blk[blk].masks.masks[mask_idx].ref--; 3110 goto exit_ice_free_prof_mask; 3111 } 3112 3113 /* remove mask */ 3114 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3115 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3116 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3117 3118 /* update mask as unused entry */ 3119 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3120 mask_idx); 3121 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3122 3123 exit_ice_free_prof_mask: 3124 mutex_unlock(&hw->blk[blk].masks.lock); 3125 3126 return 0; 3127 } 3128 3129 /** 3130 * ice_free_prof_masks - free all profile masks for a profile 3131 * @hw: pointer to the HW struct 3132 * @blk: hardware block 3133 * @prof_id: profile ID 3134 */ 3135 static enum ice_status 3136 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3137 { 3138 u32 mask_bm; 3139 u16 i; 3140 3141 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3142 return ICE_ERR_PARAM; 3143 3144 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3145 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3146 if (mask_bm & BIT(i)) 3147 ice_free_prof_mask(hw, blk, i); 3148 3149 return 0; 3150 } 3151 3152 /** 3153 * ice_shutdown_prof_masks - releases lock for masking 3154 * @hw: pointer to the HW struct 3155 * @blk: hardware block 3156 * 3157 * This should be called before unloading the driver 3158 */ 3159 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3160 { 3161 u16 i; 3162 3163 mutex_lock(&hw->blk[blk].masks.lock); 3164 3165 for (i = hw->blk[blk].masks.first; 3166 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3167 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3168 3169 hw->blk[blk].masks.masks[i].in_use = false; 3170 hw->blk[blk].masks.masks[i].idx = 0; 3171 hw->blk[blk].masks.masks[i].mask = 0; 3172 } 3173 3174 mutex_unlock(&hw->blk[blk].masks.lock); 3175 mutex_destroy(&hw->blk[blk].masks.lock); 3176 } 3177 3178 /** 3179 * ice_shutdown_all_prof_masks - releases all locks for masking 3180 * @hw: pointer to the HW struct 3181 * 3182 * This should be called before unloading the driver 3183 */ 3184 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3185 { 3186 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3187 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3188 } 3189 3190 /** 3191 * ice_update_prof_masking - set registers according to masking 3192 * @hw: pointer to the HW struct 3193 * @blk: hardware block 3194 * @prof_id: profile ID 3195 * @masks: masks 3196 */ 3197 static enum ice_status 3198 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3199 u16 *masks) 3200 { 3201 bool err = false; 3202 u32 ena_mask = 0; 3203 u16 idx; 3204 u16 i; 3205 3206 /* Only support FD and RSS masking, otherwise nothing to be done */ 3207 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3208 return 0; 3209 3210 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3211 if (masks[i] && masks[i] != 0xFFFF) { 3212 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3213 ena_mask |= BIT(idx); 3214 } else { 3215 /* not enough bitmaps */ 3216 err = true; 3217 break; 3218 } 3219 } 3220 3221 if (err) { 3222 /* free any bitmaps we have allocated */ 3223 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3224 if (ena_mask & BIT(i)) 3225 ice_free_prof_mask(hw, blk, i); 3226 3227 return ICE_ERR_OUT_OF_RANGE; 3228 } 3229 3230 /* enable the masks for this profile */ 3231 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3232 3233 /* store enabled masks with profile so that they can be freed later */ 3234 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3235 3236 return 0; 3237 } 3238 3239 /** 3240 * ice_write_es - write an extraction sequence to hardware 3241 * @hw: pointer to the HW struct 3242 * @blk: the block in which to write the extraction sequence 3243 * @prof_id: the profile ID to write 3244 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3245 */ 3246 static void 3247 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3248 struct ice_fv_word *fv) 3249 { 3250 u16 off; 3251 3252 off = prof_id * hw->blk[blk].es.fvw; 3253 if (!fv) { 3254 memset(&hw->blk[blk].es.t[off], 0, 3255 hw->blk[blk].es.fvw * sizeof(*fv)); 3256 hw->blk[blk].es.written[prof_id] = false; 3257 } else { 3258 memcpy(&hw->blk[blk].es.t[off], fv, 3259 hw->blk[blk].es.fvw * sizeof(*fv)); 3260 } 3261 } 3262 3263 /** 3264 * ice_prof_dec_ref - decrement reference count for profile 3265 * @hw: pointer to the HW struct 3266 * @blk: the block from which to free the profile ID 3267 * @prof_id: the profile ID for which to decrement the reference count 3268 */ 3269 static enum ice_status 3270 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3271 { 3272 if (prof_id > hw->blk[blk].es.count) 3273 return ICE_ERR_PARAM; 3274 3275 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3276 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3277 ice_write_es(hw, blk, prof_id, NULL); 3278 ice_free_prof_masks(hw, blk, prof_id); 3279 return ice_free_prof_id(hw, blk, prof_id); 3280 } 3281 } 3282 3283 return 0; 3284 } 3285 3286 /* Block / table section IDs */ 3287 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3288 /* SWITCH */ 3289 { ICE_SID_XLT1_SW, 3290 ICE_SID_XLT2_SW, 3291 ICE_SID_PROFID_TCAM_SW, 3292 ICE_SID_PROFID_REDIR_SW, 3293 ICE_SID_FLD_VEC_SW 3294 }, 3295 3296 /* ACL */ 3297 { ICE_SID_XLT1_ACL, 3298 ICE_SID_XLT2_ACL, 3299 ICE_SID_PROFID_TCAM_ACL, 3300 ICE_SID_PROFID_REDIR_ACL, 3301 ICE_SID_FLD_VEC_ACL 3302 }, 3303 3304 /* FD */ 3305 { ICE_SID_XLT1_FD, 3306 ICE_SID_XLT2_FD, 3307 ICE_SID_PROFID_TCAM_FD, 3308 ICE_SID_PROFID_REDIR_FD, 3309 ICE_SID_FLD_VEC_FD 3310 }, 3311 3312 /* RSS */ 3313 { ICE_SID_XLT1_RSS, 3314 ICE_SID_XLT2_RSS, 3315 ICE_SID_PROFID_TCAM_RSS, 3316 ICE_SID_PROFID_REDIR_RSS, 3317 ICE_SID_FLD_VEC_RSS 3318 }, 3319 3320 /* PE */ 3321 { ICE_SID_XLT1_PE, 3322 ICE_SID_XLT2_PE, 3323 ICE_SID_PROFID_TCAM_PE, 3324 ICE_SID_PROFID_REDIR_PE, 3325 ICE_SID_FLD_VEC_PE 3326 } 3327 }; 3328 3329 /** 3330 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3331 * @hw: pointer to the hardware structure 3332 * @blk: the HW block to initialize 3333 */ 3334 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3335 { 3336 u16 pt; 3337 3338 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3339 u8 ptg; 3340 3341 ptg = hw->blk[blk].xlt1.t[pt]; 3342 if (ptg != ICE_DEFAULT_PTG) { 3343 ice_ptg_alloc_val(hw, blk, ptg); 3344 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3345 } 3346 } 3347 } 3348 3349 /** 3350 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3351 * @hw: pointer to the hardware structure 3352 * @blk: the HW block to initialize 3353 */ 3354 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3355 { 3356 u16 vsi; 3357 3358 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3359 u16 vsig; 3360 3361 vsig = hw->blk[blk].xlt2.t[vsi]; 3362 if (vsig) { 3363 ice_vsig_alloc_val(hw, blk, vsig); 3364 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3365 /* no changes at this time, since this has been 3366 * initialized from the original package 3367 */ 3368 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3369 } 3370 } 3371 } 3372 3373 /** 3374 * ice_init_sw_db - init software database from HW tables 3375 * @hw: pointer to the hardware structure 3376 */ 3377 static void ice_init_sw_db(struct ice_hw *hw) 3378 { 3379 u16 i; 3380 3381 for (i = 0; i < ICE_BLK_COUNT; i++) { 3382 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3383 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3384 } 3385 } 3386 3387 /** 3388 * ice_fill_tbl - Reads content of a single table type into database 3389 * @hw: pointer to the hardware structure 3390 * @block_id: Block ID of the table to copy 3391 * @sid: Section ID of the table to copy 3392 * 3393 * Will attempt to read the entire content of a given table of a single block 3394 * into the driver database. We assume that the buffer will always 3395 * be as large or larger than the data contained in the package. If 3396 * this condition is not met, there is most likely an error in the package 3397 * contents. 3398 */ 3399 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3400 { 3401 u32 dst_len, sect_len, offset = 0; 3402 struct ice_prof_redir_section *pr; 3403 struct ice_prof_id_section *pid; 3404 struct ice_xlt1_section *xlt1; 3405 struct ice_xlt2_section *xlt2; 3406 struct ice_sw_fv_section *es; 3407 struct ice_pkg_enum state; 3408 u8 *src, *dst; 3409 void *sect; 3410 3411 /* if the HW segment pointer is null then the first iteration of 3412 * ice_pkg_enum_section() will fail. In this case the HW tables will 3413 * not be filled and return success. 