1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 318 * @hw: pointer to the HW structure 319 * @ptype: the hardware PTYPE 320 */ 321 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 322 { 323 return ptype < ICE_FLOW_PTYPE_MAX && 324 test_bit(ptype, hw->hw_ptype); 325 } 326 327 /** 328 * ice_marker_ptype_tcam_handler 329 * @sect_type: section type 330 * @section: pointer to section 331 * @index: index of the Marker PType TCAM entry to be returned 332 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections 333 * 334 * This is a callback function that can be passed to ice_pkg_enum_entry. 335 * Handles enumeration of individual Marker PType TCAM entries. 336 */ 337 static void * 338 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index, 339 u32 *offset) 340 { 341 struct ice_marker_ptype_tcam_section *marker_ptype; 342 343 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) 344 return NULL; 345 346 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) 347 return NULL; 348 349 if (offset) 350 *offset = 0; 351 352 marker_ptype = section; 353 if (index >= le16_to_cpu(marker_ptype->count)) 354 return NULL; 355 356 return marker_ptype->tcam + index; 357 } 358 359 /** 360 * ice_fill_hw_ptype - fill the enabled PTYPE bit information 361 * @hw: pointer to the HW structure 362 */ 363 static void ice_fill_hw_ptype(struct ice_hw *hw) 364 { 365 struct ice_marker_ptype_tcam_entry *tcam; 366 struct ice_seg *seg = hw->seg; 367 struct ice_pkg_enum state; 368 369 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); 370 if (!seg) 371 return; 372 373 memset(&state, 0, sizeof(state)); 374 375 do { 376 tcam = ice_pkg_enum_entry(seg, &state, 377 ICE_SID_RXPARSER_MARKER_PTYPE, NULL, 378 ice_marker_ptype_tcam_handler); 379 if (tcam && 380 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && 381 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) 382 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); 383 384 seg = NULL; 385 } while (tcam); 386 } 387 388 /** 389 * ice_boost_tcam_handler 390 * @sect_type: section type 391 * @section: pointer to section 392 * @index: index of the boost TCAM entry to be returned 393 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 394 * 395 * This is a callback function that can be passed to ice_pkg_enum_entry. 396 * Handles enumeration of individual boost TCAM entries. 397 */ 398 static void * 399 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 400 { 401 struct ice_boost_tcam_section *boost; 402 403 if (!section) 404 return NULL; 405 406 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 407 return NULL; 408 409 /* cppcheck-suppress nullPointer */ 410 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 411 return NULL; 412 413 if (offset) 414 *offset = 0; 415 416 boost = section; 417 if (index >= le16_to_cpu(boost->count)) 418 return NULL; 419 420 return boost->tcam + index; 421 } 422 423 /** 424 * ice_find_boost_entry 425 * @ice_seg: pointer to the ice segment (non-NULL) 426 * @addr: Boost TCAM address of entry to search for 427 * @entry: returns pointer to the entry 428 * 429 * Finds a particular Boost TCAM entry and returns a pointer to that entry 430 * if it is found. The ice_seg parameter must not be NULL since the first call 431 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 432 */ 433 static int 434 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 435 struct ice_boost_tcam_entry **entry) 436 { 437 struct ice_boost_tcam_entry *tcam; 438 struct ice_pkg_enum state; 439 440 memset(&state, 0, sizeof(state)); 441 442 if (!ice_seg) 443 return -EINVAL; 444 445 do { 446 tcam = ice_pkg_enum_entry(ice_seg, &state, 447 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 448 ice_boost_tcam_handler); 449 if (tcam && le16_to_cpu(tcam->addr) == addr) { 450 *entry = tcam; 451 return 0; 452 } 453 454 ice_seg = NULL; 455 } while (tcam); 456 457 *entry = NULL; 458 return -EIO; 459 } 460 461 /** 462 * ice_label_enum_handler 463 * @sect_type: section type 464 * @section: pointer to section 465 * @index: index of the label entry to be returned 466 * @offset: pointer to receive absolute offset, always zero for label sections 467 * 468 * This is a callback function that can be passed to ice_pkg_enum_entry. 469 * Handles enumeration of individual label entries. 470 */ 471 static void * 472 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 473 u32 *offset) 474 { 475 struct ice_label_section *labels; 476 477 if (!section) 478 return NULL; 479 480 /* cppcheck-suppress nullPointer */ 481 if (index > ICE_MAX_LABELS_IN_BUF) 482 return NULL; 483 484 if (offset) 485 *offset = 0; 486 487 labels = section; 488 if (index >= le16_to_cpu(labels->count)) 489 return NULL; 490 491 return labels->label + index; 492 } 493 494 /** 495 * ice_enum_labels 496 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 497 * @type: the section type that will contain the label (0 on subsequent calls) 498 * @state: ice_pkg_enum structure that will hold the state of the enumeration 499 * @value: pointer to a value that will return the label's value if found 500 * 501 * Enumerates a list of labels in the package. The caller will call 502 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 503 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 504 * the end of the list has been reached. 505 */ 506 static char * 507 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 508 u16 *value) 509 { 510 struct ice_label *label; 511 512 /* Check for valid label section on first call */ 513 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 514 return NULL; 515 516 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 517 ice_label_enum_handler); 518 if (!label) 519 return NULL; 520 521 *value = le16_to_cpu(label->value); 522 return label->name; 523 } 524 525 /** 526 * ice_init_pkg_hints 527 * @hw: pointer to the HW structure 528 * @ice_seg: pointer to the segment of the package scan (non-NULL) 529 * 530 * This function will scan the package and save off relevant information 531 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 532 * since the first call to ice_enum_labels requires a pointer to an actual 533 * ice_seg structure. 534 */ 535 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 536 { 537 struct ice_pkg_enum state; 538 char *label_name; 539 u16 val; 540 int i; 541 542 memset(&hw->tnl, 0, sizeof(hw->tnl)); 543 memset(&state, 0, sizeof(state)); 544 545 if (!ice_seg) 546 return; 547 548 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 549 &val); 550 551 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 552 for (i = 0; tnls[i].type != TNL_LAST; i++) { 553 size_t len = strlen(tnls[i].label_prefix); 554 555 /* Look for matching label start, before continuing */ 556 if (strncmp(label_name, tnls[i].label_prefix, len)) 557 continue; 558 559 /* Make sure this label matches our PF. Note that the PF 560 * character ('0' - '7') will be located where our 561 * prefix string's null terminator is located. 562 */ 563 if ((label_name[len] - '0') == hw->pf_id) { 564 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 565 hw->tnl.tbl[hw->tnl.count].valid = false; 566 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 567 hw->tnl.tbl[hw->tnl.count].port = 0; 568 hw->tnl.count++; 569 break; 570 } 571 } 572 573 label_name = ice_enum_labels(NULL, 0, &state, &val); 574 } 575 576 /* Cache the appropriate boost TCAM entry pointers */ 577 for (i = 0; i < hw->tnl.count; i++) { 578 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 579 &hw->tnl.tbl[i].boost_entry); 580 if (hw->tnl.tbl[i].boost_entry) { 581 hw->tnl.tbl[i].valid = true; 582 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 583 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 584 } 585 } 586 } 587 588 /* Key creation */ 589 590 #define ICE_DC_KEY 0x1 /* don't care */ 591 #define ICE_DC_KEYINV 0x1 592 #define ICE_NM_KEY 0x0 /* never match */ 593 #define ICE_NM_KEYINV 0x0 594 #define ICE_0_KEY 0x1 /* match 0 */ 595 #define ICE_0_KEYINV 0x0 596 #define ICE_1_KEY 0x0 /* match 1 */ 597 #define ICE_1_KEYINV 0x1 598 599 /** 600 * ice_gen_key_word - generate 16-bits of a key/mask word 601 * @val: the value 602 * @valid: valid bits mask (change only the valid bits) 603 * @dont_care: don't care mask 604 * @nvr_mtch: never match mask 605 * @key: pointer to an array of where the resulting key portion 606 * @key_inv: pointer to an array of where the resulting key invert portion 607 * 608 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 609 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 610 * of key and 8 bits of key invert. 611 * 612 * '0' = b01, always match a 0 bit 613 * '1' = b10, always match a 1 bit 614 * '?' = b11, don't care bit (always matches) 615 * '~' = b00, never match bit 616 * 617 * Input: 618 * val: b0 1 0 1 0 1 619 * dont_care: b0 0 1 1 0 0 620 * never_mtch: b0 0 0 0 1 1 621 * ------------------------------ 622 * Result: key: b01 10 11 11 00 00 623 */ 624 static int 625 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 626 u8 *key_inv) 627 { 628 u8 in_key = *key, in_key_inv = *key_inv; 629 u8 i; 630 631 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 632 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 633 return -EIO; 634 635 *key = 0; 636 *key_inv = 0; 637 638 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 639 for (i = 0; i < 8; i++) { 640 *key >>= 1; 641 *key_inv >>= 1; 642 643 if (!(valid & 0x1)) { /* change only valid bits */ 644 *key |= (in_key & 0x1) << 7; 645 *key_inv |= (in_key_inv & 0x1) << 7; 646 } else if (dont_care & 0x1) { /* don't care bit */ 647 *key |= ICE_DC_KEY << 7; 648 *key_inv |= ICE_DC_KEYINV << 7; 649 } else if (nvr_mtch & 0x1) { /* never match bit */ 650 *key |= ICE_NM_KEY << 7; 651 *key_inv |= ICE_NM_KEYINV << 7; 652 } else if (val & 0x01) { /* exact 1 match */ 653 *key |= ICE_1_KEY << 7; 654 *key_inv |= ICE_1_KEYINV << 7; 655 } else { /* exact 0 match */ 656 *key |= ICE_0_KEY << 7; 657 *key_inv |= ICE_0_KEYINV << 7; 658 } 659 660 dont_care >>= 1; 661 nvr_mtch >>= 1; 662 valid >>= 1; 663 val >>= 1; 664 in_key >>= 1; 665 in_key_inv >>= 1; 666 } 667 668 return 0; 669 } 670 671 /** 672 * ice_bits_max_set - determine if the number of bits set is within a maximum 673 * @mask: pointer to the byte array which is the mask 674 * @size: the number of bytes in the mask 675 * @max: the max number of set bits 676 * 677 * This function determines if there are at most 'max' number of bits set in an 678 * array. Returns true if the number for bits set is <= max or will return false 679 * otherwise. 680 */ 681 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 682 { 683 u16 count = 0; 684 u16 i; 685 686 /* check each byte */ 687 for (i = 0; i < size; i++) { 688 /* if 0, go to next byte */ 689 if (!mask[i]) 690 continue; 691 692 /* We know there is at least one set bit in this byte because of 693 * the above check; if we already have found 'max' number of 694 * bits set, then we can return failure now. 695 */ 696 if (count == max) 697 return false; 698 699 /* count the bits in this byte, checking threshold */ 700 count += hweight8(mask[i]); 701 if (count > max) 702 return false; 703 } 704 705 return true; 706 } 707 708 /** 709 * ice_set_key - generate a variable sized key with multiples of 16-bits 710 * @key: pointer to where the key will be stored 711 * @size: the size of the complete key in bytes (must be even) 712 * @val: array of 8-bit values that makes up the value portion of the key 713 * @upd: array of 8-bit masks that determine what key portion to update 714 * @dc: array of 8-bit masks that make up the don't care mask 715 * @nm: array of 8-bit masks that make up the never match mask 716 * @off: the offset of the first byte in the key to update 717 * @len: the number of bytes in the key update 718 * 719 * This function generates a key from a value, a don't care mask and a never 720 * match mask. 721 * upd, dc, and nm are optional parameters, and can be NULL: 722 * upd == NULL --> upd mask is all 1's (update all bits) 723 * dc == NULL --> dc mask is all 0's (no don't care bits) 724 * nm == NULL --> nm mask is all 0's (no never match bits) 725 */ 726 static int 727 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 728 u16 len) 729 { 730 u16 half_size; 731 u16 i; 732 733 /* size must be a multiple of 2 bytes. */ 734 if (size % 2) 735 return -EIO; 736 737 half_size = size / 2; 738 if (off + len > half_size) 739 return -EIO; 740 741 /* Make sure at most one bit is set in the never match mask. Having more 742 * than one never match mask bit set will cause HW to consume excessive 743 * power otherwise; this is a power management efficiency check. 744 */ 745 #define ICE_NVR_MTCH_BITS_MAX 1 746 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 747 return -EIO; 748 749 for (i = 0; i < len; i++) 750 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 751 dc ? dc[i] : 0, nm ? nm[i] : 0, 752 key + off + i, key + half_size + off + i)) 753 return -EIO; 754 755 return 0; 756 } 757 758 /** 759 * ice_acquire_global_cfg_lock 760 * @hw: pointer to the HW structure 761 * @access: access type (read or write) 762 * 763 * This function will request ownership of the global config lock for reading 764 * or writing of the package. When attempting to obtain write access, the 765 * caller must check for the following two return values: 766 * 767 * 0 - Means the caller has acquired the global config lock 768 * and can perform writing of the package. 769 * -EALREADY - Indicates another driver has already written the 770 * package or has found that no update was necessary; in 771 * this case, the caller can just skip performing any 772 * update of the package. 773 */ 774 static int 775 ice_acquire_global_cfg_lock(struct ice_hw *hw, 776 enum ice_aq_res_access_type access) 777 { 778 int status; 779 780 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 781 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 782 783 if (!status) 784 mutex_lock(&ice_global_cfg_lock_sw); 785 else if (status == -EALREADY) 786 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 787 788 return status; 789 } 790 791 /** 792 * ice_release_global_cfg_lock 793 * @hw: pointer to the HW structure 794 * 795 * This function will release the global config lock. 796 */ 797 static void ice_release_global_cfg_lock(struct ice_hw *hw) 798 { 799 mutex_unlock(&ice_global_cfg_lock_sw); 800 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 801 } 802 803 /** 804 * ice_acquire_change_lock 805 * @hw: pointer to the HW structure 806 * @access: access type (read or write) 807 * 808 * This function will request ownership of the change lock. 809 */ 810 int 811 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 812 { 813 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 814 ICE_CHANGE_LOCK_TIMEOUT); 815 } 816 817 /** 818 * ice_release_change_lock 819 * @hw: pointer to the HW structure 820 * 821 * This function will release the change lock using the proper Admin Command. 822 */ 823 void ice_release_change_lock(struct ice_hw *hw) 824 { 825 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 826 } 827 828 /** 829 * ice_aq_download_pkg 830 * @hw: pointer to the hardware structure 831 * @pkg_buf: the package buffer to transfer 832 * @buf_size: the size of the package buffer 833 * @last_buf: last buffer indicator 834 * @error_offset: returns error offset 835 * @error_info: returns error information 836 * @cd: pointer to command details structure or NULL 837 * 838 * Download Package (0x0C40) 839 */ 840 static int 841 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 842 u16 buf_size, bool last_buf, u32 *error_offset, 843 u32 *error_info, struct ice_sq_cd *cd) 844 { 845 struct ice_aqc_download_pkg *cmd; 846 struct ice_aq_desc desc; 847 int status; 848 849 if (error_offset) 850 *error_offset = 0; 851 if (error_info) 852 *error_info = 0; 853 854 cmd = &desc.params.download_pkg; 855 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 856 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 857 858 if (last_buf) 859 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 860 861 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 862 if (status == -EIO) { 863 /* Read error from buffer only when the FW returned an error */ 864 struct ice_aqc_download_pkg_resp *resp; 865 866 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 867 if (error_offset) 868 *error_offset = le32_to_cpu(resp->error_offset); 869 if (error_info) 870 *error_info = le32_to_cpu(resp->error_info); 871 } 872 873 return status; 874 } 875 876 /** 877 * ice_aq_update_pkg 878 * @hw: pointer to the hardware structure 879 * @pkg_buf: the package cmd buffer 880 * @buf_size: the size of the package cmd buffer 881 * @last_buf: last buffer indicator 882 * @error_offset: returns error offset 883 * @error_info: returns error information 884 * @cd: pointer to command details structure or NULL 885 * 886 * Update Package (0x0C42) 887 */ 888 static int 889 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 890 bool last_buf, u32 *error_offset, u32 *error_info, 891 struct ice_sq_cd *cd) 892 { 893 struct ice_aqc_download_pkg *cmd; 894 struct ice_aq_desc desc; 895 int status; 896 897 if (error_offset) 898 *error_offset = 0; 899 if (error_info) 900 *error_info = 0; 901 902 cmd = &desc.params.download_pkg; 903 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 904 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 905 906 if (last_buf) 907 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 908 909 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 910 if (status == -EIO) { 911 /* Read error from buffer only when the FW returned an error */ 912 struct ice_aqc_download_pkg_resp *resp; 913 914 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 915 if (error_offset) 916 *error_offset = le32_to_cpu(resp->error_offset); 917 if (error_info) 918 *error_info = le32_to_cpu(resp->error_info); 919 } 920 921 return status; 922 } 923 924 /** 925 * ice_find_seg_in_pkg 926 * @hw: pointer to the hardware structure 927 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 928 * @pkg_hdr: pointer to the package header to be searched 929 * 930 * This function searches a package file for a particular segment type. On 931 * success it returns a pointer to the segment header, otherwise it will 932 * return NULL. 933 */ 934 static struct ice_generic_seg_hdr * 935 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 936 struct ice_pkg_hdr *pkg_hdr) 937 { 938 u32 i; 939 940 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 941 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 942 pkg_hdr->pkg_format_ver.update, 943 pkg_hdr->pkg_format_ver.draft); 944 945 /* Search all package segments for the requested segment type */ 946 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 947 struct ice_generic_seg_hdr *seg; 948 949 seg = (struct ice_generic_seg_hdr *) 950 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 951 952 if (le32_to_cpu(seg->seg_type) == seg_type) 953 return seg; 954 } 955 956 return NULL; 957 } 958 959 /** 960 * ice_update_pkg 961 * @hw: pointer to the hardware structure 962 * @bufs: pointer to an array of buffers 963 * @count: the number of buffers in the array 964 * 965 * Obtains change lock and updates package. 966 */ 967 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 968 { 969 u32 offset, info, i; 970 int status; 971 972 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 973 if (status) 974 return status; 975 976 for (i = 0; i < count; i++) { 977 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 978 bool last = ((i + 1) == count); 979 980 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 981 last, &offset, &info, NULL); 982 983 if (status) { 984 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 985 status, offset, info); 986 break; 987 } 988 } 989 990 ice_release_change_lock(hw); 991 992 return status; 993 } 994 995 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) 996 { 997 switch (aq_err) { 998 case ICE_AQ_RC_ENOSEC: 999 case ICE_AQ_RC_EBADSIG: 1000 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; 1001 case ICE_AQ_RC_ESVN: 1002 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; 1003 case ICE_AQ_RC_EBADMAN: 1004 case ICE_AQ_RC_EBADBUF: 1005 return ICE_DDP_PKG_LOAD_ERROR; 1006 default: 1007 return ICE_DDP_PKG_ERR; 1008 } 1009 } 1010 1011 /** 1012 * ice_dwnld_cfg_bufs 1013 * @hw: pointer to the hardware structure 1014 * @bufs: pointer to an array of buffers 1015 * @count: the number of buffers in the array 1016 * 1017 * Obtains global config lock and downloads the package configuration buffers 1018 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1019 * found indicates that the rest of the buffers are all metadata buffers. 