1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* For supporting double VLAN mode, it is necessary to enable or disable certain 9 * boost tcam entries. The metadata labels names that match the following 10 * prefixes will be saved to allow enabling double VLAN mode. 11 */ 12 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */ 13 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */ 14 15 /* To support tunneling entries by PF, the package will append the PF number to 16 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 17 */ 18 #define ICE_TNL_PRE "TNL_" 19 static const struct ice_tunnel_type_scan tnls[] = { 20 { TNL_VXLAN, "TNL_VXLAN_PF" }, 21 { TNL_GENEVE, "TNL_GENEVE_PF" }, 22 { TNL_LAST, "" } 23 }; 24 25 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 26 /* SWITCH */ 27 { 28 ICE_SID_XLT0_SW, 29 ICE_SID_XLT_KEY_BUILDER_SW, 30 ICE_SID_XLT1_SW, 31 ICE_SID_XLT2_SW, 32 ICE_SID_PROFID_TCAM_SW, 33 ICE_SID_PROFID_REDIR_SW, 34 ICE_SID_FLD_VEC_SW, 35 ICE_SID_CDID_KEY_BUILDER_SW, 36 ICE_SID_CDID_REDIR_SW 37 }, 38 39 /* ACL */ 40 { 41 ICE_SID_XLT0_ACL, 42 ICE_SID_XLT_KEY_BUILDER_ACL, 43 ICE_SID_XLT1_ACL, 44 ICE_SID_XLT2_ACL, 45 ICE_SID_PROFID_TCAM_ACL, 46 ICE_SID_PROFID_REDIR_ACL, 47 ICE_SID_FLD_VEC_ACL, 48 ICE_SID_CDID_KEY_BUILDER_ACL, 49 ICE_SID_CDID_REDIR_ACL 50 }, 51 52 /* FD */ 53 { 54 ICE_SID_XLT0_FD, 55 ICE_SID_XLT_KEY_BUILDER_FD, 56 ICE_SID_XLT1_FD, 57 ICE_SID_XLT2_FD, 58 ICE_SID_PROFID_TCAM_FD, 59 ICE_SID_PROFID_REDIR_FD, 60 ICE_SID_FLD_VEC_FD, 61 ICE_SID_CDID_KEY_BUILDER_FD, 62 ICE_SID_CDID_REDIR_FD 63 }, 64 65 /* RSS */ 66 { 67 ICE_SID_XLT0_RSS, 68 ICE_SID_XLT_KEY_BUILDER_RSS, 69 ICE_SID_XLT1_RSS, 70 ICE_SID_XLT2_RSS, 71 ICE_SID_PROFID_TCAM_RSS, 72 ICE_SID_PROFID_REDIR_RSS, 73 ICE_SID_FLD_VEC_RSS, 74 ICE_SID_CDID_KEY_BUILDER_RSS, 75 ICE_SID_CDID_REDIR_RSS 76 }, 77 78 /* PE */ 79 { 80 ICE_SID_XLT0_PE, 81 ICE_SID_XLT_KEY_BUILDER_PE, 82 ICE_SID_XLT1_PE, 83 ICE_SID_XLT2_PE, 84 ICE_SID_PROFID_TCAM_PE, 85 ICE_SID_PROFID_REDIR_PE, 86 ICE_SID_FLD_VEC_PE, 87 ICE_SID_CDID_KEY_BUILDER_PE, 88 ICE_SID_CDID_REDIR_PE 89 } 90 }; 91 92 /** 93 * ice_sect_id - returns section ID 94 * @blk: block type 95 * @sect: section type 96 * 97 * This helper function returns the proper section ID given a block type and a 98 * section type. 99 */ 100 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 101 { 102 return ice_sect_lkup[blk][sect]; 103 } 104 105 /** 106 * ice_pkg_val_buf 107 * @buf: pointer to the ice buffer 108 * 109 * This helper function validates a buffer's header. 110 */ 111 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 112 { 113 struct ice_buf_hdr *hdr; 114 u16 section_count; 115 u16 data_end; 116 117 hdr = (struct ice_buf_hdr *)buf->buf; 118 /* verify data */ 119 section_count = le16_to_cpu(hdr->section_count); 120 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 121 return NULL; 122 123 data_end = le16_to_cpu(hdr->data_end); 124 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 125 return NULL; 126 127 return hdr; 128 } 129 130 /** 131 * ice_find_buf_table 132 * @ice_seg: pointer to the ice segment 133 * 134 * Returns the address of the buffer table within the ice segment. 135 */ 136 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 137 { 138 struct ice_nvm_table *nvms; 139 140 nvms = (struct ice_nvm_table *) 141 (ice_seg->device_table + 142 le32_to_cpu(ice_seg->device_table_count)); 143 144 return (__force struct ice_buf_table *) 145 (nvms->vers + le32_to_cpu(nvms->table_count)); 146 } 147 148 /** 149 * ice_pkg_enum_buf 150 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 151 * @state: pointer to the enum state 152 * 153 * This function will enumerate all the buffers in the ice segment. The first 154 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 155 * ice_seg is set to NULL which continues the enumeration. When the function 156 * returns a NULL pointer, then the end of the buffers has been reached, or an 157 * unexpected value has been detected (for example an invalid section count or 158 * an invalid buffer end value). 159 */ 160 static struct ice_buf_hdr * 161 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 162 { 163 if (ice_seg) { 164 state->buf_table = ice_find_buf_table(ice_seg); 165 if (!state->buf_table) 166 return NULL; 167 168 state->buf_idx = 0; 169 return ice_pkg_val_buf(state->buf_table->buf_array); 170 } 171 172 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 173 return ice_pkg_val_buf(state->buf_table->buf_array + 174 state->buf_idx); 175 else 176 return NULL; 177 } 178 179 /** 180 * ice_pkg_advance_sect 181 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 182 * @state: pointer to the enum state 183 * 184 * This helper function will advance the section within the ice segment, 185 * also advancing the buffer if needed. 186 */ 187 static bool 188 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 189 { 190 if (!ice_seg && !state->buf) 191 return false; 192 193 if (!ice_seg && state->buf) 194 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 195 return true; 196 197 state->buf = ice_pkg_enum_buf(ice_seg, state); 198 if (!state->buf) 199 return false; 200 201 /* start of new buffer, reset section index */ 202 state->sect_idx = 0; 203 return true; 204 } 205 206 /** 207 * ice_pkg_enum_section 208 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 209 * @state: pointer to the enum state 210 * @sect_type: section type to enumerate 211 * 212 * This function will enumerate all the sections of a particular type in the 213 * ice segment. The first call is made with the ice_seg parameter non-NULL; 214 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 215 * When the function returns a NULL pointer, then the end of the matching 216 * sections has been reached. 217 */ 218 static void * 219 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 220 u32 sect_type) 221 { 222 u16 offset, size; 223 224 if (ice_seg) 225 state->type = sect_type; 226 227 if (!ice_pkg_advance_sect(ice_seg, state)) 228 return NULL; 229 230 /* scan for next matching section */ 231 while (state->buf->section_entry[state->sect_idx].type != 232 cpu_to_le32(state->type)) 233 if (!ice_pkg_advance_sect(NULL, state)) 234 return NULL; 235 236 /* validate section */ 237 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 238 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 239 return NULL; 240 241 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 242 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 243 return NULL; 244 245 /* make sure the section fits in the buffer */ 246 if (offset + size > ICE_PKG_BUF_SIZE) 247 return NULL; 248 249 state->sect_type = 250 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 251 252 /* calc pointer to this section */ 253 state->sect = ((u8 *)state->buf) + 254 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 255 256 return state->sect; 257 } 258 259 /** 260 * ice_pkg_enum_entry 261 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 262 * @state: pointer to the enum state 263 * @sect_type: section type to enumerate 264 * @offset: pointer to variable that receives the offset in the table (optional) 265 * @handler: function that handles access to the entries into the section type 266 * 267 * This function will enumerate all the entries in particular section type in 268 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 269 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 270 * When the function returns a NULL pointer, then the end of the entries has 271 * been reached. 272 * 273 * Since each section may have a different header and entry size, the handler 274 * function is needed to determine the number and location entries in each 275 * section. 276 * 277 * The offset parameter is optional, but should be used for sections that 278 * contain an offset for each section table. For such cases, the section handler 279 * function must return the appropriate offset + index to give the absolution 280 * offset for each entry. For example, if the base for a section's header 281 * indicates a base offset of 10, and the index for the entry is 2, then 282 * section handler function should set the offset to 10 + 2 = 12. 283 */ 284 static void * 285 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 286 u32 sect_type, u32 *offset, 287 void *(*handler)(u32 sect_type, void *section, 288 u32 index, u32 *offset)) 289 { 290 void *entry; 291 292 if (ice_seg) { 293 if (!handler) 294 return NULL; 295 296 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 297 return NULL; 298 299 state->entry_idx = 0; 300 state->handler = handler; 301 } else { 302 state->entry_idx++; 303 } 304 305 if (!state->handler) 306 return NULL; 307 308 /* get entry */ 309 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 310 offset); 311 if (!entry) { 312 /* end of a section, look for another section of this type */ 313 if (!ice_pkg_enum_section(NULL, state, 0)) 314 return NULL; 315 316 state->entry_idx = 0; 317 entry = state->handler(state->sect_type, state->sect, 318 state->entry_idx, offset); 319 } 320 321 return entry; 322 } 323 324 /** 325 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 326 * @hw: pointer to the HW structure 327 * @ptype: the hardware PTYPE 328 */ 329 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 330 { 331 return ptype < ICE_FLOW_PTYPE_MAX && 332 test_bit(ptype, hw->hw_ptype); 333 } 334 335 /** 336 * ice_marker_ptype_tcam_handler 337 * @sect_type: section type 338 * @section: pointer to section 339 * @index: index of the Marker PType TCAM entry to be returned 340 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections 341 * 342 * This is a callback function that can be passed to ice_pkg_enum_entry. 343 * Handles enumeration of individual Marker PType TCAM entries. 344 */ 345 static void * 346 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index, 347 u32 *offset) 348 { 349 struct ice_marker_ptype_tcam_section *marker_ptype; 350 351 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) 352 return NULL; 353 354 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) 355 return NULL; 356 357 if (offset) 358 *offset = 0; 359 360 marker_ptype = section; 361 if (index >= le16_to_cpu(marker_ptype->count)) 362 return NULL; 363 364 return marker_ptype->tcam + index; 365 } 366 367 /** 368 * ice_fill_hw_ptype - fill the enabled PTYPE bit information 369 * @hw: pointer to the HW structure 370 */ 371 static void ice_fill_hw_ptype(struct ice_hw *hw) 372 { 373 struct ice_marker_ptype_tcam_entry *tcam; 374 struct ice_seg *seg = hw->seg; 375 struct ice_pkg_enum state; 376 377 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); 378 if (!seg) 379 return; 380 381 memset(&state, 0, sizeof(state)); 382 383 do { 384 tcam = ice_pkg_enum_entry(seg, &state, 385 ICE_SID_RXPARSER_MARKER_PTYPE, NULL, 386 ice_marker_ptype_tcam_handler); 387 if (tcam && 388 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && 389 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) 390 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); 391 392 seg = NULL; 393 } while (tcam); 394 } 395 396 /** 397 * ice_boost_tcam_handler 398 * @sect_type: section type 399 * @section: pointer to section 400 * @index: index of the boost TCAM entry to be returned 401 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 402 * 403 * This is a callback function that can be passed to ice_pkg_enum_entry. 404 * Handles enumeration of individual boost TCAM entries. 405 */ 406 static void * 407 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 408 { 409 struct ice_boost_tcam_section *boost; 410 411 if (!section) 412 return NULL; 413 414 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 415 return NULL; 416 417 /* cppcheck-suppress nullPointer */ 418 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 419 return NULL; 420 421 if (offset) 422 *offset = 0; 423 424 boost = section; 425 if (index >= le16_to_cpu(boost->count)) 426 return NULL; 427 428 return boost->tcam + index; 429 } 430 431 /** 432 * ice_find_boost_entry 433 * @ice_seg: pointer to the ice segment (non-NULL) 434 * @addr: Boost TCAM address of entry to search for 435 * @entry: returns pointer to the entry 436 * 437 * Finds a particular Boost TCAM entry and returns a pointer to that entry 438 * if it is found. The ice_seg parameter must not be NULL since the first call 439 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 440 */ 441 static int 442 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 443 struct ice_boost_tcam_entry **entry) 444 { 445 struct ice_boost_tcam_entry *tcam; 446 struct ice_pkg_enum state; 447 448 memset(&state, 0, sizeof(state)); 449 450 if (!ice_seg) 451 return -EINVAL; 452 453 do { 454 tcam = ice_pkg_enum_entry(ice_seg, &state, 455 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 456 ice_boost_tcam_handler); 457 if (tcam && le16_to_cpu(tcam->addr) == addr) { 458 *entry = tcam; 459 return 0; 460 } 461 462 ice_seg = NULL; 463 } while (tcam); 464 465 *entry = NULL; 466 return -EIO; 467 } 468 469 /** 470 * ice_label_enum_handler 471 * @sect_type: section type 472 * @section: pointer to section 473 * @index: index of the label entry to be returned 474 * @offset: pointer to receive absolute offset, always zero for label sections 475 * 476 * This is a callback function that can be passed to ice_pkg_enum_entry. 477 * Handles enumeration of individual label entries. 478 */ 479 static void * 480 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 481 u32 *offset) 482 { 483 struct ice_label_section *labels; 484 485 if (!section) 486 return NULL; 487 488 /* cppcheck-suppress nullPointer */ 489 if (index > ICE_MAX_LABELS_IN_BUF) 490 return NULL; 491 492 if (offset) 493 *offset = 0; 494 495 labels = section; 496 if (index >= le16_to_cpu(labels->count)) 497 return NULL; 498 499 return labels->label + index; 500 } 501 502 /** 503 * ice_enum_labels 504 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 505 * @type: the section type that will contain the label (0 on subsequent calls) 506 * @state: ice_pkg_enum structure that will hold the state of the enumeration 507 * @value: pointer to a value that will return the label's value if found 508 * 509 * Enumerates a list of labels in the package. The caller will call 510 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 511 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 512 * the end of the list has been reached. 513 */ 514 static char * 515 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 516 u16 *value) 517 { 518 struct ice_label *label; 519 520 /* Check for valid label section on first call */ 521 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 522 return NULL; 523 524 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 525 ice_label_enum_handler); 526 if (!label) 527 return NULL; 528 529 *value = le16_to_cpu(label->value); 530 return label->name; 531 } 532 533 /** 534 * ice_add_tunnel_hint 535 * @hw: pointer to the HW structure 536 * @label_name: label text 537 * @val: value of the tunnel port boost entry 538 */ 539 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 540 { 541 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 542 u16 i; 543 544 for (i = 0; tnls[i].type != TNL_LAST; i++) { 545 size_t len = strlen(tnls[i].label_prefix); 546 547 /* Look for matching label start, before continuing */ 548 if (strncmp(label_name, tnls[i].label_prefix, len)) 549 continue; 550 551 /* Make sure this label matches our PF. Note that the PF 552 * character ('0' - '7') will be located where our 553 * prefix string's null terminator is located. 554 */ 555 if ((label_name[len] - '0') == hw->pf_id) { 556 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 557 hw->tnl.tbl[hw->tnl.count].valid = false; 558 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 559 hw->tnl.tbl[hw->tnl.count].port = 0; 560 hw->tnl.count++; 561 break; 562 } 563 } 564 } 565 } 566 567 /** 568 * ice_add_dvm_hint 569 * @hw: pointer to the HW structure 570 * @val: value of the boost entry 571 * @enable: true if entry needs to be enabled, or false if needs to be disabled 572 */ 573 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable) 574 { 575 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) { 576 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val; 577 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable; 578 hw->dvm_upd.count++; 579 } 580 } 581 582 /** 583 * ice_init_pkg_hints 584 * @hw: pointer to the HW structure 585 * @ice_seg: pointer to the segment of the package scan (non-NULL) 586 * 587 * This function will scan the package and save off relevant information 588 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 589 * since the first call to ice_enum_labels requires a pointer to an actual 590 * ice_seg structure. 591 */ 592 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 593 { 594 struct ice_pkg_enum state; 595 char *label_name; 596 u16 val; 597 int i; 598 599 memset(&hw->tnl, 0, sizeof(hw->tnl)); 600 memset(&state, 0, sizeof(state)); 601 602 if (!ice_seg) 603 return; 604 605 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 606 &val); 607 608 while (label_name) { 609 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 610 /* check for a tunnel entry */ 611 ice_add_tunnel_hint(hw, label_name, val); 612 613 /* check for a dvm mode entry */ 614 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE))) 615 ice_add_dvm_hint(hw, val, true); 616 617 /* check for a svm mode entry */ 618 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE))) 619 ice_add_dvm_hint(hw, val, false); 620 621 label_name = ice_enum_labels(NULL, 0, &state, &val); 622 } 623 624 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 625 for (i = 0; i < hw->tnl.count; i++) { 626 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 627 &hw->tnl.tbl[i].boost_entry); 628 if (hw->tnl.tbl[i].boost_entry) { 629 hw->tnl.tbl[i].valid = true; 630 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 631 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 632 } 633 } 634 635 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */ 636 for (i = 0; i < hw->dvm_upd.count; i++) 637 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr, 638 &hw->dvm_upd.tbl[i].boost_entry); 639 } 640 641 /* Key creation */ 642 643 #define ICE_DC_KEY 0x1 /* don't care */ 644 #define ICE_DC_KEYINV 0x1 645 #define ICE_NM_KEY 0x0 /* never match */ 646 #define ICE_NM_KEYINV 0x0 647 #define ICE_0_KEY 0x1 /* match 0 */ 648 #define ICE_0_KEYINV 0x0 649 #define ICE_1_KEY 0x0 /* match 1 */ 650 #define ICE_1_KEYINV 0x1 651 652 /** 653 * ice_gen_key_word - generate 16-bits of a key/mask word 654 * @val: the value 655 * @valid: valid bits mask (change only the valid bits) 656 * @dont_care: don't care mask 657 * @nvr_mtch: never match mask 658 * @key: pointer to an array of where the resulting key portion 659 * @key_inv: pointer to an array of where the resulting key invert portion 660 * 661 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 662 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 663 * of key and 8 bits of key invert. 664 * 665 * '0' = b01, always match a 0 bit 666 * '1' = b10, always match a 1 bit 667 * '?' = b11, don't care bit (always matches) 668 * '~' = b00, never match bit 669 * 670 * Input: 671 * val: b0 1 0 1 0 1 672 * dont_care: b0 0 1 1 0 0 673 * never_mtch: b0 0 0 0 1 1 674 * ------------------------------ 675 * Result: key: b01 10 11 11 00 00 676 */ 677 static int 678 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 679 u8 *key_inv) 680 { 681 u8 in_key = *key, in_key_inv = *key_inv; 682 u8 i; 683 684 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 685 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 686 return -EIO; 687 688 *key = 0; 689 *key_inv = 0; 690 691 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 692 for (i = 0; i < 8; i++) { 693 *key >>= 1; 694 *key_inv >>= 1; 695 696 if (!(valid & 0x1)) { /* change only valid bits */ 697 *key |= (in_key & 0x1) << 7; 698 *key_inv |= (in_key_inv & 0x1) << 7; 699 } else if (dont_care & 0x1) { /* don't care bit */ 700 *key |= ICE_DC_KEY << 7; 701 *key_inv |= ICE_DC_KEYINV << 7; 702 } else if (nvr_mtch & 0x1) { /* never match bit */ 703 *key |= ICE_NM_KEY << 7; 704 *key_inv |= ICE_NM_KEYINV << 7; 705 } else if (val & 0x01) { /* exact 1 match */ 706 *key |= ICE_1_KEY << 7; 707 *key_inv |= ICE_1_KEYINV << 7; 708 } else { /* exact 0 match */ 709 *key |= ICE_0_KEY << 7; 710 *key_inv |= ICE_0_KEYINV << 7; 711 } 712 713 dont_care >>= 1; 714 nvr_mtch >>= 1; 715 valid >>= 1; 716 val >>= 1; 717 in_key >>= 1; 718 in_key_inv >>= 1; 719 } 720 721 return 0; 722 } 723 724 /** 725 * ice_bits_max_set - determine if the number of bits set is within a maximum 726 * @mask: pointer to the byte array which is the mask 727 * @size: the number of bytes in the mask 728 * @max: the max number of set bits 729 * 730 * This function determines if there are at most 'max' number of bits set in an 731 * array. Returns true if the number for bits set is <= max or will return false 732 * otherwise. 733 */ 734 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 735 { 736 u16 count = 0; 737 u16 i; 738 739 /* check each byte */ 740 for (i = 0; i < size; i++) { 741 /* if 0, go to next byte */ 742 if (!mask[i]) 743 continue; 744 745 /* We know there is at least one set bit in this byte because of 746 * the above check; if we already have found 'max' number of 747 * bits set, then we can return failure now. 748 */ 749 if (count == max) 750 return false; 751 752 /* count the bits in this byte, checking threshold */ 753 count += hweight8(mask[i]); 754 if (count > max) 755 return false; 756 } 757 758 return true; 759 } 760 761 /** 762 * ice_set_key - generate a variable sized key with multiples of 16-bits 763 * @key: pointer to where the key will be stored 764 * @size: the size of the complete key in bytes (must be even) 765 * @val: array of 8-bit values that makes up the value portion of the key 766 * @upd: array of 8-bit masks that determine what key portion to update 767 * @dc: array of 8-bit masks that make up the don't care mask 768 * @nm: array of 8-bit masks that make up the never match mask 769 * @off: the offset of the first byte in the key to update 770 * @len: the number of bytes in the key update 771 * 772 * This function generates a key from a value, a don't care mask and a never 773 * match mask. 774 * upd, dc, and nm are optional parameters, and can be NULL: 775 * upd == NULL --> upd mask is all 1's (update all bits) 776 * dc == NULL --> dc mask is all 0's (no don't care bits) 777 * nm == NULL --> nm mask is all 0's (no never match bits) 778 */ 779 static int 780 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 781 u16 len) 782 { 783 u16 half_size; 784 u16 i; 785 786 /* size must be a multiple of 2 bytes. */ 787 if (size % 2) 788 return -EIO; 789 790 half_size = size / 2; 791 if (off + len > half_size) 792 return -EIO; 793 794 /* Make sure at most one bit is set in the never match mask. Having more 795 * than one never match mask bit set will cause HW to consume excessive 796 * power otherwise; this is a power management efficiency check. 