1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 338 return NULL; 339 340 if (offset) 341 *offset = 0; 342 343 boost = section; 344 if (index >= le16_to_cpu(boost->count)) 345 return NULL; 346 347 return boost->tcam + index; 348 } 349 350 /** 351 * ice_find_boost_entry 352 * @ice_seg: pointer to the ice segment (non-NULL) 353 * @addr: Boost TCAM address of entry to search for 354 * @entry: returns pointer to the entry 355 * 356 * Finds a particular Boost TCAM entry and returns a pointer to that entry 357 * if it is found. The ice_seg parameter must not be NULL since the first call 358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 359 */ 360 static enum ice_status 361 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 362 struct ice_boost_tcam_entry **entry) 363 { 364 struct ice_boost_tcam_entry *tcam; 365 struct ice_pkg_enum state; 366 367 memset(&state, 0, sizeof(state)); 368 369 if (!ice_seg) 370 return ICE_ERR_PARAM; 371 372 do { 373 tcam = ice_pkg_enum_entry(ice_seg, &state, 374 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 375 ice_boost_tcam_handler); 376 if (tcam && le16_to_cpu(tcam->addr) == addr) { 377 *entry = tcam; 378 return 0; 379 } 380 381 ice_seg = NULL; 382 } while (tcam); 383 384 *entry = NULL; 385 return ICE_ERR_CFG; 386 } 387 388 /** 389 * ice_label_enum_handler 390 * @sect_type: section type 391 * @section: pointer to section 392 * @index: index of the label entry to be returned 393 * @offset: pointer to receive absolute offset, always zero for label sections 394 * 395 * This is a callback function that can be passed to ice_pkg_enum_entry. 396 * Handles enumeration of individual label entries. 397 */ 398 static void * 399 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 400 u32 *offset) 401 { 402 struct ice_label_section *labels; 403 404 if (!section) 405 return NULL; 406 407 if (index > ICE_MAX_LABELS_IN_BUF) 408 return NULL; 409 410 if (offset) 411 *offset = 0; 412 413 labels = section; 414 if (index >= le16_to_cpu(labels->count)) 415 return NULL; 416 417 return labels->label + index; 418 } 419 420 /** 421 * ice_enum_labels 422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 423 * @type: the section type that will contain the label (0 on subsequent calls) 424 * @state: ice_pkg_enum structure that will hold the state of the enumeration 425 * @value: pointer to a value that will return the label's value if found 426 * 427 * Enumerates a list of labels in the package. The caller will call 428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 430 * the end of the list has been reached. 431 */ 432 static char * 433 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 434 u16 *value) 435 { 436 struct ice_label *label; 437 438 /* Check for valid label section on first call */ 439 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 440 return NULL; 441 442 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 443 ice_label_enum_handler); 444 if (!label) 445 return NULL; 446 447 *value = le16_to_cpu(label->value); 448 return label->name; 449 } 450 451 /** 452 * ice_init_pkg_hints 453 * @hw: pointer to the HW structure 454 * @ice_seg: pointer to the segment of the package scan (non-NULL) 455 * 456 * This function will scan the package and save off relevant information 457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 458 * since the first call to ice_enum_labels requires a pointer to an actual 459 * ice_seg structure. 460 */ 461 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 462 { 463 struct ice_pkg_enum state; 464 char *label_name; 465 u16 val; 466 int i; 467 468 memset(&hw->tnl, 0, sizeof(hw->tnl)); 469 memset(&state, 0, sizeof(state)); 470 471 if (!ice_seg) 472 return; 473 474 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 475 &val); 476 477 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 478 for (i = 0; tnls[i].type != TNL_LAST; i++) { 479 size_t len = strlen(tnls[i].label_prefix); 480 481 /* Look for matching label start, before continuing */ 482 if (strncmp(label_name, tnls[i].label_prefix, len)) 483 continue; 484 485 /* Make sure this label matches our PF. Note that the PF 486 * character ('0' - '7') will be located where our 487 * prefix string's null terminator is located. 488 */ 489 if ((label_name[len] - '0') == hw->pf_id) { 490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 491 hw->tnl.tbl[hw->tnl.count].valid = false; 492 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 493 hw->tnl.tbl[hw->tnl.count].port = 0; 494 hw->tnl.count++; 495 break; 496 } 497 } 498 499 label_name = ice_enum_labels(NULL, 0, &state, &val); 500 } 501 502 /* Cache the appropriate boost TCAM entry pointers */ 503 for (i = 0; i < hw->tnl.count; i++) { 504 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 505 &hw->tnl.tbl[i].boost_entry); 506 if (hw->tnl.tbl[i].boost_entry) { 507 hw->tnl.tbl[i].valid = true; 508 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 509 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 510 } 511 } 512 } 513 514 /* Key creation */ 515 516 #define ICE_DC_KEY 0x1 /* don't care */ 517 #define ICE_DC_KEYINV 0x1 518 #define ICE_NM_KEY 0x0 /* never match */ 519 #define ICE_NM_KEYINV 0x0 520 #define ICE_0_KEY 0x1 /* match 0 */ 521 #define ICE_0_KEYINV 0x0 522 #define ICE_1_KEY 0x0 /* match 1 */ 523 #define ICE_1_KEYINV 0x1 524 525 /** 526 * ice_gen_key_word - generate 16-bits of a key/mask word 527 * @val: the value 528 * @valid: valid bits mask (change only the valid bits) 529 * @dont_care: don't care mask 530 * @nvr_mtch: never match mask 531 * @key: pointer to an array of where the resulting key portion 532 * @key_inv: pointer to an array of where the resulting key invert portion 533 * 534 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 535 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 536 * of key and 8 bits of key invert. 537 * 538 * '0' = b01, always match a 0 bit 539 * '1' = b10, always match a 1 bit 540 * '?' = b11, don't care bit (always matches) 541 * '~' = b00, never match bit 542 * 543 * Input: 544 * val: b0 1 0 1 0 1 545 * dont_care: b0 0 1 1 0 0 546 * never_mtch: b0 0 0 0 1 1 547 * ------------------------------ 548 * Result: key: b01 10 11 11 00 00 549 */ 550 static enum ice_status 551 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 552 u8 *key_inv) 553 { 554 u8 in_key = *key, in_key_inv = *key_inv; 555 u8 i; 556 557 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 558 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 559 return ICE_ERR_CFG; 560 561 *key = 0; 562 *key_inv = 0; 563 564 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 565 for (i = 0; i < 8; i++) { 566 *key >>= 1; 567 *key_inv >>= 1; 568 569 if (!(valid & 0x1)) { /* change only valid bits */ 570 *key |= (in_key & 0x1) << 7; 571 *key_inv |= (in_key_inv & 0x1) << 7; 572 } else if (dont_care & 0x1) { /* don't care bit */ 573 *key |= ICE_DC_KEY << 7; 574 *key_inv |= ICE_DC_KEYINV << 7; 575 } else if (nvr_mtch & 0x1) { /* never match bit */ 576 *key |= ICE_NM_KEY << 7; 577 *key_inv |= ICE_NM_KEYINV << 7; 578 } else if (val & 0x01) { /* exact 1 match */ 579 *key |= ICE_1_KEY << 7; 580 *key_inv |= ICE_1_KEYINV << 7; 581 } else { /* exact 0 match */ 582 *key |= ICE_0_KEY << 7; 583 *key_inv |= ICE_0_KEYINV << 7; 584 } 585 586 dont_care >>= 1; 587 nvr_mtch >>= 1; 588 valid >>= 1; 589 val >>= 1; 590 in_key >>= 1; 591 in_key_inv >>= 1; 592 } 593 594 return 0; 595 } 596 597 /** 598 * ice_bits_max_set - determine if the number of bits set is within a maximum 599 * @mask: pointer to the byte array which is the mask 600 * @size: the number of bytes in the mask 601 * @max: the max number of set bits 602 * 603 * This function determines if there are at most 'max' number of bits set in an 604 * array. Returns true if the number for bits set is <= max or will return false 605 * otherwise. 606 */ 607 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 608 { 609 u16 count = 0; 610 u16 i; 611 612 /* check each byte */ 613 for (i = 0; i < size; i++) { 614 /* if 0, go to next byte */ 615 if (!mask[i]) 616 continue; 617 618 /* We know there is at least one set bit in this byte because of 619 * the above check; if we already have found 'max' number of 620 * bits set, then we can return failure now. 621 */ 622 if (count == max) 623 return false; 624 625 /* count the bits in this byte, checking threshold */ 626 count += hweight8(mask[i]); 627 if (count > max) 628 return false; 629 } 630 631 return true; 632 } 633 634 /** 635 * ice_set_key - generate a variable sized key with multiples of 16-bits 636 * @key: pointer to where the key will be stored 637 * @size: the size of the complete key in bytes (must be even) 638 * @val: array of 8-bit values that makes up the value portion of the key 639 * @upd: array of 8-bit masks that determine what key portion to update 640 * @dc: array of 8-bit masks that make up the don't care mask 641 * @nm: array of 8-bit masks that make up the never match mask 642 * @off: the offset of the first byte in the key to update 643 * @len: the number of bytes in the key update 644 * 645 * This function generates a key from a value, a don't care mask and a never 646 * match mask. 647 * upd, dc, and nm are optional parameters, and can be NULL: 648 * upd == NULL --> upd mask is all 1's (update all bits) 649 * dc == NULL --> dc mask is all 0's (no don't care bits) 650 * nm == NULL --> nm mask is all 0's (no never match bits) 651 */ 652 static enum ice_status 653 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 654 u16 len) 655 { 656 u16 half_size; 657 u16 i; 658 659 /* size must be a multiple of 2 bytes. */ 660 if (size % 2) 661 return ICE_ERR_CFG; 662 663 half_size = size / 2; 664 if (off + len > half_size) 665 return ICE_ERR_CFG; 666 667 /* Make sure at most one bit is set in the never match mask. Having more 668 * than one never match mask bit set will cause HW to consume excessive 669 * power otherwise; this is a power management efficiency check. 670 */ 671 #define ICE_NVR_MTCH_BITS_MAX 1 672 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 673 return ICE_ERR_CFG; 674 675 for (i = 0; i < len; i++) 676 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 677 dc ? dc[i] : 0, nm ? nm[i] : 0, 678 key + off + i, key + half_size + off + i)) 679 return ICE_ERR_CFG; 680 681 return 0; 682 } 683 684 /** 685 * ice_acquire_global_cfg_lock 686 * @hw: pointer to the HW structure 687 * @access: access type (read or write) 688 * 689 * This function will request ownership of the global config lock for reading 690 * or writing of the package. When attempting to obtain write access, the 691 * caller must check for the following two return values: 692 * 693 * ICE_SUCCESS - Means the caller has acquired the global config lock 694 * and can perform writing of the package. 695 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 696 * package or has found that no update was necessary; in 697 * this case, the caller can just skip performing any 698 * update of the package. 699 */ 700 static enum ice_status 701 ice_acquire_global_cfg_lock(struct ice_hw *hw, 702 enum ice_aq_res_access_type access) 703 { 704 enum ice_status status; 705 706 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 707 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 708 709 if (!status) 710 mutex_lock(&ice_global_cfg_lock_sw); 711 else if (status == ICE_ERR_AQ_NO_WORK) 712 ice_debug(hw, ICE_DBG_PKG, 713 "Global config lock: No work to do\n"); 714 715 return status; 716 } 717 718 /** 719 * ice_release_global_cfg_lock 720 * @hw: pointer to the HW structure 721 * 722 * This function will release the global config lock. 723 */ 724 static void ice_release_global_cfg_lock(struct ice_hw *hw) 725 { 726 mutex_unlock(&ice_global_cfg_lock_sw); 727 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 728 } 729 730 /** 731 * ice_acquire_change_lock 732 * @hw: pointer to the HW structure 733 * @access: access type (read or write) 734 * 735 * This function will request ownership of the change lock. 736 */ 737 static enum ice_status 738 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 739 { 740 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 741 ICE_CHANGE_LOCK_TIMEOUT); 742 } 743 744 /** 745 * ice_release_change_lock 746 * @hw: pointer to the HW structure 747 * 748 * This function will release the change lock using the proper Admin Command. 749 */ 750 static void ice_release_change_lock(struct ice_hw *hw) 751 { 752 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 753 } 754 755 /** 756 * ice_aq_download_pkg 757 * @hw: pointer to the hardware structure 758 * @pkg_buf: the package buffer to transfer 759 * @buf_size: the size of the package buffer 760 * @last_buf: last buffer indicator 761 * @error_offset: returns error offset 762 * @error_info: returns error information 763 * @cd: pointer to command details structure or NULL 764 * 765 * Download Package (0x0C40) 766 */ 767 static enum ice_status 768 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 769 u16 buf_size, bool last_buf, u32 *error_offset, 770 u32 *error_info, struct ice_sq_cd *cd) 771 { 772 struct ice_aqc_download_pkg *cmd; 773 struct ice_aq_desc desc; 774 enum ice_status status; 775 776 if (error_offset) 777 *error_offset = 0; 778 if (error_info) 779 *error_info = 0; 780 781 cmd = &desc.params.download_pkg; 782 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 783 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 784 785 if (last_buf) 786 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 787 788 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 789 if (status == ICE_ERR_AQ_ERROR) { 790 /* Read error from buffer only when the FW returned an error */ 791 struct ice_aqc_download_pkg_resp *resp; 792 793 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 794 if (error_offset) 795 *error_offset = le32_to_cpu(resp->error_offset); 796 if (error_info) 797 *error_info = le32_to_cpu(resp->error_info); 798 } 799 800 return status; 801 } 802 803 /** 804 * ice_aq_update_pkg 805 * @hw: pointer to the hardware structure 806 * @pkg_buf: the package cmd buffer 807 * @buf_size: the size of the package cmd buffer 808 * @last_buf: last buffer indicator 809 * @error_offset: returns error offset 810 * @error_info: returns error information 811 * @cd: pointer to command details structure or NULL 812 * 813 * Update Package (0x0C42) 814 */ 815 static enum ice_status 816 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 817 bool last_buf, u32 *error_offset, u32 *error_info, 818 struct ice_sq_cd *cd) 819 { 820 struct ice_aqc_download_pkg *cmd; 821 struct ice_aq_desc desc; 822 enum ice_status status; 823 824 if (error_offset) 825 *error_offset = 0; 826 if (error_info) 827 *error_info = 0; 828 829 cmd = &desc.params.download_pkg; 830 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 831 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 832 833 if (last_buf) 834 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 835 836 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 837 if (status == ICE_ERR_AQ_ERROR) { 838 /* Read error from buffer only when the FW returned an error */ 839 struct ice_aqc_download_pkg_resp *resp; 840 841 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 842 if (error_offset) 843 *error_offset = le32_to_cpu(resp->error_offset); 844 if (error_info) 845 *error_info = le32_to_cpu(resp->error_info); 846 } 847 848 return status; 849 } 850 851 /** 852 * ice_find_seg_in_pkg 853 * @hw: pointer to the hardware structure 854 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 855 * @pkg_hdr: pointer to the package header to be searched 856 * 857 * This function searches a package file for a particular segment type. On 858 * success it returns a pointer to the segment header, otherwise it will 859 * return NULL. 860 */ 861 static struct ice_generic_seg_hdr * 862 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 863 struct ice_pkg_hdr *pkg_hdr) 864 { 865 u32 i; 866 867 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 868 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 869 pkg_hdr->pkg_format_ver.update, 870 pkg_hdr->pkg_format_ver.draft); 871 872 /* Search all package segments for the requested segment type */ 873 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 874 struct ice_generic_seg_hdr *seg; 875 876 seg = (struct ice_generic_seg_hdr *) 877 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 878 879 if (le32_to_cpu(seg->seg_type) == seg_type) 880 return seg; 881 } 882 883 return NULL; 884 } 885 886 /** 887 * ice_update_pkg 888 * @hw: pointer to the hardware structure 889 * @bufs: pointer to an array of buffers 890 * @count: the number of buffers in the array 891 * 892 * Obtains change lock and updates package. 