1020 */ 1021 static enum ice_ddp_state 1022 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1023 { 1024 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1025 struct ice_buf_hdr *bh; 1026 enum ice_aq_err err; 1027 u32 offset, info, i; 1028 int status; 1029 1030 if (!bufs || !count) 1031 return ICE_DDP_PKG_ERR; 1032 1033 /* If the first buffer's first section has its metadata bit set 1034 * then there are no buffers to be downloaded, and the operation is 1035 * considered a success. 1036 */ 1037 bh = (struct ice_buf_hdr *)bufs; 1038 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 1039 return ICE_DDP_PKG_SUCCESS; 1040 1041 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1042 if (status) { 1043 if (status == -EALREADY) 1044 return ICE_DDP_PKG_ALREADY_LOADED; 1045 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); 1046 } 1047 1048 for (i = 0; i < count; i++) { 1049 bool last = ((i + 1) == count); 1050 1051 if (!last) { 1052 /* check next buffer for metadata flag */ 1053 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1054 1055 /* A set metadata flag in the next buffer will signal 1056 * that the current buffer will be the last buffer 1057 * downloaded 1058 */ 1059 if (le16_to_cpu(bh->section_count)) 1060 if (le32_to_cpu(bh->section_entry[0].type) & 1061 ICE_METADATA_BUF) 1062 last = true; 1063 } 1064 1065 bh = (struct ice_buf_hdr *)(bufs + i); 1066 1067 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1068 &offset, &info, NULL); 1069 1070 /* Save AQ status from download package */ 1071 if (status) { 1072 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1073 status, offset, info); 1074 err = hw->adminq.sq_last_status; 1075 state = ice_map_aq_err_to_ddp_state(err); 1076 break; 1077 } 1078 1079 if (last) 1080 break; 1081 } 1082 1083 ice_release_global_cfg_lock(hw); 1084 1085 return state; 1086 } 1087 1088 /** 1089 * ice_aq_get_pkg_info_list 1090 * @hw: pointer to the hardware structure 1091 * @pkg_info: the buffer which will receive the information list 1092 * @buf_size: the size of the pkg_info information buffer 1093 * @cd: pointer to command details structure or NULL 1094 * 1095 * Get Package Info List (0x0C43) 1096 */ 1097 static int 1098 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1099 struct ice_aqc_get_pkg_info_resp *pkg_info, 1100 u16 buf_size, struct ice_sq_cd *cd) 1101 { 1102 struct ice_aq_desc desc; 1103 1104 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1105 1106 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1107 } 1108 1109 /** 1110 * ice_download_pkg 1111 * @hw: pointer to the hardware structure 1112 * @ice_seg: pointer to the segment of the package to be downloaded 1113 * 1114 * Handles the download of a complete package. 1115 */ 1116 static enum ice_ddp_state 1117 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1118 { 1119 struct ice_buf_table *ice_buf_tbl; 1120 1121 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1122 ice_seg->hdr.seg_format_ver.major, 1123 ice_seg->hdr.seg_format_ver.minor, 1124 ice_seg->hdr.seg_format_ver.update, 1125 ice_seg->hdr.seg_format_ver.draft); 1126 1127 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1128 le32_to_cpu(ice_seg->hdr.seg_type), 1129 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1130 1131 ice_buf_tbl = ice_find_buf_table(ice_seg); 1132 1133 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1134 le32_to_cpu(ice_buf_tbl->buf_count)); 1135 1136 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1137 le32_to_cpu(ice_buf_tbl->buf_count)); 1138 } 1139 1140 /** 1141 * ice_init_pkg_info 1142 * @hw: pointer to the hardware structure 1143 * @pkg_hdr: pointer to the driver's package hdr 1144 * 1145 * Saves off the package details into the HW structure. 1146 */ 1147 static enum ice_ddp_state 1148 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1149 { 1150 struct ice_generic_seg_hdr *seg_hdr; 1151 1152 if (!pkg_hdr) 1153 return ICE_DDP_PKG_ERR; 1154 1155 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1156 if (seg_hdr) { 1157 struct ice_meta_sect *meta; 1158 struct ice_pkg_enum state; 1159 1160 memset(&state, 0, sizeof(state)); 1161 1162 /* Get package information from the Metadata Section */ 1163 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1164 ICE_SID_METADATA); 1165 if (!meta) { 1166 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1167 return ICE_DDP_PKG_INVALID_FILE; 1168 } 1169 1170 hw->pkg_ver = meta->ver; 1171 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1172 1173 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1174 meta->ver.major, meta->ver.minor, meta->ver.update, 1175 meta->ver.draft, meta->name); 1176 1177 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1178 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1179 sizeof(hw->ice_seg_id)); 1180 1181 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1182 seg_hdr->seg_format_ver.major, 1183 seg_hdr->seg_format_ver.minor, 1184 seg_hdr->seg_format_ver.update, 1185 seg_hdr->seg_format_ver.draft, 1186 seg_hdr->seg_id); 1187 } else { 1188 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1189 return ICE_DDP_PKG_INVALID_FILE; 1190 } 1191 1192 return ICE_DDP_PKG_SUCCESS; 1193 } 1194 1195 /** 1196 * ice_get_pkg_info 1197 * @hw: pointer to the hardware structure 1198 * 1199 * Store details of the package currently loaded in HW into the HW structure. 1200 */ 1201 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) 1202 { 1203 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1204 struct ice_aqc_get_pkg_info_resp *pkg_info; 1205 u16 size; 1206 u32 i; 1207 1208 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1209 pkg_info = kzalloc(size, GFP_KERNEL); 1210 if (!pkg_info) 1211 return ICE_DDP_PKG_ERR; 1212 1213 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { 1214 state = ICE_DDP_PKG_ERR; 1215 goto init_pkg_free_alloc; 1216 } 1217 1218 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1219 #define ICE_PKG_FLAG_COUNT 4 1220 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1221 u8 place = 0; 1222 1223 if (pkg_info->pkg_info[i].is_active) { 1224 flags[place++] = 'A'; 1225 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1226 hw->active_track_id = 1227 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1228 memcpy(hw->active_pkg_name, 1229 pkg_info->pkg_info[i].name, 1230 sizeof(pkg_info->pkg_info[i].name)); 1231 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1232 } 1233 if (pkg_info->pkg_info[i].is_active_at_boot) 1234 flags[place++] = 'B'; 1235 if (pkg_info->pkg_info[i].is_modified) 1236 flags[place++] = 'M'; 1237 if (pkg_info->pkg_info[i].is_in_nvm) 1238 flags[place++] = 'N'; 1239 1240 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1241 i, pkg_info->pkg_info[i].ver.major, 1242 pkg_info->pkg_info[i].ver.minor, 1243 pkg_info->pkg_info[i].ver.update, 1244 pkg_info->pkg_info[i].ver.draft, 1245 pkg_info->pkg_info[i].name, flags); 1246 } 1247 1248 init_pkg_free_alloc: 1249 kfree(pkg_info); 1250 1251 return state; 1252 } 1253 1254 /** 1255 * ice_verify_pkg - verify package 1256 * @pkg: pointer to the package buffer 1257 * @len: size of the package buffer 1258 * 1259 * Verifies various attributes of the package file, including length, format 1260 * version, and the requirement of at least one segment. 1261 */ 1262 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1263 { 1264 u32 seg_count; 1265 u32 i; 1266 1267 if (len < struct_size(pkg, seg_offset, 1)) 1268 return ICE_DDP_PKG_INVALID_FILE; 1269 1270 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1271 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1272 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1273 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1274 return ICE_DDP_PKG_INVALID_FILE; 1275 1276 /* pkg must have at least one segment */ 1277 seg_count = le32_to_cpu(pkg->seg_count); 1278 if (seg_count < 1) 1279 return ICE_DDP_PKG_INVALID_FILE; 1280 1281 /* make sure segment array fits in package length */ 1282 if (len < struct_size(pkg, seg_offset, seg_count)) 1283 return ICE_DDP_PKG_INVALID_FILE; 1284 1285 /* all segments must fit within length */ 1286 for (i = 0; i < seg_count; i++) { 1287 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1288 struct ice_generic_seg_hdr *seg; 1289 1290 /* segment header must fit */ 1291 if (len < off + sizeof(*seg)) 1292 return ICE_DDP_PKG_INVALID_FILE; 1293 1294 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1295 1296 /* segment body must fit */ 1297 if (len < off + le32_to_cpu(seg->seg_size)) 1298 return ICE_DDP_PKG_INVALID_FILE; 1299 } 1300 1301 return ICE_DDP_PKG_SUCCESS; 1302 } 1303 1304 /** 1305 * ice_free_seg - free package segment pointer 1306 * @hw: pointer to the hardware structure 1307 * 1308 * Frees the package segment pointer in the proper manner, depending on if the 1309 * segment was allocated or just the passed in pointer was stored. 1310 */ 1311 void ice_free_seg(struct ice_hw *hw) 1312 { 1313 if (hw->pkg_copy) { 1314 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1315 hw->pkg_copy = NULL; 1316 hw->pkg_size = 0; 1317 } 1318 hw->seg = NULL; 1319 } 1320 1321 /** 1322 * ice_init_pkg_regs - initialize additional package registers 1323 * @hw: pointer to the hardware structure 1324 */ 1325 static void ice_init_pkg_regs(struct ice_hw *hw) 1326 { 1327 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1328 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1329 #define ICE_SW_BLK_IDX 0 1330 1331 /* setup Switch block input mask, which is 48-bits in two parts */ 1332 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1333 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1334 } 1335 1336 /** 1337 * ice_chk_pkg_version - check package version for compatibility with driver 1338 * @pkg_ver: pointer to a version structure to check 1339 * 1340 * Check to make sure that the package about to be downloaded is compatible with 1341 * the driver. To be compatible, the major and minor components of the package 1342 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1343 * definitions. 1344 */ 1345 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1346 { 1347 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || 1348 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1349 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) 1350 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; 1351 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || 1352 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1353 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) 1354 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; 1355 1356 return ICE_DDP_PKG_SUCCESS; 1357 } 1358 1359 /** 1360 * ice_chk_pkg_compat 1361 * @hw: pointer to the hardware structure 1362 * @ospkg: pointer to the package hdr 1363 * @seg: pointer to the package segment hdr 1364 * 1365 * This function checks the package version compatibility with driver and NVM 1366 */ 1367 static enum ice_ddp_state 1368 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1369 struct ice_seg **seg) 1370 { 1371 struct ice_aqc_get_pkg_info_resp *pkg; 1372 enum ice_ddp_state state; 1373 u16 size; 1374 u32 i; 1375 1376 /* Check package version compatibility */ 1377 state = ice_chk_pkg_version(&hw->pkg_ver); 1378 if (state) { 1379 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1380 return state; 1381 } 1382 1383 /* find ICE segment in given package */ 1384 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1385 ospkg); 1386 if (!*seg) { 1387 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1388 return ICE_DDP_PKG_INVALID_FILE; 1389 } 1390 1391 /* Check if FW is compatible with the OS package */ 1392 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1393 pkg = kzalloc(size, GFP_KERNEL); 1394 if (!pkg) 1395 return ICE_DDP_PKG_ERR; 1396 1397 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { 1398 state = ICE_DDP_PKG_LOAD_ERROR; 1399 goto fw_ddp_compat_free_alloc; 1400 } 1401 1402 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1403 /* loop till we find the NVM package */ 1404 if (!pkg->pkg_info[i].is_in_nvm) 1405 continue; 1406 if ((*seg)->hdr.seg_format_ver.major != 1407 pkg->pkg_info[i].ver.major || 1408 (*seg)->hdr.seg_format_ver.minor > 1409 pkg->pkg_info[i].ver.minor) { 1410 state = ICE_DDP_PKG_FW_MISMATCH; 1411 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1412 } 1413 /* done processing NVM package so break */ 1414 break; 1415 } 1416 fw_ddp_compat_free_alloc: 1417 kfree(pkg); 1418 return state; 1419 } 1420 1421 /** 1422 * ice_sw_fv_handler 1423 * @sect_type: section type 1424 * @section: pointer to section 1425 * @index: index of the field vector entry to be returned 1426 * @offset: ptr to variable that receives the offset in the field vector table 1427 * 1428 * This is a callback function that can be passed to ice_pkg_enum_entry. 1429 * This function treats the given section as of type ice_sw_fv_section and 1430 * enumerates offset field. "offset" is an index into the field vector table. 1431 */ 1432 static void * 1433 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1434 { 1435 struct ice_sw_fv_section *fv_section = section; 1436 1437 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1438 return NULL; 1439 if (index >= le16_to_cpu(fv_section->count)) 1440 return NULL; 1441 if (offset) 1442 /* "index" passed in to this function is relative to a given 1443 * 4k block. To get to the true index into the field vector 1444 * table need to add the relative index to the base_offset 1445 * field of this section 1446 */ 1447 *offset = le16_to_cpu(fv_section->base_offset) + index; 1448 return fv_section->fv + index; 1449 } 1450 1451 /** 1452 * ice_get_prof_index_max - get the max profile index for used profile 1453 * @hw: pointer to the HW struct 1454 * 1455 * Calling this function will get the max profile index for used profile 1456 * and store the index number in struct ice_switch_info *switch_info 1457 * in HW for following use. 1458 */ 1459 static int ice_get_prof_index_max(struct ice_hw *hw) 1460 { 1461 u16 prof_index = 0, j, max_prof_index = 0; 1462 struct ice_pkg_enum state; 1463 struct ice_seg *ice_seg; 1464 bool flag = false; 1465 struct ice_fv *fv; 1466 u32 offset; 1467 1468 memset(&state, 0, sizeof(state)); 1469 1470 if (!hw->seg) 1471 return -EINVAL; 1472 1473 ice_seg = hw->seg; 1474 1475 do { 1476 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1477 &offset, ice_sw_fv_handler); 1478 if (!fv) 1479 break; 1480 ice_seg = NULL; 1481 1482 /* in the profile that not be used, the prot_id is set to 0xff 1483 * and the off is set to 0x1ff for all the field vectors. 1484 */ 1485 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1486 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1487 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1488 flag = true; 1489 if (flag && prof_index > max_prof_index) 1490 max_prof_index = prof_index; 1491 1492 prof_index++; 1493 flag = false; 1494 } while (fv); 1495 1496 hw->switch_info->max_used_prof_index = max_prof_index; 1497 1498 return 0; 1499 } 1500 1501 /** 1502 * ice_get_ddp_pkg_state - get DDP pkg state after download 1503 * @hw: pointer to the HW struct 1504 * @already_loaded: indicates if pkg was already loaded onto the device 1505 */ 1506 static enum ice_ddp_state 1507 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) 1508 { 1509 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 1510 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 1511 hw->pkg_ver.update == hw->active_pkg_ver.update && 1512 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 1513 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { 1514 if (already_loaded) 1515 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; 1516 else 1517 return ICE_DDP_PKG_SUCCESS; 1518 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 1519 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 1520 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; 1521 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 1522 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 1523 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; 1524 } else { 1525 return ICE_DDP_PKG_ERR; 1526 } 1527 } 1528 1529 /** 1530 * ice_init_pkg - initialize/download package 1531 * @hw: pointer to the hardware structure 1532 * @buf: pointer to the package buffer 1533 * @len: size of the package buffer 1534 * 1535 * This function initializes a package. The package contains HW tables 1536 * required to do packet processing. First, the function extracts package 1537 * information such as version. Then it finds the ice configuration segment 1538 * within the package; this function then saves a copy of the segment pointer 1539 * within the supplied package buffer. Next, the function will cache any hints 1540 * from the package, followed by downloading the package itself. Note, that if 1541 * a previous PF driver has already downloaded the package successfully, then 1542 * the current driver will not have to download the package again. 1543 * 1544 * The local package contents will be used to query default behavior and to 1545 * update specific sections of the HW's version of the package (e.g. to update 1546 * the parse graph to understand new protocols). 1547 * 1548 * This function stores a pointer to the package buffer memory, and it is 1549 * expected that the supplied buffer will not be freed immediately. If the 1550 * package buffer needs to be freed, such as when read from a file, use 1551 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1552 * case. 1553 */ 1554 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1555 { 1556 bool already_loaded = false; 1557 enum ice_ddp_state state; 1558 struct ice_pkg_hdr *pkg; 1559 struct ice_seg *seg; 1560 1561 if (!buf || !len) 1562 return ICE_DDP_PKG_ERR; 1563 1564 pkg = (struct ice_pkg_hdr *)buf; 1565 state = ice_verify_pkg(pkg, len); 1566 if (state) { 1567 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1568 state); 1569 return state; 1570 } 1571 1572 /* initialize package info */ 1573 state = ice_init_pkg_info(hw, pkg); 1574 if (state) 1575 return state; 1576 1577 /* before downloading the package, check package version for 1578 * compatibility with driver 1579 */ 1580 state = ice_chk_pkg_compat(hw, pkg, &seg); 1581 if (state) 1582 return state; 1583 1584 /* initialize package hints and then download package */ 1585 ice_init_pkg_hints(hw, seg); 1586 state = ice_download_pkg(hw, seg); 1587 if (state == ICE_DDP_PKG_ALREADY_LOADED) { 1588 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1589 already_loaded = true; 1590 } 1591 1592 /* Get information on the package currently loaded in HW, then make sure 1593 * the driver is compatible with this version. 1594 */ 1595 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { 1596 state = ice_get_pkg_info(hw); 1597 if (!state) 1598 state = ice_get_ddp_pkg_state(hw, already_loaded); 1599 } 1600 1601 if (ice_is_init_pkg_successful(state)) { 1602 hw->seg = seg; 1603 /* on successful package download update other required 1604 * registers to support the package and fill HW tables 1605 * with package content. 1606 */ 1607 ice_init_pkg_regs(hw); 1608 ice_fill_blk_tbls(hw); 1609 ice_fill_hw_ptype(hw); 1610 ice_get_prof_index_max(hw); 1611 } else { 1612 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1613 state); 1614 } 1615 1616 return state; 1617 } 1618 1619 /** 1620 * ice_copy_and_init_pkg - initialize/download a copy of the package 1621 * @hw: pointer to the hardware structure 1622 * @buf: pointer to the package buffer 1623 * @len: size of the package buffer 1624 * 1625 * This function copies the package buffer, and then calls ice_init_pkg() to 1626 * initialize the copied package contents. 1627 * 1628 * The copying is necessary if the package buffer supplied is constant, or if 1629 * the memory may disappear shortly after calling this function. 