797 */ 798 #define ICE_NVR_MTCH_BITS_MAX 1 799 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 800 return -EIO; 801 802 for (i = 0; i < len; i++) 803 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 804 dc ? dc[i] : 0, nm ? nm[i] : 0, 805 key + off + i, key + half_size + off + i)) 806 return -EIO; 807 808 return 0; 809 } 810 811 /** 812 * ice_acquire_global_cfg_lock 813 * @hw: pointer to the HW structure 814 * @access: access type (read or write) 815 * 816 * This function will request ownership of the global config lock for reading 817 * or writing of the package. When attempting to obtain write access, the 818 * caller must check for the following two return values: 819 * 820 * 0 - Means the caller has acquired the global config lock 821 * and can perform writing of the package. 822 * -EALREADY - Indicates another driver has already written the 823 * package or has found that no update was necessary; in 824 * this case, the caller can just skip performing any 825 * update of the package. 826 */ 827 static int 828 ice_acquire_global_cfg_lock(struct ice_hw *hw, 829 enum ice_aq_res_access_type access) 830 { 831 int status; 832 833 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 834 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 835 836 if (!status) 837 mutex_lock(&ice_global_cfg_lock_sw); 838 else if (status == -EALREADY) 839 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 840 841 return status; 842 } 843 844 /** 845 * ice_release_global_cfg_lock 846 * @hw: pointer to the HW structure 847 * 848 * This function will release the global config lock. 849 */ 850 static void ice_release_global_cfg_lock(struct ice_hw *hw) 851 { 852 mutex_unlock(&ice_global_cfg_lock_sw); 853 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 854 } 855 856 /** 857 * ice_acquire_change_lock 858 * @hw: pointer to the HW structure 859 * @access: access type (read or write) 860 * 861 * This function will request ownership of the change lock. 862 */ 863 int 864 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 865 { 866 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 867 ICE_CHANGE_LOCK_TIMEOUT); 868 } 869 870 /** 871 * ice_release_change_lock 872 * @hw: pointer to the HW structure 873 * 874 * This function will release the change lock using the proper Admin Command. 875 */ 876 void ice_release_change_lock(struct ice_hw *hw) 877 { 878 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 879 } 880 881 /** 882 * ice_aq_download_pkg 883 * @hw: pointer to the hardware structure 884 * @pkg_buf: the package buffer to transfer 885 * @buf_size: the size of the package buffer 886 * @last_buf: last buffer indicator 887 * @error_offset: returns error offset 888 * @error_info: returns error information 889 * @cd: pointer to command details structure or NULL 890 * 891 * Download Package (0x0C40) 892 */ 893 static int 894 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 895 u16 buf_size, bool last_buf, u32 *error_offset, 896 u32 *error_info, struct ice_sq_cd *cd) 897 { 898 struct ice_aqc_download_pkg *cmd; 899 struct ice_aq_desc desc; 900 int status; 901 902 if (error_offset) 903 *error_offset = 0; 904 if (error_info) 905 *error_info = 0; 906 907 cmd = &desc.params.download_pkg; 908 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 909 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 910 911 if (last_buf) 912 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 913 914 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 915 if (status == -EIO) { 916 /* Read error from buffer only when the FW returned an error */ 917 struct ice_aqc_download_pkg_resp *resp; 918 919 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 920 if (error_offset) 921 *error_offset = le32_to_cpu(resp->error_offset); 922 if (error_info) 923 *error_info = le32_to_cpu(resp->error_info); 924 } 925 926 return status; 927 } 928 929 /** 930 * ice_aq_upload_section 931 * @hw: pointer to the hardware structure 932 * @pkg_buf: the package buffer which will receive the section 933 * @buf_size: the size of the package buffer 934 * @cd: pointer to command details structure or NULL 935 * 936 * Upload Section (0x0C41) 937 */ 938 int 939 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 940 u16 buf_size, struct ice_sq_cd *cd) 941 { 942 struct ice_aq_desc desc; 943 944 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 945 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 946 947 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 948 } 949 950 /** 951 * ice_aq_update_pkg 952 * @hw: pointer to the hardware structure 953 * @pkg_buf: the package cmd buffer 954 * @buf_size: the size of the package cmd buffer 955 * @last_buf: last buffer indicator 956 * @error_offset: returns error offset 957 * @error_info: returns error information 958 * @cd: pointer to command details structure or NULL 959 * 960 * Update Package (0x0C42) 961 */ 962 static int 963 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 964 bool last_buf, u32 *error_offset, u32 *error_info, 965 struct ice_sq_cd *cd) 966 { 967 struct ice_aqc_download_pkg *cmd; 968 struct ice_aq_desc desc; 969 int status; 970 971 if (error_offset) 972 *error_offset = 0; 973 if (error_info) 974 *error_info = 0; 975 976 cmd = &desc.params.download_pkg; 977 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 978 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 979 980 if (last_buf) 981 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 982 983 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 984 if (status == -EIO) { 985 /* Read error from buffer only when the FW returned an error */ 986 struct ice_aqc_download_pkg_resp *resp; 987 988 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 989 if (error_offset) 990 *error_offset = le32_to_cpu(resp->error_offset); 991 if (error_info) 992 *error_info = le32_to_cpu(resp->error_info); 993 } 994 995 return status; 996 } 997 998 /** 999 * ice_find_seg_in_pkg 1000 * @hw: pointer to the hardware structure 1001 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 1002 * @pkg_hdr: pointer to the package header to be searched 1003 * 1004 * This function searches a package file for a particular segment type. On 1005 * success it returns a pointer to the segment header, otherwise it will 1006 * return NULL. 1007 */ 1008 static struct ice_generic_seg_hdr * 1009 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 1010 struct ice_pkg_hdr *pkg_hdr) 1011 { 1012 u32 i; 1013 1014 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 1015 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 1016 pkg_hdr->pkg_format_ver.update, 1017 pkg_hdr->pkg_format_ver.draft); 1018 1019 /* Search all package segments for the requested segment type */ 1020 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 1021 struct ice_generic_seg_hdr *seg; 1022 1023 seg = (struct ice_generic_seg_hdr *) 1024 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 1025 1026 if (le32_to_cpu(seg->seg_type) == seg_type) 1027 return seg; 1028 } 1029 1030 return NULL; 1031 } 1032 1033 /** 1034 * ice_update_pkg_no_lock 1035 * @hw: pointer to the hardware structure 1036 * @bufs: pointer to an array of buffers 1037 * @count: the number of buffers in the array 1038 */ 1039 static int 1040 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1041 { 1042 int status = 0; 1043 u32 i; 1044 1045 for (i = 0; i < count; i++) { 1046 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 1047 bool last = ((i + 1) == count); 1048 u32 offset, info; 1049 1050 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 1051 last, &offset, &info, NULL); 1052 1053 if (status) { 1054 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 1055 status, offset, info); 1056 break; 1057 } 1058 } 1059 1060 return status; 1061 } 1062 1063 /** 1064 * ice_update_pkg 1065 * @hw: pointer to the hardware structure 1066 * @bufs: pointer to an array of buffers 1067 * @count: the number of buffers in the array 1068 * 1069 * Obtains change lock and updates package. 1070 */ 1071 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1072 { 1073 int status; 1074 1075 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1076 if (status) 1077 return status; 1078 1079 status = ice_update_pkg_no_lock(hw, bufs, count); 1080 1081 ice_release_change_lock(hw); 1082 1083 return status; 1084 } 1085 1086 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) 1087 { 1088 switch (aq_err) { 1089 case ICE_AQ_RC_ENOSEC: 1090 case ICE_AQ_RC_EBADSIG: 1091 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; 1092 case ICE_AQ_RC_ESVN: 1093 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; 1094 case ICE_AQ_RC_EBADMAN: 1095 case ICE_AQ_RC_EBADBUF: 1096 return ICE_DDP_PKG_LOAD_ERROR; 1097 default: 1098 return ICE_DDP_PKG_ERR; 1099 } 1100 } 1101 1102 /** 1103 * ice_dwnld_cfg_bufs 1104 * @hw: pointer to the hardware structure 1105 * @bufs: pointer to an array of buffers 1106 * @count: the number of buffers in the array 1107 * 1108 * Obtains global config lock and downloads the package configuration buffers 1109 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1110 * found indicates that the rest of the buffers are all metadata buffers. 1111 */ 1112 static enum ice_ddp_state 1113 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1114 { 1115 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1116 struct ice_buf_hdr *bh; 1117 enum ice_aq_err err; 1118 u32 offset, info, i; 1119 int status; 1120 1121 if (!bufs || !count) 1122 return ICE_DDP_PKG_ERR; 1123 1124 /* If the first buffer's first section has its metadata bit set 1125 * then there are no buffers to be downloaded, and the operation is 1126 * considered a success. 1127 */ 1128 bh = (struct ice_buf_hdr *)bufs; 1129 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 1130 return ICE_DDP_PKG_SUCCESS; 1131 1132 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1133 if (status) { 1134 if (status == -EALREADY) 1135 return ICE_DDP_PKG_ALREADY_LOADED; 1136 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); 1137 } 1138 1139 for (i = 0; i < count; i++) { 1140 bool last = ((i + 1) == count); 1141 1142 if (!last) { 1143 /* check next buffer for metadata flag */ 1144 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1145 1146 /* A set metadata flag in the next buffer will signal 1147 * that the current buffer will be the last buffer 1148 * downloaded 1149 */ 1150 if (le16_to_cpu(bh->section_count)) 1151 if (le32_to_cpu(bh->section_entry[0].type) & 1152 ICE_METADATA_BUF) 1153 last = true; 1154 } 1155 1156 bh = (struct ice_buf_hdr *)(bufs + i); 1157 1158 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1159 &offset, &info, NULL); 1160 1161 /* Save AQ status from download package */ 1162 if (status) { 1163 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1164 status, offset, info); 1165 err = hw->adminq.sq_last_status; 1166 state = ice_map_aq_err_to_ddp_state(err); 1167 break; 1168 } 1169 1170 if (last) 1171 break; 1172 } 1173 1174 if (!status) { 1175 status = ice_set_vlan_mode(hw); 1176 if (status) 1177 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", 1178 status); 1179 } 1180 1181 ice_release_global_cfg_lock(hw); 1182 1183 return state; 1184 } 1185 1186 /** 1187 * ice_aq_get_pkg_info_list 1188 * @hw: pointer to the hardware structure 1189 * @pkg_info: the buffer which will receive the information list 1190 * @buf_size: the size of the pkg_info information buffer 1191 * @cd: pointer to command details structure or NULL 1192 * 1193 * Get Package Info List (0x0C43) 1194 */ 1195 static int 1196 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1197 struct ice_aqc_get_pkg_info_resp *pkg_info, 1198 u16 buf_size, struct ice_sq_cd *cd) 1199 { 1200 struct ice_aq_desc desc; 1201 1202 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1203 1204 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1205 } 1206 1207 /** 1208 * ice_download_pkg 1209 * @hw: pointer to the hardware structure 1210 * @ice_seg: pointer to the segment of the package to be downloaded 1211 * 1212 * Handles the download of a complete package. 1213 */ 1214 static enum ice_ddp_state 1215 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1216 { 1217 struct ice_buf_table *ice_buf_tbl; 1218 int status; 1219 1220 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1221 ice_seg->hdr.seg_format_ver.major, 1222 ice_seg->hdr.seg_format_ver.minor, 1223 ice_seg->hdr.seg_format_ver.update, 1224 ice_seg->hdr.seg_format_ver.draft); 1225 1226 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1227 le32_to_cpu(ice_seg->hdr.seg_type), 1228 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1229 1230 ice_buf_tbl = ice_find_buf_table(ice_seg); 1231 1232 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1233 le32_to_cpu(ice_buf_tbl->buf_count)); 1234 1235 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1236 le32_to_cpu(ice_buf_tbl->buf_count)); 1237 1238 ice_post_pkg_dwnld_vlan_mode_cfg(hw); 1239 1240 return status; 1241 } 1242 1243 /** 1244 * ice_init_pkg_info 1245 * @hw: pointer to the hardware structure 1246 * @pkg_hdr: pointer to the driver's package hdr 1247 * 1248 * Saves off the package details into the HW structure. 1249 */ 1250 static enum ice_ddp_state 1251 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1252 { 1253 struct ice_generic_seg_hdr *seg_hdr; 1254 1255 if (!pkg_hdr) 1256 return ICE_DDP_PKG_ERR; 1257 1258 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1259 if (seg_hdr) { 1260 struct ice_meta_sect *meta; 1261 struct ice_pkg_enum state; 1262 1263 memset(&state, 0, sizeof(state)); 1264 1265 /* Get package information from the Metadata Section */ 1266 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1267 ICE_SID_METADATA); 1268 if (!meta) { 1269 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1270 return ICE_DDP_PKG_INVALID_FILE; 1271 } 1272 1273 hw->pkg_ver = meta->ver; 1274 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1275 1276 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1277 meta->ver.major, meta->ver.minor, meta->ver.update, 1278 meta->ver.draft, meta->name); 1279 1280 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1281 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1282 sizeof(hw->ice_seg_id)); 1283 1284 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1285 seg_hdr->seg_format_ver.major, 1286 seg_hdr->seg_format_ver.minor, 1287 seg_hdr->seg_format_ver.update, 1288 seg_hdr->seg_format_ver.draft, 1289 seg_hdr->seg_id); 1290 } else { 1291 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1292 return ICE_DDP_PKG_INVALID_FILE; 1293 } 1294 1295 return ICE_DDP_PKG_SUCCESS; 1296 } 1297 1298 /** 1299 * ice_get_pkg_info 1300 * @hw: pointer to the hardware structure 1301 * 1302 * Store details of the package currently loaded in HW into the HW structure. 1303 */ 1304 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) 1305 { 1306 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1307 struct ice_aqc_get_pkg_info_resp *pkg_info; 1308 u16 size; 1309 u32 i; 1310 1311 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1312 pkg_info = kzalloc(size, GFP_KERNEL); 1313 if (!pkg_info) 1314 return ICE_DDP_PKG_ERR; 1315 1316 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { 1317 state = ICE_DDP_PKG_ERR; 1318 goto init_pkg_free_alloc; 1319 } 1320 1321 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1322 #define ICE_PKG_FLAG_COUNT 4 1323 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1324 u8 place = 0; 1325 1326 if (pkg_info->pkg_info[i].is_active) { 1327 flags[place++] = 'A'; 1328 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1329 hw->active_track_id = 1330 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1331 memcpy(hw->active_pkg_name, 1332 pkg_info->pkg_info[i].name, 1333 sizeof(pkg_info->pkg_info[i].name)); 1334 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1335 } 1336 if (pkg_info->pkg_info[i].is_active_at_boot) 1337 flags[place++] = 'B'; 1338 if (pkg_info->pkg_info[i].is_modified) 1339 flags[place++] = 'M'; 1340 if (pkg_info->pkg_info[i].is_in_nvm) 1341 flags[place++] = 'N'; 1342 1343 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1344 i, pkg_info->pkg_info[i].ver.major, 1345 pkg_info->pkg_info[i].ver.minor, 1346 pkg_info->pkg_info[i].ver.update, 1347 pkg_info->pkg_info[i].ver.draft, 1348 pkg_info->pkg_info[i].name, flags); 1349 } 1350 1351 init_pkg_free_alloc: 1352 kfree(pkg_info); 1353 1354 return state; 1355 } 1356 1357 /** 1358 * ice_verify_pkg - verify package 1359 * @pkg: pointer to the package buffer 1360 * @len: size of the package buffer 1361 * 1362 * Verifies various attributes of the package file, including length, format 1363 * version, and the requirement of at least one segment. 1364 */ 1365 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1366 { 1367 u32 seg_count; 1368 u32 i; 1369 1370 if (len < struct_size(pkg, seg_offset, 1)) 1371 return ICE_DDP_PKG_INVALID_FILE; 1372 1373 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1374 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1375 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1376 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1377 return ICE_DDP_PKG_INVALID_FILE; 1378 1379 /* pkg must have at least one segment */ 1380 seg_count = le32_to_cpu(pkg->seg_count); 1381 if (seg_count < 1) 1382 return ICE_DDP_PKG_INVALID_FILE; 1383 1384 /* make sure segment array fits in package length */ 1385 if (len < struct_size(pkg, seg_offset, seg_count)) 1386 return ICE_DDP_PKG_INVALID_FILE; 1387 1388 /* all segments must fit within length */ 1389 for (i = 0; i < seg_count; i++) { 1390 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1391 struct ice_generic_seg_hdr *seg; 1392 1393 /* segment header must fit */ 1394 if (len < off + sizeof(*seg)) 1395 return ICE_DDP_PKG_INVALID_FILE; 1396 1397 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1398 1399 /* segment body must fit */ 1400 if (len < off + le32_to_cpu(seg->seg_size)) 1401 return ICE_DDP_PKG_INVALID_FILE; 1402 } 1403 1404 return ICE_DDP_PKG_SUCCESS; 1405 } 1406 1407 /** 1408 * ice_free_seg - free package segment pointer 1409 * @hw: pointer to the hardware structure 1410 * 1411 * Frees the package segment pointer in the proper manner, depending on if the 1412 * segment was allocated or just the passed in pointer was stored. 1413 */ 1414 void ice_free_seg(struct ice_hw *hw) 1415 { 1416 if (hw->pkg_copy) { 1417 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1418 hw->pkg_copy = NULL; 1419 hw->pkg_size = 0; 1420 } 1421 hw->seg = NULL; 1422 } 1423 1424 /** 1425 * ice_init_pkg_regs - initialize additional package registers 1426 * @hw: pointer to the hardware structure 1427 */ 1428 static void ice_init_pkg_regs(struct ice_hw *hw) 1429 { 1430 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1431 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1432 #define ICE_SW_BLK_IDX 0 1433 1434 /* setup Switch block input mask, which is 48-bits in two parts */ 1435 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1436 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1437 } 1438 1439 /** 1440 * ice_chk_pkg_version - check package version for compatibility with driver 1441 * @pkg_ver: pointer to a version structure to check 1442 * 1443 * Check to make sure that the package about to be downloaded is compatible with 1444 * the driver. To be compatible, the major and minor components of the package 1445 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1446 * definitions. 1447 */ 1448 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1449 { 1450 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || 1451 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1452 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) 1453 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; 1454 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || 1455 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1456 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) 1457 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; 1458 1459 return ICE_DDP_PKG_SUCCESS; 1460 } 1461 1462 /** 1463 * ice_chk_pkg_compat 1464 * @hw: pointer to the hardware structure 1465 * @ospkg: pointer to the package hdr 1466 * @seg: pointer to the package segment hdr 1467 * 1468 * This function checks the package version compatibility with driver and NVM 1469 */ 1470 static enum ice_ddp_state 1471 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1472 struct ice_seg **seg) 1473 { 1474 struct ice_aqc_get_pkg_info_resp *pkg; 1475 enum ice_ddp_state state; 1476 u16 size; 1477 u32 i; 1478 1479 /* Check package version compatibility */ 1480 state = ice_chk_pkg_version(&hw->pkg_ver); 1481 if (state) { 1482 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1483 return state; 1484 } 1485 1486 /* find ICE segment in given package */ 1487 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1488 ospkg); 1489 if (!