3414 */ 3415 if (!hw->seg) { 3416 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3417 return; 3418 } 3419 3420 memset(&state, 0, sizeof(state)); 3421 3422 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3423 3424 while (sect) { 3425 switch (sid) { 3426 case ICE_SID_XLT1_SW: 3427 case ICE_SID_XLT1_FD: 3428 case ICE_SID_XLT1_RSS: 3429 case ICE_SID_XLT1_ACL: 3430 case ICE_SID_XLT1_PE: 3431 xlt1 = sect; 3432 src = xlt1->value; 3433 sect_len = le16_to_cpu(xlt1->count) * 3434 sizeof(*hw->blk[block_id].xlt1.t); 3435 dst = hw->blk[block_id].xlt1.t; 3436 dst_len = hw->blk[block_id].xlt1.count * 3437 sizeof(*hw->blk[block_id].xlt1.t); 3438 break; 3439 case ICE_SID_XLT2_SW: 3440 case ICE_SID_XLT2_FD: 3441 case ICE_SID_XLT2_RSS: 3442 case ICE_SID_XLT2_ACL: 3443 case ICE_SID_XLT2_PE: 3444 xlt2 = sect; 3445 src = (__force u8 *)xlt2->value; 3446 sect_len = le16_to_cpu(xlt2->count) * 3447 sizeof(*hw->blk[block_id].xlt2.t); 3448 dst = (u8 *)hw->blk[block_id].xlt2.t; 3449 dst_len = hw->blk[block_id].xlt2.count * 3450 sizeof(*hw->blk[block_id].xlt2.t); 3451 break; 3452 case ICE_SID_PROFID_TCAM_SW: 3453 case ICE_SID_PROFID_TCAM_FD: 3454 case ICE_SID_PROFID_TCAM_RSS: 3455 case ICE_SID_PROFID_TCAM_ACL: 3456 case ICE_SID_PROFID_TCAM_PE: 3457 pid = sect; 3458 src = (u8 *)pid->entry; 3459 sect_len = le16_to_cpu(pid->count) * 3460 sizeof(*hw->blk[block_id].prof.t); 3461 dst = (u8 *)hw->blk[block_id].prof.t; 3462 dst_len = hw->blk[block_id].prof.count * 3463 sizeof(*hw->blk[block_id].prof.t); 3464 break; 3465 case ICE_SID_PROFID_REDIR_SW: 3466 case ICE_SID_PROFID_REDIR_FD: 3467 case ICE_SID_PROFID_REDIR_RSS: 3468 case ICE_SID_PROFID_REDIR_ACL: 3469 case ICE_SID_PROFID_REDIR_PE: 3470 pr = sect; 3471 src = pr->redir_value; 3472 sect_len = le16_to_cpu(pr->count) * 3473 sizeof(*hw->blk[block_id].prof_redir.t); 3474 dst = hw->blk[block_id].prof_redir.t; 3475 dst_len = hw->blk[block_id].prof_redir.count * 3476 sizeof(*hw->blk[block_id].prof_redir.t); 3477 break; 3478 case ICE_SID_FLD_VEC_SW: 3479 case ICE_SID_FLD_VEC_FD: 3480 case ICE_SID_FLD_VEC_RSS: 3481 case ICE_SID_FLD_VEC_ACL: 3482 case ICE_SID_FLD_VEC_PE: 3483 es = sect; 3484 src = (u8 *)es->fv; 3485 sect_len = (u32)(le16_to_cpu(es->count) * 3486 hw->blk[block_id].es.fvw) * 3487 sizeof(*hw->blk[block_id].es.t); 3488 dst = (u8 *)hw->blk[block_id].es.t; 3489 dst_len = (u32)(hw->blk[block_id].es.count * 3490 hw->blk[block_id].es.fvw) * 3491 sizeof(*hw->blk[block_id].es.t); 3492 break; 3493 default: 3494 return; 3495 } 3496 3497 /* if the section offset exceeds destination length, terminate 3498 * table fill. 3499 */ 3500 if (offset > dst_len) 3501 return; 3502 3503 /* if the sum of section size and offset exceed destination size 3504 * then we are out of bounds of the HW table size for that PF. 3505 * Changing section length to fill the remaining table space 3506 * of that PF. 3507 */ 3508 if ((offset + sect_len) > dst_len) 3509 sect_len = dst_len - offset; 3510 3511 memcpy(dst + offset, src, sect_len); 3512 offset += sect_len; 3513 sect = ice_pkg_enum_section(NULL, &state, sid); 3514 } 3515 } 3516 3517 /** 3518 * ice_fill_blk_tbls - Read package context for tables 3519 * @hw: pointer to the hardware structure 3520 * 3521 * Reads the current package contents and populates the driver 3522 * database with the data iteratively for all advanced feature 3523 * blocks. Assume that the HW tables have been allocated. 3524 */ 3525 void ice_fill_blk_tbls(struct ice_hw *hw) 3526 { 3527 u8 i; 3528 3529 for (i = 0; i < ICE_BLK_COUNT; i++) { 3530 enum ice_block blk_id = (enum ice_block)i; 3531 3532 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3533 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3534 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3535 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3536 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3537 } 3538 3539 ice_init_sw_db(hw); 3540 } 3541 3542 /** 3543 * ice_free_prof_map - free profile map 3544 * @hw: pointer to the hardware structure 3545 * @blk_idx: HW block index 3546 */ 3547 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3548 { 3549 struct ice_es *es = &hw->blk[blk_idx].es; 3550 struct ice_prof_map *del, *tmp; 3551 3552 mutex_lock(&es->prof_map_lock); 3553 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3554 list_del(&del->list); 3555 devm_kfree(ice_hw_to_dev(hw), del); 3556 } 3557 INIT_LIST_HEAD(&es->prof_map); 3558 mutex_unlock(&es->prof_map_lock); 3559 } 3560 3561 /** 3562 * ice_free_flow_profs - free flow profile entries 3563 * @hw: pointer to the hardware structure 3564 * @blk_idx: HW block index 3565 */ 3566 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3567 { 3568 struct ice_flow_prof *p, *tmp; 3569 3570 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3571 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3572 struct ice_flow_entry *e, *t; 3573 3574 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3575 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3576 ICE_FLOW_ENTRY_HNDL(e)); 3577 3578 list_del(&p->l_entry); 3579 3580 mutex_destroy(&p->entries_lock); 3581 devm_kfree(ice_hw_to_dev(hw), p); 3582 } 3583 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3584 3585 /* if driver is in reset and tables are being cleared 3586 * re-initialize the flow profile list heads 3587 */ 3588 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3589 } 3590 3591 /** 3592 * ice_free_vsig_tbl - free complete VSIG table entries 3593 * @hw: pointer to the hardware structure 3594 * @blk: the HW block on which to free the VSIG table entries 3595 */ 3596 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3597 { 3598 u16 i; 3599 3600 if (!hw->blk[blk].xlt2.vsig_tbl) 3601 return; 3602 3603 for (i = 1; i < ICE_MAX_VSIGS; i++) 3604 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3605 ice_vsig_free(hw, blk, i); 3606 } 3607 3608 /** 3609 * ice_free_hw_tbls - free hardware table memory 3610 * @hw: pointer to the hardware structure 3611 */ 3612 void ice_free_hw_tbls(struct ice_hw *hw) 3613 { 3614 struct ice_rss_cfg *r, *rt; 3615 u8 i; 3616 3617 for (i = 0; i < ICE_BLK_COUNT; i++) { 3618 if (hw->blk[i].is_list_init) { 3619 struct ice_es *es = &hw->blk[i].es; 3620 3621 ice_free_prof_map(hw, i); 3622 mutex_destroy(&es->prof_map_lock); 3623 3624 ice_free_flow_profs(hw, i); 3625 mutex_destroy(&hw->fl_profs_locks[i]); 3626 3627 hw->blk[i].is_list_init = false; 3628 } 3629 ice_free_vsig_tbl(hw, (enum ice_block)i); 3630 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3631 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3632 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3633 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3634 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3635 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3636 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3637 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3638 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3639 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3640 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3641 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3642 } 3643 3644 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3645 list_del(&r->l_entry); 3646 devm_kfree(ice_hw_to_dev(hw), r); 3647 } 3648 mutex_destroy(&hw->rss_locks); 3649 ice_shutdown_all_prof_masks(hw); 3650 memset(hw->blk, 0, sizeof(hw->blk)); 3651 } 3652 3653 /** 3654 * ice_init_flow_profs - init flow profile locks and list heads 3655 * @hw: pointer to the hardware structure 3656 * @blk_idx: HW block index 3657 */ 3658 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3659 { 3660 mutex_init(&hw->fl_profs_locks[blk_idx]); 3661 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3662 } 3663 3664 /** 3665 * ice_clear_hw_tbls - clear HW tables and flow profiles 3666 * @hw: pointer to the hardware structure 3667 */ 3668 void ice_clear_hw_tbls(struct ice_hw *hw) 3669 { 3670 u8 i; 3671 3672 for (i = 0; i < ICE_BLK_COUNT; i++) { 3673 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3674 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3675 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3676 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3677 struct ice_es *es = &hw->blk[i].es; 3678 3679 if (hw->blk[i].is_list_init) { 3680 ice_free_prof_map(hw, i); 3681 ice_free_flow_profs(hw, i); 3682 } 3683 3684 ice_free_vsig_tbl(hw, (enum ice_block)i); 3685 3686 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3687 memset(xlt1->ptg_tbl, 0, 3688 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3689 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3690 3691 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3692 memset(xlt2->vsig_tbl, 0, 3693 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3694 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3695 3696 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3697 memset(prof_redir->t, 0, 3698 prof_redir->count * sizeof(*prof_redir->t)); 3699 3700 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3701 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3702 memset(es->written, 0, es->count * sizeof(*es->written)); 3703 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3704 } 3705 } 3706 3707 /** 3708 * ice_init_hw_tbls - init hardware table memory 3709 * @hw: pointer to the hardware structure 3710 */ 3711 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3712 { 3713 u8 i; 3714 3715 mutex_init(&hw->rss_locks); 3716 INIT_LIST_HEAD(&hw->rss_list_head); 3717 ice_init_all_prof_masks(hw); 3718 for (i = 0; i < ICE_BLK_COUNT; i++) { 3719 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3720 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3721 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3722 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3723 struct ice_es *es = &hw->blk[i].es; 3724 u16 j; 3725 3726 if (hw->blk[i].is_list_init) 3727 continue; 3728 3729 ice_init_flow_profs(hw, i); 3730 mutex_init(&es->prof_map_lock); 3731 INIT_LIST_HEAD(&es->prof_map); 3732 hw->blk[i].is_list_init = true; 3733 3734 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3735 es->reverse = blk_sizes[i].reverse; 3736 3737 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3738 xlt1->count = blk_sizes[i].xlt1; 3739 3740 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3741 