1630 * 1631 * If the package buffer resides in the data segment and can be modified, the 1632 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1633 * 1634 * However, if the package buffer needs to be copied first, such as when being 1635 * read from a file, the caller should use ice_copy_and_init_pkg(). 1636 * 1637 * This function will first copy the package buffer, before calling 1638 * ice_init_pkg(). The caller is free to immediately destroy the original 1639 * package buffer, as the new copy will be managed by this function and 1640 * related routines. 1641 */ 1642 enum ice_ddp_state 1643 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1644 { 1645 enum ice_ddp_state state; 1646 u8 *buf_copy; 1647 1648 if (!buf || !len) 1649 return ICE_DDP_PKG_ERR; 1650 1651 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1652 1653 state = ice_init_pkg(hw, buf_copy, len); 1654 if (!ice_is_init_pkg_successful(state)) { 1655 /* Free the copy, since we failed to initialize the package */ 1656 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1657 } else { 1658 /* Track the copied pkg so we can free it later */ 1659 hw->pkg_copy = buf_copy; 1660 hw->pkg_size = len; 1661 } 1662 1663 return state; 1664 } 1665 1666 /** 1667 * ice_is_init_pkg_successful - check if DDP init was successful 1668 * @state: state of the DDP pkg after download 1669 */ 1670 bool ice_is_init_pkg_successful(enum ice_ddp_state state) 1671 { 1672 switch (state) { 1673 case ICE_DDP_PKG_SUCCESS: 1674 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 1675 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 1676 return true; 1677 default: 1678 return false; 1679 } 1680 } 1681 1682 /** 1683 * ice_pkg_buf_alloc 1684 * @hw: pointer to the HW structure 1685 * 1686 * Allocates a package buffer and returns a pointer to the buffer header. 1687 * Note: all package contents must be in Little Endian form. 1688 */ 1689 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1690 { 1691 struct ice_buf_build *bld; 1692 struct ice_buf_hdr *buf; 1693 1694 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1695 if (!bld) 1696 return NULL; 1697 1698 buf = (struct ice_buf_hdr *)bld; 1699 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1700 section_entry)); 1701 return bld; 1702 } 1703 1704 /** 1705 * ice_get_sw_prof_type - determine switch profile type 1706 * @hw: pointer to the HW structure 1707 * @fv: pointer to the switch field vector 1708 */ 1709 static enum ice_prof_type 1710 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1711 { 1712 u16 i; 1713 1714 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1715 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1716 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1717 fv->ew[i].off == ICE_VNI_OFFSET) 1718 return ICE_PROF_TUN_UDP; 1719 1720 /* GRE tunnel will have GRE protocol */ 1721 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1722 return ICE_PROF_TUN_GRE; 1723 } 1724 1725 return ICE_PROF_NON_TUN; 1726 } 1727 1728 /** 1729 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1730 * @hw: pointer to hardware structure 1731 * @req_profs: type of profiles requested 1732 * @bm: pointer to memory for returning the bitmap of field vectors 1733 */ 1734 void 1735 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1736 unsigned long *bm) 1737 { 1738 struct ice_pkg_enum state; 1739 struct ice_seg *ice_seg; 1740 struct ice_fv *fv; 1741 1742 if (req_profs == ICE_PROF_ALL) { 1743 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1744 return; 1745 } 1746 1747 memset(&state, 0, sizeof(state)); 1748 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1749 ice_seg = hw->seg; 1750 do { 1751 enum ice_prof_type prof_type; 1752 u32 offset; 1753 1754 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1755 &offset, ice_sw_fv_handler); 1756 ice_seg = NULL; 1757 1758 if (fv) { 1759 /* Determine field vector type */ 1760 prof_type = ice_get_sw_prof_type(hw, fv); 1761 1762 if (req_profs & prof_type) 1763 set_bit((u16)offset, bm); 1764 } 1765 } while (fv); 1766 } 1767 1768 /** 1769 * ice_get_sw_fv_list 1770 * @hw: pointer to the HW structure 1771 * @prot_ids: field vector to search for with a given protocol ID 1772 * @ids_cnt: lookup/protocol count 1773 * @bm: bitmap of field vectors to consider 1774 * @fv_list: Head of a list 1775 * 1776 * Finds all the field vector entries from switch block that contain 1777 * a given protocol ID and returns a list of structures of type 1778 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1779 * definition and profile ID information 1780 * NOTE: The caller of the function is responsible for freeing the memory 1781 * allocated for every list entry. 1782 */ 1783 int 1784 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1785 unsigned long *bm, struct list_head *fv_list) 1786 { 1787 struct ice_sw_fv_list_entry *fvl; 1788 struct ice_sw_fv_list_entry *tmp; 1789 struct ice_pkg_enum state; 1790 struct ice_seg *ice_seg; 1791 struct ice_fv *fv; 1792 u32 offset; 1793 1794 memset(&state, 0, sizeof(state)); 1795 1796 if (!ids_cnt || !hw->seg) 1797 return -EINVAL; 1798 1799 ice_seg = hw->seg; 1800 do { 1801 u16 i; 1802 1803 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1804 &offset, ice_sw_fv_handler); 1805 if (!fv) 1806 break; 1807 ice_seg = NULL; 1808 1809 /* If field vector is not in the bitmap list, then skip this 1810 * profile. 1811 */ 1812 if (!test_bit((u16)offset, bm)) 1813 continue; 1814 1815 for (i = 0; i < ids_cnt; i++) { 1816 int j; 1817 1818 /* This code assumes that if a switch field vector line 1819 * has a matching protocol, then this line will contain 1820 * the entries necessary to represent every field in 1821 * that protocol header. 1822 */ 1823 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1824 if (fv->ew[j].prot_id == prot_ids[i]) 1825 break; 1826 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1827 break; 1828 if (i + 1 == ids_cnt) { 1829 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1830 sizeof(*fvl), GFP_KERNEL); 1831 if (!fvl) 1832 goto err; 1833 fvl->fv_ptr = fv; 1834 fvl->profile_id = offset; 1835 list_add(&fvl->list_entry, fv_list); 1836 break; 1837 } 1838 } 1839 } while (fv); 1840 if (list_empty(fv_list)) 1841 return -EIO; 1842 return 0; 1843 1844 err: 1845 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1846 list_del(&fvl->list_entry); 1847 devm_kfree(ice_hw_to_dev(hw), fvl); 1848 } 1849 1850 return -ENOMEM; 1851 } 1852 1853 /** 1854 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1855 * @hw: pointer to hardware structure 1856 */ 1857 void ice_init_prof_result_bm(struct ice_hw *hw) 1858 { 1859 struct ice_pkg_enum state; 1860 struct ice_seg *ice_seg; 1861 struct ice_fv *fv; 1862 1863 memset(&state, 0, sizeof(state)); 1864 1865 if (!hw->seg) 1866 return; 1867 1868 ice_seg = hw->seg; 1869 do { 1870 u32 off; 1871 u16 i; 1872 1873 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1874 &off, ice_sw_fv_handler); 1875 ice_seg = NULL; 1876 if (!fv) 1877 break; 1878 1879 bitmap_zero(hw->switch_info->prof_res_bm[off], 1880 ICE_MAX_FV_WORDS); 1881 1882 /* Determine empty field vector indices, these can be 1883 * used for recipe results. Skip index 0, since it is 1884 * always used for Switch ID. 1885 */ 1886 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1887 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1888 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1889 set_bit(i, hw->switch_info->prof_res_bm[off]); 1890 } while (fv); 1891 } 1892 1893 /** 1894 * ice_pkg_buf_free 1895 * @hw: pointer to the HW structure 1896 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1897 * 1898 * Frees a package buffer 1899 */ 1900 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1901 { 1902 devm_kfree(ice_hw_to_dev(hw), bld); 1903 } 1904 1905 /** 1906 * ice_pkg_buf_reserve_section 1907 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1908 * @count: the number of sections to reserve 1909 * 1910 * Reserves one or more section table entries in a package buffer. This routine 1911 * can be called multiple times as long as they are made before calling 1912 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1913 * is called once, the number of sections that can be allocated will not be able 1914 * to be increased; not using all reserved sections is fine, but this will 1915 * result in some wasted space in the buffer. 1916 * Note: all package contents must be in Little Endian form. 1917 */ 1918 static int 1919 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1920 { 1921 struct ice_buf_hdr *buf; 1922 u16 section_count; 1923 u16 data_end; 1924 1925 if (!bld) 1926 return -EINVAL; 1927 1928 buf = (struct ice_buf_hdr *)&bld->buf; 1929 1930 /* already an active section, can't increase table size */ 1931 section_count = le16_to_cpu(buf->section_count); 1932 if (section_count > 0) 1933 return -EIO; 1934 1935 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1936 return -EIO; 1937 bld->reserved_section_table_entries += count; 1938 1939 data_end = le16_to_cpu(buf->data_end) + 1940 flex_array_size(buf, section_entry, count); 1941 buf->data_end = cpu_to_le16(data_end); 1942 1943 return 0; 1944 } 1945 1946 /** 1947 * ice_pkg_buf_alloc_section 1948 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1949 * @type: the section type value 1950 * @size: the size of the section to reserve (in bytes) 1951 * 1952 * Reserves memory in the buffer for a section's content and updates the 1953 * buffers' status accordingly. This routine returns a pointer to the first 1954 * byte of the section start within the buffer, which is used to fill in the 1955 * section contents. 1956 * Note: all package contents must be in Little Endian form. 1957 */ 1958 static void * 1959 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1960 { 1961 struct ice_buf_hdr *buf; 1962 u16 sect_count; 1963 u16 data_end; 1964 1965 if (!bld || !type || !size) 1966 return NULL; 1967 1968 buf = (struct ice_buf_hdr *)&bld->buf; 1969 1970 /* check for enough space left in buffer */ 1971 data_end = le16_to_cpu(buf->data_end); 1972 1973 /* section start must align on 4 byte boundary */ 1974 data_end = ALIGN(data_end, 4); 1975 1976 if ((data_end + size) > ICE_MAX_S_DATA_END) 1977 return NULL; 1978 1979 /* check for more available section table entries */ 1980 sect_count = le16_to_cpu(buf->section_count); 1981 if (sect_count < bld->reserved_section_table_entries) { 1982 void *section_ptr = ((u8 *)buf) + data_end; 1983 1984 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1985 buf->section_entry[sect_count].size = cpu_to_le16(size); 1986 buf->section_entry[sect_count].type = cpu_to_le32(type); 1987 1988 data_end += size; 1989 buf->data_end = cpu_to_le16(data_end); 1990 1991 buf->section_count = cpu_to_le16(sect_count + 1); 1992 return section_ptr; 1993 } 1994 1995 /* no free section table entries */ 1996 return NULL; 1997 } 1998 1999 /** 2000 * ice_pkg_buf_get_active_sections 2001 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2002 * 2003 * Returns the number of active sections. Before using the package buffer 2004 * in an update package command, the caller should make sure that there is at 2005 * least one active section - otherwise, the buffer is not legal and should 2006 * not be used. 2007 * Note: all package contents must be in Little Endian form. 2008 */ 2009 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2010 { 2011 struct ice_buf_hdr *buf; 2012 2013 if (!bld) 2014 return 0; 2015 2016 buf = (struct ice_buf_hdr *)&bld->buf; 2017 return le16_to_cpu(buf->section_count); 2018 } 2019 2020 /** 2021 * ice_pkg_buf 2022 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2023 * 2024 * Return a pointer to the buffer's header 2025 */ 2026 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2027 { 2028 if (!bld) 2029 return NULL; 2030 2031 return &bld->buf; 2032 } 2033 2034 /** 2035 * ice_get_open_tunnel_port - retrieve an open tunnel port 2036 * @hw: pointer to the HW structure 2037 * @port: returns open port 2038 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 2039 */ 2040 bool 2041 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 2042 enum ice_tunnel_type type) 2043 { 2044 bool res = false; 2045 u16 i; 2046 2047 mutex_lock(&hw->tnl_lock); 2048 2049 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2050 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 2051 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 2052 *port = hw->tnl.tbl[i].port; 2053 res = true; 2054 break; 2055 } 2056 2057 mutex_unlock(&hw->tnl_lock); 2058 2059 return res; 2060 } 2061 2062 /** 2063 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 2064 * @hw: pointer to the HW structure 2065 * @type: type of tunnel 2066 * @idx: linear index 2067 * 2068 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 2069 * but really the port table may be sprase, and types are mixed, so convert 2070 * the stack index into the device index. 2071 */ 2072 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2073 u16 idx) 2074 { 2075 u16 i; 2076 2077 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2078 if (hw->tnl.tbl[i].valid && 2079 hw->tnl.tbl[i].type == type && 2080 idx-- == 0) 2081 return i; 2082 2083 WARN_ON_ONCE(1); 2084 return 0; 2085 } 2086 2087 /** 2088 * ice_create_tunnel 2089 * @hw: pointer to the HW structure 2090 * @index: device table entry 2091 * @type: type of tunnel 2092 * @port: port of tunnel to create 2093 * 2094 * Create a tunnel by updating the parse graph in the parser. We do that by 2095 * creating a package buffer with the tunnel info and issuing an update package 2096 * command. 2097 */ 2098 static int 2099 ice_create_tunnel(struct ice_hw *hw, u16 index, 2100 enum ice_tunnel_type type, u16 port) 2101 { 2102 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2103 struct ice_buf_build *bld; 2104 int status = -ENOSPC; 2105 2106 mutex_lock(&hw->tnl_lock); 2107 2108 bld = ice_pkg_buf_alloc(hw); 2109 if (!bld) { 2110 status = -ENOMEM; 2111 goto ice_create_tunnel_end; 2112 } 2113 2114 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2115 if (ice_pkg_buf_reserve_section(bld, 2)) 2116 goto ice_create_tunnel_err; 2117 2118 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2119 struct_size(sect_rx, tcam, 1)); 2120 if (!sect_rx) 2121 goto ice_create_tunnel_err; 2122 sect_rx->count = cpu_to_le16(1); 2123 2124 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2125 struct_size(sect_tx, tcam, 1)); 2126 if (!sect_tx) 2127 goto ice_create_tunnel_err; 2128 sect_tx->count = cpu_to_le16(1); 2129 2130 /* copy original boost entry to update package buffer */ 2131 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2132 sizeof(*sect_rx->tcam)); 2133 2134 /* over-write the never-match dest port key bits with the encoded port 2135 * bits 2136 */ 2137 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2138 (u8 *)&port, NULL, NULL, NULL, 2139 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2140 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2141 2142 /* exact copy of entry to Tx section entry */ 2143 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2144 2145 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2146 if (!status) 2147 hw->tnl.tbl[index].port = port; 2148 2149 ice_create_tunnel_err: 2150 ice_pkg_buf_free(hw, bld); 2151 2152 ice_create_tunnel_end: 2153 mutex_unlock(&hw->tnl_lock); 2154 2155 return status; 2156 } 2157 2158 /** 2159 * ice_destroy_tunnel 2160 * @hw: pointer to the HW structure 2161 * @index: device table entry 2162 * @type: type of tunnel 2163 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2164 * 2165 * Destroys a tunnel or all tunnels by creating an update package buffer 2166 * targeting the specific updates requested and then performing an update 2167 * package. 2168 */ 2169 static int 2170 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2171 u16 port) 2172 { 2173 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2174 struct ice_buf_build *bld; 2175 int status = -ENOSPC; 2176 2177 mutex_lock(&hw->tnl_lock); 2178 2179 if (WARN_ON(!hw->tnl.tbl[index].valid || 2180 hw->tnl.tbl[index].type != type || 2181 hw->tnl.tbl[index].port != port)) { 2182 status = -EIO; 2183 goto ice_destroy_tunnel_end; 2184 } 2185 2186 bld = ice_pkg_buf_alloc(hw); 2187 if (!bld) { 2188 status = -ENOMEM; 2189 goto ice_destroy_tunnel_end; 2190 } 2191 2192 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2193 if (ice_pkg_buf_reserve_section(bld, 2)) 2194 goto ice_destroy_tunnel_err; 2195 2196 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2197 struct_size(sect_rx, tcam, 1)); 2198 if (!sect_rx) 2199 goto ice_destroy_tunnel_err; 2200 sect_rx->count = cpu_to_le16(1); 2201 2202 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2203 struct_size(sect_tx, tcam, 1)); 2204 if (!sect_tx) 2205 goto ice_destroy_tunnel_err; 2206 sect_tx->count = cpu_to_le16(1); 2207 2208 /* copy original boost entry to update package buffer, one copy to Rx 2209 * section, another copy to the Tx section 2210 */ 2211 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2212 sizeof(*sect_rx->tcam)); 2213 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2214 sizeof(*sect_tx->tcam)); 2215 2216 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2217 if (!status) 2218 hw->tnl.tbl[index].port = 0; 2219 2220 ice_destroy_tunnel_err: 2221 ice_pkg_buf_free(hw, bld); 2222 2223 ice_destroy_tunnel_end: 2224 mutex_unlock(&hw->tnl_lock); 2225 2226 return status; 2227 } 2228 2229 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2230 unsigned int idx, struct udp_tunnel_info *ti) 2231 { 2232 struct ice_netdev_priv *np = netdev_priv(netdev); 2233 struct ice_vsi *vsi = np->vsi; 2234 struct ice_pf *pf = vsi->back; 2235 enum ice_tunnel_type tnl_type; 2236 int status; 2237 u16 index; 2238 2239 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2240 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2241 2242 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2243 if (status) { 2244 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 2245 status); 2246 return -EIO; 2247 } 2248 2249 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2250 return 0; 2251 } 2252 2253 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2254 unsigned int idx, struct udp_tunnel_info *ti) 2255 { 2256 struct ice_netdev_priv *np = netdev_priv(netdev); 2257 struct ice_vsi *vsi = np->vsi; 2258 struct ice_pf *pf = vsi->back; 2259 enum ice_tunnel_type tnl_type; 2260 int status; 2261 2262 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2263 2264 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2265 ntohs(ti->port)); 2266 if (status) { 2267 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 2268 status); 2269 return -EIO; 2270 } 2271 2272 return 0; 2273 } 2274 2275 /** 2276 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2277 * @hw: pointer to the hardware structure 2278 * @blk: hardware block 2279 * @prof: profile ID 2280 * @fv_idx: field vector word index 2281 * @prot: variable to receive the protocol ID 2282 * @off: variable to receive the protocol offset 2283 */ 2284 int 2285 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2286 u8 *prot, u16 *off) 2287 { 2288 struct ice_fv_word *fv_ext; 2289 2290 if (prof >= hw->blk[blk].es.count) 2291 return -EINVAL; 2292 2293 if (fv_idx >= hw->blk[blk].es.fvw) 2294 return -EINVAL; 2295 2296 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2297 2298 *prot = fv_ext[fv_idx].prot_id; 2299 *off = fv_ext[fv_idx].off; 2300 2301 return 0; 2302 } 2303 2304 /* PTG Management */ 2305 2306 /** 2307 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2308 * @hw: pointer to the hardware structure 2309 * @blk: HW block 2310 * @ptype: the ptype to search for 2311 * @ptg: pointer to variable that receives the PTG 2312 * 2313 * This function will search the PTGs for a particular ptype, returning the 2314 * PTG ID that contains it through the PTG parameter, with the value of 2315 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2316 */ 2317 static int 2318 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2319 { 2320 if (ptype >= ICE_XLT1_CNT || !ptg) 2321 return -EINVAL; 2322 2323 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2324 return 0; 2325 } 2326 2327 /** 2328 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2329 * @hw: pointer to the hardware structure 2330 * @blk: HW block 2331 * @ptg: the PTG to allocate 2332 * 2333 * This function allocates a given packet type group ID specified by the PTG 2334 * parameter. 