*seg) { 1490 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1491 return ICE_DDP_PKG_INVALID_FILE; 1492 } 1493 1494 /* Check if FW is compatible with the OS package */ 1495 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1496 pkg = kzalloc(size, GFP_KERNEL); 1497 if (!pkg) 1498 return ICE_DDP_PKG_ERR; 1499 1500 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { 1501 state = ICE_DDP_PKG_LOAD_ERROR; 1502 goto fw_ddp_compat_free_alloc; 1503 } 1504 1505 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1506 /* loop till we find the NVM package */ 1507 if (!pkg->pkg_info[i].is_in_nvm) 1508 continue; 1509 if ((*seg)->hdr.seg_format_ver.major != 1510 pkg->pkg_info[i].ver.major || 1511 (*seg)->hdr.seg_format_ver.minor > 1512 pkg->pkg_info[i].ver.minor) { 1513 state = ICE_DDP_PKG_FW_MISMATCH; 1514 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1515 } 1516 /* done processing NVM package so break */ 1517 break; 1518 } 1519 fw_ddp_compat_free_alloc: 1520 kfree(pkg); 1521 return state; 1522 } 1523 1524 /** 1525 * ice_sw_fv_handler 1526 * @sect_type: section type 1527 * @section: pointer to section 1528 * @index: index of the field vector entry to be returned 1529 * @offset: ptr to variable that receives the offset in the field vector table 1530 * 1531 * This is a callback function that can be passed to ice_pkg_enum_entry. 1532 * This function treats the given section as of type ice_sw_fv_section and 1533 * enumerates offset field. "offset" is an index into the field vector table. 1534 */ 1535 static void * 1536 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1537 { 1538 struct ice_sw_fv_section *fv_section = section; 1539 1540 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1541 return NULL; 1542 if (index >= le16_to_cpu(fv_section->count)) 1543 return NULL; 1544 if (offset) 1545 /* "index" passed in to this function is relative to a given 1546 * 4k block. To get to the true index into the field vector 1547 * table need to add the relative index to the base_offset 1548 * field of this section 1549 */ 1550 *offset = le16_to_cpu(fv_section->base_offset) + index; 1551 return fv_section->fv + index; 1552 } 1553 1554 /** 1555 * ice_get_prof_index_max - get the max profile index for used profile 1556 * @hw: pointer to the HW struct 1557 * 1558 * Calling this function will get the max profile index for used profile 1559 * and store the index number in struct ice_switch_info *switch_info 1560 * in HW for following use. 1561 */ 1562 static int ice_get_prof_index_max(struct ice_hw *hw) 1563 { 1564 u16 prof_index = 0, j, max_prof_index = 0; 1565 struct ice_pkg_enum state; 1566 struct ice_seg *ice_seg; 1567 bool flag = false; 1568 struct ice_fv *fv; 1569 u32 offset; 1570 1571 memset(&state, 0, sizeof(state)); 1572 1573 if (!hw->seg) 1574 return -EINVAL; 1575 1576 ice_seg = hw->seg; 1577 1578 do { 1579 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1580 &offset, ice_sw_fv_handler); 1581 if (!fv) 1582 break; 1583 ice_seg = NULL; 1584 1585 /* in the profile that not be used, the prot_id is set to 0xff 1586 * and the off is set to 0x1ff for all the field vectors. 1587 */ 1588 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1589 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1590 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1591 flag = true; 1592 if (flag && prof_index > max_prof_index) 1593 max_prof_index = prof_index; 1594 1595 prof_index++; 1596 flag = false; 1597 } while (fv); 1598 1599 hw->switch_info->max_used_prof_index = max_prof_index; 1600 1601 return 0; 1602 } 1603 1604 /** 1605 * ice_get_ddp_pkg_state - get DDP pkg state after download 1606 * @hw: pointer to the HW struct 1607 * @already_loaded: indicates if pkg was already loaded onto the device 1608 */ 1609 static enum ice_ddp_state 1610 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) 1611 { 1612 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 1613 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 1614 hw->pkg_ver.update == hw->active_pkg_ver.update && 1615 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 1616 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { 1617 if (already_loaded) 1618 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; 1619 else 1620 return ICE_DDP_PKG_SUCCESS; 1621 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 1622 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 1623 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; 1624 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 1625 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 1626 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; 1627 } else { 1628 return ICE_DDP_PKG_ERR; 1629 } 1630 } 1631 1632 /** 1633 * ice_init_pkg - initialize/download package 1634 * @hw: pointer to the hardware structure 1635 * @buf: pointer to the package buffer 1636 * @len: size of the package buffer 1637 * 1638 * This function initializes a package. The package contains HW tables 1639 * required to do packet processing. First, the function extracts package 1640 * information such as version. Then it finds the ice configuration segment 1641 * within the package; this function then saves a copy of the segment pointer 1642 * within the supplied package buffer. Next, the function will cache any hints 1643 * from the package, followed by downloading the package itself. Note, that if 1644 * a previous PF driver has already downloaded the package successfully, then 1645 * the current driver will not have to download the package again. 1646 * 1647 * The local package contents will be used to query default behavior and to 1648 * update specific sections of the HW's version of the package (e.g. to update 1649 * the parse graph to understand new protocols). 1650 * 1651 * This function stores a pointer to the package buffer memory, and it is 1652 * expected that the supplied buffer will not be freed immediately. If the 1653 * package buffer needs to be freed, such as when read from a file, use 1654 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1655 * case. 1656 */ 1657 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1658 { 1659 bool already_loaded = false; 1660 enum ice_ddp_state state; 1661 struct ice_pkg_hdr *pkg; 1662 struct ice_seg *seg; 1663 1664 if (!buf || !len) 1665 return ICE_DDP_PKG_ERR; 1666 1667 pkg = (struct ice_pkg_hdr *)buf; 1668 state = ice_verify_pkg(pkg, len); 1669 if (state) { 1670 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1671 state); 1672 return state; 1673 } 1674 1675 /* initialize package info */ 1676 state = ice_init_pkg_info(hw, pkg); 1677 if (state) 1678 return state; 1679 1680 /* before downloading the package, check package version for 1681 * compatibility with driver 1682 */ 1683 state = ice_chk_pkg_compat(hw, pkg, &seg); 1684 if (state) 1685 return state; 1686 1687 /* initialize package hints and then download package */ 1688 ice_init_pkg_hints(hw, seg); 1689 state = ice_download_pkg(hw, seg); 1690 if (state == ICE_DDP_PKG_ALREADY_LOADED) { 1691 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1692 already_loaded = true; 1693 } 1694 1695 /* Get information on the package currently loaded in HW, then make sure 1696 * the driver is compatible with this version. 1697 */ 1698 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { 1699 state = ice_get_pkg_info(hw); 1700 if (!state) 1701 state = ice_get_ddp_pkg_state(hw, already_loaded); 1702 } 1703 1704 if (ice_is_init_pkg_successful(state)) { 1705 hw->seg = seg; 1706 /* on successful package download update other required 1707 * registers to support the package and fill HW tables 1708 * with package content. 1709 */ 1710 ice_init_pkg_regs(hw); 1711 ice_fill_blk_tbls(hw); 1712 ice_fill_hw_ptype(hw); 1713 ice_get_prof_index_max(hw); 1714 } else { 1715 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1716 state); 1717 } 1718 1719 return state; 1720 } 1721 1722 /** 1723 * ice_copy_and_init_pkg - initialize/download a copy of the package 1724 * @hw: pointer to the hardware structure 1725 * @buf: pointer to the package buffer 1726 * @len: size of the package buffer 1727 * 1728 * This function copies the package buffer, and then calls ice_init_pkg() to 1729 * initialize the copied package contents. 1730 * 1731 * The copying is necessary if the package buffer supplied is constant, or if 1732 * the memory may disappear shortly after calling this function. 1733 * 1734 * If the package buffer resides in the data segment and can be modified, the 1735 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1736 * 1737 * However, if the package buffer needs to be copied first, such as when being 1738 * read from a file, the caller should use ice_copy_and_init_pkg(). 1739 * 1740 * This function will first copy the package buffer, before calling 1741 * ice_init_pkg(). The caller is free to immediately destroy the original 1742 * package buffer, as the new copy will be managed by this function and 1743 * related routines. 1744 */ 1745 enum ice_ddp_state 1746 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1747 { 1748 enum ice_ddp_state state; 1749 u8 *buf_copy; 1750 1751 if (!buf || !len) 1752 return ICE_DDP_PKG_ERR; 1753 1754 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1755 1756 state = ice_init_pkg(hw, buf_copy, len); 1757 if (!ice_is_init_pkg_successful(state)) { 1758 /* Free the copy, since we failed to initialize the package */ 1759 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1760 } else { 1761 /* Track the copied pkg so we can free it later */ 1762 hw->pkg_copy = buf_copy; 1763 hw->pkg_size = len; 1764 } 1765 1766 return state; 1767 } 1768 1769 /** 1770 * ice_is_init_pkg_successful - check if DDP init was successful 1771 * @state: state of the DDP pkg after download 1772 */ 1773 bool ice_is_init_pkg_successful(enum ice_ddp_state state) 1774 { 1775 switch (state) { 1776 case ICE_DDP_PKG_SUCCESS: 1777 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 1778 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 1779 return true; 1780 default: 1781 return false; 1782 } 1783 } 1784 1785 /** 1786 * ice_pkg_buf_alloc 1787 * @hw: pointer to the HW structure 1788 * 1789 * Allocates a package buffer and returns a pointer to the buffer header. 1790 * Note: all package contents must be in Little Endian form. 1791 */ 1792 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1793 { 1794 struct ice_buf_build *bld; 1795 struct ice_buf_hdr *buf; 1796 1797 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1798 if (!bld) 1799 return NULL; 1800 1801 buf = (struct ice_buf_hdr *)bld; 1802 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1803 section_entry)); 1804 return bld; 1805 } 1806 1807 /** 1808 * ice_get_sw_prof_type - determine switch profile type 1809 * @hw: pointer to the HW structure 1810 * @fv: pointer to the switch field vector 1811 */ 1812 static enum ice_prof_type 1813 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1814 { 1815 u16 i; 1816 1817 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1818 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1819 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1820 fv->ew[i].off == ICE_VNI_OFFSET) 1821 return ICE_PROF_TUN_UDP; 1822 1823 /* GRE tunnel will have GRE protocol */ 1824 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1825 return ICE_PROF_TUN_GRE; 1826 } 1827 1828 return ICE_PROF_NON_TUN; 1829 } 1830 1831 /** 1832 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1833 * @hw: pointer to hardware structure 1834 * @req_profs: type of profiles requested 1835 * @bm: pointer to memory for returning the bitmap of field vectors 1836 */ 1837 void 1838 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1839 unsigned long *bm) 1840 { 1841 struct ice_pkg_enum state; 1842 struct ice_seg *ice_seg; 1843 struct ice_fv *fv; 1844 1845 if (req_profs == ICE_PROF_ALL) { 1846 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1847 return; 1848 } 1849 1850 memset(&state, 0, sizeof(state)); 1851 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1852 ice_seg = hw->seg; 1853 do { 1854 enum ice_prof_type prof_type; 1855 u32 offset; 1856 1857 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1858 &offset, ice_sw_fv_handler); 1859 ice_seg = NULL; 1860 1861 if (fv) { 1862 /* Determine field vector type */ 1863 prof_type = ice_get_sw_prof_type(hw, fv); 1864 1865 if (req_profs & prof_type) 1866 set_bit((u16)offset, bm); 1867 } 1868 } while (fv); 1869 } 1870 1871 /** 1872 * ice_get_sw_fv_list 1873 * @hw: pointer to the HW structure 1874 * @prot_ids: field vector to search for with a given protocol ID 1875 * @ids_cnt: lookup/protocol count 1876 * @bm: bitmap of field vectors to consider 1877 * @fv_list: Head of a list 1878 * 1879 * Finds all the field vector entries from switch block that contain 1880 * a given protocol ID and returns a list of structures of type 1881 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1882 * definition and profile ID information 1883 * NOTE: The caller of the function is responsible for freeing the memory 1884 * allocated for every list entry. 1885 */ 1886 int 1887 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1888 unsigned long *bm, struct list_head *fv_list) 1889 { 1890 struct ice_sw_fv_list_entry *fvl; 1891 struct ice_sw_fv_list_entry *tmp; 1892 struct ice_pkg_enum state; 1893 struct ice_seg *ice_seg; 1894 struct ice_fv *fv; 1895 u32 offset; 1896 1897 memset(&state, 0, sizeof(state)); 1898 1899 if (!ids_cnt || !hw->seg) 1900 return -EINVAL; 1901 1902 ice_seg = hw->seg; 1903 do { 1904 u16 i; 1905 1906 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1907 &offset, ice_sw_fv_handler); 1908 if (!fv) 1909 break; 1910 ice_seg = NULL; 1911 1912 /* If field vector is not in the bitmap list, then skip this 1913 * profile. 1914 */ 1915 if (!test_bit((u16)offset, bm)) 1916 continue; 1917 1918 for (i = 0; i < ids_cnt; i++) { 1919 int j; 1920 1921 /* This code assumes that if a switch field vector line 1922 * has a matching protocol, then this line will contain 1923 * the entries necessary to represent every field in 1924 * that protocol header. 1925 */ 1926 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1927 if (fv->ew[j].prot_id == prot_ids[i]) 1928 break; 1929 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1930 break; 1931 if (i + 1 == ids_cnt) { 1932 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1933 sizeof(*fvl), GFP_KERNEL); 1934 if (!fvl) 1935 goto err; 1936 fvl->fv_ptr = fv; 1937 fvl->profile_id = offset; 1938 list_add(&fvl->list_entry, fv_list); 1939 break; 1940 } 1941 } 1942 } while (fv); 1943 if (list_empty(fv_list)) 1944 return -EIO; 1945 return 0; 1946 1947 err: 1948 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1949 list_del(&fvl->list_entry); 1950 devm_kfree(ice_hw_to_dev(hw), fvl); 1951 } 1952 1953 return -ENOMEM; 1954 } 1955 1956 /** 1957 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1958 * @hw: pointer to hardware structure 1959 */ 1960 void ice_init_prof_result_bm(struct ice_hw *hw) 1961 { 1962 struct ice_pkg_enum state; 1963 struct ice_seg *ice_seg; 1964 struct ice_fv *fv; 1965 1966 memset(&state, 0, sizeof(state)); 1967 1968 if (!hw->seg) 1969 return; 1970 1971 ice_seg = hw->seg; 1972 do { 1973 u32 off; 1974 u16 i; 1975 1976 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1977 &off, ice_sw_fv_handler); 1978 ice_seg = NULL; 1979 if (!fv) 1980 break; 1981 1982 bitmap_zero(hw->switch_info->prof_res_bm[off], 1983 ICE_MAX_FV_WORDS); 1984 1985 /* Determine empty field vector indices, these can be 1986 * used for recipe results. Skip index 0, since it is 1987 * always used for Switch ID. 1988 */ 1989 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1990 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1991 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1992 set_bit(i, hw->switch_info->prof_res_bm[off]); 1993 } while (fv); 1994 } 1995 1996 /** 1997 * ice_pkg_buf_free 1998 * @hw: pointer to the HW structure 1999 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2000 * 2001 * Frees a package buffer 2002 */ 2003 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 2004 { 2005 devm_kfree(ice_hw_to_dev(hw), bld); 2006 } 2007 2008 /** 2009 * ice_pkg_buf_reserve_section 2010 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2011 * @count: the number of sections to reserve 2012 * 2013 * Reserves one or more section table entries in a package buffer. This routine 2014 * can be called multiple times as long as they are made before calling 2015 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 2016 * is called once, the number of sections that can be allocated will not be able 2017 * to be increased; not using all reserved sections is fine, but this will 2018 * result in some wasted space in the buffer. 2019 * Note: all package contents must be in Little Endian form. 2020 */ 2021 static int 2022 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 2023 { 2024 struct ice_buf_hdr *buf; 2025 u16 section_count; 2026 u16 data_end; 2027 2028 if (!bld) 2029 return -EINVAL; 2030 2031 buf = (struct ice_buf_hdr *)&bld->buf; 2032 2033 /* already an active section, can't increase table size */ 2034 section_count = le16_to_cpu(buf->section_count); 2035 if (section_count > 0) 2036 return -EIO; 2037 2038 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 2039 return -EIO; 2040 bld->reserved_section_table_entries += count; 2041 2042 data_end = le16_to_cpu(buf->data_end) + 2043 flex_array_size(buf, section_entry, count); 2044 buf->data_end = cpu_to_le16(data_end); 2045 2046 return 0; 2047 } 2048 2049 /** 2050 * ice_pkg_buf_alloc_section 2051 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2052 * @type: the section type value 2053 * @size: the size of the section to reserve (in bytes) 2054 * 2055 * Reserves memory in the buffer for a section's content and updates the 2056 * buffers' status accordingly. This routine returns a pointer to the first 2057 * byte of the section start within the buffer, which is used to fill in the 2058 * section contents. 2059 * Note: all package contents must be in Little Endian form. 2060 */ 2061 static void * 2062 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 2063 { 2064 struct ice_buf_hdr *buf; 2065 u16 sect_count; 2066 u16 data_end; 2067 2068 if (!bld || !type || !size) 2069 return NULL; 2070 2071 buf = (struct ice_buf_hdr *)&bld->buf; 2072 2073 /* check for enough space left in buffer */ 2074 data_end = le16_to_cpu(buf->data_end); 2075 2076 /* section start must align on 4 byte boundary */ 2077 data_end = ALIGN(data_end, 4); 2078 2079 if ((data_end + size) > ICE_MAX_S_DATA_END) 2080 return NULL; 2081 2082 /* check for more available section table entries */ 2083 sect_count = le16_to_cpu(buf->section_count); 2084 if (sect_count < bld->reserved_section_table_entries) { 2085 void *section_ptr = ((u8 *)buf) + data_end; 2086 2087 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 2088 buf->section_entry[sect_count].size = cpu_to_le16(size); 2089 buf->section_entry[sect_count].type = cpu_to_le32(type); 2090 2091 data_end += size; 2092 buf->data_end = cpu_to_le16(data_end); 2093 2094 buf->section_count = cpu_to_le16(sect_count + 1); 2095 return section_ptr; 2096 } 2097 2098 /* no free section table entries */ 2099 return NULL; 2100 } 2101 2102 /** 2103 * ice_pkg_buf_alloc_single_section 2104 * @hw: pointer to the HW structure 2105 * @type: the section type value 2106 * @size: the size of the section to reserve (in bytes) 2107 * @section: returns pointer to the section 2108 * 2109 * Allocates a package buffer with a single section. 2110 * Note: all package contents must be in Little Endian form. 2111 */ 2112 struct ice_buf_build * 2113 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 2114 void **section) 2115 { 2116 struct ice_buf_build *buf; 2117 2118 if (!section) 2119 return NULL; 2120 2121 buf = ice_pkg_buf_alloc(hw); 2122 if (!buf) 2123 return NULL; 2124 2125 if (ice_pkg_buf_reserve_section(buf, 1)) 2126 goto ice_pkg_buf_alloc_single_section_err; 2127 2128 *section = ice_pkg_buf_alloc_section(buf, type, size); 2129 if (!*section) 2130 goto ice_pkg_buf_alloc_single_section_err; 2131 2132 return buf; 2133 2134 ice_pkg_buf_alloc_single_section_err: 2135 ice_pkg_buf_free(hw, buf); 2136 return NULL; 2137 } 2138 2139 /** 2140 * ice_pkg_buf_get_active_sections 2141 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2142 * 2143 * Returns the number of active sections. Before using the package buffer 2144 * in an update package command, the caller should make sure that there is at 2145 * least one active section - otherwise, the buffer is not legal and should 2146 * not be used. 2147 * Note: all package contents must be in Little Endian form. 2148 */ 2149 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2150 { 2151 struct ice_buf_hdr *buf; 2152 2153 if (!bld) 2154 return 0; 2155 2156 buf = (struct ice_buf_hdr *)&bld->buf; 2157 return le16_to_cpu(buf->section_count); 2158 } 2159 2160 /** 2161 * ice_pkg_buf 2162 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2163 * 2164 * Return a pointer to the buffer's header 2165 */ 2166 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2167 { 2168 if (!bld) 2169 return NULL; 2170 2171 return &bld->buf; 2172 } 2173 2174 /** 2175 * ice_get_open_tunnel_port - retrieve an open tunnel port 2176 * @hw: pointer to the HW structure 2177 * @port: returns open port 2178 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 2179 */ 2180 bool 2181 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 2182 enum ice_tunnel_type type) 2183 { 2184 bool res = false; 2185 u16 i; 2186 2187 mutex_lock(&hw->tnl_lock); 2188 2189 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2190 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 2191 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 2192 *port = hw->tnl.tbl[i].port; 2193 res = true; 2194 break; 2195 } 2196 2197 mutex_unlock(&hw->tnl_lock); 2198 2199 return res; 2200 } 2201 2202 /** 2203 * ice_upd_dvm_boost_entry 2204 * @hw: pointer to the HW structure 2205 * @entry: pointer to double vlan boost entry info 2206 */ 2207 static int 2208 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) 2209 { 2210 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2211 int status = -ENOSPC; 2212 struct ice_buf_build *bld; 2213 u8 val, dc, nm; 2214 2215 bld = ice_pkg_buf_alloc(hw); 2216 if (!bld) 2217 return -ENOMEM; 2218 2219 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2220 if (ice_pkg_buf_reserve_section(bld, 2)) 2221 goto ice_upd_dvm_boost_entry_err; 2222 2223 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2224 struct_size(sect_rx, tcam, 1)); 2225 if (!sect_rx) 2226 goto ice_upd_dvm_boost_entry_err; 2227 sect_rx->count = cpu_to_le16(1); 2228 2229 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2230 struct_size(sect_tx, tcam, 1)); 2231 if (!sect_tx) 2232 goto ice_upd_dvm_boost_entry_err; 2233 sect_tx->count = cpu_to_le16(1); 2234 2235 /* copy original boost entry to update package buffer */ 2236 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); 2237 2238 /* re-write the don't care and never match bits accordingly */ 2239 if (entry->enable) { 2240 /* all bits are don't care */ 2241 val = 0x00; 2242 dc = 0xFF; 2243 nm = 0x00; 2244 } else { 2245 /* disable, one never match bit, the rest are don't care */ 2246 val = 0x00; 2247 dc = 0xF7; 2248 nm = 0x08; 2249 } 2250 2251 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2252 &val, NULL, &dc, &nm, 0, sizeof(u8)); 2253 2254 /* exact copy of entry to Tx section entry */ 2255 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2256 2257 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); 2258 2259 ice_upd_dvm_boost_entry_err: 2260 ice_pkg_buf_free(hw, bld); 2261 2262 return status; 2263 } 2264 2265 /** 2266 * ice_set_dvm_boost_entries 2267 * @hw: pointer to the HW structure 2268 * 2269 * Enable double vlan by updating the appropriate boost tcam entries. 