893 */ 894 static enum ice_status 895 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 896 { 897 enum ice_status status; 898 u32 offset, info, i; 899 900 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 901 if (status) 902 return status; 903 904 for (i = 0; i < count; i++) { 905 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 906 bool last = ((i + 1) == count); 907 908 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 909 last, &offset, &info, NULL); 910 911 if (status) { 912 ice_debug(hw, ICE_DBG_PKG, 913 "Update pkg failed: err %d off %d inf %d\n", 914 status, offset, info); 915 break; 916 } 917 } 918 919 ice_release_change_lock(hw); 920 921 return status; 922 } 923 924 /** 925 * ice_dwnld_cfg_bufs 926 * @hw: pointer to the hardware structure 927 * @bufs: pointer to an array of buffers 928 * @count: the number of buffers in the array 929 * 930 * Obtains global config lock and downloads the package configuration buffers 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 932 * found indicates that the rest of the buffers are all metadata buffers. 933 */ 934 static enum ice_status 935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 936 { 937 enum ice_status status; 938 struct ice_buf_hdr *bh; 939 u32 offset, info, i; 940 941 if (!bufs || !count) 942 return ICE_ERR_PARAM; 943 944 /* If the first buffer's first section has its metadata bit set 945 * then there are no buffers to be downloaded, and the operation is 946 * considered a success. 947 */ 948 bh = (struct ice_buf_hdr *)bufs; 949 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 950 return 0; 951 952 /* reset pkg_dwnld_status in case this function is called in the 953 * reset/rebuild flow 954 */ 955 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 956 957 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 958 if (status) { 959 if (status == ICE_ERR_AQ_NO_WORK) 960 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 961 else 962 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 963 return status; 964 } 965 966 for (i = 0; i < count; i++) { 967 bool last = ((i + 1) == count); 968 969 if (!last) { 970 /* check next buffer for metadata flag */ 971 bh = (struct ice_buf_hdr *)(bufs + i + 1); 972 973 /* A set metadata flag in the next buffer will signal 974 * that the current buffer will be the last buffer 975 * downloaded 976 */ 977 if (le16_to_cpu(bh->section_count)) 978 if (le32_to_cpu(bh->section_entry[0].type) & 979 ICE_METADATA_BUF) 980 last = true; 981 } 982 983 bh = (struct ice_buf_hdr *)(bufs + i); 984 985 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 986 &offset, &info, NULL); 987 988 /* Save AQ status from download package */ 989 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 990 if (status) { 991 ice_debug(hw, ICE_DBG_PKG, 992 "Pkg download failed: err %d off %d inf %d\n", 993 status, offset, info); 994 995 break; 996 } 997 998 if (last) 999 break; 1000 } 1001 1002 ice_release_global_cfg_lock(hw); 1003 1004 return status; 1005 } 1006 1007 /** 1008 * ice_aq_get_pkg_info_list 1009 * @hw: pointer to the hardware structure 1010 * @pkg_info: the buffer which will receive the information list 1011 * @buf_size: the size of the pkg_info information buffer 1012 * @cd: pointer to command details structure or NULL 1013 * 1014 * Get Package Info List (0x0C43) 1015 */ 1016 static enum ice_status 1017 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1018 struct ice_aqc_get_pkg_info_resp *pkg_info, 1019 u16 buf_size, struct ice_sq_cd *cd) 1020 { 1021 struct ice_aq_desc desc; 1022 1023 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1024 1025 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1026 } 1027 1028 /** 1029 * ice_download_pkg 1030 * @hw: pointer to the hardware structure 1031 * @ice_seg: pointer to the segment of the package to be downloaded 1032 * 1033 * Handles the download of a complete package. 1034 */ 1035 static enum ice_status 1036 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1037 { 1038 struct ice_buf_table *ice_buf_tbl; 1039 1040 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1041 ice_seg->hdr.seg_format_ver.major, 1042 ice_seg->hdr.seg_format_ver.minor, 1043 ice_seg->hdr.seg_format_ver.update, 1044 ice_seg->hdr.seg_format_ver.draft); 1045 1046 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1047 le32_to_cpu(ice_seg->hdr.seg_type), 1048 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1049 1050 ice_buf_tbl = ice_find_buf_table(ice_seg); 1051 1052 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1053 le32_to_cpu(ice_buf_tbl->buf_count)); 1054 1055 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1056 le32_to_cpu(ice_buf_tbl->buf_count)); 1057 } 1058 1059 /** 1060 * ice_init_pkg_info 1061 * @hw: pointer to the hardware structure 1062 * @pkg_hdr: pointer to the driver's package hdr 1063 * 1064 * Saves off the package details into the HW structure. 1065 */ 1066 static enum ice_status 1067 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1068 { 1069 struct ice_global_metadata_seg *meta_seg; 1070 struct ice_generic_seg_hdr *seg_hdr; 1071 1072 if (!pkg_hdr) 1073 return ICE_ERR_PARAM; 1074 1075 meta_seg = (struct ice_global_metadata_seg *) 1076 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr); 1077 if (meta_seg) { 1078 hw->pkg_ver = meta_seg->pkg_ver; 1079 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name)); 1080 1081 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1082 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor, 1083 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft, 1084 meta_seg->pkg_name); 1085 } else { 1086 ice_debug(hw, ICE_DBG_INIT, 1087 "Did not find metadata segment in driver package\n"); 1088 return ICE_ERR_CFG; 1089 } 1090 1091 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1092 if (seg_hdr) { 1093 hw->ice_pkg_ver = seg_hdr->seg_format_ver; 1094 memcpy(hw->ice_pkg_name, seg_hdr->seg_id, 1095 sizeof(hw->ice_pkg_name)); 1096 1097 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1098 seg_hdr->seg_format_ver.major, 1099 seg_hdr->seg_format_ver.minor, 1100 seg_hdr->seg_format_ver.update, 1101 seg_hdr->seg_format_ver.draft, 1102 seg_hdr->seg_id); 1103 } else { 1104 ice_debug(hw, ICE_DBG_INIT, 1105 "Did not find ice segment in driver package\n"); 1106 return ICE_ERR_CFG; 1107 } 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * ice_get_pkg_info 1114 * @hw: pointer to the hardware structure 1115 * 1116 * Store details of the package currently loaded in HW into the HW structure. 1117 */ 1118 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1119 { 1120 struct ice_aqc_get_pkg_info_resp *pkg_info; 1121 enum ice_status status; 1122 u16 size; 1123 u32 i; 1124 1125 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1126 pkg_info = kzalloc(size, GFP_KERNEL); 1127 if (!pkg_info) 1128 return ICE_ERR_NO_MEMORY; 1129 1130 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1131 if (status) 1132 goto init_pkg_free_alloc; 1133 1134 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1135 #define ICE_PKG_FLAG_COUNT 4 1136 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1137 u8 place = 0; 1138 1139 if (pkg_info->pkg_info[i].is_active) { 1140 flags[place++] = 'A'; 1141 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1142 hw->active_track_id = 1143 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1144 memcpy(hw->active_pkg_name, 1145 pkg_info->pkg_info[i].name, 1146 sizeof(pkg_info->pkg_info[i].name)); 1147 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1148 } 1149 if (pkg_info->pkg_info[i].is_active_at_boot) 1150 flags[place++] = 'B'; 1151 if (pkg_info->pkg_info[i].is_modified) 1152 flags[place++] = 'M'; 1153 if (pkg_info->pkg_info[i].is_in_nvm) 1154 flags[place++] = 'N'; 1155 1156 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1157 i, pkg_info->pkg_info[i].ver.major, 1158 pkg_info->pkg_info[i].ver.minor, 1159 pkg_info->pkg_info[i].ver.update, 1160 pkg_info->pkg_info[i].ver.draft, 1161 pkg_info->pkg_info[i].name, flags); 1162 } 1163 1164 init_pkg_free_alloc: 1165 kfree(pkg_info); 1166 1167 return status; 1168 } 1169 1170 /** 1171 * ice_verify_pkg - verify package 1172 * @pkg: pointer to the package buffer 1173 * @len: size of the package buffer 1174 * 1175 * Verifies various attributes of the package file, including length, format 1176 * version, and the requirement of at least one segment. 1177 */ 1178 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1179 { 1180 u32 seg_count; 1181 u32 i; 1182 1183 if (len < struct_size(pkg, seg_offset, 1)) 1184 return ICE_ERR_BUF_TOO_SHORT; 1185 1186 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1187 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1188 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1189 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1190 return ICE_ERR_CFG; 1191 1192 /* pkg must have at least one segment */ 1193 seg_count = le32_to_cpu(pkg->seg_count); 1194 if (seg_count < 1) 1195 return ICE_ERR_CFG; 1196 1197 /* make sure segment array fits in package length */ 1198 if (len < struct_size(pkg, seg_offset, seg_count)) 1199 return ICE_ERR_BUF_TOO_SHORT; 1200 1201 /* all segments must fit within length */ 1202 for (i = 0; i < seg_count; i++) { 1203 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1204 struct ice_generic_seg_hdr *seg; 1205 1206 /* segment header must fit */ 1207 if (len < off + sizeof(*seg)) 1208 return ICE_ERR_BUF_TOO_SHORT; 1209 1210 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1211 1212 /* segment body must fit */ 1213 if (len < off + le32_to_cpu(seg->seg_size)) 1214 return ICE_ERR_BUF_TOO_SHORT; 1215 } 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * ice_free_seg - free package segment pointer 1222 * @hw: pointer to the hardware structure 1223 * 1224 * Frees the package segment pointer in the proper manner, depending on if the 1225 * segment was allocated or just the passed in pointer was stored. 1226 */ 1227 void ice_free_seg(struct ice_hw *hw) 1228 { 1229 if (hw->pkg_copy) { 1230 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1231 hw->pkg_copy = NULL; 1232 hw->pkg_size = 0; 1233 } 1234 hw->seg = NULL; 1235 } 1236 1237 /** 1238 * ice_init_pkg_regs - initialize additional package registers 1239 * @hw: pointer to the hardware structure 1240 */ 1241 static void ice_init_pkg_regs(struct ice_hw *hw) 1242 { 1243 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1244 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1245 #define ICE_SW_BLK_IDX 0 1246 1247 /* setup Switch block input mask, which is 48-bits in two parts */ 1248 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1249 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1250 } 1251 1252 /** 1253 * ice_chk_pkg_version - check package version for compatibility with driver 1254 * @pkg_ver: pointer to a version structure to check 1255 * 1256 * Check to make sure that the package about to be downloaded is compatible with 1257 * the driver. To be compatible, the major and minor components of the package 1258 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1259 * definitions. 1260 */ 1261 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1262 { 1263 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1264 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1265 return ICE_ERR_NOT_SUPPORTED; 1266 1267 return 0; 1268 } 1269 1270 /** 1271 * ice_chk_pkg_compat 1272 * @hw: pointer to the hardware structure 1273 * @ospkg: pointer to the package hdr 1274 * @seg: pointer to the package segment hdr 1275 * 1276 * This function checks the package version compatibility with driver and NVM 1277 */ 1278 static enum ice_status 1279 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1280 struct ice_seg **seg) 1281 { 1282 struct ice_aqc_get_pkg_info_resp *pkg; 1283 enum ice_status status; 1284 u16 size; 1285 u32 i; 1286 1287 /* Check package version compatibility */ 1288 status = ice_chk_pkg_version(&hw->pkg_ver); 1289 if (status) { 1290 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1291 return status; 1292 } 1293 1294 /* find ICE segment in given package */ 1295 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1296 ospkg); 1297 if (!*seg) { 1298 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1299 return ICE_ERR_CFG; 1300 } 1301 1302 /* Check if FW is compatible with the OS package */ 1303 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1304 pkg = kzalloc(size, GFP_KERNEL); 1305 if (!pkg) 1306 return ICE_ERR_NO_MEMORY; 1307 1308 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1309 if (status) 1310 goto fw_ddp_compat_free_alloc; 1311 1312 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1313 /* loop till we find the NVM package */ 1314 if (!pkg->pkg_info[i].is_in_nvm) 1315 continue; 1316 if ((*seg)->hdr.seg_format_ver.major != 1317 pkg->pkg_info[i].ver.major || 1318 (*seg)->hdr.seg_format_ver.minor > 1319 pkg->pkg_info[i].ver.minor) { 1320 status = ICE_ERR_FW_DDP_MISMATCH; 1321 ice_debug(hw, ICE_DBG_INIT, 1322 "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_init_pkg - initialize/download package 1334 * @hw: pointer to the hardware structure 1335 * @buf: pointer to the package buffer 1336 * @len: size of the package buffer 1337 * 1338 * This function initializes a package. The package contains HW tables 1339 * required to do packet processing. First, the function extracts package 1340 * information such as version. Then it finds the ice configuration segment 1341 * within the package; this function then saves a copy of the segment pointer 1342 * within the supplied package buffer. Next, the function will cache any hints 1343 * from the package, followed by downloading the package itself. Note, that if 1344 * a previous PF driver has already downloaded the package successfully, then 1345 * the current driver will not have to download the package again. 1346 * 1347 * The local package contents will be used to query default behavior and to 1348 * update specific sections of the HW's version of the package (e.g. to update 1349 * the parse graph to understand new protocols). 1350 * 1351 * This function stores a pointer to the package buffer memory, and it is 1352 * expected that the supplied buffer will not be freed immediately. If the 1353 * package buffer needs to be freed, such as when read from a file, use 1354 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1355 * case. 1356 */ 1357 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1358 { 1359 struct ice_pkg_hdr *pkg; 1360 enum ice_status status; 1361 struct ice_seg *seg; 1362 1363 if (!buf || !len) 1364 return ICE_ERR_PARAM; 1365 1366 pkg = (struct ice_pkg_hdr *)buf; 1367 status = ice_verify_pkg(pkg, len); 1368 if (status) { 1369 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1370 status); 1371 return status; 1372 } 1373 1374 /* initialize package info */ 1375 status = ice_init_pkg_info(hw, pkg); 1376 if (status) 1377 return status; 1378 1379 /* before downloading the package, check package version for 1380 * compatibility with driver 1381 */ 1382 status = ice_chk_pkg_compat(hw, pkg, &seg); 1383 if (status) 1384 return status; 1385 1386 /* initialize package hints and then download package */ 1387 ice_init_pkg_hints(hw, seg); 1388 status = ice_download_pkg(hw, seg); 1389 if (status == ICE_ERR_AQ_NO_WORK) { 1390 ice_debug(hw, ICE_DBG_INIT, 1391 "package previously loaded - no work.\n"); 1392 status = 0; 1393 } 1394 1395 /* Get information on the package currently loaded in HW, then make sure 1396 * the driver is compatible with this version. 1397 */ 1398 if (!status) { 1399 status = ice_get_pkg_info(hw); 1400 if (!status) 1401 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1402 } 1403 1404 if (!status) { 1405 hw->seg = seg; 1406 /* on successful package download update other required 1407 * registers to support the package and fill HW tables 1408 * with package content. 1409 */ 1410 ice_init_pkg_regs(hw); 1411 ice_fill_blk_tbls(hw); 1412 } else { 1413 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1414 status); 1415 } 1416 1417 return status; 1418 } 1419 1420 /** 1421 * ice_copy_and_init_pkg - initialize/download a copy of the package 1422 * @hw: pointer to the hardware structure 1423 * @buf: pointer to the package buffer 1424 * @len: size of the package buffer 1425 * 1426 * This function copies the package buffer, and then calls ice_init_pkg() to 1427 * initialize the copied package contents. 1428 * 1429 * The copying is necessary if the package buffer supplied is constant, or if 1430 * the memory may disappear shortly after calling this function. 1431 * 1432 * If the package buffer resides in the data segment and can be modified, the 1433 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1434 * 1435 * However, if the package buffer needs to be copied first, such as when being 1436 * read from a file, the caller should use ice_copy_and_init_pkg(). 1437 * 1438 * This function will first copy the package buffer, before calling 1439 * ice_init_pkg(). The caller is free to immediately destroy the original 1440 * package buffer, as the new copy will be managed by this function and 1441 * related routines. 