1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 338 return NULL; 339 340 if (offset) 341 *offset = 0; 342 343 boost = section; 344 if (index >= le16_to_cpu(boost->count)) 345 return NULL; 346 347 return boost->tcam + index; 348 } 349 350 /** 351 * ice_find_boost_entry 352 * @ice_seg: pointer to the ice segment (non-NULL) 353 * @addr: Boost TCAM address of entry to search for 354 * @entry: returns pointer to the entry 355 * 356 * Finds a particular Boost TCAM entry and returns a pointer to that entry 357 * if it is found. The ice_seg parameter must not be NULL since the first call 358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 359 */ 360 static enum ice_status 361 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 362 struct ice_boost_tcam_entry **entry) 363 { 364 struct ice_boost_tcam_entry *tcam; 365 struct ice_pkg_enum state; 366 367 memset(&state, 0, sizeof(state)); 368 369 if (!ice_seg) 370 return ICE_ERR_PARAM; 371 372 do { 373 tcam = ice_pkg_enum_entry(ice_seg, &state, 374 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 375 ice_boost_tcam_handler); 376 if (tcam && le16_to_cpu(tcam->addr) == addr) { 377 *entry = tcam; 378 return 0; 379 } 380 381 ice_seg = NULL; 382 } while (tcam); 383 384 *entry = NULL; 385 return ICE_ERR_CFG; 386 } 387 388 /** 389 * ice_label_enum_handler 390 * @sect_type: section type 391 * @section: pointer to section 392 * @index: index of the label entry to be returned 393 * @offset: pointer to receive absolute offset, always zero for label sections 394 * 395 * This is a callback function that can be passed to ice_pkg_enum_entry. 396 * Handles enumeration of individual label entries. 397 */ 398 static void * 399 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 400 u32 *offset) 401 { 402 struct ice_label_section *labels; 403 404 if (!section) 405 return NULL; 406 407 if (index > ICE_MAX_LABELS_IN_BUF) 408 return NULL; 409 410 if (offset) 411 *offset = 0; 412 413 labels = section; 414 if (index >= le16_to_cpu(labels->count)) 415 return NULL; 416 417 return labels->label + index; 418 } 419 420 /** 421 * ice_enum_labels 422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 423 * @type: the section type that will contain the label (0 on subsequent calls) 424 * @state: ice_pkg_enum structure that will hold the state of the enumeration 425 * @value: pointer to a value that will return the label's value if found 426 * 427 * Enumerates a list of labels in the package. The caller will call 428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 430 * the end of the list has been reached. 431 */ 432 static char * 433 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 434 u16 *value) 435 { 436 struct ice_label *label; 437 438 /* Check for valid label section on first call */ 439 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 440 return NULL; 441 442 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 443 ice_label_enum_handler); 444 if (!label) 445 return NULL; 446 447 *value = le16_to_cpu(label->value); 448 return label->name; 449 } 450 451 /** 452 * ice_init_pkg_hints 453 * @hw: pointer to the HW structure 454 * @ice_seg: pointer to the segment of the package scan (non-NULL) 455 * 456 * This function will scan the package and save off relevant information 457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 458 * since the first call to ice_enum_labels requires a pointer to an actual 459 * ice_seg structure. 460 */ 461 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 462 { 463 struct ice_pkg_enum state; 464 char *label_name; 465 u16 val; 466 int i; 467 468 memset(&hw->tnl, 0, sizeof(hw->tnl)); 469 memset(&state, 0, sizeof(state)); 470 471 if (!ice_seg) 472 return; 473 474 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 475 &val); 476 477 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 478 for (i = 0; tnls[i].type != TNL_LAST; i++) { 479 size_t len = strlen(tnls[i].label_prefix); 480 481 /* Look for matching label start, before continuing */ 482 if (strncmp(label_name, tnls[i].label_prefix, len)) 483 continue; 484 485 /* Make sure this label matches our PF. Note that the PF 486 * character ('0' - '7') will be located where our 487 * prefix string's null terminator is located. 488 */ 489 if ((label_name[len] - '0') == hw->pf_id) { 490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 491 hw->tnl.tbl[hw->tnl.count].valid = false; 492 hw->tnl.tbl[hw->tnl.count].in_use = false; 493 hw->tnl.tbl[hw->tnl.count].marked = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) 509 hw->tnl.tbl[i].valid = true; 510 } 511 } 512 513 /* Key creation */ 514 515 #define ICE_DC_KEY 0x1 /* don't care */ 516 #define ICE_DC_KEYINV 0x1 517 #define ICE_NM_KEY 0x0 /* never match */ 518 #define ICE_NM_KEYINV 0x0 519 #define ICE_0_KEY 0x1 /* match 0 */ 520 #define ICE_0_KEYINV 0x0 521 #define ICE_1_KEY 0x0 /* match 1 */ 522 #define ICE_1_KEYINV 0x1 523 524 /** 525 * ice_gen_key_word - generate 16-bits of a key/mask word 526 * @val: the value 527 * @valid: valid bits mask (change only the valid bits) 528 * @dont_care: don't care mask 529 * @nvr_mtch: never match mask 530 * @key: pointer to an array of where the resulting key portion 531 * @key_inv: pointer to an array of where the resulting key invert portion 532 * 533 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 534 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 535 * of key and 8 bits of key invert. 536 * 537 * '0' = b01, always match a 0 bit 538 * '1' = b10, always match a 1 bit 539 * '?' = b11, don't care bit (always matches) 540 * '~' = b00, never match bit 541 * 542 * Input: 543 * val: b0 1 0 1 0 1 544 * dont_care: b0 0 1 1 0 0 545 * never_mtch: b0 0 0 0 1 1 546 * ------------------------------ 547 * Result: key: b01 10 11 11 00 00 548 */ 549 static enum ice_status 550 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 551 u8 *key_inv) 552 { 553 u8 in_key = *key, in_key_inv = *key_inv; 554 u8 i; 555 556 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 557 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 558 return ICE_ERR_CFG; 559 560 *key = 0; 561 *key_inv = 0; 562 563 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 564 for (i = 0; i < 8; i++) { 565 *key >>= 1; 566 *key_inv >>= 1; 567 568 if (!(valid & 0x1)) { /* change only valid bits */ 569 *key |= (in_key & 0x1) << 7; 570 *key_inv |= (in_key_inv & 0x1) << 7; 571 } else if (dont_care & 0x1) { /* don't care bit */ 572 *key |= ICE_DC_KEY << 7; 573 *key_inv |= ICE_DC_KEYINV << 7; 574 } else if (nvr_mtch & 0x1) { /* never match bit */ 575 *key |= ICE_NM_KEY << 7; 576 *key_inv |= ICE_NM_KEYINV << 7; 577 } else if (val & 0x01) { /* exact 1 match */ 578 *key |= ICE_1_KEY << 7; 579 *key_inv |= ICE_1_KEYINV << 7; 580 } else { /* exact 0 match */ 581 *key |= ICE_0_KEY << 7; 582 *key_inv |= ICE_0_KEYINV << 7; 583 } 584 585 dont_care >>= 1; 586 nvr_mtch >>= 1; 587 valid >>= 1; 588 val >>= 1; 589 in_key >>= 1; 590 in_key_inv >>= 1; 591 } 592 593 return 0; 594 } 595 596 /** 597 * ice_bits_max_set - determine if the number of bits set is within a maximum 598 * @mask: pointer to the byte array which is the mask 599 * @size: the number of bytes in the mask 600 * @max: the max number of set bits 601 * 602 * This function determines if there are at most 'max' number of bits set in an 603 * array. Returns true if the number for bits set is <= max or will return false 604 * otherwise. 605 */ 606 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 607 { 608 u16 count = 0; 609 u16 i; 610 611 /* check each byte */ 612 for (i = 0; i < size; i++) { 613 /* if 0, go to next byte */ 614 if (!mask[i]) 615 continue; 616 617 /* We know there is at least one set bit in this byte because of 618 * the above check; if we already have found 'max' number of 619 * bits set, then we can return failure now. 620 */ 621 if (count == max) 622 return false; 623 624 /* count the bits in this byte, checking threshold */ 625 count += hweight8(mask[i]); 626 if (count > max) 627 return false; 628 } 629 630 return true; 631 } 632 633 /** 634 * ice_set_key - generate a variable sized key with multiples of 16-bits 635 * @key: pointer to where the key will be stored 636 * @size: the size of the complete key in bytes (must be even) 637 * @val: array of 8-bit values that makes up the value portion of the key 638 * @upd: array of 8-bit masks that determine what key portion to update 639 * @dc: array of 8-bit masks that make up the don't care mask 640 * @nm: array of 8-bit masks that make up the never match mask 641 * @off: the offset of the first byte in the key to update 642 * @len: the number of bytes in the key update 643 * 644 * This function generates a key from a value, a don't care mask and a never 645 * match mask. 646 * upd, dc, and nm are optional parameters, and can be NULL: 647 * upd == NULL --> udp mask is all 1's (update all bits) 648 * dc == NULL --> dc mask is all 0's (no don't care bits) 649 * nm == NULL --> nm mask is all 0's (no never match bits) 650 */ 651 static enum ice_status 652 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 653 u16 len) 654 { 655 u16 half_size; 656 u16 i; 657 658 /* size must be a multiple of 2 bytes. */ 659 if (size % 2) 660 return ICE_ERR_CFG; 661 662 half_size = size / 2; 663 if (off + len > half_size) 664 return ICE_ERR_CFG; 665 666 /* Make sure at most one bit is set in the never match mask. Having more 667 * than one never match mask bit set will cause HW to consume excessive 668 * power otherwise; this is a power management efficiency check. 669 */ 670 #define ICE_NVR_MTCH_BITS_MAX 1 671 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 672 return ICE_ERR_CFG; 673 674 for (i = 0; i < len; i++) 675 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 676 dc ? dc[i] : 0, nm ? nm[i] : 0, 677 key + off + i, key + half_size + off + i)) 678 return ICE_ERR_CFG; 679 680 return 0; 681 } 682 683 /** 684 * ice_acquire_global_cfg_lock 685 * @hw: pointer to the HW structure 686 * @access: access type (read or write) 687 * 688 * This function will request ownership of the global config lock for reading 689 * or writing of the package. When attempting to obtain write access, the 690 * caller must check for the following two return values: 691 * 692 * ICE_SUCCESS - Means the caller has acquired the global config lock 693 * and can perform writing of the package. 694 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 695 * package or has found that no update was necessary; in 696 * this case, the caller can just skip performing any 697 * update of the package. 698 */ 699 static enum ice_status 700 ice_acquire_global_cfg_lock(struct ice_hw *hw, 701 enum ice_aq_res_access_type access) 702 { 703 enum ice_status status; 704 705 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 706 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 707 708 if (!status) 709 mutex_lock(&ice_global_cfg_lock_sw); 710 else if (status == ICE_ERR_AQ_NO_WORK) 711 ice_debug(hw, ICE_DBG_PKG, 712 "Global config lock: No work to do\n"); 713 714 return status; 715 } 716 717 /** 718 * ice_release_global_cfg_lock 719 * @hw: pointer to the HW structure 720 * 721 * This function will release the global config lock. 722 */ 723 static void ice_release_global_cfg_lock(struct ice_hw *hw) 724 { 725 mutex_unlock(&ice_global_cfg_lock_sw); 726 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 727 } 728 729 /** 730 * ice_acquire_change_lock 731 * @hw: pointer to the HW structure 732 * @access: access type (read or write) 733 * 734 * This function will request ownership of the change lock. 735 */ 736 static enum ice_status 737 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 738 { 739 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 740 ICE_CHANGE_LOCK_TIMEOUT); 741 } 742 743 /** 744 * ice_release_change_lock 745 * @hw: pointer to the HW structure 746 * 747 * This function will release the change lock using the proper Admin Command. 748 */ 749 static void ice_release_change_lock(struct ice_hw *hw) 750 { 751 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 752 } 753 754 /** 755 * ice_aq_download_pkg 756 * @hw: pointer to the hardware structure 757 * @pkg_buf: the package buffer to transfer 758 * @buf_size: the size of the package buffer 759 * @last_buf: last buffer indicator 760 * @error_offset: returns error offset 761 * @error_info: returns error information 762 * @cd: pointer to command details structure or NULL 763 * 764 * Download Package (0x0C40) 765 */ 766 static enum ice_status 767 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 768 u16 buf_size, bool last_buf, u32 *error_offset, 769 u32 *error_info, struct ice_sq_cd *cd) 770 { 771 struct ice_aqc_download_pkg *cmd; 772 struct ice_aq_desc desc; 773 enum ice_status status; 774 775 if (error_offset) 776 *error_offset = 0; 777 if (error_info) 778 *error_info = 0; 779 780 cmd = &desc.params.download_pkg; 781 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 782 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 783 784 if (last_buf) 785 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 786 787 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 788 if (status == ICE_ERR_AQ_ERROR) { 789 /* Read error from buffer only when the FW returned an error */ 790 struct ice_aqc_download_pkg_resp *resp; 791 792 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 793 if (error_offset) 794 *error_offset = le32_to_cpu(resp->error_offset); 795 if (error_info) 796 *error_info = le32_to_cpu(resp->error_info); 797 } 798 799 return status; 800 } 801 802 /** 803 * ice_aq_update_pkg 804 * @hw: pointer to the hardware structure 805 * @pkg_buf: the package cmd buffer 806 * @buf_size: the size of the package cmd buffer 807 * @last_buf: last buffer indicator 808 * @error_offset: returns error offset 809 * @error_info: returns error information 810 * @cd: pointer to command details structure or NULL 811 * 812 * Update Package (0x0C42) 813 */ 814 static enum ice_status 815 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 816 bool last_buf, u32 *error_offset, u32 *error_info, 817 struct ice_sq_cd *cd) 818 { 819 struct ice_aqc_download_pkg *cmd; 820 struct ice_aq_desc desc; 821 enum ice_status status; 822 823 if (error_offset) 824 *error_offset = 0; 825 if (error_info) 826 *error_info = 0; 827 828 cmd = &desc.params.download_pkg; 829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 830 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 831 832 if (last_buf) 833 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 834 835 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 836 if (status == ICE_ERR_AQ_ERROR) { 837 /* Read error from buffer only when the FW returned an error */ 838 struct ice_aqc_download_pkg_resp *resp; 839 840 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 841 if (error_offset) 842 *error_offset = le32_to_cpu(resp->error_offset); 843 if (error_info) 844 *error_info = le32_to_cpu(resp->error_info); 845 } 846 847 return status; 848 } 849 850 /** 851 * ice_find_seg_in_pkg 852 * @hw: pointer to the hardware structure 853 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 854 * @pkg_hdr: pointer to the package header to be searched 855 * 856 * This function searches a package file for a particular segment type. On 857 * success it returns a pointer to the segment header, otherwise it will 858 * return NULL. 859 */ 860 static struct ice_generic_seg_hdr * 861 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 862 struct ice_pkg_hdr *pkg_hdr) 863 { 864 u32 i; 865 866 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 867 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 868 pkg_hdr->pkg_format_ver.update, 869 pkg_hdr->pkg_format_ver.draft); 870 871 /* Search all package segments for the requested segment type */ 872 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 873 struct ice_generic_seg_hdr *seg; 874 875 seg = (struct ice_generic_seg_hdr *) 876 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 877 878 if (le32_to_cpu(seg->seg_type) == seg_type) 879 return seg; 880 } 881 882 return NULL; 883 } 884 885 /** 886 * ice_update_pkg 887 * @hw: pointer to the hardware structure 888 * @bufs: pointer to an array of buffers 889 * @count: the number of buffers in the array 890 * 891 * Obtains change lock and updates package. 892 */ 893 static enum ice_status 894 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 895 { 896 enum ice_status status; 897 u32 offset, info, i; 898 899 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 900 if (status) 901 return status; 902 903 for (i = 0; i < count; i++) { 904 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 905 bool last = ((i + 1) == count); 906 907 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 908 last, &offset, &info, NULL); 909 910 if (status) { 911 ice_debug(hw, ICE_DBG_PKG, 912 "Update pkg failed: err %d off %d inf %d\n", 913 status, offset, info); 914 break; 915 } 916 } 917 918 ice_release_change_lock(hw); 919 920 return status; 921 } 922 923 /** 924 * ice_dwnld_cfg_bufs 925 * @hw: pointer to the hardware structure 926 * @bufs: pointer to an array of buffers 927 * @count: the number of buffers in the array 928 * 929 * Obtains global config lock and downloads the package configuration buffers 930 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 931 * found indicates that the rest of the buffers are all metadata buffers. 