2270 */ 2271 int ice_set_dvm_boost_entries(struct ice_hw *hw) 2272 { 2273 int status; 2274 u16 i; 2275 2276 for (i = 0; i < hw->dvm_upd.count; i++) { 2277 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); 2278 if (status) 2279 return status; 2280 } 2281 2282 return 0; 2283 } 2284 2285 /** 2286 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 2287 * @hw: pointer to the HW structure 2288 * @type: type of tunnel 2289 * @idx: linear index 2290 * 2291 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 2292 * but really the port table may be sprase, and types are mixed, so convert 2293 * the stack index into the device index. 2294 */ 2295 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2296 u16 idx) 2297 { 2298 u16 i; 2299 2300 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2301 if (hw->tnl.tbl[i].valid && 2302 hw->tnl.tbl[i].type == type && 2303 idx-- == 0) 2304 return i; 2305 2306 WARN_ON_ONCE(1); 2307 return 0; 2308 } 2309 2310 /** 2311 * ice_create_tunnel 2312 * @hw: pointer to the HW structure 2313 * @index: device table entry 2314 * @type: type of tunnel 2315 * @port: port of tunnel to create 2316 * 2317 * Create a tunnel by updating the parse graph in the parser. We do that by 2318 * creating a package buffer with the tunnel info and issuing an update package 2319 * command. 2320 */ 2321 static int 2322 ice_create_tunnel(struct ice_hw *hw, u16 index, 2323 enum ice_tunnel_type type, u16 port) 2324 { 2325 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2326 struct ice_buf_build *bld; 2327 int status = -ENOSPC; 2328 2329 mutex_lock(&hw->tnl_lock); 2330 2331 bld = ice_pkg_buf_alloc(hw); 2332 if (!bld) { 2333 status = -ENOMEM; 2334 goto ice_create_tunnel_end; 2335 } 2336 2337 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2338 if (ice_pkg_buf_reserve_section(bld, 2)) 2339 goto ice_create_tunnel_err; 2340 2341 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2342 struct_size(sect_rx, tcam, 1)); 2343 if (!sect_rx) 2344 goto ice_create_tunnel_err; 2345 sect_rx->count = cpu_to_le16(1); 2346 2347 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2348 struct_size(sect_tx, tcam, 1)); 2349 if (!sect_tx) 2350 goto ice_create_tunnel_err; 2351 sect_tx->count = cpu_to_le16(1); 2352 2353 /* copy original boost entry to update package buffer */ 2354 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2355 sizeof(*sect_rx->tcam)); 2356 2357 /* over-write the never-match dest port key bits with the encoded port 2358 * bits 2359 */ 2360 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2361 (u8 *)&port, NULL, NULL, NULL, 2362 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2363 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2364 2365 /* exact copy of entry to Tx section entry */ 2366 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2367 2368 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2369 if (!status) 2370 hw->tnl.tbl[index].port = port; 2371 2372 ice_create_tunnel_err: 2373 ice_pkg_buf_free(hw, bld); 2374 2375 ice_create_tunnel_end: 2376 mutex_unlock(&hw->tnl_lock); 2377 2378 return status; 2379 } 2380 2381 /** 2382 * ice_destroy_tunnel 2383 * @hw: pointer to the HW structure 2384 * @index: device table entry 2385 * @type: type of tunnel 2386 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2387 * 2388 * Destroys a tunnel or all tunnels by creating an update package buffer 2389 * targeting the specific updates requested and then performing an update 2390 * package. 2391 */ 2392 static int 2393 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2394 u16 port) 2395 { 2396 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2397 struct ice_buf_build *bld; 2398 int status = -ENOSPC; 2399 2400 mutex_lock(&hw->tnl_lock); 2401 2402 if (WARN_ON(!hw->tnl.tbl[index].valid || 2403 hw->tnl.tbl[index].type != type || 2404 hw->tnl.tbl[index].port != port)) { 2405 status = -EIO; 2406 goto ice_destroy_tunnel_end; 2407 } 2408 2409 bld = ice_pkg_buf_alloc(hw); 2410 if (!bld) { 2411 status = -ENOMEM; 2412 goto ice_destroy_tunnel_end; 2413 } 2414 2415 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2416 if (ice_pkg_buf_reserve_section(bld, 2)) 2417 goto ice_destroy_tunnel_err; 2418 2419 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2420 struct_size(sect_rx, tcam, 1)); 2421 if (!sect_rx) 2422 goto ice_destroy_tunnel_err; 2423 sect_rx->count = cpu_to_le16(1); 2424 2425 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2426 struct_size(sect_tx, tcam, 1)); 2427 if (!sect_tx) 2428 goto ice_destroy_tunnel_err; 2429 sect_tx->count = cpu_to_le16(1); 2430 2431 /* copy original boost entry to update package buffer, one copy to Rx 2432 * section, another copy to the Tx section 2433 */ 2434 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2435 sizeof(*sect_rx->tcam)); 2436 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2437 sizeof(*sect_tx->tcam)); 2438 2439 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2440 if (!status) 2441 hw->tnl.tbl[index].port = 0; 2442 2443 ice_destroy_tunnel_err: 2444 ice_pkg_buf_free(hw, bld); 2445 2446 ice_destroy_tunnel_end: 2447 mutex_unlock(&hw->tnl_lock); 2448 2449 return status; 2450 } 2451 2452 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2453 unsigned int idx, struct udp_tunnel_info *ti) 2454 { 2455 struct ice_netdev_priv *np = netdev_priv(netdev); 2456 struct ice_vsi *vsi = np->vsi; 2457 struct ice_pf *pf = vsi->back; 2458 enum ice_tunnel_type tnl_type; 2459 int status; 2460 u16 index; 2461 2462 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2463 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2464 2465 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2466 if (status) { 2467 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 2468 status); 2469 return -EIO; 2470 } 2471 2472 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2473 return 0; 2474 } 2475 2476 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2477 unsigned int idx, struct udp_tunnel_info *ti) 2478 { 2479 struct ice_netdev_priv *np = netdev_priv(netdev); 2480 struct ice_vsi *vsi = np->vsi; 2481 struct ice_pf *pf = vsi->back; 2482 enum ice_tunnel_type tnl_type; 2483 int status; 2484 2485 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2486 2487 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2488 ntohs(ti->port)); 2489 if (status) { 2490 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 2491 status); 2492 return -EIO; 2493 } 2494 2495 return 0; 2496 } 2497 2498 /** 2499 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2500 * @hw: pointer to the hardware structure 2501 * @blk: hardware block 2502 * @prof: profile ID 2503 * @fv_idx: field vector word index 2504 * @prot: variable to receive the protocol ID 2505 * @off: variable to receive the protocol offset 2506 */ 2507 int 2508 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2509 u8 *prot, u16 *off) 2510 { 2511 struct ice_fv_word *fv_ext; 2512 2513 if (prof >= hw->blk[blk].es.count) 2514 return -EINVAL; 2515 2516 if (fv_idx >= hw->blk[blk].es.fvw) 2517 return -EINVAL; 2518 2519 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2520 2521 *prot = fv_ext[fv_idx].prot_id; 2522 *off = fv_ext[fv_idx].off; 2523 2524 return 0; 2525 } 2526 2527 /* PTG Management */ 2528 2529 /** 2530 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2531 * @hw: pointer to the hardware structure 2532 * @blk: HW block 2533 * @ptype: the ptype to search for 2534 * @ptg: pointer to variable that receives the PTG 2535 * 2536 * This function will search the PTGs for a particular ptype, returning the 2537 * PTG ID that contains it through the PTG parameter, with the value of 2538 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2539 */ 2540 static int 2541 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2542 { 2543 if (ptype >= ICE_XLT1_CNT || !ptg) 2544 return -EINVAL; 2545 2546 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2552 * @hw: pointer to the hardware structure 2553 * @blk: HW block 2554 * @ptg: the PTG to allocate 2555 * 2556 * This function allocates a given packet type group ID specified by the PTG 2557 * parameter. 2558 */ 2559 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2560 { 2561 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2562 } 2563 2564 /** 2565 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2566 * @hw: pointer to the hardware structure 2567 * @blk: HW block 2568 * @ptype: the ptype to remove 2569 * @ptg: the PTG to remove the ptype from 2570 * 2571 * This function will remove the ptype from the specific PTG, and move it to 2572 * the default PTG (ICE_DEFAULT_PTG). 2573 */ 2574 static int 2575 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2576 { 2577 struct ice_ptg_ptype **ch; 2578 struct ice_ptg_ptype *p; 2579 2580 if (ptype > ICE_XLT1_CNT - 1) 2581 return -EINVAL; 2582 2583 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2584 return -ENOENT; 2585 2586 /* Should not happen if .in_use is set, bad config */ 2587 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2588 return -EIO; 2589 2590 /* find the ptype within this PTG, and bypass the link over it */ 2591 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2592 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2593 while (p) { 2594 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2595 *ch = p->next_ptype; 2596 break; 2597 } 2598 2599 ch = &p->next_ptype; 2600 p = p->next_ptype; 2601 } 2602 2603 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2604 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2611 * @hw: pointer to the hardware structure 2612 * @blk: HW block 2613 * @ptype: the ptype to add or move 2614 * @ptg: the PTG to add or move the ptype to 2615 * 2616 * This function will either add or move a ptype to a particular PTG depending 2617 * on if the ptype is already part of another group. Note that using a 2618 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2619 * default PTG. 2620 */ 2621 static int 2622 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2623 { 2624 u8 original_ptg; 2625 int status; 2626 2627 if (ptype > ICE_XLT1_CNT - 1) 2628 return -EINVAL; 2629 2630 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2631 return -ENOENT; 2632 2633 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2634 if (status) 2635 return status; 2636 2637 /* Is ptype already in the correct PTG? */ 2638 if (original_ptg == ptg) 2639 return 0; 2640 2641 /* Remove from original PTG and move back to the default PTG */ 2642 if (original_ptg != ICE_DEFAULT_PTG) 2643 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2644 2645 /* Moving to default PTG? Then we're done with this request */ 2646 if (ptg == ICE_DEFAULT_PTG) 2647 return 0; 2648 2649 /* Add ptype to PTG at beginning of list */ 2650 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2651 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2652 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2653 &hw->blk[blk].xlt1.ptypes[ptype]; 2654 2655 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2656 hw->blk[blk].xlt1.t[ptype] = ptg; 2657 2658 return 0; 2659 } 2660 2661 /* Block / table size info */ 2662 struct ice_blk_size_details { 2663 u16 xlt1; /* # XLT1 entries */ 2664 u16 xlt2; /* # XLT2 entries */ 2665 u16 prof_tcam; /* # profile ID TCAM entries */ 2666 u16 prof_id; /* # profile IDs */ 2667 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2668 u16 prof_redir; /* # profile redirection entries */ 2669 u16 es; /* # extraction sequence entries */ 2670 u16 fvw; /* # field vector words */ 2671 u8 overwrite; /* overwrite existing entries allowed */ 2672 u8 reverse; /* reverse FV order */ 2673 }; 2674 2675 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2676 /** 2677 * Table Definitions 2678 * XLT1 - Number of entries in XLT1 table 2679 * XLT2 - Number of entries in XLT2 table 2680 * TCAM - Number of entries Profile ID TCAM table 2681 * CDID - Control Domain ID of the hardware block 2682 * PRED - Number of entries in the Profile Redirection Table 2683 * FV - Number of entries in the Field Vector 2684 * FVW - Width (in WORDs) of the Field Vector 2685 * OVR - Overwrite existing table entries 2686 * REV - Reverse FV 2687 */ 2688 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2689 /* Overwrite , Reverse FV */ 2690 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2691 false, false }, 2692 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2693 false, false }, 2694 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2695 false, true }, 2696 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2697 true, true }, 2698 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2699 false, false }, 2700 }; 2701 2702 enum ice_sid_all { 2703 ICE_SID_XLT1_OFF = 0, 2704 ICE_SID_XLT2_OFF, 2705 ICE_SID_PR_OFF, 2706 ICE_SID_PR_REDIR_OFF, 2707 ICE_SID_ES_OFF, 2708 ICE_SID_OFF_COUNT, 2709 }; 2710 2711 /* Characteristic handling */ 2712 2713 /** 2714 * ice_match_prop_lst - determine if properties of two lists match 2715 * @list1: first properties list 2716 * @list2: second properties list 2717 * 2718 * Count, cookies and the order must match in order to be considered equivalent. 2719 */ 2720 static bool 2721 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2722 { 2723 struct ice_vsig_prof *tmp1; 2724 struct ice_vsig_prof *tmp2; 2725 u16 chk_count = 0; 2726 u16 count = 0; 2727 2728 /* compare counts */ 2729 list_for_each_entry(tmp1, list1, list) 2730 count++; 2731 list_for_each_entry(tmp2, list2, list) 2732 chk_count++; 2733 /* cppcheck-suppress knownConditionTrueFalse */ 2734 if (!count || count != chk_count) 2735 return false; 2736 2737 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2738 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2739 2740 /* profile cookies must compare, and in the exact same order to take 2741 * into account priority 2742 */ 2743 while (count--) { 2744 if (tmp2->profile_cookie != tmp1->profile_cookie) 2745 return false; 2746 2747 tmp1 = list_next_entry(tmp1, list); 2748 tmp2 = list_next_entry(tmp2, list); 2749 } 2750 2751 return true; 2752 } 2753 2754 /* VSIG Management */ 2755 2756 /** 2757 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2758 * @hw: pointer to the hardware structure 2759 * @blk: HW block 2760 * @vsi: VSI of interest 2761 * @vsig: pointer to receive the VSI group 2762 * 2763 * This function will lookup the VSI entry in the XLT2 list and return 2764 * the VSI group its associated with. 2765 */ 2766 static int 2767 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2768 { 2769 if (!vsig || vsi >= ICE_MAX_VSI) 2770 return -EINVAL; 2771 2772 /* As long as there's a default or valid VSIG associated with the input 2773 * VSI, the functions returns a success. Any handling of VSIG will be 2774 * done by the following add, update or remove functions. 2775 */ 2776 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * ice_vsig_alloc_val - allocate a new VSIG by value 2783 * @hw: pointer to the hardware structure 2784 * @blk: HW block 2785 * @vsig: the VSIG to allocate 2786 * 2787 * This function will allocate a given VSIG specified by the VSIG parameter. 2788 */ 2789 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2790 { 2791 u16 idx = vsig & ICE_VSIG_IDX_M; 2792 2793 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2794 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2795 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2796 } 2797 2798 return ICE_VSIG_VALUE(idx, hw->pf_id); 2799 } 2800 2801 /** 2802 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2803 * @hw: pointer to the hardware structure 2804 * @blk: HW block 2805 * 2806 * This function will iterate through the VSIG list and mark the first 2807 * unused entry for the new VSIG entry as used and return that value. 2808 */ 2809 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2810 { 2811 u16 i; 2812 2813 for (i = 1; i < ICE_MAX_VSIGS; i++) 2814 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2815 return ice_vsig_alloc_val(hw, blk, i); 2816 2817 return ICE_DEFAULT_VSIG; 2818 } 2819 2820 /** 2821 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2822 * @hw: pointer to the hardware structure 2823 * @blk: HW block 2824 * @chs: characteristic list 2825 * @vsig: returns the VSIG with the matching profiles, if found 2826 * 2827 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2828 * a group have the same characteristic set. To check if there exists a VSIG 2829 * which has the same characteristics as the input characteristics; this 2830 * function will iterate through the XLT2 list and return the VSIG that has a 2831 * matching configuration. In order to make sure that priorities are accounted 2832 * for, the list must match exactly, including the order in which the 2833 * characteristics are listed. 2834 */ 2835 static int 2836 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2837 struct list_head *chs, u16 *vsig) 2838 { 2839 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2840 u16 i; 2841 2842 for (i = 0; i < xlt2->count; i++) 2843 if (xlt2->vsig_tbl[i].in_use && 2844 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2845 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2846 return 0; 2847 } 2848 2849 return -ENOENT; 2850 } 2851 2852 /** 2853 * ice_vsig_free - free VSI group 2854 * @hw: pointer to the hardware structure 2855 * @blk: HW block 2856 * @vsig: VSIG to remove 2857 * 2858 * The function will remove all VSIs associated with the input VSIG and move 2859 * them to the DEFAULT_VSIG and mark the VSIG available. 2860 */ 2861 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2862 { 2863 struct ice_vsig_prof *dtmp, *del; 2864 struct ice_vsig_vsi *vsi_cur; 2865 u16 idx; 2866 2867 idx = vsig & ICE_VSIG_IDX_M; 2868 if (idx >= ICE_MAX_VSIGS) 2869 return -EINVAL; 2870 2871 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2872 return -ENOENT; 2873 2874 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2875 2876 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2877 /* If the VSIG has at least 1 VSI then iterate through the 2878 * list and remove the VSIs before deleting the group. 2879 */ 2880 if (vsi_cur) { 2881 /* remove all vsis associated with this VSIG XLT2 entry */ 2882 do { 2883 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2884 2885 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2886 vsi_cur->changed = 1; 2887 vsi_cur->next_vsi = NULL; 2888 vsi_cur = tmp; 2889 } while (vsi_cur); 2890 2891 /* NULL terminate head of VSI list */ 2892 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2893 } 2894 2895 /* free characteristic list */ 2896 list_for_each_entry_safe(del, dtmp, 2897 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2898 list) { 2899 list_del(&del->list); 2900 devm_kfree(ice_hw_to_dev(hw), del); 2901 } 2902 2903 /* if VSIG characteristic list was cleared for reset 2904 * re-initialize the list head 2905 */ 2906 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2907 2908 return 0; 2909 } 2910 2911 /** 2912 * ice_vsig_remove_vsi - remove VSI from VSIG 2913 * @hw: pointer to the hardware structure 2914 * @blk: HW block 2915 * @vsi: VSI to remove 2916 * @vsig: VSI group to remove from 2917 * 2918 * The function will remove the input VSI from its VSI group and move it 2919 * to the DEFAULT_VSIG. 2920 */ 2921 static int 2922 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2923 { 2924 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2925 u16 idx; 2926 2927 idx = vsig & ICE_VSIG_IDX_M; 2928 2929 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2930 return -EINVAL; 2931 2932 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2933 return -ENOENT; 2934 2935 /* entry already in default VSIG, don't have to remove */ 2936 if (idx == ICE_DEFAULT_VSIG) 2937 return 0; 2938 2939 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2940 if (!(*vsi_head)) 2941 return -EIO; 2942 2943 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2944 vsi_cur = (*vsi_head); 2945 2946 /* iterate the VSI list, skip over the entry to be removed */ 2947 while (vsi_cur) { 2948 if (vsi_tgt == vsi_cur) { 2949 (*vsi_head) = vsi_cur->next_vsi; 2950 break; 2951 } 2952 vsi_head = &vsi_cur->next_vsi; 2953 vsi_cur = vsi_cur->next_vsi; 2954 } 2955 2956 /* verify if VSI was removed from group list */ 2957 if (!vsi_cur) 2958 return -ENOENT; 2959 2960 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2961 vsi_cur->changed = 1; 2962 vsi_cur->next_vsi = NULL; 2963 2964 return 0; 2965 } 2966 2967 /** 2968 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2969 * @hw: pointer to the hardware structure 2970 * @blk: HW block 2971 * @vsi: VSI to move 2972 * @vsig: destination VSI group 2973 * 2974 * This function will move or add the input VSI to the target VSIG. 2975 * The function will find the original VSIG the VSI belongs to and 2976 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2977 * then move entry to the new VSIG. 2978 */ 2979 static int 2980 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2981 { 2982 struct ice_vsig_vsi *tmp; 2983 u16 orig_vsig, idx; 2984 int status; 2985 2986 idx = vsig & ICE_VSIG_IDX_M; 2987 2988 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2989 return -EINVAL; 2990 2991 /* if VSIG not in use and VSIG is not default type this VSIG 2992 * doesn't exist. 