1442 */ 1443 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1444 { 1445 enum ice_status status; 1446 u8 *buf_copy; 1447 1448 if (!buf || !len) 1449 return ICE_ERR_PARAM; 1450 1451 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1452 1453 status = ice_init_pkg(hw, buf_copy, len); 1454 if (status) { 1455 /* Free the copy, since we failed to initialize the package */ 1456 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1457 } else { 1458 /* Track the copied pkg so we can free it later */ 1459 hw->pkg_copy = buf_copy; 1460 hw->pkg_size = len; 1461 } 1462 1463 return status; 1464 } 1465 1466 /** 1467 * ice_pkg_buf_alloc 1468 * @hw: pointer to the HW structure 1469 * 1470 * Allocates a package buffer and returns a pointer to the buffer header. 1471 * Note: all package contents must be in Little Endian form. 1472 */ 1473 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1474 { 1475 struct ice_buf_build *bld; 1476 struct ice_buf_hdr *buf; 1477 1478 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1479 if (!bld) 1480 return NULL; 1481 1482 buf = (struct ice_buf_hdr *)bld; 1483 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1484 section_entry)); 1485 return bld; 1486 } 1487 1488 /** 1489 * ice_pkg_buf_free 1490 * @hw: pointer to the HW structure 1491 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1492 * 1493 * Frees a package buffer 1494 */ 1495 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1496 { 1497 devm_kfree(ice_hw_to_dev(hw), bld); 1498 } 1499 1500 /** 1501 * ice_pkg_buf_reserve_section 1502 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1503 * @count: the number of sections to reserve 1504 * 1505 * Reserves one or more section table entries in a package buffer. This routine 1506 * can be called multiple times as long as they are made before calling 1507 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1508 * is called once, the number of sections that can be allocated will not be able 1509 * to be increased; not using all reserved sections is fine, but this will 1510 * result in some wasted space in the buffer. 1511 * Note: all package contents must be in Little Endian form. 1512 */ 1513 static enum ice_status 1514 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1515 { 1516 struct ice_buf_hdr *buf; 1517 u16 section_count; 1518 u16 data_end; 1519 1520 if (!bld) 1521 return ICE_ERR_PARAM; 1522 1523 buf = (struct ice_buf_hdr *)&bld->buf; 1524 1525 /* already an active section, can't increase table size */ 1526 section_count = le16_to_cpu(buf->section_count); 1527 if (section_count > 0) 1528 return ICE_ERR_CFG; 1529 1530 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1531 return ICE_ERR_CFG; 1532 bld->reserved_section_table_entries += count; 1533 1534 data_end = le16_to_cpu(buf->data_end) + 1535 (count * sizeof(buf->section_entry[0])); 1536 buf->data_end = cpu_to_le16(data_end); 1537 1538 return 0; 1539 } 1540 1541 /** 1542 * ice_pkg_buf_alloc_section 1543 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1544 * @type: the section type value 1545 * @size: the size of the section to reserve (in bytes) 1546 * 1547 * Reserves memory in the buffer for a section's content and updates the 1548 * buffers' status accordingly. This routine returns a pointer to the first 1549 * byte of the section start within the buffer, which is used to fill in the 1550 * section contents. 1551 * Note: all package contents must be in Little Endian form. 1552 */ 1553 static void * 1554 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1555 { 1556 struct ice_buf_hdr *buf; 1557 u16 sect_count; 1558 u16 data_end; 1559 1560 if (!bld || !type || !size) 1561 return NULL; 1562 1563 buf = (struct ice_buf_hdr *)&bld->buf; 1564 1565 /* check for enough space left in buffer */ 1566 data_end = le16_to_cpu(buf->data_end); 1567 1568 /* section start must align on 4 byte boundary */ 1569 data_end = ALIGN(data_end, 4); 1570 1571 if ((data_end + size) > ICE_MAX_S_DATA_END) 1572 return NULL; 1573 1574 /* check for more available section table entries */ 1575 sect_count = le16_to_cpu(buf->section_count); 1576 if (sect_count < bld->reserved_section_table_entries) { 1577 void *section_ptr = ((u8 *)buf) + data_end; 1578 1579 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1580 buf->section_entry[sect_count].size = cpu_to_le16(size); 1581 buf->section_entry[sect_count].type = cpu_to_le32(type); 1582 1583 data_end += size; 1584 buf->data_end = cpu_to_le16(data_end); 1585 1586 buf->section_count = cpu_to_le16(sect_count + 1); 1587 return section_ptr; 1588 } 1589 1590 /* no free section table entries */ 1591 return NULL; 1592 } 1593 1594 /** 1595 * ice_pkg_buf_get_active_sections 1596 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1597 * 1598 * Returns the number of active sections. Before using the package buffer 1599 * in an update package command, the caller should make sure that there is at 1600 * least one active section - otherwise, the buffer is not legal and should 1601 * not be used. 1602 * Note: all package contents must be in Little Endian form. 1603 */ 1604 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1605 { 1606 struct ice_buf_hdr *buf; 1607 1608 if (!bld) 1609 return 0; 1610 1611 buf = (struct ice_buf_hdr *)&bld->buf; 1612 return le16_to_cpu(buf->section_count); 1613 } 1614 1615 /** 1616 * ice_pkg_buf 1617 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1618 * 1619 * Return a pointer to the buffer's header 1620 */ 1621 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1622 { 1623 if (!bld) 1624 return NULL; 1625 1626 return &bld->buf; 1627 } 1628 1629 /** 1630 * ice_get_open_tunnel_port - retrieve an open tunnel port 1631 * @hw: pointer to the HW structure 1632 * @port: returns open port 1633 */ 1634 bool 1635 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) 1636 { 1637 bool res = false; 1638 u16 i; 1639 1640 mutex_lock(&hw->tnl_lock); 1641 1642 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1643 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { 1644 *port = hw->tnl.tbl[i].port; 1645 res = true; 1646 break; 1647 } 1648 1649 mutex_unlock(&hw->tnl_lock); 1650 1651 return res; 1652 } 1653 1654 /** 1655 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1656 * @hw: pointer to the HW structure 1657 * @type: type of tunnel 1658 * @idx: linear index 1659 * 1660 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1661 * but really the port table may be sprase, and types are mixed, so convert 1662 * the stack index into the device index. 1663 */ 1664 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1665 u16 idx) 1666 { 1667 u16 i; 1668 1669 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1670 if (hw->tnl.tbl[i].valid && 1671 hw->tnl.tbl[i].type == type && 1672 idx--) 1673 return i; 1674 1675 WARN_ON_ONCE(1); 1676 return 0; 1677 } 1678 1679 /** 1680 * ice_create_tunnel 1681 * @hw: pointer to the HW structure 1682 * @index: device table entry 1683 * @type: type of tunnel 1684 * @port: port of tunnel to create 1685 * 1686 * Create a tunnel by updating the parse graph in the parser. We do that by 1687 * creating a package buffer with the tunnel info and issuing an update package 1688 * command. 1689 */ 1690 static enum ice_status 1691 ice_create_tunnel(struct ice_hw *hw, u16 index, 1692 enum ice_tunnel_type type, u16 port) 1693 { 1694 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1695 enum ice_status status = ICE_ERR_MAX_LIMIT; 1696 struct ice_buf_build *bld; 1697 1698 mutex_lock(&hw->tnl_lock); 1699 1700 bld = ice_pkg_buf_alloc(hw); 1701 if (!bld) { 1702 status = ICE_ERR_NO_MEMORY; 1703 goto ice_create_tunnel_end; 1704 } 1705 1706 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1707 if (ice_pkg_buf_reserve_section(bld, 2)) 1708 goto ice_create_tunnel_err; 1709 1710 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1711 struct_size(sect_rx, tcam, 1)); 1712 if (!sect_rx) 1713 goto ice_create_tunnel_err; 1714 sect_rx->count = cpu_to_le16(1); 1715 1716 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1717 struct_size(sect_tx, tcam, 1)); 1718 if (!sect_tx) 1719 goto ice_create_tunnel_err; 1720 sect_tx->count = cpu_to_le16(1); 1721 1722 /* copy original boost entry to update package buffer */ 1723 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1724 sizeof(*sect_rx->tcam)); 1725 1726 /* over-write the never-match dest port key bits with the encoded port 1727 * bits 1728 */ 1729 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1730 (u8 *)&port, NULL, NULL, NULL, 1731 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1732 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1733 1734 /* exact copy of entry to Tx section entry */ 1735 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1736 1737 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1738 if (!status) 1739 hw->tnl.tbl[index].port = port; 1740 1741 ice_create_tunnel_err: 1742 ice_pkg_buf_free(hw, bld); 1743 1744 ice_create_tunnel_end: 1745 mutex_unlock(&hw->tnl_lock); 1746 1747 return status; 1748 } 1749 1750 /** 1751 * ice_destroy_tunnel 1752 * @hw: pointer to the HW structure 1753 * @index: device table entry 1754 * @type: type of tunnel 1755 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1756 * 1757 * Destroys a tunnel or all tunnels by creating an update package buffer 1758 * targeting the specific updates requested and then performing an update 1759 * package. 1760 */ 1761 static enum ice_status 1762 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 1763 u16 port) 1764 { 1765 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1766 enum ice_status status = ICE_ERR_MAX_LIMIT; 1767 struct ice_buf_build *bld; 1768 1769 mutex_lock(&hw->tnl_lock); 1770 1771 if (WARN_ON(!hw->tnl.tbl[index].valid || 1772 hw->tnl.tbl[index].type != type || 1773 hw->tnl.tbl[index].port != port)) { 1774 status = ICE_ERR_OUT_OF_RANGE; 1775 goto ice_destroy_tunnel_end; 1776 } 1777 1778 bld = ice_pkg_buf_alloc(hw); 1779 if (!bld) { 1780 status = ICE_ERR_NO_MEMORY; 1781 goto ice_destroy_tunnel_end; 1782 } 1783 1784 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1785 if (ice_pkg_buf_reserve_section(bld, 2)) 1786 goto ice_destroy_tunnel_err; 1787 1788 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1789 struct_size(sect_rx, tcam, 1)); 1790 if (!sect_rx) 1791 goto ice_destroy_tunnel_err; 1792 sect_rx->count = cpu_to_le16(1); 1793 1794 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1795 struct_size(sect_tx, tcam, 1)); 1796 if (!sect_tx) 1797 goto ice_destroy_tunnel_err; 1798 sect_tx->count = cpu_to_le16(1); 1799 1800 /* copy original boost entry to update package buffer, one copy to Rx 1801 * section, another copy to the Tx section 1802 */ 1803 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1804 sizeof(*sect_rx->tcam)); 1805 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 1806 sizeof(*sect_tx->tcam)); 1807 1808 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1809 if (!status) 1810 hw->tnl.tbl[index].port = 0; 1811 1812 ice_destroy_tunnel_err: 1813 ice_pkg_buf_free(hw, bld); 1814 1815 ice_destroy_tunnel_end: 1816 mutex_unlock(&hw->tnl_lock); 1817 1818 return status; 1819 } 1820 1821 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 1822 unsigned int idx, struct udp_tunnel_info *ti) 1823 { 1824 struct ice_netdev_priv *np = netdev_priv(netdev); 1825 struct ice_vsi *vsi = np->vsi; 1826 struct ice_pf *pf = vsi->back; 1827 enum ice_tunnel_type tnl_type; 1828 enum ice_status status; 1829 u16 index; 1830 1831 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1832 index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type); 1833 1834 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 1835 if (status) { 1836 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 1837 ice_stat_str(status)); 1838 return -EIO; 1839 } 1840 1841 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 1842 return 0; 1843 } 1844 1845 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 1846 unsigned int idx, struct udp_tunnel_info *ti) 1847 { 1848 struct ice_netdev_priv *np = netdev_priv(netdev); 1849 struct ice_vsi *vsi = np->vsi; 1850 struct ice_pf *pf = vsi->back; 1851 enum ice_tunnel_type tnl_type; 1852 enum ice_status status; 1853 1854 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1855 1856 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 1857 ntohs(ti->port)); 1858 if (status) { 1859 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 1860 ice_stat_str(status)); 1861 return -EIO; 1862 } 1863 1864 return 0; 1865 } 1866 1867 /* PTG Management */ 1868 1869 /** 1870 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 1871 * @hw: pointer to the hardware structure 1872 * @blk: HW block 1873 * @ptype: the ptype to search for 1874 * @ptg: pointer to variable that receives the PTG 1875 * 1876 * This function will search the PTGs for a particular ptype, returning the 1877 * PTG ID that contains it through the PTG parameter, with the value of 1878 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 1879 */ 1880 static enum ice_status 1881 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 1882 { 1883 if (ptype >= ICE_XLT1_CNT || !ptg) 1884 return ICE_ERR_PARAM; 1885 1886 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 1887 return 0; 1888 } 1889 1890 /** 1891 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 1892 * @hw: pointer to the hardware structure 1893 * @blk: HW block 1894 * @ptg: the PTG to allocate 1895 * 1896 * This function allocates a given packet type group ID specified by the PTG 1897 * parameter. 1898 */ 1899 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 1900 { 1901 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 1902 } 1903 1904 /** 1905 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 1906 * @hw: pointer to the hardware structure 1907 * @blk: HW block 1908 * @ptype: the ptype to remove 1909 * @ptg: the PTG to remove the ptype from 1910 * 1911 * This function will remove the ptype from the specific PTG, and move it to 1912 * the default PTG (ICE_DEFAULT_PTG). 1913 */ 1914 static enum ice_status 1915 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1916 { 1917 struct ice_ptg_ptype **ch; 1918 struct ice_ptg_ptype *p; 1919 1920 if (ptype > ICE_XLT1_CNT - 1) 1921 return ICE_ERR_PARAM; 1922 1923 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 1924 return ICE_ERR_DOES_NOT_EXIST; 1925 1926 /* Should not happen if .in_use is set, bad config */ 1927 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 1928 return ICE_ERR_CFG; 1929 1930 /* find the ptype within this PTG, and bypass the link over it */ 1931 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1932 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1933 while (p) { 1934 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 1935 *ch = p->next_ptype; 1936 break; 1937 } 1938 1939 ch = &p->next_ptype; 1940 p = p->next_ptype; 1941 } 1942 1943 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 1944 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 1945 1946 return 0; 1947 } 1948 1949 /** 1950 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 1951 * @hw: pointer to the hardware structure 1952 * @blk: HW block 1953 * @ptype: the ptype to add or move 1954 * @ptg: the PTG to add or move the ptype to 1955 * 1956 * This function will either add or move a ptype to a particular PTG depending 1957 * on if the ptype is already part of another group. Note that using a 1958 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 1959 * default PTG. 1960 */ 1961 static enum ice_status 1962 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1963 { 1964 enum ice_status status; 1965 u8 original_ptg; 1966 1967 if (ptype > ICE_XLT1_CNT - 1) 1968 return ICE_ERR_PARAM; 1969 1970 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 1971 return ICE_ERR_DOES_NOT_EXIST; 1972 1973 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 1974 if (status) 1975 return status; 1976 1977 /* Is ptype already in the correct PTG? */ 1978 if (original_ptg == ptg) 1979 return 0; 1980 1981 /* Remove from original PTG and move back to the default PTG */ 1982 if (original_ptg != ICE_DEFAULT_PTG) 1983 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 1984 1985 /* Moving to default PTG? Then we're done with this request */ 1986 if (ptg == ICE_DEFAULT_PTG) 1987 return 0; 1988 1989 /* Add ptype to PTG at beginning of list */ 1990 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 1991 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1992 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 1993 &hw->blk[blk].xlt1.ptypes[ptype]; 1994 1995 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 1996 hw->blk[blk].xlt1.t[ptype] = ptg; 1997 1998 return 0; 1999 } 2000 2001 /* Block / table size info */ 2002 struct ice_blk_size_details { 2003 u16 xlt1; /* # XLT1 entries */ 2004 u16 xlt2; /* # XLT2 entries */ 2005 u16 prof_tcam; /* # profile ID TCAM entries */ 2006 u16 prof_id; /* # profile IDs */ 2007 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2008 u16 prof_redir; /* # profile redirection entries */ 2009 u16 es; /* # extraction sequence entries */ 2010 u16 fvw; /* # field vector words */ 2011 u8 overwrite; /* overwrite existing entries allowed */ 2012 u8 reverse; /* reverse FV order */ 2013 }; 2014 2015 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2016 /** 2017 * Table Definitions 2018 * XLT1 - Number of entries in XLT1 table 2019 * XLT2 - Number of entries in XLT2 table 2020 * TCAM - Number of entries Profile ID TCAM table 2021 * CDID - Control Domain ID of the hardware block 2022 * PRED - Number of entries in the Profile Redirection Table 2023 * FV - Number of entries in the Field Vector 2024 * FVW - Width (in WORDs) of the Field Vector 2025 * OVR - Overwrite existing table entries 2026 * REV - Reverse FV 2027 */ 2028 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2029 /* Overwrite , Reverse FV */ 2030 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2031 false, false }, 2032 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2033 false, false }, 2034 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2035 false, true }, 2036 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2037 true, true }, 2038 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2039 false, false }, 2040 }; 2041 2042 enum ice_sid_all { 2043 ICE_SID_XLT1_OFF = 0, 2044 ICE_SID_XLT2_OFF, 2045 ICE_SID_PR_OFF, 2046 ICE_SID_PR_REDIR_OFF, 2047 ICE_SID_ES_OFF, 2048 ICE_SID_OFF_COUNT, 2049 }; 2050 2051 /* Characteristic handling */ 2052 2053 /** 2054 * ice_match_prop_lst - determine if properties of two lists match 2055 * @list1: first properties list 2056 * @list2: second properties list 2057 * 2058 * Count, cookies and the order must match in order to be considered equivalent. 