2335 */ 2336 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2337 { 2338 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2339 } 2340 2341 /** 2342 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2343 * @hw: pointer to the hardware structure 2344 * @blk: HW block 2345 * @ptype: the ptype to remove 2346 * @ptg: the PTG to remove the ptype from 2347 * 2348 * This function will remove the ptype from the specific PTG, and move it to 2349 * the default PTG (ICE_DEFAULT_PTG). 2350 */ 2351 static int 2352 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2353 { 2354 struct ice_ptg_ptype **ch; 2355 struct ice_ptg_ptype *p; 2356 2357 if (ptype > ICE_XLT1_CNT - 1) 2358 return -EINVAL; 2359 2360 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2361 return -ENOENT; 2362 2363 /* Should not happen if .in_use is set, bad config */ 2364 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2365 return -EIO; 2366 2367 /* find the ptype within this PTG, and bypass the link over it */ 2368 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2369 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2370 while (p) { 2371 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2372 *ch = p->next_ptype; 2373 break; 2374 } 2375 2376 ch = &p->next_ptype; 2377 p = p->next_ptype; 2378 } 2379 2380 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2381 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2382 2383 return 0; 2384 } 2385 2386 /** 2387 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2388 * @hw: pointer to the hardware structure 2389 * @blk: HW block 2390 * @ptype: the ptype to add or move 2391 * @ptg: the PTG to add or move the ptype to 2392 * 2393 * This function will either add or move a ptype to a particular PTG depending 2394 * on if the ptype is already part of another group. Note that using a 2395 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2396 * default PTG. 2397 */ 2398 static int 2399 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2400 { 2401 u8 original_ptg; 2402 int status; 2403 2404 if (ptype > ICE_XLT1_CNT - 1) 2405 return -EINVAL; 2406 2407 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2408 return -ENOENT; 2409 2410 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2411 if (status) 2412 return status; 2413 2414 /* Is ptype already in the correct PTG? */ 2415 if (original_ptg == ptg) 2416 return 0; 2417 2418 /* Remove from original PTG and move back to the default PTG */ 2419 if (original_ptg != ICE_DEFAULT_PTG) 2420 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2421 2422 /* Moving to default PTG? Then we're done with this request */ 2423 if (ptg == ICE_DEFAULT_PTG) 2424 return 0; 2425 2426 /* Add ptype to PTG at beginning of list */ 2427 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2428 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2429 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2430 &hw->blk[blk].xlt1.ptypes[ptype]; 2431 2432 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2433 hw->blk[blk].xlt1.t[ptype] = ptg; 2434 2435 return 0; 2436 } 2437 2438 /* Block / table size info */ 2439 struct ice_blk_size_details { 2440 u16 xlt1; /* # XLT1 entries */ 2441 u16 xlt2; /* # XLT2 entries */ 2442 u16 prof_tcam; /* # profile ID TCAM entries */ 2443 u16 prof_id; /* # profile IDs */ 2444 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2445 u16 prof_redir; /* # profile redirection entries */ 2446 u16 es; /* # extraction sequence entries */ 2447 u16 fvw; /* # field vector words */ 2448 u8 overwrite; /* overwrite existing entries allowed */ 2449 u8 reverse; /* reverse FV order */ 2450 }; 2451 2452 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2453 /** 2454 * Table Definitions 2455 * XLT1 - Number of entries in XLT1 table 2456 * XLT2 - Number of entries in XLT2 table 2457 * TCAM - Number of entries Profile ID TCAM table 2458 * CDID - Control Domain ID of the hardware block 2459 * PRED - Number of entries in the Profile Redirection Table 2460 * FV - Number of entries in the Field Vector 2461 * FVW - Width (in WORDs) of the Field Vector 2462 * OVR - Overwrite existing table entries 2463 * REV - Reverse FV 2464 */ 2465 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2466 /* Overwrite , Reverse FV */ 2467 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2468 false, false }, 2469 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2470 false, false }, 2471 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2472 false, true }, 2473 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2474 true, true }, 2475 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2476 false, false }, 2477 }; 2478 2479 enum ice_sid_all { 2480 ICE_SID_XLT1_OFF = 0, 2481 ICE_SID_XLT2_OFF, 2482 ICE_SID_PR_OFF, 2483 ICE_SID_PR_REDIR_OFF, 2484 ICE_SID_ES_OFF, 2485 ICE_SID_OFF_COUNT, 2486 }; 2487 2488 /* Characteristic handling */ 2489 2490 /** 2491 * ice_match_prop_lst - determine if properties of two lists match 2492 * @list1: first properties list 2493 * @list2: second properties list 2494 * 2495 * Count, cookies and the order must match in order to be considered equivalent. 2496 */ 2497 static bool 2498 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2499 { 2500 struct ice_vsig_prof *tmp1; 2501 struct ice_vsig_prof *tmp2; 2502 u16 chk_count = 0; 2503 u16 count = 0; 2504 2505 /* compare counts */ 2506 list_for_each_entry(tmp1, list1, list) 2507 count++; 2508 list_for_each_entry(tmp2, list2, list) 2509 chk_count++; 2510 /* cppcheck-suppress knownConditionTrueFalse */ 2511 if (!count || count != chk_count) 2512 return false; 2513 2514 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2515 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2516 2517 /* profile cookies must compare, and in the exact same order to take 2518 * into account priority 2519 */ 2520 while (count--) { 2521 if (tmp2->profile_cookie != tmp1->profile_cookie) 2522 return false; 2523 2524 tmp1 = list_next_entry(tmp1, list); 2525 tmp2 = list_next_entry(tmp2, list); 2526 } 2527 2528 return true; 2529 } 2530 2531 /* VSIG Management */ 2532 2533 /** 2534 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2535 * @hw: pointer to the hardware structure 2536 * @blk: HW block 2537 * @vsi: VSI of interest 2538 * @vsig: pointer to receive the VSI group 2539 * 2540 * This function will lookup the VSI entry in the XLT2 list and return 2541 * the VSI group its associated with. 2542 */ 2543 static int 2544 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2545 { 2546 if (!vsig || vsi >= ICE_MAX_VSI) 2547 return -EINVAL; 2548 2549 /* As long as there's a default or valid VSIG associated with the input 2550 * VSI, the functions returns a success. Any handling of VSIG will be 2551 * done by the following add, update or remove functions. 2552 */ 2553 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2554 2555 return 0; 2556 } 2557 2558 /** 2559 * ice_vsig_alloc_val - allocate a new VSIG by value 2560 * @hw: pointer to the hardware structure 2561 * @blk: HW block 2562 * @vsig: the VSIG to allocate 2563 * 2564 * This function will allocate a given VSIG specified by the VSIG parameter. 2565 */ 2566 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2567 { 2568 u16 idx = vsig & ICE_VSIG_IDX_M; 2569 2570 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2571 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2572 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2573 } 2574 2575 return ICE_VSIG_VALUE(idx, hw->pf_id); 2576 } 2577 2578 /** 2579 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2580 * @hw: pointer to the hardware structure 2581 * @blk: HW block 2582 * 2583 * This function will iterate through the VSIG list and mark the first 2584 * unused entry for the new VSIG entry as used and return that value. 2585 */ 2586 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2587 { 2588 u16 i; 2589 2590 for (i = 1; i < ICE_MAX_VSIGS; i++) 2591 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2592 return ice_vsig_alloc_val(hw, blk, i); 2593 2594 return ICE_DEFAULT_VSIG; 2595 } 2596 2597 /** 2598 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2599 * @hw: pointer to the hardware structure 2600 * @blk: HW block 2601 * @chs: characteristic list 2602 * @vsig: returns the VSIG with the matching profiles, if found 2603 * 2604 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2605 * a group have the same characteristic set. To check if there exists a VSIG 2606 * which has the same characteristics as the input characteristics; this 2607 * function will iterate through the XLT2 list and return the VSIG that has a 2608 * matching configuration. In order to make sure that priorities are accounted 2609 * for, the list must match exactly, including the order in which the 2610 * characteristics are listed. 2611 */ 2612 static int 2613 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2614 struct list_head *chs, u16 *vsig) 2615 { 2616 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2617 u16 i; 2618 2619 for (i = 0; i < xlt2->count; i++) 2620 if (xlt2->vsig_tbl[i].in_use && 2621 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2622 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2623 return 0; 2624 } 2625 2626 return -ENOENT; 2627 } 2628 2629 /** 2630 * ice_vsig_free - free VSI group 2631 * @hw: pointer to the hardware structure 2632 * @blk: HW block 2633 * @vsig: VSIG to remove 2634 * 2635 * The function will remove all VSIs associated with the input VSIG and move 2636 * them to the DEFAULT_VSIG and mark the VSIG available. 2637 */ 2638 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2639 { 2640 struct ice_vsig_prof *dtmp, *del; 2641 struct ice_vsig_vsi *vsi_cur; 2642 u16 idx; 2643 2644 idx = vsig & ICE_VSIG_IDX_M; 2645 if (idx >= ICE_MAX_VSIGS) 2646 return -EINVAL; 2647 2648 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2649 return -ENOENT; 2650 2651 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2652 2653 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2654 /* If the VSIG has at least 1 VSI then iterate through the 2655 * list and remove the VSIs before deleting the group. 2656 */ 2657 if (vsi_cur) { 2658 /* remove all vsis associated with this VSIG XLT2 entry */ 2659 do { 2660 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2661 2662 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2663 vsi_cur->changed = 1; 2664 vsi_cur->next_vsi = NULL; 2665 vsi_cur = tmp; 2666 } while (vsi_cur); 2667 2668 /* NULL terminate head of VSI list */ 2669 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2670 } 2671 2672 /* free characteristic list */ 2673 list_for_each_entry_safe(del, dtmp, 2674 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2675 list) { 2676 list_del(&del->list); 2677 devm_kfree(ice_hw_to_dev(hw), del); 2678 } 2679 2680 /* if VSIG characteristic list was cleared for reset 2681 * re-initialize the list head 2682 */ 2683 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2684 2685 return 0; 2686 } 2687 2688 /** 2689 * ice_vsig_remove_vsi - remove VSI from VSIG 2690 * @hw: pointer to the hardware structure 2691 * @blk: HW block 2692 * @vsi: VSI to remove 2693 * @vsig: VSI group to remove from 2694 * 2695 * The function will remove the input VSI from its VSI group and move it 2696 * to the DEFAULT_VSIG. 2697 */ 2698 static int 2699 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2700 { 2701 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2702 u16 idx; 2703 2704 idx = vsig & ICE_VSIG_IDX_M; 2705 2706 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2707 return -EINVAL; 2708 2709 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2710 return -ENOENT; 2711 2712 /* entry already in default VSIG, don't have to remove */ 2713 if (idx == ICE_DEFAULT_VSIG) 2714 return 0; 2715 2716 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2717 if (!(*vsi_head)) 2718 return -EIO; 2719 2720 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2721 vsi_cur = (*vsi_head); 2722 2723 /* iterate the VSI list, skip over the entry to be removed */ 2724 while (vsi_cur) { 2725 if (vsi_tgt == vsi_cur) { 2726 (*vsi_head) = vsi_cur->next_vsi; 2727 break; 2728 } 2729 vsi_head = &vsi_cur->next_vsi; 2730 vsi_cur = vsi_cur->next_vsi; 2731 } 2732 2733 /* verify if VSI was removed from group list */ 2734 if (!vsi_cur) 2735 return -ENOENT; 2736 2737 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2738 vsi_cur->changed = 1; 2739 vsi_cur->next_vsi = NULL; 2740 2741 return 0; 2742 } 2743 2744 /** 2745 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2746 * @hw: pointer to the hardware structure 2747 * @blk: HW block 2748 * @vsi: VSI to move 2749 * @vsig: destination VSI group 2750 * 2751 * This function will move or add the input VSI to the target VSIG. 2752 * The function will find the original VSIG the VSI belongs to and 2753 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2754 * then move entry to the new VSIG. 2755 */ 2756 static int 2757 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2758 { 2759 struct ice_vsig_vsi *tmp; 2760 u16 orig_vsig, idx; 2761 int status; 2762 2763 idx = vsig & ICE_VSIG_IDX_M; 2764 2765 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2766 return -EINVAL; 2767 2768 /* if VSIG not in use and VSIG is not default type this VSIG 2769 * doesn't exist. 2770 */ 2771 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2772 vsig != ICE_DEFAULT_VSIG) 2773 return -ENOENT; 2774 2775 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2776 if (status) 2777 return status; 2778 2779 /* no update required if vsigs match */ 2780 if (orig_vsig == vsig) 2781 return 0; 2782 2783 if (orig_vsig != ICE_DEFAULT_VSIG) { 2784 /* remove entry from orig_vsig and add to default VSIG */ 2785 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2786 if (status) 2787 return status; 2788 } 2789 2790 if (idx == ICE_DEFAULT_VSIG) 2791 return 0; 2792 2793 /* Create VSI entry and add VSIG and prop_mask values */ 2794 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2795 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2796 2797 /* Add new entry to the head of the VSIG list */ 2798 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2799 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2800 &hw->blk[blk].xlt2.vsis[vsi]; 2801 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2802 hw->blk[blk].xlt2.t[vsi] = vsig; 2803 2804 return 0; 2805 } 2806 2807 /** 2808 * ice_prof_has_mask_idx - determine if profile index masking is identical 2809 * @hw: pointer to the hardware structure 2810 * @blk: HW block 2811 * @prof: profile to check 2812 * @idx: profile index to check 2813 * @mask: mask to match 2814 */ 2815 static bool 2816 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2817 u16 mask) 2818 { 2819 bool expect_no_mask = false; 2820 bool found = false; 2821 bool match = false; 2822 u16 i; 2823 2824 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2825 if (mask == 0 || mask == 0xffff) 2826 expect_no_mask = true; 2827 2828 /* Scan the enabled masks on this profile, for the specified idx */ 2829 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2830 hw->blk[blk].masks.count; i++) 2831 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2832 if (hw->blk[blk].masks.masks[i].in_use && 2833 hw->blk[blk].masks.masks[i].idx == idx) { 2834 found = true; 2835 if (hw->blk[blk].masks.masks[i].mask == mask) 2836 match = true; 2837 break; 2838 } 2839 2840 if (expect_no_mask) { 2841 if (found) 2842 return false; 2843 } else { 2844 if (!match) 2845 return false; 2846 } 2847 2848 return true; 2849 } 2850 2851 /** 2852 * ice_prof_has_mask - determine if profile masking is identical 2853 * @hw: pointer to the hardware structure 2854 * @blk: HW block 2855 * @prof: profile to check 2856 * @masks: masks to match 2857 */ 2858 static bool 2859 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2860 { 2861 u16 i; 2862 2863 /* es->mask_ena[prof] will have the mask */ 2864 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2865 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2866 return false; 2867 2868 return true; 2869 } 2870 2871 /** 2872 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2873 * @hw: pointer to the hardware structure 2874 * @blk: HW block 2875 * @fv: field vector to search for 2876 * @masks: masks for FV 2877 * @prof_id: receives the profile ID 2878 */ 2879 static int 2880 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2881 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2882 { 2883 struct ice_es *es = &hw->blk[blk].es; 2884 u8 i; 2885 2886 /* For FD, we don't want to re-use a existed profile with the same 2887 * field vector and mask. This will cause rule interference. 2888 */ 2889 if (blk == ICE_BLK_FD) 2890 return -ENOENT; 2891 2892 for (i = 0; i < (u8)es->count; i++) { 2893 u16 off = i * es->fvw; 2894 2895 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2896 continue; 2897 2898 /* check if masks settings are the same for this profile */ 2899 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2900 continue; 2901 2902 *prof_id = i; 2903 return 0; 2904 } 2905 2906 return -ENOENT; 2907 } 2908 2909 /** 2910 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2911 * @blk: the block type 2912 * @rsrc_type: pointer to variable to receive the resource type 2913 */ 2914 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2915 { 2916 switch (blk) { 2917 case ICE_BLK_FD: 2918 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2919 break; 2920 case ICE_BLK_RSS: 2921 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2922 break; 2923 default: 2924 return false; 2925 } 2926 return true; 2927 } 2928 2929 /** 2930 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2931 * @blk: the block type 2932 * @rsrc_type: pointer to variable to receive the resource type 2933 */ 2934 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2935 { 2936 switch (blk) { 2937 case ICE_BLK_FD: 2938 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2939 break; 2940 case ICE_BLK_RSS: 2941 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2942 break; 2943 default: 2944 return false; 2945 } 2946 return true; 2947 } 2948 2949 /** 2950 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2951 * @hw: pointer to the HW struct 2952 * @blk: the block to allocate the TCAM for 2953 * @btm: true to allocate from bottom of table, false to allocate from top 2954 * @tcam_idx: pointer to variable to receive the TCAM entry 2955 * 2956 * This function allocates a new entry in a Profile ID TCAM for a specific 2957 * block. 2958 */ 2959 static int 2960 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2961 u16 *tcam_idx) 2962 { 2963 u16 res_type; 2964 2965 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2966 return -EINVAL; 2967 2968 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2969 } 2970 2971 /** 2972 * ice_free_tcam_ent - free hardware TCAM entry 2973 * @hw: pointer to the HW struct 2974 * @blk: the block from which to free the TCAM entry 2975 * @tcam_idx: the TCAM entry to free 2976 * 2977 * This function frees an entry in a Profile ID TCAM for a specific block. 2978 */ 2979 static int 2980 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2981 { 2982 u16 res_type; 2983 2984 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2985 return -EINVAL; 2986 2987 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2988 } 2989 2990 /** 2991 * ice_alloc_prof_id - allocate profile ID 2992 * @hw: pointer to the HW struct 2993 * @blk: the block to allocate the profile ID for 2994 * @prof_id: pointer to variable to receive the profile ID 2995 * 2996 * This function allocates a new profile ID, which also corresponds to a Field 2997 * Vector (Extraction Sequence) entry. 2998 */ 2999 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3000 { 3001 u16 res_type; 3002 u16 get_prof; 3003 int status; 3004 3005 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3006 return -EINVAL; 3007 3008 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3009 if (!status) 3010 *prof_id = (u8)get_prof; 3011 3012 return status; 3013 } 3014 3015 /** 3016 * ice_free_prof_id - free profile ID 3017 * @hw: pointer to the HW struct 3018 * @blk: the block from which to free the profile ID 3019 * @prof_id: the profile ID to free 3020 * 3021 * This function frees a profile ID, which also corresponds to a Field Vector. 