1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 
8 /* To support tunneling entries by PF, the package will append the PF number to
9  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
10  */
11 static const struct ice_tunnel_type_scan tnls[] = {
12 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
13 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
14 	{ TNL_LAST,		"" }
15 };
16 
17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
18 	/* SWITCH */
19 	{
20 		ICE_SID_XLT0_SW,
21 		ICE_SID_XLT_KEY_BUILDER_SW,
22 		ICE_SID_XLT1_SW,
23 		ICE_SID_XLT2_SW,
24 		ICE_SID_PROFID_TCAM_SW,
25 		ICE_SID_PROFID_REDIR_SW,
26 		ICE_SID_FLD_VEC_SW,
27 		ICE_SID_CDID_KEY_BUILDER_SW,
28 		ICE_SID_CDID_REDIR_SW
29 	},
30 
31 	/* ACL */
32 	{
33 		ICE_SID_XLT0_ACL,
34 		ICE_SID_XLT_KEY_BUILDER_ACL,
35 		ICE_SID_XLT1_ACL,
36 		ICE_SID_XLT2_ACL,
37 		ICE_SID_PROFID_TCAM_ACL,
38 		ICE_SID_PROFID_REDIR_ACL,
39 		ICE_SID_FLD_VEC_ACL,
40 		ICE_SID_CDID_KEY_BUILDER_ACL,
41 		ICE_SID_CDID_REDIR_ACL
42 	},
43 
44 	/* FD */
45 	{
46 		ICE_SID_XLT0_FD,
47 		ICE_SID_XLT_KEY_BUILDER_FD,
48 		ICE_SID_XLT1_FD,
49 		ICE_SID_XLT2_FD,
50 		ICE_SID_PROFID_TCAM_FD,
51 		ICE_SID_PROFID_REDIR_FD,
52 		ICE_SID_FLD_VEC_FD,
53 		ICE_SID_CDID_KEY_BUILDER_FD,
54 		ICE_SID_CDID_REDIR_FD
55 	},
56 
57 	/* RSS */
58 	{
59 		ICE_SID_XLT0_RSS,
60 		ICE_SID_XLT_KEY_BUILDER_RSS,
61 		ICE_SID_XLT1_RSS,
62 		ICE_SID_XLT2_RSS,
63 		ICE_SID_PROFID_TCAM_RSS,
64 		ICE_SID_PROFID_REDIR_RSS,
65 		ICE_SID_FLD_VEC_RSS,
66 		ICE_SID_CDID_KEY_BUILDER_RSS,
67 		ICE_SID_CDID_REDIR_RSS
68 	},
69 
70 	/* PE */
71 	{
72 		ICE_SID_XLT0_PE,
73 		ICE_SID_XLT_KEY_BUILDER_PE,
74 		ICE_SID_XLT1_PE,
75 		ICE_SID_XLT2_PE,
76 		ICE_SID_PROFID_TCAM_PE,
77 		ICE_SID_PROFID_REDIR_PE,
78 		ICE_SID_FLD_VEC_PE,
79 		ICE_SID_CDID_KEY_BUILDER_PE,
80 		ICE_SID_CDID_REDIR_PE
81 	}
82 };
83 
84 /**
85  * ice_sect_id - returns section ID
86  * @blk: block type
87  * @sect: section type
88  *
89  * This helper function returns the proper section ID given a block type and a
90  * section type.
91  */
92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
93 {
94 	return ice_sect_lkup[blk][sect];
95 }
96 
97 /**
98  * ice_pkg_val_buf
99  * @buf: pointer to the ice buffer
100  *
101  * This helper function validates a buffer's header.
102  */
103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
104 {
105 	struct ice_buf_hdr *hdr;
106 	u16 section_count;
107 	u16 data_end;
108 
109 	hdr = (struct ice_buf_hdr *)buf->buf;
110 	/* verify data */
111 	section_count = le16_to_cpu(hdr->section_count);
112 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
113 		return NULL;
114 
115 	data_end = le16_to_cpu(hdr->data_end);
116 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
117 		return NULL;
118 
119 	return hdr;
120 }
121 
122 /**
123  * ice_find_buf_table
124  * @ice_seg: pointer to the ice segment
125  *
126  * Returns the address of the buffer table within the ice segment.
127  */
128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
129 {
130 	struct ice_nvm_table *nvms;
131 
132 	nvms = (struct ice_nvm_table *)
133 		(ice_seg->device_table +
134 		 le32_to_cpu(ice_seg->device_table_count));
135 
136 	return (__force struct ice_buf_table *)
137 		(nvms->vers + le32_to_cpu(nvms->table_count));
138 }
139 
140 /**
141  * ice_pkg_enum_buf
142  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
143  * @state: pointer to the enum state
144  *
145  * This function will enumerate all the buffers in the ice segment. The first
146  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
147  * ice_seg is set to NULL which continues the enumeration. When the function
148  * returns a NULL pointer, then the end of the buffers has been reached, or an
149  * unexpected value has been detected (for example an invalid section count or
150  * an invalid buffer end value).
151  */
152 static struct ice_buf_hdr *
153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
154 {
155 	if (ice_seg) {
156 		state->buf_table = ice_find_buf_table(ice_seg);
157 		if (!state->buf_table)
158 			return NULL;
159 
160 		state->buf_idx = 0;
161 		return ice_pkg_val_buf(state->buf_table->buf_array);
162 	}
163 
164 	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
165 		return ice_pkg_val_buf(state->buf_table->buf_array +
166 				       state->buf_idx);
167 	else
168 		return NULL;
169 }
170 
171 /**
172  * ice_pkg_advance_sect
173  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
174  * @state: pointer to the enum state
175  *
176  * This helper function will advance the section within the ice segment,
177  * also advancing the buffer if needed.
178  */
179 static bool
180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
181 {
182 	if (!ice_seg && !state->buf)
183 		return false;
184 
185 	if (!ice_seg && state->buf)
186 		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
187 			return true;
188 
189 	state->buf = ice_pkg_enum_buf(ice_seg, state);
190 	if (!state->buf)
191 		return false;
192 
193 	/* start of new buffer, reset section index */
194 	state->sect_idx = 0;
195 	return true;
196 }
197 
198 /**
199  * ice_pkg_enum_section
200  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
201  * @state: pointer to the enum state
202  * @sect_type: section type to enumerate
203  *
204  * This function will enumerate all the sections of a particular type in the
205  * ice segment. The first call is made with the ice_seg parameter non-NULL;
206  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
207  * When the function returns a NULL pointer, then the end of the matching
208  * sections has been reached.
209  */
210 static void *
211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
212 		     u32 sect_type)
213 {
214 	u16 offset, size;
215 
216 	if (ice_seg)
217 		state->type = sect_type;
218 
219 	if (!ice_pkg_advance_sect(ice_seg, state))
220 		return NULL;
221 
222 	/* scan for next matching section */
223 	while (state->buf->section_entry[state->sect_idx].type !=
224 	       cpu_to_le32(state->type))
225 		if (!ice_pkg_advance_sect(NULL, state))
226 			return NULL;
227 
228 	/* validate section */
229 	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
230 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
231 		return NULL;
232 
233 	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
234 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
235 		return NULL;
236 
237 	/* make sure the section fits in the buffer */
238 	if (offset + size > ICE_PKG_BUF_SIZE)
239 		return NULL;
240 
241 	state->sect_type =
242 		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
243 
244 	/* calc pointer to this section */
245 	state->sect = ((u8 *)state->buf) +
246 		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
247 
248 	return state->sect;
249 }
250 
251 /**
252  * ice_pkg_enum_entry
253  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
254  * @state: pointer to the enum state
255  * @sect_type: section type to enumerate
256  * @offset: pointer to variable that receives the offset in the table (optional)
257  * @handler: function that handles access to the entries into the section type
258  *
259  * This function will enumerate all the entries in particular section type in
260  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
261  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
262  * When the function returns a NULL pointer, then the end of the entries has
263  * been reached.
264  *
265  * Since each section may have a different header and entry size, the handler
266  * function is needed to determine the number and location entries in each
267  * section.
268  *
269  * The offset parameter is optional, but should be used for sections that
270  * contain an offset for each section table. For such cases, the section handler
271  * function must return the appropriate offset + index to give the absolution
272  * offset for each entry. For example, if the base for a section's header
273  * indicates a base offset of 10, and the index for the entry is 2, then
274  * section handler function should set the offset to 10 + 2 = 12.
275  */
276 static void *
277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
278 		   u32 sect_type, u32 *offset,
279 		   void *(*handler)(u32 sect_type, void *section,
280 				    u32 index, u32 *offset))
281 {
282 	void *entry;
283 
284 	if (ice_seg) {
285 		if (!handler)
286 			return NULL;
287 
288 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
289 			return NULL;
290 
291 		state->entry_idx = 0;
292 		state->handler = handler;
293 	} else {
294 		state->entry_idx++;
295 	}
296 
297 	if (!state->handler)
298 		return NULL;
299 
300 	/* get entry */
301 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
302 			       offset);
303 	if (!entry) {
304 		/* end of a section, look for another section of this type */
305 		if (!ice_pkg_enum_section(NULL, state, 0))
306 			return NULL;
307 
308 		state->entry_idx = 0;
309 		entry = state->handler(state->sect_type, state->sect,
310 				       state->entry_idx, offset);
311 	}
312 
313 	return entry;
314 }
315 
316 /**
317  * ice_boost_tcam_handler
318  * @sect_type: section type
319  * @section: pointer to section
320  * @index: index of the boost TCAM entry to be returned
321  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
322  *
323  * This is a callback function that can be passed to ice_pkg_enum_entry.
324  * Handles enumeration of individual boost TCAM entries.
325  */
326 static void *
327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
328 {
329 	struct ice_boost_tcam_section *boost;
330 
331 	if (!section)
332 		return NULL;
333 
334 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
335 		return NULL;
336 
337 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
338 		return NULL;
339 
340 	if (offset)
341 		*offset = 0;
342 
343 	boost = section;
344 	if (index >= le16_to_cpu(boost->count))
345 		return NULL;
346 
347 	return boost->tcam + index;
348 }
349 
350 /**
351  * ice_find_boost_entry
352  * @ice_seg: pointer to the ice segment (non-NULL)
353  * @addr: Boost TCAM address of entry to search for
354  * @entry: returns pointer to the entry
355  *
356  * Finds a particular Boost TCAM entry and returns a pointer to that entry
357  * if it is found. The ice_seg parameter must not be NULL since the first call
358  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
359  */
360 static enum ice_status
361 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
362 		     struct ice_boost_tcam_entry **entry)
363 {
364 	struct ice_boost_tcam_entry *tcam;
365 	struct ice_pkg_enum state;
366 
367 	memset(&state, 0, sizeof(state));
368 
369 	if (!ice_seg)
370 		return ICE_ERR_PARAM;
371 
372 	do {
373 		tcam = ice_pkg_enum_entry(ice_seg, &state,
374 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
375 					  ice_boost_tcam_handler);
376 		if (tcam && le16_to_cpu(tcam->addr) == addr) {
377 			*entry = tcam;
378 			return 0;
379 		}
380 
381 		ice_seg = NULL;
382 	} while (tcam);
383 
384 	*entry = NULL;
385 	return ICE_ERR_CFG;
386 }
387 
388 /**
389  * ice_label_enum_handler
390  * @sect_type: section type
391  * @section: pointer to section
392  * @index: index of the label entry to be returned
393  * @offset: pointer to receive absolute offset, always zero for label sections
394  *
395  * This is a callback function that can be passed to ice_pkg_enum_entry.
396  * Handles enumeration of individual label entries.
397  */
398 static void *
399 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
400 		       u32 *offset)
401 {
402 	struct ice_label_section *labels;
403 
404 	if (!section)
405 		return NULL;
406 
407 	if (index > ICE_MAX_LABELS_IN_BUF)
408 		return NULL;
409 
410 	if (offset)
411 		*offset = 0;
412 
413 	labels = section;
414 	if (index >= le16_to_cpu(labels->count))
415 		return NULL;
416 
417 	return labels->label + index;
418 }
419 
420 /**
421  * ice_enum_labels
422  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
423  * @type: the section type that will contain the label (0 on subsequent calls)
424  * @state: ice_pkg_enum structure that will hold the state of the enumeration
425  * @value: pointer to a value that will return the label's value if found
426  *
427  * Enumerates a list of labels in the package. The caller will call
428  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
429  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
430  * the end of the list has been reached.
431  */
432 static char *
433 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
434 		u16 *value)
435 {
436 	struct ice_label *label;
437 
438 	/* Check for valid label section on first call */
439 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
440 		return NULL;
441 
442 	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
443 				   ice_label_enum_handler);
444 	if (!label)
445 		return NULL;
446 
447 	*value = le16_to_cpu(label->value);
448 	return label->name;
449 }
450 
451 /**
452  * ice_init_pkg_hints
453  * @hw: pointer to the HW structure
454  * @ice_seg: pointer to the segment of the package scan (non-NULL)
455  *
456  * This function will scan the package and save off relevant information
457  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
458  * since the first call to ice_enum_labels requires a pointer to an actual
459  * ice_seg structure.
460  */
461 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
462 {
463 	struct ice_pkg_enum state;
464 	char *label_name;
465 	u16 val;
466 	int i;
467 
468 	memset(&hw->tnl, 0, sizeof(hw->tnl));
469 	memset(&state, 0, sizeof(state));
470 
471 	if (!ice_seg)
472 		return;
473 
474 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
475 				     &val);
476 
477 	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
478 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
479 			size_t len = strlen(tnls[i].label_prefix);
480 
481 			/* Look for matching label start, before continuing */
482 			if (strncmp(label_name, tnls[i].label_prefix, len))
483 				continue;
484 
485 			/* Make sure this label matches our PF. Note that the PF
486 			 * character ('0' - '7') will be located where our
487 			 * prefix string's null terminator is located.