2059 */ 2060 static bool 2061 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2062 { 2063 struct ice_vsig_prof *tmp1; 2064 struct ice_vsig_prof *tmp2; 2065 u16 chk_count = 0; 2066 u16 count = 0; 2067 2068 /* compare counts */ 2069 list_for_each_entry(tmp1, list1, list) 2070 count++; 2071 list_for_each_entry(tmp2, list2, list) 2072 chk_count++; 2073 if (!count || count != chk_count) 2074 return false; 2075 2076 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2077 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2078 2079 /* profile cookies must compare, and in the exact same order to take 2080 * into account priority 2081 */ 2082 while (count--) { 2083 if (tmp2->profile_cookie != tmp1->profile_cookie) 2084 return false; 2085 2086 tmp1 = list_next_entry(tmp1, list); 2087 tmp2 = list_next_entry(tmp2, list); 2088 } 2089 2090 return true; 2091 } 2092 2093 /* VSIG Management */ 2094 2095 /** 2096 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2097 * @hw: pointer to the hardware structure 2098 * @blk: HW block 2099 * @vsi: VSI of interest 2100 * @vsig: pointer to receive the VSI group 2101 * 2102 * This function will lookup the VSI entry in the XLT2 list and return 2103 * the VSI group its associated with. 2104 */ 2105 static enum ice_status 2106 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2107 { 2108 if (!vsig || vsi >= ICE_MAX_VSI) 2109 return ICE_ERR_PARAM; 2110 2111 /* As long as there's a default or valid VSIG associated with the input 2112 * VSI, the functions returns a success. Any handling of VSIG will be 2113 * done by the following add, update or remove functions. 2114 */ 2115 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2116 2117 return 0; 2118 } 2119 2120 /** 2121 * ice_vsig_alloc_val - allocate a new VSIG by value 2122 * @hw: pointer to the hardware structure 2123 * @blk: HW block 2124 * @vsig: the VSIG to allocate 2125 * 2126 * This function will allocate a given VSIG specified by the VSIG parameter. 2127 */ 2128 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2129 { 2130 u16 idx = vsig & ICE_VSIG_IDX_M; 2131 2132 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2133 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2134 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2135 } 2136 2137 return ICE_VSIG_VALUE(idx, hw->pf_id); 2138 } 2139 2140 /** 2141 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2142 * @hw: pointer to the hardware structure 2143 * @blk: HW block 2144 * 2145 * This function will iterate through the VSIG list and mark the first 2146 * unused entry for the new VSIG entry as used and return that value. 2147 */ 2148 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2149 { 2150 u16 i; 2151 2152 for (i = 1; i < ICE_MAX_VSIGS; i++) 2153 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2154 return ice_vsig_alloc_val(hw, blk, i); 2155 2156 return ICE_DEFAULT_VSIG; 2157 } 2158 2159 /** 2160 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2161 * @hw: pointer to the hardware structure 2162 * @blk: HW block 2163 * @chs: characteristic list 2164 * @vsig: returns the VSIG with the matching profiles, if found 2165 * 2166 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2167 * a group have the same characteristic set. To check if there exists a VSIG 2168 * which has the same characteristics as the input characteristics; this 2169 * function will iterate through the XLT2 list and return the VSIG that has a 2170 * matching configuration. In order to make sure that priorities are accounted 2171 * for, the list must match exactly, including the order in which the 2172 * characteristics are listed. 2173 */ 2174 static enum ice_status 2175 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2176 struct list_head *chs, u16 *vsig) 2177 { 2178 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2179 u16 i; 2180 2181 for (i = 0; i < xlt2->count; i++) 2182 if (xlt2->vsig_tbl[i].in_use && 2183 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2184 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2185 return 0; 2186 } 2187 2188 return ICE_ERR_DOES_NOT_EXIST; 2189 } 2190 2191 /** 2192 * ice_vsig_free - free VSI group 2193 * @hw: pointer to the hardware structure 2194 * @blk: HW block 2195 * @vsig: VSIG to remove 2196 * 2197 * The function will remove all VSIs associated with the input VSIG and move 2198 * them to the DEFAULT_VSIG and mark the VSIG available. 2199 */ 2200 static enum ice_status 2201 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2202 { 2203 struct ice_vsig_prof *dtmp, *del; 2204 struct ice_vsig_vsi *vsi_cur; 2205 u16 idx; 2206 2207 idx = vsig & ICE_VSIG_IDX_M; 2208 if (idx >= ICE_MAX_VSIGS) 2209 return ICE_ERR_PARAM; 2210 2211 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2212 return ICE_ERR_DOES_NOT_EXIST; 2213 2214 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2215 2216 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2217 /* If the VSIG has at least 1 VSI then iterate through the 2218 * list and remove the VSIs before deleting the group. 2219 */ 2220 if (vsi_cur) { 2221 /* remove all vsis associated with this VSIG XLT2 entry */ 2222 do { 2223 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2224 2225 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2226 vsi_cur->changed = 1; 2227 vsi_cur->next_vsi = NULL; 2228 vsi_cur = tmp; 2229 } while (vsi_cur); 2230 2231 /* NULL terminate head of VSI list */ 2232 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2233 } 2234 2235 /* free characteristic list */ 2236 list_for_each_entry_safe(del, dtmp, 2237 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2238 list) { 2239 list_del(&del->list); 2240 devm_kfree(ice_hw_to_dev(hw), del); 2241 } 2242 2243 /* if VSIG characteristic list was cleared for reset 2244 * re-initialize the list head 2245 */ 2246 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2247 2248 return 0; 2249 } 2250 2251 /** 2252 * ice_vsig_remove_vsi - remove VSI from VSIG 2253 * @hw: pointer to the hardware structure 2254 * @blk: HW block 2255 * @vsi: VSI to remove 2256 * @vsig: VSI group to remove from 2257 * 2258 * The function will remove the input VSI from its VSI group and move it 2259 * to the DEFAULT_VSIG. 2260 */ 2261 static enum ice_status 2262 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2263 { 2264 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2265 u16 idx; 2266 2267 idx = vsig & ICE_VSIG_IDX_M; 2268 2269 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2270 return ICE_ERR_PARAM; 2271 2272 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2273 return ICE_ERR_DOES_NOT_EXIST; 2274 2275 /* entry already in default VSIG, don't have to remove */ 2276 if (idx == ICE_DEFAULT_VSIG) 2277 return 0; 2278 2279 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2280 if (!(*vsi_head)) 2281 return ICE_ERR_CFG; 2282 2283 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2284 vsi_cur = (*vsi_head); 2285 2286 /* iterate the VSI list, skip over the entry to be removed */ 2287 while (vsi_cur) { 2288 if (vsi_tgt == vsi_cur) { 2289 (*vsi_head) = vsi_cur->next_vsi; 2290 break; 2291 } 2292 vsi_head = &vsi_cur->next_vsi; 2293 vsi_cur = vsi_cur->next_vsi; 2294 } 2295 2296 /* verify if VSI was removed from group list */ 2297 if (!vsi_cur) 2298 return ICE_ERR_DOES_NOT_EXIST; 2299 2300 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2301 vsi_cur->changed = 1; 2302 vsi_cur->next_vsi = NULL; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2309 * @hw: pointer to the hardware structure 2310 * @blk: HW block 2311 * @vsi: VSI to move 2312 * @vsig: destination VSI group 2313 * 2314 * This function will move or add the input VSI to the target VSIG. 2315 * The function will find the original VSIG the VSI belongs to and 2316 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2317 * then move entry to the new VSIG. 2318 */ 2319 static enum ice_status 2320 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2321 { 2322 struct ice_vsig_vsi *tmp; 2323 enum ice_status status; 2324 u16 orig_vsig, idx; 2325 2326 idx = vsig & ICE_VSIG_IDX_M; 2327 2328 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2329 return ICE_ERR_PARAM; 2330 2331 /* if VSIG not in use and VSIG is not default type this VSIG 2332 * doesn't exist. 2333 */ 2334 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2335 vsig != ICE_DEFAULT_VSIG) 2336 return ICE_ERR_DOES_NOT_EXIST; 2337 2338 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2339 if (status) 2340 return status; 2341 2342 /* no update required if vsigs match */ 2343 if (orig_vsig == vsig) 2344 return 0; 2345 2346 if (orig_vsig != ICE_DEFAULT_VSIG) { 2347 /* remove entry from orig_vsig and add to default VSIG */ 2348 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2349 if (status) 2350 return status; 2351 } 2352 2353 if (idx == ICE_DEFAULT_VSIG) 2354 return 0; 2355 2356 /* Create VSI entry and add VSIG and prop_mask values */ 2357 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2358 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2359 2360 /* Add new entry to the head of the VSIG list */ 2361 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2362 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2363 &hw->blk[blk].xlt2.vsis[vsi]; 2364 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2365 hw->blk[blk].xlt2.t[vsi] = vsig; 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * ice_find_prof_id - find profile ID for a given field vector 2372 * @hw: pointer to the hardware structure 2373 * @blk: HW block 2374 * @fv: field vector to search for 2375 * @prof_id: receives the profile ID 2376 */ 2377 static enum ice_status 2378 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 2379 struct ice_fv_word *fv, u8 *prof_id) 2380 { 2381 struct ice_es *es = &hw->blk[blk].es; 2382 u16 off; 2383 u8 i; 2384 2385 /* For FD, we don't want to re-use a existed profile with the same 2386 * field vector and mask. This will cause rule interference. 2387 */ 2388 if (blk == ICE_BLK_FD) 2389 return ICE_ERR_DOES_NOT_EXIST; 2390 2391 for (i = 0; i < (u8)es->count; i++) { 2392 off = i * es->fvw; 2393 2394 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2395 continue; 2396 2397 *prof_id = i; 2398 return 0; 2399 } 2400 2401 return ICE_ERR_DOES_NOT_EXIST; 2402 } 2403 2404 /** 2405 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2406 * @blk: the block type 2407 * @rsrc_type: pointer to variable to receive the resource type 2408 */ 2409 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2410 { 2411 switch (blk) { 2412 case ICE_BLK_FD: 2413 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2414 break; 2415 case ICE_BLK_RSS: 2416 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2417 break; 2418 default: 2419 return false; 2420 } 2421 return true; 2422 } 2423 2424 /** 2425 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2426 * @blk: the block type 2427 * @rsrc_type: pointer to variable to receive the resource type 2428 */ 2429 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2430 { 2431 switch (blk) { 2432 case ICE_BLK_FD: 2433 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2434 break; 2435 case ICE_BLK_RSS: 2436 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2437 break; 2438 default: 2439 return false; 2440 } 2441 return true; 2442 } 2443 2444 /** 2445 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2446 * @hw: pointer to the HW struct 2447 * @blk: the block to allocate the TCAM for 2448 * @tcam_idx: pointer to variable to receive the TCAM entry 2449 * 2450 * This function allocates a new entry in a Profile ID TCAM for a specific 2451 * block. 2452 */ 2453 static enum ice_status 2454 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx) 2455 { 2456 u16 res_type; 2457 2458 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2459 return ICE_ERR_PARAM; 2460 2461 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx); 2462 } 2463 2464 /** 2465 * ice_free_tcam_ent - free hardware TCAM entry 2466 * @hw: pointer to the HW struct 2467 * @blk: the block from which to free the TCAM entry 2468 * @tcam_idx: the TCAM entry to free 2469 * 2470 * This function frees an entry in a Profile ID TCAM for a specific block. 2471 */ 2472 static enum ice_status 2473 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2474 { 2475 u16 res_type; 2476 2477 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2478 return ICE_ERR_PARAM; 2479 2480 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2481 } 2482 2483 /** 2484 * ice_alloc_prof_id - allocate profile ID 2485 * @hw: pointer to the HW struct 2486 * @blk: the block to allocate the profile ID for 2487 * @prof_id: pointer to variable to receive the profile ID 2488 * 2489 * This function allocates a new profile ID, which also corresponds to a Field 2490 * Vector (Extraction Sequence) entry. 2491 */ 2492 static enum ice_status 2493 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2494 { 2495 enum ice_status status; 2496 u16 res_type; 2497 u16 get_prof; 2498 2499 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2500 return ICE_ERR_PARAM; 2501 2502 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2503 if (!status) 2504 *prof_id = (u8)get_prof; 2505 2506 return status; 2507 } 2508 2509 /** 2510 * ice_free_prof_id - free profile ID 2511 * @hw: pointer to the HW struct 2512 * @blk: the block from which to free the profile ID 2513 * @prof_id: the profile ID to free 2514 * 2515 * This function frees a profile ID, which also corresponds to a Field Vector. 2516 */ 2517 static enum ice_status 2518 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2519 { 2520 u16 tmp_prof_id = (u16)prof_id; 2521 u16 res_type; 2522 2523 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2524 return ICE_ERR_PARAM; 2525 2526 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2527 } 2528 2529 /** 2530 * ice_prof_inc_ref - increment reference count for profile 2531 * @hw: pointer to the HW struct 2532 * @blk: the block from which to free the profile ID 2533 * @prof_id: the profile ID for which to increment the reference count 2534 */ 2535 static enum ice_status 2536 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2537 { 2538 if (prof_id > hw->blk[blk].es.count) 2539 return ICE_ERR_PARAM; 2540 2541 hw->blk[blk].es.ref_count[prof_id]++; 2542 2543 return 0; 2544 } 2545 2546 /** 2547 * ice_write_es - write an extraction sequence to hardware 2548 * @hw: pointer to the HW struct 2549 * @blk: the block in which to write the extraction sequence 2550 * @prof_id: the profile ID to write 2551 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 2552 */ 2553 static void 2554 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 2555 struct ice_fv_word *fv) 2556 { 2557 u16 off; 2558 2559 off = prof_id * hw->blk[blk].es.fvw; 2560 if (!fv) { 2561 memset(&hw->blk[blk].es.t[off], 0, 2562 hw->blk[blk].es.fvw * sizeof(*fv)); 2563 hw->blk[blk].es.written[prof_id] = false; 2564 } else { 2565 memcpy(&hw->blk[blk].es.t[off], fv, 2566 hw->blk[blk].es.fvw * sizeof(*fv)); 2567 } 2568 } 2569 2570 /** 2571 * ice_prof_dec_ref - decrement reference count for profile 2572 * @hw: pointer to the HW struct 2573 * @blk: the block from which to free the profile ID 2574 * @prof_id: the profile ID for which to decrement the reference count 2575 */ 2576 static enum ice_status 2577 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2578 { 2579 if (prof_id > hw->blk[blk].es.count) 2580 return ICE_ERR_PARAM; 2581 2582 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 2583 if (!