3022 */ 3023 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3024 { 3025 u16 tmp_prof_id = (u16)prof_id; 3026 u16 res_type; 3027 3028 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3029 return -EINVAL; 3030 3031 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3032 } 3033 3034 /** 3035 * ice_prof_inc_ref - increment reference count for profile 3036 * @hw: pointer to the HW struct 3037 * @blk: the block from which to free the profile ID 3038 * @prof_id: the profile ID for which to increment the reference count 3039 */ 3040 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3041 { 3042 if (prof_id > hw->blk[blk].es.count) 3043 return -EINVAL; 3044 3045 hw->blk[blk].es.ref_count[prof_id]++; 3046 3047 return 0; 3048 } 3049 3050 /** 3051 * ice_write_prof_mask_reg - write profile mask register 3052 * @hw: pointer to the HW struct 3053 * @blk: hardware block 3054 * @mask_idx: mask index 3055 * @idx: index of the FV which will use the mask 3056 * @mask: the 16-bit mask 3057 */ 3058 static void 3059 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 3060 u16 idx, u16 mask) 3061 { 3062 u32 offset; 3063 u32 val; 3064 3065 switch (blk) { 3066 case ICE_BLK_RSS: 3067 offset = GLQF_HMASK(mask_idx); 3068 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 3069 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 3070 break; 3071 case ICE_BLK_FD: 3072 offset = GLQF_FDMASK(mask_idx); 3073 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 3074 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 3075 break; 3076 default: 3077 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3078 blk); 3079 return; 3080 } 3081 3082 wr32(hw, offset, val); 3083 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 3084 blk, idx, offset, val); 3085 } 3086 3087 /** 3088 * ice_write_prof_mask_enable_res - write profile mask enable register 3089 * @hw: pointer to the HW struct 3090 * @blk: hardware block 3091 * @prof_id: profile ID 3092 * @enable_mask: enable mask 3093 */ 3094 static void 3095 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 3096 u16 prof_id, u32 enable_mask) 3097 { 3098 u32 offset; 3099 3100 switch (blk) { 3101 case ICE_BLK_RSS: 3102 offset = GLQF_HMASK_SEL(prof_id); 3103 break; 3104 case ICE_BLK_FD: 3105 offset = GLQF_FDMASK_SEL(prof_id); 3106 break; 3107 default: 3108 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3109 blk); 3110 return; 3111 } 3112 3113 wr32(hw, offset, enable_mask); 3114 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 3115 blk, prof_id, offset, enable_mask); 3116 } 3117 3118 /** 3119 * ice_init_prof_masks - initial prof masks 3120 * @hw: pointer to the HW struct 3121 * @blk: hardware block 3122 */ 3123 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 3124 { 3125 u16 per_pf; 3126 u16 i; 3127 3128 mutex_init(&hw->blk[blk].masks.lock); 3129 3130 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 3131 3132 hw->blk[blk].masks.count = per_pf; 3133 hw->blk[blk].masks.first = hw->pf_id * per_pf; 3134 3135 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3136 3137 for (i = hw->blk[blk].masks.first; 3138 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3139 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3140 } 3141 3142 /** 3143 * ice_init_all_prof_masks - initialize all prof masks 3144 * @hw: pointer to the HW struct 3145 */ 3146 static void ice_init_all_prof_masks(struct ice_hw *hw) 3147 { 3148 ice_init_prof_masks(hw, ICE_BLK_RSS); 3149 ice_init_prof_masks(hw, ICE_BLK_FD); 3150 } 3151 3152 /** 3153 * ice_alloc_prof_mask - allocate profile mask 3154 * @hw: pointer to the HW struct 3155 * @blk: hardware block 3156 * @idx: index of FV which will use the mask 3157 * @mask: the 16-bit mask 3158 * @mask_idx: variable to receive the mask index 3159 */ 3160 static int 3161 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3162 u16 *mask_idx) 3163 { 3164 bool found_unused = false, found_copy = false; 3165 u16 unused_idx = 0, copy_idx = 0; 3166 int status = -ENOSPC; 3167 u16 i; 3168 3169 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3170 return -EINVAL; 3171 3172 mutex_lock(&hw->blk[blk].masks.lock); 3173 3174 for (i = hw->blk[blk].masks.first; 3175 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3176 if (hw->blk[blk].masks.masks[i].in_use) { 3177 /* if mask is in use and it exactly duplicates the 3178 * desired mask and index, then in can be reused 3179 */ 3180 if (hw->blk[blk].masks.masks[i].mask == mask && 3181 hw->blk[blk].masks.masks[i].idx == idx) { 3182 found_copy = true; 3183 copy_idx = i; 3184 break; 3185 } 3186 } else { 3187 /* save off unused index, but keep searching in case 3188 * there is an exact match later on 3189 */ 3190 if (!found_unused) { 3191 found_unused = true; 3192 unused_idx = i; 3193 } 3194 } 3195 3196 if (found_copy) 3197 i = copy_idx; 3198 else if (found_unused) 3199 i = unused_idx; 3200 else 3201 goto err_ice_alloc_prof_mask; 3202 3203 /* update mask for a new entry */ 3204 if (found_unused) { 3205 hw->blk[blk].masks.masks[i].in_use = true; 3206 hw->blk[blk].masks.masks[i].mask = mask; 3207 hw->blk[blk].masks.masks[i].idx = idx; 3208 hw->blk[blk].masks.masks[i].ref = 0; 3209 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3210 } 3211 3212 hw->blk[blk].masks.masks[i].ref++; 3213 *mask_idx = i; 3214 status = 0; 3215 3216 err_ice_alloc_prof_mask: 3217 mutex_unlock(&hw->blk[blk].masks.lock); 3218 3219 return status; 3220 } 3221 3222 /** 3223 * ice_free_prof_mask - free profile mask 3224 * @hw: pointer to the HW struct 3225 * @blk: hardware block 3226 * @mask_idx: index of mask 3227 */ 3228 static int 3229 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3230 { 3231 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3232 return -EINVAL; 3233 3234 if (!(mask_idx >= hw->blk[blk].masks.first && 3235 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3236 return -ENOENT; 3237 3238 mutex_lock(&hw->blk[blk].masks.lock); 3239 3240 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3241 goto exit_ice_free_prof_mask; 3242 3243 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3244 hw->blk[blk].masks.masks[mask_idx].ref--; 3245 goto exit_ice_free_prof_mask; 3246 } 3247 3248 /* remove mask */ 3249 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3250 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3251 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3252 3253 /* update mask as unused entry */ 3254 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3255 mask_idx); 3256 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3257 3258 exit_ice_free_prof_mask: 3259 mutex_unlock(&hw->blk[blk].masks.lock); 3260 3261 return 0; 3262 } 3263 3264 /** 3265 * ice_free_prof_masks - free all profile masks for a profile 3266 * @hw: pointer to the HW struct 3267 * @blk: hardware block 3268 * @prof_id: profile ID 3269 */ 3270 static int 3271 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3272 { 3273 u32 mask_bm; 3274 u16 i; 3275 3276 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3277 return -EINVAL; 3278 3279 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3280 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3281 if (mask_bm & BIT(i)) 3282 ice_free_prof_mask(hw, blk, i); 3283 3284 return 0; 3285 } 3286 3287 /** 3288 * ice_shutdown_prof_masks - releases lock for masking 3289 * @hw: pointer to the HW struct 3290 * @blk: hardware block 3291 * 3292 * This should be called before unloading the driver 3293 */ 3294 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3295 { 3296 u16 i; 3297 3298 mutex_lock(&hw->blk[blk].masks.lock); 3299 3300 for (i = hw->blk[blk].masks.first; 3301 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3302 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3303 3304 hw->blk[blk].masks.masks[i].in_use = false; 3305 hw->blk[blk].masks.masks[i].idx = 0; 3306 hw->blk[blk].masks.masks[i].mask = 0; 3307 } 3308 3309 mutex_unlock(&hw->blk[blk].masks.lock); 3310 mutex_destroy(&hw->blk[blk].masks.lock); 3311 } 3312 3313 /** 3314 * ice_shutdown_all_prof_masks - releases all locks for masking 3315 * @hw: pointer to the HW struct 3316 * 3317 * This should be called before unloading the driver 3318 */ 3319 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3320 { 3321 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3322 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3323 } 3324 3325 /** 3326 * ice_update_prof_masking - set registers according to masking 3327 * @hw: pointer to the HW struct 3328 * @blk: hardware block 3329 * @prof_id: profile ID 3330 * @masks: masks 3331 */ 3332 static int 3333 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3334 u16 *masks) 3335 { 3336 bool err = false; 3337 u32 ena_mask = 0; 3338 u16 idx; 3339 u16 i; 3340 3341 /* Only support FD and RSS masking, otherwise nothing to be done */ 3342 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3343 return 0; 3344 3345 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3346 if (masks[i] && masks[i] != 0xFFFF) { 3347 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3348 ena_mask |= BIT(idx); 3349 } else { 3350 /* not enough bitmaps */ 3351 err = true; 3352 break; 3353 } 3354 } 3355 3356 if (err) { 3357 /* free any bitmaps we have allocated */ 3358 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3359 if (ena_mask & BIT(i)) 3360 ice_free_prof_mask(hw, blk, i); 3361 3362 return -EIO; 3363 } 3364 3365 /* enable the masks for this profile */ 3366 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3367 3368 /* store enabled masks with profile so that they can be freed later */ 3369 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3370 3371 return 0; 3372 } 3373 3374 /** 3375 * ice_write_es - write an extraction sequence to hardware 3376 * @hw: pointer to the HW struct 3377 * @blk: the block in which to write the extraction sequence 3378 * @prof_id: the profile ID to write 3379 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3380 */ 3381 static void 3382 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3383 struct ice_fv_word *fv) 3384 { 3385 u16 off; 3386 3387 off = prof_id * hw->blk[blk].es.fvw; 3388 if (!fv) { 3389 memset(&hw->blk[blk].es.t[off], 0, 3390 hw->blk[blk].es.fvw * sizeof(*fv)); 3391 hw->blk[blk].es.written[prof_id] = false; 3392 } else { 3393 memcpy(&hw->blk[blk].es.t[off], fv, 3394 hw->blk[blk].es.fvw * sizeof(*fv)); 3395 } 3396 } 3397 3398 /** 3399 * ice_prof_dec_ref - decrement reference count for profile 3400 * @hw: pointer to the HW struct 3401 * @blk: the block from which to free the profile ID 3402 * @prof_id: the profile ID for which to decrement the reference count 3403 */ 3404 static int 3405 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3406 { 3407 if (prof_id > hw->blk[blk].es.count) 3408 return -EINVAL; 3409 3410 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3411 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3412 ice_write_es(hw, blk, prof_id, NULL); 3413 ice_free_prof_masks(hw, blk, prof_id); 3414 return ice_free_prof_id(hw, blk, prof_id); 3415 } 3416 } 3417 3418 return 0; 3419 } 3420 3421 /* Block / table section IDs */ 3422 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3423 /* SWITCH */ 3424 { ICE_SID_XLT1_SW, 3425 ICE_SID_XLT2_SW, 3426 ICE_SID_PROFID_TCAM_SW, 3427 ICE_SID_PROFID_REDIR_SW, 3428 ICE_SID_FLD_VEC_SW 3429 }, 3430 3431 /* ACL */ 3432 { ICE_SID_XLT1_ACL, 3433 ICE_SID_XLT2_ACL, 3434 ICE_SID_PROFID_TCAM_ACL, 3435 ICE_SID_PROFID_REDIR_ACL, 3436 ICE_SID_FLD_VEC_ACL 3437 }, 3438 3439 /* FD */ 3440 { ICE_SID_XLT1_FD, 3441 ICE_SID_XLT2_FD, 3442 ICE_SID_PROFID_TCAM_FD, 3443 ICE_SID_PROFID_REDIR_FD, 3444 ICE_SID_FLD_VEC_FD 3445 }, 3446 3447 /* RSS */ 3448 { ICE_SID_XLT1_RSS, 3449 ICE_SID_XLT2_RSS, 3450 ICE_SID_PROFID_TCAM_RSS, 3451 ICE_SID_PROFID_REDIR_RSS, 3452 ICE_SID_FLD_VEC_RSS 3453 }, 3454 3455 /* PE */ 3456 { ICE_SID_XLT1_PE, 3457 ICE_SID_XLT2_PE, 3458 ICE_SID_PROFID_TCAM_PE, 3459 ICE_SID_PROFID_REDIR_PE, 3460 ICE_SID_FLD_VEC_PE 3461 } 3462 }; 3463 3464 /** 3465 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3466 * @hw: pointer to the hardware structure 3467 * @blk: the HW block to initialize 3468 */ 3469 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3470 { 3471 u16 pt; 3472 3473 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3474 u8 ptg; 3475 3476 ptg = hw->blk[blk].xlt1.t[pt]; 3477 if (ptg != ICE_DEFAULT_PTG) { 3478 ice_ptg_alloc_val(hw, blk, ptg); 3479 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3480 } 3481 } 3482 } 3483 3484 /** 3485 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3486 * @hw: pointer to the hardware structure 3487 * @blk: the HW block to initialize 3488 */ 3489 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3490 { 3491 u16 vsi; 3492 3493 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3494 u16 vsig; 3495 3496 vsig = hw->blk[blk].xlt2.t[vsi]; 3497 if (vsig) { 3498 ice_vsig_alloc_val(hw, blk, vsig); 3499 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3500 /* no changes at this time, since this has been 3501 * initialized from the original package 3502 */ 3503 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3504 } 3505 } 3506 } 3507 3508 /** 3509 * ice_init_sw_db - init software database from HW tables 3510 * @hw: pointer to the hardware structure 3511 */ 3512 static void ice_init_sw_db(struct ice_hw *hw) 3513 { 3514 u16 i; 3515 3516 for (i = 0; i < ICE_BLK_COUNT; i++) { 3517 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3518 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3519 } 3520 } 3521 3522 /** 3523 * ice_fill_tbl - Reads content of a single table type into database 3524 * @hw: pointer to the hardware structure 3525 * @block_id: Block ID of the table to copy 3526 * @sid: Section ID of the table to copy 3527 * 3528 * Will attempt to read the entire content of a given table of a single block 3529 * into the driver database. We assume that the buffer will always 3530 * be as large or larger than the data contained in the package. If 3531 * this condition is not met, there is most likely an error in the package 3532 * contents. 3533 */ 3534 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3535 { 3536 u32 dst_len, sect_len, offset = 0; 3537 struct ice_prof_redir_section *pr; 3538 struct ice_prof_id_section *pid; 3539 struct ice_xlt1_section *xlt1; 3540 struct ice_xlt2_section *xlt2; 3541 struct ice_sw_fv_section *es; 3542 struct ice_pkg_enum state; 3543 u8 *src, *dst; 3544 void *sect; 3545 3546 /* if the HW segment pointer is null then the first iteration of 3547 * ice_pkg_enum_section() will fail. In this case the HW tables will 3548 * not be filled and return success. 3549 */ 3550 if (!hw->seg) { 3551 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3552 return; 3553 } 3554 3555 memset(&state, 0, sizeof(state)); 3556 3557 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3558 3559 while (sect) { 3560 switch (sid) { 3561 case ICE_SID_XLT1_SW: 3562 case ICE_SID_XLT1_FD: 3563 case ICE_SID_XLT1_RSS: 3564 case ICE_SID_XLT1_ACL: 3565 case ICE_SID_XLT1_PE: 3566 xlt1 = sect; 3567 src = xlt1->value; 3568 sect_len = le16_to_cpu(xlt1->count) * 3569 sizeof(*hw->blk[block_id].xlt1.t); 3570 dst = hw->blk[block_id].xlt1.t; 3571 dst_len = hw->blk[block_id].xlt1.count * 3572 sizeof(*hw->blk[block_id].xlt1.t); 3573 break; 3574 case ICE_SID_XLT2_SW: 3575 case ICE_SID_XLT2_FD: 3576 case ICE_SID_XLT2_RSS: 3577 case ICE_SID_XLT2_ACL: 3578 case ICE_SID_XLT2_PE: 3579 xlt2 = sect; 3580 src = (__force u8 *)xlt2->value; 3581 sect_len = le16_to_cpu(xlt2->count) * 3582 sizeof(*hw->blk[block_id].xlt2.t); 3583 dst = (u8 *)hw->blk[block_id].xlt2.t; 3584 dst_len = hw->blk[block_id].xlt2.count * 3585 sizeof(*hw->blk[block_id].xlt2.t); 3586 break; 3587 case ICE_SID_PROFID_TCAM_SW: 3588 case ICE_SID_PROFID_TCAM_FD: 3589 case ICE_SID_PROFID_TCAM_RSS: 3590 case ICE_SID_PROFID_TCAM_ACL: 3591 case ICE_SID_PROFID_TCAM_PE: 3592 pid = sect; 3593 src = (u8 *)pid->entry; 3594 sect_len = le16_to_cpu(pid->count) * 3595 sizeof(*hw->blk[block_id].prof.t); 3596 dst = (u8 *)hw->blk[block_id].prof.t; 3597 dst_len = hw->blk[block_id].prof.count * 3598 sizeof(*hw->blk[block_id].prof.t); 3599 break; 3600 case ICE_SID_PROFID_REDIR_SW: 3601 case ICE_SID_PROFID_REDIR_FD: 3602 case ICE_SID_PROFID_REDIR_RSS: 3603 case ICE_SID_PROFID_REDIR_ACL: 3604 case ICE_SID_PROFID_REDIR_PE: 3605 pr = sect; 3606 src = pr->redir_value; 3607 sect_len = le16_to_cpu(pr->count) * 3608 sizeof(*hw->blk[block_id].prof_redir.t); 3609 dst = hw->blk[block_id].prof_redir.t; 3610 dst_len = hw->blk[block_id].prof_redir.count * 3611 sizeof(*hw->blk[block_id].prof_redir.t); 3612 break; 3613 case ICE_SID_FLD_VEC_SW: 3614 case ICE_SID_FLD_VEC_FD: 3615 case ICE_SID_FLD_VEC_RSS: 3616 case ICE_SID_FLD_VEC_ACL: 3617 case ICE_SID_FLD_VEC_PE: 3618 es = sect; 3619 src = (u8 *)es->fv; 3620 sect_len = (u32)(le16_to_cpu(es->count) * 3621 hw->blk[block_id].es.fvw) * 3622 sizeof(*hw->blk[block_id].es.t); 3623 dst = (u8 *)hw->blk[block_id].es.t; 3624 dst_len = (u32)(hw->blk[block_id].es.count * 3625 hw->blk[block_id].es.fvw) * 3626 sizeof(*hw->blk[block_id].es.t); 3627 break; 3628 default: 3629 return; 3630 } 3631 3632 /* if the section offset exceeds destination length, terminate 3633 * table fill. 3634 */ 3635 if (offset > dst_len) 3636 return; 3637 3638 /* if the sum of section size and offset exceed destination size 3639 * then we are out of bounds of the HW table size for that PF. 3640 * Changing section length to fill the remaining table space 3641 * of that PF. 3642 */ 3643 if ((offset + sect_len) > dst_len) 3644 sect_len = dst_len - offset; 3645 3646 memcpy(dst + offset, src, sect_len); 3647 offset += sect_len; 3648 sect = ice_pkg_enum_section(NULL, &state, sid); 3649 } 3650 } 3651 3652 /** 3653 * ice_fill_blk_tbls - Read package context for tables 3654 * @hw: pointer to the hardware structure 3655 * 3656 * Reads the current package contents and populates the driver 3657 * database with the data iteratively for all advanced feature 3658 * blocks. Assume that the HW tables have been allocated. 