488 			 */
489 			if ((label_name[len] - '0') == hw->pf_id) {
490 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
491 				hw->tnl.tbl[hw->tnl.count].valid = false;
492 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
493 				hw->tnl.tbl[hw->tnl.count].port = 0;
494 				hw->tnl.count++;
495 				break;
496 			}
497 		}
498 
499 		label_name = ice_enum_labels(NULL, 0, &state, &val);
500 	}
501 
502 	/* Cache the appropriate boost TCAM entry pointers */
503 	for (i = 0; i < hw->tnl.count; i++) {
504 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
505 				     &hw->tnl.tbl[i].boost_entry);
506 		if (hw->tnl.tbl[i].boost_entry) {
507 			hw->tnl.tbl[i].valid = true;
508 			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
509 				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
510 		}
511 	}
512 }
513 
514 /* Key creation */
515 
516 #define ICE_DC_KEY	0x1	/* don't care */
517 #define ICE_DC_KEYINV	0x1
518 #define ICE_NM_KEY	0x0	/* never match */
519 #define ICE_NM_KEYINV	0x0
520 #define ICE_0_KEY	0x1	/* match 0 */
521 #define ICE_0_KEYINV	0x0
522 #define ICE_1_KEY	0x0	/* match 1 */
523 #define ICE_1_KEYINV	0x1
524 
525 /**
526  * ice_gen_key_word - generate 16-bits of a key/mask word
527  * @val: the value
528  * @valid: valid bits mask (change only the valid bits)
529  * @dont_care: don't care mask
530  * @nvr_mtch: never match mask
531  * @key: pointer to an array of where the resulting key portion
532  * @key_inv: pointer to an array of where the resulting key invert portion
533  *
534  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
535  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
536  * of key and 8 bits of key invert.
537  *
538  *     '0' =    b01, always match a 0 bit
539  *     '1' =    b10, always match a 1 bit
540  *     '?' =    b11, don't care bit (always matches)
541  *     '~' =    b00, never match bit
542  *
543  * Input:
544  *          val:         b0  1  0  1  0  1
545  *          dont_care:   b0  0  1  1  0  0
546  *          never_mtch:  b0  0  0  0  1  1
547  *          ------------------------------
548  * Result:  key:        b01 10 11 11 00 00
549  */
550 static enum ice_status
551 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
552 		 u8 *key_inv)
553 {
554 	u8 in_key = *key, in_key_inv = *key_inv;
555 	u8 i;
556 
557 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
558 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
559 		return ICE_ERR_CFG;
560 
561 	*key = 0;
562 	*key_inv = 0;
563 
564 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
565 	for (i = 0; i < 8; i++) {
566 		*key >>= 1;
567 		*key_inv >>= 1;
568 
569 		if (!(valid & 0x1)) { /* change only valid bits */
570 			*key |= (in_key & 0x1) << 7;
571 			*key_inv |= (in_key_inv & 0x1) << 7;
572 		} else if (dont_care & 0x1) { /* don't care bit */
573 			*key |= ICE_DC_KEY << 7;
574 			*key_inv |= ICE_DC_KEYINV << 7;
575 		} else if (nvr_mtch & 0x1) { /* never match bit */
576 			*key |= ICE_NM_KEY << 7;
577 			*key_inv |= ICE_NM_KEYINV << 7;
578 		} else if (val & 0x01) { /* exact 1 match */
579 			*key |= ICE_1_KEY << 7;
580 			*key_inv |= ICE_1_KEYINV << 7;
581 		} else { /* exact 0 match */
582 			*key |= ICE_0_KEY << 7;
583 			*key_inv |= ICE_0_KEYINV << 7;
584 		}
585 
586 		dont_care >>= 1;
587 		nvr_mtch >>= 1;
588 		valid >>= 1;
589 		val >>= 1;
590 		in_key >>= 1;
591 		in_key_inv >>= 1;
592 	}
593 
594 	return 0;
595 }
596 
597 /**
598  * ice_bits_max_set - determine if the number of bits set is within a maximum
599  * @mask: pointer to the byte array which is the mask
600  * @size: the number of bytes in the mask
601  * @max: the max number of set bits
602  *
603  * This function determines if there are at most 'max' number of bits set in an
604  * array. Returns true if the number for bits set is <= max or will return false
605  * otherwise.
606  */
607 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
608 {
609 	u16 count = 0;
610 	u16 i;
611 
612 	/* check each byte */
613 	for (i = 0; i < size; i++) {
614 		/* if 0, go to next byte */
615 		if (!mask[i])
616 			continue;
617 
618 		/* We know there is at least one set bit in this byte because of
619 		 * the above check; if we already have found 'max' number of
620 		 * bits set, then we can return failure now.
621 		 */
622 		if (count == max)
623 			return false;
624 
625 		/* count the bits in this byte, checking threshold */
626 		count += hweight8(mask[i]);
627 		if (count > max)
628 			return false;
629 	}
630 
631 	return true;
632 }
633 
634 /**
635  * ice_set_key - generate a variable sized key with multiples of 16-bits
636  * @key: pointer to where the key will be stored
637  * @size: the size of the complete key in bytes (must be even)
638  * @val: array of 8-bit values that makes up the value portion of the key
639  * @upd: array of 8-bit masks that determine what key portion to update
640  * @dc: array of 8-bit masks that make up the don't care mask
641  * @nm: array of 8-bit masks that make up the never match mask
642  * @off: the offset of the first byte in the key to update
643  * @len: the number of bytes in the key update
644  *
645  * This function generates a key from a value, a don't care mask and a never
646  * match mask.
647  * upd, dc, and nm are optional parameters, and can be NULL:
648  *	upd == NULL --> upd mask is all 1's (update all bits)
649  *	dc == NULL --> dc mask is all 0's (no don't care bits)
650  *	nm == NULL --> nm mask is all 0's (no never match bits)
651  */
652 static enum ice_status
653 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
654 	    u16 len)
655 {
656 	u16 half_size;
657 	u16 i;
658 
659 	/* size must be a multiple of 2 bytes. */
660 	if (size % 2)
661 		return ICE_ERR_CFG;
662 
663 	half_size = size / 2;
664 	if (off + len > half_size)
665 		return ICE_ERR_CFG;
666 
667 	/* Make sure at most one bit is set in the never match mask. Having more
668 	 * than one never match mask bit set will cause HW to consume excessive
669 	 * power otherwise; this is a power management efficiency check.
670 	 */
671 #define ICE_NVR_MTCH_BITS_MAX	1
672 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
673 		return ICE_ERR_CFG;
674 
675 	for (i = 0; i < len; i++)
676 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
677 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
678 				     key + off + i, key + half_size + off + i))
679 			return ICE_ERR_CFG;
680 
681 	return 0;
682 }
683 
684 /**
685  * ice_acquire_global_cfg_lock
686  * @hw: pointer to the HW structure
687  * @access: access type (read or write)
688  *
689  * This function will request ownership of the global config lock for reading
690  * or writing of the package. When attempting to obtain write access, the
691  * caller must check for the following two return values:
692  *
693  * ICE_SUCCESS        - Means the caller has acquired the global config lock
694  *                      and can perform writing of the package.
695  * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
696  *                      package or has found that no update was necessary; in
697  *                      this case, the caller can just skip performing any
698  *                      update of the package.
699  */
700 static enum ice_status
701 ice_acquire_global_cfg_lock(struct ice_hw *hw,
702 			    enum ice_aq_res_access_type access)
703 {
704 	enum ice_status status;
705 
706 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
707 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
708 
709 	if (!status)
710 		mutex_lock(&ice_global_cfg_lock_sw);
711 	else if (status == ICE_ERR_AQ_NO_WORK)
712 		ice_debug(hw, ICE_DBG_PKG,
713 			  "Global config lock: No work to do\n");
714 
715 	return status;
716 }
717 
718 /**
719  * ice_release_global_cfg_lock
720  * @hw: pointer to the HW structure
721  *
722  * This function will release the global config lock.
723  */
724 static void ice_release_global_cfg_lock(struct ice_hw *hw)
725 {
726 	mutex_unlock(&ice_global_cfg_lock_sw);
727 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
728 }
729 
730 /**
731  * ice_acquire_change_lock
732  * @hw: pointer to the HW structure
733  * @access: access type (read or write)
734  *
735  * This function will request ownership of the change lock.
736  */
737 static enum ice_status
738 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
739 {
740 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
741 			       ICE_CHANGE_LOCK_TIMEOUT);
742 }
743 
744 /**
745  * ice_release_change_lock
746  * @hw: pointer to the HW structure
747  *
748  * This function will release the change lock using the proper Admin Command.
749  */
750 static void ice_release_change_lock(struct ice_hw *hw)
751 {
752 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
753 }
754 
755 /**
756  * ice_aq_download_pkg
757  * @hw: pointer to the hardware structure
758  * @pkg_buf: the package buffer to transfer
759  * @buf_size: the size of the package buffer
760  * @last_buf: last buffer indicator
761  * @error_offset: returns error offset
762  * @error_info: returns error information
763  * @cd: pointer to command details structure or NULL
764  *
765  * Download Package (0x0C40)
766  */
767 static enum ice_status
768 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
769 		    u16 buf_size, bool last_buf, u32 *error_offset,
770 		    u32 *error_info, struct ice_sq_cd *cd)
771 {
772 	struct ice_aqc_download_pkg *cmd;
773 	struct ice_aq_desc desc;
774 	enum ice_status status;
775 
776 	if (error_offset)
777 		*error_offset = 0;
778 	if (error_info)
779 		*error_info = 0;
780 
781 	cmd = &desc.params.download_pkg;
782 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
783 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
784 
785 	if (last_buf)
786 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
787 
788 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
789 	if (status == ICE_ERR_AQ_ERROR) {
790 		/* Read error from buffer only when the FW returned an error */
791 		struct ice_aqc_download_pkg_resp *resp;
792 
793 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
794 		if (error_offset)
795 			*error_offset = le32_to_cpu(resp->error_offset);
796 		if (error_info)
797 			*error_info = le32_to_cpu(resp->error_info);
798 	}
799 
800 	return status;
801 }
802 
803 /**
804  * ice_aq_update_pkg
805  * @hw: pointer to the hardware structure
806  * @pkg_buf: the package cmd buffer
807  * @buf_size: the size of the package cmd buffer
808  * @last_buf: last buffer indicator
809  * @error_offset: returns error offset
810  * @error_info: returns error information
811  * @cd: pointer to command details structure or NULL
812  *
813  * Update Package (0x0C42)
814  */
815 static enum ice_status
816 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
817 		  bool last_buf, u32 *error_offset, u32 *error_info,
818 		  struct ice_sq_cd *cd)
819 {
820 	struct ice_aqc_download_pkg *cmd;
821 	struct ice_aq_desc desc;
822 	enum ice_status status;
823 
824 	if (error_offset)
825 		*error_offset = 0;
826 	if (error_info)
827 		*error_info = 0;
828 
829 	cmd = &desc.params.download_pkg;
830 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
831 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
832 
833 	if (last_buf)
834 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
835 
836 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
837 	if (status == ICE_ERR_AQ_ERROR) {
838 		/* Read error from buffer only when the FW returned an error */
839 		struct ice_aqc_download_pkg_resp *resp;
840 
841 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
842 		if (error_offset)
843 			*error_offset = le32_to_cpu(resp->error_offset);
844 		if (error_info)
845 			*error_info = le32_to_cpu(resp->error_info);
846 	}
847 
848 	return status;
849 }
850 
851 /**
852  * ice_find_seg_in_pkg
853  * @hw: pointer to the hardware structure
854  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
855  * @pkg_hdr: pointer to the package header to be searched
856  *
857  * This function searches a package file for a particular segment type. On
858  * success it returns a pointer to the segment header, otherwise it will
859  * return NULL.
860  */
861 static struct ice_generic_seg_hdr *
862 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
863 		    struct ice_pkg_hdr *pkg_hdr)
864 {
865 	u32 i;
866 
867 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
868 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
869 		  pkg_hdr->pkg_format_ver.update,
870 		  pkg_hdr->pkg_format_ver.draft);
871 
872 	/* Search all package segments for the requested segment type */
873 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
874 		struct ice_generic_seg_hdr *seg;
875 
876 		seg = (struct ice_generic_seg_hdr *)
877 			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
878 
879 		if (le32_to_cpu(seg->seg_type) == seg_type)
880 			return seg;
881 	}
882 
883 	return NULL;
884 }
885 
886 /**
887  * ice_update_pkg
888  * @hw: pointer to the hardware structure
889  * @bufs: pointer to an array of buffers
890  * @count: the number of buffers in the array
891  *
892  * Obtains change lock and updates package.
893  */
894 static enum ice_status
895 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
896 {
897 	enum ice_status status;
898 	u32 offset, info, i;
899 
900 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
901 	if (status)
902 		return status;
903 
904 	for (i = 0; i < count; i++) {
905 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
906 		bool last = ((i + 1) == count);
907 
908 		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
909 					   last, &offset, &info, NULL);
910 
911 		if (status) {
912 			ice_debug(hw, ICE_DBG_PKG,
913 				  "Update pkg failed: err %d off %d inf %d\n",
914 				  status, offset, info);
915 			break;
916 		}
917 	}
918 
919 	ice_release_change_lock(hw);
920 
921 	return status;
922 }
923 
924 /**
925  * ice_dwnld_cfg_bufs
926  * @hw: pointer to the hardware structure
927  * @bufs: pointer to an array of buffers
928  * @count: the number of buffers in the array
929  *
930  * Obtains global config lock and downloads the package configuration buffers
931  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
932  * found indicates that the rest of the buffers are all metadata buffers.