--hw->blk[blk].es.ref_count[prof_id]) { 2584 ice_write_es(hw, blk, prof_id, NULL); 2585 return ice_free_prof_id(hw, blk, prof_id); 2586 } 2587 } 2588 2589 return 0; 2590 } 2591 2592 /* Block / table section IDs */ 2593 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 2594 /* SWITCH */ 2595 { ICE_SID_XLT1_SW, 2596 ICE_SID_XLT2_SW, 2597 ICE_SID_PROFID_TCAM_SW, 2598 ICE_SID_PROFID_REDIR_SW, 2599 ICE_SID_FLD_VEC_SW 2600 }, 2601 2602 /* ACL */ 2603 { ICE_SID_XLT1_ACL, 2604 ICE_SID_XLT2_ACL, 2605 ICE_SID_PROFID_TCAM_ACL, 2606 ICE_SID_PROFID_REDIR_ACL, 2607 ICE_SID_FLD_VEC_ACL 2608 }, 2609 2610 /* FD */ 2611 { ICE_SID_XLT1_FD, 2612 ICE_SID_XLT2_FD, 2613 ICE_SID_PROFID_TCAM_FD, 2614 ICE_SID_PROFID_REDIR_FD, 2615 ICE_SID_FLD_VEC_FD 2616 }, 2617 2618 /* RSS */ 2619 { ICE_SID_XLT1_RSS, 2620 ICE_SID_XLT2_RSS, 2621 ICE_SID_PROFID_TCAM_RSS, 2622 ICE_SID_PROFID_REDIR_RSS, 2623 ICE_SID_FLD_VEC_RSS 2624 }, 2625 2626 /* PE */ 2627 { ICE_SID_XLT1_PE, 2628 ICE_SID_XLT2_PE, 2629 ICE_SID_PROFID_TCAM_PE, 2630 ICE_SID_PROFID_REDIR_PE, 2631 ICE_SID_FLD_VEC_PE 2632 } 2633 }; 2634 2635 /** 2636 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 2637 * @hw: pointer to the hardware structure 2638 * @blk: the HW block to initialize 2639 */ 2640 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 2641 { 2642 u16 pt; 2643 2644 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 2645 u8 ptg; 2646 2647 ptg = hw->blk[blk].xlt1.t[pt]; 2648 if (ptg != ICE_DEFAULT_PTG) { 2649 ice_ptg_alloc_val(hw, blk, ptg); 2650 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 2651 } 2652 } 2653 } 2654 2655 /** 2656 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 2657 * @hw: pointer to the hardware structure 2658 * @blk: the HW block to initialize 2659 */ 2660 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 2661 { 2662 u16 vsi; 2663 2664 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 2665 u16 vsig; 2666 2667 vsig = hw->blk[blk].xlt2.t[vsi]; 2668 if (vsig) { 2669 ice_vsig_alloc_val(hw, blk, vsig); 2670 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 2671 /* no changes at this time, since this has been 2672 * initialized from the original package 2673 */ 2674 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2675 } 2676 } 2677 } 2678 2679 /** 2680 * ice_init_sw_db - init software database from HW tables 2681 * @hw: pointer to the hardware structure 2682 */ 2683 static void ice_init_sw_db(struct ice_hw *hw) 2684 { 2685 u16 i; 2686 2687 for (i = 0; i < ICE_BLK_COUNT; i++) { 2688 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 2689 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 2690 } 2691 } 2692 2693 /** 2694 * ice_fill_tbl - Reads content of a single table type into database 2695 * @hw: pointer to the hardware structure 2696 * @block_id: Block ID of the table to copy 2697 * @sid: Section ID of the table to copy 2698 * 2699 * Will attempt to read the entire content of a given table of a single block 2700 * into the driver database. We assume that the buffer will always 2701 * be as large or larger than the data contained in the package. If 2702 * this condition is not met, there is most likely an error in the package 2703 * contents. 2704 */ 2705 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 2706 { 2707 u32 dst_len, sect_len, offset = 0; 2708 struct ice_prof_redir_section *pr; 2709 struct ice_prof_id_section *pid; 2710 struct ice_xlt1_section *xlt1; 2711 struct ice_xlt2_section *xlt2; 2712 struct ice_sw_fv_section *es; 2713 struct ice_pkg_enum state; 2714 u8 *src, *dst; 2715 void *sect; 2716 2717 /* if the HW segment pointer is null then the first iteration of 2718 * ice_pkg_enum_section() will fail. In this case the HW tables will 2719 * not be filled and return success. 2720 */ 2721 if (!hw->seg) { 2722 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 2723 return; 2724 } 2725 2726 memset(&state, 0, sizeof(state)); 2727 2728 sect = ice_pkg_enum_section(hw->seg, &state, sid); 2729 2730 while (sect) { 2731 switch (sid) { 2732 case ICE_SID_XLT1_SW: 2733 case ICE_SID_XLT1_FD: 2734 case ICE_SID_XLT1_RSS: 2735 case ICE_SID_XLT1_ACL: 2736 case ICE_SID_XLT1_PE: 2737 xlt1 = (struct ice_xlt1_section *)sect; 2738 src = xlt1->value; 2739 sect_len = le16_to_cpu(xlt1->count) * 2740 sizeof(*hw->blk[block_id].xlt1.t); 2741 dst = hw->blk[block_id].xlt1.t; 2742 dst_len = hw->blk[block_id].xlt1.count * 2743 sizeof(*hw->blk[block_id].xlt1.t); 2744 break; 2745 case ICE_SID_XLT2_SW: 2746 case ICE_SID_XLT2_FD: 2747 case ICE_SID_XLT2_RSS: 2748 case ICE_SID_XLT2_ACL: 2749 case ICE_SID_XLT2_PE: 2750 xlt2 = (struct ice_xlt2_section *)sect; 2751 src = (__force u8 *)xlt2->value; 2752 sect_len = le16_to_cpu(xlt2->count) * 2753 sizeof(*hw->blk[block_id].xlt2.t); 2754 dst = (u8 *)hw->blk[block_id].xlt2.t; 2755 dst_len = hw->blk[block_id].xlt2.count * 2756 sizeof(*hw->blk[block_id].xlt2.t); 2757 break; 2758 case ICE_SID_PROFID_TCAM_SW: 2759 case ICE_SID_PROFID_TCAM_FD: 2760 case ICE_SID_PROFID_TCAM_RSS: 2761 case ICE_SID_PROFID_TCAM_ACL: 2762 case ICE_SID_PROFID_TCAM_PE: 2763 pid = (struct ice_prof_id_section *)sect; 2764 src = (u8 *)pid->entry; 2765 sect_len = le16_to_cpu(pid->count) * 2766 sizeof(*hw->blk[block_id].prof.t); 2767 dst = (u8 *)hw->blk[block_id].prof.t; 2768 dst_len = hw->blk[block_id].prof.count * 2769 sizeof(*hw->blk[block_id].prof.t); 2770 break; 2771 case ICE_SID_PROFID_REDIR_SW: 2772 case ICE_SID_PROFID_REDIR_FD: 2773 case ICE_SID_PROFID_REDIR_RSS: 2774 case ICE_SID_PROFID_REDIR_ACL: 2775 case ICE_SID_PROFID_REDIR_PE: 2776 pr = (struct ice_prof_redir_section *)sect; 2777 src = pr->redir_value; 2778 sect_len = le16_to_cpu(pr->count) * 2779 sizeof(*hw->blk[block_id].prof_redir.t); 2780 dst = hw->blk[block_id].prof_redir.t; 2781 dst_len = hw->blk[block_id].prof_redir.count * 2782 sizeof(*hw->blk[block_id].prof_redir.t); 2783 break; 2784 case ICE_SID_FLD_VEC_SW: 2785 case ICE_SID_FLD_VEC_FD: 2786 case ICE_SID_FLD_VEC_RSS: 2787 case ICE_SID_FLD_VEC_ACL: 2788 case ICE_SID_FLD_VEC_PE: 2789 es = (struct ice_sw_fv_section *)sect; 2790 src = (u8 *)es->fv; 2791 sect_len = (u32)(le16_to_cpu(es->count) * 2792 hw->blk[block_id].es.fvw) * 2793 sizeof(*hw->blk[block_id].es.t); 2794 dst = (u8 *)hw->blk[block_id].es.t; 2795 dst_len = (u32)(hw->blk[block_id].es.count * 2796 hw->blk[block_id].es.fvw) * 2797 sizeof(*hw->blk[block_id].es.t); 2798 break; 2799 default: 2800 return; 2801 } 2802 2803 /* if the section offset exceeds destination length, terminate 2804 * table fill. 2805 */ 2806 if (offset > dst_len) 2807 return; 2808 2809 /* if the sum of section size and offset exceed destination size 2810 * then we are out of bounds of the HW table size for that PF. 2811 * Changing section length to fill the remaining table space 2812 * of that PF. 2813 */ 2814 if ((offset + sect_len) > dst_len) 2815 sect_len = dst_len - offset; 2816 2817 memcpy(dst + offset, src, sect_len); 2818 offset += sect_len; 2819 sect = ice_pkg_enum_section(NULL, &state, sid); 2820 } 2821 } 2822 2823 /** 2824 * ice_fill_blk_tbls - Read package context for tables 2825 * @hw: pointer to the hardware structure 2826 * 2827 * Reads the current package contents and populates the driver 2828 * database with the data iteratively for all advanced feature 2829 * blocks. Assume that the HW tables have been allocated. 2830 */ 2831 void ice_fill_blk_tbls(struct ice_hw *hw) 2832 { 2833 u8 i; 2834 2835 for (i = 0; i < ICE_BLK_COUNT; i++) { 2836 enum ice_block blk_id = (enum ice_block)i; 2837 2838 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 2839 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 2840 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 2841 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 2842 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 2843 } 2844 2845 ice_init_sw_db(hw); 2846 } 2847 2848 /** 2849 * ice_free_prof_map - free profile map 2850 * @hw: pointer to the hardware structure 2851 * @blk_idx: HW block index 2852 */ 2853 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 2854 { 2855 struct ice_es *es = &hw->blk[blk_idx].es; 2856 struct ice_prof_map *del, *tmp; 2857 2858 mutex_lock(&es->prof_map_lock); 2859 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 2860 list_del(&del->list); 2861 devm_kfree(ice_hw_to_dev(hw), del); 2862 } 2863 INIT_LIST_HEAD(&es->prof_map); 2864 mutex_unlock(&es->prof_map_lock); 2865 } 2866 2867 /** 2868 * ice_free_flow_profs - free flow profile entries 2869 * @hw: pointer to the hardware structure 2870 * @blk_idx: HW block index 2871 */ 2872 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 2873 { 2874 struct ice_flow_prof *p, *tmp; 2875 2876 mutex_lock(&hw->fl_profs_locks[blk_idx]); 2877 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 2878 struct ice_flow_entry *e, *t; 2879 2880 list_for_each_entry_safe(e, t, &p->entries, l_entry) 2881 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 2882 ICE_FLOW_ENTRY_HNDL(e)); 2883 2884 list_del(&p->l_entry); 2885 2886 mutex_destroy(&p->entries_lock); 2887 devm_kfree(ice_hw_to_dev(hw), p); 2888 } 2889 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 2890 2891 /* if driver is in reset and tables are being cleared 2892 * re-initialize the flow profile list heads 2893 */ 2894 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2895 } 2896 2897 /** 2898 * ice_free_vsig_tbl - free complete VSIG table entries 2899 * @hw: pointer to the hardware structure 2900 * @blk: the HW block on which to free the VSIG table entries 2901 */ 2902 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 2903 { 2904 u16 i; 2905 2906 if (!hw->blk[blk].xlt2.vsig_tbl) 2907 return; 2908 2909 for (i = 1; i < ICE_MAX_VSIGS; i++) 2910 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2911 ice_vsig_free(hw, blk, i); 2912 } 2913 2914 /** 2915 * ice_free_hw_tbls - free hardware table memory 2916 * @hw: pointer to the hardware structure 2917 */ 2918 void ice_free_hw_tbls(struct ice_hw *hw) 2919 { 2920 struct ice_rss_cfg *r, *rt; 2921 u8 i; 2922 2923 for (i = 0; i < ICE_BLK_COUNT; i++) { 2924 if (hw->blk[i].is_list_init) { 2925 struct ice_es *es = &hw->blk[i].es; 2926 2927 ice_free_prof_map(hw, i); 2928 mutex_destroy(&es->prof_map_lock); 2929 2930 ice_free_flow_profs(hw, i); 2931 mutex_destroy(&hw->fl_profs_locks[i]); 2932 2933 hw->blk[i].is_list_init = false; 2934 } 2935 ice_free_vsig_tbl(hw, (enum ice_block)i); 2936 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 2937 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 2938 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 2939 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 2940 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 2941 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 2942 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 2943 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 2944 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 2945 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 2946 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 2947 } 2948 2949 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 2950 list_del(&r->l_entry); 2951 devm_kfree(ice_hw_to_dev(hw), r); 2952 } 2953 mutex_destroy(&hw->rss_locks); 2954 memset(hw->blk, 0, sizeof(hw->blk)); 2955 } 2956 2957 /** 2958 * ice_init_flow_profs - init flow profile locks and list heads 2959 * @hw: pointer to the hardware structure 2960 * @blk_idx: HW block index 2961 */ 2962 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 2963 { 2964 mutex_init(&hw->fl_profs_locks[blk_idx]); 2965 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2966 } 2967 2968 /** 2969 * ice_clear_hw_tbls - clear HW tables and flow profiles 2970 * @hw: pointer to the hardware structure 2971 */ 2972 void ice_clear_hw_tbls(struct ice_hw *hw) 2973 { 2974 u8 i; 2975 2976 for (i = 0; i < ICE_BLK_COUNT; i++) { 2977 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 2978 struct ice_prof_tcam *prof = &hw->blk[i].prof; 2979 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 2980 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 2981 struct ice_es *es = &hw->blk[i].es; 2982 2983 if (hw->blk[i].is_list_init) { 2984 ice_free_prof_map(hw, i); 2985 ice_free_flow_profs(hw, i); 2986 } 2987 2988 ice_free_vsig_tbl(hw, (enum ice_block)i); 2989 2990 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 2991 memset(xlt1->ptg_tbl, 0, 2992 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 2993 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 2994 2995 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 2996 memset(xlt2->vsig_tbl, 0, 2997 xlt2->count * sizeof(*xlt2->vsig_tbl)); 2998 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 2999 3000 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3001 memset(prof_redir->t, 0, 3002 prof_redir->count * sizeof(*prof_redir->t)); 3003 3004 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3005 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3006 memset(es->written, 0, es->count * sizeof(*es->written)); 3007 } 3008 } 3009 3010 /** 3011 * ice_init_hw_tbls - init hardware table memory 3012 * @hw: pointer to the hardware structure 3013 */ 3014 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3015 { 3016 u8 i; 3017 3018 mutex_init(&hw->rss_locks); 3019 INIT_LIST_HEAD(&hw->rss_list_head); 3020 for (i = 0; i < ICE_BLK_COUNT; i++) { 3021 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3022 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3023 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3024 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3025 struct ice_es *es = &hw->blk[i].es; 3026 u16 j; 3027 3028 if (hw->blk[i].is_list_init) 3029 continue; 3030 3031 ice_init_flow_profs(hw, i); 3032 mutex_init(&es->prof_map_lock); 3033 INIT_LIST_HEAD(&es->prof_map); 3034 hw->blk[i].is_list_init = true; 3035 3036 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3037 es->reverse = blk_sizes[i].reverse; 3038 3039 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3040 xlt1->count = blk_sizes[i].xlt1; 3041 3042 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3043 sizeof(*xlt1->ptypes), GFP_KERNEL); 3044 3045 if (!xlt1->ptypes) 3046 goto err; 3047 3048 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3049 sizeof(*xlt1->ptg_tbl), 3050 GFP_KERNEL); 3051 3052 if (!xlt1->ptg_tbl) 3053 goto err; 3054 3055 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3056 sizeof(*xlt1->t), GFP_KERNEL); 3057 if (!xlt1->t) 3058 goto err; 3059 3060 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3061 xlt2->count = blk_sizes[i].xlt2; 3062 3063 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3064 sizeof(*xlt2->vsis), GFP_KERNEL); 3065 3066 if (!xlt2->vsis) 3067 goto err; 3068 3069 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3070 sizeof(*xlt2->vsig_tbl), 3071 GFP_KERNEL); 3072 if (!xlt2->vsig_tbl) 3073 goto err; 3074 3075 for (j = 0; j < xlt2->count; j++) 3076 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3077 3078 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3079 sizeof(*xlt2->t), GFP_KERNEL); 3080 if (!xlt2->t) 3081 goto err; 3082 3083 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3084 prof->count = blk_sizes[i].prof_tcam; 3085 prof->max_prof_id = blk_sizes[i].prof_id; 3086 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3087 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3088 sizeof(*prof->t), GFP_KERNEL); 3089 3090 if (!prof->t) 3091 goto err; 3092 3093 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3094 prof_redir->count = blk_sizes[i].prof_redir; 3095 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3096 prof_redir->count, 3097 sizeof(*prof_redir->t), 3098 GFP_KERNEL); 3099 3100 if (!prof_redir->t) 3101 goto err; 3102 3103 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3104 es->count = blk_sizes[i].es; 3105 es->fvw = blk_sizes[i].fvw; 3106 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3107 (u32)(es->count * es->fvw), 3108 sizeof(*es->t), GFP_KERNEL); 3109 if (!es->t) 3110 goto err; 3111 3112 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3113 sizeof(*es->ref_count), 3114 GFP_KERNEL); 3115 if (!es->ref_count) 3116 goto err; 3117 3118 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3119 sizeof(*es->written), GFP_KERNEL); 3120 if (!es->written) 3121 goto err; 3122 } 3123 return 0; 3124 3125 err: 3126 ice_free_hw_tbls(hw); 3127 return ICE_ERR_NO_MEMORY; 3128 } 3129 3130 /** 3131 * ice_prof_gen_key - generate profile ID key 3132 * @hw: pointer to the HW struct 3133 * @blk: the block in which to write profile ID to 3134 * @ptg: packet type group (PTG) portion of key 3135 * @vsig: VSIG portion of key 3136 * @cdid: CDID portion of key 3137 * @flags: flag portion of key 3138 * @vl_msk: valid mask 3139 * @dc_msk: don't care mask 3140 * @nm_msk: never match mask 3141 * @key: output of profile ID key 3142 */ 3143 static enum ice_status 3144 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3145 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3146 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3147 u8 key[ICE_TCAM_KEY_SZ]) 3148 { 3149 struct ice_prof_id_key inkey; 3150 3151 inkey.xlt1 = ptg; 3152 inkey.xlt2_cdid = cpu_to_le16(vsig); 3153 