3659 */ 3660 void ice_fill_blk_tbls(struct ice_hw *hw) 3661 { 3662 u8 i; 3663 3664 for (i = 0; i < ICE_BLK_COUNT; i++) { 3665 enum ice_block blk_id = (enum ice_block)i; 3666 3667 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3668 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3669 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3670 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3671 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3672 } 3673 3674 ice_init_sw_db(hw); 3675 } 3676 3677 /** 3678 * ice_free_prof_map - free profile map 3679 * @hw: pointer to the hardware structure 3680 * @blk_idx: HW block index 3681 */ 3682 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3683 { 3684 struct ice_es *es = &hw->blk[blk_idx].es; 3685 struct ice_prof_map *del, *tmp; 3686 3687 mutex_lock(&es->prof_map_lock); 3688 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3689 list_del(&del->list); 3690 devm_kfree(ice_hw_to_dev(hw), del); 3691 } 3692 INIT_LIST_HEAD(&es->prof_map); 3693 mutex_unlock(&es->prof_map_lock); 3694 } 3695 3696 /** 3697 * ice_free_flow_profs - free flow profile entries 3698 * @hw: pointer to the hardware structure 3699 * @blk_idx: HW block index 3700 */ 3701 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3702 { 3703 struct ice_flow_prof *p, *tmp; 3704 3705 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3706 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3707 struct ice_flow_entry *e, *t; 3708 3709 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3710 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3711 ICE_FLOW_ENTRY_HNDL(e)); 3712 3713 list_del(&p->l_entry); 3714 3715 mutex_destroy(&p->entries_lock); 3716 devm_kfree(ice_hw_to_dev(hw), p); 3717 } 3718 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3719 3720 /* if driver is in reset and tables are being cleared 3721 * re-initialize the flow profile list heads 3722 */ 3723 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3724 } 3725 3726 /** 3727 * ice_free_vsig_tbl - free complete VSIG table entries 3728 * @hw: pointer to the hardware structure 3729 * @blk: the HW block on which to free the VSIG table entries 3730 */ 3731 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3732 { 3733 u16 i; 3734 3735 if (!hw->blk[blk].xlt2.vsig_tbl) 3736 return; 3737 3738 for (i = 1; i < ICE_MAX_VSIGS; i++) 3739 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3740 ice_vsig_free(hw, blk, i); 3741 } 3742 3743 /** 3744 * ice_free_hw_tbls - free hardware table memory 3745 * @hw: pointer to the hardware structure 3746 */ 3747 void ice_free_hw_tbls(struct ice_hw *hw) 3748 { 3749 struct ice_rss_cfg *r, *rt; 3750 u8 i; 3751 3752 for (i = 0; i < ICE_BLK_COUNT; i++) { 3753 if (hw->blk[i].is_list_init) { 3754 struct ice_es *es = &hw->blk[i].es; 3755 3756 ice_free_prof_map(hw, i); 3757 mutex_destroy(&es->prof_map_lock); 3758 3759 ice_free_flow_profs(hw, i); 3760 mutex_destroy(&hw->fl_profs_locks[i]); 3761 3762 hw->blk[i].is_list_init = false; 3763 } 3764 ice_free_vsig_tbl(hw, (enum ice_block)i); 3765 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3766 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3767 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3768 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3769 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3770 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3771 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3772 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3773 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3774 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3775 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3776 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3777 } 3778 3779 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3780 list_del(&r->l_entry); 3781 devm_kfree(ice_hw_to_dev(hw), r); 3782 } 3783 mutex_destroy(&hw->rss_locks); 3784 ice_shutdown_all_prof_masks(hw); 3785 memset(hw->blk, 0, sizeof(hw->blk)); 3786 } 3787 3788 /** 3789 * ice_init_flow_profs - init flow profile locks and list heads 3790 * @hw: pointer to the hardware structure 3791 * @blk_idx: HW block index 3792 */ 3793 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3794 { 3795 mutex_init(&hw->fl_profs_locks[blk_idx]); 3796 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3797 } 3798 3799 /** 3800 * ice_clear_hw_tbls - clear HW tables and flow profiles 3801 * @hw: pointer to the hardware structure 3802 */ 3803 void ice_clear_hw_tbls(struct ice_hw *hw) 3804 { 3805 u8 i; 3806 3807 for (i = 0; i < ICE_BLK_COUNT; i++) { 3808 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3809 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3810 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3811 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3812 struct ice_es *es = &hw->blk[i].es; 3813 3814 if (hw->blk[i].is_list_init) { 3815 ice_free_prof_map(hw, i); 3816 ice_free_flow_profs(hw, i); 3817 } 3818 3819 ice_free_vsig_tbl(hw, (enum ice_block)i); 3820 3821 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3822 memset(xlt1->ptg_tbl, 0, 3823 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3824 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3825 3826 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3827 memset(xlt2->vsig_tbl, 0, 3828 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3829 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3830 3831 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3832 memset(prof_redir->t, 0, 3833 prof_redir->count * sizeof(*prof_redir->t)); 3834 3835 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3836 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3837 memset(es->written, 0, es->count * sizeof(*es->written)); 3838 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3839 } 3840 } 3841 3842 /** 3843 * ice_init_hw_tbls - init hardware table memory 3844 * @hw: pointer to the hardware structure 3845 */ 3846 int ice_init_hw_tbls(struct ice_hw *hw) 3847 { 3848 u8 i; 3849 3850 mutex_init(&hw->rss_locks); 3851 INIT_LIST_HEAD(&hw->rss_list_head); 3852 ice_init_all_prof_masks(hw); 3853 for (i = 0; i < ICE_BLK_COUNT; i++) { 3854 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3855 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3856 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3857 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3858 struct ice_es *es = &hw->blk[i].es; 3859 u16 j; 3860 3861 if (hw->blk[i].is_list_init) 3862 continue; 3863 3864 ice_init_flow_profs(hw, i); 3865 mutex_init(&es->prof_map_lock); 3866 INIT_LIST_HEAD(&es->prof_map); 3867 hw->blk[i].is_list_init = true; 3868 3869 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3870 es->reverse = blk_sizes[i].reverse; 3871 3872 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3873 xlt1->count = blk_sizes[i].xlt1; 3874 3875 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3876 sizeof(*xlt1->ptypes), GFP_KERNEL); 3877 3878 if (!xlt1->ptypes) 3879 goto err; 3880 3881 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3882 sizeof(*xlt1->ptg_tbl), 3883 GFP_KERNEL); 3884 3885 if (!xlt1->ptg_tbl) 3886 goto err; 3887 3888 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3889 sizeof(*xlt1->t), GFP_KERNEL); 3890 if (!xlt1->t) 3891 goto err; 3892 3893 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3894 xlt2->count = blk_sizes[i].xlt2; 3895 3896 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3897 sizeof(*xlt2->vsis), GFP_KERNEL); 3898 3899 if (!xlt2->vsis) 3900 goto err; 3901 3902 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3903 sizeof(*xlt2->vsig_tbl), 3904 GFP_KERNEL); 3905 if (!xlt2->vsig_tbl) 3906 goto err; 3907 3908 for (j = 0; j < xlt2->count; j++) 3909 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3910 3911 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3912 sizeof(*xlt2->t), GFP_KERNEL); 3913 if (!xlt2->t) 3914 goto err; 3915 3916 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3917 prof->count = blk_sizes[i].prof_tcam; 3918 prof->max_prof_id = blk_sizes[i].prof_id; 3919 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3920 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3921 sizeof(*prof->t), GFP_KERNEL); 3922 3923 if (!prof->t) 3924 goto err; 3925 3926 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3927 prof_redir->count = blk_sizes[i].prof_redir; 3928 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3929 prof_redir->count, 3930 sizeof(*prof_redir->t), 3931 GFP_KERNEL); 3932 3933 if (!prof_redir->t) 3934 goto err; 3935 3936 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3937 es->count = blk_sizes[i].es; 3938 es->fvw = blk_sizes[i].fvw; 3939 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3940 (u32)(es->count * es->fvw), 3941 sizeof(*es->t), GFP_KERNEL); 3942 if (!es->t) 3943 goto err; 3944 3945 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3946 sizeof(*es->ref_count), 3947 GFP_KERNEL); 3948 if (!es->ref_count) 3949 goto err; 3950 3951 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3952 sizeof(*es->written), GFP_KERNEL); 3953 if (!es->written) 3954 goto err; 3955 3956 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3957 sizeof(*es->mask_ena), GFP_KERNEL); 3958 if (!es->mask_ena) 3959 goto err; 3960 } 3961 return 0; 3962 3963 err: 3964 ice_free_hw_tbls(hw); 3965 return -ENOMEM; 3966 } 3967 3968 /** 3969 * ice_prof_gen_key - generate profile ID key 3970 * @hw: pointer to the HW struct 3971 * @blk: the block in which to write profile ID to 3972 * @ptg: packet type group (PTG) portion of key 3973 * @vsig: VSIG portion of key 3974 * @cdid: CDID portion of key 3975 * @flags: flag portion of key 3976 * @vl_msk: valid mask 3977 * @dc_msk: don't care mask 3978 * @nm_msk: never match mask 3979 * @key: output of profile ID key 3980 */ 3981 static int 3982 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3983 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3984 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3985 u8 key[ICE_TCAM_KEY_SZ]) 3986 { 3987 struct ice_prof_id_key inkey; 3988 3989 inkey.xlt1 = ptg; 3990 inkey.xlt2_cdid = cpu_to_le16(vsig); 3991 inkey.flags = cpu_to_le16(flags); 3992 3993 switch (hw->blk[blk].prof.cdid_bits) { 3994 case 0: 3995 break; 3996 case 2: 3997 #define ICE_CD_2_M 0xC000U 3998 #define ICE_CD_2_S 14 3999 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 4000 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 4001 break; 4002 case 4: 4003 #define ICE_CD_4_M 0xF000U 4004 #define ICE_CD_4_S 12 4005 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 4006 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 4007 break; 4008 case 8: 4009 #define ICE_CD_8_M 0xFF00U 4010 #define ICE_CD_8_S 16 4011 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 4012 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 4013 break; 4014 default: 4015 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 4016 break; 4017 } 4018 4019 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 4020 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 4021 } 4022 4023 /** 4024 * ice_tcam_write_entry - write TCAM entry 4025 * @hw: pointer to the HW struct 4026 * @blk: the block in which to write profile ID to 4027 * @idx: the entry index to write to 4028 * @prof_id: profile ID 4029 * @ptg: packet type group (PTG) portion of key 4030 * @vsig: VSIG portion of key 4031 * @cdid: CDID portion of key 4032 * @flags: flag portion of key 4033 * @vl_msk: valid mask 4034 * @dc_msk: don't care mask 4035 * @nm_msk: never match mask 4036 */ 4037 static int 4038 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4039 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4040 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4041 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4042 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4043 { 4044 struct ice_prof_tcam_entry; 4045 int status; 4046 4047 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4048 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4049 if (!status) { 4050 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 4051 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4052 } 4053 4054 return status; 4055 } 4056 4057 /** 4058 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4059 * @hw: pointer to the hardware structure 4060 * @blk: HW block 4061 * @vsig: VSIG to query 4062 * @refs: pointer to variable to receive the reference count 4063 */ 4064 static int 4065 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4066 { 4067 u16 idx = vsig & ICE_VSIG_IDX_M; 4068 struct ice_vsig_vsi *ptr; 4069 4070 *refs = 0; 4071 4072 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4073 return -ENOENT; 4074 4075 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4076 while (ptr) { 4077 (*refs)++; 4078 ptr = ptr->next_vsi; 4079 } 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4086 * @hw: pointer to the hardware structure 4087 * @blk: HW block 4088 * @vsig: VSIG to check against 4089 * @hdl: profile handle 4090 */ 4091 static bool 4092 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4093 { 4094 u16 idx = vsig & ICE_VSIG_IDX_M; 4095 struct ice_vsig_prof *ent; 4096 4097 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4098 list) 4099 if (ent->profile_cookie == hdl) 4100 return true; 4101 4102 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4103 vsig); 4104 return false; 4105 } 4106 4107 /** 4108 * ice_prof_bld_es - build profile ID extraction sequence changes 4109 * @hw: pointer to the HW struct 4110 * @blk: hardware block 4111 * @bld: the update package buffer build to add to 4112 * @chgs: the list of changes to make in hardware 4113 */ 4114 static int 4115 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4116 struct ice_buf_build *bld, struct list_head *chgs) 4117 { 4118 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4119 struct ice_chs_chg *tmp; 4120 4121 list_for_each_entry(tmp, chgs, list_entry) 4122 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4123 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4124 struct ice_pkg_es *p; 4125 u32 id; 4126 4127 id = ice_sect_id(blk, ICE_VEC_TBL); 4128 p = ice_pkg_buf_alloc_section(bld, id, 4129 struct_size(p, es, 1) + 4130 vec_size - 4131 sizeof(p->es[0])); 4132 4133 if (!p) 4134 return -ENOSPC; 4135 4136 p->count = cpu_to_le16(1); 4137 p->offset = cpu_to_le16(tmp->prof_id); 4138 4139 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4140 } 4141 4142 return 0; 4143 } 4144 4145 /** 4146 * ice_prof_bld_tcam - build profile ID TCAM changes 4147 * @hw: pointer to the HW struct 4148 * @blk: hardware block 4149 * @bld: the update package buffer build to add to 4150 * @chgs: the list of changes to make in hardware 4151 */ 4152 static int 4153 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4154 struct ice_buf_build *bld, struct list_head *chgs) 4155 { 4156 struct ice_chs_chg *tmp; 4157 4158 list_for_each_entry(tmp, chgs, list_entry) 4159 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4160 struct ice_prof_id_section *p; 4161 u32 id; 4162 4163 id = ice_sect_id(blk, ICE_PROF_TCAM); 4164 p = ice_pkg_buf_alloc_section(bld, id, 4165 struct_size(p, entry, 1)); 4166 4167 if (!p) 4168 return -ENOSPC; 4169 4170 p->count = cpu_to_le16(1); 4171 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4172 p->entry[0].prof_id = tmp->prof_id; 4173 4174 memcpy(p->entry[0].key, 4175 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4176 sizeof(hw->blk[blk].prof.t->key)); 4177 } 4178 4179 return 0; 4180 } 4181 4182 /** 4183 * ice_prof_bld_xlt1 - build XLT1 changes 4184 * @blk: hardware block 4185 * @bld: the update package buffer build to add to 4186 * @chgs: the list of changes to make in hardware 4187 */ 4188 static int 4189 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4190 struct list_head *chgs) 4191 { 4192 struct ice_chs_chg *tmp; 4193 4194 list_for_each_entry(tmp, chgs, list_entry) 4195 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4196 struct ice_xlt1_section *p; 4197 u32 id; 4198 4199 id = ice_sect_id(blk, ICE_XLT1); 4200 p = ice_pkg_buf_alloc_section(bld, id, 4201 struct_size(p, value, 1)); 4202 4203 if (!p) 4204 return -ENOSPC; 4205 4206 p->count = cpu_to_le16(1); 4207 p->offset = cpu_to_le16(tmp->ptype); 4208 p->value[0] = tmp->ptg; 4209 } 4210 4211 return 0; 4212 } 4213 4214 /** 4215 * ice_prof_bld_xlt2 - build XLT2 changes 4216 * @blk: hardware block 4217 * @bld: the update package buffer build to add to 4218 * @chgs: the list of changes to make in hardware 4219 */ 4220 static int 4221 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4222 struct list_head *chgs) 4223 { 4224 struct ice_chs_chg *tmp; 4225 4226 list_for_each_entry(tmp, chgs, list_entry) { 4227 struct ice_xlt2_section *p; 4228 u32 id; 4229 4230 switch (tmp->type) { 4231 case ICE_VSIG_ADD: 4232 case ICE_VSI_MOVE: 4233 case ICE_VSIG_REM: 4234 id = ice_sect_id(blk, ICE_XLT2); 4235 p = ice_pkg_buf_alloc_section(bld, id, 4236 struct_size(p, value, 1)); 4237 4238 if (!p) 4239 return -ENOSPC; 4240 4241 p->count = cpu_to_le16(1); 4242 p->offset = cpu_to_le16(tmp->vsi); 4243 p->value[0] = cpu_to_le16(tmp->vsig); 4244 break; 4245 default: 4246 break; 4247 } 4248 } 4249 4250 return 0; 4251 } 4252 4253 /** 4254 * ice_upd_prof_hw - update hardware using the change list 4255 * @hw: pointer to the HW struct 4256 * @blk: hardware block 4257 * @chgs: the list of changes to make in hardware 4258 */ 4259 static int 4260 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4261 struct list_head *chgs) 4262 { 4263 struct ice_buf_build *b; 4264 struct ice_chs_chg *tmp; 4265 u16 pkg_sects; 4266 u16 xlt1 = 0; 4267 u16 xlt2 = 0; 4268 u16 tcam = 0; 4269 u16 es = 0; 4270 int status; 4271 u16 sects; 4272 4273 /* count number of sections we need */ 4274 list_for_each_entry(tmp, chgs, list_entry) { 4275 switch (tmp->type) { 4276 case ICE_PTG_ES_ADD: 4277 if (tmp->add_ptg) 4278 xlt1++; 4279 if (tmp->add_prof) 4280 es++; 4281 break; 4282 case ICE_TCAM_ADD: 4283 tcam++; 4284 break; 4285 case ICE_VSIG_ADD: 4286 case ICE_VSI_MOVE: 4287 case ICE_VSIG_REM: 4288 xlt2++; 4289 break; 4290 default: 4291 break; 4292 } 4293 } 4294 sects = xlt1 + xlt2 + tcam + es; 4295 4296 if (!sects) 4297 return 0; 4298 4299 /* Build update package buffer */ 4300 b = ice_pkg_buf_alloc(hw); 4301 if (!b) 4302 return -ENOMEM; 4303 4304 status = ice_pkg_buf_reserve_section(b, sects); 4305 if (status) 4306 goto error_tmp; 4307 4308 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4309 if (es) { 4310 status = ice_prof_bld_es(hw, blk, b, chgs); 4311 if (status) 4312 goto error_tmp; 4313 } 4314 4315 if (tcam) { 4316 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4317 if (status) 4318 goto error_tmp; 4319 } 4320 4321 if (xlt1) { 4322 status = ice_prof_bld_xlt1(blk, b, chgs); 4323 if (status) 4324 goto error_tmp; 4325 } 4326 4327 if (xlt2) { 4328 status = ice_prof_bld_xlt2(blk, b, chgs); 4329 if (status) 4330 goto error_tmp; 4331 } 4332 4333 /* After package buffer build check if the section count in buffer is 4334 * non-zero and matches the number of sections detected for package 4335 * update. 4336 */ 4337 pkg_sects = ice_pkg_buf_get_active_sections(b); 4338 if (!pkg_sects || pkg_sects != sects) { 4339 status = -EINVAL; 4340 goto error_tmp; 4341 } 4342 4343 /* update package */ 4344 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4345 if (status == -EIO) 4346 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4347 4348 error_tmp: 4349 ice_pkg_buf_free(hw, b); 4350 return status; 4351 } 4352 4353 /** 4354 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4355 * @hw: pointer to the HW struct 4356 * @prof_id: profile ID 4357 * @mask_sel: mask select 4358 * 4359 * This function enable any of the masks selected by the mask select parameter 4360 * for the profile specified. 4361 */ 4362 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4363 { 4364 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4365 4366 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4367 GLQF_FDMASK_SEL(prof_id), mask_sel); 4368 } 4369 4370 struct ice_fd_src_dst_pair { 4371 u8 prot_id; 4372 u8 count; 4373 u16 off; 4374 }; 4375 4376 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4377 /* These are defined in pairs */ 4378 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4379 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4380 4381 { ICE_PROT_IPV4_IL, 2, 12 }, 4382 { ICE_PROT_IPV4_IL, 2, 16 }, 4383 4384 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4385 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4386 4387 { ICE_PROT_IPV6_IL, 8, 8 }, 4388 { ICE_PROT_IPV6_IL, 8, 24 }, 4389 4390 { ICE_PROT_TCP_IL, 1, 0 }, 4391 { ICE_PROT_TCP_IL, 1, 2 }, 4392 4393 { ICE_PROT_UDP_OF, 1, 0 }, 4394 { ICE_PROT_UDP_OF, 1, 2 }, 4395 4396 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4397 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4398 4399 { ICE_PROT_SCTP_IL, 1, 0 }, 4400 { ICE_PROT_SCTP_IL, 1, 2 } 4401 }; 4402 4403 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4404 4405 /** 4406 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4407 * @hw: pointer to the HW struct 4408 * @prof_id: profile ID 4409 * @es: extraction sequence (length of array is determined by the block) 4410 */ 4411 static int 4412 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4413 { 4414 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4415 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4416 #define ICE_FD_FV_NOT_FOUND (-2) 4417 s8 first_free = ICE_FD_FV_NOT_FOUND; 4418 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4419 s8 orig_free, si; 4420 u32 mask_sel = 0; 4421 u8 i, j, k; 4422 4423 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4424 4425 /* This code assumes that the Flow Director field vectors are assigned 4426 * from the end of the FV indexes working towards the zero index, that 4427 * only complete fields will be included and will be consecutive, and 4428 * that there are no gaps between valid indexes. 4429 */ 4430 4431 /* Determine swap fields present */ 4432 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4433 /* Find the first free entry, assuming right to left population. 4434 * This is where we can start adding additional pairs if needed. 