932 */ 933 static enum ice_status 934 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 935 { 936 enum ice_status status; 937 struct ice_buf_hdr *bh; 938 u32 offset, info, i; 939 940 if (!bufs || !count) 941 return ICE_ERR_PARAM; 942 943 /* If the first buffer's first section has its metadata bit set 944 * then there are no buffers to be downloaded, and the operation is 945 * considered a success. 946 */ 947 bh = (struct ice_buf_hdr *)bufs; 948 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 949 return 0; 950 951 /* reset pkg_dwnld_status in case this function is called in the 952 * reset/rebuild flow 953 */ 954 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 955 956 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 957 if (status) { 958 if (status == ICE_ERR_AQ_NO_WORK) 959 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 960 else 961 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 962 return status; 963 } 964 965 for (i = 0; i < count; i++) { 966 bool last = ((i + 1) == count); 967 968 if (!last) { 969 /* check next buffer for metadata flag */ 970 bh = (struct ice_buf_hdr *)(bufs + i + 1); 971 972 /* A set metadata flag in the next buffer will signal 973 * that the current buffer will be the last buffer 974 * downloaded 975 */ 976 if (le16_to_cpu(bh->section_count)) 977 if (le32_to_cpu(bh->section_entry[0].type) & 978 ICE_METADATA_BUF) 979 last = true; 980 } 981 982 bh = (struct ice_buf_hdr *)(bufs + i); 983 984 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 985 &offset, &info, NULL); 986 987 /* Save AQ status from download package */ 988 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 989 if (status) { 990 ice_debug(hw, ICE_DBG_PKG, 991 "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_global_metadata_seg *meta_seg; 1069 struct ice_generic_seg_hdr *seg_hdr; 1070 1071 if (!pkg_hdr) 1072 return ICE_ERR_PARAM; 1073 1074 meta_seg = (struct ice_global_metadata_seg *) 1075 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr); 1076 if (meta_seg) { 1077 hw->pkg_ver = meta_seg->pkg_ver; 1078 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name)); 1079 1080 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1081 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor, 1082 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft, 1083 meta_seg->pkg_name); 1084 } else { 1085 ice_debug(hw, ICE_DBG_INIT, 1086 "Did not find metadata segment in driver package\n"); 1087 return ICE_ERR_CFG; 1088 } 1089 1090 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1091 if (seg_hdr) { 1092 hw->ice_pkg_ver = seg_hdr->seg_format_ver; 1093 memcpy(hw->ice_pkg_name, seg_hdr->seg_id, 1094 sizeof(hw->ice_pkg_name)); 1095 1096 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1097 seg_hdr->seg_format_ver.major, 1098 seg_hdr->seg_format_ver.minor, 1099 seg_hdr->seg_format_ver.update, 1100 seg_hdr->seg_format_ver.draft, 1101 seg_hdr->seg_id); 1102 } else { 1103 ice_debug(hw, ICE_DBG_INIT, 1104 "Did not find ice segment in driver package\n"); 1105 return ICE_ERR_CFG; 1106 } 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_get_pkg_info 1113 * @hw: pointer to the hardware structure 1114 * 1115 * Store details of the package currently loaded in HW into the HW structure. 1116 */ 1117 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1118 { 1119 struct ice_aqc_get_pkg_info_resp *pkg_info; 1120 enum ice_status status; 1121 u16 size; 1122 u32 i; 1123 1124 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1125 pkg_info = kzalloc(size, GFP_KERNEL); 1126 if (!pkg_info) 1127 return ICE_ERR_NO_MEMORY; 1128 1129 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1130 if (status) 1131 goto init_pkg_free_alloc; 1132 1133 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1134 #define ICE_PKG_FLAG_COUNT 4 1135 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1136 u8 place = 0; 1137 1138 if (pkg_info->pkg_info[i].is_active) { 1139 flags[place++] = 'A'; 1140 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1141 hw->active_track_id = 1142 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1143 memcpy(hw->active_pkg_name, 1144 pkg_info->pkg_info[i].name, 1145 sizeof(pkg_info->pkg_info[i].name)); 1146 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1147 } 1148 if (pkg_info->pkg_info[i].is_active_at_boot) 1149 flags[place++] = 'B'; 1150 if (pkg_info->pkg_info[i].is_modified) 1151 flags[place++] = 'M'; 1152 if (pkg_info->pkg_info[i].is_in_nvm) 1153 flags[place++] = 'N'; 1154 1155 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1156 i, pkg_info->pkg_info[i].ver.major, 1157 pkg_info->pkg_info[i].ver.minor, 1158 pkg_info->pkg_info[i].ver.update, 1159 pkg_info->pkg_info[i].ver.draft, 1160 pkg_info->pkg_info[i].name, flags); 1161 } 1162 1163 init_pkg_free_alloc: 1164 kfree(pkg_info); 1165 1166 return status; 1167 } 1168 1169 /** 1170 * ice_verify_pkg - verify package 1171 * @pkg: pointer to the package buffer 1172 * @len: size of the package buffer 1173 * 1174 * Verifies various attributes of the package file, including length, format 1175 * version, and the requirement of at least one segment. 1176 */ 1177 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1178 { 1179 u32 seg_count; 1180 u32 i; 1181 1182 if (len < struct_size(pkg, seg_offset, 1)) 1183 return ICE_ERR_BUF_TOO_SHORT; 1184 1185 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1186 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1187 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1188 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1189 return ICE_ERR_CFG; 1190 1191 /* pkg must have at least one segment */ 1192 seg_count = le32_to_cpu(pkg->seg_count); 1193 if (seg_count < 1) 1194 return ICE_ERR_CFG; 1195 1196 /* make sure segment array fits in package length */ 1197 if (len < struct_size(pkg, seg_offset, seg_count)) 1198 return ICE_ERR_BUF_TOO_SHORT; 1199 1200 /* all segments must fit within length */ 1201 for (i = 0; i < seg_count; i++) { 1202 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1203 struct ice_generic_seg_hdr *seg; 1204 1205 /* segment header must fit */ 1206 if (len < off + sizeof(*seg)) 1207 return ICE_ERR_BUF_TOO_SHORT; 1208 1209 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1210 1211 /* segment body must fit */ 1212 if (len < off + le32_to_cpu(seg->seg_size)) 1213 return ICE_ERR_BUF_TOO_SHORT; 1214 } 1215 1216 return 0; 1217 } 1218 1219 /** 1220 * ice_free_seg - free package segment pointer 1221 * @hw: pointer to the hardware structure 1222 * 1223 * Frees the package segment pointer in the proper manner, depending on if the 1224 * segment was allocated or just the passed in pointer was stored. 1225 */ 1226 void ice_free_seg(struct ice_hw *hw) 1227 { 1228 if (hw->pkg_copy) { 1229 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1230 hw->pkg_copy = NULL; 1231 hw->pkg_size = 0; 1232 } 1233 hw->seg = NULL; 1234 } 1235 1236 /** 1237 * ice_init_pkg_regs - initialize additional package registers 1238 * @hw: pointer to the hardware structure 1239 */ 1240 static void ice_init_pkg_regs(struct ice_hw *hw) 1241 { 1242 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1243 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1244 #define ICE_SW_BLK_IDX 0 1245 1246 /* setup Switch block input mask, which is 48-bits in two parts */ 1247 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1248 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1249 } 1250 1251 /** 1252 * ice_chk_pkg_version - check package version for compatibility with driver 1253 * @pkg_ver: pointer to a version structure to check 1254 * 1255 * Check to make sure that the package about to be downloaded is compatible with 1256 * the driver. To be compatible, the major and minor components of the package 1257 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1258 * definitions. 1259 */ 1260 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1261 { 1262 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1263 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1264 return ICE_ERR_NOT_SUPPORTED; 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * ice_chk_pkg_compat 1271 * @hw: pointer to the hardware structure 1272 * @ospkg: pointer to the package hdr 1273 * @seg: pointer to the package segment hdr 1274 * 1275 * This function checks the package version compatibility with driver and NVM 1276 */ 1277 static enum ice_status 1278 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1279 struct ice_seg **seg) 1280 { 1281 struct ice_aqc_get_pkg_info_resp *pkg; 1282 enum ice_status status; 1283 u16 size; 1284 u32 i; 1285 1286 /* Check package version compatibility */ 1287 status = ice_chk_pkg_version(&hw->pkg_ver); 1288 if (status) { 1289 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1290 return status; 1291 } 1292 1293 /* find ICE segment in given package */ 1294 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1295 ospkg); 1296 if (!*seg) { 1297 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1298 return ICE_ERR_CFG; 1299 } 1300 1301 /* Check if FW is compatible with the OS package */ 1302 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1303 pkg = kzalloc(size, GFP_KERNEL); 1304 if (!pkg) 1305 return ICE_ERR_NO_MEMORY; 1306 1307 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1308 if (status) 1309 goto fw_ddp_compat_free_alloc; 1310 1311 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1312 /* loop till we find the NVM package */ 1313 if (!pkg->pkg_info[i].is_in_nvm) 1314 continue; 1315 if ((*seg)->hdr.seg_format_ver.major != 1316 pkg->pkg_info[i].ver.major || 1317 (*seg)->hdr.seg_format_ver.minor > 1318 pkg->pkg_info[i].ver.minor) { 1319 status = ICE_ERR_FW_DDP_MISMATCH; 1320 ice_debug(hw, ICE_DBG_INIT, 1321 "OS package is not compatible with NVM.\n"); 1322 } 1323 /* done processing NVM package so break */ 1324 break; 1325 } 1326 fw_ddp_compat_free_alloc: 1327 kfree(pkg); 1328 return status; 1329 } 1330 1331 /** 1332 * ice_init_pkg - initialize/download package 1333 * @hw: pointer to the hardware structure 1334 * @buf: pointer to the package buffer 1335 * @len: size of the package buffer 1336 * 1337 * This function initializes a package. The package contains HW tables 1338 * required to do packet processing. First, the function extracts package 1339 * information such as version. Then it finds the ice configuration segment 1340 * within the package; this function then saves a copy of the segment pointer 1341 * within the supplied package buffer. Next, the function will cache any hints 1342 * from the package, followed by downloading the package itself. Note, that if 1343 * a previous PF driver has already downloaded the package successfully, then 1344 * the current driver will not have to download the package again. 1345 * 1346 * The local package contents will be used to query default behavior and to 1347 * update specific sections of the HW's version of the package (e.g. to update 1348 * the parse graph to understand new protocols). 1349 * 1350 * This function stores a pointer to the package buffer memory, and it is 1351 * expected that the supplied buffer will not be freed immediately. If the 1352 * package buffer needs to be freed, such as when read from a file, use 1353 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1354 * case. 1355 */ 1356 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1357 { 1358 struct ice_pkg_hdr *pkg; 1359 enum ice_status status; 1360 struct ice_seg *seg; 1361 1362 if (!buf || !len) 1363 return ICE_ERR_PARAM; 1364 1365 pkg = (struct ice_pkg_hdr *)buf; 1366 status = ice_verify_pkg(pkg, len); 1367 if (status) { 1368 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1369 status); 1370 return status; 1371 } 1372 1373 /* initialize package info */ 1374 status = ice_init_pkg_info(hw, pkg); 1375 if (status) 1376 return status; 1377 1378 /* before downloading the package, check package version for 1379 * compatibility with driver 1380 */ 1381 status = ice_chk_pkg_compat(hw, pkg, &seg); 1382 if (status) 1383 return status; 1384 1385 /* initialize package hints and then download package */ 1386 ice_init_pkg_hints(hw, seg); 1387 status = ice_download_pkg(hw, seg); 1388 if (status == ICE_ERR_AQ_NO_WORK) { 1389 ice_debug(hw, ICE_DBG_INIT, 1390 "package previously loaded - no work.\n"); 1391 status = 0; 1392 } 1393 1394 /* Get information on the package currently loaded in HW, then make sure 1395 * the driver is compatible with this version. 1396 */ 1397 if (!status) { 1398 status = ice_get_pkg_info(hw); 1399 if (!status) 1400 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1401 } 1402 1403 if (!status) { 1404 hw->seg = seg; 1405 /* on successful package download update other required 1406 * registers to support the package and fill HW tables 1407 * with package content. 1408 */ 1409 ice_init_pkg_regs(hw); 1410 ice_fill_blk_tbls(hw); 1411 } else { 1412 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1413 status); 1414 } 1415 1416 return status; 1417 } 1418 1419 /** 1420 * ice_copy_and_init_pkg - initialize/download a copy of the package 1421 * @hw: pointer to the hardware structure 1422 * @buf: pointer to the package buffer 1423 * @len: size of the package buffer 1424 * 1425 * This function copies the package buffer, and then calls ice_init_pkg() to 1426 * initialize the copied package contents. 1427 * 1428 * The copying is necessary if the package buffer supplied is constant, or if 1429 * the memory may disappear shortly after calling this function. 1430 * 1431 * If the package buffer resides in the data segment and can be modified, the 1432 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1433 * 1434 * However, if the package buffer needs to be copied first, such as when being 1435 * read from a file, the caller should use ice_copy_and_init_pkg(). 1436 * 1437 * This function will first copy the package buffer, before calling 1438 * ice_init_pkg(). The caller is free to immediately destroy the original 1439 * package buffer, as the new copy will be managed by this function and 1440 * related routines. 1441 */ 1442 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1443 { 1444 enum ice_status status; 1445 u8 *buf_copy; 1446 1447 if (!buf || !len) 1448 return ICE_ERR_PARAM; 1449 1450 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1451 1452 status = ice_init_pkg(hw, buf_copy, len); 1453 if (status) { 1454 /* Free the copy, since we failed to initialize the package */ 1455 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1456 } else { 1457 /* Track the copied pkg so we can free it later */ 1458 hw->pkg_copy = buf_copy; 1459 hw->pkg_size = len; 1460 } 1461 1462 return status; 1463 } 1464 1465 /** 1466 * ice_pkg_buf_alloc 1467 * @hw: pointer to the HW structure 1468 * 1469 * Allocates a package buffer and returns a pointer to the buffer header. 1470 * Note: all package contents must be in Little Endian form. 1471 */ 1472 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1473 { 1474 struct ice_buf_build *bld; 1475 struct ice_buf_hdr *buf; 1476 1477 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1478 if (!bld) 1479 return NULL; 1480 1481 buf = (struct ice_buf_hdr *)bld; 1482 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1483 section_entry)); 1484 return bld; 1485 } 1486 1487 /** 1488 * ice_pkg_buf_free 1489 * @hw: pointer to the HW structure 1490 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1491 * 1492 * Frees a package buffer 1493 */ 1494 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1495 { 1496 devm_kfree(ice_hw_to_dev(hw), bld); 1497 } 1498 1499 /** 1500 * ice_pkg_buf_reserve_section 1501 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1502 * @count: the number of sections to reserve 1503 * 1504 * Reserves one or more section table entries in a package buffer. This routine 1505 * can be called multiple times as long as they are made before calling 1506 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1507 * is called once, the number of sections that can be allocated will not be able 1508 * to be increased; not using all reserved sections is fine, but this will 1509 * result in some wasted space in the buffer. 