933  */
934 static enum ice_status
935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
936 {
937 	enum ice_status status;
938 	struct ice_buf_hdr *bh;
939 	u32 offset, info, i;
940 
941 	if (!bufs || !count)
942 		return ICE_ERR_PARAM;
943 
944 	/* If the first buffer's first section has its metadata bit set
945 	 * then there are no buffers to be downloaded, and the operation is
946 	 * considered a success.
947 	 */
948 	bh = (struct ice_buf_hdr *)bufs;
949 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
950 		return 0;
951 
952 	/* reset pkg_dwnld_status in case this function is called in the
953 	 * reset/rebuild flow
954 	 */
955 	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
956 
957 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
958 	if (status) {
959 		if (status == ICE_ERR_AQ_NO_WORK)
960 			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
961 		else
962 			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
963 		return status;
964 	}
965 
966 	for (i = 0; i < count; i++) {
967 		bool last = ((i + 1) == count);
968 
969 		if (!last) {
970 			/* check next buffer for metadata flag */
971 			bh = (struct ice_buf_hdr *)(bufs + i + 1);
972 
973 			/* A set metadata flag in the next buffer will signal
974 			 * that the current buffer will be the last buffer
975 			 * downloaded
976 			 */
977 			if (le16_to_cpu(bh->section_count))
978 				if (le32_to_cpu(bh->section_entry[0].type) &
979 				    ICE_METADATA_BUF)
980 					last = true;
981 		}
982 
983 		bh = (struct ice_buf_hdr *)(bufs + i);
984 
985 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
986 					     &offset, &info, NULL);
987 
988 		/* Save AQ status from download package */
989 		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
990 		if (status) {
991 			ice_debug(hw, ICE_DBG_PKG,
992 				  "Pkg download failed: err %d off %d inf %d\n",
993 				  status, offset, info);
994 
995 			break;
996 		}
997 
998 		if (last)
999 			break;
1000 	}
1001 
1002 	ice_release_global_cfg_lock(hw);
1003 
1004 	return status;
1005 }
1006 
1007 /**
1008  * ice_aq_get_pkg_info_list
1009  * @hw: pointer to the hardware structure
1010  * @pkg_info: the buffer which will receive the information list
1011  * @buf_size: the size of the pkg_info information buffer
1012  * @cd: pointer to command details structure or NULL
1013  *
1014  * Get Package Info List (0x0C43)
1015  */
1016 static enum ice_status
1017 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1018 			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1019 			 u16 buf_size, struct ice_sq_cd *cd)
1020 {
1021 	struct ice_aq_desc desc;
1022 
1023 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1024 
1025 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1026 }
1027 
1028 /**
1029  * ice_download_pkg
1030  * @hw: pointer to the hardware structure
1031  * @ice_seg: pointer to the segment of the package to be downloaded
1032  *
1033  * Handles the download of a complete package.
1034  */
1035 static enum ice_status
1036 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1037 {
1038 	struct ice_buf_table *ice_buf_tbl;
1039 
1040 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1041 		  ice_seg->hdr.seg_format_ver.major,
1042 		  ice_seg->hdr.seg_format_ver.minor,
1043 		  ice_seg->hdr.seg_format_ver.update,
1044 		  ice_seg->hdr.seg_format_ver.draft);
1045 
1046 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1047 		  le32_to_cpu(ice_seg->hdr.seg_type),
1048 		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1049 
1050 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1051 
1052 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1053 		  le32_to_cpu(ice_buf_tbl->buf_count));
1054 
1055 	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1056 				  le32_to_cpu(ice_buf_tbl->buf_count));
1057 }
1058 
1059 /**
1060  * ice_init_pkg_info
1061  * @hw: pointer to the hardware structure
1062  * @pkg_hdr: pointer to the driver's package hdr
1063  *
1064  * Saves off the package details into the HW structure.
1065  */
1066 static enum ice_status
1067 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1068 {
1069 	struct ice_global_metadata_seg *meta_seg;
1070 	struct ice_generic_seg_hdr *seg_hdr;
1071 
1072 	if (!pkg_hdr)
1073 		return ICE_ERR_PARAM;
1074 
1075 	meta_seg = (struct ice_global_metadata_seg *)
1076 		   ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1077 	if (meta_seg) {
1078 		hw->pkg_ver = meta_seg->pkg_ver;
1079 		memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
1080 
1081 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1082 			  meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1083 			  meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1084 			  meta_seg->pkg_name);
1085 	} else {
1086 		ice_debug(hw, ICE_DBG_INIT,
1087 			  "Did not find metadata segment in driver package\n");
1088 		return ICE_ERR_CFG;
1089 	}
1090 
1091 	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1092 	if (seg_hdr) {
1093 		hw->ice_pkg_ver = seg_hdr->seg_format_ver;
1094 		memcpy(hw->ice_pkg_name, seg_hdr->seg_id,
1095 		       sizeof(hw->ice_pkg_name));
1096 
1097 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1098 			  seg_hdr->seg_format_ver.major,
1099 			  seg_hdr->seg_format_ver.minor,
1100 			  seg_hdr->seg_format_ver.update,
1101 			  seg_hdr->seg_format_ver.draft,
1102 			  seg_hdr->seg_id);
1103 	} else {
1104 		ice_debug(hw, ICE_DBG_INIT,
1105 			  "Did not find ice segment in driver package\n");
1106 		return ICE_ERR_CFG;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * ice_get_pkg_info
1114  * @hw: pointer to the hardware structure
1115  *
1116  * Store details of the package currently loaded in HW into the HW structure.
1117  */
1118 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1119 {
1120 	struct ice_aqc_get_pkg_info_resp *pkg_info;
1121 	enum ice_status status;
1122 	u16 size;
1123 	u32 i;
1124 
1125 	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1126 	pkg_info = kzalloc(size, GFP_KERNEL);
1127 	if (!pkg_info)
1128 		return ICE_ERR_NO_MEMORY;
1129 
1130 	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1131 	if (status)
1132 		goto init_pkg_free_alloc;
1133 
1134 	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1135 #define ICE_PKG_FLAG_COUNT	4
1136 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1137 		u8 place = 0;
1138 
1139 		if (pkg_info->pkg_info[i].is_active) {
1140 			flags[place++] = 'A';
1141 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1142 			hw->active_track_id =
1143 				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1144 			memcpy(hw->active_pkg_name,
1145 			       pkg_info->pkg_info[i].name,
1146 			       sizeof(pkg_info->pkg_info[i].name));
1147 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1148 		}
1149 		if (pkg_info->pkg_info[i].is_active_at_boot)
1150 			flags[place++] = 'B';
1151 		if (pkg_info->pkg_info[i].is_modified)
1152 			flags[place++] = 'M';
1153 		if (pkg_info->pkg_info[i].is_in_nvm)
1154 			flags[place++] = 'N';
1155 
1156 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1157 			  i, pkg_info->pkg_info[i].ver.major,
1158 			  pkg_info->pkg_info[i].ver.minor,
1159 			  pkg_info->pkg_info[i].ver.update,
1160 			  pkg_info->pkg_info[i].ver.draft,
1161 			  pkg_info->pkg_info[i].name, flags);
1162 	}
1163 
1164 init_pkg_free_alloc:
1165 	kfree(pkg_info);
1166 
1167 	return status;
1168 }
1169 
1170 /**
1171  * ice_verify_pkg - verify package
1172  * @pkg: pointer to the package buffer
1173  * @len: size of the package buffer
1174  *
1175  * Verifies various attributes of the package file, including length, format
1176  * version, and the requirement of at least one segment.
1177  */
1178 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1179 {
1180 	u32 seg_count;
1181 	u32 i;
1182 
1183 	if (len < struct_size(pkg, seg_offset, 1))
1184 		return ICE_ERR_BUF_TOO_SHORT;
1185 
1186 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1187 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1188 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1189 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1190 		return ICE_ERR_CFG;
1191 
1192 	/* pkg must have at least one segment */
1193 	seg_count = le32_to_cpu(pkg->seg_count);
1194 	if (seg_count < 1)
1195 		return ICE_ERR_CFG;
1196 
1197 	/* make sure segment array fits in package length */
1198 	if (len < struct_size(pkg, seg_offset, seg_count))
1199 		return ICE_ERR_BUF_TOO_SHORT;
1200 
1201 	/* all segments must fit within length */
1202 	for (i = 0; i < seg_count; i++) {
1203 		u32 off = le32_to_cpu(pkg->seg_offset[i]);
1204 		struct ice_generic_seg_hdr *seg;
1205 
1206 		/* segment header must fit */
1207 		if (len < off + sizeof(*seg))
1208 			return ICE_ERR_BUF_TOO_SHORT;
1209 
1210 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1211 
1212 		/* segment body must fit */
1213 		if (len < off + le32_to_cpu(seg->seg_size))
1214 			return ICE_ERR_BUF_TOO_SHORT;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * ice_free_seg - free package segment pointer
1222  * @hw: pointer to the hardware structure
1223  *
1224  * Frees the package segment pointer in the proper manner, depending on if the
1225  * segment was allocated or just the passed in pointer was stored.
1226  */
1227 void ice_free_seg(struct ice_hw *hw)
1228 {
1229 	if (hw->pkg_copy) {
1230 		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1231 		hw->pkg_copy = NULL;
1232 		hw->pkg_size = 0;
1233 	}
1234 	hw->seg = NULL;
1235 }
1236 
1237 /**
1238  * ice_init_pkg_regs - initialize additional package registers
1239  * @hw: pointer to the hardware structure
1240  */
1241 static void ice_init_pkg_regs(struct ice_hw *hw)
1242 {
1243 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1244 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1245 #define ICE_SW_BLK_IDX	0
1246 
1247 	/* setup Switch block input mask, which is 48-bits in two parts */
1248 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1249 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1250 }
1251 
1252 /**
1253  * ice_chk_pkg_version - check package version for compatibility with driver
1254  * @pkg_ver: pointer to a version structure to check
1255  *
1256  * Check to make sure that the package about to be downloaded is compatible with
1257  * the driver. To be compatible, the major and minor components of the package
1258  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1259  * definitions.
1260  */
1261 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1262 {
1263 	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1264 	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1265 		return ICE_ERR_NOT_SUPPORTED;
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  * ice_chk_pkg_compat
1272  * @hw: pointer to the hardware structure
1273  * @ospkg: pointer to the package hdr
1274  * @seg: pointer to the package segment hdr
1275  *
1276  * This function checks the package version compatibility with driver and NVM
1277  */
1278 static enum ice_status
1279 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1280 		   struct ice_seg **seg)
1281 {
1282 	struct ice_aqc_get_pkg_info_resp *pkg;
1283 	enum ice_status status;
1284 	u16 size;
1285 	u32 i;
1286 
1287 	/* Check package version compatibility */
1288 	status = ice_chk_pkg_version(&hw->pkg_ver);
1289 	if (status) {
1290 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1291 		return status;
1292 	}
1293 
1294 	/* find ICE segment in given package */
1295 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1296 						     ospkg);
1297 	if (!*seg) {
1298 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1299 		return ICE_ERR_CFG;
1300 	}
1301 
1302 	/* Check if FW is compatible with the OS package */
1303 	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1304 	pkg = kzalloc(size, GFP_KERNEL);
1305 	if (!pkg)
1306 		return ICE_ERR_NO_MEMORY;
1307 
1308 	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1309 	if (status)
1310 		goto fw_ddp_compat_free_alloc;
1311 
1312 	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1313 		/* loop till we find the NVM package */
1314 		if (!pkg->pkg_info[i].is_in_nvm)
1315 			continue;
1316 		if ((*seg)->hdr.seg_format_ver.major !=
1317 			pkg->pkg_info[i].ver.major ||
1318 		    (*seg)->hdr.seg_format_ver.minor >
1319 			pkg->pkg_info[i].ver.minor) {
1320 			status = ICE_ERR_FW_DDP_MISMATCH;
1321 			ice_debug(hw, ICE_DBG_INIT,
1322 				  "OS package is not compatible with NVM.\n");
1323 		}
1324 		/* done processing NVM package so break */
1325 		break;
1326 	}
1327 fw_ddp_compat_free_alloc:
1328 	kfree(pkg);
1329 	return status;
1330 }
1331 
1332 /**
1333  * ice_init_pkg - initialize/download package
1334  * @hw: pointer to the hardware structure
1335  * @buf: pointer to the package buffer
1336  * @len: size of the package buffer
1337  *
1338  * This function initializes a package. The package contains HW tables
1339  * required to do packet processing. First, the function extracts package
1340  * information such as version. Then it finds the ice configuration segment
1341  * within the package; this function then saves a copy of the segment pointer
1342  * within the supplied package buffer. Next, the function will cache any hints
1343  * from the package, followed by downloading the package itself. Note, that if
1344  * a previous PF driver has already downloaded the package successfully, then
1345  * the current driver will not have to download the package again.
1346  *
1347  * The local package contents will be used to query default behavior and to
1348  * update specific sections of the HW's version of the package (e.g. to update
1349  * the parse graph to understand new protocols).
1350  *
1351  * This function stores a pointer to the package buffer memory, and it is
1352  * expected that the supplied buffer will not be freed immediately. If the
1353  * package buffer needs to be freed, such as when read from a file, use
1354  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1355  * case.