2993 */ 2994 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2995 vsig != ICE_DEFAULT_VSIG) 2996 return -ENOENT; 2997 2998 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2999 if (status) 3000 return status; 3001 3002 /* no update required if vsigs match */ 3003 if (orig_vsig == vsig) 3004 return 0; 3005 3006 if (orig_vsig != ICE_DEFAULT_VSIG) { 3007 /* remove entry from orig_vsig and add to default VSIG */ 3008 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3009 if (status) 3010 return status; 3011 } 3012 3013 if (idx == ICE_DEFAULT_VSIG) 3014 return 0; 3015 3016 /* Create VSI entry and add VSIG and prop_mask values */ 3017 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3018 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3019 3020 /* Add new entry to the head of the VSIG list */ 3021 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3022 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3023 &hw->blk[blk].xlt2.vsis[vsi]; 3024 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3025 hw->blk[blk].xlt2.t[vsi] = vsig; 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * ice_prof_has_mask_idx - determine if profile index masking is identical 3032 * @hw: pointer to the hardware structure 3033 * @blk: HW block 3034 * @prof: profile to check 3035 * @idx: profile index to check 3036 * @mask: mask to match 3037 */ 3038 static bool 3039 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 3040 u16 mask) 3041 { 3042 bool expect_no_mask = false; 3043 bool found = false; 3044 bool match = false; 3045 u16 i; 3046 3047 /* If mask is 0x0000 or 0xffff, then there is no masking */ 3048 if (mask == 0 || mask == 0xffff) 3049 expect_no_mask = true; 3050 3051 /* Scan the enabled masks on this profile, for the specified idx */ 3052 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 3053 hw->blk[blk].masks.count; i++) 3054 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 3055 if (hw->blk[blk].masks.masks[i].in_use && 3056 hw->blk[blk].masks.masks[i].idx == idx) { 3057 found = true; 3058 if (hw->blk[blk].masks.masks[i].mask == mask) 3059 match = true; 3060 break; 3061 } 3062 3063 if (expect_no_mask) { 3064 if (found) 3065 return false; 3066 } else { 3067 if (!match) 3068 return false; 3069 } 3070 3071 return true; 3072 } 3073 3074 /** 3075 * ice_prof_has_mask - determine if profile masking is identical 3076 * @hw: pointer to the hardware structure 3077 * @blk: HW block 3078 * @prof: profile to check 3079 * @masks: masks to match 3080 */ 3081 static bool 3082 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 3083 { 3084 u16 i; 3085 3086 /* es->mask_ena[prof] will have the mask */ 3087 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3088 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 /** 3095 * ice_find_prof_id_with_mask - find profile ID for a given field vector 3096 * @hw: pointer to the hardware structure 3097 * @blk: HW block 3098 * @fv: field vector to search for 3099 * @masks: masks for FV 3100 * @prof_id: receives the profile ID 3101 */ 3102 static int 3103 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 3104 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 3105 { 3106 struct ice_es *es = &hw->blk[blk].es; 3107 u8 i; 3108 3109 /* For FD, we don't want to re-use a existed profile with the same 3110 * field vector and mask. This will cause rule interference. 3111 */ 3112 if (blk == ICE_BLK_FD) 3113 return -ENOENT; 3114 3115 for (i = 0; i < (u8)es->count; i++) { 3116 u16 off = i * es->fvw; 3117 3118 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3119 continue; 3120 3121 /* check if masks settings are the same for this profile */ 3122 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 3123 continue; 3124 3125 *prof_id = i; 3126 return 0; 3127 } 3128 3129 return -ENOENT; 3130 } 3131 3132 /** 3133 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3134 * @blk: the block type 3135 * @rsrc_type: pointer to variable to receive the resource type 3136 */ 3137 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3138 { 3139 switch (blk) { 3140 case ICE_BLK_FD: 3141 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 3142 break; 3143 case ICE_BLK_RSS: 3144 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3145 break; 3146 default: 3147 return false; 3148 } 3149 return true; 3150 } 3151 3152 /** 3153 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3154 * @blk: the block type 3155 * @rsrc_type: pointer to variable to receive the resource type 3156 */ 3157 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3158 { 3159 switch (blk) { 3160 case ICE_BLK_FD: 3161 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 3162 break; 3163 case ICE_BLK_RSS: 3164 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3165 break; 3166 default: 3167 return false; 3168 } 3169 return true; 3170 } 3171 3172 /** 3173 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3174 * @hw: pointer to the HW struct 3175 * @blk: the block to allocate the TCAM for 3176 * @btm: true to allocate from bottom of table, false to allocate from top 3177 * @tcam_idx: pointer to variable to receive the TCAM entry 3178 * 3179 * This function allocates a new entry in a Profile ID TCAM for a specific 3180 * block. 3181 */ 3182 static int 3183 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 3184 u16 *tcam_idx) 3185 { 3186 u16 res_type; 3187 3188 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3189 return -EINVAL; 3190 3191 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 3192 } 3193 3194 /** 3195 * ice_free_tcam_ent - free hardware TCAM entry 3196 * @hw: pointer to the HW struct 3197 * @blk: the block from which to free the TCAM entry 3198 * @tcam_idx: the TCAM entry to free 3199 * 3200 * This function frees an entry in a Profile ID TCAM for a specific block. 3201 */ 3202 static int 3203 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3204 { 3205 u16 res_type; 3206 3207 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3208 return -EINVAL; 3209 3210 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3211 } 3212 3213 /** 3214 * ice_alloc_prof_id - allocate profile ID 3215 * @hw: pointer to the HW struct 3216 * @blk: the block to allocate the profile ID for 3217 * @prof_id: pointer to variable to receive the profile ID 3218 * 3219 * This function allocates a new profile ID, which also corresponds to a Field 3220 * Vector (Extraction Sequence) entry. 3221 */ 3222 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3223 { 3224 u16 res_type; 3225 u16 get_prof; 3226 int status; 3227 3228 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3229 return -EINVAL; 3230 3231 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3232 if (!status) 3233 *prof_id = (u8)get_prof; 3234 3235 return status; 3236 } 3237 3238 /** 3239 * ice_free_prof_id - free profile ID 3240 * @hw: pointer to the HW struct 3241 * @blk: the block from which to free the profile ID 3242 * @prof_id: the profile ID to free 3243 * 3244 * This function frees a profile ID, which also corresponds to a Field Vector. 3245 */ 3246 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3247 { 3248 u16 tmp_prof_id = (u16)prof_id; 3249 u16 res_type; 3250 3251 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3252 return -EINVAL; 3253 3254 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3255 } 3256 3257 /** 3258 * ice_prof_inc_ref - increment reference count for profile 3259 * @hw: pointer to the HW struct 3260 * @blk: the block from which to free the profile ID 3261 * @prof_id: the profile ID for which to increment the reference count 3262 */ 3263 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3264 { 3265 if (prof_id > hw->blk[blk].es.count) 3266 return -EINVAL; 3267 3268 hw->blk[blk].es.ref_count[prof_id]++; 3269 3270 return 0; 3271 } 3272 3273 /** 3274 * ice_write_prof_mask_reg - write profile mask register 3275 * @hw: pointer to the HW struct 3276 * @blk: hardware block 3277 * @mask_idx: mask index 3278 * @idx: index of the FV which will use the mask 3279 * @mask: the 16-bit mask 3280 */ 3281 static void 3282 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 3283 u16 idx, u16 mask) 3284 { 3285 u32 offset; 3286 u32 val; 3287 3288 switch (blk) { 3289 case ICE_BLK_RSS: 3290 offset = GLQF_HMASK(mask_idx); 3291 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 3292 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 3293 break; 3294 case ICE_BLK_FD: 3295 offset = GLQF_FDMASK(mask_idx); 3296 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 3297 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 3298 break; 3299 default: 3300 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3301 blk); 3302 return; 3303 } 3304 3305 wr32(hw, offset, val); 3306 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 3307 blk, idx, offset, val); 3308 } 3309 3310 /** 3311 * ice_write_prof_mask_enable_res - write profile mask enable register 3312 * @hw: pointer to the HW struct 3313 * @blk: hardware block 3314 * @prof_id: profile ID 3315 * @enable_mask: enable mask 3316 */ 3317 static void 3318 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 3319 u16 prof_id, u32 enable_mask) 3320 { 3321 u32 offset; 3322 3323 switch (blk) { 3324 case ICE_BLK_RSS: 3325 offset = GLQF_HMASK_SEL(prof_id); 3326 break; 3327 case ICE_BLK_FD: 3328 offset = GLQF_FDMASK_SEL(prof_id); 3329 break; 3330 default: 3331 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3332 blk); 3333 return; 3334 } 3335 3336 wr32(hw, offset, enable_mask); 3337 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 3338 blk, prof_id, offset, enable_mask); 3339 } 3340 3341 /** 3342 * ice_init_prof_masks - initial prof masks 3343 * @hw: pointer to the HW struct 3344 * @blk: hardware block 3345 */ 3346 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 3347 { 3348 u16 per_pf; 3349 u16 i; 3350 3351 mutex_init(&hw->blk[blk].masks.lock); 3352 3353 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 3354 3355 hw->blk[blk].masks.count = per_pf; 3356 hw->blk[blk].masks.first = hw->pf_id * per_pf; 3357 3358 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3359 3360 for (i = hw->blk[blk].masks.first; 3361 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3362 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3363 } 3364 3365 /** 3366 * ice_init_all_prof_masks - initialize all prof masks 3367 * @hw: pointer to the HW struct 3368 */ 3369 static void ice_init_all_prof_masks(struct ice_hw *hw) 3370 { 3371 ice_init_prof_masks(hw, ICE_BLK_RSS); 3372 ice_init_prof_masks(hw, ICE_BLK_FD); 3373 } 3374 3375 /** 3376 * ice_alloc_prof_mask - allocate profile mask 3377 * @hw: pointer to the HW struct 3378 * @blk: hardware block 3379 * @idx: index of FV which will use the mask 3380 * @mask: the 16-bit mask 3381 * @mask_idx: variable to receive the mask index 3382 */ 3383 static int 3384 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3385 u16 *mask_idx) 3386 { 3387 bool found_unused = false, found_copy = false; 3388 u16 unused_idx = 0, copy_idx = 0; 3389 int status = -ENOSPC; 3390 u16 i; 3391 3392 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3393 return -EINVAL; 3394 3395 mutex_lock(&hw->blk[blk].masks.lock); 3396 3397 for (i = hw->blk[blk].masks.first; 3398 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3399 if (hw->blk[blk].masks.masks[i].in_use) { 3400 /* if mask is in use and it exactly duplicates the 3401 * desired mask and index, then in can be reused 3402 */ 3403 if (hw->blk[blk].masks.masks[i].mask == mask && 3404 hw->blk[blk].masks.masks[i].idx == idx) { 3405 found_copy = true; 3406 copy_idx = i; 3407 break; 3408 } 3409 } else { 3410 /* save off unused index, but keep searching in case 3411 * there is an exact match later on 3412 */ 3413 if (!found_unused) { 3414 found_unused = true; 3415 unused_idx = i; 3416 } 3417 } 3418 3419 if (found_copy) 3420 i = copy_idx; 3421 else if (found_unused) 3422 i = unused_idx; 3423 else 3424 goto err_ice_alloc_prof_mask; 3425 3426 /* update mask for a new entry */ 3427 if (found_unused) { 3428 hw->blk[blk].masks.masks[i].in_use = true; 3429 hw->blk[blk].masks.masks[i].mask = mask; 3430 hw->blk[blk].masks.masks[i].idx = idx; 3431 hw->blk[blk].masks.masks[i].ref = 0; 3432 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3433 } 3434 3435 hw->blk[blk].masks.masks[i].ref++; 3436 *mask_idx = i; 3437 status = 0; 3438 3439 err_ice_alloc_prof_mask: 3440 mutex_unlock(&hw->blk[blk].masks.lock); 3441 3442 return status; 3443 } 3444 3445 /** 3446 * ice_free_prof_mask - free profile mask 3447 * @hw: pointer to the HW struct 3448 * @blk: hardware block 3449 * @mask_idx: index of mask 3450 */ 3451 static int 3452 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3453 { 3454 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3455 return -EINVAL; 3456 3457 if (!(mask_idx >= hw->blk[blk].masks.first && 3458 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3459 return -ENOENT; 3460 3461 mutex_lock(&hw->blk[blk].masks.lock); 3462 3463 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3464 goto exit_ice_free_prof_mask; 3465 3466 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3467 hw->blk[blk].masks.masks[mask_idx].ref--; 3468 goto exit_ice_free_prof_mask; 3469 } 3470 3471 /* remove mask */ 3472 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3473 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3474 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3475 3476 /* update mask as unused entry */ 3477 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3478 mask_idx); 3479 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3480 3481 exit_ice_free_prof_mask: 3482 mutex_unlock(&hw->blk[blk].masks.lock); 3483 3484 return 0; 3485 } 3486 3487 /** 3488 * ice_free_prof_masks - free all profile masks for a profile 3489 * @hw: pointer to the HW struct 3490 * @blk: hardware block 3491 * @prof_id: profile ID 3492 */ 3493 static int 3494 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3495 { 3496 u32 mask_bm; 3497 u16 i; 3498 3499 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3500 return -EINVAL; 3501 3502 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3503 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3504 if (mask_bm & BIT(i)) 3505 ice_free_prof_mask(hw, blk, i); 3506 3507 return 0; 3508 } 3509 3510 /** 3511 * ice_shutdown_prof_masks - releases lock for masking 3512 * @hw: pointer to the HW struct 3513 * @blk: hardware block 3514 * 3515 * This should be called before unloading the driver 3516 */ 3517 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3518 { 3519 u16 i; 3520 3521 mutex_lock(&hw->blk[blk].masks.lock); 3522 3523 for (i = hw->blk[blk].masks.first; 3524 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3525 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3526 3527 hw->blk[blk].masks.masks[i].in_use = false; 3528 hw->blk[blk].masks.masks[i].idx = 0; 3529 hw->blk[blk].masks.masks[i].mask = 0; 3530 } 3531 3532 mutex_unlock(&hw->blk[blk].masks.lock); 3533 mutex_destroy(&hw->blk[blk].masks.lock); 3534 } 3535 3536 /** 3537 * ice_shutdown_all_prof_masks - releases all locks for masking 3538 * @hw: pointer to the HW struct 3539 * 3540 * This should be called before unloading the driver 3541 */ 3542 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3543 { 3544 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3545 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3546 } 3547 3548 /** 3549 * ice_update_prof_masking - set registers according to masking 3550 * @hw: pointer to the HW struct 3551 * @blk: hardware block 3552 * @prof_id: profile ID 3553 * @masks: masks 3554 */ 3555 static int 3556 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3557 u16 *masks) 3558 { 3559 bool err = false; 3560 u32 ena_mask = 0; 3561 u16 idx; 3562 u16 i; 3563 3564 /* Only support FD and RSS masking, otherwise nothing to be done */ 3565 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3566 return 0; 3567 3568 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3569 if (masks[i] && masks[i] != 0xFFFF) { 3570 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3571 ena_mask |= BIT(idx); 3572 } else { 3573 /* not enough bitmaps */ 3574 err = true; 3575 break; 3576 } 3577 } 3578 3579 if (err) { 3580 /* free any bitmaps we have allocated */ 3581 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3582 if (ena_mask & BIT(i)) 3583 ice_free_prof_mask(hw, blk, i); 3584 3585 return -EIO; 3586 } 3587 3588 /* enable the masks for this profile */ 3589 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3590 3591 /* store enabled masks with profile so that they can be freed later */ 3592 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3593 3594 return 0; 3595 } 3596 3597 /** 3598 * ice_write_es - write an extraction sequence to hardware 3599 * @hw: pointer to the HW struct 3600 * @blk: the block in which to write the extraction sequence 3601 * @prof_id: the profile ID to write 3602 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3603 */ 3604 static void 3605 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3606 struct ice_fv_word *fv) 3607 { 3608 u16 off; 3609 3610 off = prof_id * hw->blk[blk].es.fvw; 3611 if (!fv) { 3612 memset(&hw->blk[blk].es.t[off], 0, 3613 hw->blk[blk].es.fvw * sizeof(*fv)); 3614 hw->blk[blk].es.written[prof_id] = false; 3615 } else { 3616 memcpy(&hw->blk[blk].es.t[off], fv, 3617 hw->blk[blk].es.fvw * sizeof(*fv)); 3618 } 3619 } 3620 3621 /** 3622 * ice_prof_dec_ref - decrement reference count for profile 3623 * @hw: pointer to the HW struct 3624 * @blk: the block from which to free the profile ID 3625 * @prof_id: the profile ID for which to decrement the reference count 3626 */ 3627 static int 3628 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3629 { 3630 if (prof_id > hw->blk[blk].es.count) 3631 return -EINVAL; 3632 3633 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3634 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3635 ice_write_es(hw, blk, prof_id, NULL); 3636 ice_free_prof_masks(hw, blk, prof_id); 3637 return ice_free_prof_id(hw, blk, prof_id); 3638 } 3639 } 3640 3641 return 0; 3642 } 3643 3644 /* Block / table section IDs */ 3645 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3646 /* SWITCH */ 3647 { ICE_SID_XLT1_SW, 3648 ICE_SID_XLT2_SW, 3649 ICE_SID_PROFID_TCAM_SW, 3650 ICE_SID_PROFID_REDIR_SW, 3651 ICE_SID_FLD_VEC_SW 3652 }, 3653 3654 /* ACL */ 3655 { ICE_SID_XLT1_ACL, 3656 ICE_SID_XLT2_ACL, 3657 ICE_SID_PROFID_TCAM_ACL, 3658 ICE_SID_PROFID_REDIR_ACL, 3659 ICE_SID_FLD_VEC_ACL 3660 }, 3661 3662 /* FD */ 3663 { ICE_SID_XLT1_FD, 3664 ICE_SID_XLT2_FD, 3665 ICE_SID_PROFID_TCAM_FD, 3666 ICE_SID_PROFID_REDIR_FD, 3667 ICE_SID_FLD_VEC_FD 3668 }, 3669 3670 /* RSS */ 3671 { ICE_SID_XLT1_RSS, 3672 ICE_SID_XLT2_RSS, 3673 ICE_SID_PROFID_TCAM_RSS, 3674 ICE_SID_PROFID_REDIR_RSS, 3675 ICE_SID_FLD_VEC_RSS 3676 }, 3677 3678 /* PE */ 3679 { ICE_SID_XLT1_PE, 3680 ICE_SID_XLT2_PE, 3681 ICE_SID_PROFID_TCAM_PE, 3682 ICE_SID_PROFID_REDIR_PE, 3683 ICE_SID_FLD_VEC_PE 3684 } 3685 }; 3686 3687 /** 3688 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3689 * @hw: pointer to the hardware structure 3690 * @blk: the HW block to initialize 3691 */ 3692 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3693 { 3694 u16 pt; 3695 3696 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3697 u8 ptg; 3698 3699 ptg = hw->blk[blk].xlt1.t[pt]; 3700 if (ptg != ICE_DEFAULT_PTG) { 3701 ice_ptg_alloc_val(hw, blk, ptg); 3702 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3703 } 3704 } 3705 } 3706 3707 /** 3708 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3709 * @hw: pointer to the hardware structure 3710 * @blk: the HW block to initialize 3711 */ 3712 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3713 { 3714 u16 vsi; 3715 3716 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3717 u16 vsig; 3718 3719 vsig = hw->blk[blk].xlt2.t[vsi]; 3720 if (vsig) { 3721 ice_vsig_alloc_val(hw, blk, vsig); 3722 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3723 /* no changes at this time, since this has been 3724 * initialized from the original package 3725 */ 3726 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3727 } 3728 } 3729 } 3730 3731 /** 3732 * ice_init_sw_db - init software database from HW tables 3733 * @hw: pointer to the hardware structure 3734 */ 3735 static void ice_init_sw_db(struct ice_hw *hw) 3736 { 3737 u16 i; 3738 3739 for (i = 0; i < ICE_BLK_COUNT; i++) { 3740 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3741 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3742 } 3743 } 3744 3745 /** 3746 * ice_fill_tbl - Reads content of a single table type into database 3747 * @hw: pointer to the hardware structure 3748 * @block_id: Block ID of the table to copy 3749 * @sid: Section ID of the table to copy 3750 * 3751 * Will attempt to read the entire content of a given table of a single block 3752 * into the driver database. We assume that the buffer will always 3753 * be as large or larger than the data contained in the package. If 3754 * this condition is not met, there is most likely an error in the package 3755 * contents. 3756 */ 3757 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3758 { 3759 u32 dst_len, sect_len, offset = 0; 3760 struct ice_prof_redir_section *pr; 3761 struct ice_prof_id_section *pid; 3762 struct ice_xlt1_section *xlt1; 3763 struct ice_xlt2_section *xlt2; 3764 struct ice_sw_fv_section *es; 3765 struct ice_pkg_enum state; 3766 u8 *src, *dst; 3767 void *sect; 3768 3769 /* if the HW segment pointer is null then the first iteration of 3770 * ice_pkg_enum_section() will fail. In this case the HW tables will 3771 * not be filled and return success. 