1510 * Note: all package contents must be in Little Endian form. 1511 */ 1512 static enum ice_status 1513 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1514 { 1515 struct ice_buf_hdr *buf; 1516 u16 section_count; 1517 u16 data_end; 1518 1519 if (!bld) 1520 return ICE_ERR_PARAM; 1521 1522 buf = (struct ice_buf_hdr *)&bld->buf; 1523 1524 /* already an active section, can't increase table size */ 1525 section_count = le16_to_cpu(buf->section_count); 1526 if (section_count > 0) 1527 return ICE_ERR_CFG; 1528 1529 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1530 return ICE_ERR_CFG; 1531 bld->reserved_section_table_entries += count; 1532 1533 data_end = le16_to_cpu(buf->data_end) + 1534 (count * sizeof(buf->section_entry[0])); 1535 buf->data_end = cpu_to_le16(data_end); 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * ice_pkg_buf_alloc_section 1542 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1543 * @type: the section type value 1544 * @size: the size of the section to reserve (in bytes) 1545 * 1546 * Reserves memory in the buffer for a section's content and updates the 1547 * buffers' status accordingly. This routine returns a pointer to the first 1548 * byte of the section start within the buffer, which is used to fill in the 1549 * section contents. 1550 * Note: all package contents must be in Little Endian form. 1551 */ 1552 static void * 1553 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1554 { 1555 struct ice_buf_hdr *buf; 1556 u16 sect_count; 1557 u16 data_end; 1558 1559 if (!bld || !type || !size) 1560 return NULL; 1561 1562 buf = (struct ice_buf_hdr *)&bld->buf; 1563 1564 /* check for enough space left in buffer */ 1565 data_end = le16_to_cpu(buf->data_end); 1566 1567 /* section start must align on 4 byte boundary */ 1568 data_end = ALIGN(data_end, 4); 1569 1570 if ((data_end + size) > ICE_MAX_S_DATA_END) 1571 return NULL; 1572 1573 /* check for more available section table entries */ 1574 sect_count = le16_to_cpu(buf->section_count); 1575 if (sect_count < bld->reserved_section_table_entries) { 1576 void *section_ptr = ((u8 *)buf) + data_end; 1577 1578 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1579 buf->section_entry[sect_count].size = cpu_to_le16(size); 1580 buf->section_entry[sect_count].type = cpu_to_le32(type); 1581 1582 data_end += size; 1583 buf->data_end = cpu_to_le16(data_end); 1584 1585 buf->section_count = cpu_to_le16(sect_count + 1); 1586 return section_ptr; 1587 } 1588 1589 /* no free section table entries */ 1590 return NULL; 1591 } 1592 1593 /** 1594 * ice_pkg_buf_get_active_sections 1595 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1596 * 1597 * Returns the number of active sections. Before using the package buffer 1598 * in an update package command, the caller should make sure that there is at 1599 * least one active section - otherwise, the buffer is not legal and should 1600 * not be used. 1601 * Note: all package contents must be in Little Endian form. 1602 */ 1603 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1604 { 1605 struct ice_buf_hdr *buf; 1606 1607 if (!bld) 1608 return 0; 1609 1610 buf = (struct ice_buf_hdr *)&bld->buf; 1611 return le16_to_cpu(buf->section_count); 1612 } 1613 1614 /** 1615 * ice_pkg_buf 1616 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1617 * 1618 * Return a pointer to the buffer's header 1619 */ 1620 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1621 { 1622 if (!bld) 1623 return NULL; 1624 1625 return &bld->buf; 1626 } 1627 1628 /** 1629 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage 1630 * @hw: pointer to the HW structure 1631 * @port: port to search for 1632 * @index: optionally returns index 1633 * 1634 * Returns whether a port is already in use as a tunnel, and optionally its 1635 * index 1636 */ 1637 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index) 1638 { 1639 u16 i; 1640 1641 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1642 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 1643 if (index) 1644 *index = i; 1645 return true; 1646 } 1647 1648 return false; 1649 } 1650 1651 /** 1652 * ice_tunnel_port_in_use 1653 * @hw: pointer to the HW structure 1654 * @port: port to search for 1655 * @index: optionally returns index 1656 * 1657 * Returns whether a port is already in use as a tunnel, and optionally its 1658 * index 1659 */ 1660 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index) 1661 { 1662 bool res; 1663 1664 mutex_lock(&hw->tnl_lock); 1665 res = ice_tunnel_port_in_use_hlpr(hw, port, index); 1666 mutex_unlock(&hw->tnl_lock); 1667 1668 return res; 1669 } 1670 1671 /** 1672 * ice_find_free_tunnel_entry 1673 * @hw: pointer to the HW structure 1674 * @type: tunnel type 1675 * @index: optionally returns index 1676 * 1677 * Returns whether there is a free tunnel entry, and optionally its index 1678 */ 1679 static bool 1680 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1681 u16 *index) 1682 { 1683 u16 i; 1684 1685 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1686 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use && 1687 hw->tnl.tbl[i].type == type) { 1688 if (index) 1689 *index = i; 1690 return true; 1691 } 1692 1693 return false; 1694 } 1695 1696 /** 1697 * ice_get_open_tunnel_port - retrieve an open tunnel port 1698 * @hw: pointer to the HW structure 1699 * @type: tunnel type (TNL_ALL will return any open port) 1700 * @port: returns open port 1701 */ 1702 bool 1703 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type, 1704 u16 *port) 1705 { 1706 bool res = false; 1707 u16 i; 1708 1709 mutex_lock(&hw->tnl_lock); 1710 1711 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1712 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1713 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) { 1714 *port = hw->tnl.tbl[i].port; 1715 res = true; 1716 break; 1717 } 1718 1719 mutex_unlock(&hw->tnl_lock); 1720 1721 return res; 1722 } 1723 1724 /** 1725 * ice_create_tunnel 1726 * @hw: pointer to the HW structure 1727 * @type: type of tunnel 1728 * @port: port of tunnel to create 1729 * 1730 * Create a tunnel by updating the parse graph in the parser. We do that by 1731 * creating a package buffer with the tunnel info and issuing an update package 1732 * command. 1733 */ 1734 enum ice_status 1735 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port) 1736 { 1737 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1738 enum ice_status status = ICE_ERR_MAX_LIMIT; 1739 struct ice_buf_build *bld; 1740 u16 index; 1741 1742 mutex_lock(&hw->tnl_lock); 1743 1744 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) { 1745 hw->tnl.tbl[index].ref++; 1746 status = 0; 1747 goto ice_create_tunnel_end; 1748 } 1749 1750 if (!ice_find_free_tunnel_entry(hw, type, &index)) { 1751 status = ICE_ERR_OUT_OF_RANGE; 1752 goto ice_create_tunnel_end; 1753 } 1754 1755 bld = ice_pkg_buf_alloc(hw); 1756 if (!bld) { 1757 status = ICE_ERR_NO_MEMORY; 1758 goto ice_create_tunnel_end; 1759 } 1760 1761 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1762 if (ice_pkg_buf_reserve_section(bld, 2)) 1763 goto ice_create_tunnel_err; 1764 1765 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1766 struct_size(sect_rx, tcam, 1)); 1767 if (!sect_rx) 1768 goto ice_create_tunnel_err; 1769 sect_rx->count = cpu_to_le16(1); 1770 1771 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1772 struct_size(sect_tx, tcam, 1)); 1773 if (!sect_tx) 1774 goto ice_create_tunnel_err; 1775 sect_tx->count = cpu_to_le16(1); 1776 1777 /* copy original boost entry to update package buffer */ 1778 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1779 sizeof(*sect_rx->tcam)); 1780 1781 /* over-write the never-match dest port key bits with the encoded port 1782 * bits 1783 */ 1784 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1785 (u8 *)&port, NULL, NULL, NULL, 1786 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1787 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1788 1789 /* exact copy of entry to Tx section entry */ 1790 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1791 1792 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1793 if (!status) { 1794 hw->tnl.tbl[index].port = port; 1795 hw->tnl.tbl[index].in_use = true; 1796 hw->tnl.tbl[index].ref = 1; 1797 } 1798 1799 ice_create_tunnel_err: 1800 ice_pkg_buf_free(hw, bld); 1801 1802 ice_create_tunnel_end: 1803 mutex_unlock(&hw->tnl_lock); 1804 1805 return status; 1806 } 1807 1808 /** 1809 * ice_destroy_tunnel 1810 * @hw: pointer to the HW structure 1811 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1812 * @all: flag that states to destroy all tunnels 1813 * 1814 * Destroys a tunnel or all tunnels by creating an update package buffer 1815 * targeting the specific updates requested and then performing an update 1816 * package. 1817 */ 1818 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all) 1819 { 1820 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1821 enum ice_status status = ICE_ERR_MAX_LIMIT; 1822 struct ice_buf_build *bld; 1823 u16 count = 0; 1824 u16 index; 1825 u16 size; 1826 u16 i; 1827 1828 mutex_lock(&hw->tnl_lock); 1829 1830 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index)) 1831 if (hw->tnl.tbl[index].ref > 1) { 1832 hw->tnl.tbl[index].ref--; 1833 status = 0; 1834 goto ice_destroy_tunnel_end; 1835 } 1836 1837 /* determine count */ 1838 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1839 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1840 (all || hw->tnl.tbl[i].port == port)) 1841 count++; 1842 1843 if (!count) { 1844 status = ICE_ERR_PARAM; 1845 goto ice_destroy_tunnel_end; 1846 } 1847 1848 /* size of section - there is at least one entry */ 1849 size = struct_size(sect_rx, tcam, count); 1850 1851 bld = ice_pkg_buf_alloc(hw); 1852 if (!bld) { 1853 status = ICE_ERR_NO_MEMORY; 1854 goto ice_destroy_tunnel_end; 1855 } 1856 1857 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1858 if (ice_pkg_buf_reserve_section(bld, 2)) 1859 goto ice_destroy_tunnel_err; 1860 1861 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1862 size); 1863 if (!sect_rx) 1864 goto ice_destroy_tunnel_err; 1865 sect_rx->count = cpu_to_le16(1); 1866 1867 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1868 size); 1869 if (!sect_tx) 1870 goto ice_destroy_tunnel_err; 1871 sect_tx->count = cpu_to_le16(1); 1872 1873 /* copy original boost entry to update package buffer, one copy to Rx 1874 * section, another copy to the Tx section 1875 */ 1876 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1877 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1878 (all || hw->tnl.tbl[i].port == port)) { 1879 memcpy(sect_rx->tcam + i, hw->tnl.tbl[i].boost_entry, 1880 sizeof(*sect_rx->tcam)); 1881 memcpy(sect_tx->tcam + i, hw->tnl.tbl[i].boost_entry, 1882 sizeof(*sect_tx->tcam)); 1883 hw->tnl.tbl[i].marked = true; 1884 } 1885 1886 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1887 if (!status) 1888 for (i = 0; i < hw->tnl.count && 1889 i < ICE_TUNNEL_MAX_ENTRIES; i++) 1890 if (hw->tnl.tbl[i].marked) { 1891 hw->tnl.tbl[i].ref = 0; 1892 hw->tnl.tbl[i].port = 0; 1893 hw->tnl.tbl[i].in_use = false; 1894 hw->tnl.tbl[i].marked = false; 1895 } 1896 1897 ice_destroy_tunnel_err: 1898 ice_pkg_buf_free(hw, bld); 1899 1900 ice_destroy_tunnel_end: 1901 mutex_unlock(&hw->tnl_lock); 1902 1903 return status; 1904 } 1905 1906 /* PTG Management */ 1907 1908 /** 1909 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 1910 * @hw: pointer to the hardware structure 1911 * @blk: HW block 1912 * @ptype: the ptype to search for 1913 * @ptg: pointer to variable that receives the PTG 1914 * 1915 * This function will search the PTGs for a particular ptype, returning the 1916 * PTG ID that contains it through the PTG parameter, with the value of 1917 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 1918 */ 1919 static enum ice_status 1920 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 1921 { 1922 if (ptype >= ICE_XLT1_CNT || !ptg) 1923 return ICE_ERR_PARAM; 1924 1925 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 1926 return 0; 1927 } 1928 1929 /** 1930 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 1931 * @hw: pointer to the hardware structure 1932 * @blk: HW block 1933 * @ptg: the PTG to allocate 1934 * 1935 * This function allocates a given packet type group ID specified by the PTG 1936 * parameter. 1937 */ 1938 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 1939 { 1940 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 1941 } 1942 1943 /** 1944 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 1945 * @hw: pointer to the hardware structure 1946 * @blk: HW block 1947 * @ptype: the ptype to remove 1948 * @ptg: the PTG to remove the ptype from 1949 * 1950 * This function will remove the ptype from the specific PTG, and move it to 1951 * the default PTG (ICE_DEFAULT_PTG). 1952 */ 1953 static enum ice_status 1954 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1955 { 1956 struct ice_ptg_ptype **ch; 1957 struct ice_ptg_ptype *p; 1958 1959 if (ptype > ICE_XLT1_CNT - 1) 1960 return ICE_ERR_PARAM; 1961 1962 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 1963 return ICE_ERR_DOES_NOT_EXIST; 1964 1965 /* Should not happen if .in_use is set, bad config */ 1966 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 1967 return ICE_ERR_CFG; 1968 1969 /* find the ptype within this PTG, and bypass the link over it */ 1970 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1971 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1972 while (p) { 1973 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 1974 *ch = p->next_ptype; 1975 break; 1976 } 1977 1978 ch = &p->next_ptype; 1979 p = p->next_ptype; 1980 } 1981 1982 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 1983 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 1990 * @hw: pointer to the hardware structure 1991 * @blk: HW block 1992 * @ptype: the ptype to add or move 1993 * @ptg: the PTG to add or move the ptype to 1994 * 1995 * This function will either add or move a ptype to a particular PTG depending 1996 * on if the ptype is already part of another group. Note that using a 1997 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 1998 * default PTG. 1999 */ 2000 static enum ice_status 2001 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2002 { 2003 enum ice_status status; 2004 u8 original_ptg; 2005 2006 if (ptype > ICE_XLT1_CNT - 1) 2007 return ICE_ERR_PARAM; 2008 2009 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2010 return ICE_ERR_DOES_NOT_EXIST; 2011 2012 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2013 if (status) 2014 return status; 2015 2016 /* Is ptype already in the correct PTG? */ 2017 if (original_ptg == ptg) 2018 return 0; 2019 2020 /* Remove from original PTG and move back to the default PTG */ 2021 if (original_ptg != ICE_DEFAULT_PTG) 2022 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2023 2024 /* Moving to default PTG? Then we're done with this request */ 2025 if (ptg == ICE_DEFAULT_PTG) 2026 return 0; 2027 2028 /* Add ptype to PTG at beginning of list */ 2029 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2030 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2031 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2032 &hw->blk[blk].xlt1.ptypes[ptype]; 2033 2034 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2035 hw->blk[blk].xlt1.t[ptype] = ptg; 2036 2037 return 0; 2038 } 2039 2040 /* Block / table size info */ 2041 struct ice_blk_size_details { 2042 u16 xlt1; /* # XLT1 entries */ 2043 u16 xlt2; /* # XLT2 entries */ 2044 u16 prof_tcam; /* # profile ID TCAM entries */ 2045 u16 prof_id; /* # profile IDs */ 2046 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2047 u16 prof_redir; /* # profile redirection entries */ 2048 u16 es; /* # extraction sequence entries */ 2049 u16 fvw; /* # field vector words */ 2050 u8 overwrite; /* overwrite existing entries allowed */ 2051 u8 reverse; /* reverse FV order */ 2052 }; 2053 2054 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2055 /** 2056 * Table Definitions 2057 * XLT1 - Number of entries in XLT1 table 2058 * XLT2 - Number of entries in XLT2 table 2059 * TCAM - Number of entries Profile ID TCAM table 2060 * CDID - Control Domain ID of the hardware block 2061 * PRED - Number of entries in the Profile Redirection Table 2062 * FV - Number of entries in the Field Vector 2063 * FVW - Width (in WORDs) of the Field Vector 2064 * OVR - Overwrite existing table entries 2065 * REV - Reverse FV 2066 */ 2067 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2068 /* Overwrite , Reverse FV */ 2069 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2070 false, false }, 2071 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2072 false, false }, 2073 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2074 false, true }, 2075 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2076 true, true }, 2077 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2078 false, false }, 2079 }; 2080 2081 enum ice_sid_all { 2082 ICE_SID_XLT1_OFF = 0, 2083 ICE_SID_XLT2_OFF, 2084 ICE_SID_PR_OFF, 2085 ICE_SID_PR_REDIR_OFF, 2086 ICE_SID_ES_OFF, 2087 ICE_SID_OFF_COUNT, 2088 }; 2089 2090 /* Characteristic handling */ 2091 2092 /** 2093 * ice_match_prop_lst - determine if properties of two lists match 2094 * @list1: first properties list 2095 * @list2: second properties list 2096 * 2097 * Count, cookies and the order must match in order to be considered equivalent. 