4435 */ 4436 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4437 ICE_PROT_INVALID) 4438 first_free = i - 1; 4439 4440 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4441 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4442 es[i].off == ice_fd_pairs[j].off) { 4443 __set_bit(j, pair_list); 4444 pair_start[j] = i; 4445 } 4446 } 4447 4448 orig_free = first_free; 4449 4450 /* determine missing swap fields that need to be added */ 4451 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4452 u8 bit1 = test_bit(i + 1, pair_list); 4453 u8 bit0 = test_bit(i, pair_list); 4454 4455 if (bit0 ^ bit1) { 4456 u8 index; 4457 4458 /* add the appropriate 'paired' entry */ 4459 if (!bit0) 4460 index = i; 4461 else 4462 index = i + 1; 4463 4464 /* check for room */ 4465 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4466 return -ENOSPC; 4467 4468 /* place in extraction sequence */ 4469 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4470 es[first_free - k].prot_id = 4471 ice_fd_pairs[index].prot_id; 4472 es[first_free - k].off = 4473 ice_fd_pairs[index].off + (k * 2); 4474 4475 if (k > first_free) 4476 return -EIO; 4477 4478 /* keep track of non-relevant fields */ 4479 mask_sel |= BIT(first_free - k); 4480 } 4481 4482 pair_start[index] = first_free; 4483 first_free -= ice_fd_pairs[index].count; 4484 } 4485 } 4486 4487 /* fill in the swap array */ 4488 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4489 while (si >= 0) { 4490 u8 indexes_used = 1; 4491 4492 /* assume flat at this index */ 4493 #define ICE_SWAP_VALID 0x80 4494 used[si] = si | ICE_SWAP_VALID; 4495 4496 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4497 si -= indexes_used; 4498 continue; 4499 } 4500 4501 /* check for a swap location */ 4502 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4503 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4504 es[si].off == ice_fd_pairs[j].off) { 4505 u8 idx; 4506 4507 /* determine the appropriate matching field */ 4508 idx = j + ((j % 2) ? -1 : 1); 4509 4510 indexes_used = ice_fd_pairs[idx].count; 4511 for (k = 0; k < indexes_used; k++) { 4512 used[si - k] = (pair_start[idx] - k) | 4513 ICE_SWAP_VALID; 4514 } 4515 4516 break; 4517 } 4518 4519 si -= indexes_used; 4520 } 4521 4522 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4523 * register 4524 */ 4525 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4526 u32 raw_swap = 0; 4527 u32 raw_in = 0; 4528 4529 for (k = 0; k < 4; k++) { 4530 u8 idx; 4531 4532 idx = (j * 4) + k; 4533 if (used[idx] && !(mask_sel & BIT(idx))) { 4534 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4535 #define ICE_INSET_DFLT 0x9f 4536 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4537 } 4538 } 4539 4540 /* write the appropriate swap register set */ 4541 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4542 4543 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4544 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4545 4546 /* write the appropriate inset register set */ 4547 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4548 4549 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4550 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4551 } 4552 4553 /* initially clear the mask select for this profile */ 4554 ice_update_fd_mask(hw, prof_id, 0); 4555 4556 return 0; 4557 } 4558 4559 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4560 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4561 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4562 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4563 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4564 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4565 }; 4566 4567 /** 4568 * ice_get_ptype_attrib_info - get PTYPE attribute information 4569 * @type: attribute type 4570 * @info: pointer to variable to the attribute information 4571 */ 4572 static void 4573 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4574 struct ice_ptype_attrib_info *info) 4575 { 4576 *info = ice_ptype_attributes[type]; 4577 } 4578 4579 /** 4580 * ice_add_prof_attrib - add any PTG with attributes to profile 4581 * @prof: pointer to the profile to which PTG entries will be added 4582 * @ptg: PTG to be added 4583 * @ptype: PTYPE that needs to be looked up 4584 * @attr: array of attributes that will be considered 4585 * @attr_cnt: number of elements in the attribute array 4586 */ 4587 static int 4588 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4589 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4590 { 4591 bool found = false; 4592 u16 i; 4593 4594 for (i = 0; i < attr_cnt; i++) 4595 if (attr[i].ptype == ptype) { 4596 found = true; 4597 4598 prof->ptg[prof->ptg_cnt] = ptg; 4599 ice_get_ptype_attrib_info(attr[i].attrib, 4600 &prof->attr[prof->ptg_cnt]); 4601 4602 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4603 return -ENOSPC; 4604 } 4605 4606 if (!found) 4607 return -ENOENT; 4608 4609 return 0; 4610 } 4611 4612 /** 4613 * ice_add_prof - add profile 4614 * @hw: pointer to the HW struct 4615 * @blk: hardware block 4616 * @id: profile tracking ID 4617 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4618 * @attr: array of attributes 4619 * @attr_cnt: number of elements in attr array 4620 * @es: extraction sequence (length of array is determined by the block) 4621 * @masks: mask for extraction sequence 4622 * 4623 * This function registers a profile, which matches a set of PTYPES with a 4624 * particular extraction sequence. While the hardware profile is allocated 4625 * it will not be written until the first call to ice_add_flow that specifies 4626 * the ID value used here. 4627 */ 4628 int 4629 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4630 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4631 struct ice_fv_word *es, u16 *masks) 4632 { 4633 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4634 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4635 struct ice_prof_map *prof; 4636 u8 byte = 0; 4637 u8 prof_id; 4638 int status; 4639 4640 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4641 4642 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4643 4644 /* search for existing profile */ 4645 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4646 if (status) { 4647 /* allocate profile ID */ 4648 status = ice_alloc_prof_id(hw, blk, &prof_id); 4649 if (status) 4650 goto err_ice_add_prof; 4651 if (blk == ICE_BLK_FD) { 4652 /* For Flow Director block, the extraction sequence may 4653 * need to be altered in the case where there are paired 4654 * fields that have no match. This is necessary because 4655 * for Flow Director, src and dest fields need to paired 4656 * for filter programming and these values are swapped 4657 * during Tx. 4658 */ 4659 status = ice_update_fd_swap(hw, prof_id, es); 4660 if (status) 4661 goto err_ice_add_prof; 4662 } 4663 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4664 if (status) 4665 goto err_ice_add_prof; 4666 4667 /* and write new es */ 4668 ice_write_es(hw, blk, prof_id, es); 4669 } 4670 4671 ice_prof_inc_ref(hw, blk, prof_id); 4672 4673 /* add profile info */ 4674 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4675 if (!prof) { 4676 status = -ENOMEM; 4677 goto err_ice_add_prof; 4678 } 4679 4680 prof->profile_cookie = id; 4681 prof->prof_id = prof_id; 4682 prof->ptg_cnt = 0; 4683 prof->context = 0; 4684 4685 /* build list of ptgs */ 4686 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4687 u8 bit; 4688 4689 if (!ptypes[byte]) { 4690 bytes--; 4691 byte++; 4692 continue; 4693 } 4694 4695 /* Examine 8 bits per byte */ 4696 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4697 BITS_PER_BYTE) { 4698 u16 ptype; 4699 u8 ptg; 4700 4701 ptype = byte * BITS_PER_BYTE + bit; 4702 4703 /* The package should place all ptypes in a non-zero 4704 * PTG, so the following call should never fail. 4705 */ 4706 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4707 continue; 4708 4709 /* If PTG is already added, skip and continue */ 4710 if (test_bit(ptg, ptgs_used)) 4711 continue; 4712 4713 __set_bit(ptg, ptgs_used); 4714 /* Check to see there are any attributes for 4715 * this PTYPE, and add them if found. 4716 */ 4717 status = ice_add_prof_attrib(prof, ptg, ptype, 4718 attr, attr_cnt); 4719 if (status == -ENOSPC) 4720 break; 4721 if (status) { 4722 /* This is simple a PTYPE/PTG with no 4723 * attribute 4724 */ 4725 prof->ptg[prof->ptg_cnt] = ptg; 4726 prof->attr[prof->ptg_cnt].flags = 0; 4727 prof->attr[prof->ptg_cnt].mask = 0; 4728 4729 if (++prof->ptg_cnt >= 4730 ICE_MAX_PTG_PER_PROFILE) 4731 break; 4732 } 4733 } 4734 4735 bytes--; 4736 byte++; 4737 } 4738 4739 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4740 status = 0; 4741 4742 err_ice_add_prof: 4743 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4744 return status; 4745 } 4746 4747 /** 4748 * ice_search_prof_id - Search for a profile tracking ID 4749 * @hw: pointer to the HW struct 4750 * @blk: hardware block 4751 * @id: profile tracking ID 4752 * 4753 * This will search for a profile tracking ID which was previously added. 4754 * The profile map lock should be held before calling this function. 4755 */ 4756 static struct ice_prof_map * 4757 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4758 { 4759 struct ice_prof_map *entry = NULL; 4760 struct ice_prof_map *map; 4761 4762 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4763 if (map->profile_cookie == id) { 4764 entry = map; 4765 break; 4766 } 4767 4768 return entry; 4769 } 4770 4771 /** 4772 * ice_vsig_prof_id_count - count profiles in a VSIG 4773 * @hw: pointer to the HW struct 4774 * @blk: hardware block 4775 * @vsig: VSIG to remove the profile from 4776 */ 4777 static u16 4778 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4779 { 4780 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4781 struct ice_vsig_prof *p; 4782 4783 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4784 list) 4785 count++; 4786 4787 return count; 4788 } 4789 4790 /** 4791 * ice_rel_tcam_idx - release a TCAM index 4792 * @hw: pointer to the HW struct 4793 * @blk: hardware block 4794 * @idx: the index to release 4795 */ 4796 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4797 { 4798 /* Masks to invoke a never match entry */ 4799 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4800 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4801 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4802 int status; 4803 4804 /* write the TCAM entry */ 4805 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4806 dc_msk, nm_msk); 4807 if (status) 4808 return status; 4809 4810 /* release the TCAM entry */ 4811 status = ice_free_tcam_ent(hw, blk, idx); 4812 4813 return status; 4814 } 4815 4816 /** 4817 * ice_rem_prof_id - remove one profile from a VSIG 4818 * @hw: pointer to the HW struct 4819 * @blk: hardware block 4820 * @prof: pointer to profile structure to remove 4821 */ 4822 static int 4823 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4824 struct ice_vsig_prof *prof) 4825 { 4826 int status; 4827 u16 i; 4828 4829 for (i = 0; i < prof->tcam_count; i++) 4830 if (prof->tcam[i].in_use) { 4831 prof->tcam[i].in_use = false; 4832 status = ice_rel_tcam_idx(hw, blk, 4833 prof->tcam[i].tcam_idx); 4834 if (status) 4835 return -EIO; 4836 } 4837 4838 return 0; 4839 } 4840 4841 /** 4842 * ice_rem_vsig - remove VSIG 4843 * @hw: pointer to the HW struct 4844 * @blk: hardware block 4845 * @vsig: the VSIG to remove 4846 * @chg: the change list 4847 */ 4848 static int 4849 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4850 struct list_head *chg) 4851 { 4852 u16 idx = vsig & ICE_VSIG_IDX_M; 4853 struct ice_vsig_vsi *vsi_cur; 4854 struct ice_vsig_prof *d, *t; 4855 int status; 4856 4857 /* remove TCAM entries */ 4858 list_for_each_entry_safe(d, t, 4859 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4860 list) { 4861 status = ice_rem_prof_id(hw, blk, d); 4862 if (status) 4863 return status; 4864 4865 list_del(&d->list); 4866 devm_kfree(ice_hw_to_dev(hw), d); 4867 } 4868 4869 /* Move all VSIS associated with this VSIG to the default VSIG */ 4870 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4871 /* If the VSIG has at least 1 VSI then iterate through the list 4872 * and remove the VSIs before deleting the group. 4873 */ 4874 if (vsi_cur) 4875 do { 4876 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4877 struct ice_chs_chg *p; 4878 4879 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4880 GFP_KERNEL); 4881 if (!p) 4882 return -ENOMEM; 4883 4884 p->type = ICE_VSIG_REM; 4885 p->orig_vsig = vsig; 4886 p->vsig = ICE_DEFAULT_VSIG; 4887 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4888 4889 list_add(&p->list_entry, chg); 4890 4891 vsi_cur = tmp; 4892 } while (vsi_cur); 4893 4894 return ice_vsig_free(hw, blk, vsig); 4895 } 4896 4897 /** 4898 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4899 * @hw: pointer to the HW struct 4900 * @blk: hardware block 4901 * @vsig: VSIG to remove the profile from 4902 * @hdl: profile handle indicating which profile to remove 4903 * @chg: list to receive a record of changes 4904 */ 4905 static int 4906 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4907 struct list_head *chg) 4908 { 4909 u16 idx = vsig & ICE_VSIG_IDX_M; 4910 struct ice_vsig_prof *p, *t; 4911 int status; 4912 4913 list_for_each_entry_safe(p, t, 4914 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4915 list) 4916 if (p->profile_cookie == hdl) { 4917 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4918 /* this is the last profile, remove the VSIG */ 4919 return ice_rem_vsig(hw, blk, vsig, chg); 4920 4921 status = ice_rem_prof_id(hw, blk, p); 4922 if (!status) { 4923 list_del(&p->list); 4924 devm_kfree(ice_hw_to_dev(hw), p); 4925 } 4926 return status; 4927 } 4928 4929 return -ENOENT; 4930 } 4931 4932 /** 4933 * ice_rem_flow_all - remove all flows with a particular profile 4934 * @hw: pointer to the HW struct 4935 * @blk: hardware block 4936 * @id: profile tracking ID 4937 */ 4938 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4939 { 4940 struct ice_chs_chg *del, *tmp; 4941 struct list_head chg; 4942 int status; 4943 u16 i; 4944 4945 INIT_LIST_HEAD(&chg); 4946 4947 for (i = 1; i < ICE_MAX_VSIGS; i++) 4948 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4949 if (ice_has_prof_vsig(hw, blk, i, id)) { 4950 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4951 &chg); 4952 if (status) 4953 goto err_ice_rem_flow_all; 4954 } 4955 } 4956 4957 status = ice_upd_prof_hw(hw, blk, &chg); 4958 4959 err_ice_rem_flow_all: 4960 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4961 list_del(&del->list_entry); 4962 devm_kfree(ice_hw_to_dev(hw), del); 4963 } 4964 4965 return status; 4966 } 4967 4968 /** 4969 * ice_rem_prof - remove profile 4970 * @hw: pointer to the HW struct 4971 * @blk: hardware block 4972 * @id: profile tracking ID 4973 * 4974 * This will remove the profile specified by the ID parameter, which was 4975 * previously created through ice_add_prof. If any existing entries 4976 * are associated with this profile, they will be removed as well. 4977 */ 4978 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4979 { 4980 struct ice_prof_map *pmap; 4981 int status; 4982 4983 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4984 4985 pmap = ice_search_prof_id(hw, blk, id); 4986 if (!pmap) { 4987 status = -ENOENT; 4988 goto err_ice_rem_prof; 4989 } 4990 4991 /* remove all flows with this profile */ 4992 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4993 if (status) 4994 goto err_ice_rem_prof; 4995 4996 /* dereference profile, and possibly remove */ 4997 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4998 4999 list_del(&pmap->list); 5000 devm_kfree(ice_hw_to_dev(hw), pmap); 5001 5002 err_ice_rem_prof: 5003 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5004 return status; 5005 } 5006 5007 /** 5008 * ice_get_prof - get profile 5009 * @hw: pointer to the HW struct 5010 * @blk: hardware block 5011 * @hdl: profile handle 5012 * @chg: change list 5013 */ 5014 static int 5015 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 5016 struct list_head *chg) 5017 { 5018 struct ice_prof_map *map; 5019 struct ice_chs_chg *p; 5020 int status = 0; 5021 u16 i; 5022 5023 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5024 /* Get the details on the profile specified by the handle ID */ 5025 map = ice_search_prof_id(hw, blk, hdl); 5026 if (!map) { 5027 status = -ENOENT; 5028 goto err_ice_get_prof; 5029 } 5030 5031 for (i = 0; i < map->ptg_cnt; i++) 5032 if (!hw->blk[blk].es.written[map->prof_id]) { 5033 /* add ES to change list */ 5034 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5035 GFP_KERNEL); 5036 if (!p) { 5037 status = -ENOMEM; 5038 goto err_ice_get_prof; 5039 } 5040 5041 p->type = ICE_PTG_ES_ADD; 5042 p->ptype = 0; 5043 p->ptg = map->ptg[i]; 5044 p->add_ptg = 0; 5045 5046 p->add_prof = 1; 5047 p->prof_id = map->prof_id; 5048 5049 hw->blk[blk].es.written[map->prof_id] = true; 5050 5051 list_add(&p->list_entry, chg); 5052 } 5053 5054 err_ice_get_prof: 5055 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5056 /* let caller clean up the change list */ 5057 return status; 5058 } 5059 5060 /** 5061 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 5062 * @hw: pointer to the HW struct 5063 * @blk: hardware block 5064 * @vsig: VSIG from which to copy the list 5065 * @lst: output list 5066 * 5067 * This routine makes a copy of the list of profiles in the specified VSIG. 5068 */ 5069 static int 5070 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5071 struct list_head *lst) 5072 { 5073 struct ice_vsig_prof *ent1, *ent2; 5074 u16 idx = vsig & ICE_VSIG_IDX_M; 5075 5076 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5077 list) { 5078 struct ice_vsig_prof *p; 5079 5080 /* copy to the input list */ 5081 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 5082 GFP_KERNEL); 5083 if (!p) 5084 goto err_ice_get_profs_vsig; 5085 5086 list_add_tail(&p->list, lst); 5087 } 5088 5089 return 0; 5090 5091 err_ice_get_profs_vsig: 5092 list_for_each_entry_safe(ent1, ent2, lst, list) { 5093 list_del(&ent1->list); 5094 devm_kfree(ice_hw_to_dev(hw), ent1); 5095 } 5096 5097 return -ENOMEM; 5098 } 5099 5100 /** 5101 * ice_add_prof_to_lst - add profile entry to a list 5102 * @hw: pointer to the HW struct 5103 * @blk: hardware block 5104 * @lst: the list to be added to 5105 * @hdl: profile handle of entry to add 5106 */ 5107 static int 5108 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 5109 struct list_head *lst, u64 hdl) 5110 { 5111 struct ice_prof_map *map; 5112 struct ice_vsig_prof *p; 5113 int status = 0; 5114 u16 i; 5115 5116 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5117 map = ice_search_prof_id(hw, blk, hdl); 5118 if (!map) { 5119 status = -ENOENT; 5120 goto err_ice_add_prof_to_lst; 5121 } 5122 5123 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5124 if (!p) { 5125 status = -ENOMEM; 5126 goto err_ice_add_prof_to_lst; 5127 } 5128 5129 p->profile_cookie = map->profile_cookie; 5130 p->prof_id = map->prof_id; 5131 p->tcam_count = map->ptg_cnt; 5132 5133 for (i = 0; i < map->ptg_cnt; i++) { 5134 p->tcam[i].prof_id = map->prof_id; 5135 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5136 p->tcam[i].ptg = map->ptg[i]; 5137 } 5138 5139 list_add(&p->list, lst); 5140 5141 err_ice_add_prof_to_lst: 5142 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5143 return status; 5144 } 5145 5146 /** 5147 * ice_move_vsi - move VSI to another VSIG 5148 * @hw: pointer to the HW struct 5149 * @blk: hardware block 5150 * @vsi: the VSI to move 5151 * @vsig: the VSIG to move the VSI to 5152 * @chg: the change list 5153 */ 5154 static int 5155 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5156 struct list_head *chg) 5157 { 5158 struct ice_chs_chg *p; 5159 u16 orig_vsig; 5160 int status; 5161 5162 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5163 if (!p) 5164 return -ENOMEM; 5165 5166 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5167 if (!status) 5168 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5169 5170 if (status) { 5171 devm_kfree(ice_hw_to_dev(hw), p); 5172 return status; 5173 } 5174 5175 p->type = ICE_VSI_MOVE; 5176 p->vsi = vsi; 5177 p->orig_vsig = orig_vsig; 5178 