inkey.flags = cpu_to_le16(flags); 3154 3155 switch (hw->blk[blk].prof.cdid_bits) { 3156 case 0: 3157 break; 3158 case 2: 3159 #define ICE_CD_2_M 0xC000U 3160 #define ICE_CD_2_S 14 3161 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3162 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3163 break; 3164 case 4: 3165 #define ICE_CD_4_M 0xF000U 3166 #define ICE_CD_4_S 12 3167 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3168 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3169 break; 3170 case 8: 3171 #define ICE_CD_8_M 0xFF00U 3172 #define ICE_CD_8_S 16 3173 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3174 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3175 break; 3176 default: 3177 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3178 break; 3179 } 3180 3181 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3182 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3183 } 3184 3185 /** 3186 * ice_tcam_write_entry - write TCAM entry 3187 * @hw: pointer to the HW struct 3188 * @blk: the block in which to write profile ID to 3189 * @idx: the entry index to write to 3190 * @prof_id: profile ID 3191 * @ptg: packet type group (PTG) portion of key 3192 * @vsig: VSIG portion of key 3193 * @cdid: CDID portion of key 3194 * @flags: flag portion of key 3195 * @vl_msk: valid mask 3196 * @dc_msk: don't care mask 3197 * @nm_msk: never match mask 3198 */ 3199 static enum ice_status 3200 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3201 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3202 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3203 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3204 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3205 { 3206 struct ice_prof_tcam_entry; 3207 enum ice_status status; 3208 3209 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3210 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3211 if (!status) { 3212 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3213 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3214 } 3215 3216 return status; 3217 } 3218 3219 /** 3220 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3221 * @hw: pointer to the hardware structure 3222 * @blk: HW block 3223 * @vsig: VSIG to query 3224 * @refs: pointer to variable to receive the reference count 3225 */ 3226 static enum ice_status 3227 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3228 { 3229 u16 idx = vsig & ICE_VSIG_IDX_M; 3230 struct ice_vsig_vsi *ptr; 3231 3232 *refs = 0; 3233 3234 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3235 return ICE_ERR_DOES_NOT_EXIST; 3236 3237 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3238 while (ptr) { 3239 (*refs)++; 3240 ptr = ptr->next_vsi; 3241 } 3242 3243 return 0; 3244 } 3245 3246 /** 3247 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3248 * @hw: pointer to the hardware structure 3249 * @blk: HW block 3250 * @vsig: VSIG to check against 3251 * @hdl: profile handle 3252 */ 3253 static bool 3254 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3255 { 3256 u16 idx = vsig & ICE_VSIG_IDX_M; 3257 struct ice_vsig_prof *ent; 3258 3259 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3260 list) 3261 if (ent->profile_cookie == hdl) 3262 return true; 3263 3264 ice_debug(hw, ICE_DBG_INIT, 3265 "Characteristic list for VSI group %d not found.\n", 3266 vsig); 3267 return false; 3268 } 3269 3270 /** 3271 * ice_prof_bld_es - build profile ID extraction sequence changes 3272 * @hw: pointer to the HW struct 3273 * @blk: hardware block 3274 * @bld: the update package buffer build to add to 3275 * @chgs: the list of changes to make in hardware 3276 */ 3277 static enum ice_status 3278 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3279 struct ice_buf_build *bld, struct list_head *chgs) 3280 { 3281 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3282 struct ice_chs_chg *tmp; 3283 3284 list_for_each_entry(tmp, chgs, list_entry) 3285 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3286 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3287 struct ice_pkg_es *p; 3288 u32 id; 3289 3290 id = ice_sect_id(blk, ICE_VEC_TBL); 3291 p = ice_pkg_buf_alloc_section(bld, id, 3292 struct_size(p, es, 1) + 3293 vec_size - 3294 sizeof(p->es[0])); 3295 3296 if (!p) 3297 return ICE_ERR_MAX_LIMIT; 3298 3299 p->count = cpu_to_le16(1); 3300 p->offset = cpu_to_le16(tmp->prof_id); 3301 3302 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3303 } 3304 3305 return 0; 3306 } 3307 3308 /** 3309 * ice_prof_bld_tcam - build profile ID TCAM changes 3310 * @hw: pointer to the HW struct 3311 * @blk: hardware block 3312 * @bld: the update package buffer build to add to 3313 * @chgs: the list of changes to make in hardware 3314 */ 3315 static enum ice_status 3316 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3317 struct ice_buf_build *bld, struct list_head *chgs) 3318 { 3319 struct ice_chs_chg *tmp; 3320 3321 list_for_each_entry(tmp, chgs, list_entry) 3322 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3323 struct ice_prof_id_section *p; 3324 u32 id; 3325 3326 id = ice_sect_id(blk, ICE_PROF_TCAM); 3327 p = ice_pkg_buf_alloc_section(bld, id, 3328 struct_size(p, entry, 1)); 3329 3330 if (!p) 3331 return ICE_ERR_MAX_LIMIT; 3332 3333 p->count = cpu_to_le16(1); 3334 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 3335 p->entry[0].prof_id = tmp->prof_id; 3336 3337 memcpy(p->entry[0].key, 3338 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 3339 sizeof(hw->blk[blk].prof.t->key)); 3340 } 3341 3342 return 0; 3343 } 3344 3345 /** 3346 * ice_prof_bld_xlt1 - build XLT1 changes 3347 * @blk: hardware block 3348 * @bld: the update package buffer build to add to 3349 * @chgs: the list of changes to make in hardware 3350 */ 3351 static enum ice_status 3352 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 3353 struct list_head *chgs) 3354 { 3355 struct ice_chs_chg *tmp; 3356 3357 list_for_each_entry(tmp, chgs, list_entry) 3358 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 3359 struct ice_xlt1_section *p; 3360 u32 id; 3361 3362 id = ice_sect_id(blk, ICE_XLT1); 3363 p = ice_pkg_buf_alloc_section(bld, id, 3364 struct_size(p, value, 1)); 3365 3366 if (!p) 3367 return ICE_ERR_MAX_LIMIT; 3368 3369 p->count = cpu_to_le16(1); 3370 p->offset = cpu_to_le16(tmp->ptype); 3371 p->value[0] = tmp->ptg; 3372 } 3373 3374 return 0; 3375 } 3376 3377 /** 3378 * ice_prof_bld_xlt2 - build XLT2 changes 3379 * @blk: hardware block 3380 * @bld: the update package buffer build to add to 3381 * @chgs: the list of changes to make in hardware 3382 */ 3383 static enum ice_status 3384 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 3385 struct list_head *chgs) 3386 { 3387 struct ice_chs_chg *tmp; 3388 3389 list_for_each_entry(tmp, chgs, list_entry) { 3390 struct ice_xlt2_section *p; 3391 u32 id; 3392 3393 switch (tmp->type) { 3394 case ICE_VSIG_ADD: 3395 case ICE_VSI_MOVE: 3396 case ICE_VSIG_REM: 3397 id = ice_sect_id(blk, ICE_XLT2); 3398 p = ice_pkg_buf_alloc_section(bld, id, 3399 struct_size(p, value, 1)); 3400 3401 if (!p) 3402 return ICE_ERR_MAX_LIMIT; 3403 3404 p->count = cpu_to_le16(1); 3405 p->offset = cpu_to_le16(tmp->vsi); 3406 p->value[0] = cpu_to_le16(tmp->vsig); 3407 break; 3408 default: 3409 break; 3410 } 3411 } 3412 3413 return 0; 3414 } 3415 3416 /** 3417 * ice_upd_prof_hw - update hardware using the change list 3418 * @hw: pointer to the HW struct 3419 * @blk: hardware block 3420 * @chgs: the list of changes to make in hardware 3421 */ 3422 static enum ice_status 3423 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 3424 struct list_head *chgs) 3425 { 3426 struct ice_buf_build *b; 3427 struct ice_chs_chg *tmp; 3428 enum ice_status status; 3429 u16 pkg_sects; 3430 u16 xlt1 = 0; 3431 u16 xlt2 = 0; 3432 u16 tcam = 0; 3433 u16 es = 0; 3434 u16 sects; 3435 3436 /* count number of sections we need */ 3437 list_for_each_entry(tmp, chgs, list_entry) { 3438 switch (tmp->type) { 3439 case ICE_PTG_ES_ADD: 3440 if (tmp->add_ptg) 3441 xlt1++; 3442 if (tmp->add_prof) 3443 es++; 3444 break; 3445 case ICE_TCAM_ADD: 3446 tcam++; 3447 break; 3448 case ICE_VSIG_ADD: 3449 case ICE_VSI_MOVE: 3450 case ICE_VSIG_REM: 3451 xlt2++; 3452 break; 3453 default: 3454 break; 3455 } 3456 } 3457 sects = xlt1 + xlt2 + tcam + es; 3458 3459 if (!sects) 3460 return 0; 3461 3462 /* Build update package buffer */ 3463 b = ice_pkg_buf_alloc(hw); 3464 if (!b) 3465 return ICE_ERR_NO_MEMORY; 3466 3467 status = ice_pkg_buf_reserve_section(b, sects); 3468 if (status) 3469 goto error_tmp; 3470 3471 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 3472 if (es) { 3473 status = ice_prof_bld_es(hw, blk, b, chgs); 3474 if (status) 3475 goto error_tmp; 3476 } 3477 3478 if (tcam) { 3479 status = ice_prof_bld_tcam(hw, blk, b, chgs); 3480 if (status) 3481 goto error_tmp; 3482 } 3483 3484 if (xlt1) { 3485 status = ice_prof_bld_xlt1(blk, b, chgs); 3486 if (status) 3487 goto error_tmp; 3488 } 3489 3490 if (xlt2) { 3491 status = ice_prof_bld_xlt2(blk, b, chgs); 3492 if (status) 3493 goto error_tmp; 3494 } 3495 3496 /* After package buffer build check if the section count in buffer is 3497 * non-zero and matches the number of sections detected for package 3498 * update. 3499 */ 3500 pkg_sects = ice_pkg_buf_get_active_sections(b); 3501 if (!pkg_sects || pkg_sects != sects) { 3502 status = ICE_ERR_INVAL_SIZE; 3503 goto error_tmp; 3504 } 3505 3506 /* update package */ 3507 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 3508 if (status == ICE_ERR_AQ_ERROR) 3509 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 3510 3511 error_tmp: 3512 ice_pkg_buf_free(hw, b); 3513 return status; 3514 } 3515 3516 /** 3517 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 3518 * @hw: pointer to the HW struct 3519 * @prof_id: profile ID 3520 * @mask_sel: mask select 3521 * 3522 * This function enable any of the masks selected by the mask select parameter 3523 * for the profile specified. 3524 */ 3525 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 3526 { 3527 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 3528 3529 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 3530 GLQF_FDMASK_SEL(prof_id), mask_sel); 3531 } 3532 3533 struct ice_fd_src_dst_pair { 3534 u8 prot_id; 3535 u8 count; 3536 u16 off; 3537 }; 3538 3539 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 3540 /* These are defined in pairs */ 3541 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 3542 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 3543 3544 { ICE_PROT_IPV4_IL, 2, 12 }, 3545 { ICE_PROT_IPV4_IL, 2, 16 }, 3546 3547 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 3548 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 3549 3550 { ICE_PROT_IPV6_IL, 8, 8 }, 3551 { ICE_PROT_IPV6_IL, 8, 24 }, 3552 3553 { ICE_PROT_TCP_IL, 1, 0 }, 3554 { ICE_PROT_TCP_IL, 1, 2 }, 3555 3556 { ICE_PROT_UDP_OF, 1, 0 }, 3557 { ICE_PROT_UDP_OF, 1, 2 }, 3558 3559 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 3560 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 3561 3562 { ICE_PROT_SCTP_IL, 1, 0 }, 3563 { ICE_PROT_SCTP_IL, 1, 2 } 3564 }; 3565 3566 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 3567 3568 /** 3569 * ice_update_fd_swap - set register appropriately for a FD FV extraction 3570 * @hw: pointer to the HW struct 3571 * @prof_id: profile ID 3572 * @es: extraction sequence (length of array is determined by the block) 3573 */ 3574 static enum ice_status 3575 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 3576 { 3577 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3578 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 3579 #define ICE_FD_FV_NOT_FOUND (-2) 3580 s8 first_free = ICE_FD_FV_NOT_FOUND; 3581 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 3582 s8 orig_free, si; 3583 u32 mask_sel = 0; 3584 u8 i, j, k; 3585 3586 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3587 3588 /* This code assumes that the Flow Director field vectors are assigned 3589 * from the end of the FV indexes working towards the zero index, that 3590 * only complete fields will be included and will be consecutive, and 3591 * that there are no gaps between valid indexes. 3592 */ 3593 3594 /* Determine swap fields present */ 3595 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 3596 /* Find the first free entry, assuming right to left population. 3597 * This is where we can start adding additional pairs if needed. 3598 */ 3599 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 3600 ICE_PROT_INVALID) 3601 first_free = i - 1; 3602 3603 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3604 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 3605 es[i].off == ice_fd_pairs[j].off) { 3606 set_bit(j, pair_list); 3607 pair_start[j] = i; 3608 } 3609 } 3610 3611 orig_free = first_free; 3612 3613 /* determine missing swap fields that need to be added */ 3614 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 3615 u8 bit1 = test_bit(i + 1, pair_list); 3616 u8 bit0 = test_bit(i, pair_list); 3617 3618 if (bit0 ^ bit1) { 3619 u8 index; 3620 3621 /* add the appropriate 'paired' entry */ 3622 if (!bit0) 3623 index = i; 3624 else 3625 index = i + 1; 3626 3627 /* check for room */ 3628 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 3629 return ICE_ERR_MAX_LIMIT; 3630 3631 /* place in extraction sequence */ 3632 for (k = 0; k < ice_fd_pairs[index].count; k++) { 3633 es[first_free - k].prot_id = 3634 ice_fd_pairs[index].prot_id; 3635 es[first_free - k].off = 3636 ice_fd_pairs[index].off + (k * 2); 3637 3638 if (k > first_free) 3639 return ICE_ERR_OUT_OF_RANGE; 3640 3641 /* keep track of non-relevant fields */ 3642 mask_sel |= BIT(first_free - k); 3643 } 3644 3645 pair_start[index] = first_free; 3646 first_free -= ice_fd_pairs[index].count; 3647 } 3648 } 3649 3650 /* fill in the swap array */ 3651 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 3652 while (si >= 0) { 3653 u8 indexes_used = 1; 3654 3655 /* assume flat at this index */ 3656 #define ICE_SWAP_VALID 0x80 3657 used[si] = si | ICE_SWAP_VALID; 3658 3659 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 3660 si -= indexes_used; 3661 continue; 3662 } 3663 3664 /* check for a swap location */ 3665 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3666 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 3667 es[si].off == ice_fd_pairs[j].off) { 3668 u8 idx; 3669 3670 /* determine the appropriate matching field */ 3671 idx = j + ((j % 2) ? -1 : 1); 3672 3673 indexes_used = ice_fd_pairs[idx].count; 3674 for (k = 0; k < indexes_used; k++) { 3675 used[si - k] = (pair_start[idx] - k) | 3676 ICE_SWAP_VALID; 3677 } 3678 3679 break; 3680 } 3681 3682 si -= indexes_used; 3683 } 3684 3685 /* for each set of 4 swap and 4 inset indexes, write the appropriate 3686 * register 3687 */ 3688 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 3689 u32 raw_swap = 0; 3690 u32 raw_in = 0; 3691 3692 for (k = 0; k < 4; k++) { 3693 u8 idx; 3694 3695 idx = (j * 4) + k; 3696 if (used[idx] && !(mask_sel & BIT(idx))) { 3697 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 3698 #define ICE_INSET_DFLT 0x9f 3699 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 3700 } 3701 } 3702 3703 /* write the appropriate swap register set */ 3704 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 3705 3706 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 3707 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 3708 3709 /* write the appropriate inset register set */ 3710 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 3711 3712 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 3713 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 3714 } 3715 3716 /* initially clear the mask select for this profile */ 3717 ice_update_fd_mask(hw, prof_id, 0); 3718 3719 return 0; 3720 } 3721 3722 /** 3723 * ice_add_prof - add profile 3724 * @hw: pointer to the HW struct 3725 * @blk: hardware block 3726 * @id: profile tracking ID 3727 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 3728 * @es: extraction sequence (length of array is determined by the block) 3729 * 3730 * This function registers a profile, which matches a set of PTGs with a 3731 * particular extraction sequence. While the hardware profile is allocated 3732 * it will not be written until the first call to ice_add_flow that specifies 3733 * the ID value used here. 3734 */ 3735 enum ice_status 3736 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 3737 struct ice_fv_word *es) 3738 { 3739 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 3740 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3741 struct ice_prof_map *prof; 3742 enum ice_status status; 3743 u8 byte = 0; 3744 u8 prof_id; 3745 3746 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3747 3748 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3749 3750 /* search for existing profile */ 3751 status = ice_find_prof_id(hw, blk, es, &prof_id); 3752 if (status) { 3753 /* allocate profile ID */ 3754 status = ice_alloc_prof_id(hw, blk, &prof_id); 3755 if (status) 3756 goto err_ice_add_prof; 3757 if (blk == ICE_BLK_FD) { 3758 /* For Flow Director block, the extraction sequence may 3759 * need to be altered in the case where there are paired 3760 * fields that have no match. This is necessary because 3761 * for Flow Director, src and dest fields need to paired 3762 * for filter programming and these values are swapped 3763 * during Tx. 3764 */ 3765 status = ice_update_fd_swap(hw, prof_id, es); 3766 if (status) 3767 goto err_ice_add_prof; 3768 } 3769 3770 /* and write new es */ 3771 ice_write_es(hw, blk, prof_id, es); 3772 } 3773 3774 ice_prof_inc_ref(hw, blk, prof_id); 3775 3776 /* add profile info */ 3777 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 3778 if (!prof) { 3779 status = ICE_ERR_NO_MEMORY; 3780 goto err_ice_add_prof; 3781 } 3782 3783 prof->profile_cookie = id; 3784 prof->prof_id = prof_id; 3785 prof->ptg_cnt = 0; 3786 prof->context = 0; 3787 3788 /* build list of ptgs */ 3789 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 3790 u8 bit; 3791 3792 if (!ptypes[byte]) { 3793 bytes--; 3794 byte++; 3795 continue; 3796 } 3797 3798 /* Examine 8 bits per byte */ 3799 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 3800 BITS_PER_BYTE) { 3801 u16 ptype; 3802 u8 ptg; 3803 u8 m; 3804 3805 ptype = byte * BITS_PER_BYTE + bit; 3806 3807 /* The package should place all ptypes in a non-zero 3808 * PTG, so the following call should never fail. 3809 */ 3810 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 3811 continue; 3812 3813 /* If PTG is already added, skip and continue */ 3814 if (test_bit(ptg, ptgs_used)) 3815 continue; 3816 3817 set_bit(ptg, ptgs_used); 3818 prof->ptg[prof->ptg_cnt] = ptg; 3819 3820 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 3821 break; 3822 3823 /* nothing left in byte, then exit */ 3824 m = ~(u8)((1 << (bit + 1)) - 1); 3825 if (!