sizeof(*xlt1->ptypes), GFP_KERNEL); 3742 3743 if (!xlt1->ptypes) 3744 goto err; 3745 3746 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3747 sizeof(*xlt1->ptg_tbl), 3748 GFP_KERNEL); 3749 3750 if (!xlt1->ptg_tbl) 3751 goto err; 3752 3753 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3754 sizeof(*xlt1->t), GFP_KERNEL); 3755 if (!xlt1->t) 3756 goto err; 3757 3758 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3759 xlt2->count = blk_sizes[i].xlt2; 3760 3761 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3762 sizeof(*xlt2->vsis), GFP_KERNEL); 3763 3764 if (!xlt2->vsis) 3765 goto err; 3766 3767 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3768 sizeof(*xlt2->vsig_tbl), 3769 GFP_KERNEL); 3770 if (!xlt2->vsig_tbl) 3771 goto err; 3772 3773 for (j = 0; j < xlt2->count; j++) 3774 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3775 3776 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3777 sizeof(*xlt2->t), GFP_KERNEL); 3778 if (!xlt2->t) 3779 goto err; 3780 3781 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3782 prof->count = blk_sizes[i].prof_tcam; 3783 prof->max_prof_id = blk_sizes[i].prof_id; 3784 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3785 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3786 sizeof(*prof->t), GFP_KERNEL); 3787 3788 if (!prof->t) 3789 goto err; 3790 3791 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3792 prof_redir->count = blk_sizes[i].prof_redir; 3793 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3794 prof_redir->count, 3795 sizeof(*prof_redir->t), 3796 GFP_KERNEL); 3797 3798 if (!prof_redir->t) 3799 goto err; 3800 3801 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3802 es->count = blk_sizes[i].es; 3803 es->fvw = blk_sizes[i].fvw; 3804 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3805 (u32)(es->count * es->fvw), 3806 sizeof(*es->t), GFP_KERNEL); 3807 if (!es->t) 3808 goto err; 3809 3810 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3811 sizeof(*es->ref_count), 3812 GFP_KERNEL); 3813 if (!es->ref_count) 3814 goto err; 3815 3816 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3817 sizeof(*es->written), GFP_KERNEL); 3818 if (!es->written) 3819 goto err; 3820 3821 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3822 sizeof(*es->mask_ena), GFP_KERNEL); 3823 if (!es->mask_ena) 3824 goto err; 3825 } 3826 return 0; 3827 3828 err: 3829 ice_free_hw_tbls(hw); 3830 return ICE_ERR_NO_MEMORY; 3831 } 3832 3833 /** 3834 * ice_prof_gen_key - generate profile ID key 3835 * @hw: pointer to the HW struct 3836 * @blk: the block in which to write profile ID to 3837 * @ptg: packet type group (PTG) portion of key 3838 * @vsig: VSIG portion of key 3839 * @cdid: CDID portion of key 3840 * @flags: flag portion of key 3841 * @vl_msk: valid mask 3842 * @dc_msk: don't care mask 3843 * @nm_msk: never match mask 3844 * @key: output of profile ID key 3845 */ 3846 static enum ice_status 3847 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3848 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3849 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3850 u8 key[ICE_TCAM_KEY_SZ]) 3851 { 3852 struct ice_prof_id_key inkey; 3853 3854 inkey.xlt1 = ptg; 3855 inkey.xlt2_cdid = cpu_to_le16(vsig); 3856 inkey.flags = cpu_to_le16(flags); 3857 3858 switch (hw->blk[blk].prof.cdid_bits) { 3859 case 0: 3860 break; 3861 case 2: 3862 #define ICE_CD_2_M 0xC000U 3863 #define ICE_CD_2_S 14 3864 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3865 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3866 break; 3867 case 4: 3868 #define ICE_CD_4_M 0xF000U 3869 #define ICE_CD_4_S 12 3870 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3871 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3872 break; 3873 case 8: 3874 #define ICE_CD_8_M 0xFF00U 3875 #define ICE_CD_8_S 16 3876 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3877 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3878 break; 3879 default: 3880 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3881 break; 3882 } 3883 3884 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3885 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3886 } 3887 3888 /** 3889 * ice_tcam_write_entry - write TCAM entry 3890 * @hw: pointer to the HW struct 3891 * @blk: the block in which to write profile ID to 3892 * @idx: the entry index to write to 3893 * @prof_id: profile ID 3894 * @ptg: packet type group (PTG) portion of key 3895 * @vsig: VSIG portion of key 3896 * @cdid: CDID portion of key 3897 * @flags: flag portion of key 3898 * @vl_msk: valid mask 3899 * @dc_msk: don't care mask 3900 * @nm_msk: never match mask 3901 */ 3902 static enum ice_status 3903 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3904 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3905 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3906 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3907 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3908 { 3909 struct ice_prof_tcam_entry; 3910 enum ice_status status; 3911 3912 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3913 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3914 if (!status) { 3915 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3916 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3917 } 3918 3919 return status; 3920 } 3921 3922 /** 3923 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3924 * @hw: pointer to the hardware structure 3925 * @blk: HW block 3926 * @vsig: VSIG to query 3927 * @refs: pointer to variable to receive the reference count 3928 */ 3929 static enum ice_status 3930 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3931 { 3932 u16 idx = vsig & ICE_VSIG_IDX_M; 3933 struct ice_vsig_vsi *ptr; 3934 3935 *refs = 0; 3936 3937 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3938 return ICE_ERR_DOES_NOT_EXIST; 3939 3940 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3941 while (ptr) { 3942 (*refs)++; 3943 ptr = ptr->next_vsi; 3944 } 3945 3946 return 0; 3947 } 3948 3949 /** 3950 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3951 * @hw: pointer to the hardware structure 3952 * @blk: HW block 3953 * @vsig: VSIG to check against 3954 * @hdl: profile handle 3955 */ 3956 static bool 3957 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3958 { 3959 u16 idx = vsig & ICE_VSIG_IDX_M; 3960 struct ice_vsig_prof *ent; 3961 3962 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3963 list) 3964 if (ent->profile_cookie == hdl) 3965 return true; 3966 3967 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 3968 vsig); 3969 return false; 3970 } 3971 3972 /** 3973 * ice_prof_bld_es - build profile ID extraction sequence changes 3974 * @hw: pointer to the HW struct 3975 * @blk: hardware block 3976 * @bld: the update package buffer build to add to 3977 * @chgs: the list of changes to make in hardware 3978 */ 3979 static enum ice_status 3980 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3981 struct ice_buf_build *bld, struct list_head *chgs) 3982 { 3983 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3984 struct ice_chs_chg *tmp; 3985 3986 list_for_each_entry(tmp, chgs, list_entry) 3987 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3988 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3989 struct ice_pkg_es *p; 3990 u32 id; 3991 3992 id = ice_sect_id(blk, ICE_VEC_TBL); 3993 p = ice_pkg_buf_alloc_section(bld, id, 3994 struct_size(p, es, 1) + 3995 vec_size - 3996 sizeof(p->es[0])); 3997 3998 if (!p) 3999 return ICE_ERR_MAX_LIMIT; 4000 4001 p->count = cpu_to_le16(1); 4002 p->offset = cpu_to_le16(tmp->prof_id); 4003 4004 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4005 } 4006 4007 return 0; 4008 } 4009 4010 /** 4011 * ice_prof_bld_tcam - build profile ID TCAM changes 4012 * @hw: pointer to the HW struct 4013 * @blk: hardware block 4014 * @bld: the update package buffer build to add to 4015 * @chgs: the list of changes to make in hardware 4016 */ 4017 static enum ice_status 4018 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4019 struct ice_buf_build *bld, struct list_head *chgs) 4020 { 4021 struct ice_chs_chg *tmp; 4022 4023 list_for_each_entry(tmp, chgs, list_entry) 4024 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4025 struct ice_prof_id_section *p; 4026 u32 id; 4027 4028 id = ice_sect_id(blk, ICE_PROF_TCAM); 4029 p = ice_pkg_buf_alloc_section(bld, id, 4030 struct_size(p, entry, 1)); 4031 4032 if (!p) 4033 return ICE_ERR_MAX_LIMIT; 4034 4035 p->count = cpu_to_le16(1); 4036 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4037 p->entry[0].prof_id = tmp->prof_id; 4038 4039 memcpy(p->entry[0].key, 4040 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4041 sizeof(hw->blk[blk].prof.t->key)); 4042 } 4043 4044 return 0; 4045 } 4046 4047 /** 4048 * ice_prof_bld_xlt1 - build XLT1 changes 4049 * @blk: hardware block 4050 * @bld: the update package buffer build to add to 4051 * @chgs: the list of changes to make in hardware 4052 */ 4053 static enum ice_status 4054 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4055 struct list_head *chgs) 4056 { 4057 struct ice_chs_chg *tmp; 4058 4059 list_for_each_entry(tmp, chgs, list_entry) 4060 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4061 struct ice_xlt1_section *p; 4062 u32 id; 4063 4064 id = ice_sect_id(blk, ICE_XLT1); 4065 p = ice_pkg_buf_alloc_section(bld, id, 4066 struct_size(p, value, 1)); 4067 4068 if (!p) 4069 return ICE_ERR_MAX_LIMIT; 4070 4071 p->count = cpu_to_le16(1); 4072 p->offset = cpu_to_le16(tmp->ptype); 4073 p->value[0] = tmp->ptg; 4074 } 4075 4076 return 0; 4077 } 4078 4079 /** 4080 * ice_prof_bld_xlt2 - build XLT2 changes 4081 * @blk: hardware block 4082 * @bld: the update package buffer build to add to 4083 * @chgs: the list of changes to make in hardware 4084 */ 4085 static enum ice_status 4086 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4087 struct list_head *chgs) 4088 { 4089 struct ice_chs_chg *tmp; 4090 4091 list_for_each_entry(tmp, chgs, list_entry) { 4092 struct ice_xlt2_section *p; 4093 u32 id; 4094 4095 switch (tmp->type) { 4096 case ICE_VSIG_ADD: 4097 case ICE_VSI_MOVE: 4098 case ICE_VSIG_REM: 4099 id = ice_sect_id(blk, ICE_XLT2); 4100 p = ice_pkg_buf_alloc_section(bld, id, 4101 struct_size(p, value, 1)); 4102 4103 if (!p) 4104 return ICE_ERR_MAX_LIMIT; 4105 4106 p->count = cpu_to_le16(1); 4107 p->offset = cpu_to_le16(tmp->vsi); 4108 p->value[0] = cpu_to_le16(tmp->vsig); 4109 break; 4110 default: 4111 break; 4112 } 4113 } 4114 4115 return 0; 4116 } 4117 4118 /** 4119 * ice_upd_prof_hw - update hardware using the change list 4120 * @hw: pointer to the HW struct 4121 * @blk: hardware block 4122 * @chgs: the list of changes to make in hardware 4123 */ 4124 static enum ice_status 4125 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4126 struct list_head *chgs) 4127 { 4128 struct ice_buf_build *b; 4129 struct ice_chs_chg *tmp; 4130 enum ice_status status; 4131 u16 pkg_sects; 4132 u16 xlt1 = 0; 4133 u16 xlt2 = 0; 4134 u16 tcam = 0; 4135 u16 es = 0; 4136 u16 sects; 4137 4138 /* count number of sections we need */ 4139 list_for_each_entry(tmp, chgs, list_entry) { 4140 switch (tmp->type) { 4141 case ICE_PTG_ES_ADD: 4142 if (tmp->add_ptg) 4143 xlt1++; 4144 if (tmp->add_prof) 4145 es++; 4146 break; 4147 case ICE_TCAM_ADD: 4148 tcam++; 4149 break; 4150 case ICE_VSIG_ADD: 4151 case ICE_VSI_MOVE: 4152 case ICE_VSIG_REM: 4153 xlt2++; 4154 break; 4155 default: 4156 break; 4157 } 4158 } 4159 sects = xlt1 + xlt2 + tcam + es; 4160 4161 if (!sects) 4162 return 0; 4163 4164 /* Build update package buffer */ 4165 b = ice_pkg_buf_alloc(hw); 4166 if (!b) 4167 return ICE_ERR_NO_MEMORY; 4168 4169 status = ice_pkg_buf_reserve_section(b, sects); 4170 if (status) 4171 goto error_tmp; 4172 4173 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4174 if (es) { 4175 status = ice_prof_bld_es(hw, blk, b, chgs); 4176 if (status) 4177 goto error_tmp; 4178 } 4179 4180 if (tcam) { 4181 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4182 if (status) 4183 goto error_tmp; 4184 } 4185 4186 if (xlt1) { 4187 status = ice_prof_bld_xlt1(blk, b, chgs); 4188 if (status) 4189 goto error_tmp; 4190 } 4191 4192 if (xlt2) { 4193 status = ice_prof_bld_xlt2(blk, b, chgs); 4194 if (status) 4195 goto error_tmp; 4196 } 4197 4198 /* After package buffer build check if the section count in buffer is 4199 * non-zero and matches the number of sections detected for package 4200 * update. 4201 */ 4202 pkg_sects = ice_pkg_buf_get_active_sections(b); 4203 if (!pkg_sects || pkg_sects != sects) { 4204 status = ICE_ERR_INVAL_SIZE; 4205 goto error_tmp; 4206 } 4207 4208 /* update package */ 4209 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4210 if (status == ICE_ERR_AQ_ERROR) 4211 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4212 4213 error_tmp: 4214 ice_pkg_buf_free(hw, b); 4215 return status; 4216 } 4217 4218 /** 4219 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4220 * @hw: pointer to the HW struct 4221 * @prof_id: profile ID 4222 * @mask_sel: mask select 4223 * 4224 * This function enable any of the masks selected by the mask select parameter 4225 * for the profile specified. 4226 */ 4227 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4228 { 4229 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4230 4231 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4232 GLQF_FDMASK_SEL(prof_id), mask_sel); 4233 } 4234 4235 struct ice_fd_src_dst_pair { 4236 u8 prot_id; 4237 u8 count; 4238 u16 off; 4239 }; 4240 4241 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4242 /* These are defined in pairs */ 4243 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4244 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4245 4246 { ICE_PROT_IPV4_IL, 2, 12 }, 4247 { ICE_PROT_IPV4_IL, 2, 16 }, 4248 4249 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4250 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4251 4252 { ICE_PROT_IPV6_IL, 8, 8 }, 4253 { ICE_PROT_IPV6_IL, 8, 24 }, 4254 4255 { ICE_PROT_TCP_IL, 1, 0 }, 4256 { ICE_PROT_TCP_IL, 1, 2 }, 4257 4258 { ICE_PROT_UDP_OF, 1, 0 }, 4259 { ICE_PROT_UDP_OF, 1, 2 }, 4260 4261 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4262 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4263 4264 { ICE_PROT_SCTP_IL, 1, 0 }, 4265 { ICE_PROT_SCTP_IL, 1, 2 } 4266 }; 4267 4268 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4269 4270 /** 4271 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4272 * @hw: pointer to the HW struct 4273 * @prof_id: profile ID 4274 * @es: extraction sequence (length of array is determined by the block) 4275 */ 4276 static enum ice_status 4277 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4278 { 4279 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4280 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4281 #define ICE_FD_FV_NOT_FOUND (-2) 4282 s8 first_free = ICE_FD_FV_NOT_FOUND; 4283 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4284 s8 orig_free, si; 4285 u32 mask_sel = 0; 4286 u8 i, j, k; 4287 4288 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4289 4290 /* This code assumes that the Flow Director field vectors are assigned 4291 * from the end of the FV indexes working towards the zero index, that 4292 * only complete fields will be included and will be consecutive, and 4293 * that there are no gaps between valid indexes. 4294 */ 4295 4296 /* Determine swap fields present */ 4297 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4298 /* Find the first free entry, assuming right to left population. 4299 * This is where we can start adding additional pairs if needed. 4300 */ 4301 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4302 ICE_PROT_INVALID) 4303 first_free = i - 1; 4304 4305 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4306 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4307 es[i].off == ice_fd_pairs[j].off) { 4308 set_bit(j, pair_list); 4309 pair_start[j] = i; 4310 } 4311 } 4312 4313 orig_free = first_free; 4314 4315 /* determine missing swap fields that need to be added */ 4316 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4317 u8 bit1 = test_bit(i + 1, pair_list); 4318 u8 bit0 = test_bit(i, pair_list); 4319 4320 if (bit0 ^ bit1) { 4321 u8 index; 4322 4323 /* add the appropriate 'paired' entry */ 4324 if (!bit0) 4325 index = i; 4326 else 4327 index = i + 1; 4328 4329 /* check for room */ 4330 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4331 return ICE_ERR_MAX_LIMIT; 4332 4333 /* place in extraction sequence */ 4334 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4335 es[first_free - k].prot_id = 4336 ice_fd_pairs[index].prot_id; 4337 es[first_free - k].off = 4338 ice_fd_pairs[index].off + (k * 2); 4339 4340 if (k > first_free) 4341 return ICE_ERR_OUT_OF_RANGE; 4342 4343 /* keep track of non-relevant fields */ 4344 mask_sel |= BIT(first_free - k); 4345 } 4346 4347 pair_start[index] = first_free; 4348 first_free -= ice_fd_pairs[index].count; 4349 } 4350 } 4351 4352 /* fill in the swap array */ 4353 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4354 while (si >= 0) { 4355 u8 indexes_used = 1; 4356 4357 /* assume flat at this index */ 4358 #define ICE_SWAP_VALID 0x80 4359 used[si] = si | ICE_SWAP_VALID; 4360 4361 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4362 si -= indexes_used; 4363 continue; 4364 } 4365 4366 /* check for a swap location */ 4367 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4368 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4369 es[si].off == ice_fd_pairs[j].off) { 4370 u8 idx; 4371 4372 /* determine the appropriate matching field */ 4373 idx = j + ((j % 2) ? -1 : 1); 4374 4375 indexes_used = ice_fd_pairs[idx].count; 4376 for (k = 0; k < indexes_used; k++) { 4377 used[si - k] = (pair_start[idx] - k) | 4378 ICE_SWAP_VALID; 4379 } 4380 4381 break; 4382 } 4383 4384 si -= indexes_used; 4385 } 4386 4387 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4388 * register 4389 */ 4390 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4391 u32 raw_swap = 0; 4392 u32 raw_in = 0; 4393 4394 for (k = 0; k < 4; k++) { 4395 u8 idx; 4396 4397 idx = (j * 4) + k; 4398 if (used[idx] && !