3772 */ 3773 if (!hw->seg) { 3774 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3775 return; 3776 } 3777 3778 memset(&state, 0, sizeof(state)); 3779 3780 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3781 3782 while (sect) { 3783 switch (sid) { 3784 case ICE_SID_XLT1_SW: 3785 case ICE_SID_XLT1_FD: 3786 case ICE_SID_XLT1_RSS: 3787 case ICE_SID_XLT1_ACL: 3788 case ICE_SID_XLT1_PE: 3789 xlt1 = sect; 3790 src = xlt1->value; 3791 sect_len = le16_to_cpu(xlt1->count) * 3792 sizeof(*hw->blk[block_id].xlt1.t); 3793 dst = hw->blk[block_id].xlt1.t; 3794 dst_len = hw->blk[block_id].xlt1.count * 3795 sizeof(*hw->blk[block_id].xlt1.t); 3796 break; 3797 case ICE_SID_XLT2_SW: 3798 case ICE_SID_XLT2_FD: 3799 case ICE_SID_XLT2_RSS: 3800 case ICE_SID_XLT2_ACL: 3801 case ICE_SID_XLT2_PE: 3802 xlt2 = sect; 3803 src = (__force u8 *)xlt2->value; 3804 sect_len = le16_to_cpu(xlt2->count) * 3805 sizeof(*hw->blk[block_id].xlt2.t); 3806 dst = (u8 *)hw->blk[block_id].xlt2.t; 3807 dst_len = hw->blk[block_id].xlt2.count * 3808 sizeof(*hw->blk[block_id].xlt2.t); 3809 break; 3810 case ICE_SID_PROFID_TCAM_SW: 3811 case ICE_SID_PROFID_TCAM_FD: 3812 case ICE_SID_PROFID_TCAM_RSS: 3813 case ICE_SID_PROFID_TCAM_ACL: 3814 case ICE_SID_PROFID_TCAM_PE: 3815 pid = sect; 3816 src = (u8 *)pid->entry; 3817 sect_len = le16_to_cpu(pid->count) * 3818 sizeof(*hw->blk[block_id].prof.t); 3819 dst = (u8 *)hw->blk[block_id].prof.t; 3820 dst_len = hw->blk[block_id].prof.count * 3821 sizeof(*hw->blk[block_id].prof.t); 3822 break; 3823 case ICE_SID_PROFID_REDIR_SW: 3824 case ICE_SID_PROFID_REDIR_FD: 3825 case ICE_SID_PROFID_REDIR_RSS: 3826 case ICE_SID_PROFID_REDIR_ACL: 3827 case ICE_SID_PROFID_REDIR_PE: 3828 pr = sect; 3829 src = pr->redir_value; 3830 sect_len = le16_to_cpu(pr->count) * 3831 sizeof(*hw->blk[block_id].prof_redir.t); 3832 dst = hw->blk[block_id].prof_redir.t; 3833 dst_len = hw->blk[block_id].prof_redir.count * 3834 sizeof(*hw->blk[block_id].prof_redir.t); 3835 break; 3836 case ICE_SID_FLD_VEC_SW: 3837 case ICE_SID_FLD_VEC_FD: 3838 case ICE_SID_FLD_VEC_RSS: 3839 case ICE_SID_FLD_VEC_ACL: 3840 case ICE_SID_FLD_VEC_PE: 3841 es = sect; 3842 src = (u8 *)es->fv; 3843 sect_len = (u32)(le16_to_cpu(es->count) * 3844 hw->blk[block_id].es.fvw) * 3845 sizeof(*hw->blk[block_id].es.t); 3846 dst = (u8 *)hw->blk[block_id].es.t; 3847 dst_len = (u32)(hw->blk[block_id].es.count * 3848 hw->blk[block_id].es.fvw) * 3849 sizeof(*hw->blk[block_id].es.t); 3850 break; 3851 default: 3852 return; 3853 } 3854 3855 /* if the section offset exceeds destination length, terminate 3856 * table fill. 3857 */ 3858 if (offset > dst_len) 3859 return; 3860 3861 /* if the sum of section size and offset exceed destination size 3862 * then we are out of bounds of the HW table size for that PF. 3863 * Changing section length to fill the remaining table space 3864 * of that PF. 3865 */ 3866 if ((offset + sect_len) > dst_len) 3867 sect_len = dst_len - offset; 3868 3869 memcpy(dst + offset, src, sect_len); 3870 offset += sect_len; 3871 sect = ice_pkg_enum_section(NULL, &state, sid); 3872 } 3873 } 3874 3875 /** 3876 * ice_fill_blk_tbls - Read package context for tables 3877 * @hw: pointer to the hardware structure 3878 * 3879 * Reads the current package contents and populates the driver 3880 * database with the data iteratively for all advanced feature 3881 * blocks. Assume that the HW tables have been allocated. 3882 */ 3883 void ice_fill_blk_tbls(struct ice_hw *hw) 3884 { 3885 u8 i; 3886 3887 for (i = 0; i < ICE_BLK_COUNT; i++) { 3888 enum ice_block blk_id = (enum ice_block)i; 3889 3890 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3891 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3892 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3893 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3894 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3895 } 3896 3897 ice_init_sw_db(hw); 3898 } 3899 3900 /** 3901 * ice_free_prof_map - free profile map 3902 * @hw: pointer to the hardware structure 3903 * @blk_idx: HW block index 3904 */ 3905 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3906 { 3907 struct ice_es *es = &hw->blk[blk_idx].es; 3908 struct ice_prof_map *del, *tmp; 3909 3910 mutex_lock(&es->prof_map_lock); 3911 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3912 list_del(&del->list); 3913 devm_kfree(ice_hw_to_dev(hw), del); 3914 } 3915 INIT_LIST_HEAD(&es->prof_map); 3916 mutex_unlock(&es->prof_map_lock); 3917 } 3918 3919 /** 3920 * ice_free_flow_profs - free flow profile entries 3921 * @hw: pointer to the hardware structure 3922 * @blk_idx: HW block index 3923 */ 3924 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3925 { 3926 struct ice_flow_prof *p, *tmp; 3927 3928 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3929 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3930 struct ice_flow_entry *e, *t; 3931 3932 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3933 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3934 ICE_FLOW_ENTRY_HNDL(e)); 3935 3936 list_del(&p->l_entry); 3937 3938 mutex_destroy(&p->entries_lock); 3939 devm_kfree(ice_hw_to_dev(hw), p); 3940 } 3941 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3942 3943 /* if driver is in reset and tables are being cleared 3944 * re-initialize the flow profile list heads 3945 */ 3946 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3947 } 3948 3949 /** 3950 * ice_free_vsig_tbl - free complete VSIG table entries 3951 * @hw: pointer to the hardware structure 3952 * @blk: the HW block on which to free the VSIG table entries 3953 */ 3954 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3955 { 3956 u16 i; 3957 3958 if (!hw->blk[blk].xlt2.vsig_tbl) 3959 return; 3960 3961 for (i = 1; i < ICE_MAX_VSIGS; i++) 3962 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3963 ice_vsig_free(hw, blk, i); 3964 } 3965 3966 /** 3967 * ice_free_hw_tbls - free hardware table memory 3968 * @hw: pointer to the hardware structure 3969 */ 3970 void ice_free_hw_tbls(struct ice_hw *hw) 3971 { 3972 struct ice_rss_cfg *r, *rt; 3973 u8 i; 3974 3975 for (i = 0; i < ICE_BLK_COUNT; i++) { 3976 if (hw->blk[i].is_list_init) { 3977 struct ice_es *es = &hw->blk[i].es; 3978 3979 ice_free_prof_map(hw, i); 3980 mutex_destroy(&es->prof_map_lock); 3981 3982 ice_free_flow_profs(hw, i); 3983 mutex_destroy(&hw->fl_profs_locks[i]); 3984 3985 hw->blk[i].is_list_init = false; 3986 } 3987 ice_free_vsig_tbl(hw, (enum ice_block)i); 3988 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3989 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3990 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3991 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3992 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3993 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3994 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3995 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3996 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3997 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3998 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3999 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 4000 } 4001 4002 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 4003 list_del(&r->l_entry); 4004 devm_kfree(ice_hw_to_dev(hw), r); 4005 } 4006 mutex_destroy(&hw->rss_locks); 4007 ice_shutdown_all_prof_masks(hw); 4008 memset(hw->blk, 0, sizeof(hw->blk)); 4009 } 4010 4011 /** 4012 * ice_init_flow_profs - init flow profile locks and list heads 4013 * @hw: pointer to the hardware structure 4014 * @blk_idx: HW block index 4015 */ 4016 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 4017 { 4018 mutex_init(&hw->fl_profs_locks[blk_idx]); 4019 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 4020 } 4021 4022 /** 4023 * ice_clear_hw_tbls - clear HW tables and flow profiles 4024 * @hw: pointer to the hardware structure 4025 */ 4026 void ice_clear_hw_tbls(struct ice_hw *hw) 4027 { 4028 u8 i; 4029 4030 for (i = 0; i < ICE_BLK_COUNT; i++) { 4031 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4032 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4033 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4034 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4035 struct ice_es *es = &hw->blk[i].es; 4036 4037 if (hw->blk[i].is_list_init) { 4038 ice_free_prof_map(hw, i); 4039 ice_free_flow_profs(hw, i); 4040 } 4041 4042 ice_free_vsig_tbl(hw, (enum ice_block)i); 4043 4044 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 4045 memset(xlt1->ptg_tbl, 0, 4046 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 4047 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 4048 4049 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 4050 memset(xlt2->vsig_tbl, 0, 4051 xlt2->count * sizeof(*xlt2->vsig_tbl)); 4052 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 4053 4054 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 4055 memset(prof_redir->t, 0, 4056 prof_redir->count * sizeof(*prof_redir->t)); 4057 4058 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 4059 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 4060 memset(es->written, 0, es->count * sizeof(*es->written)); 4061 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 4062 } 4063 } 4064 4065 /** 4066 * ice_init_hw_tbls - init hardware table memory 4067 * @hw: pointer to the hardware structure 4068 */ 4069 int ice_init_hw_tbls(struct ice_hw *hw) 4070 { 4071 u8 i; 4072 4073 mutex_init(&hw->rss_locks); 4074 INIT_LIST_HEAD(&hw->rss_list_head); 4075 ice_init_all_prof_masks(hw); 4076 for (i = 0; i < ICE_BLK_COUNT; i++) { 4077 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4078 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4079 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4080 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4081 struct ice_es *es = &hw->blk[i].es; 4082 u16 j; 4083 4084 if (hw->blk[i].is_list_init) 4085 continue; 4086 4087 ice_init_flow_profs(hw, i); 4088 mutex_init(&es->prof_map_lock); 4089 INIT_LIST_HEAD(&es->prof_map); 4090 hw->blk[i].is_list_init = true; 4091 4092 hw->blk[i].overwrite = blk_sizes[i].overwrite; 4093 es->reverse = blk_sizes[i].reverse; 4094 4095 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 4096 xlt1->count = blk_sizes[i].xlt1; 4097 4098 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4099 sizeof(*xlt1->ptypes), GFP_KERNEL); 4100 4101 if (!xlt1->ptypes) 4102 goto err; 4103 4104 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 4105 sizeof(*xlt1->ptg_tbl), 4106 GFP_KERNEL); 4107 4108 if (!xlt1->ptg_tbl) 4109 goto err; 4110 4111 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4112 sizeof(*xlt1->t), GFP_KERNEL); 4113 if (!xlt1->t) 4114 goto err; 4115 4116 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 4117 xlt2->count = blk_sizes[i].xlt2; 4118 4119 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4120 sizeof(*xlt2->vsis), GFP_KERNEL); 4121 4122 if (!xlt2->vsis) 4123 goto err; 4124 4125 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4126 sizeof(*xlt2->vsig_tbl), 4127 GFP_KERNEL); 4128 if (!xlt2->vsig_tbl) 4129 goto err; 4130 4131 for (j = 0; j < xlt2->count; j++) 4132 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 4133 4134 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4135 sizeof(*xlt2->t), GFP_KERNEL); 4136 if (!xlt2->t) 4137 goto err; 4138 4139 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 4140 prof->count = blk_sizes[i].prof_tcam; 4141 prof->max_prof_id = blk_sizes[i].prof_id; 4142 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 4143 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 4144 sizeof(*prof->t), GFP_KERNEL); 4145 4146 if (!prof->t) 4147 goto err; 4148 4149 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 4150 prof_redir->count = blk_sizes[i].prof_redir; 4151 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 4152 prof_redir->count, 4153 sizeof(*prof_redir->t), 4154 GFP_KERNEL); 4155 4156 if (!prof_redir->t) 4157 goto err; 4158 4159 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 4160 es->count = blk_sizes[i].es; 4161 es->fvw = blk_sizes[i].fvw; 4162 es->t = devm_kcalloc(ice_hw_to_dev(hw), 4163 (u32)(es->count * es->fvw), 4164 sizeof(*es->t), GFP_KERNEL); 4165 if (!es->t) 4166 goto err; 4167 4168 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4169 sizeof(*es->ref_count), 4170 GFP_KERNEL); 4171 if (!es->ref_count) 4172 goto err; 4173 4174 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4175 sizeof(*es->written), GFP_KERNEL); 4176 if (!es->written) 4177 goto err; 4178 4179 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4180 sizeof(*es->mask_ena), GFP_KERNEL); 4181 if (!es->mask_ena) 4182 goto err; 4183 } 4184 return 0; 4185 4186 err: 4187 ice_free_hw_tbls(hw); 4188 return -ENOMEM; 4189 } 4190 4191 /** 4192 * ice_prof_gen_key - generate profile ID key 4193 * @hw: pointer to the HW struct 4194 * @blk: the block in which to write profile ID to 4195 * @ptg: packet type group (PTG) portion of key 4196 * @vsig: VSIG portion of key 4197 * @cdid: CDID portion of key 4198 * @flags: flag portion of key 4199 * @vl_msk: valid mask 4200 * @dc_msk: don't care mask 4201 * @nm_msk: never match mask 4202 * @key: output of profile ID key 4203 */ 4204 static int 4205 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 4206 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4207 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 4208 u8 key[ICE_TCAM_KEY_SZ]) 4209 { 4210 struct ice_prof_id_key inkey; 4211 4212 inkey.xlt1 = ptg; 4213 inkey.xlt2_cdid = cpu_to_le16(vsig); 4214 inkey.flags = cpu_to_le16(flags); 4215 4216 switch (hw->blk[blk].prof.cdid_bits) { 4217 case 0: 4218 break; 4219 case 2: 4220 #define ICE_CD_2_M 0xC000U 4221 #define ICE_CD_2_S 14 4222 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 4223 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 4224 break; 4225 case 4: 4226 #define ICE_CD_4_M 0xF000U 4227 #define ICE_CD_4_S 12 4228 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 4229 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 4230 break; 4231 case 8: 4232 #define ICE_CD_8_M 0xFF00U 4233 #define ICE_CD_8_S 16 4234 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 4235 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 4236 break; 4237 default: 4238 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 4239 break; 4240 } 4241 4242 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 4243 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 4244 } 4245 4246 /** 4247 * ice_tcam_write_entry - write TCAM entry 4248 * @hw: pointer to the HW struct 4249 * @blk: the block in which to write profile ID to 4250 * @idx: the entry index to write to 4251 * @prof_id: profile ID 4252 * @ptg: packet type group (PTG) portion of key 4253 * @vsig: VSIG portion of key 4254 * @cdid: CDID portion of key 4255 * @flags: flag portion of key 4256 * @vl_msk: valid mask 4257 * @dc_msk: don't care mask 4258 * @nm_msk: never match mask 4259 */ 4260 static int 4261 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4262 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4263 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4264 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4265 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4266 { 4267 struct ice_prof_tcam_entry; 4268 int status; 4269 4270 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4271 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4272 if (!status) { 4273 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 4274 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4275 } 4276 4277 return status; 4278 } 4279 4280 /** 4281 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4282 * @hw: pointer to the hardware structure 4283 * @blk: HW block 4284 * @vsig: VSIG to query 4285 * @refs: pointer to variable to receive the reference count 4286 */ 4287 static int 4288 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4289 { 4290 u16 idx = vsig & ICE_VSIG_IDX_M; 4291 struct ice_vsig_vsi *ptr; 4292 4293 *refs = 0; 4294 4295 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4296 return -ENOENT; 4297 4298 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4299 while (ptr) { 4300 (*refs)++; 4301 ptr = ptr->next_vsi; 4302 } 4303 4304 return 0; 4305 } 4306 4307 /** 4308 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4309 * @hw: pointer to the hardware structure 4310 * @blk: HW block 4311 * @vsig: VSIG to check against 4312 * @hdl: profile handle 4313 */ 4314 static bool 4315 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4316 { 4317 u16 idx = vsig & ICE_VSIG_IDX_M; 4318 struct ice_vsig_prof *ent; 4319 4320 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4321 list) 4322 if (ent->profile_cookie == hdl) 4323 return true; 4324 4325 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4326 vsig); 4327 return false; 4328 } 4329 4330 /** 4331 * ice_prof_bld_es - build profile ID extraction sequence changes 4332 * @hw: pointer to the HW struct 4333 * @blk: hardware block 4334 * @bld: the update package buffer build to add to 4335 * @chgs: the list of changes to make in hardware 4336 */ 4337 static int 4338 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4339 struct ice_buf_build *bld, struct list_head *chgs) 4340 { 4341 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4342 struct ice_chs_chg *tmp; 4343 4344 list_for_each_entry(tmp, chgs, list_entry) 4345 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4346 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4347 struct ice_pkg_es *p; 4348 u32 id; 4349 4350 id = ice_sect_id(blk, ICE_VEC_TBL); 4351 p = ice_pkg_buf_alloc_section(bld, id, 4352 struct_size(p, es, 1) + 4353 vec_size - 4354 sizeof(p->es[0])); 4355 4356 if (!p) 4357 return -ENOSPC; 4358 4359 p->count = cpu_to_le16(1); 4360 p->offset = cpu_to_le16(tmp->prof_id); 4361 4362 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4363 } 4364 4365 return 0; 4366 } 4367 4368 /** 4369 * ice_prof_bld_tcam - build profile ID TCAM changes 4370 * @hw: pointer to the HW struct 4371 * @blk: hardware block 4372 * @bld: the update package buffer build to add to 4373 * @chgs: the list of changes to make in hardware 4374 */ 4375 static int 4376 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4377 struct ice_buf_build *bld, struct list_head *chgs) 4378 { 4379 struct ice_chs_chg *tmp; 4380 4381 list_for_each_entry(tmp, chgs, list_entry) 4382 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4383 struct ice_prof_id_section *p; 4384 u32 id; 4385 4386 id = ice_sect_id(blk, ICE_PROF_TCAM); 4387 p = ice_pkg_buf_alloc_section(bld, id, 4388 struct_size(p, entry, 1)); 4389 4390 if (!p) 4391 return -ENOSPC; 4392 4393 p->count = cpu_to_le16(1); 4394 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4395 p->entry[0].prof_id = tmp->prof_id; 4396 4397 memcpy(p->entry[0].key, 4398 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4399 sizeof(hw->blk[blk].prof.t->key)); 4400 } 4401 4402 return 0; 4403 } 4404 4405 /** 4406 * ice_prof_bld_xlt1 - build XLT1 changes 4407 * @blk: hardware block 4408 * @bld: the update package buffer build to add to 4409 * @chgs: the list of changes to make in hardware 4410 */ 4411 static int 4412 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4413 struct list_head *chgs) 4414 { 4415 struct ice_chs_chg *tmp; 4416 4417 list_for_each_entry(tmp, chgs, list_entry) 4418 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4419 struct ice_xlt1_section *p; 4420 u32 id; 4421 4422 id = ice_sect_id(blk, ICE_XLT1); 4423 p = ice_pkg_buf_alloc_section(bld, id, 4424 struct_size(p, value, 1)); 4425 4426 if (!p) 4427 return -ENOSPC; 4428 4429 p->count = cpu_to_le16(1); 4430 p->offset = cpu_to_le16(tmp->ptype); 4431 p->value[0] = tmp->ptg; 4432 } 4433 4434 return 0; 4435 } 4436 4437 /** 4438 * ice_prof_bld_xlt2 - build XLT2 changes 4439 * @blk: hardware block 4440 * @bld: the update package buffer build to add to 4441 * @chgs: the list of changes to make in hardware 4442 */ 4443 static int 4444 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4445 struct list_head *chgs) 4446 { 4447 struct ice_chs_chg *tmp; 4448 4449 list_for_each_entry(tmp, chgs, list_entry) { 4450 struct ice_xlt2_section *p; 4451 u32 id; 4452 4453 switch (tmp->type) { 4454 case ICE_VSIG_ADD: 4455 case ICE_VSI_MOVE: 4456 case ICE_VSIG_REM: 4457 id = ice_sect_id(blk, ICE_XLT2); 4458 p = ice_pkg_buf_alloc_section(bld, id, 4459 struct_size(p, value, 1)); 4460 4461 if (!p) 4462 return -ENOSPC; 4463 4464 p->count = cpu_to_le16(1); 4465 p->offset = cpu_to_le16(tmp->vsi); 4466 p->value[0] = cpu_to_le16(tmp->vsig); 4467 break; 4468 default: 4469 break; 4470 } 4471 } 4472 4473 return 0; 4474 } 4475 4476 /** 4477 * ice_upd_prof_hw - update hardware using the change list 4478 * @hw: pointer to the HW struct 4479 * @blk: hardware block 4480 * @chgs: the list of changes to make in hardware 4481 */ 4482 static int 4483 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4484 struct list_head *chgs) 4485 { 4486 struct ice_buf_build *b; 4487 struct ice_chs_chg *tmp; 4488 u16 pkg_sects; 4489 u16 xlt1 = 0; 4490 u16 xlt2 = 0; 4491 u16 tcam = 0; 4492 u16 es = 0; 4493 int status; 4494 u16 sects; 4495 4496 /* count number of sections we need */ 4497 list_for_each_entry(tmp, chgs, list_entry) { 4498 switch (tmp->type) { 4499 case ICE_PTG_ES_ADD: 4500 if (tmp->add_ptg) 4501 xlt1++; 4502 if (tmp->add_prof) 4503 es++; 4504 break; 4505 case ICE_TCAM_ADD: 4506 tcam++; 4507 break; 4508 case ICE_VSIG_ADD: 4509 case ICE_VSI_MOVE: 4510 case ICE_VSIG_REM: 4511 xlt2++; 4512 break; 4513 default: 4514 break; 4515 } 4516 } 4517 sects = xlt1 + xlt2 + tcam + es; 4518 4519 if (!sects) 4520 return 0; 4521 4522 /* Build update package buffer */ 4523 b = ice_pkg_buf_alloc(hw); 4524 if (!b) 4525 return -ENOMEM; 4526 4527 status = ice_pkg_buf_reserve_section(b, sects); 4528 if (status) 4529 goto error_tmp; 4530 4531 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4532 if (es) { 4533 status = ice_prof_bld_es(hw, blk, b, chgs); 4534 if (status) 4535 goto error_tmp; 4536 } 4537 4538 if (tcam) { 4539 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4540 if (status) 4541 goto error_tmp; 4542 } 4543 4544 if (xlt1) { 4545 status = ice_prof_bld_xlt1(blk, b, chgs); 4546 if (status) 4547 goto error_tmp; 4548 } 4549 4550 if (xlt2) { 4551 status = ice_prof_bld_xlt2(blk, b, chgs); 4552 if (status) 4553 goto error_tmp; 4554 } 4555 4556 /* After package buffer build check if the section count in buffer is 4557 * non-zero and matches the number of sections detected for package 4558 * update. 