(ptypes[byte] & m)) 3826 break; 3827 } 3828 3829 bytes--; 3830 byte++; 3831 } 3832 3833 list_add(&prof->list, &hw->blk[blk].es.prof_map); 3834 status = 0; 3835 3836 err_ice_add_prof: 3837 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3838 return status; 3839 } 3840 3841 /** 3842 * ice_search_prof_id - Search for a profile tracking ID 3843 * @hw: pointer to the HW struct 3844 * @blk: hardware block 3845 * @id: profile tracking ID 3846 * 3847 * This will search for a profile tracking ID which was previously added. 3848 * The profile map lock should be held before calling this function. 3849 */ 3850 static struct ice_prof_map * 3851 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 3852 { 3853 struct ice_prof_map *entry = NULL; 3854 struct ice_prof_map *map; 3855 3856 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 3857 if (map->profile_cookie == id) { 3858 entry = map; 3859 break; 3860 } 3861 3862 return entry; 3863 } 3864 3865 /** 3866 * ice_vsig_prof_id_count - count profiles in a VSIG 3867 * @hw: pointer to the HW struct 3868 * @blk: hardware block 3869 * @vsig: VSIG to remove the profile from 3870 */ 3871 static u16 3872 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3873 { 3874 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 3875 struct ice_vsig_prof *p; 3876 3877 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3878 list) 3879 count++; 3880 3881 return count; 3882 } 3883 3884 /** 3885 * ice_rel_tcam_idx - release a TCAM index 3886 * @hw: pointer to the HW struct 3887 * @blk: hardware block 3888 * @idx: the index to release 3889 */ 3890 static enum ice_status 3891 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 3892 { 3893 /* Masks to invoke a never match entry */ 3894 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3895 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 3896 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 3897 enum ice_status status; 3898 3899 /* write the TCAM entry */ 3900 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 3901 dc_msk, nm_msk); 3902 if (status) 3903 return status; 3904 3905 /* release the TCAM entry */ 3906 status = ice_free_tcam_ent(hw, blk, idx); 3907 3908 return status; 3909 } 3910 3911 /** 3912 * ice_rem_prof_id - remove one profile from a VSIG 3913 * @hw: pointer to the HW struct 3914 * @blk: hardware block 3915 * @prof: pointer to profile structure to remove 3916 */ 3917 static enum ice_status 3918 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 3919 struct ice_vsig_prof *prof) 3920 { 3921 enum ice_status status; 3922 u16 i; 3923 3924 for (i = 0; i < prof->tcam_count; i++) 3925 if (prof->tcam[i].in_use) { 3926 prof->tcam[i].in_use = false; 3927 status = ice_rel_tcam_idx(hw, blk, 3928 prof->tcam[i].tcam_idx); 3929 if (status) 3930 return ICE_ERR_HW_TABLE; 3931 } 3932 3933 return 0; 3934 } 3935 3936 /** 3937 * ice_rem_vsig - remove VSIG 3938 * @hw: pointer to the HW struct 3939 * @blk: hardware block 3940 * @vsig: the VSIG to remove 3941 * @chg: the change list 3942 */ 3943 static enum ice_status 3944 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3945 struct list_head *chg) 3946 { 3947 u16 idx = vsig & ICE_VSIG_IDX_M; 3948 struct ice_vsig_vsi *vsi_cur; 3949 struct ice_vsig_prof *d, *t; 3950 enum ice_status status; 3951 3952 /* remove TCAM entries */ 3953 list_for_each_entry_safe(d, t, 3954 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3955 list) { 3956 status = ice_rem_prof_id(hw, blk, d); 3957 if (status) 3958 return status; 3959 3960 list_del(&d->list); 3961 devm_kfree(ice_hw_to_dev(hw), d); 3962 } 3963 3964 /* Move all VSIS associated with this VSIG to the default VSIG */ 3965 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3966 /* If the VSIG has at least 1 VSI then iterate through the list 3967 * and remove the VSIs before deleting the group. 3968 */ 3969 if (vsi_cur) 3970 do { 3971 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 3972 struct ice_chs_chg *p; 3973 3974 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 3975 GFP_KERNEL); 3976 if (!p) 3977 return ICE_ERR_NO_MEMORY; 3978 3979 p->type = ICE_VSIG_REM; 3980 p->orig_vsig = vsig; 3981 p->vsig = ICE_DEFAULT_VSIG; 3982 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 3983 3984 list_add(&p->list_entry, chg); 3985 3986 vsi_cur = tmp; 3987 } while (vsi_cur); 3988 3989 return ice_vsig_free(hw, blk, vsig); 3990 } 3991 3992 /** 3993 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 3994 * @hw: pointer to the HW struct 3995 * @blk: hardware block 3996 * @vsig: VSIG to remove the profile from 3997 * @hdl: profile handle indicating which profile to remove 3998 * @chg: list to receive a record of changes 3999 */ 4000 static enum ice_status 4001 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4002 struct list_head *chg) 4003 { 4004 u16 idx = vsig & ICE_VSIG_IDX_M; 4005 struct ice_vsig_prof *p, *t; 4006 enum ice_status status; 4007 4008 list_for_each_entry_safe(p, t, 4009 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4010 list) 4011 if (p->profile_cookie == hdl) { 4012 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4013 /* this is the last profile, remove the VSIG */ 4014 return ice_rem_vsig(hw, blk, vsig, chg); 4015 4016 status = ice_rem_prof_id(hw, blk, p); 4017 if (!status) { 4018 list_del(&p->list); 4019 devm_kfree(ice_hw_to_dev(hw), p); 4020 } 4021 return status; 4022 } 4023 4024 return ICE_ERR_DOES_NOT_EXIST; 4025 } 4026 4027 /** 4028 * ice_rem_flow_all - remove all flows with a particular profile 4029 * @hw: pointer to the HW struct 4030 * @blk: hardware block 4031 * @id: profile tracking ID 4032 */ 4033 static enum ice_status 4034 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4035 { 4036 struct ice_chs_chg *del, *tmp; 4037 enum ice_status status; 4038 struct list_head chg; 4039 u16 i; 4040 4041 INIT_LIST_HEAD(&chg); 4042 4043 for (i = 1; i < ICE_MAX_VSIGS; i++) 4044 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4045 if (ice_has_prof_vsig(hw, blk, i, id)) { 4046 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4047 &chg); 4048 if (status) 4049 goto err_ice_rem_flow_all; 4050 } 4051 } 4052 4053 status = ice_upd_prof_hw(hw, blk, &chg); 4054 4055 err_ice_rem_flow_all: 4056 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4057 list_del(&del->list_entry); 4058 devm_kfree(ice_hw_to_dev(hw), del); 4059 } 4060 4061 return status; 4062 } 4063 4064 /** 4065 * ice_rem_prof - remove profile 4066 * @hw: pointer to the HW struct 4067 * @blk: hardware block 4068 * @id: profile tracking ID 4069 * 4070 * This will remove the profile specified by the ID parameter, which was 4071 * previously created through ice_add_prof. If any existing entries 4072 * are associated with this profile, they will be removed as well. 4073 */ 4074 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4075 { 4076 struct ice_prof_map *pmap; 4077 enum ice_status status; 4078 4079 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4080 4081 pmap = ice_search_prof_id(hw, blk, id); 4082 if (!pmap) { 4083 status = ICE_ERR_DOES_NOT_EXIST; 4084 goto err_ice_rem_prof; 4085 } 4086 4087 /* remove all flows with this profile */ 4088 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4089 if (status) 4090 goto err_ice_rem_prof; 4091 4092 /* dereference profile, and possibly remove */ 4093 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4094 4095 list_del(&pmap->list); 4096 devm_kfree(ice_hw_to_dev(hw), pmap); 4097 4098 err_ice_rem_prof: 4099 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4100 return status; 4101 } 4102 4103 /** 4104 * ice_get_prof - get profile 4105 * @hw: pointer to the HW struct 4106 * @blk: hardware block 4107 * @hdl: profile handle 4108 * @chg: change list 4109 */ 4110 static enum ice_status 4111 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4112 struct list_head *chg) 4113 { 4114 enum ice_status status = 0; 4115 struct ice_prof_map *map; 4116 struct ice_chs_chg *p; 4117 u16 i; 4118 4119 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4120 /* Get the details on the profile specified by the handle ID */ 4121 map = ice_search_prof_id(hw, blk, hdl); 4122 if (!map) { 4123 status = ICE_ERR_DOES_NOT_EXIST; 4124 goto err_ice_get_prof; 4125 } 4126 4127 for (i = 0; i < map->ptg_cnt; i++) 4128 if (!hw->blk[blk].es.written[map->prof_id]) { 4129 /* add ES to change list */ 4130 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4131 GFP_KERNEL); 4132 if (!p) { 4133 status = ICE_ERR_NO_MEMORY; 4134 goto err_ice_get_prof; 4135 } 4136 4137 p->type = ICE_PTG_ES_ADD; 4138 p->ptype = 0; 4139 p->ptg = map->ptg[i]; 4140 p->add_ptg = 0; 4141 4142 p->add_prof = 1; 4143 p->prof_id = map->prof_id; 4144 4145 hw->blk[blk].es.written[map->prof_id] = true; 4146 4147 list_add(&p->list_entry, chg); 4148 } 4149 4150 err_ice_get_prof: 4151 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4152 /* let caller clean up the change list */ 4153 return status; 4154 } 4155 4156 /** 4157 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4158 * @hw: pointer to the HW struct 4159 * @blk: hardware block 4160 * @vsig: VSIG from which to copy the list 4161 * @lst: output list 4162 * 4163 * This routine makes a copy of the list of profiles in the specified VSIG. 4164 */ 4165 static enum ice_status 4166 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4167 struct list_head *lst) 4168 { 4169 struct ice_vsig_prof *ent1, *ent2; 4170 u16 idx = vsig & ICE_VSIG_IDX_M; 4171 4172 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4173 list) { 4174 struct ice_vsig_prof *p; 4175 4176 /* copy to the input list */ 4177 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4178 GFP_KERNEL); 4179 if (!p) 4180 goto err_ice_get_profs_vsig; 4181 4182 list_add_tail(&p->list, lst); 4183 } 4184 4185 return 0; 4186 4187 err_ice_get_profs_vsig: 4188 list_for_each_entry_safe(ent1, ent2, lst, list) { 4189 list_del(&ent1->list); 4190 devm_kfree(ice_hw_to_dev(hw), ent1); 4191 } 4192 4193 return ICE_ERR_NO_MEMORY; 4194 } 4195 4196 /** 4197 * ice_add_prof_to_lst - add profile entry to a list 4198 * @hw: pointer to the HW struct 4199 * @blk: hardware block 4200 * @lst: the list to be added to 4201 * @hdl: profile handle of entry to add 4202 */ 4203 static enum ice_status 4204 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4205 struct list_head *lst, u64 hdl) 4206 { 4207 enum ice_status status = 0; 4208 struct ice_prof_map *map; 4209 struct ice_vsig_prof *p; 4210 u16 i; 4211 4212 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4213 map = ice_search_prof_id(hw, blk, hdl); 4214 if (!map) { 4215 status = ICE_ERR_DOES_NOT_EXIST; 4216 goto err_ice_add_prof_to_lst; 4217 } 4218 4219 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4220 if (!p) { 4221 status = ICE_ERR_NO_MEMORY; 4222 goto err_ice_add_prof_to_lst; 4223 } 4224 4225 p->profile_cookie = map->profile_cookie; 4226 p->prof_id = map->prof_id; 4227 p->tcam_count = map->ptg_cnt; 4228 4229 for (i = 0; i < map->ptg_cnt; i++) { 4230 p->tcam[i].prof_id = map->prof_id; 4231 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4232 p->tcam[i].ptg = map->ptg[i]; 4233 } 4234 4235 list_add(&p->list, lst); 4236 4237 err_ice_add_prof_to_lst: 4238 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4239 return status; 4240 } 4241 4242 /** 4243 * ice_move_vsi - move VSI to another VSIG 4244 * @hw: pointer to the HW struct 4245 * @blk: hardware block 4246 * @vsi: the VSI to move 4247 * @vsig: the VSIG to move the VSI to 4248 * @chg: the change list 4249 */ 4250 static enum ice_status 4251 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4252 struct list_head *chg) 4253 { 4254 enum ice_status status; 4255 struct ice_chs_chg *p; 4256 u16 orig_vsig; 4257 4258 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4259 if (!p) 4260 return ICE_ERR_NO_MEMORY; 4261 4262 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4263 if (!status) 4264 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4265 4266 if (status) { 4267 devm_kfree(ice_hw_to_dev(hw), p); 4268 return status; 4269 } 4270 4271 p->type = ICE_VSI_MOVE; 4272 p->vsi = vsi; 4273 p->orig_vsig = orig_vsig; 4274 p->vsig = vsig; 4275 4276 list_add(&p->list_entry, chg); 4277 4278 return 0; 4279 } 4280 4281 /** 4282 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4283 * @hw: pointer to the HW struct 4284 * @idx: the index of the TCAM entry to remove 4285 * @chg: the list of change structures to search 4286 */ 4287 static void 4288 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 4289 { 4290 struct ice_chs_chg *pos, *tmp; 4291 4292 list_for_each_entry_safe(tmp, pos, chg, list_entry) 4293 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4294 list_del(&tmp->list_entry); 4295 devm_kfree(ice_hw_to_dev(hw), tmp); 4296 } 4297 } 4298 4299 /** 4300 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4301 * @hw: pointer to the HW struct 4302 * @blk: hardware block 4303 * @enable: true to enable, false to disable 4304 * @vsig: the VSIG of the TCAM entry 4305 * @tcam: pointer the TCAM info structure of the TCAM to disable 4306 * @chg: the change list 4307 * 4308 * This function appends an enable or disable TCAM entry in the change log 4309 */ 4310 static enum ice_status 4311 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4312 u16 vsig, struct ice_tcam_inf *tcam, 4313 struct list_head *chg) 4314 { 4315 enum ice_status status; 4316 struct ice_chs_chg *p; 4317 4318 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4319 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4320 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4321 4322 /* if disabling, free the TCAM */ 4323 if (!enable) { 4324 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4325 4326 /* if we have already created a change for this TCAM entry, then 4327 * we need to remove that entry, in order to prevent writing to 4328 * a TCAM entry we no longer will have ownership of. 4329 */ 4330 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4331 tcam->tcam_idx = 0; 4332 tcam->in_use = 0; 4333 return status; 4334 } 4335 4336 /* for re-enabling, reallocate a TCAM */ 4337 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx); 4338 if (status) 4339 return status; 4340 4341 /* add TCAM to change list */ 4342 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4343 if (!p) 4344 return ICE_ERR_NO_MEMORY; 4345 4346 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4347 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4348 nm_msk); 4349 if (status) 4350 goto err_ice_prof_tcam_ena_dis; 4351 4352 tcam->in_use = 1; 4353 4354 p->type = ICE_TCAM_ADD; 4355 p->add_tcam_idx = true; 4356 p->prof_id = tcam->prof_id; 4357 p->ptg = tcam->ptg; 4358 p->vsig = 0; 4359 p->tcam_idx = tcam->tcam_idx; 4360 4361 /* log change */ 4362 list_add(&p->list_entry, chg); 4363 4364 return 0; 4365 4366 err_ice_prof_tcam_ena_dis: 4367 devm_kfree(ice_hw_to_dev(hw), p); 4368 return status; 4369 } 4370 4371 /** 4372 * ice_adj_prof_priorities - adjust profile based on priorities 4373 * @hw: pointer to the HW struct 4374 * @blk: hardware block 4375 * @vsig: the VSIG for which to adjust profile priorities 4376 * @chg: the change list 4377 */ 4378 static enum ice_status 4379 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4380 struct list_head *chg) 4381 { 4382 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4383 struct ice_vsig_prof *t; 4384 enum ice_status status; 4385 u16 idx; 4386 4387 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4388 idx = vsig & ICE_VSIG_IDX_M; 4389 4390 /* Priority is based on the order in which the profiles are added. The 4391 * newest added profile has highest priority and the oldest added 4392 * profile has the lowest priority. Since the profile property list for 4393 * a VSIG is sorted from newest to oldest, this code traverses the list 4394 * in order and enables the first of each PTG that it finds (that is not 4395 * already enabled); it also disables any duplicate PTGs that it finds 4396 * in the older profiles (that are currently enabled). 