(mask_sel & BIT(idx))) { 4399 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4400 #define ICE_INSET_DFLT 0x9f 4401 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4402 } 4403 } 4404 4405 /* write the appropriate swap register set */ 4406 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4407 4408 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4409 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4410 4411 /* write the appropriate inset register set */ 4412 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4413 4414 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4415 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4416 } 4417 4418 /* initially clear the mask select for this profile */ 4419 ice_update_fd_mask(hw, prof_id, 0); 4420 4421 return 0; 4422 } 4423 4424 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4425 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4426 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4427 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4428 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4429 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4430 }; 4431 4432 /** 4433 * ice_get_ptype_attrib_info - get PTYPE attribute information 4434 * @type: attribute type 4435 * @info: pointer to variable to the attribute information 4436 */ 4437 static void 4438 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4439 struct ice_ptype_attrib_info *info) 4440 { 4441 *info = ice_ptype_attributes[type]; 4442 } 4443 4444 /** 4445 * ice_add_prof_attrib - add any PTG with attributes to profile 4446 * @prof: pointer to the profile to which PTG entries will be added 4447 * @ptg: PTG to be added 4448 * @ptype: PTYPE that needs to be looked up 4449 * @attr: array of attributes that will be considered 4450 * @attr_cnt: number of elements in the attribute array 4451 */ 4452 static enum ice_status 4453 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4454 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4455 { 4456 bool found = false; 4457 u16 i; 4458 4459 for (i = 0; i < attr_cnt; i++) 4460 if (attr[i].ptype == ptype) { 4461 found = true; 4462 4463 prof->ptg[prof->ptg_cnt] = ptg; 4464 ice_get_ptype_attrib_info(attr[i].attrib, 4465 &prof->attr[prof->ptg_cnt]); 4466 4467 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4468 return ICE_ERR_MAX_LIMIT; 4469 } 4470 4471 if (!found) 4472 return ICE_ERR_DOES_NOT_EXIST; 4473 4474 return 0; 4475 } 4476 4477 /** 4478 * ice_add_prof - add profile 4479 * @hw: pointer to the HW struct 4480 * @blk: hardware block 4481 * @id: profile tracking ID 4482 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4483 * @attr: array of attributes 4484 * @attr_cnt: number of elements in attr array 4485 * @es: extraction sequence (length of array is determined by the block) 4486 * @masks: mask for extraction sequence 4487 * 4488 * This function registers a profile, which matches a set of PTYPES with a 4489 * particular extraction sequence. While the hardware profile is allocated 4490 * it will not be written until the first call to ice_add_flow that specifies 4491 * the ID value used here. 4492 */ 4493 enum ice_status 4494 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4495 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4496 struct ice_fv_word *es, u16 *masks) 4497 { 4498 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4499 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4500 struct ice_prof_map *prof; 4501 enum ice_status status; 4502 u8 byte = 0; 4503 u8 prof_id; 4504 4505 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4506 4507 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4508 4509 /* search for existing profile */ 4510 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4511 if (status) { 4512 /* allocate profile ID */ 4513 status = ice_alloc_prof_id(hw, blk, &prof_id); 4514 if (status) 4515 goto err_ice_add_prof; 4516 if (blk == ICE_BLK_FD) { 4517 /* For Flow Director block, the extraction sequence may 4518 * need to be altered in the case where there are paired 4519 * fields that have no match. This is necessary because 4520 * for Flow Director, src and dest fields need to paired 4521 * for filter programming and these values are swapped 4522 * during Tx. 4523 */ 4524 status = ice_update_fd_swap(hw, prof_id, es); 4525 if (status) 4526 goto err_ice_add_prof; 4527 } 4528 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4529 if (status) 4530 goto err_ice_add_prof; 4531 4532 /* and write new es */ 4533 ice_write_es(hw, blk, prof_id, es); 4534 } 4535 4536 ice_prof_inc_ref(hw, blk, prof_id); 4537 4538 /* add profile info */ 4539 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4540 if (!prof) { 4541 status = ICE_ERR_NO_MEMORY; 4542 goto err_ice_add_prof; 4543 } 4544 4545 prof->profile_cookie = id; 4546 prof->prof_id = prof_id; 4547 prof->ptg_cnt = 0; 4548 prof->context = 0; 4549 4550 /* build list of ptgs */ 4551 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4552 u8 bit; 4553 4554 if (!ptypes[byte]) { 4555 bytes--; 4556 byte++; 4557 continue; 4558 } 4559 4560 /* Examine 8 bits per byte */ 4561 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4562 BITS_PER_BYTE) { 4563 u16 ptype; 4564 u8 ptg; 4565 4566 ptype = byte * BITS_PER_BYTE + bit; 4567 4568 /* The package should place all ptypes in a non-zero 4569 * PTG, so the following call should never fail. 4570 */ 4571 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4572 continue; 4573 4574 /* If PTG is already added, skip and continue */ 4575 if (test_bit(ptg, ptgs_used)) 4576 continue; 4577 4578 set_bit(ptg, ptgs_used); 4579 /* Check to see there are any attributes for 4580 * this PTYPE, and add them if found. 4581 */ 4582 status = ice_add_prof_attrib(prof, ptg, ptype, 4583 attr, attr_cnt); 4584 if (status == ICE_ERR_MAX_LIMIT) 4585 break; 4586 if (status) { 4587 /* This is simple a PTYPE/PTG with no 4588 * attribute 4589 */ 4590 prof->ptg[prof->ptg_cnt] = ptg; 4591 prof->attr[prof->ptg_cnt].flags = 0; 4592 prof->attr[prof->ptg_cnt].mask = 0; 4593 4594 if (++prof->ptg_cnt >= 4595 ICE_MAX_PTG_PER_PROFILE) 4596 break; 4597 } 4598 } 4599 4600 bytes--; 4601 byte++; 4602 } 4603 4604 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4605 status = 0; 4606 4607 err_ice_add_prof: 4608 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4609 return status; 4610 } 4611 4612 /** 4613 * ice_search_prof_id - Search for a profile tracking ID 4614 * @hw: pointer to the HW struct 4615 * @blk: hardware block 4616 * @id: profile tracking ID 4617 * 4618 * This will search for a profile tracking ID which was previously added. 4619 * The profile map lock should be held before calling this function. 4620 */ 4621 static struct ice_prof_map * 4622 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4623 { 4624 struct ice_prof_map *entry = NULL; 4625 struct ice_prof_map *map; 4626 4627 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4628 if (map->profile_cookie == id) { 4629 entry = map; 4630 break; 4631 } 4632 4633 return entry; 4634 } 4635 4636 /** 4637 * ice_vsig_prof_id_count - count profiles in a VSIG 4638 * @hw: pointer to the HW struct 4639 * @blk: hardware block 4640 * @vsig: VSIG to remove the profile from 4641 */ 4642 static u16 4643 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4644 { 4645 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4646 struct ice_vsig_prof *p; 4647 4648 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4649 list) 4650 count++; 4651 4652 return count; 4653 } 4654 4655 /** 4656 * ice_rel_tcam_idx - release a TCAM index 4657 * @hw: pointer to the HW struct 4658 * @blk: hardware block 4659 * @idx: the index to release 4660 */ 4661 static enum ice_status 4662 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4663 { 4664 /* Masks to invoke a never match entry */ 4665 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4666 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4667 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4668 enum ice_status status; 4669 4670 /* write the TCAM entry */ 4671 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4672 dc_msk, nm_msk); 4673 if (status) 4674 return status; 4675 4676 /* release the TCAM entry */ 4677 status = ice_free_tcam_ent(hw, blk, idx); 4678 4679 return status; 4680 } 4681 4682 /** 4683 * ice_rem_prof_id - remove one profile from a VSIG 4684 * @hw: pointer to the HW struct 4685 * @blk: hardware block 4686 * @prof: pointer to profile structure to remove 4687 */ 4688 static enum ice_status 4689 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4690 struct ice_vsig_prof *prof) 4691 { 4692 enum ice_status status; 4693 u16 i; 4694 4695 for (i = 0; i < prof->tcam_count; i++) 4696 if (prof->tcam[i].in_use) { 4697 prof->tcam[i].in_use = false; 4698 status = ice_rel_tcam_idx(hw, blk, 4699 prof->tcam[i].tcam_idx); 4700 if (status) 4701 return ICE_ERR_HW_TABLE; 4702 } 4703 4704 return 0; 4705 } 4706 4707 /** 4708 * ice_rem_vsig - remove VSIG 4709 * @hw: pointer to the HW struct 4710 * @blk: hardware block 4711 * @vsig: the VSIG to remove 4712 * @chg: the change list 4713 */ 4714 static enum ice_status 4715 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4716 struct list_head *chg) 4717 { 4718 u16 idx = vsig & ICE_VSIG_IDX_M; 4719 struct ice_vsig_vsi *vsi_cur; 4720 struct ice_vsig_prof *d, *t; 4721 enum ice_status status; 4722 4723 /* remove TCAM entries */ 4724 list_for_each_entry_safe(d, t, 4725 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4726 list) { 4727 status = ice_rem_prof_id(hw, blk, d); 4728 if (status) 4729 return status; 4730 4731 list_del(&d->list); 4732 devm_kfree(ice_hw_to_dev(hw), d); 4733 } 4734 4735 /* Move all VSIS associated with this VSIG to the default VSIG */ 4736 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4737 /* If the VSIG has at least 1 VSI then iterate through the list 4738 * and remove the VSIs before deleting the group. 