2098 */ 2099 static bool 2100 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2101 { 2102 struct ice_vsig_prof *tmp1; 2103 struct ice_vsig_prof *tmp2; 2104 u16 chk_count = 0; 2105 u16 count = 0; 2106 2107 /* compare counts */ 2108 list_for_each_entry(tmp1, list1, list) 2109 count++; 2110 list_for_each_entry(tmp2, list2, list) 2111 chk_count++; 2112 if (!count || count != chk_count) 2113 return false; 2114 2115 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2116 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2117 2118 /* profile cookies must compare, and in the exact same order to take 2119 * into account priority 2120 */ 2121 while (count--) { 2122 if (tmp2->profile_cookie != tmp1->profile_cookie) 2123 return false; 2124 2125 tmp1 = list_next_entry(tmp1, list); 2126 tmp2 = list_next_entry(tmp2, list); 2127 } 2128 2129 return true; 2130 } 2131 2132 /* VSIG Management */ 2133 2134 /** 2135 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2136 * @hw: pointer to the hardware structure 2137 * @blk: HW block 2138 * @vsi: VSI of interest 2139 * @vsig: pointer to receive the VSI group 2140 * 2141 * This function will lookup the VSI entry in the XLT2 list and return 2142 * the VSI group its associated with. 2143 */ 2144 static enum ice_status 2145 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2146 { 2147 if (!vsig || vsi >= ICE_MAX_VSI) 2148 return ICE_ERR_PARAM; 2149 2150 /* As long as there's a default or valid VSIG associated with the input 2151 * VSI, the functions returns a success. Any handling of VSIG will be 2152 * done by the following add, update or remove functions. 2153 */ 2154 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2155 2156 return 0; 2157 } 2158 2159 /** 2160 * ice_vsig_alloc_val - allocate a new VSIG by value 2161 * @hw: pointer to the hardware structure 2162 * @blk: HW block 2163 * @vsig: the VSIG to allocate 2164 * 2165 * This function will allocate a given VSIG specified by the VSIG parameter. 2166 */ 2167 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2168 { 2169 u16 idx = vsig & ICE_VSIG_IDX_M; 2170 2171 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2172 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2173 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2174 } 2175 2176 return ICE_VSIG_VALUE(idx, hw->pf_id); 2177 } 2178 2179 /** 2180 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2181 * @hw: pointer to the hardware structure 2182 * @blk: HW block 2183 * 2184 * This function will iterate through the VSIG list and mark the first 2185 * unused entry for the new VSIG entry as used and return that value. 2186 */ 2187 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2188 { 2189 u16 i; 2190 2191 for (i = 1; i < ICE_MAX_VSIGS; i++) 2192 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2193 return ice_vsig_alloc_val(hw, blk, i); 2194 2195 return ICE_DEFAULT_VSIG; 2196 } 2197 2198 /** 2199 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2200 * @hw: pointer to the hardware structure 2201 * @blk: HW block 2202 * @chs: characteristic list 2203 * @vsig: returns the VSIG with the matching profiles, if found 2204 * 2205 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2206 * a group have the same characteristic set. To check if there exists a VSIG 2207 * which has the same characteristics as the input characteristics; this 2208 * function will iterate through the XLT2 list and return the VSIG that has a 2209 * matching configuration. In order to make sure that priorities are accounted 2210 * for, the list must match exactly, including the order in which the 2211 * characteristics are listed. 2212 */ 2213 static enum ice_status 2214 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2215 struct list_head *chs, u16 *vsig) 2216 { 2217 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2218 u16 i; 2219 2220 for (i = 0; i < xlt2->count; i++) 2221 if (xlt2->vsig_tbl[i].in_use && 2222 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2223 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2224 return 0; 2225 } 2226 2227 return ICE_ERR_DOES_NOT_EXIST; 2228 } 2229 2230 /** 2231 * ice_vsig_free - free VSI group 2232 * @hw: pointer to the hardware structure 2233 * @blk: HW block 2234 * @vsig: VSIG to remove 2235 * 2236 * The function will remove all VSIs associated with the input VSIG and move 2237 * them to the DEFAULT_VSIG and mark the VSIG available. 2238 */ 2239 static enum ice_status 2240 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2241 { 2242 struct ice_vsig_prof *dtmp, *del; 2243 struct ice_vsig_vsi *vsi_cur; 2244 u16 idx; 2245 2246 idx = vsig & ICE_VSIG_IDX_M; 2247 if (idx >= ICE_MAX_VSIGS) 2248 return ICE_ERR_PARAM; 2249 2250 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2251 return ICE_ERR_DOES_NOT_EXIST; 2252 2253 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2254 2255 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2256 /* If the VSIG has at least 1 VSI then iterate through the 2257 * list and remove the VSIs before deleting the group. 2258 */ 2259 if (vsi_cur) { 2260 /* remove all vsis associated with this VSIG XLT2 entry */ 2261 do { 2262 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2263 2264 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2265 vsi_cur->changed = 1; 2266 vsi_cur->next_vsi = NULL; 2267 vsi_cur = tmp; 2268 } while (vsi_cur); 2269 2270 /* NULL terminate head of VSI list */ 2271 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2272 } 2273 2274 /* free characteristic list */ 2275 list_for_each_entry_safe(del, dtmp, 2276 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2277 list) { 2278 list_del(&del->list); 2279 devm_kfree(ice_hw_to_dev(hw), del); 2280 } 2281 2282 /* if VSIG characteristic list was cleared for reset 2283 * re-initialize the list head 2284 */ 2285 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2286 2287 return 0; 2288 } 2289 2290 /** 2291 * ice_vsig_remove_vsi - remove VSI from VSIG 2292 * @hw: pointer to the hardware structure 2293 * @blk: HW block 2294 * @vsi: VSI to remove 2295 * @vsig: VSI group to remove from 2296 * 2297 * The function will remove the input VSI from its VSI group and move it 2298 * to the DEFAULT_VSIG. 2299 */ 2300 static enum ice_status 2301 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2302 { 2303 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2304 u16 idx; 2305 2306 idx = vsig & ICE_VSIG_IDX_M; 2307 2308 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2309 return ICE_ERR_PARAM; 2310 2311 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2312 return ICE_ERR_DOES_NOT_EXIST; 2313 2314 /* entry already in default VSIG, don't have to remove */ 2315 if (idx == ICE_DEFAULT_VSIG) 2316 return 0; 2317 2318 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2319 if (!(*vsi_head)) 2320 return ICE_ERR_CFG; 2321 2322 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2323 vsi_cur = (*vsi_head); 2324 2325 /* iterate the VSI list, skip over the entry to be removed */ 2326 while (vsi_cur) { 2327 if (vsi_tgt == vsi_cur) { 2328 (*vsi_head) = vsi_cur->next_vsi; 2329 break; 2330 } 2331 vsi_head = &vsi_cur->next_vsi; 2332 vsi_cur = vsi_cur->next_vsi; 2333 } 2334 2335 /* verify if VSI was removed from group list */ 2336 if (!vsi_cur) 2337 return ICE_ERR_DOES_NOT_EXIST; 2338 2339 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2340 vsi_cur->changed = 1; 2341 vsi_cur->next_vsi = NULL; 2342 2343 return 0; 2344 } 2345 2346 /** 2347 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2348 * @hw: pointer to the hardware structure 2349 * @blk: HW block 2350 * @vsi: VSI to move 2351 * @vsig: destination VSI group 2352 * 2353 * This function will move or add the input VSI to the target VSIG. 2354 * The function will find the original VSIG the VSI belongs to and 2355 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2356 * then move entry to the new VSIG. 2357 */ 2358 static enum ice_status 2359 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2360 { 2361 struct ice_vsig_vsi *tmp; 2362 enum ice_status status; 2363 u16 orig_vsig, idx; 2364 2365 idx = vsig & ICE_VSIG_IDX_M; 2366 2367 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2368 return ICE_ERR_PARAM; 2369 2370 /* if VSIG not in use and VSIG is not default type this VSIG 2371 * doesn't exist. 2372 */ 2373 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2374 vsig != ICE_DEFAULT_VSIG) 2375 return ICE_ERR_DOES_NOT_EXIST; 2376 2377 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2378 if (status) 2379 return status; 2380 2381 /* no update required if vsigs match */ 2382 if (orig_vsig == vsig) 2383 return 0; 2384 2385 if (orig_vsig != ICE_DEFAULT_VSIG) { 2386 /* remove entry from orig_vsig and add to default VSIG */ 2387 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2388 if (status) 2389 return status; 2390 } 2391 2392 if (idx == ICE_DEFAULT_VSIG) 2393 return 0; 2394 2395 /* Create VSI entry and add VSIG and prop_mask values */ 2396 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2397 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2398 2399 /* Add new entry to the head of the VSIG list */ 2400 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2401 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2402 &hw->blk[blk].xlt2.vsis[vsi]; 2403 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2404 hw->blk[blk].xlt2.t[vsi] = vsig; 2405 2406 return 0; 2407 } 2408 2409 /** 2410 * ice_find_prof_id - find profile ID for a given field vector 2411 * @hw: pointer to the hardware structure 2412 * @blk: HW block 2413 * @fv: field vector to search for 2414 * @prof_id: receives the profile ID 2415 */ 2416 static enum ice_status 2417 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 2418 struct ice_fv_word *fv, u8 *prof_id) 2419 { 2420 struct ice_es *es = &hw->blk[blk].es; 2421 u16 off; 2422 u8 i; 2423 2424 /* For FD, we don't want to re-use a existed profile with the same 2425 * field vector and mask. This will cause rule interference. 2426 */ 2427 if (blk == ICE_BLK_FD) 2428 return ICE_ERR_DOES_NOT_EXIST; 2429 2430 for (i = 0; i < (u8)es->count; i++) { 2431 off = i * es->fvw; 2432 2433 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2434 continue; 2435 2436 *prof_id = i; 2437 return 0; 2438 } 2439 2440 return ICE_ERR_DOES_NOT_EXIST; 2441 } 2442 2443 /** 2444 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2445 * @blk: the block type 2446 * @rsrc_type: pointer to variable to receive the resource type 2447 */ 2448 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2449 { 2450 switch (blk) { 2451 case ICE_BLK_FD: 2452 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2453 break; 2454 case ICE_BLK_RSS: 2455 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2456 break; 2457 default: 2458 return false; 2459 } 2460 return true; 2461 } 2462 2463 /** 2464 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2465 * @blk: the block type 2466 * @rsrc_type: pointer to variable to receive the resource type 2467 */ 2468 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2469 { 2470 switch (blk) { 2471 case ICE_BLK_FD: 2472 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2473 break; 2474 case ICE_BLK_RSS: 2475 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2476 break; 2477 default: 2478 return false; 2479 } 2480 return true; 2481 } 2482 2483 /** 2484 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2485 * @hw: pointer to the HW struct 2486 * @blk: the block to allocate the TCAM for 2487 * @tcam_idx: pointer to variable to receive the TCAM entry 2488 * 2489 * This function allocates a new entry in a Profile ID TCAM for a specific 2490 * block. 2491 */ 2492 static enum ice_status 2493 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx) 2494 { 2495 u16 res_type; 2496 2497 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2498 return ICE_ERR_PARAM; 2499 2500 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx); 2501 } 2502 2503 /** 2504 * ice_free_tcam_ent - free hardware TCAM entry 2505 * @hw: pointer to the HW struct 2506 * @blk: the block from which to free the TCAM entry 2507 * @tcam_idx: the TCAM entry to free 2508 * 2509 * This function frees an entry in a Profile ID TCAM for a specific block. 2510 */ 2511 static enum ice_status 2512 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2513 { 2514 u16 res_type; 2515 2516 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2517 return ICE_ERR_PARAM; 2518 2519 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2520 } 2521 2522 /** 2523 * ice_alloc_prof_id - allocate profile ID 2524 * @hw: pointer to the HW struct 2525 * @blk: the block to allocate the profile ID for 2526 * @prof_id: pointer to variable to receive the profile ID 2527 * 2528 * This function allocates a new profile ID, which also corresponds to a Field 2529 * Vector (Extraction Sequence) entry. 2530 */ 2531 static enum ice_status 2532 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2533 { 2534 enum ice_status status; 2535 u16 res_type; 2536 u16 get_prof; 2537 2538 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2539 return ICE_ERR_PARAM; 2540 2541 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2542 if (!status) 2543 *prof_id = (u8)get_prof; 2544 2545 return status; 2546 } 2547 2548 /** 2549 * ice_free_prof_id - free profile ID 2550 * @hw: pointer to the HW struct 2551 * @blk: the block from which to free the profile ID 2552 * @prof_id: the profile ID to free 2553 * 2554 * This function frees a profile ID, which also corresponds to a Field Vector. 2555 */ 2556 static enum ice_status 2557 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2558 { 2559 u16 tmp_prof_id = (u16)prof_id; 2560 u16 res_type; 2561 2562 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2563 return ICE_ERR_PARAM; 2564 2565 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2566 } 2567 2568 /** 2569 * ice_prof_inc_ref - increment reference count for profile 2570 * @hw: pointer to the HW struct 2571 * @blk: the block from which to free the profile ID 2572 * @prof_id: the profile ID for which to increment the reference count 2573 */ 2574 static enum ice_status 2575 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2576 { 2577 if (prof_id > hw->blk[blk].es.count) 2578 return ICE_ERR_PARAM; 2579 2580 hw->blk[blk].es.ref_count[prof_id]++; 2581 2582 return 0; 2583 } 2584 2585 /** 2586 * ice_write_es - write an extraction sequence to hardware 2587 * @hw: pointer to the HW struct 2588 * @blk: the block in which to write the extraction sequence 2589 * @prof_id: the profile ID to write 2590 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 2591 */ 2592 static void 2593 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 2594 struct ice_fv_word *fv) 2595 { 2596 u16 off; 2597 2598 off = prof_id * hw->blk[blk].es.fvw; 2599 if (!fv) { 2600 memset(&hw->blk[blk].es.t[off], 0, 2601 hw->blk[blk].es.fvw * sizeof(*fv)); 2602 hw->blk[blk].es.written[prof_id] = false; 2603 } else { 2604 memcpy(&hw->blk[blk].es.t[off], fv, 2605 hw->blk[blk].es.fvw * sizeof(*fv)); 2606 } 2607 } 2608 2609 /** 2610 * ice_prof_dec_ref - decrement reference count for profile 2611 * @hw: pointer to the HW struct 2612 * @blk: the block from which to free the profile ID 2613 * @prof_id: the profile ID for which to decrement the reference count 2614 */ 2615 static enum ice_status 2616 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2617 { 2618 if (prof_id > hw->blk[blk].es.count) 2619 return ICE_ERR_PARAM; 2620 2621 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 2622 if (!