1356  */
1357 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1358 {
1359 	struct ice_pkg_hdr *pkg;
1360 	enum ice_status status;
1361 	struct ice_seg *seg;
1362 
1363 	if (!buf || !len)
1364 		return ICE_ERR_PARAM;
1365 
1366 	pkg = (struct ice_pkg_hdr *)buf;
1367 	status = ice_verify_pkg(pkg, len);
1368 	if (status) {
1369 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1370 			  status);
1371 		return status;
1372 	}
1373 
1374 	/* initialize package info */
1375 	status = ice_init_pkg_info(hw, pkg);
1376 	if (status)
1377 		return status;
1378 
1379 	/* before downloading the package, check package version for
1380 	 * compatibility with driver
1381 	 */
1382 	status = ice_chk_pkg_compat(hw, pkg, &seg);
1383 	if (status)
1384 		return status;
1385 
1386 	/* initialize package hints and then download package */
1387 	ice_init_pkg_hints(hw, seg);
1388 	status = ice_download_pkg(hw, seg);
1389 	if (status == ICE_ERR_AQ_NO_WORK) {
1390 		ice_debug(hw, ICE_DBG_INIT,
1391 			  "package previously loaded - no work.\n");
1392 		status = 0;
1393 	}
1394 
1395 	/* Get information on the package currently loaded in HW, then make sure
1396 	 * the driver is compatible with this version.
1397 	 */
1398 	if (!status) {
1399 		status = ice_get_pkg_info(hw);
1400 		if (!status)
1401 			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1402 	}
1403 
1404 	if (!status) {
1405 		hw->seg = seg;
1406 		/* on successful package download update other required
1407 		 * registers to support the package and fill HW tables
1408 		 * with package content.
1409 		 */
1410 		ice_init_pkg_regs(hw);
1411 		ice_fill_blk_tbls(hw);
1412 	} else {
1413 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1414 			  status);
1415 	}
1416 
1417 	return status;
1418 }
1419 
1420 /**
1421  * ice_copy_and_init_pkg - initialize/download a copy of the package
1422  * @hw: pointer to the hardware structure
1423  * @buf: pointer to the package buffer
1424  * @len: size of the package buffer
1425  *
1426  * This function copies the package buffer, and then calls ice_init_pkg() to
1427  * initialize the copied package contents.
1428  *
1429  * The copying is necessary if the package buffer supplied is constant, or if
1430  * the memory may disappear shortly after calling this function.
1431  *
1432  * If the package buffer resides in the data segment and can be modified, the
1433  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1434  *
1435  * However, if the package buffer needs to be copied first, such as when being
1436  * read from a file, the caller should use ice_copy_and_init_pkg().
1437  *
1438  * This function will first copy the package buffer, before calling
1439  * ice_init_pkg(). The caller is free to immediately destroy the original
1440  * package buffer, as the new copy will be managed by this function and
1441  * related routines.
1442  */
1443 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1444 {
1445 	enum ice_status status;
1446 	u8 *buf_copy;
1447 
1448 	if (!buf || !len)
1449 		return ICE_ERR_PARAM;
1450 
1451 	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1452 
1453 	status = ice_init_pkg(hw, buf_copy, len);
1454 	if (status) {
1455 		/* Free the copy, since we failed to initialize the package */
1456 		devm_kfree(ice_hw_to_dev(hw), buf_copy);
1457 	} else {
1458 		/* Track the copied pkg so we can free it later */
1459 		hw->pkg_copy = buf_copy;
1460 		hw->pkg_size = len;
1461 	}
1462 
1463 	return status;
1464 }
1465 
1466 /**
1467  * ice_pkg_buf_alloc
1468  * @hw: pointer to the HW structure
1469  *
1470  * Allocates a package buffer and returns a pointer to the buffer header.
1471  * Note: all package contents must be in Little Endian form.
1472  */
1473 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1474 {
1475 	struct ice_buf_build *bld;
1476 	struct ice_buf_hdr *buf;
1477 
1478 	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1479 	if (!bld)
1480 		return NULL;
1481 
1482 	buf = (struct ice_buf_hdr *)bld;
1483 	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1484 					     section_entry));
1485 	return bld;
1486 }
1487 
1488 /**
1489  * ice_pkg_buf_free
1490  * @hw: pointer to the HW structure
1491  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1492  *
1493  * Frees a package buffer
1494  */
1495 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1496 {
1497 	devm_kfree(ice_hw_to_dev(hw), bld);
1498 }
1499 
1500 /**
1501  * ice_pkg_buf_reserve_section
1502  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1503  * @count: the number of sections to reserve
1504  *
1505  * Reserves one or more section table entries in a package buffer. This routine
1506  * can be called multiple times as long as they are made before calling
1507  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1508  * is called once, the number of sections that can be allocated will not be able
1509  * to be increased; not using all reserved sections is fine, but this will
1510  * result in some wasted space in the buffer.
1511  * Note: all package contents must be in Little Endian form.
1512  */
1513 static enum ice_status
1514 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1515 {
1516 	struct ice_buf_hdr *buf;
1517 	u16 section_count;
1518 	u16 data_end;
1519 
1520 	if (!bld)
1521 		return ICE_ERR_PARAM;
1522 
1523 	buf = (struct ice_buf_hdr *)&bld->buf;
1524 
1525 	/* already an active section, can't increase table size */
1526 	section_count = le16_to_cpu(buf->section_count);
1527 	if (section_count > 0)
1528 		return ICE_ERR_CFG;
1529 
1530 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1531 		return ICE_ERR_CFG;
1532 	bld->reserved_section_table_entries += count;
1533 
1534 	data_end = le16_to_cpu(buf->data_end) +
1535 		   (count * sizeof(buf->section_entry[0]));
1536 	buf->data_end = cpu_to_le16(data_end);
1537 
1538 	return 0;
1539 }
1540 
1541 /**
1542  * ice_pkg_buf_alloc_section
1543  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1544  * @type: the section type value
1545  * @size: the size of the section to reserve (in bytes)
1546  *
1547  * Reserves memory in the buffer for a section's content and updates the
1548  * buffers' status accordingly. This routine returns a pointer to the first
1549  * byte of the section start within the buffer, which is used to fill in the
1550  * section contents.
1551  * Note: all package contents must be in Little Endian form.
1552  */
1553 static void *
1554 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1555 {
1556 	struct ice_buf_hdr *buf;
1557 	u16 sect_count;
1558 	u16 data_end;
1559 
1560 	if (!bld || !type || !size)
1561 		return NULL;
1562 
1563 	buf = (struct ice_buf_hdr *)&bld->buf;
1564 
1565 	/* check for enough space left in buffer */
1566 	data_end = le16_to_cpu(buf->data_end);
1567 
1568 	/* section start must align on 4 byte boundary */
1569 	data_end = ALIGN(data_end, 4);
1570 
1571 	if ((data_end + size) > ICE_MAX_S_DATA_END)
1572 		return NULL;
1573 
1574 	/* check for more available section table entries */
1575 	sect_count = le16_to_cpu(buf->section_count);
1576 	if (sect_count < bld->reserved_section_table_entries) {
1577 		void *section_ptr = ((u8 *)buf) + data_end;
1578 
1579 		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1580 		buf->section_entry[sect_count].size = cpu_to_le16(size);
1581 		buf->section_entry[sect_count].type = cpu_to_le32(type);
1582 
1583 		data_end += size;
1584 		buf->data_end = cpu_to_le16(data_end);
1585 
1586 		buf->section_count = cpu_to_le16(sect_count + 1);
1587 		return section_ptr;
1588 	}
1589 
1590 	/* no free section table entries */
1591 	return NULL;
1592 }
1593 
1594 /**
1595  * ice_pkg_buf_get_active_sections
1596  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1597  *
1598  * Returns the number of active sections. Before using the package buffer
1599  * in an update package command, the caller should make sure that there is at
1600  * least one active section - otherwise, the buffer is not legal and should
1601  * not be used.
1602  * Note: all package contents must be in Little Endian form.
1603  */
1604 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1605 {
1606 	struct ice_buf_hdr *buf;
1607 
1608 	if (!bld)
1609 		return 0;
1610 
1611 	buf = (struct ice_buf_hdr *)&bld->buf;
1612 	return le16_to_cpu(buf->section_count);
1613 }
1614 
1615 /**
1616  * ice_pkg_buf
1617  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1618  *
1619  * Return a pointer to the buffer's header
1620  */
1621 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1622 {
1623 	if (!bld)
1624 		return NULL;
1625 
1626 	return &bld->buf;
1627 }
1628 
1629 /**
1630  * ice_get_open_tunnel_port - retrieve an open tunnel port
1631  * @hw: pointer to the HW structure
1632  * @port: returns open port
1633  */
1634 bool
1635 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port)
1636 {
1637 	bool res = false;
1638 	u16 i;
1639 
1640 	mutex_lock(&hw->tnl_lock);
1641 
1642 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1643 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) {
1644 			*port = hw->tnl.tbl[i].port;
1645 			res = true;
1646 			break;
1647 		}
1648 
1649 	mutex_unlock(&hw->tnl_lock);
1650 
1651 	return res;
1652 }
1653 
1654 /**
1655  * ice_tunnel_idx_to_entry - convert linear index to the sparse one
1656  * @hw: pointer to the HW structure
1657  * @type: type of tunnel
1658  * @idx: linear index
1659  *
1660  * Stack assumes we have 2 linear tables with indexes [0, count_valid),
1661  * but really the port table may be sprase, and types are mixed, so convert
1662  * the stack index into the device index.
1663  */
1664 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1665 				   u16 idx)
1666 {
1667 	u16 i;
1668 
1669 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1670 		if (hw->tnl.tbl[i].valid &&
1671 		    hw->tnl.tbl[i].type == type &&
1672 		    idx--)
1673 			return i;
1674 
1675 	WARN_ON_ONCE(1);
1676 	return 0;
1677 }
1678 
1679 /**
1680  * ice_create_tunnel
1681  * @hw: pointer to the HW structure
1682  * @index: device table entry
1683  * @type: type of tunnel
1684  * @port: port of tunnel to create
1685  *
1686  * Create a tunnel by updating the parse graph in the parser. We do that by
1687  * creating a package buffer with the tunnel info and issuing an update package
1688  * command.
1689  */
1690 static enum ice_status
1691 ice_create_tunnel(struct ice_hw *hw, u16 index,
1692 		  enum ice_tunnel_type type, u16 port)
1693 {
1694 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1695 	enum ice_status status = ICE_ERR_MAX_LIMIT;
1696 	struct ice_buf_build *bld;
1697 
1698 	mutex_lock(&hw->tnl_lock);
1699 
1700 	bld = ice_pkg_buf_alloc(hw);
1701 	if (!bld) {
1702 		status = ICE_ERR_NO_MEMORY;
1703 		goto ice_create_tunnel_end;
1704 	}
1705 
1706 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1707 	if (ice_pkg_buf_reserve_section(bld, 2))
1708 		goto ice_create_tunnel_err;
1709 
1710 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1711 					    struct_size(sect_rx, tcam, 1));
1712 	if (!sect_rx)
1713 		goto ice_create_tunnel_err;
1714 	sect_rx->count = cpu_to_le16(1);
1715 
1716 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1717 					    struct_size(sect_tx, tcam, 1));
1718 	if (!sect_tx)
1719 		goto ice_create_tunnel_err;
1720 	sect_tx->count = cpu_to_le16(1);
1721 
1722 	/* copy original boost entry to update package buffer */
1723 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1724 	       sizeof(*sect_rx->tcam));
1725 
1726 	/* over-write the never-match dest port key bits with the encoded port
1727 	 * bits
1728 	 */
1729 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
1730 		    (u8 *)&port, NULL, NULL, NULL,
1731 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
1732 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
1733 
1734 	/* exact copy of entry to Tx section entry */
1735 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
1736 
1737 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1738 	if (!status)
1739 		hw->tnl.tbl[index].port = port;
1740 
1741 ice_create_tunnel_err:
1742 	ice_pkg_buf_free(hw, bld);
1743 
1744 ice_create_tunnel_end:
1745 	mutex_unlock(&hw->tnl_lock);
1746 
1747 	return status;
1748 }
1749 
1750 /**
1751  * ice_destroy_tunnel
1752  * @hw: pointer to the HW structure
1753  * @index: device table entry
1754  * @type: type of tunnel
1755  * @port: port of tunnel to destroy (ignored if the all parameter is true)
1756  *
1757  * Destroys a tunnel or all tunnels by creating an update package buffer
1758  * targeting the specific updates requested and then performing an update
1759  * package.