4739 */ 4740 if (vsi_cur) 4741 do { 4742 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4743 struct ice_chs_chg *p; 4744 4745 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4746 GFP_KERNEL); 4747 if (!p) 4748 return ICE_ERR_NO_MEMORY; 4749 4750 p->type = ICE_VSIG_REM; 4751 p->orig_vsig = vsig; 4752 p->vsig = ICE_DEFAULT_VSIG; 4753 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4754 4755 list_add(&p->list_entry, chg); 4756 4757 vsi_cur = tmp; 4758 } while (vsi_cur); 4759 4760 return ice_vsig_free(hw, blk, vsig); 4761 } 4762 4763 /** 4764 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4765 * @hw: pointer to the HW struct 4766 * @blk: hardware block 4767 * @vsig: VSIG to remove the profile from 4768 * @hdl: profile handle indicating which profile to remove 4769 * @chg: list to receive a record of changes 4770 */ 4771 static enum ice_status 4772 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4773 struct list_head *chg) 4774 { 4775 u16 idx = vsig & ICE_VSIG_IDX_M; 4776 struct ice_vsig_prof *p, *t; 4777 enum ice_status status; 4778 4779 list_for_each_entry_safe(p, t, 4780 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4781 list) 4782 if (p->profile_cookie == hdl) { 4783 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4784 /* this is the last profile, remove the VSIG */ 4785 return ice_rem_vsig(hw, blk, vsig, chg); 4786 4787 status = ice_rem_prof_id(hw, blk, p); 4788 if (!status) { 4789 list_del(&p->list); 4790 devm_kfree(ice_hw_to_dev(hw), p); 4791 } 4792 return status; 4793 } 4794 4795 return ICE_ERR_DOES_NOT_EXIST; 4796 } 4797 4798 /** 4799 * ice_rem_flow_all - remove all flows with a particular profile 4800 * @hw: pointer to the HW struct 4801 * @blk: hardware block 4802 * @id: profile tracking ID 4803 */ 4804 static enum ice_status 4805 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4806 { 4807 struct ice_chs_chg *del, *tmp; 4808 enum ice_status status; 4809 struct list_head chg; 4810 u16 i; 4811 4812 INIT_LIST_HEAD(&chg); 4813 4814 for (i = 1; i < ICE_MAX_VSIGS; i++) 4815 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4816 if (ice_has_prof_vsig(hw, blk, i, id)) { 4817 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4818 &chg); 4819 if (status) 4820 goto err_ice_rem_flow_all; 4821 } 4822 } 4823 4824 status = ice_upd_prof_hw(hw, blk, &chg); 4825 4826 err_ice_rem_flow_all: 4827 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4828 list_del(&del->list_entry); 4829 devm_kfree(ice_hw_to_dev(hw), del); 4830 } 4831 4832 return status; 4833 } 4834 4835 /** 4836 * ice_rem_prof - remove profile 4837 * @hw: pointer to the HW struct 4838 * @blk: hardware block 4839 * @id: profile tracking ID 4840 * 4841 * This will remove the profile specified by the ID parameter, which was 4842 * previously created through ice_add_prof. If any existing entries 4843 * are associated with this profile, they will be removed as well. 4844 */ 4845 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4846 { 4847 struct ice_prof_map *pmap; 4848 enum ice_status status; 4849 4850 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4851 4852 pmap = ice_search_prof_id(hw, blk, id); 4853 if (!pmap) { 4854 status = ICE_ERR_DOES_NOT_EXIST; 4855 goto err_ice_rem_prof; 4856 } 4857 4858 /* remove all flows with this profile */ 4859 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4860 if (status) 4861 goto err_ice_rem_prof; 4862 4863 /* dereference profile, and possibly remove */ 4864 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4865 4866 list_del(&pmap->list); 4867 devm_kfree(ice_hw_to_dev(hw), pmap); 4868 4869 err_ice_rem_prof: 4870 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4871 return status; 4872 } 4873 4874 /** 4875 * ice_get_prof - get profile 4876 * @hw: pointer to the HW struct 4877 * @blk: hardware block 4878 * @hdl: profile handle 4879 * @chg: change list 4880 */ 4881 static enum ice_status 4882 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4883 struct list_head *chg) 4884 { 4885 enum ice_status status = 0; 4886 struct ice_prof_map *map; 4887 struct ice_chs_chg *p; 4888 u16 i; 4889 4890 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4891 /* Get the details on the profile specified by the handle ID */ 4892 map = ice_search_prof_id(hw, blk, hdl); 4893 if (!map) { 4894 status = ICE_ERR_DOES_NOT_EXIST; 4895 goto err_ice_get_prof; 4896 } 4897 4898 for (i = 0; i < map->ptg_cnt; i++) 4899 if (!hw->blk[blk].es.written[map->prof_id]) { 4900 /* add ES to change list */ 4901 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4902 GFP_KERNEL); 4903 if (!p) { 4904 status = ICE_ERR_NO_MEMORY; 4905 goto err_ice_get_prof; 4906 } 4907 4908 p->type = ICE_PTG_ES_ADD; 4909 p->ptype = 0; 4910 p->ptg = map->ptg[i]; 4911 p->add_ptg = 0; 4912 4913 p->add_prof = 1; 4914 p->prof_id = map->prof_id; 4915 4916 hw->blk[blk].es.written[map->prof_id] = true; 4917 4918 list_add(&p->list_entry, chg); 4919 } 4920 4921 err_ice_get_prof: 4922 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4923 /* let caller clean up the change list */ 4924 return status; 4925 } 4926 4927 /** 4928 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4929 * @hw: pointer to the HW struct 4930 * @blk: hardware block 4931 * @vsig: VSIG from which to copy the list 4932 * @lst: output list 4933 * 4934 * This routine makes a copy of the list of profiles in the specified VSIG. 4935 */ 4936 static enum ice_status 4937 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4938 struct list_head *lst) 4939 { 4940 struct ice_vsig_prof *ent1, *ent2; 4941 u16 idx = vsig & ICE_VSIG_IDX_M; 4942 4943 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4944 list) { 4945 struct ice_vsig_prof *p; 4946 4947 /* copy to the input list */ 4948 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4949 GFP_KERNEL); 4950 if (!p) 4951 goto err_ice_get_profs_vsig; 4952 4953 list_add_tail(&p->list, lst); 4954 } 4955 4956 return 0; 4957 4958 err_ice_get_profs_vsig: 4959 list_for_each_entry_safe(ent1, ent2, lst, list) { 4960 list_del(&ent1->list); 4961 devm_kfree(ice_hw_to_dev(hw), ent1); 4962 } 4963 4964 return ICE_ERR_NO_MEMORY; 4965 } 4966 4967 /** 4968 * ice_add_prof_to_lst - add profile entry to a list 4969 * @hw: pointer to the HW struct 4970 * @blk: hardware block 4971 * @lst: the list to be added to 4972 * @hdl: profile handle of entry to add 4973 */ 4974 static enum ice_status 4975 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4976 struct list_head *lst, u64 hdl) 4977 { 4978 enum ice_status status = 0; 4979 struct ice_prof_map *map; 4980 struct ice_vsig_prof *p; 4981 u16 i; 4982 4983 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4984 map = ice_search_prof_id(hw, blk, hdl); 4985 if (!map) { 4986 status = ICE_ERR_DOES_NOT_EXIST; 4987 goto err_ice_add_prof_to_lst; 4988 } 4989 4990 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4991 if (!p) { 4992 status = ICE_ERR_NO_MEMORY; 4993 goto err_ice_add_prof_to_lst; 4994 } 4995 4996 p->profile_cookie = map->profile_cookie; 4997 p->prof_id = map->prof_id; 4998 p->tcam_count = map->ptg_cnt; 4999 5000 for (i = 0; i < map->ptg_cnt; i++) { 5001 p->tcam[i].prof_id = map->prof_id; 5002 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5003 p->tcam[i].ptg = map->ptg[i]; 5004 } 5005 5006 list_add(&p->list, lst); 5007 5008 err_ice_add_prof_to_lst: 5009 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5010 return status; 5011 } 5012 5013 /** 5014 * ice_move_vsi - move VSI to another VSIG 5015 * @hw: pointer to the HW struct 5016 * @blk: hardware block 5017 * @vsi: the VSI to move 5018 * @vsig: the VSIG to move the VSI to 5019 * @chg: the change list 5020 */ 5021 static enum ice_status 5022 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5023 struct list_head *chg) 5024 { 5025 enum ice_status status; 5026 struct ice_chs_chg *p; 5027 u16 orig_vsig; 5028 5029 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5030 if (!p) 5031 return ICE_ERR_NO_MEMORY; 5032 5033 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5034 if (!status) 5035 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5036 5037 if (status) { 5038 devm_kfree(ice_hw_to_dev(hw), p); 5039 return status; 5040 } 5041 5042 p->type = ICE_VSI_MOVE; 5043 p->vsi = vsi; 5044 p->orig_vsig = orig_vsig; 5045 p->vsig = vsig; 5046 5047 list_add(&p->list_entry, chg); 5048 5049 return 0; 5050 } 5051 5052 /** 5053 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5054 * @hw: pointer to the HW struct 5055 * @idx: the index of the TCAM entry to remove 5056 * @chg: the list of change structures to search 5057 */ 5058 static void 5059 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5060 { 5061 struct ice_chs_chg *pos, *tmp; 5062 5063 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5064 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5065 list_del(&tmp->list_entry); 5066 devm_kfree(ice_hw_to_dev(hw), tmp); 5067 } 5068 } 5069 5070 /** 5071 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5072 * @hw: pointer to the HW struct 5073 * @blk: hardware block 5074 * @enable: true to enable, false to disable 5075 * @vsig: the VSIG of the TCAM entry 5076 * @tcam: pointer the TCAM info structure of the TCAM to disable 5077 * @chg: the change list 5078 * 5079 * This function appends an enable or disable TCAM entry in the change log 5080 */ 5081 static enum ice_status 5082 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5083 u16 vsig, struct ice_tcam_inf *tcam, 5084 struct list_head *chg) 5085 { 5086 enum ice_status status; 5087 struct ice_chs_chg *p; 5088 5089 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5090 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5091 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5092 5093 /* if disabling, free the TCAM */ 5094 if (!enable) { 5095 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5096 5097 /* if we have already created a change for this