--hw->blk[blk].es.ref_count[prof_id]) { 2623 ice_write_es(hw, blk, prof_id, NULL); 2624 return ice_free_prof_id(hw, blk, prof_id); 2625 } 2626 } 2627 2628 return 0; 2629 } 2630 2631 /* Block / table section IDs */ 2632 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 2633 /* SWITCH */ 2634 { ICE_SID_XLT1_SW, 2635 ICE_SID_XLT2_SW, 2636 ICE_SID_PROFID_TCAM_SW, 2637 ICE_SID_PROFID_REDIR_SW, 2638 ICE_SID_FLD_VEC_SW 2639 }, 2640 2641 /* ACL */ 2642 { ICE_SID_XLT1_ACL, 2643 ICE_SID_XLT2_ACL, 2644 ICE_SID_PROFID_TCAM_ACL, 2645 ICE_SID_PROFID_REDIR_ACL, 2646 ICE_SID_FLD_VEC_ACL 2647 }, 2648 2649 /* FD */ 2650 { ICE_SID_XLT1_FD, 2651 ICE_SID_XLT2_FD, 2652 ICE_SID_PROFID_TCAM_FD, 2653 ICE_SID_PROFID_REDIR_FD, 2654 ICE_SID_FLD_VEC_FD 2655 }, 2656 2657 /* RSS */ 2658 { ICE_SID_XLT1_RSS, 2659 ICE_SID_XLT2_RSS, 2660 ICE_SID_PROFID_TCAM_RSS, 2661 ICE_SID_PROFID_REDIR_RSS, 2662 ICE_SID_FLD_VEC_RSS 2663 }, 2664 2665 /* PE */ 2666 { ICE_SID_XLT1_PE, 2667 ICE_SID_XLT2_PE, 2668 ICE_SID_PROFID_TCAM_PE, 2669 ICE_SID_PROFID_REDIR_PE, 2670 ICE_SID_FLD_VEC_PE 2671 } 2672 }; 2673 2674 /** 2675 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 2676 * @hw: pointer to the hardware structure 2677 * @blk: the HW block to initialize 2678 */ 2679 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 2680 { 2681 u16 pt; 2682 2683 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 2684 u8 ptg; 2685 2686 ptg = hw->blk[blk].xlt1.t[pt]; 2687 if (ptg != ICE_DEFAULT_PTG) { 2688 ice_ptg_alloc_val(hw, blk, ptg); 2689 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 2690 } 2691 } 2692 } 2693 2694 /** 2695 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 2696 * @hw: pointer to the hardware structure 2697 * @blk: the HW block to initialize 2698 */ 2699 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 2700 { 2701 u16 vsi; 2702 2703 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 2704 u16 vsig; 2705 2706 vsig = hw->blk[blk].xlt2.t[vsi]; 2707 if (vsig) { 2708 ice_vsig_alloc_val(hw, blk, vsig); 2709 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 2710 /* no changes at this time, since this has been 2711 * initialized from the original package 2712 */ 2713 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2714 } 2715 } 2716 } 2717 2718 /** 2719 * ice_init_sw_db - init software database from HW tables 2720 * @hw: pointer to the hardware structure 2721 */ 2722 static void ice_init_sw_db(struct ice_hw *hw) 2723 { 2724 u16 i; 2725 2726 for (i = 0; i < ICE_BLK_COUNT; i++) { 2727 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 2728 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 2729 } 2730 } 2731 2732 /** 2733 * ice_fill_tbl - Reads content of a single table type into database 2734 * @hw: pointer to the hardware structure 2735 * @block_id: Block ID of the table to copy 2736 * @sid: Section ID of the table to copy 2737 * 2738 * Will attempt to read the entire content of a given table of a single block 2739 * into the driver database. We assume that the buffer will always 2740 * be as large or larger than the data contained in the package. If 2741 * this condition is not met, there is most likely an error in the package 2742 * contents. 2743 */ 2744 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 2745 { 2746 u32 dst_len, sect_len, offset = 0; 2747 struct ice_prof_redir_section *pr; 2748 struct ice_prof_id_section *pid; 2749 struct ice_xlt1_section *xlt1; 2750 struct ice_xlt2_section *xlt2; 2751 struct ice_sw_fv_section *es; 2752 struct ice_pkg_enum state; 2753 u8 *src, *dst; 2754 void *sect; 2755 2756 /* if the HW segment pointer is null then the first iteration of 2757 * ice_pkg_enum_section() will fail. In this case the HW tables will 2758 * not be filled and return success. 2759 */ 2760 if (!hw->seg) { 2761 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 2762 return; 2763 } 2764 2765 memset(&state, 0, sizeof(state)); 2766 2767 sect = ice_pkg_enum_section(hw->seg, &state, sid); 2768 2769 while (sect) { 2770 switch (sid) { 2771 case ICE_SID_XLT1_SW: 2772 case ICE_SID_XLT1_FD: 2773 case ICE_SID_XLT1_RSS: 2774 case ICE_SID_XLT1_ACL: 2775 case ICE_SID_XLT1_PE: 2776 xlt1 = (struct ice_xlt1_section *)sect; 2777 src = xlt1->value; 2778 sect_len = le16_to_cpu(xlt1->count) * 2779 sizeof(*hw->blk[block_id].xlt1.t); 2780 dst = hw->blk[block_id].xlt1.t; 2781 dst_len = hw->blk[block_id].xlt1.count * 2782 sizeof(*hw->blk[block_id].xlt1.t); 2783 break; 2784 case ICE_SID_XLT2_SW: 2785 case ICE_SID_XLT2_FD: 2786 case ICE_SID_XLT2_RSS: 2787 case ICE_SID_XLT2_ACL: 2788 case ICE_SID_XLT2_PE: 2789 xlt2 = (struct ice_xlt2_section *)sect; 2790 src = (__force u8 *)xlt2->value; 2791 sect_len = le16_to_cpu(xlt2->count) * 2792 sizeof(*hw->blk[block_id].xlt2.t); 2793 dst = (u8 *)hw->blk[block_id].xlt2.t; 2794 dst_len = hw->blk[block_id].xlt2.count * 2795 sizeof(*hw->blk[block_id].xlt2.t); 2796 break; 2797 case ICE_SID_PROFID_TCAM_SW: 2798 case ICE_SID_PROFID_TCAM_FD: 2799 case ICE_SID_PROFID_TCAM_RSS: 2800 case ICE_SID_PROFID_TCAM_ACL: 2801 case ICE_SID_PROFID_TCAM_PE: 2802 pid = (struct ice_prof_id_section *)sect; 2803 src = (u8 *)pid->entry; 2804 sect_len = le16_to_cpu(pid->count) * 2805 sizeof(*hw->blk[block_id].prof.t); 2806 dst = (u8 *)hw->blk[block_id].prof.t; 2807 dst_len = hw->blk[block_id].prof.count * 2808 sizeof(*hw->blk[block_id].prof.t); 2809 break; 2810 case ICE_SID_PROFID_REDIR_SW: 2811 case ICE_SID_PROFID_REDIR_FD: 2812 case ICE_SID_PROFID_REDIR_RSS: 2813 case ICE_SID_PROFID_REDIR_ACL: 2814 case ICE_SID_PROFID_REDIR_PE: 2815 pr = (struct ice_prof_redir_section *)sect; 2816 src = pr->redir_value; 2817 sect_len = le16_to_cpu(pr->count) * 2818 sizeof(*hw->blk[block_id].prof_redir.t); 2819 dst = hw->blk[block_id].prof_redir.t; 2820 dst_len = hw->blk[block_id].prof_redir.count * 2821 sizeof(*hw->blk[block_id].prof_redir.t); 2822 break; 2823 case ICE_SID_FLD_VEC_SW: 2824 case ICE_SID_FLD_VEC_FD: 2825 case ICE_SID_FLD_VEC_RSS: 2826 case ICE_SID_FLD_VEC_ACL: 2827 case ICE_SID_FLD_VEC_PE: 2828 es = (struct ice_sw_fv_section *)sect; 2829 src = (u8 *)es->fv; 2830 sect_len = (u32)(le16_to_cpu(es->count) * 2831 hw->blk[block_id].es.fvw) * 2832 sizeof(*hw->blk[block_id].es.t); 2833 dst = (u8 *)hw->blk[block_id].es.t; 2834 dst_len = (u32)(hw->blk[block_id].es.count * 2835 hw->blk[block_id].es.fvw) * 2836 sizeof(*hw->blk[block_id].es.t); 2837 break; 2838 default: 2839 return; 2840 } 2841 2842 /* if the section offset exceeds destination length, terminate 2843 * table fill. 2844 */ 2845 if (offset > dst_len) 2846 return; 2847 2848 /* if the sum of section size and offset exceed destination size 2849 * then we are out of bounds of the HW table size for that PF. 2850 * Changing section length to fill the remaining table space 2851 * of that PF. 2852 */ 2853 if ((offset + sect_len) > dst_len) 2854 sect_len = dst_len - offset; 2855 2856 memcpy(dst + offset, src, sect_len); 2857 offset += sect_len; 2858 sect = ice_pkg_enum_section(NULL, &state, sid); 2859 } 2860 } 2861 2862 /** 2863 * ice_fill_blk_tbls - Read package context for tables 2864 * @hw: pointer to the hardware structure 2865 * 2866 * Reads the current package contents and populates the driver 2867 * database with the data iteratively for all advanced feature 2868 * blocks. Assume that the HW tables have been allocated. 2869 */ 2870 void ice_fill_blk_tbls(struct ice_hw *hw) 2871 { 2872 u8 i; 2873 2874 for (i = 0; i < ICE_BLK_COUNT; i++) { 2875 enum ice_block blk_id = (enum ice_block)i; 2876 2877 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 2878 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 2879 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 2880 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 2881 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 2882 } 2883 2884 ice_init_sw_db(hw); 2885 } 2886 2887 /** 2888 * ice_free_prof_map - free profile map 2889 * @hw: pointer to the hardware structure 2890 * @blk_idx: HW block index 2891 */ 2892 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 2893 { 2894 struct ice_es *es = &hw->blk[blk_idx].es; 2895 struct ice_prof_map *del, *tmp; 2896 2897 mutex_lock(&es->prof_map_lock); 2898 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 2899 list_del(&del->list); 2900 devm_kfree(ice_hw_to_dev(hw), del); 2901 } 2902 INIT_LIST_HEAD(&es->prof_map); 2903 mutex_unlock(&es->prof_map_lock); 2904 } 2905 2906 /** 2907 * ice_free_flow_profs - free flow profile entries 2908 * @hw: pointer to the hardware structure 2909 * @blk_idx: HW block index 2910 */ 2911 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 2912 { 2913 struct ice_flow_prof *p, *tmp; 2914 2915 mutex_lock(&hw->fl_profs_locks[blk_idx]); 2916 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 2917 struct ice_flow_entry *e, *t; 2918 2919 list_for_each_entry_safe(e, t, &p->entries, l_entry) 2920 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 2921 ICE_FLOW_ENTRY_HNDL(e)); 2922 2923 list_del(&p->l_entry); 2924 devm_kfree(ice_hw_to_dev(hw), p); 2925 } 2926 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 2927 2928 /* if driver is in reset and tables are being cleared 2929 * re-initialize the flow profile list heads 2930 */ 2931 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2932 } 2933 2934 /** 2935 * ice_free_vsig_tbl - free complete VSIG table entries 2936 * @hw: pointer to the hardware structure 2937 * @blk: the HW block on which to free the VSIG table entries 2938 */ 2939 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 2940 { 2941 u16 i; 2942 2943 if (!hw->blk[blk].xlt2.vsig_tbl) 2944 return; 2945 2946 for (i = 1; i < ICE_MAX_VSIGS; i++) 2947 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2948 ice_vsig_free(hw, blk, i); 2949 } 2950 2951 /** 2952 * ice_free_hw_tbls - free hardware table memory 2953 * @hw: pointer to the hardware structure 2954 */ 2955 void ice_free_hw_tbls(struct ice_hw *hw) 2956 { 2957 struct ice_rss_cfg *r, *rt; 2958 u8 i; 2959 2960 for (i = 0; i < ICE_BLK_COUNT; i++) { 2961 if (hw->blk[i].is_list_init) { 2962 struct ice_es *es = &hw->blk[i].es; 2963 2964 ice_free_prof_map(hw, i); 2965 mutex_destroy(&es->prof_map_lock); 2966 2967 ice_free_flow_profs(hw, i); 2968 mutex_destroy(&hw->fl_profs_locks[i]); 2969 2970 hw->blk[i].is_list_init = false; 2971 } 2972 ice_free_vsig_tbl(hw, (enum ice_block)i); 2973 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 2974 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 2975 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 2976 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 2977 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 2978 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 2979 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 2980 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 2981 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 2982 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 2983 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 2984 } 2985 2986 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 2987 list_del(&r->l_entry); 2988 devm_kfree(ice_hw_to_dev(hw), r); 2989 } 2990 mutex_destroy(&hw->rss_locks); 2991 memset(hw->blk, 0, sizeof(hw->blk)); 2992 } 2993 2994 /** 2995 * ice_init_flow_profs - init flow profile locks and list heads 2996 * @hw: pointer to the hardware structure 2997 * @blk_idx: HW block index 2998 */ 2999 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3000 { 3001 mutex_init(&hw->fl_profs_locks[blk_idx]); 3002 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3003 } 3004 3005 /** 3006 * ice_clear_hw_tbls - clear HW tables and flow profiles 3007 * @hw: pointer to the hardware structure 3008 */ 3009 void ice_clear_hw_tbls(struct ice_hw *hw) 3010 { 3011 u8 i; 3012 3013 for (i = 0; i < ICE_BLK_COUNT; i++) { 3014 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3015 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3016 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3017 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3018 struct ice_es *es = &hw->blk[i].es; 3019 3020 if (hw->blk[i].is_list_init) { 3021 ice_free_prof_map(hw, i); 3022 ice_free_flow_profs(hw, i); 3023 } 3024 3025 ice_free_vsig_tbl(hw, (enum ice_block)i); 3026 3027 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3028 memset(xlt1->ptg_tbl, 0, 3029 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3030 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3031 3032 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3033 memset(xlt2->vsig_tbl, 0, 3034 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3035 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3036 3037 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3038 memset(prof_redir->t, 0, 3039 prof_redir->count * sizeof(*prof_redir->t)); 3040 3041 memset(es->t, 0, es->count * sizeof(*es->t)); 3042 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3043 memset(es->written, 0, es->count * sizeof(*es->written)); 3044 } 3045 } 3046 3047 /** 3048 * ice_init_hw_tbls - init hardware table memory 3049 * @hw: pointer to the hardware structure 3050 */ 3051 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3052 { 3053 u8 i; 3054 3055 mutex_init(&hw->rss_locks); 3056 INIT_LIST_HEAD(&hw->rss_list_head); 3057 for (i = 0; i < ICE_BLK_COUNT; i++) { 3058 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3059 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3060 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3061 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3062 struct ice_es *es = &hw->blk[i].es; 3063 u16 j; 3064 3065 if (hw->blk[i].is_list_init) 3066 continue; 3067 3068 ice_init_flow_profs(hw, i); 3069 mutex_init(&es->prof_map_lock); 3070 INIT_LIST_HEAD(&es->prof_map); 3071 hw->blk[i].is_list_init = true; 3072 3073 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3074 es->reverse = blk_sizes[i].reverse; 3075 3076 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3077 xlt1->count = blk_sizes[i].xlt1; 3078 3079 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3080 sizeof(*xlt1->ptypes), GFP_KERNEL); 3081 3082 if (!xlt1->ptypes) 3083 goto err; 3084 3085 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3086 sizeof(*xlt1->ptg_tbl), 3087 GFP_KERNEL); 3088 3089 if (!xlt1->ptg_tbl) 3090 goto err; 3091 3092 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3093 sizeof(*xlt1->t), GFP_KERNEL); 3094 if (!xlt1->t) 3095 goto err; 3096 3097 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3098 xlt2->count = blk_sizes[i].xlt2; 3099 3100 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3101 sizeof(*xlt2->vsis), GFP_KERNEL); 3102 3103 if (!xlt2->vsis) 3104 goto err; 3105 3106 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3107 sizeof(*xlt2->vsig_tbl), 3108 GFP_KERNEL); 3109 if (!xlt2->vsig_tbl) 3110 goto err; 3111 3112 for (j = 0; j < xlt2->count; j++) 3113 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3114 3115 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3116 sizeof(*xlt2->t), GFP_KERNEL); 3117 if (!xlt2->t) 3118 goto err; 3119 3120 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3121 prof->count = blk_sizes[i].prof_tcam; 3122 prof->max_prof_id = blk_sizes[i].prof_id; 3123 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3124 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3125 sizeof(*prof->t), GFP_KERNEL); 3126 3127 if (!prof->t) 3128 goto err; 3129 3130 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3131 prof_redir->count = blk_sizes[i].prof_redir; 3132 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3133 prof_redir->count, 3134 sizeof(*prof_redir->t), 3135 GFP_KERNEL); 3136 3137 if (!prof_redir->t) 3138 goto err; 3139 3140 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3141 es->count = blk_sizes[i].es; 3142 es->fvw = blk_sizes[i].fvw; 3143 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3144 (u32)(es->count * es->fvw), 3145 sizeof(*es->t), GFP_KERNEL); 3146 if (!es->t) 3147 goto err; 3148 3149 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3150 sizeof(*es->ref_count), 3151 GFP_KERNEL); 3152 3153 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3154 sizeof(*es->written), GFP_KERNEL); 3155 if (!es->ref_count) 3156 goto err; 3157 } 3158 return 0; 3159 3160 err: 3161 ice_free_hw_tbls(hw); 3162 return ICE_ERR_NO_MEMORY; 3163 } 3164 3165 /** 3166 * ice_prof_gen_key - generate profile ID key 3167 * @hw: pointer to the HW struct 3168 * @blk: the block in which to write profile ID to 3169 * @ptg: packet type group (PTG) portion of key 3170 * @vsig: VSIG portion of key 3171 * @cdid: CDID portion of key 3172 * @flags: flag portion of key 3173 * @vl_msk: valid mask 3174 * @dc_msk: don't care mask 3175 * @nm_msk: never match mask 3176 * @key: output of profile ID key 3177 */ 3178 static enum ice_status 3179 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3180 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3181 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3182 u8 key[ICE_TCAM_KEY_SZ]) 3183 { 3184 struct ice_prof_id_key inkey; 3185 3186 inkey.xlt1 = ptg; 3187 inkey.xlt2_cdid = cpu_to_le16(vsig); 3188 inkey.flags = cpu_to_le16(flags); 3189 3190 switch (hw->blk[blk].prof.cdid_bits) { 3191 case 0: 3192 break; 3193 case 2: 3194 #define ICE_CD_2_M 0xC000U 3195 #define ICE_CD_2_S 14 3196 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3197 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3198 break; 3199 case 4: 3200 #define ICE_CD_4_M 0xF000U 3201 #define ICE_CD_4_S 12 3202 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3203 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3204 break; 3205 case 8: 3206 #define ICE_CD_8_M 0xFF00U 3207 #define ICE_CD_8_S 16 3208 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3209 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3210 break; 3211 default: 3212 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3213 break; 3214 } 3215 3216 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3217 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3218 } 3219 3220 /** 3221 * ice_tcam_write_entry - write TCAM entry 3222 * @hw: pointer to the HW struct 3223 * @blk: the block in which to write profile ID to 3224 * @idx: the entry index to write to 3225 * @prof_id: profile ID 3226 * @ptg: packet type group (PTG) portion of key 3227 * @vsig: VSIG portion of key 3228 * @cdid: CDID portion of key 3229 * @flags: flag portion of key 3230 * @vl_msk: valid mask 3231 * @dc_msk: don't care mask 3232 * @nm_msk: never match mask 3233 */ 3234 static enum ice_status 3235 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3236 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3237 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3238 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3239 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3240 { 3241 struct ice_prof_tcam_entry; 3242 enum ice_status status; 3243 3244 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3245 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3246 if (!status) { 3247 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3248 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3249 } 3250 3251 return status; 3252 } 3253 3254 /** 3255 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3256 * @hw: pointer to the hardware structure 3257 * @blk: HW block 3258 * @vsig: VSIG to query 3259 * @refs: pointer to variable to receive the reference count 3260 */ 3261 static enum ice_status 3262 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3263 { 3264 u16 idx = vsig & ICE_VSIG_IDX_M; 3265 struct ice_vsig_vsi *ptr; 3266 3267 *refs = 0; 3268 3269 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3270 return ICE_ERR_DOES_NOT_EXIST; 3271 3272 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3273 while (ptr) { 3274 (*refs)++; 3275 ptr = ptr->next_vsi; 3276 } 3277 3278 return 0; 3279 } 3280 3281 /** 3282 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3283 * @hw: pointer to the hardware structure 3284 * @blk: HW block 3285 * @vsig: VSIG to check against 3286 * @hdl: profile handle 3287 */ 3288 static bool 3289 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3290 { 3291 u16 idx = vsig & ICE_VSIG_IDX_M; 3292 struct ice_vsig_prof *ent; 3293 3294 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3295 list) 3296 if (ent->profile_cookie == hdl) 3297 return true; 3298 3299 ice_debug(hw, ICE_DBG_INIT, 3300 "Characteristic list for VSI group %d not found.\n", 3301 vsig); 3302 return false; 3303 } 3304 3305 /** 3306 * ice_prof_bld_es - build profile ID extraction sequence changes 3307 * @hw: pointer to the HW struct 3308 * @blk: hardware block 3309 * @bld: the update package buffer build to add to 3310 * @chgs: the list of changes to make in hardware 3311 */ 3312 static enum ice_status 3313 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3314 struct ice_buf_build *bld, struct list_head *chgs) 3315 { 3316 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3317 struct ice_chs_chg *tmp; 3318 3319 list_for_each_entry(tmp, chgs, list_entry) 3320 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3321 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3322 struct ice_pkg_es *p; 3323 u32 id; 3324 3325 id = ice_sect_id(blk, ICE_VEC_TBL); 3326 p = ice_pkg_buf_alloc_section(bld, id, 3327 struct_size(p, es, 1) + 3328 vec_size - 3329 sizeof(p->es[0])); 3330 3331 if (!p) 3332 return ICE_ERR_MAX_LIMIT; 3333 3334 p->count = cpu_to_le16(1); 3335 p->offset = cpu_to_le16(tmp->prof_id); 3336 3337 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3338 } 3339 3340 return 0; 3341 } 3342 3343 /** 3344 * ice_prof_bld_tcam - build profile ID TCAM changes 3345 * @hw: pointer to the HW struct 3346 * @blk: hardware block 3347 * @bld: the update package buffer build to add to 3348 * @chgs: the list of changes to make in hardware 3349 */ 3350 static enum ice_status 3351 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3352 struct ice_buf_build *bld, struct list_head *chgs) 3353 { 3354 struct ice_chs_chg *tmp; 3355 3356 list_for_each_entry(tmp, chgs, list_entry) 3357 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3358 struct ice_prof_id_section *p; 3359 u32 id; 3360 3361 id = ice_sect_id(blk, ICE_PROF_TCAM); 3362 p = ice_pkg_buf_alloc_section(bld, id, 3363 struct_size(p, entry, 1)); 3364 3365 if (!p) 3366 return ICE_ERR_MAX_LIMIT; 3367 3368 p->count = cpu_to_le16(1); 3369 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 3370 p->entry[0].prof_id = tmp->prof_id; 3371 3372 memcpy(p->entry[0].key, 3373 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 3374 sizeof(hw->blk[blk].prof.t->key)); 3375 } 3376 3377 return 0; 3378 } 3379 3380 /** 3381 * ice_prof_bld_xlt1 - build XLT1 changes 3382 * @blk: hardware block 3383 * @bld: the update package buffer build to add to 3384 * @chgs: the list of changes to make in hardware 3385 */ 3386 static enum ice_status 3387 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 3388 struct list_head *chgs) 3389 { 3390 struct ice_chs_chg *tmp; 3391 3392 list_for_each_entry(tmp, chgs, list_entry) 3393 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 3394 struct ice_xlt1_section *p; 3395 u32 id; 3396 3397 id = ice_sect_id(blk, ICE_XLT1); 3398 p = ice_pkg_buf_alloc_section(bld, id, 3399 struct_size(p, value, 1)); 3400 3401 if (!p) 3402 return ICE_ERR_MAX_LIMIT; 3403 3404 p->count = cpu_to_le16(1); 3405 p->offset = cpu_to_le16(tmp->ptype); 3406 p->value[0] = tmp->ptg; 3407 } 3408 3409 return 0; 3410 } 3411 3412 /** 3413 * ice_prof_bld_xlt2 - build XLT2 changes 3414 * @blk: hardware block 3415 * @bld: the update package buffer build to add to 3416 * @chgs: the list of changes to make in hardware 3417 */ 3418 static enum ice_status 3419 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 3420 struct list_head *chgs) 3421 { 3422 struct ice_chs_chg *tmp; 3423 3424 list_for_each_entry(tmp, chgs, list_entry) { 3425 struct ice_xlt2_section *p; 3426 u32 id; 3427 3428 switch (tmp->type) { 3429 case ICE_VSIG_ADD: 3430 case ICE_VSI_MOVE: 3431 case ICE_VSIG_REM: 3432 id = ice_sect_id(blk, ICE_XLT2); 3433 p = ice_pkg_buf_alloc_section(bld, id, 3434 struct_size(p, value, 1)); 3435 3436 if (!p) 3437 return ICE_ERR_MAX_LIMIT; 3438 3439 p->count = cpu_to_le16(1); 3440 p->offset = cpu_to_le16(tmp->vsi); 3441 p->value[0] = cpu_to_le16(tmp->vsig); 3442 break; 3443 default: 3444 break; 3445 } 3446 } 3447 3448 return 0; 3449 } 3450 3451 /** 3452 * ice_upd_prof_hw - update hardware using the change list 3453 * @hw: pointer to the HW struct 3454 * @blk: hardware block 3455 * @chgs: the list of changes to make in hardware 3456 */ 3457 static enum ice_status 3458 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 3459 struct list_head *chgs) 3460 { 3461 struct ice_buf_build *b; 3462 struct ice_chs_chg *tmp; 3463 enum ice_status status; 3464 u16 pkg_sects; 3465 u16 xlt1 = 0; 3466 u16 xlt2 = 0; 3467 u16 tcam = 0; 3468 u16 es = 0; 3469 u16 sects; 3470 3471 /* count number of sections we need */ 3472 list_for_each_entry(tmp, chgs, list_entry) { 3473 switch (tmp->type) { 3474 case ICE_PTG_ES_ADD: 3475 if (tmp->add_ptg) 3476 xlt1++; 3477 if (tmp->add_prof) 3478 es++; 3479 break; 3480 case ICE_TCAM_ADD: 3481 tcam++; 3482 break; 3483 case ICE_VSIG_ADD: 3484 case ICE_VSI_MOVE: 3485 case ICE_VSIG_REM: 3486 xlt2++; 3487 break; 3488 default: 3489 break; 3490 } 3491 } 3492 sects = xlt1 + xlt2 + tcam + es; 3493 3494 if (!sects) 3495 return 0; 3496 3497 /* Build update package buffer */ 3498 b = ice_pkg_buf_alloc(hw); 3499 if (!b) 3500 return ICE_ERR_NO_MEMORY; 3501 3502 status = ice_pkg_buf_reserve_section(b, sects); 3503 if (status) 3504 goto error_tmp; 3505 3506 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 3507 if (es) { 3508 status = ice_prof_bld_es(hw, blk, b, chgs); 3509 if (status) 3510 goto error_tmp; 3511 } 3512 3513 if (tcam) { 3514 status = ice_prof_bld_tcam(hw, blk, b, chgs); 3515 if (status) 3516 goto error_tmp; 3517 } 3518 3519 if (xlt1) { 3520 status = ice_prof_bld_xlt1(blk, b, chgs); 3521 if (status) 3522 goto error_tmp; 3523 } 3524 3525 if (xlt2) { 3526 status = ice_prof_bld_xlt2(blk, b, chgs); 3527 if (status) 3528 goto error_tmp; 3529 } 3530 3531 /* After package buffer build check if the section count in buffer is 3532 * non-zero and matches the number of sections detected for package 3533 * update. 3534 */ 3535 pkg_sects = ice_pkg_buf_get_active_sections(b); 3536 if (!pkg_sects || pkg_sects != sects) { 3537 status = ICE_ERR_INVAL_SIZE; 3538 goto error_tmp; 3539 } 3540 3541 /* update package */ 3542 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 3543 if (status == ICE_ERR_AQ_ERROR) 3544 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 3545 3546 error_tmp: 3547 ice_pkg_buf_free(hw, b); 3548 return status; 3549 } 3550 3551 /** 3552 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 3553 * @hw: pointer to the HW struct 3554 * @prof_id: profile ID 3555 * @mask_sel: mask select 3556 * 3557 * This function enable any of the masks selected by the mask select parameter 3558 * for the profile specified. 3559 */ 3560 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 3561 { 3562 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 3563 3564 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 3565 GLQF_FDMASK_SEL(prof_id), mask_sel); 3566 } 3567 3568 struct ice_fd_src_dst_pair { 3569 u8 prot_id; 3570 u8 count; 3571 u16 off; 3572 }; 3573 3574 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 3575 /* These are defined in pairs */ 3576 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 3577 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 3578 3579 { ICE_PROT_IPV4_IL, 2, 12 }, 3580 { ICE_PROT_IPV4_IL, 2, 16 }, 3581 3582 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 3583 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 3584 3585 { ICE_PROT_IPV6_IL, 8, 8 }, 3586 { ICE_PROT_IPV6_IL, 8, 24 }, 3587 3588 { ICE_PROT_TCP_IL, 1, 0 }, 3589 { ICE_PROT_TCP_IL, 1, 2 }, 3590 3591 { ICE_PROT_UDP_OF, 1, 0 }, 3592 { ICE_PROT_UDP_OF, 1, 2 }, 3593 3594 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 3595 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 3596 3597 { ICE_PROT_SCTP_IL, 1, 0 }, 3598 { ICE_PROT_SCTP_IL, 1, 2 } 3599 }; 3600 3601 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 3602 3603 /** 3604 * ice_update_fd_swap - set register appropriately for a FD FV extraction 3605 * @hw: pointer to the HW struct 3606 * @prof_id: profile ID 3607 * @es: extraction sequence (length of array is determined by the block) 3608 */ 3609 static enum ice_status 3610 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 3611 { 3612 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3613 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 3614 #define ICE_FD_FV_NOT_FOUND (-2) 3615 s8 first_free = ICE_FD_FV_NOT_FOUND; 3616 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 3617 s8 orig_free, si; 3618 u32 mask_sel = 0; 3619 u8 i, j, k; 3620 3621 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3622 3623 /* This code assumes that the Flow Director field vectors are assigned 3624 * from the end of the FV indexes working towards the zero index, that 3625 * only complete fields will be included and will be consecutive, and 3626 * that there are no gaps between valid indexes. 3627 */ 3628 3629 /* Determine swap fields present */ 3630 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 3631 /* Find the first free entry, assuming right to left population. 3632 * This is where we can start adding additional pairs if needed. 3633 */ 3634 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 3635 ICE_PROT_INVALID) 3636 first_free = i - 1; 3637 3638 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3639 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 3640 es[i].off == ice_fd_pairs[j].off) { 3641 set_bit(j, pair_list); 3642 pair_start[j] = i; 3643 } 3644 } 3645 3646 orig_free = first_free; 3647 3648 /* determine missing swap fields that need to be added */ 3649 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 3650 u8 bit1 = test_bit(i + 1, pair_list); 3651 u8 bit0 = test_bit(i, pair_list); 3652 3653 if (bit0 ^ bit1) { 3654 u8 index; 3655 3656 /* add the appropriate 'paired' entry */ 3657 if (!bit0) 3658 index = i; 3659 else 3660 index = i + 1; 3661 3662 /* check for room */ 3663 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 3664 return ICE_ERR_MAX_LIMIT; 3665 3666 /* place in extraction sequence */ 3667 for (k = 0; k < ice_fd_pairs[index].count; k++) { 3668 es[first_free - k].prot_id = 3669 ice_fd_pairs[index].prot_id; 3670 es[first_free - k].off = 3671 ice_fd_pairs[index].off + (k * 2); 3672 3673 if (k > first_free) 3674 return ICE_ERR_OUT_OF_RANGE; 3675 3676 /* keep track of non-relevant fields */ 3677 mask_sel |= BIT(first_free - k); 3678 } 3679 3680 pair_start[index] = first_free; 3681 first_free -= ice_fd_pairs[index].count; 3682 } 3683 } 3684 3685 /* fill in the swap array */ 3686 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 3687 while (si >= 0) { 3688 u8 indexes_used = 1; 3689 3690 /* assume flat at this index */ 3691 #define ICE_SWAP_VALID 0x80 3692 used[si] = si | ICE_SWAP_VALID; 3693 3694 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 3695 si -= indexes_used; 3696 continue; 3697 } 3698 3699 /* check for a swap location */ 3700 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3701 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 3702 es[si].off == ice_fd_pairs[j].off) { 3703 u8 idx; 3704 3705 /* determine the appropriate matching field */ 3706 idx = j + ((j % 2) ? -1 : 1); 3707 3708 indexes_used = ice_fd_pairs[idx].count; 3709 for (k = 0; k < indexes_used; k++) { 3710 used[si - k] = (pair_start[idx] - k) | 3711 ICE_SWAP_VALID; 3712 } 3713 3714 break; 3715 } 3716 3717 si -= indexes_used; 3718 } 3719 3720 /* for each set of 4 swap and 4 inset indexes, write the appropriate 3721 * register 3722 */ 3723 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 3724 u32 raw_swap = 0; 3725 u32 raw_in = 0; 3726 3727 for (k = 0; k < 4; k++) { 3728 u8 idx; 3729 3730 idx = (j * 4) + k; 3731 if (used[idx] && !(mask_sel & BIT(idx))) { 3732 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 3733 #define ICE_INSET_DFLT 0x9f 3734 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 3735 } 3736 } 3737 3738 /* write the appropriate swap register set */ 3739 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 3740 3741 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 3742 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 3743 3744 /* write the appropriate inset register set */ 3745 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 3746 3747 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 3748 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 3749 } 3750 3751 /* initially clear the mask select for this profile */ 3752 ice_update_fd_mask(hw, prof_id, 0); 3753 3754 return 0; 3755 } 3756 3757 /** 3758 * ice_add_prof - add profile 3759 * @hw: pointer to the HW struct 3760 * @blk: hardware block 3761 * @id: profile tracking ID 3762 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 3763 * @es: extraction sequence (length of array is determined by the block) 3764 * 3765 * This function registers a profile, which matches a set of PTGs with a 3766 * particular extraction sequence. While the hardware profile is allocated 3767 * it will not be written until the first call to ice_add_flow that specifies 3768 * the ID value used here. 3769 */ 3770 enum ice_status 3771 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 3772 struct ice_fv_word *es) 3773 { 3774 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 3775 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3776 struct ice_prof_map *prof; 3777 enum ice_status status; 3778 u8 byte = 0; 3779 u8 prof_id; 3780 3781 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3782 3783 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3784 3785 /* search for existing profile */ 3786 status = ice_find_prof_id(hw, blk, es, &prof_id); 3787 if (status) { 3788 /* allocate profile ID */ 3789 status = ice_alloc_prof_id(hw, blk, &prof_id); 3790 if (status) 3791 goto err_ice_add_prof; 3792 if (blk == ICE_BLK_FD) { 3793 /* For Flow Director block, the extraction sequence may 3794 * need to be altered in the case where there are paired 3795 * fields that have no match. This is necessary because 3796 * for Flow Director, src and dest fields need to paired 3797 * for filter programming and these values are swapped 3798 * during Tx. 3799 */ 3800 status = ice_update_fd_swap(hw, prof_id, es); 3801 if (status) 3802 goto err_ice_add_prof; 3803 } 3804 3805 /* and write new es */ 3806 ice_write_es(hw, blk, prof_id, es); 3807 } 3808 3809 ice_prof_inc_ref(hw, blk, prof_id); 3810 3811 /* add profile info */ 3812 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 3813 if (!prof) { 3814 status = ICE_ERR_NO_MEMORY; 3815 goto err_ice_add_prof; 3816 } 3817 3818 prof->profile_cookie = id; 3819 prof->prof_id = prof_id; 3820 prof->ptg_cnt = 0; 3821 prof->context = 0; 3822 3823 /* build list of ptgs */ 3824 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 3825 u8 bit; 3826 3827 if (!ptypes[byte]) { 3828 bytes--; 3829 byte++; 3830 continue; 3831 } 3832 3833 /* Examine 8 bits per byte */ 3834 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 3835 BITS_PER_BYTE) { 3836 u16 ptype; 3837 u8 ptg; 3838 u8 m; 3839 3840 ptype = byte * BITS_PER_BYTE + bit; 3841 3842 /* The package should place all ptypes in a non-zero 3843 * PTG, so the following call should never fail. 3844 */ 3845 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 3846 continue; 3847 3848 /* If PTG is already added, skip and continue */ 3849 if (test_bit(ptg, ptgs_used)) 3850 continue; 3851 3852 set_bit(ptg, ptgs_used); 3853 prof->ptg[prof->ptg_cnt] = ptg; 3854 3855 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 3856 break; 3857 3858 /* nothing left in byte, then exit */ 3859 m = ~(u8)((1 << (bit + 1)) - 1); 3860 if (!