1760  */
1761 static enum ice_status
1762 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
1763 		   u16 port)
1764 {
1765 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1766 	enum ice_status status = ICE_ERR_MAX_LIMIT;
1767 	struct ice_buf_build *bld;
1768 
1769 	mutex_lock(&hw->tnl_lock);
1770 
1771 	if (WARN_ON(!hw->tnl.tbl[index].valid ||
1772 		    hw->tnl.tbl[index].type != type ||
1773 		    hw->tnl.tbl[index].port != port)) {
1774 		status = ICE_ERR_OUT_OF_RANGE;
1775 		goto ice_destroy_tunnel_end;
1776 	}
1777 
1778 	bld = ice_pkg_buf_alloc(hw);
1779 	if (!bld) {
1780 		status = ICE_ERR_NO_MEMORY;
1781 		goto ice_destroy_tunnel_end;
1782 	}
1783 
1784 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1785 	if (ice_pkg_buf_reserve_section(bld, 2))
1786 		goto ice_destroy_tunnel_err;
1787 
1788 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1789 					    struct_size(sect_rx, tcam, 1));
1790 	if (!sect_rx)
1791 		goto ice_destroy_tunnel_err;
1792 	sect_rx->count = cpu_to_le16(1);
1793 
1794 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1795 					    struct_size(sect_tx, tcam, 1));
1796 	if (!sect_tx)
1797 		goto ice_destroy_tunnel_err;
1798 	sect_tx->count = cpu_to_le16(1);
1799 
1800 	/* copy original boost entry to update package buffer, one copy to Rx
1801 	 * section, another copy to the Tx section
1802 	 */
1803 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1804 	       sizeof(*sect_rx->tcam));
1805 	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
1806 	       sizeof(*sect_tx->tcam));
1807 
1808 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1809 	if (!status)
1810 		hw->tnl.tbl[index].port = 0;
1811 
1812 ice_destroy_tunnel_err:
1813 	ice_pkg_buf_free(hw, bld);
1814 
1815 ice_destroy_tunnel_end:
1816 	mutex_unlock(&hw->tnl_lock);
1817 
1818 	return status;
1819 }
1820 
1821 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
1822 			    unsigned int idx, struct udp_tunnel_info *ti)
1823 {
1824 	struct ice_netdev_priv *np = netdev_priv(netdev);
1825 	struct ice_vsi *vsi = np->vsi;
1826 	struct ice_pf *pf = vsi->back;
1827 	enum ice_tunnel_type tnl_type;
1828 	enum ice_status status;
1829 	u16 index;
1830 
1831 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1832 	index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type);
1833 
1834 	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
1835 	if (status) {
1836 		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
1837 			   ice_stat_str(status));
1838 		return -EIO;
1839 	}
1840 
1841 	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
1842 	return 0;
1843 }
1844 
1845 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
1846 			      unsigned int idx, struct udp_tunnel_info *ti)
1847 {
1848 	struct ice_netdev_priv *np = netdev_priv(netdev);
1849 	struct ice_vsi *vsi = np->vsi;
1850 	struct ice_pf *pf = vsi->back;
1851 	enum ice_tunnel_type tnl_type;
1852 	enum ice_status status;
1853 
1854 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1855 
1856 	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
1857 				    ntohs(ti->port));
1858 	if (status) {
1859 		netdev_err(netdev, "Error removing UDP tunnel - %s\n",
1860 			   ice_stat_str(status));
1861 		return -EIO;
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 /* PTG Management */
1868 
1869 /**
1870  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1871  * @hw: pointer to the hardware structure
1872  * @blk: HW block
1873  * @ptype: the ptype to search for
1874  * @ptg: pointer to variable that receives the PTG
1875  *
1876  * This function will search the PTGs for a particular ptype, returning the
1877  * PTG ID that contains it through the PTG parameter, with the value of
1878  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1879  */
1880 static enum ice_status
1881 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1882 {
1883 	if (ptype >= ICE_XLT1_CNT || !ptg)
1884 		return ICE_ERR_PARAM;
1885 
1886 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1887 	return 0;
1888 }
1889 
1890 /**
1891  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1892  * @hw: pointer to the hardware structure
1893  * @blk: HW block
1894  * @ptg: the PTG to allocate
1895  *
1896  * This function allocates a given packet type group ID specified by the PTG
1897  * parameter.
1898  */
1899 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1900 {
1901 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1902 }
1903 
1904 /**
1905  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1906  * @hw: pointer to the hardware structure
1907  * @blk: HW block
1908  * @ptype: the ptype to remove
1909  * @ptg: the PTG to remove the ptype from
1910  *
1911  * This function will remove the ptype from the specific PTG, and move it to
1912  * the default PTG (ICE_DEFAULT_PTG).
1913  */
1914 static enum ice_status
1915 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1916 {
1917 	struct ice_ptg_ptype **ch;
1918 	struct ice_ptg_ptype *p;
1919 
1920 	if (ptype > ICE_XLT1_CNT - 1)
1921 		return ICE_ERR_PARAM;
1922 
1923 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1924 		return ICE_ERR_DOES_NOT_EXIST;
1925 
1926 	/* Should not happen if .in_use is set, bad config */
1927 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1928 		return ICE_ERR_CFG;
1929 
1930 	/* find the ptype within this PTG, and bypass the link over it */
1931 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1932 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1933 	while (p) {
1934 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1935 			*ch = p->next_ptype;
1936 			break;
1937 		}
1938 
1939 		ch = &p->next_ptype;
1940 		p = p->next_ptype;
1941 	}
1942 
1943 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1944 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1951  * @hw: pointer to the hardware structure
1952  * @blk: HW block
1953  * @ptype: the ptype to add or move
1954  * @ptg: the PTG to add or move the ptype to
1955  *
1956  * This function will either add or move a ptype to a particular PTG depending
1957  * on if the ptype is already part of another group. Note that using a
1958  * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1959  * default PTG.
1960  */
1961 static enum ice_status
1962 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1963 {
1964 	enum ice_status status;
1965 	u8 original_ptg;
1966 
1967 	if (ptype > ICE_XLT1_CNT - 1)
1968 		return ICE_ERR_PARAM;
1969 
1970 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
1971 		return ICE_ERR_DOES_NOT_EXIST;
1972 
1973 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
1974 	if (status)
1975 		return status;
1976 
1977 	/* Is ptype already in the correct PTG? */
1978 	if (original_ptg == ptg)
1979 		return 0;
1980 
1981 	/* Remove from original PTG and move back to the default PTG */
1982 	if (original_ptg != ICE_DEFAULT_PTG)
1983 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
1984 
1985 	/* Moving to default PTG? Then we're done with this request */
1986 	if (ptg == ICE_DEFAULT_PTG)
1987 		return 0;
1988 
1989 	/* Add ptype to PTG at beginning of list */
1990 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
1991 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1992 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
1993 		&hw->blk[blk].xlt1.ptypes[ptype];
1994 
1995 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
1996 	hw->blk[blk].xlt1.t[ptype] = ptg;
1997 
1998 	return 0;
1999 }
2000 
2001 /* Block / table size info */
2002 struct ice_blk_size_details {
2003 	u16 xlt1;			/* # XLT1 entries */
2004 	u16 xlt2;			/* # XLT2 entries */
2005 	u16 prof_tcam;			/* # profile ID TCAM entries */
2006 	u16 prof_id;			/* # profile IDs */
2007 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2008 	u16 prof_redir;			/* # profile redirection entries */
2009 	u16 es;				/* # extraction sequence entries */
2010 	u16 fvw;			/* # field vector words */
2011 	u8 overwrite;			/* overwrite existing entries allowed */
2012 	u8 reverse;			/* reverse FV order */
2013 };
2014 
2015 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2016 	/**
2017 	 * Table Definitions
2018 	 * XLT1 - Number of entries in XLT1 table
2019 	 * XLT2 - Number of entries in XLT2 table
2020 	 * TCAM - Number of entries Profile ID TCAM table
2021 	 * CDID - Control Domain ID of the hardware block
2022 	 * PRED - Number of entries in the Profile Redirection Table
2023 	 * FV   - Number of entries in the Field Vector
2024 	 * FVW  - Width (in WORDs) of the Field Vector
2025 	 * OVR  - Overwrite existing table entries
2026 	 * REV  - Reverse FV
2027 	 */
2028 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2029 	/*          Overwrite   , Reverse FV */
2030 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2031 		    false, false },
2032 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2033 		    false, false },
2034 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2035 		    false, true  },
2036 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2037 		    true,  true  },
2038 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2039 		    false, false },
2040 };
2041 
2042 enum ice_sid_all {
2043 	ICE_SID_XLT1_OFF = 0,
2044 	ICE_SID_XLT2_OFF,
2045 	ICE_SID_PR_OFF,
2046 	ICE_SID_PR_REDIR_OFF,
2047 	ICE_SID_ES_OFF,
2048 	ICE_SID_OFF_COUNT,
2049 };
2050 
2051 /* Characteristic handling */
2052 
2053 /**
2054  * ice_match_prop_lst - determine if properties of two lists match
2055  * @list1: first properties list
2056  * @list2: second properties list
2057  *
2058  * Count, cookies and the order must match in order to be considered equivalent.
2059  */
2060 static bool
2061 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2062 {
2063 	struct ice_vsig_prof *tmp1;
2064 	struct ice_vsig_prof *tmp2;
2065 	u16 chk_count = 0;
2066 	u16 count = 0;
2067 
2068 	/* compare counts */
2069 	list_for_each_entry(tmp1, list1, list)
2070 		count++;
2071 	list_for_each_entry(tmp2, list2, list)
2072 		chk_count++;
2073 	if (!count || count != chk_count)
2074 		return false;
2075 
2076 	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2077 	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2078 
2079 	/* profile cookies must compare, and in the exact same order to take
2080 	 * into account priority
2081 	 */
2082 	while (count--) {
2083 		if (tmp2->profile_cookie != tmp1->profile_cookie)
2084 			return false;
2085 
2086 		tmp1 = list_next_entry(tmp1, list);
2087 		tmp2 = list_next_entry(tmp2, list);
2088 	}
2089 
2090 	return true;
2091 }
2092 
2093 /* VSIG Management */
2094 
2095 /**
2096  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2097  * @hw: pointer to the hardware structure
2098  * @blk: HW block
2099  * @vsi: VSI of interest
2100  * @vsig: pointer to receive the VSI group
2101  *
2102  * This function will lookup the VSI entry in the XLT2 list and return
2103  * the VSI group its associated with.
2104  */
2105 static enum ice_status
2106 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2107 {
2108 	if (!vsig || vsi >= ICE_MAX_VSI)
2109 		return ICE_ERR_PARAM;
2110 
2111 	/* As long as there's a default or valid VSIG associated with the input
2112 	 * VSI, the functions returns a success. Any handling of VSIG will be
2113 	 * done by the following add, update or remove functions.
2114 	 */
2115 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2116 
2117 	return 0;
2118 }
2119 
2120 /**
2121  * ice_vsig_alloc_val - allocate a new VSIG by value
2122  * @hw: pointer to the hardware structure
2123  * @blk: HW block
2124  * @vsig: the VSIG to allocate
2125  *
2126  * This function will allocate a given VSIG specified by the VSIG parameter.
2127  */
2128 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2129 {
2130 	u16 idx = vsig & ICE_VSIG_IDX_M;
2131 
2132 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2133 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2134 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2135 	}
2136 
2137 	return ICE_VSIG_VALUE(idx, hw->pf_id);
2138 }
2139 
2140 /**
2141  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2142  * @hw: pointer to the hardware structure
2143  * @blk: HW block
2144  *
2145  * This function will iterate through the VSIG list and mark the first
2146  * unused entry for the new VSIG entry as used and return that value.
2147  */
2148 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2149 {
2150 	u16 i;
2151 
2152 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2153 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2154 			return ice_vsig_alloc_val(hw, blk, i);
2155 
2156 	return ICE_DEFAULT_VSIG;
2157 }
2158 
2159 /**
2160  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2161  * @hw: pointer to the hardware structure
2162  * @blk: HW block
2163  * @chs: characteristic list
2164  * @vsig: returns the VSIG with the matching profiles, if found
2165  *
2166  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2167  * a group have the same characteristic set. To check if there exists a VSIG
2168  * which has the same characteristics as the input characteristics; this
2169  * function will iterate through the XLT2 list and return the VSIG that has a
2170  * matching configuration. In order to make sure that priorities are accounted
2171  * for, the list must match exactly, including the order in which the
2172  * characteristics are listed.
2173  */
2174 static enum ice_status
2175 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2176 			struct list_head *chs, u16 *vsig)
2177 {
2178 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2179 	u16 i;
2180 
2181 	for (i = 0; i < xlt2->count; i++)
2182 		if (xlt2->vsig_tbl[i].in_use &&
2183 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2184 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2185 			return 0;
2186 		}
2187 
2188 	return ICE_ERR_DOES_NOT_EXIST;
2189 }
2190 
2191 /**
2192  * ice_vsig_free - free VSI group
2193  * @hw: pointer to the hardware structure
2194  * @blk: HW block
2195  * @vsig: VSIG to remove
2196  *
2197  * The function will remove all VSIs associated with the input VSIG and move
2198  * them to the DEFAULT_VSIG and mark the VSIG available.
2199  */
2200 static enum ice_status
2201 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2202 {
2203 	struct ice_vsig_prof *dtmp, *del;
2204 	struct ice_vsig_vsi *vsi_cur;
2205 	u16 idx;
2206 
2207 	idx = vsig & ICE_VSIG_IDX_M;
2208 	if (idx >= ICE_MAX_VSIGS)
2209 		return ICE_ERR_PARAM;
2210 
2211 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2212 		return ICE_ERR_DOES_NOT_EXIST;
2213 
2214 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2215 
2216 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2217 	/* If the VSIG has at least 1 VSI then iterate through the
2218 	 * list and remove the VSIs before deleting the group.
2219 	 */
2220 	if (vsi_cur) {
2221 		/* remove all vsis associated with this VSIG XLT2 entry */
2222 		do {
2223 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2224 
2225 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2226 			vsi_cur->changed = 1;
2227 			vsi_cur->next_vsi = NULL;
2228 			vsi_cur = tmp;
2229 		} while (vsi_cur);
2230 
2231 		/* NULL terminate head of VSI list */
2232 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2233 	}
2234 
2235 	/* free characteristic list */
2236 	list_for_each_entry_safe(del, dtmp,
2237 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2238 				 list) {
2239 		list_del(&del->list);
2240 		devm_kfree(ice_hw_to_dev(hw), del);
2241 	}
2242 
2243 	/* if VSIG characteristic list was cleared for reset
2244 	 * re-initialize the list head
2245 	 */
2246 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2247 
2248 	return 0;
2249 }
2250 
2251 /**
2252  * ice_vsig_remove_vsi - remove VSI from VSIG
2253  * @hw: pointer to the hardware structure
2254  * @blk: HW block
2255  * @vsi: VSI to remove
2256  * @vsig: VSI group to remove from
2257  *
2258  * The function will remove the input VSI from its VSI group and move it
2259  * to the DEFAULT_VSIG.