4397 */ 4398 4399 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4400 list) { 4401 u16 i; 4402 4403 for (i = 0; i < t->tcam_count; i++) { 4404 /* Scan the priorities from newest to oldest. 4405 * Make sure that the newest profiles take priority. 4406 */ 4407 if (test_bit(t->tcam[i].ptg, ptgs_used) && 4408 t->tcam[i].in_use) { 4409 /* need to mark this PTG as never match, as it 4410 * was already in use and therefore duplicate 4411 * (and lower priority) 4412 */ 4413 status = ice_prof_tcam_ena_dis(hw, blk, false, 4414 vsig, 4415 &t->tcam[i], 4416 chg); 4417 if (status) 4418 return status; 4419 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 4420 !t->tcam[i].in_use) { 4421 /* need to enable this PTG, as it in not in use 4422 * and not enabled (highest priority) 4423 */ 4424 status = ice_prof_tcam_ena_dis(hw, blk, true, 4425 vsig, 4426 &t->tcam[i], 4427 chg); 4428 if (status) 4429 return status; 4430 } 4431 4432 /* keep track of used ptgs */ 4433 set_bit(t->tcam[i].ptg, ptgs_used); 4434 } 4435 } 4436 4437 return 0; 4438 } 4439 4440 /** 4441 * ice_add_prof_id_vsig - add profile to VSIG 4442 * @hw: pointer to the HW struct 4443 * @blk: hardware block 4444 * @vsig: the VSIG to which this profile is to be added 4445 * @hdl: the profile handle indicating the profile to add 4446 * @rev: true to add entries to the end of the list 4447 * @chg: the change list 4448 */ 4449 static enum ice_status 4450 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4451 bool rev, struct list_head *chg) 4452 { 4453 /* Masks that ignore flags */ 4454 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4455 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4456 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4457 enum ice_status status = 0; 4458 struct ice_prof_map *map; 4459 struct ice_vsig_prof *t; 4460 struct ice_chs_chg *p; 4461 u16 vsig_idx, i; 4462 4463 /* Error, if this VSIG already has this profile */ 4464 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 4465 return ICE_ERR_ALREADY_EXISTS; 4466 4467 /* new VSIG profile structure */ 4468 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 4469 if (!t) 4470 return ICE_ERR_NO_MEMORY; 4471 4472 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4473 /* Get the details on the profile specified by the handle ID */ 4474 map = ice_search_prof_id(hw, blk, hdl); 4475 if (!map) { 4476 status = ICE_ERR_DOES_NOT_EXIST; 4477 goto err_ice_add_prof_id_vsig; 4478 } 4479 4480 t->profile_cookie = map->profile_cookie; 4481 t->prof_id = map->prof_id; 4482 t->tcam_count = map->ptg_cnt; 4483 4484 /* create TCAM entries */ 4485 for (i = 0; i < map->ptg_cnt; i++) { 4486 u16 tcam_idx; 4487 4488 /* add TCAM to change list */ 4489 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4490 if (!p) { 4491 status = ICE_ERR_NO_MEMORY; 4492 goto err_ice_add_prof_id_vsig; 4493 } 4494 4495 /* allocate the TCAM entry index */ 4496 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx); 4497 if (status) { 4498 devm_kfree(ice_hw_to_dev(hw), p); 4499 goto err_ice_add_prof_id_vsig; 4500 } 4501 4502 t->tcam[i].ptg = map->ptg[i]; 4503 t->tcam[i].prof_id = map->prof_id; 4504 t->tcam[i].tcam_idx = tcam_idx; 4505 t->tcam[i].in_use = true; 4506 4507 p->type = ICE_TCAM_ADD; 4508 p->add_tcam_idx = true; 4509 p->prof_id = t->tcam[i].prof_id; 4510 p->ptg = t->tcam[i].ptg; 4511 p->vsig = vsig; 4512 p->tcam_idx = t->tcam[i].tcam_idx; 4513 4514 /* write the TCAM entry */ 4515 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 4516 t->tcam[i].prof_id, 4517 t->tcam[i].ptg, vsig, 0, 0, 4518 vl_msk, dc_msk, nm_msk); 4519 if (status) { 4520 devm_kfree(ice_hw_to_dev(hw), p); 4521 goto err_ice_add_prof_id_vsig; 4522 } 4523 4524 /* log change */ 4525 list_add(&p->list_entry, chg); 4526 } 4527 4528 /* add profile to VSIG */ 4529 vsig_idx = vsig & ICE_VSIG_IDX_M; 4530 if (rev) 4531 list_add_tail(&t->list, 4532 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4533 else 4534 list_add(&t->list, 4535 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4536 4537 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4538 return status; 4539 4540 err_ice_add_prof_id_vsig: 4541 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4542 /* let caller clean up the change list */ 4543 devm_kfree(ice_hw_to_dev(hw), t); 4544 return status; 4545 } 4546 4547 /** 4548 * ice_create_prof_id_vsig - add a new VSIG with a single profile 4549 * @hw: pointer to the HW struct 4550 * @blk: hardware block 4551 * @vsi: the initial VSI that will be in VSIG 4552 * @hdl: the profile handle of the profile that will be added to the VSIG 4553 * @chg: the change list 4554 */ 4555 static enum ice_status 4556 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 4557 struct list_head *chg) 4558 { 4559 enum ice_status status; 4560 struct ice_chs_chg *p; 4561 u16 new_vsig; 4562 4563 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4564 if (!p) 4565 return ICE_ERR_NO_MEMORY; 4566 4567 new_vsig = ice_vsig_alloc(hw, blk); 4568 if (!new_vsig) { 4569 status = ICE_ERR_HW_TABLE; 4570 goto err_ice_create_prof_id_vsig; 4571 } 4572 4573 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 4574 if (status) 4575 goto err_ice_create_prof_id_vsig; 4576 4577 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 4578 if (status) 4579 goto err_ice_create_prof_id_vsig; 4580 4581 p->type = ICE_VSIG_ADD; 4582 p->vsi = vsi; 4583 p->orig_vsig = ICE_DEFAULT_VSIG; 4584 p->vsig = new_vsig; 4585 4586 list_add(&p->list_entry, chg); 4587 4588 return 0; 4589 4590 err_ice_create_prof_id_vsig: 4591 /* let caller clean up the change list */ 4592 devm_kfree(ice_hw_to_dev(hw), p); 4593 return status; 4594 } 4595 4596 /** 4597 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 4598 * @hw: pointer to the HW struct 4599 * @blk: hardware block 4600 * @vsi: the initial VSI that will be in VSIG 4601 * @lst: the list of profile that will be added to the VSIG 4602 * @new_vsig: return of new VSIG 4603 * @chg: the change list 4604 */ 4605 static enum ice_status 4606 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 4607 struct list_head *lst, u16 *new_vsig, 4608 struct list_head *chg) 4609 { 4610 struct ice_vsig_prof *t; 4611 enum ice_status status; 4612 u16 vsig; 4613 4614 vsig = ice_vsig_alloc(hw, blk); 4615 if (!vsig) 4616 return ICE_ERR_HW_TABLE; 4617 4618 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 4619 if (status) 4620 return status; 4621 4622 list_for_each_entry(t, lst, list) { 4623 /* Reverse the order here since we are copying the list */ 4624 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 4625 true, chg); 4626 if (status) 4627 return status; 4628 } 4629 4630 *new_vsig = vsig; 4631 4632 return 0; 4633 } 4634 4635 /** 4636 * ice_find_prof_vsig - find a VSIG with a specific profile handle 4637 * @hw: pointer to the HW struct 4638 * @blk: hardware block 4639 * @hdl: the profile handle of the profile to search for 4640 * @vsig: returns the VSIG with the matching profile 4641 */ 4642 static bool 4643 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 4644 { 4645 struct ice_vsig_prof *t; 4646 enum ice_status status; 4647 struct list_head lst; 4648 4649 INIT_LIST_HEAD(&lst); 4650 4651 t = kzalloc(sizeof(*t), GFP_KERNEL); 4652 if (!t) 4653 return false; 4654 4655 t->profile_cookie = hdl; 4656 list_add(&t->list, &lst); 4657 4658 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 4659 4660 list_del(&t->list); 4661 kfree(t); 4662 4663 return !status; 4664 } 4665 4666 /** 4667 * ice_add_prof_id_flow - add profile flow 4668 * @hw: pointer to the HW struct 4669 * @blk: hardware block 4670 * @vsi: the VSI to enable with the profile specified by ID 4671 * @hdl: profile handle 4672 * 4673 * Calling this function will update the hardware tables to enable the 4674 * profile indicated by the ID parameter for the VSIs specified in the VSI 4675 * array. Once successfully called, the flow will be enabled. 4676 */ 4677 enum ice_status 4678 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4679 { 4680 struct ice_vsig_prof *tmp1, *del1; 4681 struct ice_chs_chg *tmp, *del; 4682 struct list_head union_lst; 4683 enum ice_status status; 4684 struct list_head chg; 4685 u16 vsig; 4686 4687 INIT_LIST_HEAD(&union_lst); 4688 INIT_LIST_HEAD(&chg); 4689 4690 /* Get profile */ 4691 status = ice_get_prof(hw, blk, hdl, &chg); 4692 if (status) 4693 return status; 4694 4695 /* determine if VSI is already part of a VSIG */ 4696 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4697 if (!status && vsig) { 4698 bool only_vsi; 4699 u16 or_vsig; 4700 u16 ref; 4701 4702 /* found in VSIG */ 4703 or_vsig = vsig; 4704 4705 /* make sure that there is no overlap/conflict between the new 4706 * characteristics and the existing ones; we don't support that 4707 * scenario 4708 */ 4709 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 4710 status = ICE_ERR_ALREADY_EXISTS; 4711 goto err_ice_add_prof_id_flow; 4712 } 4713 4714 /* last VSI in the VSIG? */ 4715 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4716 if (status) 4717 goto err_ice_add_prof_id_flow; 4718 only_vsi = (ref == 1); 4719 4720 /* create a union of the current profiles and the one being 4721 * added 4722 */ 4723 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 4724 if (status) 4725 goto err_ice_add_prof_id_flow; 4726 4727 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 4728 if (status) 4729 goto err_ice_add_prof_id_flow; 4730 4731 /* search for an existing VSIG with an exact charc match */ 4732 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 4733 if (!status) { 4734 /* move VSI to the VSIG that matches */ 4735 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4736 if (status) 4737 goto err_ice_add_prof_id_flow; 4738 4739 /* VSI has been moved out of or_vsig. If the or_vsig had 4740 * only that VSI it is now empty and can be removed. 4741 */ 4742 if (only_vsi) { 4743 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 4744 if (status) 4745 goto err_ice_add_prof_id_flow; 4746 } 4747 } else if (only_vsi) { 4748 /* If the original VSIG only contains one VSI, then it 4749 * will be the requesting VSI. In this case the VSI is 4750 * not sharing entries and we can simply add the new 4751 * profile to the VSIG. 4752 */ 4753 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 4754 &chg); 4755 if (status) 4756 goto err_ice_add_prof_id_flow; 4757 4758 /* Adjust priorities */ 4759 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4760 if (status) 4761 goto err_ice_add_prof_id_flow; 4762 } else { 4763 /* No match, so we need a new VSIG */ 4764 status = ice_create_vsig_from_lst(hw, blk, vsi, 4765 &union_lst, &vsig, 4766 &chg); 4767 if (status) 4768 goto err_ice_add_prof_id_flow; 4769 4770 /* Adjust priorities */ 4771 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4772 if (status) 4773 goto err_ice_add_prof_id_flow; 4774 } 4775 } else { 4776 /* need to find or add a VSIG */ 4777 /* search for an existing VSIG with an exact charc match */ 4778 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 4779 /* found an exact match */ 4780 /* add or move VSI to the VSIG that matches */ 4781 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4782 if (status) 4783 goto err_ice_add_prof_id_flow; 4784 } else { 4785 /* we did not find an exact match */ 4786 /* we need to add a VSIG */ 4787 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 4788 &chg); 4789 if (status) 4790 goto err_ice_add_prof_id_flow; 4791 } 4792 } 4793 4794 /* update hardware */ 4795 if (!status) 4796 status = ice_upd_prof_hw(hw, blk, &chg); 4797 4798 err_ice_add_prof_id_flow: 4799 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4800 list_del(&del->list_entry); 4801 devm_kfree(ice_hw_to_dev(hw), del); 4802 } 4803 4804 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 4805 list_del(&del1->list); 4806 devm_kfree(ice_hw_to_dev(hw), del1); 4807 } 4808 4809 return status; 4810 } 4811 4812 /** 4813 * ice_rem_prof_from_list - remove a profile from list 4814 * @hw: pointer to the HW struct 4815 * @lst: list to remove the profile from 4816 * @hdl: the profile handle indicating the profile to remove 4817 */ 4818 static enum ice_status 4819 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 4820 { 4821 struct ice_vsig_prof *ent, *tmp; 4822 4823 list_for_each_entry_safe(ent, tmp, lst, list) 4824 if (ent->profile_cookie == hdl) { 4825 list_del(&ent->list); 4826 devm_kfree(ice_hw_to_dev(hw), ent); 4827 return 0; 4828 } 4829 4830 return ICE_ERR_DOES_NOT_EXIST; 4831 } 4832 4833 /** 4834 * ice_rem_prof_id_flow - remove flow 4835 * @hw: pointer to the HW struct 4836 * @blk: hardware block 4837 * @vsi: the VSI from which to remove the profile specified by ID 4838 * @hdl: profile tracking handle 4839 * 4840 * Calling this function will update the hardware tables to remove the 4841 * profile indicated by the ID parameter for the VSIs specified in the VSI 4842 * array. Once successfully called, the flow will be disabled. 4843 */ 4844 enum ice_status 4845 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4846 { 4847 struct ice_vsig_prof *tmp1, *del1; 4848 struct ice_chs_chg *tmp, *del; 4849 struct list_head chg, copy; 4850 enum ice_status status; 4851 u16 vsig; 4852 4853 INIT_LIST_HEAD(©); 4854 INIT_LIST_HEAD(&chg); 4855 4856 /* determine if VSI is already part of a VSIG */ 4857 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4858 if (!status && vsig) { 4859 bool last_profile; 4860 bool only_vsi; 4861 u16 ref; 4862 4863 /* found in VSIG */ 4864 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 4865 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4866 if (status) 4867 goto err_ice_rem_prof_id_flow; 4868 only_vsi = (ref == 1); 4869 4870 if (only_vsi) { 4871 /* If the original VSIG only contains one reference, 4872 * which will be the requesting VSI, then the VSI is not 4873 * sharing entries and we can simply remove the specific 4874 * characteristics from the VSIG. 4875 */ 4876 4877 if (last_profile) { 4878 /* If there are no profiles left for this VSIG, 4879 * then simply remove the VSIG. 4880 */ 4881 status = ice_rem_vsig(hw, blk, vsig, &chg); 4882 if (status) 4883 goto err_ice_rem_prof_id_flow; 4884 } else { 4885 status = ice_rem_prof_id_vsig(hw, blk, vsig, 4886 hdl, &chg); 4887 if (status) 4888 goto err_ice_rem_prof_id_flow; 4889 4890 /* Adjust priorities */ 4891 status = ice_adj_prof_priorities(hw, blk, vsig, 4892 &chg); 4893 if (status) 4894 goto err_ice_rem_prof_id_flow; 4895 } 4896 4897 } else { 4898 /* Make a copy of the VSIG's list of Profiles */ 4899 status = ice_get_profs_vsig(hw, blk, vsig, ©); 4900 if (status) 4901 goto err_ice_rem_prof_id_flow; 4902 4903 /* Remove specified profile entry from the list */ 4904 status = ice_rem_prof_from_list(hw, ©, hdl); 4905 if (status) 4906 goto err_ice_rem_prof_id_flow; 4907 4908 if (list_empty(©)) { 4909 status = ice_move_vsi(hw, blk, vsi, 4910 ICE_DEFAULT_VSIG, &chg); 4911 if (status) 4912 goto err_ice_rem_prof_id_flow; 4913 4914 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 4915 &vsig)) { 4916 /* found an exact match */ 4917 /* add or move VSI to the VSIG that matches */ 4918 /* Search for a VSIG with a matching profile 4919 * list 4920 */ 4921 4922 /* Found match, move VSI to the matching VSIG */ 4923 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4924 if (status) 4925 goto err_ice_rem_prof_id_flow; 4926 } else { 4927 /* since no existing VSIG supports this 4928 * characteristic pattern, we need to create a 4929 * new VSIG and TCAM entries 4930 */ 4931 status = ice_create_vsig_from_lst(hw, blk, vsi, 4932 ©, &vsig, 4933 &chg); 4934 if (status) 4935 goto err_ice_rem_prof_id_flow; 4936 4937 /* Adjust priorities */ 4938 status = ice_adj_prof_priorities(hw, blk, vsig, 4939 &chg); 4940 if (status) 4941 goto err_ice_rem_prof_id_flow; 4942 } 4943 } 4944 } else { 4945 status = ICE_ERR_DOES_NOT_EXIST; 4946 } 4947 4948 /* update hardware tables */ 4949 if (!status) 4950 status = ice_upd_prof_hw(hw, blk, &chg); 4951 4952 err_ice_rem_prof_id_flow: 4953 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4954 list_del(&del->list_entry); 4955 devm_kfree(ice_hw_to_dev(hw), del); 4956 } 4957 4958 list_for_each_entry_safe(del1, tmp1, ©, list) { 4959 list_del(&del1->list); 4960 devm_kfree(ice_hw_to_dev(hw), del1); 4961 } 4962 4963 return status; 4964 } 4965