(ptypes[byte] & m)) 3861 break; 3862 } 3863 3864 bytes--; 3865 byte++; 3866 } 3867 3868 list_add(&prof->list, &hw->blk[blk].es.prof_map); 3869 status = 0; 3870 3871 err_ice_add_prof: 3872 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3873 return status; 3874 } 3875 3876 /** 3877 * ice_search_prof_id_low - Search for a profile tracking ID low level 3878 * @hw: pointer to the HW struct 3879 * @blk: hardware block 3880 * @id: profile tracking ID 3881 * 3882 * This will search for a profile tracking ID which was previously added. This 3883 * version assumes that the caller has already acquired the prof map lock. 3884 */ 3885 static struct ice_prof_map * 3886 ice_search_prof_id_low(struct ice_hw *hw, enum ice_block blk, u64 id) 3887 { 3888 struct ice_prof_map *entry = NULL; 3889 struct ice_prof_map *map; 3890 3891 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 3892 if (map->profile_cookie == id) { 3893 entry = map; 3894 break; 3895 } 3896 3897 return entry; 3898 } 3899 3900 /** 3901 * ice_search_prof_id - Search for a profile tracking ID 3902 * @hw: pointer to the HW struct 3903 * @blk: hardware block 3904 * @id: profile tracking ID 3905 * 3906 * This will search for a profile tracking ID which was previously added. 3907 */ 3908 static struct ice_prof_map * 3909 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 3910 { 3911 struct ice_prof_map *entry; 3912 3913 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3914 entry = ice_search_prof_id_low(hw, blk, id); 3915 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3916 3917 return entry; 3918 } 3919 3920 /** 3921 * ice_vsig_prof_id_count - count profiles in a VSIG 3922 * @hw: pointer to the HW struct 3923 * @blk: hardware block 3924 * @vsig: VSIG to remove the profile from 3925 */ 3926 static u16 3927 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3928 { 3929 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 3930 struct ice_vsig_prof *p; 3931 3932 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3933 list) 3934 count++; 3935 3936 return count; 3937 } 3938 3939 /** 3940 * ice_rel_tcam_idx - release a TCAM index 3941 * @hw: pointer to the HW struct 3942 * @blk: hardware block 3943 * @idx: the index to release 3944 */ 3945 static enum ice_status 3946 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 3947 { 3948 /* Masks to invoke a never match entry */ 3949 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3950 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 3951 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 3952 enum ice_status status; 3953 3954 /* write the TCAM entry */ 3955 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 3956 dc_msk, nm_msk); 3957 if (status) 3958 return status; 3959 3960 /* release the TCAM entry */ 3961 status = ice_free_tcam_ent(hw, blk, idx); 3962 3963 return status; 3964 } 3965 3966 /** 3967 * ice_rem_prof_id - remove one profile from a VSIG 3968 * @hw: pointer to the HW struct 3969 * @blk: hardware block 3970 * @prof: pointer to profile structure to remove 3971 */ 3972 static enum ice_status 3973 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 3974 struct ice_vsig_prof *prof) 3975 { 3976 enum ice_status status; 3977 u16 i; 3978 3979 for (i = 0; i < prof->tcam_count; i++) 3980 if (prof->tcam[i].in_use) { 3981 prof->tcam[i].in_use = false; 3982 status = ice_rel_tcam_idx(hw, blk, 3983 prof->tcam[i].tcam_idx); 3984 if (status) 3985 return ICE_ERR_HW_TABLE; 3986 } 3987 3988 return 0; 3989 } 3990 3991 /** 3992 * ice_rem_vsig - remove VSIG 3993 * @hw: pointer to the HW struct 3994 * @blk: hardware block 3995 * @vsig: the VSIG to remove 3996 * @chg: the change list 3997 */ 3998 static enum ice_status 3999 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4000 struct list_head *chg) 4001 { 4002 u16 idx = vsig & ICE_VSIG_IDX_M; 4003 struct ice_vsig_vsi *vsi_cur; 4004 struct ice_vsig_prof *d, *t; 4005 enum ice_status status; 4006 4007 /* remove TCAM entries */ 4008 list_for_each_entry_safe(d, t, 4009 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4010 list) { 4011 status = ice_rem_prof_id(hw, blk, d); 4012 if (status) 4013 return status; 4014 4015 list_del(&d->list); 4016 devm_kfree(ice_hw_to_dev(hw), d); 4017 } 4018 4019 /* Move all VSIS associated with this VSIG to the default VSIG */ 4020 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4021 /* If the VSIG has at least 1 VSI then iterate through the list 4022 * and remove the VSIs before deleting the group. 4023 */ 4024 if (vsi_cur) 4025 do { 4026 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4027 struct ice_chs_chg *p; 4028 4029 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4030 GFP_KERNEL); 4031 if (!p) 4032 return ICE_ERR_NO_MEMORY; 4033 4034 p->type = ICE_VSIG_REM; 4035 p->orig_vsig = vsig; 4036 p->vsig = ICE_DEFAULT_VSIG; 4037 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4038 4039 list_add(&p->list_entry, chg); 4040 4041 vsi_cur = tmp; 4042 } while (vsi_cur); 4043 4044 return ice_vsig_free(hw, blk, vsig); 4045 } 4046 4047 /** 4048 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4049 * @hw: pointer to the HW struct 4050 * @blk: hardware block 4051 * @vsig: VSIG to remove the profile from 4052 * @hdl: profile handle indicating which profile to remove 4053 * @chg: list to receive a record of changes 4054 */ 4055 static enum ice_status 4056 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4057 struct list_head *chg) 4058 { 4059 u16 idx = vsig & ICE_VSIG_IDX_M; 4060 struct ice_vsig_prof *p, *t; 4061 enum ice_status status; 4062 4063 list_for_each_entry_safe(p, t, 4064 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4065 list) 4066 if (p->profile_cookie == hdl) { 4067 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4068 /* this is the last profile, remove the VSIG */ 4069 return ice_rem_vsig(hw, blk, vsig, chg); 4070 4071 status = ice_rem_prof_id(hw, blk, p); 4072 if (!status) { 4073 list_del(&p->list); 4074 devm_kfree(ice_hw_to_dev(hw), p); 4075 } 4076 return status; 4077 } 4078 4079 return ICE_ERR_DOES_NOT_EXIST; 4080 } 4081 4082 /** 4083 * ice_rem_flow_all - remove all flows with a particular profile 4084 * @hw: pointer to the HW struct 4085 * @blk: hardware block 4086 * @id: profile tracking ID 4087 */ 4088 static enum ice_status 4089 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4090 { 4091 struct ice_chs_chg *del, *tmp; 4092 enum ice_status status; 4093 struct list_head chg; 4094 u16 i; 4095 4096 INIT_LIST_HEAD(&chg); 4097 4098 for (i = 1; i < ICE_MAX_VSIGS; i++) 4099 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4100 if (ice_has_prof_vsig(hw, blk, i, id)) { 4101 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4102 &chg); 4103 if (status) 4104 goto err_ice_rem_flow_all; 4105 } 4106 } 4107 4108 status = ice_upd_prof_hw(hw, blk, &chg); 4109 4110 err_ice_rem_flow_all: 4111 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4112 list_del(&del->list_entry); 4113 devm_kfree(ice_hw_to_dev(hw), del); 4114 } 4115 4116 return status; 4117 } 4118 4119 /** 4120 * ice_rem_prof - remove profile 4121 * @hw: pointer to the HW struct 4122 * @blk: hardware block 4123 * @id: profile tracking ID 4124 * 4125 * This will remove the profile specified by the ID parameter, which was 4126 * previously created through ice_add_prof. If any existing entries 4127 * are associated with this profile, they will be removed as well. 4128 */ 4129 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4130 { 4131 struct ice_prof_map *pmap; 4132 enum ice_status status; 4133 4134 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4135 4136 pmap = ice_search_prof_id_low(hw, blk, id); 4137 if (!pmap) { 4138 status = ICE_ERR_DOES_NOT_EXIST; 4139 goto err_ice_rem_prof; 4140 } 4141 4142 /* remove all flows with this profile */ 4143 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4144 if (status) 4145 goto err_ice_rem_prof; 4146 4147 /* dereference profile, and possibly remove */ 4148 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4149 4150 list_del(&pmap->list); 4151 devm_kfree(ice_hw_to_dev(hw), pmap); 4152 4153 err_ice_rem_prof: 4154 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4155 return status; 4156 } 4157 4158 /** 4159 * ice_get_prof - get profile 4160 * @hw: pointer to the HW struct 4161 * @blk: hardware block 4162 * @hdl: profile handle 4163 * @chg: change list 4164 */ 4165 static enum ice_status 4166 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4167 struct list_head *chg) 4168 { 4169 struct ice_prof_map *map; 4170 struct ice_chs_chg *p; 4171 u16 i; 4172 4173 /* Get the details on the profile specified by the handle ID */ 4174 map = ice_search_prof_id(hw, blk, hdl); 4175 if (!map) 4176 return ICE_ERR_DOES_NOT_EXIST; 4177 4178 for (i = 0; i < map->ptg_cnt; i++) 4179 if (!hw->blk[blk].es.written[map->prof_id]) { 4180 /* add ES to change list */ 4181 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4182 GFP_KERNEL); 4183 if (!p) 4184 goto err_ice_get_prof; 4185 4186 p->type = ICE_PTG_ES_ADD; 4187 p->ptype = 0; 4188 p->ptg = map->ptg[i]; 4189 p->add_ptg = 0; 4190 4191 p->add_prof = 1; 4192 p->prof_id = map->prof_id; 4193 4194 hw->blk[blk].es.written[map->prof_id] = true; 4195 4196 list_add(&p->list_entry, chg); 4197 } 4198 4199 return 0; 4200 4201 err_ice_get_prof: 4202 /* let caller clean up the change list */ 4203 return ICE_ERR_NO_MEMORY; 4204 } 4205 4206 /** 4207 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4208 * @hw: pointer to the HW struct 4209 * @blk: hardware block 4210 * @vsig: VSIG from which to copy the list 4211 * @lst: output list 4212 * 4213 * This routine makes a copy of the list of profiles in the specified VSIG. 4214 */ 4215 static enum ice_status 4216 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4217 struct list_head *lst) 4218 { 4219 struct ice_vsig_prof *ent1, *ent2; 4220 u16 idx = vsig & ICE_VSIG_IDX_M; 4221 4222 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4223 list) { 4224 struct ice_vsig_prof *p; 4225 4226 /* copy to the input list */ 4227 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4228 GFP_KERNEL); 4229 if (!p) 4230 goto err_ice_get_profs_vsig; 4231 4232 list_add_tail(&p->list, lst); 4233 } 4234 4235 return 0; 4236 4237 err_ice_get_profs_vsig: 4238 list_for_each_entry_safe(ent1, ent2, lst, list) { 4239 list_del(&ent1->list); 4240 devm_kfree(ice_hw_to_dev(hw), ent1); 4241 } 4242 4243 return ICE_ERR_NO_MEMORY; 4244 } 4245 4246 /** 4247 * ice_add_prof_to_lst - add profile entry to a list 4248 * @hw: pointer to the HW struct 4249 * @blk: hardware block 4250 * @lst: the list to be added to 4251 * @hdl: profile handle of entry to add 4252 */ 4253 static enum ice_status 4254 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4255 struct list_head *lst, u64 hdl) 4256 { 4257 struct ice_prof_map *map; 4258 struct ice_vsig_prof *p; 4259 u16 i; 4260 4261 map = ice_search_prof_id(hw, blk, hdl); 4262 if (!map) 4263 return ICE_ERR_DOES_NOT_EXIST; 4264 4265 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4266 if (!p) 4267 return ICE_ERR_NO_MEMORY; 4268 4269 p->profile_cookie = map->profile_cookie; 4270 p->prof_id = map->prof_id; 4271 p->tcam_count = map->ptg_cnt; 4272 4273 for (i = 0; i < map->ptg_cnt; i++) { 4274 p->tcam[i].prof_id = map->prof_id; 4275 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4276 p->tcam[i].ptg = map->ptg[i]; 4277 } 4278 4279 list_add(&p->list, lst); 4280 4281 return 0; 4282 } 4283 4284 /** 4285 * ice_move_vsi - move VSI to another VSIG 4286 * @hw: pointer to the HW struct 4287 * @blk: hardware block 4288 * @vsi: the VSI to move 4289 * @vsig: the VSIG to move the VSI to 4290 * @chg: the change list 4291 */ 4292 static enum ice_status 4293 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4294 struct list_head *chg) 4295 { 4296 enum ice_status status; 4297 struct ice_chs_chg *p; 4298 u16 orig_vsig; 4299 4300 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4301 if (!p) 4302 return ICE_ERR_NO_MEMORY; 4303 4304 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4305 if (!status) 4306 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4307 4308 if (status) { 4309 devm_kfree(ice_hw_to_dev(hw), p); 4310 return status; 4311 } 4312 4313 p->type = ICE_VSI_MOVE; 4314 p->vsi = vsi; 4315 p->orig_vsig = orig_vsig; 4316 p->vsig = vsig; 4317 4318 list_add(&p->list_entry, chg); 4319 4320 return 0; 4321 } 4322 4323 /** 4324 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4325 * @hw: pointer to the HW struct 4326 * @idx: the index of the TCAM entry to remove 4327 * @chg: the list of change structures to search 4328 */ 4329 static void 4330 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 4331 { 4332 struct ice_chs_chg *pos, *tmp; 4333 4334 list_for_each_entry_safe(tmp, pos, chg, list_entry) 4335 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4336 list_del(&tmp->list_entry); 4337 devm_kfree(ice_hw_to_dev(hw), tmp); 4338 } 4339 } 4340 4341 /** 4342 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4343 * @hw: pointer to the HW struct 4344 * @blk: hardware block 4345 * @enable: true to enable, false to disable 4346 * @vsig: the VSIG of the TCAM entry 4347 * @tcam: pointer the TCAM info structure of the TCAM to disable 4348 * @chg: the change list 4349 * 4350 * This function appends an enable or disable TCAM entry in the change log 4351 */ 4352 static enum ice_status 4353 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4354 u16 vsig, struct ice_tcam_inf *tcam, 4355 struct list_head *chg) 4356 { 4357 enum ice_status status; 4358 struct ice_chs_chg *p; 4359 4360 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4361 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4362 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4363 4364 /* if disabling, free the TCAM */ 4365 if (!enable) { 4366 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4367 4368 /* if we have already created a change for this TCAM entry, then 4369 * we need to remove that entry, in order to prevent writing to 4370 * a TCAM entry we no longer will have ownership of. 4371 */ 4372 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4373 tcam->tcam_idx = 0; 4374 tcam->in_use = 0; 4375 return status; 4376 } 4377 4378 /* for re-enabling, reallocate a TCAM */ 4379 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx); 4380 if (status) 4381 return status; 4382 4383 /* add TCAM to change list */ 4384 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4385 if (!p) 4386 return ICE_ERR_NO_MEMORY; 4387 4388 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4389 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4390 nm_msk); 4391 if (status) 4392 goto err_ice_prof_tcam_ena_dis; 4393 4394 tcam->in_use = 1; 4395 4396 p->type = ICE_TCAM_ADD; 4397 p->add_tcam_idx = true; 4398 p->prof_id = tcam->prof_id; 4399 p->ptg = tcam->ptg; 4400 p->vsig = 0; 4401 p->tcam_idx = tcam->tcam_idx; 4402 4403 /* log change */ 4404 list_add(&p->list_entry, chg); 4405 4406 return 0; 4407 4408 err_ice_prof_tcam_ena_dis: 4409 devm_kfree(ice_hw_to_dev(hw), p); 4410 return status; 4411 } 4412 4413 /** 4414 * ice_adj_prof_priorities - adjust profile based on priorities 4415 * @hw: pointer to the HW struct 4416 * @blk: hardware block 4417 * @vsig: the VSIG for which to adjust profile priorities 4418 * @chg: the change list 4419 */ 4420 static enum ice_status 4421 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4422 struct list_head *chg) 4423 { 4424 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4425 struct ice_vsig_prof *t; 4426 enum ice_status status; 4427 u16 idx; 4428 4429 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4430 idx = vsig & ICE_VSIG_IDX_M; 4431 4432 /* Priority is based on the order in which the profiles are added. The 4433 * newest added profile has highest priority and the oldest added 4434 * profile has the lowest priority. Since the profile property list for 4435 * a VSIG is sorted from newest to oldest, this code traverses the list 4436 * in order and enables the first of each PTG that it finds (that is not 4437 * already enabled); it also disables any duplicate PTGs that it finds 4438 * in the older profiles (that are currently enabled). 