2260  */
2261 static enum ice_status
2262 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2263 {
2264 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2265 	u16 idx;
2266 
2267 	idx = vsig & ICE_VSIG_IDX_M;
2268 
2269 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2270 		return ICE_ERR_PARAM;
2271 
2272 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2273 		return ICE_ERR_DOES_NOT_EXIST;
2274 
2275 	/* entry already in default VSIG, don't have to remove */
2276 	if (idx == ICE_DEFAULT_VSIG)
2277 		return 0;
2278 
2279 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2280 	if (!(*vsi_head))
2281 		return ICE_ERR_CFG;
2282 
2283 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2284 	vsi_cur = (*vsi_head);
2285 
2286 	/* iterate the VSI list, skip over the entry to be removed */
2287 	while (vsi_cur) {
2288 		if (vsi_tgt == vsi_cur) {
2289 			(*vsi_head) = vsi_cur->next_vsi;
2290 			break;
2291 		}
2292 		vsi_head = &vsi_cur->next_vsi;
2293 		vsi_cur = vsi_cur->next_vsi;
2294 	}
2295 
2296 	/* verify if VSI was removed from group list */
2297 	if (!vsi_cur)
2298 		return ICE_ERR_DOES_NOT_EXIST;
2299 
2300 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
2301 	vsi_cur->changed = 1;
2302 	vsi_cur->next_vsi = NULL;
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2309  * @hw: pointer to the hardware structure
2310  * @blk: HW block
2311  * @vsi: VSI to move
2312  * @vsig: destination VSI group
2313  *
2314  * This function will move or add the input VSI to the target VSIG.
2315  * The function will find the original VSIG the VSI belongs to and
2316  * move the entry to the DEFAULT_VSIG, update the original VSIG and
2317  * then move entry to the new VSIG.
2318  */
2319 static enum ice_status
2320 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2321 {
2322 	struct ice_vsig_vsi *tmp;
2323 	enum ice_status status;
2324 	u16 orig_vsig, idx;
2325 
2326 	idx = vsig & ICE_VSIG_IDX_M;
2327 
2328 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2329 		return ICE_ERR_PARAM;
2330 
2331 	/* if VSIG not in use and VSIG is not default type this VSIG
2332 	 * doesn't exist.
2333 	 */
2334 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2335 	    vsig != ICE_DEFAULT_VSIG)
2336 		return ICE_ERR_DOES_NOT_EXIST;
2337 
2338 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2339 	if (status)
2340 		return status;
2341 
2342 	/* no update required if vsigs match */
2343 	if (orig_vsig == vsig)
2344 		return 0;
2345 
2346 	if (orig_vsig != ICE_DEFAULT_VSIG) {
2347 		/* remove entry from orig_vsig and add to default VSIG */
2348 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2349 		if (status)
2350 			return status;
2351 	}
2352 
2353 	if (idx == ICE_DEFAULT_VSIG)
2354 		return 0;
2355 
2356 	/* Create VSI entry and add VSIG and prop_mask values */
2357 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2358 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2359 
2360 	/* Add new entry to the head of the VSIG list */
2361 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2362 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2363 		&hw->blk[blk].xlt2.vsis[vsi];
2364 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2365 	hw->blk[blk].xlt2.t[vsi] = vsig;
2366 
2367 	return 0;
2368 }
2369 
2370 /**
2371  * ice_find_prof_id - find profile ID for a given field vector
2372  * @hw: pointer to the hardware structure
2373  * @blk: HW block
2374  * @fv: field vector to search for
2375  * @prof_id: receives the profile ID
2376  */
2377 static enum ice_status
2378 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
2379 		 struct ice_fv_word *fv, u8 *prof_id)
2380 {
2381 	struct ice_es *es = &hw->blk[blk].es;
2382 	u16 off;
2383 	u8 i;
2384 
2385 	/* For FD, we don't want to re-use a existed profile with the same
2386 	 * field vector and mask. This will cause rule interference.
2387 	 */
2388 	if (blk == ICE_BLK_FD)
2389 		return ICE_ERR_DOES_NOT_EXIST;
2390 
2391 	for (i = 0; i < (u8)es->count; i++) {
2392 		off = i * es->fvw;
2393 
2394 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2395 			continue;
2396 
2397 		*prof_id = i;
2398 		return 0;
2399 	}
2400 
2401 	return ICE_ERR_DOES_NOT_EXIST;
2402 }
2403 
2404 /**
2405  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2406  * @blk: the block type
2407  * @rsrc_type: pointer to variable to receive the resource type
2408  */
2409 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2410 {
2411 	switch (blk) {
2412 	case ICE_BLK_FD:
2413 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2414 		break;
2415 	case ICE_BLK_RSS:
2416 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2417 		break;
2418 	default:
2419 		return false;
2420 	}
2421 	return true;
2422 }
2423 
2424 /**
2425  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2426  * @blk: the block type
2427  * @rsrc_type: pointer to variable to receive the resource type
2428  */
2429 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2430 {
2431 	switch (blk) {
2432 	case ICE_BLK_FD:
2433 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2434 		break;
2435 	case ICE_BLK_RSS:
2436 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2437 		break;
2438 	default:
2439 		return false;
2440 	}
2441 	return true;
2442 }
2443 
2444 /**
2445  * ice_alloc_tcam_ent - allocate hardware TCAM entry
2446  * @hw: pointer to the HW struct
2447  * @blk: the block to allocate the TCAM for
2448  * @tcam_idx: pointer to variable to receive the TCAM entry
2449  *
2450  * This function allocates a new entry in a Profile ID TCAM for a specific
2451  * block.
2452  */
2453 static enum ice_status
2454 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx)
2455 {
2456 	u16 res_type;
2457 
2458 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2459 		return ICE_ERR_PARAM;
2460 
2461 	return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx);
2462 }
2463 
2464 /**
2465  * ice_free_tcam_ent - free hardware TCAM entry
2466  * @hw: pointer to the HW struct
2467  * @blk: the block from which to free the TCAM entry
2468  * @tcam_idx: the TCAM entry to free
2469  *
2470  * This function frees an entry in a Profile ID TCAM for a specific block.
2471  */
2472 static enum ice_status
2473 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2474 {
2475 	u16 res_type;
2476 
2477 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2478 		return ICE_ERR_PARAM;
2479 
2480 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2481 }
2482 
2483 /**
2484  * ice_alloc_prof_id - allocate profile ID
2485  * @hw: pointer to the HW struct
2486  * @blk: the block to allocate the profile ID for
2487  * @prof_id: pointer to variable to receive the profile ID
2488  *
2489  * This function allocates a new profile ID, which also corresponds to a Field
2490  * Vector (Extraction Sequence) entry.
2491  */
2492 static enum ice_status
2493 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2494 {
2495 	enum ice_status status;
2496 	u16 res_type;
2497 	u16 get_prof;
2498 
2499 	if (!ice_prof_id_rsrc_type(blk, &res_type))
2500 		return ICE_ERR_PARAM;
2501 
2502 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2503 	if (!status)
2504 		*prof_id = (u8)get_prof;
2505 
2506 	return status;
2507 }
2508 
2509 /**
2510  * ice_free_prof_id - free profile ID
2511  * @hw: pointer to the HW struct
2512  * @blk: the block from which to free the profile ID
2513  * @prof_id: the profile ID to free
2514  *
2515  * This function frees a profile ID, which also corresponds to a Field Vector.
2516  */
2517 static enum ice_status
2518 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2519 {
2520 	u16 tmp_prof_id = (u16)prof_id;
2521 	u16 res_type;
2522 
2523 	if (!ice_prof_id_rsrc_type(blk, &res_type))
2524 		return ICE_ERR_PARAM;
2525 
2526 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2527 }
2528 
2529 /**
2530  * ice_prof_inc_ref - increment reference count for profile
2531  * @hw: pointer to the HW struct
2532  * @blk: the block from which to free the profile ID
2533  * @prof_id: the profile ID for which to increment the reference count
2534  */
2535 static enum ice_status
2536 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2537 {
2538 	if (prof_id > hw->blk[blk].es.count)
2539 		return ICE_ERR_PARAM;
2540 
2541 	hw->blk[blk].es.ref_count[prof_id]++;
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * ice_write_es - write an extraction sequence to hardware
2548  * @hw: pointer to the HW struct
2549  * @blk: the block in which to write the extraction sequence
2550  * @prof_id: the profile ID to write
2551  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2552  */
2553 static void
2554 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2555 	     struct ice_fv_word *fv)
2556 {
2557 	u16 off;
2558 
2559 	off = prof_id * hw->blk[blk].es.fvw;
2560 	if (!fv) {
2561 		memset(&hw->blk[blk].es.t[off], 0,
2562 		       hw->blk[blk].es.fvw * sizeof(*fv));
2563 		hw->blk[blk].es.written[prof_id] = false;
2564 	} else {
2565 		memcpy(&hw->blk[blk].es.t[off], fv,
2566 		       hw->blk[blk].es.fvw * sizeof(*fv));
2567 	}
2568 }
2569 
2570 /**
2571  * ice_prof_dec_ref - decrement reference count for profile
2572  * @hw: pointer to the HW struct
2573  * @blk: the block from which to free the profile ID
2574  * @prof_id: the profile ID for which to decrement the reference count
2575  */
2576 static enum ice_status
2577 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2578 {
2579 	if (prof_id > hw->blk[blk].es.count)
2580 		return ICE_ERR_PARAM;
2581 
2582 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2583 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
2584 			ice_write_es(hw, blk, prof_id, NULL);
2585 			return ice_free_prof_id(hw, blk, prof_id);
2586 		}
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 /* Block / table section IDs */
2593 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2594 	/* SWITCH */
2595 	{	ICE_SID_XLT1_SW,
2596 		ICE_SID_XLT2_SW,
2597 		ICE_SID_PROFID_TCAM_SW,
2598 		ICE_SID_PROFID_REDIR_SW,
2599 		ICE_SID_FLD_VEC_SW
2600 	},
2601 
2602 	/* ACL */
2603 	{	ICE_SID_XLT1_ACL,
2604 		ICE_SID_XLT2_ACL,
2605 		ICE_SID_PROFID_TCAM_ACL,
2606 		ICE_SID_PROFID_REDIR_ACL,
2607 		ICE_SID_FLD_VEC_ACL
2608 	},
2609 
2610 	/* FD */
2611 	{	ICE_SID_XLT1_FD,
2612 		ICE_SID_XLT2_FD,
2613 		ICE_SID_PROFID_TCAM_FD,
2614 		ICE_SID_PROFID_REDIR_FD,
2615 		ICE_SID_FLD_VEC_FD
2616 	},
2617 
2618 	/* RSS */
2619 	{	ICE_SID_XLT1_RSS,
2620 		ICE_SID_XLT2_RSS,
2621 		ICE_SID_PROFID_TCAM_RSS,
2622 		ICE_SID_PROFID_REDIR_RSS,
2623 		ICE_SID_FLD_VEC_RSS
2624 	},
2625 
2626 	/* PE */
2627 	{	ICE_SID_XLT1_PE,
2628 		ICE_SID_XLT2_PE,
2629 		ICE_SID_PROFID_TCAM_PE,
2630 		ICE_SID_PROFID_REDIR_PE,
2631 		ICE_SID_FLD_VEC_PE
2632 	}
2633 };
2634 
2635 /**
2636  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
2637  * @hw: pointer to the hardware structure
2638  * @blk: the HW block to initialize
2639  */
2640 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
2641 {
2642 	u16 pt;
2643 
2644 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
2645 		u8 ptg;
2646 
2647 		ptg = hw->blk[blk].xlt1.t[pt];
2648 		if (ptg != ICE_DEFAULT_PTG) {
2649 			ice_ptg_alloc_val(hw, blk, ptg);
2650 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
2651 		}
2652 	}
2653 }
2654 
2655 /**
2656  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
2657  * @hw: pointer to the hardware structure
2658  * @blk: the HW block to initialize
2659  */
2660 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
2661 {
2662 	u16 vsi;
2663 
2664 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
2665 		u16 vsig;
2666 
2667 		vsig = hw->blk[blk].xlt2.t[vsi];
2668 		if (vsig) {
2669 			ice_vsig_alloc_val(hw, blk, vsig);
2670 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
2671 			/* no changes at this time, since this has been
2672 			 * initialized from the original package
2673 			 */
2674 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2675 		}
2676 	}
2677 }
2678 
2679 /**
2680  * ice_init_sw_db - init software database from HW tables
2681  * @hw: pointer to the hardware structure
2682  */
2683 static void ice_init_sw_db(struct ice_hw *hw)
2684 {
2685 	u16 i;
2686 
2687 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2688 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
2689 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
2690 	}
2691 }
2692 
2693 /**
2694  * ice_fill_tbl - Reads content of a single table type into database
2695  * @hw: pointer to the hardware structure
2696  * @block_id: Block ID of the table to copy
2697  * @sid: Section ID of the table to copy
2698  *
2699  * Will attempt to read the entire content of a given table of a single block
2700  * into the driver database. We assume that the buffer will always
2701  * be as large or larger than the data contained in the package. If
2702  * this condition is not met, there is most likely an error in the package
2703  * contents.