p->vsig = vsig; 5179 5180 list_add(&p->list_entry, chg); 5181 5182 return 0; 5183 } 5184 5185 /** 5186 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5187 * @hw: pointer to the HW struct 5188 * @idx: the index of the TCAM entry to remove 5189 * @chg: the list of change structures to search 5190 */ 5191 static void 5192 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5193 { 5194 struct ice_chs_chg *pos, *tmp; 5195 5196 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5197 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5198 list_del(&tmp->list_entry); 5199 devm_kfree(ice_hw_to_dev(hw), tmp); 5200 } 5201 } 5202 5203 /** 5204 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5205 * @hw: pointer to the HW struct 5206 * @blk: hardware block 5207 * @enable: true to enable, false to disable 5208 * @vsig: the VSIG of the TCAM entry 5209 * @tcam: pointer the TCAM info structure of the TCAM to disable 5210 * @chg: the change list 5211 * 5212 * This function appends an enable or disable TCAM entry in the change log 5213 */ 5214 static int 5215 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5216 u16 vsig, struct ice_tcam_inf *tcam, 5217 struct list_head *chg) 5218 { 5219 struct ice_chs_chg *p; 5220 int status; 5221 5222 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5223 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5224 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5225 5226 /* if disabling, free the TCAM */ 5227 if (!enable) { 5228 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5229 5230 /* if we have already created a change for this TCAM entry, then 5231 * we need to remove that entry, in order to prevent writing to 5232 * a TCAM entry we no longer will have ownership of. 5233 */ 5234 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5235 tcam->tcam_idx = 0; 5236 tcam->in_use = 0; 5237 return status; 5238 } 5239 5240 /* for re-enabling, reallocate a TCAM */ 5241 /* for entries with empty attribute masks, allocate entry from 5242 * the bottom of the TCAM table; otherwise, allocate from the 5243 * top of the table in order to give it higher priority 5244 */ 5245 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5246 &tcam->tcam_idx); 5247 if (status) 5248 return status; 5249 5250 /* add TCAM to change list */ 5251 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5252 if (!p) 5253 return -ENOMEM; 5254 5255 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5256 tcam->ptg, vsig, 0, tcam->attr.flags, 5257 vl_msk, dc_msk, nm_msk); 5258 if (status) 5259 goto err_ice_prof_tcam_ena_dis; 5260 5261 tcam->in_use = 1; 5262 5263 p->type = ICE_TCAM_ADD; 5264 p->add_tcam_idx = true; 5265 p->prof_id = tcam->prof_id; 5266 p->ptg = tcam->ptg; 5267 p->vsig = 0; 5268 p->tcam_idx = tcam->tcam_idx; 5269 5270 /* log change */ 5271 list_add(&p->list_entry, chg); 5272 5273 return 0; 5274 5275 err_ice_prof_tcam_ena_dis: 5276 devm_kfree(ice_hw_to_dev(hw), p); 5277 return status; 5278 } 5279 5280 /** 5281 * ice_adj_prof_priorities - adjust profile based on priorities 5282 * @hw: pointer to the HW struct 5283 * @blk: hardware block 5284 * @vsig: the VSIG for which to adjust profile priorities 5285 * @chg: the change list 5286 */ 5287 static int 5288 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5289 struct list_head *chg) 5290 { 5291 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5292 struct ice_vsig_prof *t; 5293 int status; 5294 u16 idx; 5295 5296 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5297 idx = vsig & ICE_VSIG_IDX_M; 5298 5299 /* Priority is based on the order in which the profiles are added. The 5300 * newest added profile has highest priority and the oldest added 5301 * profile has the lowest priority. Since the profile property list for 5302 * a VSIG is sorted from newest to oldest, this code traverses the list 5303 * in order and enables the first of each PTG that it finds (that is not 5304 * already enabled); it also disables any duplicate PTGs that it finds 5305 * in the older profiles (that are currently enabled). 5306 */ 5307 5308 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5309 list) { 5310 u16 i; 5311 5312 for (i = 0; i < t->tcam_count; i++) { 5313 /* Scan the priorities from newest to oldest. 5314 * Make sure that the newest profiles take priority. 5315 */ 5316 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5317 t->tcam[i].in_use) { 5318 /* need to mark this PTG as never match, as it 5319 * was already in use and therefore duplicate 5320 * (and lower priority) 5321 */ 5322 status = ice_prof_tcam_ena_dis(hw, blk, false, 5323 vsig, 5324 &t->tcam[i], 5325 chg); 5326 if (status) 5327 return status; 5328 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5329 !t->tcam[i].in_use) { 5330 /* need to enable this PTG, as it in not in use 5331 * and not enabled (highest priority) 5332 */ 5333 status = ice_prof_tcam_ena_dis(hw, blk, true, 5334 vsig, 5335 &t->tcam[i], 5336 chg); 5337 if (status) 5338 return status; 5339 } 5340 5341 /* keep track of used ptgs */ 5342 __set_bit(t->tcam[i].ptg, ptgs_used); 5343 } 5344 } 5345 5346 return 0; 5347 } 5348 5349 /** 5350 * ice_add_prof_id_vsig - add profile to VSIG 5351 * @hw: pointer to the HW struct 5352 * @blk: hardware block 5353 * @vsig: the VSIG to which this profile is to be added 5354 * @hdl: the profile handle indicating the profile to add 5355 * @rev: true to add entries to the end of the list 5356 * @chg: the change list 5357 */ 5358 static int 5359 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5360 bool rev, struct list_head *chg) 5361 { 5362 /* Masks that ignore flags */ 5363 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5364 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5365 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5366 struct ice_prof_map *map; 5367 struct ice_vsig_prof *t; 5368 struct ice_chs_chg *p; 5369 u16 vsig_idx, i; 5370 int status = 0; 5371 5372 /* Error, if this VSIG already has this profile */ 5373 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5374 return -EEXIST; 5375 5376 /* new VSIG profile structure */ 5377 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5378 if (!t) 5379 return -ENOMEM; 5380 5381 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5382 /* Get the details on the profile specified by the handle ID */ 5383 map = ice_search_prof_id(hw, blk, hdl); 5384 if (!map) { 5385 status = -ENOENT; 5386 goto err_ice_add_prof_id_vsig; 5387 } 5388 5389 t->profile_cookie = map->profile_cookie; 5390 t->prof_id = map->prof_id; 5391 t->tcam_count = map->ptg_cnt; 5392 5393 /* create TCAM entries */ 5394 for (i = 0; i < map->ptg_cnt; i++) { 5395 u16 tcam_idx; 5396 5397 /* add TCAM to change list */ 5398 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5399 if (!p) { 5400 status = -ENOMEM; 5401 goto err_ice_add_prof_id_vsig; 5402 } 5403 5404 /* allocate the TCAM entry index */ 5405 /* for entries with empty attribute masks, allocate entry from 5406 * the bottom of the TCAM table; otherwise, allocate from the 5407 * top of the table in order to give it higher priority 5408 */ 5409 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5410 &tcam_idx); 5411 if (status) { 5412 devm_kfree(ice_hw_to_dev(hw), p); 5413 goto err_ice_add_prof_id_vsig; 5414 } 5415 5416 t->tcam[i].ptg = map->ptg[i]; 5417 t->tcam[i].prof_id = map->prof_id; 5418 t->tcam[i].tcam_idx = tcam_idx; 5419 t->tcam[i].attr = map->attr[i]; 5420 t->tcam[i].in_use = true; 5421 5422 p->type = ICE_TCAM_ADD; 5423 p->add_tcam_idx = true; 5424 p->prof_id = t->tcam[i].prof_id; 5425 p->ptg = t->tcam[i].ptg; 5426 p->vsig = vsig; 5427 p->tcam_idx = t->tcam[i].tcam_idx; 5428 5429 /* write the TCAM entry */ 5430 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5431 t->tcam[i].prof_id, 5432 t->tcam[i].ptg, vsig, 0, 0, 5433 vl_msk, dc_msk, nm_msk); 5434 if (status) { 5435 devm_kfree(ice_hw_to_dev(hw), p); 5436 goto err_ice_add_prof_id_vsig; 5437 } 5438 5439 /* log change */ 5440 list_add(&p->list_entry, chg); 5441 } 5442 5443 /* add profile to VSIG */ 5444 vsig_idx = vsig & ICE_VSIG_IDX_M; 5445 if (rev) 5446 list_add_tail(&t->list, 5447 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5448 else 5449 list_add(&t->list, 5450 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5451 5452 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5453 return status; 5454 5455 err_ice_add_prof_id_vsig: 5456 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5457 /* let caller clean up the change list */ 5458 devm_kfree(ice_hw_to_dev(hw), t); 5459 return status; 5460 } 5461 5462 /** 5463 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5464 * @hw: pointer to the HW struct 5465 * @blk: hardware block 5466 * @vsi: the initial VSI that will be in VSIG 5467 * @hdl: the profile handle of the profile that will be added to the VSIG 5468 * @chg: the change list 5469 */ 5470 static int 5471 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5472 struct list_head *chg) 5473 { 5474 struct ice_chs_chg *p; 5475 u16 new_vsig; 5476 int status; 5477 5478 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5479 if (!p) 5480 return -ENOMEM; 5481 5482 new_vsig = ice_vsig_alloc(hw, blk); 5483 if (!new_vsig) { 5484 status = -EIO; 5485 goto err_ice_create_prof_id_vsig; 5486 } 5487 5488 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5489 if (status) 5490 goto err_ice_create_prof_id_vsig; 5491 5492 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5493 if (status) 5494 goto err_ice_create_prof_id_vsig; 5495 5496 p->type = ICE_VSIG_ADD; 5497 p->vsi = vsi; 5498 p->orig_vsig = ICE_DEFAULT_VSIG; 5499 p->vsig = new_vsig; 5500 5501 list_add(&p->list_entry, chg); 5502 5503 return 0; 5504 5505 err_ice_create_prof_id_vsig: 5506 /* let caller clean up the change list */ 5507 devm_kfree(ice_hw_to_dev(hw), p); 5508 return status; 5509 } 5510 5511 /** 5512 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5513 * @hw: pointer to the HW struct 5514 * @blk: hardware block 5515 * @vsi: the initial VSI that will be in VSIG 5516 * @lst: the list of profile that will be added to the VSIG 5517 * @new_vsig: return of new VSIG 5518 * @chg: the change list 5519 */ 5520 static int 5521 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5522 struct list_head *lst, u16 *new_vsig, 5523 struct list_head *chg) 5524 { 5525 struct ice_vsig_prof *t; 5526 int status; 5527 u16 vsig; 5528 5529 vsig = ice_vsig_alloc(hw, blk); 5530 if (!vsig) 5531 return -EIO; 5532 5533 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5534 if (status) 5535 return status; 5536 5537 list_for_each_entry(t, lst, list) { 5538 /* Reverse the order here since we are copying the list */ 5539 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5540 true, chg); 5541 if (status) 5542 return status; 5543 } 5544 5545 *new_vsig = vsig; 5546 5547 return 0; 5548 } 5549 5550 /** 5551 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5552 * @hw: pointer to the HW struct 5553 * @blk: hardware block 5554 * @hdl: the profile handle of the profile to search for 5555 * @vsig: returns the VSIG with the matching profile 5556 */ 5557 static bool 5558 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5559 { 5560 struct ice_vsig_prof *t; 5561 struct list_head lst; 5562 int status; 5563 5564 INIT_LIST_HEAD(&lst); 5565 5566 t = kzalloc(sizeof(*t), GFP_KERNEL); 5567 if (!t) 5568 return false; 5569 5570 t->profile_cookie = hdl; 5571 list_add(&t->list, &lst); 5572 5573 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5574 5575 list_del(&t->list); 5576 kfree(t); 5577 5578 return !status; 5579 } 5580 5581 /** 5582 * ice_add_prof_id_flow - add profile flow 5583 * @hw: pointer to the HW struct 5584 * @blk: hardware block 5585 * @vsi: the VSI to enable with the profile specified by ID 5586 * @hdl: profile handle 5587 * 5588 * Calling this function will update the hardware tables to enable the 5589 * profile indicated by the ID parameter for the VSIs specified in the VSI 5590 * array. Once successfully called, the flow will be enabled. 5591 */ 5592 int 5593 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5594 { 5595 struct ice_vsig_prof *tmp1, *del1; 5596 struct ice_chs_chg *tmp, *del; 5597 struct list_head union_lst; 5598 struct list_head chg; 5599 int status; 5600 u16 vsig; 5601 5602 INIT_LIST_HEAD(&union_lst); 5603 INIT_LIST_HEAD(&chg); 5604 5605 /* Get profile */ 5606 status = ice_get_prof(hw, blk, hdl, &chg); 5607 if (status) 5608 return status; 5609 5610 /* determine if VSI is already part of a VSIG */ 5611 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5612 if (!status && vsig) { 5613 bool only_vsi; 5614 u16 or_vsig; 5615 u16 ref; 5616 5617 /* found in VSIG */ 5618 or_vsig = vsig; 5619 5620 /* make sure that there is no overlap/conflict between the new 5621 * characteristics and the existing ones; we don't support that 5622 * scenario 5623 */ 5624 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5625 status = -EEXIST; 5626 goto err_ice_add_prof_id_flow; 5627 } 5628 5629 /* last VSI in the VSIG? */ 5630 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5631 if (status) 5632 goto err_ice_add_prof_id_flow; 5633 only_vsi = (ref == 1); 5634 5635 /* create a union of the current profiles and the one being 5636 * added 5637 */ 5638 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5639 if (status) 5640 goto err_ice_add_prof_id_flow; 5641 5642 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5643 if (status) 5644 goto err_ice_add_prof_id_flow; 5645 5646 /* search for an existing VSIG with an exact charc match */ 5647 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5648 if (!status) { 5649 /* move VSI to the VSIG that matches */ 5650 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5651 if (status) 5652 goto err_ice_add_prof_id_flow; 5653 5654 /* VSI has been moved out of or_vsig. If the or_vsig had 5655 * only that VSI it is now empty and can be removed. 5656 */ 5657 if (only_vsi) { 5658 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5659 if (status) 5660 goto err_ice_add_prof_id_flow; 5661 } 5662 } else if (only_vsi) { 5663 /* If the original VSIG only contains one VSI, then it 5664 * will be the requesting VSI. In this case the VSI is 5665 * not sharing entries and we can simply add the new 5666 * profile to the VSIG. 5667 */ 5668 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5669 &chg); 5670 if (status) 5671 goto err_ice_add_prof_id_flow; 5672 5673 /* Adjust priorities */ 5674 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5675 if (status) 5676 goto err_ice_add_prof_id_flow; 5677 } else { 5678 /* No match, so we need a new VSIG */ 5679 status = ice_create_vsig_from_lst(hw, blk, vsi, 5680 &union_lst, &vsig, 5681 &chg); 5682 if (status) 5683 goto err_ice_add_prof_id_flow; 5684 5685 /* Adjust priorities */ 5686 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5687 if (status) 5688 goto err_ice_add_prof_id_flow; 5689 } 5690 } else { 5691 /* need to find or add a VSIG */ 5692 /* search for an existing VSIG with an exact charc match */ 5693 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5694 /* found an exact match */ 5695 /* add or move VSI to the VSIG that matches */ 5696 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5697 if (status) 5698 goto err_ice_add_prof_id_flow; 5699 } else { 5700 /* we did not find an exact match */ 5701 /* we need to add a VSIG */ 5702 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5703 &chg); 5704 if (status) 5705 goto err_ice_add_prof_id_flow; 5706 } 5707 } 5708 5709 /* update hardware */ 5710 if (!status) 5711 status = ice_upd_prof_hw(hw, blk, &chg); 5712 5713 err_ice_add_prof_id_flow: 5714 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5715 list_del(&del->list_entry); 5716 devm_kfree(ice_hw_to_dev(hw), del); 5717 } 5718 5719 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5720 list_del(&del1->list); 5721 devm_kfree(ice_hw_to_dev(hw), del1); 5722 } 5723 5724 return status; 5725 } 5726 5727 /** 5728 * ice_rem_prof_from_list - remove a profile from list 5729 * @hw: pointer to the HW struct 5730 * @lst: list to remove the profile from 5731 * @hdl: the profile handle indicating the profile to remove 5732 */ 5733 static int 5734 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5735 { 5736 struct ice_vsig_prof *ent, *tmp; 5737 5738 list_for_each_entry_safe(ent, tmp, lst, list) 5739 if (ent->profile_cookie == hdl) { 5740 list_del(&ent->list); 5741 devm_kfree(ice_hw_to_dev(hw), ent); 5742 return 0; 5743 } 5744 5745 return -ENOENT; 5746 } 5747 5748 /** 5749 * ice_rem_prof_id_flow - remove flow 5750 * @hw: pointer to the HW struct 5751 * @blk: hardware block 5752 * @vsi: the VSI from which to remove the profile specified by ID 5753 * @hdl: profile tracking handle 5754 * 5755 * Calling this function will update the hardware tables to remove the 5756 * profile indicated by the ID parameter for the VSIs specified in the VSI 5757 * array. Once successfully called, the flow will be disabled. 5758 */ 5759 int 5760 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5761 { 5762 struct ice_vsig_prof *tmp1, *del1; 5763 struct ice_chs_chg *tmp, *del; 5764 struct list_head chg, copy; 5765 int status; 5766 u16 vsig; 5767 5768 INIT_LIST_HEAD(©); 5769 INIT_LIST_HEAD(&chg); 5770 5771 /* determine if VSI is already part of a VSIG */ 5772 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5773 if (!status && vsig) { 5774 bool last_profile; 5775 bool only_vsi; 5776 u16 ref; 5777 5778 /* found in VSIG */ 5779 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5780 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5781 if (status) 5782 goto err_ice_rem_prof_id_flow; 5783 only_vsi = (ref == 1); 5784 5785 if (only_vsi) { 5786 /* If the original VSIG only contains one reference, 5787 * which will be the requesting VSI, then the VSI is not 5788 * sharing entries and we can simply remove the specific 5789 * characteristics from the VSIG. 5790 */ 5791 5792 if (last_profile) { 5793 /* If there are no profiles left for this VSIG, 5794 * then simply remove the VSIG. 5795 */ 5796 status = ice_rem_vsig(hw, blk, vsig, &chg); 5797 if (status) 5798 goto err_ice_rem_prof_id_flow; 5799 } else { 5800 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5801 hdl, &chg); 5802 if (status) 5803 goto err_ice_rem_prof_id_flow; 5804 5805 /* Adjust priorities */ 5806 status = ice_adj_prof_priorities(hw, blk, vsig, 5807 &chg); 5808 if (status) 5809 goto err_ice_rem_prof_id_flow; 5810 } 5811 5812 } else { 5813 /* Make a copy of the VSIG's list of Profiles */ 5814 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5815 if (status) 5816 goto err_ice_rem_prof_id_flow; 5817 5818 /* Remove specified profile entry from the list */ 5819 status = ice_rem_prof_from_list(hw, ©, hdl); 5820 if (status) 5821 goto err_ice_rem_prof_id_flow; 5822 5823 if (list_empty(©)) { 5824 status = ice_move_vsi(hw, blk, vsi, 5825 ICE_DEFAULT_VSIG, &chg); 5826 if (status) 5827 goto err_ice_rem_prof_id_flow; 5828 5829 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5830 &vsig)) { 5831 /* found an exact match */ 5832 /* add or move VSI to the VSIG that matches */ 5833 /* Search for a VSIG with a matching profile 5834 * list 5835 */ 5836 5837 /* Found match, move VSI to the matching VSIG */ 5838 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5839 if (status) 5840 goto err_ice_rem_prof_id_flow; 5841 } else { 5842 /* since no existing VSIG supports this 5843 * characteristic pattern, we need to create a 5844 * new VSIG and TCAM entries 5845 */ 5846 status = ice_create_vsig_from_lst(hw, blk, vsi, 5847 ©, &vsig, 5848 &chg); 5849 if (status) 5850 goto err_ice_rem_prof_id_flow; 5851 5852 /* Adjust priorities */ 5853 status = ice_adj_prof_priorities(hw, blk, vsig, 5854 &chg); 5855 if (status) 5856 goto err_ice_rem_prof_id_flow; 5857 } 5858 } 5859 } else { 5860 status = -ENOENT; 5861 } 5862 5863 /* update hardware tables */ 5864 if (!status) 5865 status = ice_upd_prof_hw(hw, blk, &chg); 5866 5867 err_ice_rem_prof_id_flow: 5868 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5869 list_del(&del->list_entry); 5870 devm_kfree(ice_hw_to_dev(hw), del); 5871 } 5872 5873 list_for_each_entry_safe(del1, tmp1, ©, list) { 5874 list_del(&del1->list); 5875 devm_kfree(ice_hw_to_dev(hw), del1); 5876 } 5877 5878 return status; 5879 } 5880