4439 */ 4440 4441 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4442 list) { 4443 u16 i; 4444 4445 for (i = 0; i < t->tcam_count; i++) { 4446 /* Scan the priorities from newest to oldest. 4447 * Make sure that the newest profiles take priority. 4448 */ 4449 if (test_bit(t->tcam[i].ptg, ptgs_used) && 4450 t->tcam[i].in_use) { 4451 /* need to mark this PTG as never match, as it 4452 * was already in use and therefore duplicate 4453 * (and lower priority) 4454 */ 4455 status = ice_prof_tcam_ena_dis(hw, blk, false, 4456 vsig, 4457 &t->tcam[i], 4458 chg); 4459 if (status) 4460 return status; 4461 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 4462 !t->tcam[i].in_use) { 4463 /* need to enable this PTG, as it in not in use 4464 * and not enabled (highest priority) 4465 */ 4466 status = ice_prof_tcam_ena_dis(hw, blk, true, 4467 vsig, 4468 &t->tcam[i], 4469 chg); 4470 if (status) 4471 return status; 4472 } 4473 4474 /* keep track of used ptgs */ 4475 set_bit(t->tcam[i].ptg, ptgs_used); 4476 } 4477 } 4478 4479 return 0; 4480 } 4481 4482 /** 4483 * ice_add_prof_id_vsig - add profile to VSIG 4484 * @hw: pointer to the HW struct 4485 * @blk: hardware block 4486 * @vsig: the VSIG to which this profile is to be added 4487 * @hdl: the profile handle indicating the profile to add 4488 * @rev: true to add entries to the end of the list 4489 * @chg: the change list 4490 */ 4491 static enum ice_status 4492 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4493 bool rev, struct list_head *chg) 4494 { 4495 /* Masks that ignore flags */ 4496 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4497 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4498 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4499 struct ice_prof_map *map; 4500 struct ice_vsig_prof *t; 4501 struct ice_chs_chg *p; 4502 u16 vsig_idx, i; 4503 4504 /* Get the details on the profile specified by the handle ID */ 4505 map = ice_search_prof_id(hw, blk, hdl); 4506 if (!map) 4507 return ICE_ERR_DOES_NOT_EXIST; 4508 4509 /* Error, if this VSIG already has this profile */ 4510 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 4511 return ICE_ERR_ALREADY_EXISTS; 4512 4513 /* new VSIG profile structure */ 4514 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 4515 if (!t) 4516 return ICE_ERR_NO_MEMORY; 4517 4518 t->profile_cookie = map->profile_cookie; 4519 t->prof_id = map->prof_id; 4520 t->tcam_count = map->ptg_cnt; 4521 4522 /* create TCAM entries */ 4523 for (i = 0; i < map->ptg_cnt; i++) { 4524 enum ice_status status; 4525 u16 tcam_idx; 4526 4527 /* add TCAM to change list */ 4528 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4529 if (!p) 4530 goto err_ice_add_prof_id_vsig; 4531 4532 /* allocate the TCAM entry index */ 4533 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx); 4534 if (status) { 4535 devm_kfree(ice_hw_to_dev(hw), p); 4536 goto err_ice_add_prof_id_vsig; 4537 } 4538 4539 t->tcam[i].ptg = map->ptg[i]; 4540 t->tcam[i].prof_id = map->prof_id; 4541 t->tcam[i].tcam_idx = tcam_idx; 4542 t->tcam[i].in_use = true; 4543 4544 p->type = ICE_TCAM_ADD; 4545 p->add_tcam_idx = true; 4546 p->prof_id = t->tcam[i].prof_id; 4547 p->ptg = t->tcam[i].ptg; 4548 p->vsig = vsig; 4549 p->tcam_idx = t->tcam[i].tcam_idx; 4550 4551 /* write the TCAM entry */ 4552 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 4553 t->tcam[i].prof_id, 4554 t->tcam[i].ptg, vsig, 0, 0, 4555 vl_msk, dc_msk, nm_msk); 4556 if (status) { 4557 devm_kfree(ice_hw_to_dev(hw), p); 4558 goto err_ice_add_prof_id_vsig; 4559 } 4560 4561 /* log change */ 4562 list_add(&p->list_entry, chg); 4563 } 4564 4565 /* add profile to VSIG */ 4566 vsig_idx = vsig & ICE_VSIG_IDX_M; 4567 if (rev) 4568 list_add_tail(&t->list, 4569 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4570 else 4571 list_add(&t->list, 4572 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4573 4574 return 0; 4575 4576 err_ice_add_prof_id_vsig: 4577 /* let caller clean up the change list */ 4578 devm_kfree(ice_hw_to_dev(hw), t); 4579 return ICE_ERR_NO_MEMORY; 4580 } 4581 4582 /** 4583 * ice_create_prof_id_vsig - add a new VSIG with a single profile 4584 * @hw: pointer to the HW struct 4585 * @blk: hardware block 4586 * @vsi: the initial VSI that will be in VSIG 4587 * @hdl: the profile handle of the profile that will be added to the VSIG 4588 * @chg: the change list 4589 */ 4590 static enum ice_status 4591 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 4592 struct list_head *chg) 4593 { 4594 enum ice_status status; 4595 struct ice_chs_chg *p; 4596 u16 new_vsig; 4597 4598 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4599 if (!p) 4600 return ICE_ERR_NO_MEMORY; 4601 4602 new_vsig = ice_vsig_alloc(hw, blk); 4603 if (!new_vsig) { 4604 status = ICE_ERR_HW_TABLE; 4605 goto err_ice_create_prof_id_vsig; 4606 } 4607 4608 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 4609 if (status) 4610 goto err_ice_create_prof_id_vsig; 4611 4612 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 4613 if (status) 4614 goto err_ice_create_prof_id_vsig; 4615 4616 p->type = ICE_VSIG_ADD; 4617 p->vsi = vsi; 4618 p->orig_vsig = ICE_DEFAULT_VSIG; 4619 p->vsig = new_vsig; 4620 4621 list_add(&p->list_entry, chg); 4622 4623 return 0; 4624 4625 err_ice_create_prof_id_vsig: 4626 /* let caller clean up the change list */ 4627 devm_kfree(ice_hw_to_dev(hw), p); 4628 return status; 4629 } 4630 4631 /** 4632 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 4633 * @hw: pointer to the HW struct 4634 * @blk: hardware block 4635 * @vsi: the initial VSI that will be in VSIG 4636 * @lst: the list of profile that will be added to the VSIG 4637 * @new_vsig: return of new VSIG 4638 * @chg: the change list 4639 */ 4640 static enum ice_status 4641 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 4642 struct list_head *lst, u16 *new_vsig, 4643 struct list_head *chg) 4644 { 4645 struct ice_vsig_prof *t; 4646 enum ice_status status; 4647 u16 vsig; 4648 4649 vsig = ice_vsig_alloc(hw, blk); 4650 if (!vsig) 4651 return ICE_ERR_HW_TABLE; 4652 4653 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 4654 if (status) 4655 return status; 4656 4657 list_for_each_entry(t, lst, list) { 4658 /* Reverse the order here since we are copying the list */ 4659 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 4660 true, chg); 4661 if (status) 4662 return status; 4663 } 4664 4665 *new_vsig = vsig; 4666 4667 return 0; 4668 } 4669 4670 /** 4671 * ice_find_prof_vsig - find a VSIG with a specific profile handle 4672 * @hw: pointer to the HW struct 4673 * @blk: hardware block 4674 * @hdl: the profile handle of the profile to search for 4675 * @vsig: returns the VSIG with the matching profile 4676 */ 4677 static bool 4678 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 4679 { 4680 struct ice_vsig_prof *t; 4681 enum ice_status status; 4682 struct list_head lst; 4683 4684 INIT_LIST_HEAD(&lst); 4685 4686 t = kzalloc(sizeof(*t), GFP_KERNEL); 4687 if (!t) 4688 return false; 4689 4690 t->profile_cookie = hdl; 4691 list_add(&t->list, &lst); 4692 4693 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 4694 4695 list_del(&t->list); 4696 kfree(t); 4697 4698 return !status; 4699 } 4700 4701 /** 4702 * ice_add_prof_id_flow - add profile flow 4703 * @hw: pointer to the HW struct 4704 * @blk: hardware block 4705 * @vsi: the VSI to enable with the profile specified by ID 4706 * @hdl: profile handle 4707 * 4708 * Calling this function will update the hardware tables to enable the 4709 * profile indicated by the ID parameter for the VSIs specified in the VSI 4710 * array. Once successfully called, the flow will be enabled. 4711 */ 4712 enum ice_status 4713 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4714 { 4715 struct ice_vsig_prof *tmp1, *del1; 4716 struct ice_chs_chg *tmp, *del; 4717 struct list_head union_lst; 4718 enum ice_status status; 4719 struct list_head chg; 4720 u16 vsig; 4721 4722 INIT_LIST_HEAD(&union_lst); 4723 INIT_LIST_HEAD(&chg); 4724 4725 /* Get profile */ 4726 status = ice_get_prof(hw, blk, hdl, &chg); 4727 if (status) 4728 return status; 4729 4730 /* determine if VSI is already part of a VSIG */ 4731 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4732 if (!status && vsig) { 4733 bool only_vsi; 4734 u16 or_vsig; 4735 u16 ref; 4736 4737 /* found in VSIG */ 4738 or_vsig = vsig; 4739 4740 /* make sure that there is no overlap/conflict between the new 4741 * characteristics and the existing ones; we don't support that 4742 * scenario 4743 */ 4744 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 4745 status = ICE_ERR_ALREADY_EXISTS; 4746 goto err_ice_add_prof_id_flow; 4747 } 4748 4749 /* last VSI in the VSIG? */ 4750 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4751 if (status) 4752 goto err_ice_add_prof_id_flow; 4753 only_vsi = (ref == 1); 4754 4755 /* create a union of the current profiles and the one being 4756 * added 4757 */ 4758 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 4759 if (status) 4760 goto err_ice_add_prof_id_flow; 4761 4762 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 4763 if (status) 4764 goto err_ice_add_prof_id_flow; 4765 4766 /* search for an existing VSIG with an exact charc match */ 4767 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 4768 if (!status) { 4769 /* move VSI to the VSIG that matches */ 4770 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4771 if (status) 4772 goto err_ice_add_prof_id_flow; 4773 4774 /* VSI has been moved out of or_vsig. If the or_vsig had 4775 * only that VSI it is now empty and can be removed. 4776 */ 4777 if (only_vsi) { 4778 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 4779 if (status) 4780 goto err_ice_add_prof_id_flow; 4781 } 4782 } else if (only_vsi) { 4783 /* If the original VSIG only contains one VSI, then it 4784 * will be the requesting VSI. In this case the VSI is 4785 * not sharing entries and we can simply add the new 4786 * profile to the VSIG. 4787 */ 4788 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 4789 &chg); 4790 if (status) 4791 goto err_ice_add_prof_id_flow; 4792 4793 /* Adjust priorities */ 4794 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4795 if (status) 4796 goto err_ice_add_prof_id_flow; 4797 } else { 4798 /* No match, so we need a new VSIG */ 4799 status = ice_create_vsig_from_lst(hw, blk, vsi, 4800 &union_lst, &vsig, 4801 &chg); 4802 if (status) 4803 goto err_ice_add_prof_id_flow; 4804 4805 /* Adjust priorities */ 4806 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4807 if (status) 4808 goto err_ice_add_prof_id_flow; 4809 } 4810 } else { 4811 /* need to find or add a VSIG */ 4812 /* search for an existing VSIG with an exact charc match */ 4813 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 4814 /* found an exact match */ 4815 /* add or move VSI to the VSIG that matches */ 4816 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4817 if (status) 4818 goto err_ice_add_prof_id_flow; 4819 } else { 4820 /* we did not find an exact match */ 4821 /* we need to add a VSIG */ 4822 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 4823 &chg); 4824 if (status) 4825 goto err_ice_add_prof_id_flow; 4826 } 4827 } 4828 4829 /* update hardware */ 4830 if (!status) 4831 status = ice_upd_prof_hw(hw, blk, &chg); 4832 4833 err_ice_add_prof_id_flow: 4834 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4835 list_del(&del->list_entry); 4836 devm_kfree(ice_hw_to_dev(hw), del); 4837 } 4838 4839 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 4840 list_del(&del1->list); 4841 devm_kfree(ice_hw_to_dev(hw), del1); 4842 } 4843 4844 return status; 4845 } 4846 4847 /** 4848 * ice_rem_prof_from_list - remove a profile from list 4849 * @hw: pointer to the HW struct 4850 * @lst: list to remove the profile from 4851 * @hdl: the profile handle indicating the profile to remove 4852 */ 4853 static enum ice_status 4854 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 4855 { 4856 struct ice_vsig_prof *ent, *tmp; 4857 4858 list_for_each_entry_safe(ent, tmp, lst, list) 4859 if (ent->profile_cookie == hdl) { 4860 list_del(&ent->list); 4861 devm_kfree(ice_hw_to_dev(hw), ent); 4862 return 0; 4863 } 4864 4865 return ICE_ERR_DOES_NOT_EXIST; 4866 } 4867 4868 /** 4869 * ice_rem_prof_id_flow - remove flow 4870 * @hw: pointer to the HW struct 4871 * @blk: hardware block 4872 * @vsi: the VSI from which to remove the profile specified by ID 4873 * @hdl: profile tracking handle 4874 * 4875 * Calling this function will update the hardware tables to remove the 4876 * profile indicated by the ID parameter for the VSIs specified in the VSI 4877 * array. Once successfully called, the flow will be disabled. 4878 */ 4879 enum ice_status 4880 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4881 { 4882 struct ice_vsig_prof *tmp1, *del1; 4883 struct ice_chs_chg *tmp, *del; 4884 struct list_head chg, copy; 4885 enum ice_status status; 4886 u16 vsig; 4887 4888 INIT_LIST_HEAD(©); 4889 INIT_LIST_HEAD(&chg); 4890 4891 /* determine if VSI is already part of a VSIG */ 4892 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4893 if (!status && vsig) { 4894 bool last_profile; 4895 bool only_vsi; 4896 u16 ref; 4897 4898 /* found in VSIG */ 4899 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 4900 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4901 if (status) 4902 goto err_ice_rem_prof_id_flow; 4903 only_vsi = (ref == 1); 4904 4905 if (only_vsi) { 4906 /* If the original VSIG only contains one reference, 4907 * which will be the requesting VSI, then the VSI is not 4908 * sharing entries and we can simply remove the specific 4909 * characteristics from the VSIG. 4910 */ 4911 4912 if (last_profile) { 4913 /* If there are no profiles left for this VSIG, 4914 * then simply remove the the VSIG. 4915 */ 4916 status = ice_rem_vsig(hw, blk, vsig, &chg); 4917 if (status) 4918 goto err_ice_rem_prof_id_flow; 4919 } else { 4920 status = ice_rem_prof_id_vsig(hw, blk, vsig, 4921 hdl, &chg); 4922 if (status) 4923 goto err_ice_rem_prof_id_flow; 4924 4925 /* Adjust priorities */ 4926 status = ice_adj_prof_priorities(hw, blk, vsig, 4927 &chg); 4928 if (status) 4929 goto err_ice_rem_prof_id_flow; 4930 } 4931 4932 } else { 4933 /* Make a copy of the VSIG's list of Profiles */ 4934 status = ice_get_profs_vsig(hw, blk, vsig, ©); 4935 if (status) 4936 goto err_ice_rem_prof_id_flow; 4937 4938 /* Remove specified profile entry from the list */ 4939 status = ice_rem_prof_from_list(hw, ©, hdl); 4940 if (status) 4941 goto err_ice_rem_prof_id_flow; 4942 4943 if (list_empty(©)) { 4944 status = ice_move_vsi(hw, blk, vsi, 4945 ICE_DEFAULT_VSIG, &chg); 4946 if (status) 4947 goto err_ice_rem_prof_id_flow; 4948 4949 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 4950 &vsig)) { 4951 /* found an exact match */ 4952 /* add or move VSI to the VSIG that matches */ 4953 /* Search for a VSIG with a matching profile 4954 * list 4955 */ 4956 4957 /* Found match, move VSI to the matching VSIG */ 4958 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4959 if (status) 4960 goto err_ice_rem_prof_id_flow; 4961 } else { 4962 /* since no existing VSIG supports this 4963 * characteristic pattern, we need to create a 4964 * new VSIG and TCAM entries 4965 */ 4966 status = ice_create_vsig_from_lst(hw, blk, vsi, 4967 ©, &vsig, 4968 &chg); 4969 if (status) 4970 goto err_ice_rem_prof_id_flow; 4971 4972 /* Adjust priorities */ 4973 status = ice_adj_prof_priorities(hw, blk, vsig, 4974 &chg); 4975 if (status) 4976 goto err_ice_rem_prof_id_flow; 4977 } 4978 } 4979 } else { 4980 status = ICE_ERR_DOES_NOT_EXIST; 4981 } 4982 4983 /* update hardware tables */ 4984 if (!status) 4985 status = ice_upd_prof_hw(hw, blk, &chg); 4986 4987 err_ice_rem_prof_id_flow: 4988 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4989 list_del(&del->list_entry); 4990 devm_kfree(ice_hw_to_dev(hw), del); 4991 } 4992 4993 list_for_each_entry_safe(del1, tmp1, ©, list) { 4994 list_del(&del1->list); 4995 devm_kfree(ice_hw_to_dev(hw), del1); 4996 } 4997 4998 return status; 4999 } 5000