2704  */
2705 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
2706 {
2707 	u32 dst_len, sect_len, offset = 0;
2708 	struct ice_prof_redir_section *pr;
2709 	struct ice_prof_id_section *pid;
2710 	struct ice_xlt1_section *xlt1;
2711 	struct ice_xlt2_section *xlt2;
2712 	struct ice_sw_fv_section *es;
2713 	struct ice_pkg_enum state;
2714 	u8 *src, *dst;
2715 	void *sect;
2716 
2717 	/* if the HW segment pointer is null then the first iteration of
2718 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
2719 	 * not be filled and return success.
2720 	 */
2721 	if (!hw->seg) {
2722 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
2723 		return;
2724 	}
2725 
2726 	memset(&state, 0, sizeof(state));
2727 
2728 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
2729 
2730 	while (sect) {
2731 		switch (sid) {
2732 		case ICE_SID_XLT1_SW:
2733 		case ICE_SID_XLT1_FD:
2734 		case ICE_SID_XLT1_RSS:
2735 		case ICE_SID_XLT1_ACL:
2736 		case ICE_SID_XLT1_PE:
2737 			xlt1 = (struct ice_xlt1_section *)sect;
2738 			src = xlt1->value;
2739 			sect_len = le16_to_cpu(xlt1->count) *
2740 				sizeof(*hw->blk[block_id].xlt1.t);
2741 			dst = hw->blk[block_id].xlt1.t;
2742 			dst_len = hw->blk[block_id].xlt1.count *
2743 				sizeof(*hw->blk[block_id].xlt1.t);
2744 			break;
2745 		case ICE_SID_XLT2_SW:
2746 		case ICE_SID_XLT2_FD:
2747 		case ICE_SID_XLT2_RSS:
2748 		case ICE_SID_XLT2_ACL:
2749 		case ICE_SID_XLT2_PE:
2750 			xlt2 = (struct ice_xlt2_section *)sect;
2751 			src = (__force u8 *)xlt2->value;
2752 			sect_len = le16_to_cpu(xlt2->count) *
2753 				sizeof(*hw->blk[block_id].xlt2.t);
2754 			dst = (u8 *)hw->blk[block_id].xlt2.t;
2755 			dst_len = hw->blk[block_id].xlt2.count *
2756 				sizeof(*hw->blk[block_id].xlt2.t);
2757 			break;
2758 		case ICE_SID_PROFID_TCAM_SW:
2759 		case ICE_SID_PROFID_TCAM_FD:
2760 		case ICE_SID_PROFID_TCAM_RSS:
2761 		case ICE_SID_PROFID_TCAM_ACL:
2762 		case ICE_SID_PROFID_TCAM_PE:
2763 			pid = (struct ice_prof_id_section *)sect;
2764 			src = (u8 *)pid->entry;
2765 			sect_len = le16_to_cpu(pid->count) *
2766 				sizeof(*hw->blk[block_id].prof.t);
2767 			dst = (u8 *)hw->blk[block_id].prof.t;
2768 			dst_len = hw->blk[block_id].prof.count *
2769 				sizeof(*hw->blk[block_id].prof.t);
2770 			break;
2771 		case ICE_SID_PROFID_REDIR_SW:
2772 		case ICE_SID_PROFID_REDIR_FD:
2773 		case ICE_SID_PROFID_REDIR_RSS:
2774 		case ICE_SID_PROFID_REDIR_ACL:
2775 		case ICE_SID_PROFID_REDIR_PE:
2776 			pr = (struct ice_prof_redir_section *)sect;
2777 			src = pr->redir_value;
2778 			sect_len = le16_to_cpu(pr->count) *
2779 				sizeof(*hw->blk[block_id].prof_redir.t);
2780 			dst = hw->blk[block_id].prof_redir.t;
2781 			dst_len = hw->blk[block_id].prof_redir.count *
2782 				sizeof(*hw->blk[block_id].prof_redir.t);
2783 			break;
2784 		case ICE_SID_FLD_VEC_SW:
2785 		case ICE_SID_FLD_VEC_FD:
2786 		case ICE_SID_FLD_VEC_RSS:
2787 		case ICE_SID_FLD_VEC_ACL:
2788 		case ICE_SID_FLD_VEC_PE:
2789 			es = (struct ice_sw_fv_section *)sect;
2790 			src = (u8 *)es->fv;
2791 			sect_len = (u32)(le16_to_cpu(es->count) *
2792 					 hw->blk[block_id].es.fvw) *
2793 				sizeof(*hw->blk[block_id].es.t);
2794 			dst = (u8 *)hw->blk[block_id].es.t;
2795 			dst_len = (u32)(hw->blk[block_id].es.count *
2796 					hw->blk[block_id].es.fvw) *
2797 				sizeof(*hw->blk[block_id].es.t);
2798 			break;
2799 		default:
2800 			return;
2801 		}
2802 
2803 		/* if the section offset exceeds destination length, terminate
2804 		 * table fill.
2805 		 */
2806 		if (offset > dst_len)
2807 			return;
2808 
2809 		/* if the sum of section size and offset exceed destination size
2810 		 * then we are out of bounds of the HW table size for that PF.
2811 		 * Changing section length to fill the remaining table space
2812 		 * of that PF.
2813 		 */
2814 		if ((offset + sect_len) > dst_len)
2815 			sect_len = dst_len - offset;
2816 
2817 		memcpy(dst + offset, src, sect_len);
2818 		offset += sect_len;
2819 		sect = ice_pkg_enum_section(NULL, &state, sid);
2820 	}
2821 }
2822 
2823 /**
2824  * ice_fill_blk_tbls - Read package context for tables
2825  * @hw: pointer to the hardware structure
2826  *
2827  * Reads the current package contents and populates the driver
2828  * database with the data iteratively for all advanced feature
2829  * blocks. Assume that the HW tables have been allocated.
2830  */
2831 void ice_fill_blk_tbls(struct ice_hw *hw)
2832 {
2833 	u8 i;
2834 
2835 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2836 		enum ice_block blk_id = (enum ice_block)i;
2837 
2838 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2839 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2840 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2841 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2842 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2843 	}
2844 
2845 	ice_init_sw_db(hw);
2846 }
2847 
2848 /**
2849  * ice_free_prof_map - free profile map
2850  * @hw: pointer to the hardware structure
2851  * @blk_idx: HW block index
2852  */
2853 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2854 {
2855 	struct ice_es *es = &hw->blk[blk_idx].es;
2856 	struct ice_prof_map *del, *tmp;
2857 
2858 	mutex_lock(&es->prof_map_lock);
2859 	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2860 		list_del(&del->list);
2861 		devm_kfree(ice_hw_to_dev(hw), del);
2862 	}
2863 	INIT_LIST_HEAD(&es->prof_map);
2864 	mutex_unlock(&es->prof_map_lock);
2865 }
2866 
2867 /**
2868  * ice_free_flow_profs - free flow profile entries
2869  * @hw: pointer to the hardware structure
2870  * @blk_idx: HW block index
2871  */
2872 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2873 {
2874 	struct ice_flow_prof *p, *tmp;
2875 
2876 	mutex_lock(&hw->fl_profs_locks[blk_idx]);
2877 	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2878 		struct ice_flow_entry *e, *t;
2879 
2880 		list_for_each_entry_safe(e, t, &p->entries, l_entry)
2881 			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2882 					   ICE_FLOW_ENTRY_HNDL(e));
2883 
2884 		list_del(&p->l_entry);
2885 
2886 		mutex_destroy(&p->entries_lock);
2887 		devm_kfree(ice_hw_to_dev(hw), p);
2888 	}
2889 	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2890 
2891 	/* if driver is in reset and tables are being cleared
2892 	 * re-initialize the flow profile list heads
2893 	 */
2894 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2895 }
2896 
2897 /**
2898  * ice_free_vsig_tbl - free complete VSIG table entries
2899  * @hw: pointer to the hardware structure
2900  * @blk: the HW block on which to free the VSIG table entries
2901  */
2902 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2903 {
2904 	u16 i;
2905 
2906 	if (!hw->blk[blk].xlt2.vsig_tbl)
2907 		return;
2908 
2909 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2910 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2911 			ice_vsig_free(hw, blk, i);
2912 }
2913 
2914 /**
2915  * ice_free_hw_tbls - free hardware table memory
2916  * @hw: pointer to the hardware structure
2917  */
2918 void ice_free_hw_tbls(struct ice_hw *hw)
2919 {
2920 	struct ice_rss_cfg *r, *rt;
2921 	u8 i;
2922 
2923 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2924 		if (hw->blk[i].is_list_init) {
2925 			struct ice_es *es = &hw->blk[i].es;
2926 
2927 			ice_free_prof_map(hw, i);
2928 			mutex_destroy(&es->prof_map_lock);
2929 
2930 			ice_free_flow_profs(hw, i);
2931 			mutex_destroy(&hw->fl_profs_locks[i]);
2932 
2933 			hw->blk[i].is_list_init = false;
2934 		}
2935 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2936 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2937 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2938 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2939 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2940 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2941 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2942 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2943 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2944 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2945 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2946 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2947 	}
2948 
2949 	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2950 		list_del(&r->l_entry);
2951 		devm_kfree(ice_hw_to_dev(hw), r);
2952 	}
2953 	mutex_destroy(&hw->rss_locks);
2954 	memset(hw->blk, 0, sizeof(hw->blk));
2955 }
2956 
2957 /**
2958  * ice_init_flow_profs - init flow profile locks and list heads
2959  * @hw: pointer to the hardware structure
2960  * @blk_idx: HW block index
2961  */
2962 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2963 {
2964 	mutex_init(&hw->fl_profs_locks[blk_idx]);
2965 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2966 }
2967 
2968 /**
2969  * ice_clear_hw_tbls - clear HW tables and flow profiles
2970  * @hw: pointer to the hardware structure
2971  */
2972 void ice_clear_hw_tbls(struct ice_hw *hw)
2973 {
2974 	u8 i;
2975 
2976 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2977 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2978 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2979 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2980 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2981 		struct ice_es *es = &hw->blk[i].es;
2982 
2983 		if (hw->blk[i].is_list_init) {
2984 			ice_free_prof_map(hw, i);
2985 			ice_free_flow_profs(hw, i);
2986 		}
2987 
2988 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2989 
2990 		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2991 		memset(xlt1->ptg_tbl, 0,
2992 		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2993 		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2994 
2995 		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2996 		memset(xlt2->vsig_tbl, 0,
2997 		       xlt2->count * sizeof(*xlt2->vsig_tbl));
2998 		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2999 
3000 		memset(prof->t, 0, prof->count * sizeof(*prof->t));
3001 		memset(prof_redir->t, 0,
3002 		       prof_redir->count * sizeof(*prof_redir->t));
3003 
3004 		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
3005 		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
3006 		memset(es->written, 0, es->count * sizeof(*es->written));
3007 	}
3008 }
3009 
3010 /**
3011  * ice_init_hw_tbls - init hardware table memory
3012  * @hw: pointer to the hardware structure
3013  */
3014 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3015 {
3016 	u8 i;
3017 
3018 	mutex_init(&hw->rss_locks);
3019 	INIT_LIST_HEAD(&hw->rss_list_head);
3020 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3021 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3022 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3023 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3024 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3025 		struct ice_es *es = &hw->blk[i].es;
3026 		u16 j;
3027 
3028 		if (hw->blk[i].is_list_init)
3029 			continue;
3030 
3031 		ice_init_flow_profs(hw, i);
3032 		mutex_init(&es->prof_map_lock);
3033 		INIT_LIST_HEAD(&es->prof_map);
3034 		hw->blk[i].is_list_init = true;
3035 
3036 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3037 		es->reverse = blk_sizes[i].reverse;
3038 
3039 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3040 		xlt1->count = blk_sizes[i].xlt1;
3041 
3042 		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3043 					    sizeof(*xlt1->ptypes), GFP_KERNEL);
3044 
3045 		if (!xlt1->ptypes)
3046 			goto err;
3047 
3048 		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
3049 					     sizeof(*xlt1->ptg_tbl),
3050 					     GFP_KERNEL);
3051 
3052 		if (!xlt1->ptg_tbl)
3053 			goto err;
3054 
3055 		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3056 				       sizeof(*xlt1->t), GFP_KERNEL);
3057 		if (!xlt1->t)
3058 			goto err;
3059 
3060 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3061 		xlt2->count = blk_sizes[i].xlt2;
3062 
3063 		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3064 					  sizeof(*xlt2->vsis), GFP_KERNEL);
3065 
3066 		if (!xlt2->vsis)
3067 			goto err;
3068 
3069 		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3070 					      sizeof(*xlt2->vsig_tbl),
3071 					      GFP_KERNEL);
3072 		if (!xlt2->vsig_tbl)
3073 			goto err;
3074 
3075 		for (j = 0; j < xlt2->count; j++)
3076 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3077 
3078 		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3079 				       sizeof(*xlt2->t), GFP_KERNEL);
3080 		if (!xlt2->t)
3081 			goto err;
3082 
3083 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3084 		prof->count = blk_sizes[i].prof_tcam;
3085 		prof->max_prof_id = blk_sizes[i].prof_id;
3086 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3087 		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
3088 				       sizeof(*prof->t), GFP_KERNEL);
3089 
3090 		if (!prof->t)
3091 			goto err;
3092 
3093 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3094 		prof_redir->count = blk_sizes[i].prof_redir;
3095 		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