4559 */ 4560 pkg_sects = ice_pkg_buf_get_active_sections(b); 4561 if (!pkg_sects || pkg_sects != sects) { 4562 status = -EINVAL; 4563 goto error_tmp; 4564 } 4565 4566 /* update package */ 4567 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4568 if (status == -EIO) 4569 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4570 4571 error_tmp: 4572 ice_pkg_buf_free(hw, b); 4573 return status; 4574 } 4575 4576 /** 4577 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4578 * @hw: pointer to the HW struct 4579 * @prof_id: profile ID 4580 * @mask_sel: mask select 4581 * 4582 * This function enable any of the masks selected by the mask select parameter 4583 * for the profile specified. 4584 */ 4585 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4586 { 4587 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4588 4589 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4590 GLQF_FDMASK_SEL(prof_id), mask_sel); 4591 } 4592 4593 struct ice_fd_src_dst_pair { 4594 u8 prot_id; 4595 u8 count; 4596 u16 off; 4597 }; 4598 4599 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4600 /* These are defined in pairs */ 4601 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4602 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4603 4604 { ICE_PROT_IPV4_IL, 2, 12 }, 4605 { ICE_PROT_IPV4_IL, 2, 16 }, 4606 4607 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4608 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4609 4610 { ICE_PROT_IPV6_IL, 8, 8 }, 4611 { ICE_PROT_IPV6_IL, 8, 24 }, 4612 4613 { ICE_PROT_TCP_IL, 1, 0 }, 4614 { ICE_PROT_TCP_IL, 1, 2 }, 4615 4616 { ICE_PROT_UDP_OF, 1, 0 }, 4617 { ICE_PROT_UDP_OF, 1, 2 }, 4618 4619 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4620 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4621 4622 { ICE_PROT_SCTP_IL, 1, 0 }, 4623 { ICE_PROT_SCTP_IL, 1, 2 } 4624 }; 4625 4626 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4627 4628 /** 4629 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4630 * @hw: pointer to the HW struct 4631 * @prof_id: profile ID 4632 * @es: extraction sequence (length of array is determined by the block) 4633 */ 4634 static int 4635 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4636 { 4637 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4638 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4639 #define ICE_FD_FV_NOT_FOUND (-2) 4640 s8 first_free = ICE_FD_FV_NOT_FOUND; 4641 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4642 s8 orig_free, si; 4643 u32 mask_sel = 0; 4644 u8 i, j, k; 4645 4646 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4647 4648 /* This code assumes that the Flow Director field vectors are assigned 4649 * from the end of the FV indexes working towards the zero index, that 4650 * only complete fields will be included and will be consecutive, and 4651 * that there are no gaps between valid indexes. 4652 */ 4653 4654 /* Determine swap fields present */ 4655 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4656 /* Find the first free entry, assuming right to left population. 4657 * This is where we can start adding additional pairs if needed. 4658 */ 4659 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4660 ICE_PROT_INVALID) 4661 first_free = i - 1; 4662 4663 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4664 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4665 es[i].off == ice_fd_pairs[j].off) { 4666 __set_bit(j, pair_list); 4667 pair_start[j] = i; 4668 } 4669 } 4670 4671 orig_free = first_free; 4672 4673 /* determine missing swap fields that need to be added */ 4674 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4675 u8 bit1 = test_bit(i + 1, pair_list); 4676 u8 bit0 = test_bit(i, pair_list); 4677 4678 if (bit0 ^ bit1) { 4679 u8 index; 4680 4681 /* add the appropriate 'paired' entry */ 4682 if (!bit0) 4683 index = i; 4684 else 4685 index = i + 1; 4686 4687 /* check for room */ 4688 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4689 return -ENOSPC; 4690 4691 /* place in extraction sequence */ 4692 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4693 es[first_free - k].prot_id = 4694 ice_fd_pairs[index].prot_id; 4695 es[first_free - k].off = 4696 ice_fd_pairs[index].off + (k * 2); 4697 4698 if (k > first_free) 4699 return -EIO; 4700 4701 /* keep track of non-relevant fields */ 4702 mask_sel |= BIT(first_free - k); 4703 } 4704 4705 pair_start[index] = first_free; 4706 first_free -= ice_fd_pairs[index].count; 4707 } 4708 } 4709 4710 /* fill in the swap array */ 4711 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4712 while (si >= 0) { 4713 u8 indexes_used = 1; 4714 4715 /* assume flat at this index */ 4716 #define ICE_SWAP_VALID 0x80 4717 used[si] = si | ICE_SWAP_VALID; 4718 4719 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4720 si -= indexes_used; 4721 continue; 4722 } 4723 4724 /* check for a swap location */ 4725 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4726 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4727 es[si].off == ice_fd_pairs[j].off) { 4728 u8 idx; 4729 4730 /* determine the appropriate matching field */ 4731 idx = j + ((j % 2) ? -1 : 1); 4732 4733 indexes_used = ice_fd_pairs[idx].count; 4734 for (k = 0; k < indexes_used; k++) { 4735 used[si - k] = (pair_start[idx] - k) | 4736 ICE_SWAP_VALID; 4737 } 4738 4739 break; 4740 } 4741 4742 si -= indexes_used; 4743 } 4744 4745 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4746 * register 4747 */ 4748 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4749 u32 raw_swap = 0; 4750 u32 raw_in = 0; 4751 4752 for (k = 0; k < 4; k++) { 4753 u8 idx; 4754 4755 idx = (j * 4) + k; 4756 if (used[idx] && !(mask_sel & BIT(idx))) { 4757 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4758 #define ICE_INSET_DFLT 0x9f 4759 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4760 } 4761 } 4762 4763 /* write the appropriate swap register set */ 4764 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4765 4766 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4767 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4768 4769 /* write the appropriate inset register set */ 4770 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4771 4772 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4773 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4774 } 4775 4776 /* initially clear the mask select for this profile */ 4777 ice_update_fd_mask(hw, prof_id, 0); 4778 4779 return 0; 4780 } 4781 4782 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4783 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4784 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4785 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4786 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4787 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4788 }; 4789 4790 /** 4791 * ice_get_ptype_attrib_info - get PTYPE attribute information 4792 * @type: attribute type 4793 * @info: pointer to variable to the attribute information 4794 */ 4795 static void 4796 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4797 struct ice_ptype_attrib_info *info) 4798 { 4799 *info = ice_ptype_attributes[type]; 4800 } 4801 4802 /** 4803 * ice_add_prof_attrib - add any PTG with attributes to profile 4804 * @prof: pointer to the profile to which PTG entries will be added 4805 * @ptg: PTG to be added 4806 * @ptype: PTYPE that needs to be looked up 4807 * @attr: array of attributes that will be considered 4808 * @attr_cnt: number of elements in the attribute array 4809 */ 4810 static int 4811 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4812 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4813 { 4814 bool found = false; 4815 u16 i; 4816 4817 for (i = 0; i < attr_cnt; i++) 4818 if (attr[i].ptype == ptype) { 4819 found = true; 4820 4821 prof->ptg[prof->ptg_cnt] = ptg; 4822 ice_get_ptype_attrib_info(attr[i].attrib, 4823 &prof->attr[prof->ptg_cnt]); 4824 4825 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4826 return -ENOSPC; 4827 } 4828 4829 if (!found) 4830 return -ENOENT; 4831 4832 return 0; 4833 } 4834 4835 /** 4836 * ice_add_prof - add profile 4837 * @hw: pointer to the HW struct 4838 * @blk: hardware block 4839 * @id: profile tracking ID 4840 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4841 * @attr: array of attributes 4842 * @attr_cnt: number of elements in attr array 4843 * @es: extraction sequence (length of array is determined by the block) 4844 * @masks: mask for extraction sequence 4845 * 4846 * This function registers a profile, which matches a set of PTYPES with a 4847 * particular extraction sequence. While the hardware profile is allocated 4848 * it will not be written until the first call to ice_add_flow that specifies 4849 * the ID value used here. 4850 */ 4851 int 4852 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4853 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4854 struct ice_fv_word *es, u16 *masks) 4855 { 4856 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4857 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4858 struct ice_prof_map *prof; 4859 u8 byte = 0; 4860 u8 prof_id; 4861 int status; 4862 4863 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4864 4865 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4866 4867 /* search for existing profile */ 4868 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4869 if (status) { 4870 /* allocate profile ID */ 4871 status = ice_alloc_prof_id(hw, blk, &prof_id); 4872 if (status) 4873 goto err_ice_add_prof; 4874 if (blk == ICE_BLK_FD) { 4875 /* For Flow Director block, the extraction sequence may 4876 * need to be altered in the case where there are paired 4877 * fields that have no match. This is necessary because 4878 * for Flow Director, src and dest fields need to paired 4879 * for filter programming and these values are swapped 4880 * during Tx. 4881 */ 4882 status = ice_update_fd_swap(hw, prof_id, es); 4883 if (status) 4884 goto err_ice_add_prof; 4885 } 4886 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4887 if (status) 4888 goto err_ice_add_prof; 4889 4890 /* and write new es */ 4891 ice_write_es(hw, blk, prof_id, es); 4892 } 4893 4894 ice_prof_inc_ref(hw, blk, prof_id); 4895 4896 /* add profile info */ 4897 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4898 if (!prof) { 4899 status = -ENOMEM; 4900 goto err_ice_add_prof; 4901 } 4902 4903 prof->profile_cookie = id; 4904 prof->prof_id = prof_id; 4905 prof->ptg_cnt = 0; 4906 prof->context = 0; 4907 4908 /* build list of ptgs */ 4909 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4910 u8 bit; 4911 4912 if (!ptypes[byte]) { 4913 bytes--; 4914 byte++; 4915 continue; 4916 } 4917 4918 /* Examine 8 bits per byte */ 4919 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4920 BITS_PER_BYTE) { 4921 u16 ptype; 4922 u8 ptg; 4923 4924 ptype = byte * BITS_PER_BYTE + bit; 4925 4926 /* The package should place all ptypes in a non-zero 4927 * PTG, so the following call should never fail. 4928 */ 4929 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4930 continue; 4931 4932 /* If PTG is already added, skip and continue */ 4933 if (test_bit(ptg, ptgs_used)) 4934 continue; 4935 4936 __set_bit(ptg, ptgs_used); 4937 /* Check to see there are any attributes for 4938 * this PTYPE, and add them if found. 4939 */ 4940 status = ice_add_prof_attrib(prof, ptg, ptype, 4941 attr, attr_cnt); 4942 if (status == -ENOSPC) 4943 break; 4944 if (status) { 4945 /* This is simple a PTYPE/PTG with no 4946 * attribute 4947 */ 4948 prof->ptg[prof->ptg_cnt] = ptg; 4949 prof->attr[prof->ptg_cnt].flags = 0; 4950 prof->attr[prof->ptg_cnt].mask = 0; 4951 4952 if (++prof->ptg_cnt >= 4953 ICE_MAX_PTG_PER_PROFILE) 4954 break; 4955 } 4956 } 4957 4958 bytes--; 4959 byte++; 4960 } 4961 4962 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4963 status = 0; 4964 4965 err_ice_add_prof: 4966 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4967 return status; 4968 } 4969 4970 /** 4971 * ice_search_prof_id - Search for a profile tracking ID 4972 * @hw: pointer to the HW struct 4973 * @blk: hardware block 4974 * @id: profile tracking ID 4975 * 4976 * This will search for a profile tracking ID which was previously added. 4977 * The profile map lock should be held before calling this function. 4978 */ 4979 static struct ice_prof_map * 4980 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4981 { 4982 struct ice_prof_map *entry = NULL; 4983 struct ice_prof_map *map; 4984 4985 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4986 if (map->profile_cookie == id) { 4987 entry = map; 4988 break; 4989 } 4990 4991 return entry; 4992 } 4993 4994 /** 4995 * ice_vsig_prof_id_count - count profiles in a VSIG 4996 * @hw: pointer to the HW struct 4997 * @blk: hardware block 4998 * @vsig: VSIG to remove the profile from 4999 */ 5000 static u16 5001 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 5002 { 5003 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 5004 struct ice_vsig_prof *p; 5005 5006 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5007 list) 5008 count++; 5009 5010 return count; 5011 } 5012 5013 /** 5014 * ice_rel_tcam_idx - release a TCAM index 5015 * @hw: pointer to the HW struct 5016 * @blk: hardware block 5017 * @idx: the index to release 5018 */ 5019 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 5020 { 5021 /* Masks to invoke a never match entry */ 5022 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5023 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 5024 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 5025 int status; 5026 5027 /* write the TCAM entry */ 5028 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 5029 dc_msk, nm_msk); 5030 if (status) 5031 return status; 5032 5033 /* release the TCAM entry */ 5034 status = ice_free_tcam_ent(hw, blk, idx); 5035 5036 return status; 5037 } 5038 5039 /** 5040 * ice_rem_prof_id - remove one profile from a VSIG 5041 * @hw: pointer to the HW struct 5042 * @blk: hardware block 5043 * @prof: pointer to profile structure to remove 5044 */ 5045 static int 5046 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 5047 struct ice_vsig_prof *prof) 5048 { 5049 int status; 5050 u16 i; 5051 5052 for (i = 0; i < prof->tcam_count; i++) 5053 if (prof->tcam[i].in_use) { 5054 prof->tcam[i].in_use = false; 5055 status = ice_rel_tcam_idx(hw, blk, 5056 prof->tcam[i].tcam_idx); 5057 if (status) 5058 return -EIO; 5059 } 5060 5061 return 0; 5062 } 5063 5064 /** 5065 * ice_rem_vsig - remove VSIG 5066 * @hw: pointer to the HW struct 5067 * @blk: hardware block 5068 * @vsig: the VSIG to remove 5069 * @chg: the change list 5070 */ 5071 static int 5072 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5073 struct list_head *chg) 5074 { 5075 u16 idx = vsig & ICE_VSIG_IDX_M; 5076 struct ice_vsig_vsi *vsi_cur; 5077 struct ice_vsig_prof *d, *t; 5078 int status; 5079 5080 /* remove TCAM entries */ 5081 list_for_each_entry_safe(d, t, 5082 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5083 list) { 5084 status = ice_rem_prof_id(hw, blk, d); 5085 if (status) 5086 return status; 5087 5088 list_del(&d->list); 5089 devm_kfree(ice_hw_to_dev(hw), d); 5090 } 5091 5092 /* Move all VSIS associated with this VSIG to the default VSIG */ 5093 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 5094 /* If the VSIG has at least 1 VSI then iterate through the list 5095 * and remove the VSIs before deleting the group. 5096 */ 5097 if (vsi_cur) 5098 do { 5099 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 5100 struct ice_chs_chg *p; 5101 5102 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5103 GFP_KERNEL); 5104 if (!p) 5105 return -ENOMEM; 5106 5107 p->type = ICE_VSIG_REM; 5108 p->orig_vsig = vsig; 5109 p->vsig = ICE_DEFAULT_VSIG; 5110 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 5111 5112 list_add(&p->list_entry, chg); 5113 5114 vsi_cur = tmp; 5115 } while (vsi_cur); 5116 5117 return ice_vsig_free(hw, blk, vsig); 5118 } 5119 5120 /** 5121 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 5122 * @hw: pointer to the HW struct 5123 * @blk: hardware block 5124 * @vsig: VSIG to remove the profile from 5125 * @hdl: profile handle indicating which profile to remove 5126 * @chg: list to receive a record of changes 5127 */ 5128 static int 5129 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5130 struct list_head *chg) 5131 { 5132 u16 idx = vsig & ICE_VSIG_IDX_M; 5133 struct ice_vsig_prof *p, *t; 5134 int status; 5135 5136 list_for_each_entry_safe(p, t, 5137 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5138 list) 5139 if (p->profile_cookie == hdl) { 5140 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 5141 /* this is the last profile, remove the VSIG */ 5142 return ice_rem_vsig(hw, blk, vsig, chg); 5143 5144 status = ice_rem_prof_id(hw, blk, p); 5145 if (!status) { 5146 list_del(&p->list); 5147 devm_kfree(ice_hw_to_dev(hw), p); 5148 } 5149 return status; 5150 } 5151 5152 return -ENOENT; 5153 } 5154 5155 /** 5156 * ice_rem_flow_all - remove all flows with a particular profile 5157 * @hw: pointer to the HW struct 5158 * @blk: hardware block 5159 * @id: profile tracking ID 5160 */ 5161 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 5162 { 5163 struct ice_chs_chg *del, *tmp; 5164 struct list_head chg; 5165 int status; 5166 u16 i; 5167 5168 INIT_LIST_HEAD(&chg); 5169 5170 for (i = 1; i < ICE_MAX_VSIGS; i++) 5171 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 5172 if (ice_has_prof_vsig(hw, blk, i, id)) { 5173 status = ice_rem_prof_id_vsig(hw, blk, i, id, 5174 &chg); 5175 if (status) 5176 goto err_ice_rem_flow_all; 5177 } 5178 } 5179 5180 status = ice_upd_prof_hw(hw, blk, &chg); 5181 5182 err_ice_rem_flow_all: 5183 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5184 list_del(&del->list_entry); 5185 devm_kfree(ice_hw_to_dev(hw), del); 5186 } 5187 5188 return status; 5189 } 5190 5191 /** 5192 * ice_rem_prof - remove profile 5193 * @hw: pointer to the HW struct 5194 * @blk: hardware block 5195 * @id: profile tracking ID 5196 * 5197 * This will remove the profile specified by the ID parameter, which was 5198 * previously created through ice_add_prof. If any existing entries 5199 * are associated with this profile, they will be removed as well. 5200 */ 5201 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 5202 { 5203 struct ice_prof_map *pmap; 5204 int status; 5205 5206 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5207 5208 pmap = ice_search_prof_id(hw, blk, id); 5209 if (!pmap) { 5210 status = -ENOENT; 5211 goto err_ice_rem_prof; 5212 } 5213 5214 /* remove all flows with this profile */ 5215 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 5216 if (status) 5217 goto err_ice_rem_prof; 5218 5219 /* dereference profile, and possibly remove */ 5220 ice_prof_dec_ref(hw, blk, pmap->prof_id); 5221 5222 list_del(&pmap->list); 5223 devm_kfree(ice_hw_to_dev(hw), pmap); 5224 5225 err_ice_rem_prof: 5226 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5227 return status; 5228 } 5229 5230 /** 5231 * ice_get_prof - get profile 5232 * @hw: pointer to the HW struct 5233 * @blk: hardware block 5234 * @hdl: profile handle 5235 * @chg: change list 5236 */ 5237 static int 5238 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 5239 struct list_head *chg) 5240 { 5241 struct ice_prof_map *map; 5242 struct ice_chs_chg *p; 5243 int status = 0; 5244 u16 i; 5245 5246 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5247 /* Get the details on the profile specified by the handle ID */ 5248 map = ice_search_prof_id(hw, blk, hdl); 5249 if (!map) { 5250 status = -ENOENT; 5251 goto err_ice_get_prof; 5252 } 5253 5254 for (i = 0; i < map->ptg_cnt; i++) 5255 if (!hw->blk[blk].es.written[map->prof_id]) { 5256 /* add ES to change list */ 5257 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5258 GFP_KERNEL); 5259 if (!p) { 5260 status = -ENOMEM; 5261 goto err_ice_get_prof; 5262 } 5263 5264 p->type = ICE_PTG_ES_ADD; 5265 p->ptype = 0; 5266 p->ptg = map->ptg[i]; 5267 p->add_ptg = 0; 5268 5269 p->add_prof = 1; 5270 p->prof_id = map->prof_id; 5271 5272 hw->blk[blk].es.written[map->prof_id] = true; 5273 5274 list_add(&p->list_entry, chg); 5275 } 5276 5277 err_ice_get_prof: 5278 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5279 /* let caller clean up the change list */ 5280 return status; 5281 } 5282 5283 /** 5284 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 5285 * @hw: pointer to the HW struct 5286 * @blk: hardware block 5287 * @vsig: VSIG from which to copy the list 5288 * @lst: output list 5289 * 5290 * This routine makes a copy of the list of profiles in the specified VSIG. 5291 */ 5292 static int 5293 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5294 struct list_head *lst) 5295 { 5296 struct ice_vsig_prof *ent1, *ent2; 5297 u16 idx = vsig & ICE_VSIG_IDX_M; 5298 5299 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5300 list) { 5301 struct ice_vsig_prof *p; 5302 5303 /* copy to the input list */ 5304 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 5305 GFP_KERNEL); 5306 if (!p) 5307 goto err_ice_get_profs_vsig; 5308 5309 list_add_tail(&p->list, lst); 5310 } 5311 5312 return 0; 5313 5314 err_ice_get_profs_vsig: 5315 list_for_each_entry_safe(ent1, ent2, lst, list) { 5316 list_del(&ent1->list); 5317 devm_kfree(ice_hw_to_dev(hw), ent1); 5318 } 5319 5320 return -ENOMEM; 5321 } 5322 5323 /** 5324 * ice_add_prof_to_lst - add profile entry to a list 5325 * @hw: pointer to the HW struct 5326 * @blk: hardware block 5327 * @lst: the list to be added to 5328 * @hdl: profile handle of entry to add 5329 */ 5330 static int 5331 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 5332 struct list_head *lst, u64 hdl) 5333 { 5334 struct ice_prof_map *map; 5335 struct ice_vsig_prof *p; 5336 int status = 0; 5337 u16 i; 5338 5339 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5340 map = ice_search_prof_id(hw, blk, hdl); 5341 if (!map) { 5342 status = -ENOENT; 5343 goto err_ice_add_prof_to_lst; 5344 } 5345 5346 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5347 if (!p) { 5348 status = -ENOMEM; 5349 goto err_ice_add_prof_to_lst; 5350 } 5351 5352 p->profile_cookie = map->profile_cookie; 5353 p->prof_id = map->prof_id; 5354 p->tcam_count = map->ptg_cnt; 5355 5356 for (i = 0; i < map->ptg_cnt; i++) { 5357 p->tcam[i].prof_id = map->prof_id; 5358 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5359 p->tcam[i].ptg = map->ptg[i]; 5360 } 5361 5362 list_add(&p->list, lst); 5363 5364 err_ice_add_prof_to_lst: 5365 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5366 return status; 5367 } 5368 5369 /** 5370 * ice_move_vsi - move VSI to another VSIG 5371 * @hw: pointer to the HW struct 5372 * @blk: hardware block 5373 * @vsi: the VSI to move 5374 * @vsig: the VSIG to move the VSI to 5375 * @chg: the change list 5376 */ 5377 static int 5378 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5379 struct list_head *chg) 5380 { 5381 struct ice_chs_chg *p; 5382 u16 orig_vsig; 5383 int status; 5384 5385 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5386 if (!p) 5387 return -ENOMEM; 5388 5389 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5390 if (!status) 5391 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5392 5393 if (status) { 5394 devm_kfree(ice_hw_to_dev(hw), p); 5395 return status; 5396 } 5397 5398 p->type = ICE_VSI_MOVE; 5399 p->vsi = vsi; 5400 p->orig_vsig = orig_vsig; 5401 p->vsig = vsig; 5402 5403 list_add(&p->list_entry, chg); 5404 5405 return 0; 5406 } 5407 5408 /** 5409 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5410 * @hw: pointer to the HW struct 5411 * @idx: the index of the TCAM entry to remove 5412 * @chg: the list of change structures to search 5413 */ 5414 static void 5415 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5416 { 5417 struct ice_chs_chg *pos, *tmp; 5418 5419 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5420 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5421 list_del(&tmp->list_entry); 5422 devm_kfree(ice_hw_to_dev(hw), tmp); 5423 } 5424 } 5425 5426 /** 5427 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5428 * @hw: pointer to the HW struct 5429 * @blk: hardware block 5430 * @enable: true to enable, false to disable 5431 * @vsig: the VSIG of the TCAM entry 5432 * @tcam: pointer the TCAM info structure of the TCAM to disable 5433 * @chg: the change list 5434 * 5435 * This function appends an enable or disable TCAM entry in the change log 5436 */ 5437 static int 5438 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5439 u16 vsig, struct ice_tcam_inf *tcam, 5440 struct list_head *chg) 5441 { 5442 struct ice_chs_chg *p; 5443 int status; 5444 5445 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5446 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5447 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5448 5449 /* if disabling, free the TCAM */ 5450 if (!enable) { 5451 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5452 5453 /* if we have already created a change for this TCAM entry, then 5454 * we need to remove that entry, in order to prevent writing to 5455 * a TCAM entry we no longer will have ownership of. 5456 */ 5457 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5458 tcam->tcam_idx = 0; 5459 tcam->in_use = 0; 5460 return status; 5461 } 5462 5463 /* for re-enabling, reallocate a TCAM */ 5464 /* for entries with empty attribute masks, allocate entry from 5465 * the bottom of the TCAM table; otherwise, allocate from the 5466 * top of the table in order to give it higher priority 5467 */ 5468 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5469 &tcam->tcam_idx); 5470 if (status) 5471 return status; 5472 5473 /* add TCAM to change list */ 5474 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5475 if (!p) 5476 return -ENOMEM; 5477 5478 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5479 tcam->ptg, vsig, 0, tcam->attr.flags, 5480 vl_msk, dc_msk, nm_msk); 5481 if (status) 5482 goto err_ice_prof_tcam_ena_dis; 5483 5484 tcam->in_use = 1; 5485 5486 p->type = ICE_TCAM_ADD; 5487 p->add_tcam_idx = true; 5488 p->prof_id = tcam->prof_id; 5489 p->ptg = tcam->ptg; 5490 p->vsig = 0; 5491 p->tcam_idx = tcam->tcam_idx; 5492 5493 /* log change */ 5494 list_add(&p->list_entry, chg); 5495 5496 return 0; 5497 5498 err_ice_prof_tcam_ena_dis: 5499 devm_kfree(ice_hw_to_dev(hw), p); 5500 return status; 5501 } 5502 5503 /** 5504 * ice_adj_prof_priorities - adjust profile based on priorities 5505 * @hw: pointer to the HW struct 5506 * @blk: hardware block 5507 * @vsig: the VSIG for which to adjust profile priorities 5508 * @chg: the change list 5509 */ 5510 static int 5511 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5512 struct list_head *chg) 5513 { 5514 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5515 struct ice_vsig_prof *t; 5516 int status; 5517 u16 idx; 5518 5519 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5520 idx = vsig & ICE_VSIG_IDX_M; 5521 5522 /* Priority is based on the order in which the profiles are added. The 5523 * newest added profile has highest priority and the oldest added 5524 * profile has the lowest priority. Since the profile property list for 5525 * a VSIG is sorted from newest to oldest, this code traverses the list 5526 * in order and enables the first of each PTG that it finds (that is not 5527 * already enabled); it also disables any duplicate PTGs that it finds 5528 * in the older profiles (that are currently enabled). 5529 */ 5530 5531 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5532 list) { 5533 u16 i; 5534 5535 for (i = 0; i < t->tcam_count; i++) { 5536 /* Scan the priorities from newest to oldest. 5537 * Make sure that the newest profiles take priority. 5538 */ 5539 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5540 t->tcam[i].in_use) { 5541 /* need to mark this PTG as never match, as it 5542 * was already in use and therefore duplicate 5543 * (and lower priority) 5544 */ 5545 status = ice_prof_tcam_ena_dis(hw, blk, false, 5546 vsig, 5547 &t->tcam[i], 5548 chg); 5549 if (status) 5550 return status; 5551 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5552 !t->tcam[i].in_use) { 5553 /* need to enable this PTG, as it in not in use 5554 * and not enabled (highest priority) 5555 */ 5556 status = ice_prof_tcam_ena_dis(hw, blk, true, 5557 vsig, 5558 &t->tcam[i], 5559 chg); 5560 if (status) 5561 return status; 5562 } 5563 5564 /* keep track of used ptgs */ 5565 __set_bit(t->tcam[i].ptg, ptgs_used); 5566 } 5567 } 5568 5569 return 0; 5570 } 5571 5572 /** 5573 * ice_add_prof_id_vsig - add profile to VSIG 5574 * @hw: pointer to the HW struct 5575 * @blk: hardware block 5576 * @vsig: the VSIG to which this profile is to be added 5577 * @hdl: the profile handle indicating the profile to add 5578 * @rev: true to add entries to the end of the list 5579 * @chg: the change list 5580 */ 5581 static int 5582 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5583 bool rev, struct list_head *chg) 5584 { 5585 /* Masks that ignore flags */ 5586 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5587 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5588 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5589 struct ice_prof_map *map; 5590 struct ice_vsig_prof *t; 5591 struct ice_chs_chg *p; 5592 u16 vsig_idx, i; 5593 int status = 0; 5594 5595 /* Error, if this VSIG already has this profile */ 5596 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5597 return -EEXIST; 5598 5599 /* new VSIG profile structure */ 5600 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5601 if (!t) 5602 return -ENOMEM; 5603 5604 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5605 /* Get the details on the profile specified by the handle ID */ 5606 map = ice_search_prof_id(hw, blk, hdl); 5607 if (!map) { 5608 status = -ENOENT; 5609 goto err_ice_add_prof_id_vsig; 5610 } 5611 5612 t->profile_cookie = map->profile_cookie; 5613 t->prof_id = map->prof_id; 5614 t->tcam_count = map->ptg_cnt; 5615 5616 /* create TCAM entries */ 5617 for (i = 0; i < map->ptg_cnt; i++) { 5618 u16 tcam_idx; 5619 5620 /* add TCAM to change list */ 5621 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5622 if (!p) { 5623 status = -ENOMEM; 5624 goto err_ice_add_prof_id_vsig; 5625 } 5626 5627 /* allocate the TCAM entry index */ 5628 /* for entries with empty attribute masks, allocate entry from 5629 * the bottom of the TCAM table; otherwise, allocate from the 5630 * top of the table in order to give it higher priority 5631 */ 5632 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5633 &tcam_idx); 5634 if (status) { 5635 devm_kfree(ice_hw_to_dev(hw), p); 5636 goto err_ice_add_prof_id_vsig; 5637 } 5638 5639 t->tcam[i].ptg = map->ptg[i]; 5640 t->tcam[i].prof_id = map->prof_id; 5641 t->tcam[i].tcam_idx = tcam_idx; 5642 t->tcam[i].attr = map->attr[i]; 5643 t->tcam[i].in_use = true; 5644 5645 p->type = ICE_TCAM_ADD; 5646 p->add_tcam_idx = true; 5647 p->prof_id = t->tcam[i].prof_id; 5648 p->ptg = t->tcam[i].ptg; 5649 p->vsig = vsig; 5650 p->tcam_idx = t->tcam[i].tcam_idx; 5651 5652 /* write the TCAM entry */ 5653 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5654 t->tcam[i].prof_id, 5655 t->tcam[i].ptg, vsig, 0, 0, 5656 vl_msk, dc_msk, nm_msk); 5657 if (status) { 5658 devm_kfree(ice_hw_to_dev(hw), p); 5659 goto err_ice_add_prof_id_vsig; 5660 } 5661 5662 /* log change */ 5663 list_add(&p->list_entry, chg); 5664 } 5665 5666 /* add profile to VSIG */ 5667 vsig_idx = vsig & ICE_VSIG_IDX_M; 5668 if (rev) 5669 list_add_tail(&t->list, 5670 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5671 else 5672 list_add(&t->list, 5673 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5674 5675 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5676 return status; 5677 5678 err_ice_add_prof_id_vsig: 5679 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5680 /* let caller clean up the change list */ 5681 devm_kfree(ice_hw_to_dev(hw), t); 5682 return status; 5683 } 5684 5685 /** 5686 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5687 * @hw: pointer to the HW struct 5688 * @blk: hardware block 5689 * @vsi: the initial VSI that will be in VSIG 5690 * @hdl: the profile handle of the profile that will be added to the VSIG 5691 * @chg: the change list 5692 */ 5693 static int 5694 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5695 struct list_head *chg) 5696 { 5697 struct ice_chs_chg *p; 5698 u16 new_vsig; 5699 int status; 5700 5701 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5702 if (!p) 5703 return -ENOMEM; 5704 5705 new_vsig = ice_vsig_alloc(hw, blk); 5706 if (!new_vsig) { 5707 status = -EIO; 5708 goto err_ice_create_prof_id_vsig; 5709 } 5710 5711 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5712 if (status) 5713 goto err_ice_create_prof_id_vsig; 5714 5715 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5716 if (status) 5717 goto err_ice_create_prof_id_vsig; 5718 5719 p->type = ICE_VSIG_ADD; 5720 p->vsi = vsi; 5721 p->orig_vsig = ICE_DEFAULT_VSIG; 5722 p->vsig = new_vsig; 5723 5724 list_add(&p->list_entry, chg); 5725 5726 return 0; 5727 5728 err_ice_create_prof_id_vsig: 5729 /* let caller clean up the change list */ 5730 devm_kfree(ice_hw_to_dev(hw), p); 5731 return status; 5732 } 5733 5734 /** 5735 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5736 * @hw: pointer to the HW struct 5737 * @blk: hardware block 5738 * @vsi: the initial VSI that will be in VSIG 5739 * @lst: the list of profile that will be added to the VSIG 5740 * @new_vsig: return of new VSIG 5741 * @chg: the change list 5742 */ 5743 static int 5744 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5745 struct list_head *lst, u16 *new_vsig, 5746 struct list_head *chg) 5747 { 5748 struct ice_vsig_prof *t; 5749 int status; 5750 u16 vsig; 5751 5752 vsig = ice_vsig_alloc(hw, blk); 5753 if (!vsig) 5754 return -EIO; 5755 5756 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5757 if (status) 5758 return status; 5759 5760 list_for_each_entry(t, lst, list) { 5761 /* Reverse the order here since we are copying the list */ 5762 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5763 true, chg); 5764 if (status) 5765 return status; 5766 } 5767 5768 *new_vsig = vsig; 5769 5770 return 0; 5771 } 5772 5773 /** 5774 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5775 * @hw: pointer to the HW struct 5776 * @blk: hardware block 5777 * @hdl: the profile handle of the profile to search for 5778 * @vsig: returns the VSIG with the matching profile 5779 */ 5780 static bool 5781 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5782 { 5783 struct ice_vsig_prof *t; 5784 struct list_head lst; 5785 int status; 5786 5787 INIT_LIST_HEAD(&lst); 5788 5789 t = kzalloc(sizeof(*t), GFP_KERNEL); 5790 if (!t) 5791 return false; 5792 5793 t->profile_cookie = hdl; 5794 list_add(&t->list, &lst); 5795 5796 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5797 5798 list_del(&t->list); 5799 kfree(t); 5800 5801 return !status; 5802 } 5803 5804 /** 5805 * ice_add_prof_id_flow - add profile flow 5806 * @hw: pointer to the HW struct 5807 * @blk: hardware block 5808 * @vsi: the VSI to enable with the profile specified by ID 5809 * @hdl: profile handle 5810 * 5811 * Calling this function will update the hardware tables to enable the 5812 * profile indicated by the ID parameter for the VSIs specified in the VSI 5813 * array. Once successfully called, the flow will be enabled. 5814 */ 5815 int 5816 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5817 { 5818 struct ice_vsig_prof *tmp1, *del1; 5819 struct ice_chs_chg *tmp, *del; 5820 struct list_head union_lst; 5821 struct list_head chg; 5822 int status; 5823 u16 vsig; 5824 5825 INIT_LIST_HEAD(&union_lst); 5826 INIT_LIST_HEAD(&chg); 5827 5828 /* Get profile */ 5829 status = ice_get_prof(hw, blk, hdl, &chg); 5830 if (status) 5831 return status; 5832 5833 /* determine if VSI is already part of a VSIG */ 5834 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5835 if (!status && vsig) { 5836 bool only_vsi; 5837 u16 or_vsig; 5838 u16 ref; 5839 5840 /* found in VSIG */ 5841 or_vsig = vsig; 5842 5843 /* make sure that there is no overlap/conflict between the new 5844 * characteristics and the existing ones; we don't support that 5845 * scenario 5846 */ 5847 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5848 status = -EEXIST; 5849 goto err_ice_add_prof_id_flow; 5850 } 5851 5852 /* last VSI in the VSIG? */ 5853 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5854 if (status) 5855 goto err_ice_add_prof_id_flow; 5856 only_vsi = (ref == 1); 5857 5858 /* create a union of the current profiles and the one being 5859 * added 5860 */ 5861 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5862 if (status) 5863 goto err_ice_add_prof_id_flow; 5864 5865 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5866 if (status) 5867 goto err_ice_add_prof_id_flow; 5868 5869 /* search for an existing VSIG with an exact charc match */ 5870 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5871 if (!status) { 5872 /* move VSI to the VSIG that matches */ 5873 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5874 if (status) 5875 goto err_ice_add_prof_id_flow; 5876 5877 /* VSI has been moved out of or_vsig. If the or_vsig had 5878 * only that VSI it is now empty and can be removed. 5879 */ 5880 if (only_vsi) { 5881 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5882 if (status) 5883 goto err_ice_add_prof_id_flow; 5884 } 5885 } else if (only_vsi) { 5886 /* If the original VSIG only contains one VSI, then it 5887 * will be the requesting VSI. In this case the VSI is 5888 * not sharing entries and we can simply add the new 5889 * profile to the VSIG. 5890 */ 5891 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5892 &chg); 5893 if (status) 5894 goto err_ice_add_prof_id_flow; 5895 5896 /* Adjust priorities */ 5897 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5898 if (status) 5899 goto err_ice_add_prof_id_flow; 5900 } else { 5901 /* No match, so we need a new VSIG */ 5902 status = ice_create_vsig_from_lst(hw, blk, vsi, 5903 &union_lst, &vsig, 5904 &chg); 5905 if (status) 5906 goto err_ice_add_prof_id_flow; 5907 5908 /* Adjust priorities */ 5909 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5910 if (status) 5911 goto err_ice_add_prof_id_flow; 5912 } 5913 } else { 5914 /* need to find or add a VSIG */ 5915 /* search for an existing VSIG with an exact charc match */ 5916 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5917 /* found an exact match */ 5918 /* add or move VSI to the VSIG that matches */ 5919 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5920 if (status) 5921 goto err_ice_add_prof_id_flow; 5922 } else { 5923 /* we did not find an exact match */ 5924 /* we need to add a VSIG */ 5925 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5926 &chg); 5927 if (status) 5928 goto err_ice_add_prof_id_flow; 5929 } 5930 } 5931 5932 /* update hardware */ 5933 if (!status) 5934 status = ice_upd_prof_hw(hw, blk, &chg); 5935 5936 err_ice_add_prof_id_flow: 5937 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5938 list_del(&del->list_entry); 5939 devm_kfree(ice_hw_to_dev(hw), del); 5940 } 5941 5942 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5943 list_del(&del1->list); 5944 devm_kfree(ice_hw_to_dev(hw), del1); 5945 } 5946 5947 return status; 5948 } 5949 5950 /** 5951 * ice_rem_prof_from_list - remove a profile from list 5952 * @hw: pointer to the HW struct 5953 * @lst: list to remove the profile from 5954 * @hdl: the profile handle indicating the profile to remove 5955 */ 5956 static int 5957 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5958 { 5959 struct ice_vsig_prof *ent, *tmp; 5960 5961 list_for_each_entry_safe(ent, tmp, lst, list) 5962 if (ent->profile_cookie == hdl) { 5963 list_del(&ent->list); 5964 devm_kfree(ice_hw_to_dev(hw), ent); 5965 return 0; 5966 } 5967 5968 return -ENOENT; 5969 } 5970 5971 /** 5972 * ice_rem_prof_id_flow - remove flow 5973 * @hw: pointer to the HW struct 5974 * @blk: hardware block 5975 * @vsi: the VSI from which to remove the profile specified by ID 5976 * @hdl: profile tracking handle 5977 * 5978 * Calling this function will update the hardware tables to remove the 5979 * profile indicated by the ID parameter for the VSIs specified in the VSI 5980 * array. Once successfully called, the flow will be disabled. 5981 */ 5982 int 5983 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5984 { 5985 struct ice_vsig_prof *tmp1, *del1; 5986 struct ice_chs_chg *tmp, *del; 5987 struct list_head chg, copy; 5988 int status; 5989 u16 vsig; 5990 5991 INIT_LIST_HEAD(©); 5992 INIT_LIST_HEAD(&chg); 5993 5994 /* determine if VSI is already part of a VSIG */ 5995 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5996 if (!status && vsig) { 5997 bool last_profile; 5998 bool only_vsi; 5999 u16 ref; 6000 6001 /* found in VSIG */ 6002 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 6003 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 6004 if (status) 6005 goto err_ice_rem_prof_id_flow; 6006 only_vsi = (ref == 1); 6007 6008 if (only_vsi) { 6009 /* If the original VSIG only contains one reference, 6010 * which will be the requesting VSI, then the VSI is not 6011 * sharing entries and we can simply remove the specific 6012 * characteristics from the VSIG. 6013 */ 6014 6015 if (last_profile) { 6016 /* If there are no profiles left for this VSIG, 6017 * then simply remove the VSIG. 6018 */ 6019 status = ice_rem_vsig(hw, blk, vsig, &chg); 6020 if (status) 6021 goto err_ice_rem_prof_id_flow; 6022 } else { 6023 status = ice_rem_prof_id_vsig(hw, blk, vsig, 6024 hdl, &chg); 6025 if (status) 6026 goto err_ice_rem_prof_id_flow; 6027 6028 /* Adjust priorities */ 6029 status = ice_adj_prof_priorities(hw, blk, vsig, 6030 &chg); 6031 if (status) 6032 goto err_ice_rem_prof_id_flow; 6033 } 6034 6035 } else { 6036 /* Make a copy of the VSIG's list of Profiles */ 6037 status = ice_get_profs_vsig(hw, blk, vsig, ©); 6038 if (status) 6039 goto err_ice_rem_prof_id_flow; 6040 6041 /* Remove specified profile entry from the list */ 6042 status = ice_rem_prof_from_list(hw, ©, hdl); 6043 if (status) 6044 goto err_ice_rem_prof_id_flow; 6045 6046 if (list_empty(©)) { 6047 status = ice_move_vsi(hw, blk, vsi, 6048 ICE_DEFAULT_VSIG, &chg); 6049 if (status) 6050 goto err_ice_rem_prof_id_flow; 6051 6052 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 6053 &vsig)) { 6054 /* found an exact match */ 6055 /* add or move VSI to the VSIG that matches */ 6056 /* Search for a VSIG with a matching profile 6057 * list 6058 */ 6059 6060 /* Found match, move VSI to the matching VSIG */ 6061 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 6062 if (status) 6063 goto err_ice_rem_prof_id_flow; 6064 } else { 6065 /* since no existing VSIG supports this 6066 * characteristic pattern, we need to create a 6067 * new VSIG and TCAM entries 6068 */ 6069 status = ice_create_vsig_from_lst(hw, blk, vsi, 6070 ©, &vsig, 6071 &chg); 6072 if (status) 6073 goto err_ice_rem_prof_id_flow; 6074 6075 /* Adjust priorities */ 6076 status = ice_adj_prof_priorities(hw, blk, vsig, 6077 &chg); 6078 if (status) 6079 goto err_ice_rem_prof_id_flow; 6080 } 6081 } 6082 } else { 6083 status = -ENOENT; 6084 } 6085 6086 /* update hardware tables */ 6087 if (!status) 6088 status = ice_upd_prof_hw(hw, blk, &chg); 6089 6090 err_ice_rem_prof_id_flow: 6091 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 6092 list_del(&del->list_entry); 6093 devm_kfree(ice_hw_to_dev(hw), del); 6094 } 6095 6096 list_for_each_entry_safe(del1, tmp1, ©, list) { 6097 list_del(&del1->list); 6098 devm_kfree(ice_hw_to_dev(hw), del1); 6099 } 6100 6101 return status; 6102 } 6103