TCAM entry, then 5098 * we need to remove that entry, in order to prevent writing to 5099 * a TCAM entry we no longer will have ownership of. 5100 */ 5101 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5102 tcam->tcam_idx = 0; 5103 tcam->in_use = 0; 5104 return status; 5105 } 5106 5107 /* for re-enabling, reallocate a TCAM */ 5108 /* for entries with empty attribute masks, allocate entry from 5109 * the bottom of the TCAM table; otherwise, allocate from the 5110 * top of the table in order to give it higher priority 5111 */ 5112 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5113 &tcam->tcam_idx); 5114 if (status) 5115 return status; 5116 5117 /* add TCAM to change list */ 5118 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5119 if (!p) 5120 return ICE_ERR_NO_MEMORY; 5121 5122 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5123 tcam->ptg, vsig, 0, tcam->attr.flags, 5124 vl_msk, dc_msk, nm_msk); 5125 if (status) 5126 goto err_ice_prof_tcam_ena_dis; 5127 5128 tcam->in_use = 1; 5129 5130 p->type = ICE_TCAM_ADD; 5131 p->add_tcam_idx = true; 5132 p->prof_id = tcam->prof_id; 5133 p->ptg = tcam->ptg; 5134 p->vsig = 0; 5135 p->tcam_idx = tcam->tcam_idx; 5136 5137 /* log change */ 5138 list_add(&p->list_entry, chg); 5139 5140 return 0; 5141 5142 err_ice_prof_tcam_ena_dis: 5143 devm_kfree(ice_hw_to_dev(hw), p); 5144 return status; 5145 } 5146 5147 /** 5148 * ice_adj_prof_priorities - adjust profile based on priorities 5149 * @hw: pointer to the HW struct 5150 * @blk: hardware block 5151 * @vsig: the VSIG for which to adjust profile priorities 5152 * @chg: the change list 5153 */ 5154 static enum ice_status 5155 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5156 struct list_head *chg) 5157 { 5158 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5159 struct ice_vsig_prof *t; 5160 enum ice_status status; 5161 u16 idx; 5162 5163 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5164 idx = vsig & ICE_VSIG_IDX_M; 5165 5166 /* Priority is based on the order in which the profiles are added. The 5167 * newest added profile has highest priority and the oldest added 5168 * profile has the lowest priority. Since the profile property list for 5169 * a VSIG is sorted from newest to oldest, this code traverses the list 5170 * in order and enables the first of each PTG that it finds (that is not 5171 * already enabled); it also disables any duplicate PTGs that it finds 5172 * in the older profiles (that are currently enabled). 5173 */ 5174 5175 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5176 list) { 5177 u16 i; 5178 5179 for (i = 0; i < t->tcam_count; i++) { 5180 /* Scan the priorities from newest to oldest. 5181 * Make sure that the newest profiles take priority. 5182 */ 5183 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5184 t->tcam[i].in_use) { 5185 /* need to mark this PTG as never match, as it 5186 * was already in use and therefore duplicate 5187 * (and lower priority) 5188 */ 5189 status = ice_prof_tcam_ena_dis(hw, blk, false, 5190 vsig, 5191 &t->tcam[i], 5192 chg); 5193 if (status) 5194 return status; 5195 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5196 !t->tcam[i].in_use) { 5197 /* need to enable this PTG, as it in not in use 5198 * and not enabled (highest priority) 5199 */ 5200 status = ice_prof_tcam_ena_dis(hw, blk, true, 5201 vsig, 5202 &t->tcam[i], 5203 chg); 5204 if (status) 5205 return status; 5206 } 5207 5208 /* keep track of used ptgs */ 5209 set_bit(t->tcam[i].ptg, ptgs_used); 5210 } 5211 } 5212 5213 return 0; 5214 } 5215 5216 /** 5217 * ice_add_prof_id_vsig - add profile to VSIG 5218 * @hw: pointer to the HW struct 5219 * @blk: hardware block 5220 * @vsig: the VSIG to which this profile is to be added 5221 * @hdl: the profile handle indicating the profile to add 5222 * @rev: true to add entries to the end of the list 5223 * @chg: the change list 5224 */ 5225 static enum ice_status 5226 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5227 bool rev, struct list_head *chg) 5228 { 5229 /* Masks that ignore flags */ 5230 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5231 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5232 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5233 enum ice_status status = 0; 5234 struct ice_prof_map *map; 5235 struct ice_vsig_prof *t; 5236 struct ice_chs_chg *p; 5237 u16 vsig_idx, i; 5238 5239 /* Error, if this VSIG already has this profile */ 5240 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5241 return ICE_ERR_ALREADY_EXISTS; 5242 5243 /* new VSIG profile structure */ 5244 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5245 if (!t) 5246 return ICE_ERR_NO_MEMORY; 5247 5248 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5249 /* Get the details on the profile specified by the handle ID */ 5250 map = ice_search_prof_id(hw, blk, hdl); 5251 if (!map) { 5252 status = ICE_ERR_DOES_NOT_EXIST; 5253 goto err_ice_add_prof_id_vsig; 5254 } 5255 5256 t->profile_cookie = map->profile_cookie; 5257 t->prof_id = map->prof_id; 5258 t->tcam_count = map->ptg_cnt; 5259 5260 /* create TCAM entries */ 5261 for (i = 0; i < map->ptg_cnt; i++) { 5262 u16 tcam_idx; 5263 5264 /* add TCAM to change list */ 5265 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5266 if (!p) { 5267 status = ICE_ERR_NO_MEMORY; 5268 goto err_ice_add_prof_id_vsig; 5269 } 5270 5271 /* allocate the TCAM entry index */ 5272 /* for entries with empty attribute masks, allocate entry from 5273 * the bottom of the TCAM table; otherwise, allocate from the 5274 * top of the table in order to give it higher priority 5275 */ 5276 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5277 &tcam_idx); 5278 if (status) { 5279 devm_kfree(ice_hw_to_dev(hw), p); 5280 goto err_ice_add_prof_id_vsig; 5281 } 5282 5283 t->tcam[i].ptg = map->ptg[i]; 5284 t->tcam[i].prof_id = map->prof_id; 5285 t->tcam[i].tcam_idx = tcam_idx; 5286 t->tcam[i].attr = map->attr[i]; 5287 t->tcam[i].in_use = true; 5288 5289 p->type = ICE_TCAM_ADD; 5290 p->add_tcam_idx = true; 5291 p->prof_id = t->tcam[i].prof_id; 5292 p->ptg = t->tcam[i].ptg; 5293 p->vsig = vsig; 5294 p->tcam_idx = t->tcam[i].tcam_idx; 5295 5296 /* write the TCAM entry */ 5297 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5298 t->tcam[i].prof_id, 5299 t->tcam[i].ptg, vsig, 0, 0, 5300 vl_msk, dc_msk, nm_msk); 5301 if (status) { 5302 devm_kfree(ice_hw_to_dev(hw), p); 5303 goto err_ice_add_prof_id_vsig; 5304 } 5305 5306 /* log change */ 5307 list_add(&p->list_entry, chg); 5308 } 5309 5310 /* add profile to VSIG */ 5311 vsig_idx = vsig & ICE_VSIG_IDX_M; 5312 if (rev) 5313 list_add_tail(&t->list, 5314 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5315 else 5316 list_add(&t->list, 5317 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5318 5319 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5320 return status; 5321 5322 err_ice_add_prof_id_vsig: 5323 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5324 /* let caller clean up the change list */ 5325 devm_kfree(ice_hw_to_dev(hw), t); 5326 return status; 5327 } 5328 5329 /** 5330 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5331 * @hw: pointer to the HW struct 5332 * @blk: hardware block 5333 * @vsi: the initial VSI that will be in VSIG 5334 * @hdl: the profile handle of the profile that will be added to the VSIG 5335 * @chg: the change list 5336 */ 5337 static enum ice_status 5338 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5339 struct list_head *chg) 5340 { 5341 enum ice_status status; 5342 struct ice_chs_chg *p; 5343 u16 new_vsig; 5344 5345 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5346 if (!p) 5347 return ICE_ERR_NO_MEMORY; 5348 5349 new_vsig = ice_vsig_alloc(hw, blk); 5350 if (!new_vsig) { 5351 status = ICE_ERR_HW_TABLE; 5352 goto err_ice_create_prof_id_vsig; 5353 } 5354 5355 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5356 if (status) 5357 goto err_ice_create_prof_id_vsig; 5358 5359 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5360 if (status) 5361 goto err_ice_create_prof_id_vsig; 5362 5363 p->type = ICE_VSIG_ADD; 5364 p->vsi = vsi; 5365 p->orig_vsig = ICE_DEFAULT_VSIG; 5366 p->vsig = new_vsig; 5367 5368 list_add(&p->list_entry, chg); 5369 5370 return 0; 5371 5372 err_ice_create_prof_id_vsig: 5373 /* let caller clean up the change list */ 5374 devm_kfree(ice_hw_to_dev(hw), p); 5375 return status; 5376 } 5377 5378 /** 5379 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5380 * @hw: pointer to the HW struct 5381 * @blk: hardware block 5382 * @vsi: the initial VSI that will be in VSIG 5383 * @lst: the list of profile that will be added to the VSIG 5384 * @new_vsig: return of new VSIG 5385 * @chg: the change list 5386 */ 5387 static enum ice_status 5388 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5389 struct list_head *lst, u16 *new_vsig, 5390 struct list_head *chg) 5391 { 5392 struct ice_vsig_prof *t; 5393 enum ice_status status; 5394 u16 vsig; 5395 5396 vsig = ice_vsig_alloc(hw, blk); 5397 if (!vsig) 5398 return ICE_ERR_HW_TABLE; 5399 5400 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5401 if (status) 5402 return status; 5403 5404 list_for_each_entry(t, lst, list) { 5405 /* Reverse the order here since we are copying the list */ 5406 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5407 true, chg); 5408 if (status) 5409 return status; 5410 } 5411 5412 *new_vsig = vsig; 5413 5414 return 0; 5415 } 5416 5417 /** 5418 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5419 * @hw: pointer to the HW struct 5420 * @blk: hardware block 5421 * @hdl: the profile handle of the profile to search for 5422 * @vsig: returns the VSIG with the matching profile 5423 */ 5424 static bool 5425 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5426 { 5427 struct ice_vsig_prof *t; 5428 enum ice_status status; 5429 struct list_head lst; 5430 5431 INIT_LIST_HEAD(&lst); 5432 5433 t = kzalloc(sizeof(*t), GFP_KERNEL); 5434 if (!t) 5435 return false; 5436 5437 t->profile_cookie = hdl; 5438 list_add(&t->list, &lst); 5439 5440 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5441 5442 list_del(&t->list); 5443 kfree(t); 5444 5445 return !status; 5446 } 5447 5448 /** 5449 * ice_add_prof_id_flow - add profile flow 5450 * @hw: pointer to the HW struct 5451 * @blk: hardware block 5452 * @vsi: the VSI to enable with the profile specified by ID 5453 * @hdl: profile handle 5454 * 5455 * Calling this function will update the hardware tables to enable the 5456 * profile indicated by the ID parameter for the VSIs specified in the VSI 5457 * array. Once successfully called, the flow will be enabled. 5458 */ 5459 enum ice_status 5460 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5461 { 5462 struct ice_vsig_prof *tmp1, *del1; 5463 struct ice_chs_chg *tmp, *del; 5464 struct list_head union_lst; 5465 enum ice_status status; 5466 struct list_head chg; 5467 u16 vsig; 5468 5469 INIT_LIST_HEAD(&union_lst); 5470 INIT_LIST_HEAD(&chg); 5471 5472 /* Get profile */ 5473 status = ice_get_prof(hw, blk, hdl, &chg); 5474 if (status) 5475 return status; 5476 5477 /* determine if VSI is already part of a VSIG */ 5478 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5479 if (!status && vsig) { 5480 bool only_vsi; 5481 u16 or_vsig; 5482 u16 ref; 5483 5484 /* found in VSIG */ 5485 or_vsig = vsig; 5486 5487 /* make sure that there is no overlap/conflict between the new 5488 * characteristics and the existing ones; we don't support that 5489 * scenario 5490 */ 5491 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5492 status = ICE_ERR_ALREADY_EXISTS; 5493 goto err_ice_add_prof_id_flow; 5494 } 5495 5496 /* last VSI in the VSIG? */ 5497 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5498 if (status) 5499 goto err_ice_add_prof_id_flow; 5500 only_vsi = (ref == 1); 5501 5502 /* create a union of the current profiles and the one being 5503 * added 5504 */ 5505 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5506 if (status) 5507 goto err_ice_add_prof_id_flow; 5508 5509 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5510 if (status) 5511 goto err_ice_add_prof_id_flow; 5512 5513 /* search for an existing VSIG with an exact charc match */ 5514 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5515 if (!status) { 5516 /* move VSI to the VSIG that matches */ 5517 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5518 if (status) 5519 goto err_ice_add_prof_id_flow; 5520 5521 /* VSI has been moved out of or_vsig. If the or_vsig had 5522 * only that VSI it is now empty and can be removed. 5523 */ 5524 if (only_vsi) { 5525 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5526 if (status) 5527 goto err_ice_add_prof_id_flow; 5528 } 5529 } else if (only_vsi) { 5530 /* If the original VSIG only contains one VSI, then it 5531 * will be the requesting VSI. In this case the VSI is 5532 * not sharing entries and we can simply add the new 5533 * profile to the VSIG. 5534 */ 5535 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5536 &chg); 5537 if (status) 5538 goto err_ice_add_prof_id_flow; 5539 5540 /* Adjust priorities */ 5541 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5542 if (status) 5543 goto err_ice_add_prof_id_flow; 5544 } else { 5545 /* No match, so we need a new VSIG */ 5546 status = ice_create_vsig_from_lst(hw, blk, vsi, 5547 &union_lst, &vsig, 5548 &chg); 5549 if (status) 5550 goto err_ice_add_prof_id_flow; 5551 5552 /* Adjust priorities */ 5553 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5554 if (status) 5555 goto err_ice_add_prof_id_flow; 5556 } 5557 } else { 5558 /* need to find or add a VSIG */ 5559 /* search for an existing VSIG with an exact charc match */ 5560 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5561 /* found an exact match */ 5562 /* add or move VSI to the VSIG that matches */ 5563 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5564 if (status) 5565 goto err_ice_add_prof_id_flow; 5566 } else { 5567 /* we did not find an exact match */ 5568 /* we need to add a VSIG */ 5569 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5570 &chg); 5571 if (status) 5572 goto err_ice_add_prof_id_flow; 5573 } 5574 } 5575 5576 /* update hardware */ 5577 if (!status) 5578 status = ice_upd_prof_hw(hw, blk, &chg); 5579 5580 err_ice_add_prof_id_flow: 5581 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5582 list_del(&del->list_entry); 5583 devm_kfree(ice_hw_to_dev(hw), del); 5584 } 5585 5586 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5587 list_del(&del1->list); 5588 devm_kfree(ice_hw_to_dev(hw), del1); 5589 } 5590 5591 return status; 5592 } 5593 5594 /** 5595 * ice_rem_prof_from_list - remove a profile from list 5596 * @hw: pointer to the HW struct 5597 * @lst: list to remove the profile from 5598 * @hdl: the profile handle indicating the profile to remove 5599 */ 5600 static enum ice_status 5601 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5602 { 5603 struct ice_vsig_prof *ent, *tmp; 5604 5605 list_for_each_entry_safe(ent, tmp, lst, list) 5606 if (ent->profile_cookie == hdl) { 5607 list_del(&ent->list); 5608 devm_kfree(ice_hw_to_dev(hw), ent); 5609 return 0; 5610 } 5611 5612 return ICE_ERR_DOES_NOT_EXIST; 5613 } 5614 5615 /** 5616 * ice_rem_prof_id_flow - remove flow 5617 * @hw: pointer to the HW struct 5618 * @blk: hardware block 5619 * @vsi: the VSI from which to remove the profile specified by ID 5620 * @hdl: profile tracking handle 5621 * 5622 * Calling this function will update the hardware tables to remove the 5623 * profile indicated by the ID parameter for the VSIs specified in the VSI 5624 * array. Once successfully called, the flow will be disabled. 5625 */ 5626 enum ice_status 5627 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5628 { 5629 struct ice_vsig_prof *tmp1, *del1; 5630 struct ice_chs_chg *tmp, *del; 5631 struct list_head chg, copy; 5632 enum ice_status status; 5633 u16 vsig; 5634 5635 INIT_LIST_HEAD(©); 5636 INIT_LIST_HEAD(&chg); 5637 5638 /* determine if VSI is already part of a VSIG */ 5639 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5640 if (!status && vsig) { 5641 bool last_profile; 5642 bool only_vsi; 5643 u16 ref; 5644 5645 /* found in VSIG */ 5646 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5647 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5648 if (status) 5649 goto err_ice_rem_prof_id_flow; 5650 only_vsi = (ref == 1); 5651 5652 if (only_vsi) { 5653 /* If the original VSIG only contains one reference, 5654 * which will be the requesting VSI, then the VSI is not 5655 * sharing entries and we can simply remove the specific 5656 * characteristics from the VSIG. 5657 */ 5658 5659 if (last_profile) { 5660 /* If there are no profiles left for this VSIG, 5661 * then simply remove the VSIG. 5662 */ 5663 status = ice_rem_vsig(hw, blk, vsig, &chg); 5664 if (status) 5665 goto err_ice_rem_prof_id_flow; 5666 } else { 5667 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5668 hdl, &chg); 5669 if (status) 5670 goto err_ice_rem_prof_id_flow; 5671 5672 /* Adjust priorities */ 5673 status = ice_adj_prof_priorities(hw, blk, vsig, 5674 &chg); 5675 if (status) 5676 goto err_ice_rem_prof_id_flow; 5677 } 5678 5679 } else { 5680 /* Make a copy of the VSIG's list of Profiles */ 5681 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5682 if (status) 5683 goto err_ice_rem_prof_id_flow; 5684 5685 /* Remove specified profile entry from the list */ 5686 status = ice_rem_prof_from_list(hw, ©, hdl); 5687 if (status) 5688 goto err_ice_rem_prof_id_flow; 5689 5690 if (list_empty(©)) { 5691 status = ice_move_vsi(hw, blk, vsi, 5692 ICE_DEFAULT_VSIG, &chg); 5693 if (status) 5694 goto err_ice_rem_prof_id_flow; 5695 5696 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5697 &vsig)) { 5698 /* found an exact match */ 5699 /* add or move VSI to the VSIG that matches */ 5700 /* Search for a VSIG with a matching profile 5701 * list 5702 */ 5703 5704 /* Found match, move VSI to the matching VSIG */ 5705 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5706 if (status) 5707 goto err_ice_rem_prof_id_flow; 5708 } else { 5709 /* since no existing VSIG supports this 5710 * characteristic pattern, we need to create a 5711 * new VSIG and TCAM entries 5712 */ 5713 status = ice_create_vsig_from_lst(hw, blk, vsi, 5714 ©, &vsig, 5715 &chg); 5716 if (status) 5717 goto err_ice_rem_prof_id_flow; 5718 5719 /* Adjust priorities */ 5720 status = ice_adj_prof_priorities(hw, blk, vsig, 5721 &chg); 5722 if (status) 5723 goto err_ice_rem_prof_id_flow; 5724 } 5725 } 5726 } else { 5727 status = ICE_ERR_DOES_NOT_EXIST; 5728 } 5729 5730 /* update hardware tables */ 5731 if (!status) 5732 status = ice_upd_prof_hw(hw, blk, &chg); 5733 5734 err_ice_rem_prof_id_flow: 5735 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5736 list_del(&del->list_entry); 5737 devm_kfree(ice_hw_to_dev(hw), del); 5738 } 5739 5740 list_for_each_entry_safe(del1, tmp1, ©, list) { 5741 list_del(&del1->list); 5742 devm_kfree(ice_hw_to_dev(hw), del1); 5743 } 5744 5745 return status; 5746 } 5747