3096 					     prof_redir->count,
3097 					     sizeof(*prof_redir->t),
3098 					     GFP_KERNEL);
3099 
3100 		if (!prof_redir->t)
3101 			goto err;
3102 
3103 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3104 		es->count = blk_sizes[i].es;
3105 		es->fvw = blk_sizes[i].fvw;
3106 		es->t = devm_kcalloc(ice_hw_to_dev(hw),
3107 				     (u32)(es->count * es->fvw),
3108 				     sizeof(*es->t), GFP_KERNEL);
3109 		if (!es->t)
3110 			goto err;
3111 
3112 		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3113 					     sizeof(*es->ref_count),
3114 					     GFP_KERNEL);
3115 		if (!es->ref_count)
3116 			goto err;
3117 
3118 		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3119 					   sizeof(*es->written), GFP_KERNEL);
3120 		if (!es->written)
3121 			goto err;
3122 	}
3123 	return 0;
3124 
3125 err:
3126 	ice_free_hw_tbls(hw);
3127 	return ICE_ERR_NO_MEMORY;
3128 }
3129 
3130 /**
3131  * ice_prof_gen_key - generate profile ID key
3132  * @hw: pointer to the HW struct
3133  * @blk: the block in which to write profile ID to
3134  * @ptg: packet type group (PTG) portion of key
3135  * @vsig: VSIG portion of key
3136  * @cdid: CDID portion of key
3137  * @flags: flag portion of key
3138  * @vl_msk: valid mask
3139  * @dc_msk: don't care mask
3140  * @nm_msk: never match mask
3141  * @key: output of profile ID key
3142  */
3143 static enum ice_status
3144 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3145 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3146 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3147 		 u8 key[ICE_TCAM_KEY_SZ])
3148 {
3149 	struct ice_prof_id_key inkey;
3150 
3151 	inkey.xlt1 = ptg;
3152 	inkey.xlt2_cdid = cpu_to_le16(vsig);
3153 	inkey.flags = cpu_to_le16(flags);
3154 
3155 	switch (hw->blk[blk].prof.cdid_bits) {
3156 	case 0:
3157 		break;
3158 	case 2:
3159 #define ICE_CD_2_M 0xC000U
3160 #define ICE_CD_2_S 14
3161 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
3162 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
3163 		break;
3164 	case 4:
3165 #define ICE_CD_4_M 0xF000U
3166 #define ICE_CD_4_S 12
3167 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
3168 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
3169 		break;
3170 	case 8:
3171 #define ICE_CD_8_M 0xFF00U
3172 #define ICE_CD_8_S 16
3173 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
3174 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
3175 		break;
3176 	default:
3177 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3178 		break;
3179 	}
3180 
3181 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3182 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3183 }
3184 
3185 /**
3186  * ice_tcam_write_entry - write TCAM entry
3187  * @hw: pointer to the HW struct
3188  * @blk: the block in which to write profile ID to
3189  * @idx: the entry index to write to
3190  * @prof_id: profile ID
3191  * @ptg: packet type group (PTG) portion of key
3192  * @vsig: VSIG portion of key
3193  * @cdid: CDID portion of key
3194  * @flags: flag portion of key
3195  * @vl_msk: valid mask
3196  * @dc_msk: don't care mask
3197  * @nm_msk: never match mask
3198  */
3199 static enum ice_status
3200 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3201 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3202 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3203 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3204 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3205 {
3206 	struct ice_prof_tcam_entry;
3207 	enum ice_status status;
3208 
3209 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3210 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3211 	if (!status) {
3212 		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
3213 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3214 	}
3215 
3216 	return status;
3217 }
3218 
3219 /**
3220  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3221  * @hw: pointer to the hardware structure
3222  * @blk: HW block
3223  * @vsig: VSIG to query
3224  * @refs: pointer to variable to receive the reference count
3225  */
3226 static enum ice_status
3227 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3228 {
3229 	u16 idx = vsig & ICE_VSIG_IDX_M;
3230 	struct ice_vsig_vsi *ptr;
3231 
3232 	*refs = 0;
3233 
3234 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3235 		return ICE_ERR_DOES_NOT_EXIST;
3236 
3237 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3238 	while (ptr) {
3239 		(*refs)++;
3240 		ptr = ptr->next_vsi;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 /**
3247  * ice_has_prof_vsig - check to see if VSIG has a specific profile
3248  * @hw: pointer to the hardware structure
3249  * @blk: HW block
3250  * @vsig: VSIG to check against
3251  * @hdl: profile handle
3252  */
3253 static bool
3254 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3255 {
3256 	u16 idx = vsig & ICE_VSIG_IDX_M;
3257 	struct ice_vsig_prof *ent;
3258 
3259 	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3260 			    list)
3261 		if (ent->profile_cookie == hdl)
3262 			return true;
3263 
3264 	ice_debug(hw, ICE_DBG_INIT,
3265 		  "Characteristic list for VSI group %d not found.\n",
3266 		  vsig);
3267 	return false;
3268 }
3269 
3270 /**
3271  * ice_prof_bld_es - build profile ID extraction sequence changes
3272  * @hw: pointer to the HW struct
3273  * @blk: hardware block
3274  * @bld: the update package buffer build to add to
3275  * @chgs: the list of changes to make in hardware
3276  */
3277 static enum ice_status
3278 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3279 		struct ice_buf_build *bld, struct list_head *chgs)
3280 {
3281 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3282 	struct ice_chs_chg *tmp;
3283 
3284 	list_for_each_entry(tmp, chgs, list_entry)
3285 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3286 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3287 			struct ice_pkg_es *p;
3288 			u32 id;
3289 
3290 			id = ice_sect_id(blk, ICE_VEC_TBL);
3291 			p = ice_pkg_buf_alloc_section(bld, id,
3292 						      struct_size(p, es, 1) +
3293 						      vec_size -
3294 						      sizeof(p->es[0]));
3295 
3296 			if (!p)
3297 				return ICE_ERR_MAX_LIMIT;
3298 
3299 			p->count = cpu_to_le16(1);
3300 			p->offset = cpu_to_le16(tmp->prof_id);
3301 
3302 			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
3303 		}
3304 
3305 	return 0;
3306 }
3307 
3308 /**
3309  * ice_prof_bld_tcam - build profile ID TCAM changes
3310  * @hw: pointer to the HW struct
3311  * @blk: hardware block
3312  * @bld: the update package buffer build to add to
3313  * @chgs: the list of changes to make in hardware
3314  */
3315 static enum ice_status
3316 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3317 		  struct ice_buf_build *bld, struct list_head *chgs)
3318 {
3319 	struct ice_chs_chg *tmp;
3320 
3321 	list_for_each_entry(tmp, chgs, list_entry)
3322 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3323 			struct ice_prof_id_section *p;
3324 			u32 id;
3325 
3326 			id = ice_sect_id(blk, ICE_PROF_TCAM);
3327 			p = ice_pkg_buf_alloc_section(bld, id,
3328 						      struct_size(p, entry, 1));
3329 
3330 			if (!p)
3331 				return ICE_ERR_MAX_LIMIT;
3332 
3333 			p->count = cpu_to_le16(1);
3334 			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
3335 			p->entry[0].prof_id = tmp->prof_id;
3336 
3337 			memcpy(p->entry[0].key,
3338 			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3339 			       sizeof(hw->blk[blk].prof.t->key));
3340 		}
3341 
3342 	return 0;
3343 }
3344 
3345 /**
3346  * ice_prof_bld_xlt1 - build XLT1 changes
3347  * @blk: hardware block
3348  * @bld: the update package buffer build to add to
3349  * @chgs: the list of changes to make in hardware
3350  */
3351 static enum ice_status
3352 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3353 		  struct list_head *chgs)
3354 {
3355 	struct ice_chs_chg *tmp;
3356 
3357 	list_for_each_entry(tmp, chgs, list_entry)
3358 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3359 			struct ice_xlt1_section *p;
3360 			u32 id;
3361 
3362 			id = ice_sect_id(blk, ICE_XLT1);
3363 			p = ice_pkg_buf_alloc_section(bld, id,
3364 						      struct_size(p, value, 1));
3365 
3366 			if (!p)
3367 				return ICE_ERR_MAX_LIMIT;
3368 
3369 			p->count = cpu_to_le16(1);
3370 			p->offset = cpu_to_le16(tmp->ptype);
3371 			p->value[0] = tmp->ptg;
3372 		}
3373 
3374 	return 0;
3375 }
3376 
3377 /**
3378  * ice_prof_bld_xlt2 - build XLT2 changes
3379  * @blk: hardware block
3380  * @bld: the update package buffer build to add to
3381  * @chgs: the list of changes to make in hardware
3382  */
3383 static enum ice_status
3384 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3385 		  struct list_head *chgs)
3386 {
3387 	struct ice_chs_chg *tmp;
3388 
3389 	list_for_each_entry(tmp, chgs, list_entry) {
3390 		struct ice_xlt2_section *p;
3391 		u32 id;
3392 
3393 		switch (tmp->type) {
3394 		case ICE_VSIG_ADD:
3395 		case ICE_VSI_MOVE:
3396 		case ICE_VSIG_REM:
3397 			id = ice_sect_id(blk, ICE_XLT2);
3398 			p = ice_pkg_buf_alloc_section(bld, id,
3399 						      struct_size(p, value, 1));
3400 
3401 			if (!p)
3402 				return ICE_ERR_MAX_LIMIT;
3403 
3404 			p->count = cpu_to_le16(1);
3405 			p->offset = cpu_to_le16(tmp->vsi);
3406 			p->value[0] = cpu_to_le16(tmp->vsig);
3407 			break;
3408 		default:
3409 			break;
3410 		}
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 /**
3417  * ice_upd_prof_hw - update hardware using the change list
3418  * @hw: pointer to the HW struct
3419  * @blk: hardware block
3420  * @chgs: the list of changes to make in hardware
3421  */
3422 static enum ice_status
3423 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3424 		struct list_head *chgs)
3425 {
3426 	struct ice_buf_build *b;
3427 	struct ice_chs_chg *tmp;
3428 	enum ice_status status;
3429 	u16 pkg_sects;
3430 	u16 xlt1 = 0;
3431 	u16 xlt2 = 0;
3432 	u16 tcam = 0;
3433 	u16 es = 0;
3434 	u16 sects;
3435 
3436 	/* count number of sections we need */
3437 	list_for_each_entry(tmp, chgs, list_entry) {
3438 		switch (tmp->type) {
3439 		case ICE_PTG_ES_ADD:
3440 			if (tmp->add_ptg)
3441 				xlt1++;
3442 			if (tmp->add_prof)
3443 				es++;
3444 			break;
3445 		case ICE_TCAM_ADD:
3446 			tcam++;
3447 			break;
3448 		case ICE_VSIG_ADD:
3449 		case ICE_VSI_MOVE:
3450 		case ICE_VSIG_REM:
3451 			xlt2++;
3452 			break;
3453 		default:
3454 			break;
3455 		}
3456 	}
3457 	sects = xlt1 + xlt2 + tcam + es;
3458 
3459 	if (!sects)
3460 		return 0;
3461 
3462 	/* Build update package buffer */
3463 	b = ice_pkg_buf_alloc(hw);
3464 	if (!b)
3465 		return ICE_ERR_NO_MEMORY;
3466 
3467 	status = ice_pkg_buf_reserve_section(b, sects);
3468 	if (status)
3469 		goto error_tmp;
3470 
3471 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
3472 	if (es) {
3473 		status = ice_prof_bld_es(hw, blk, b, chgs);
3474 		if (status)
3475 			goto error_tmp;
3476 	}
3477 
3478 	if (tcam) {
3479 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
3480 		if (status)
3481 			goto error_tmp;
3482 	}
3483 
3484 	if (xlt1) {
3485 		status = ice_prof_bld_xlt1(blk, b, chgs);
3486 		if (status)
3487 			goto error_tmp;
3488 	}
3489 
3490 	if (xlt2) {
3491 		status = ice_prof_bld_xlt2(blk, b, chgs);
3492 		if (status)
3493 			goto error_tmp;
3494 	}
3495 
3496 	/* After package buffer build check if the section count in buffer is
3497 	 * non-zero and matches the number of sections detected for package
3498 	 * update.
3499 	 */
3500 	pkg_sects = ice_pkg_buf_get_active_sections(b);
3501 	if (!pkg_sects || pkg_sects != sects) {
3502 		status = ICE_ERR_INVAL_SIZE;
3503 		goto error_tmp;
3504 	}
3505 
3506 	/* update package */
3507 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3508 	if (status == ICE_ERR_AQ_ERROR)
3509 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
3510 
3511 error_tmp:
3512 	ice_pkg_buf_free(hw, b);
3513 	return status;
3514 }
3515 
3516 /**
3517  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3518  * @hw: pointer to the HW struct
3519  * @prof_id: profile ID
3520  * @mask_sel: mask select
3521  *
3522  * This function enable any of the masks selected by the mask select parameter
3523  * for the profile specified.
3524  */
3525 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3526 {
3527 	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3528 
3529 	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3530 		  GLQF_FDMASK_SEL(prof_id), mask_sel);
3531 }
3532 
3533 struct ice_fd_src_dst_pair {
3534 	u8 prot_id;
3535 	u8 count;
3536 	u16 off;
3537 };
3538 
3539 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3540 	/* These are defined in pairs */
3541 	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3542 	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3543 
3544 	{ ICE_PROT_IPV4_IL, 2, 12 },
3545 	{ ICE_PROT_IPV4_IL, 2, 16 },
3546 
3547 	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3548 	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3549 
3550 	{ ICE_PROT_IPV6_IL, 8, 8 },
3551 	{ ICE_PROT_IPV6_IL, 8, 24 },
3552 
3553 	{ ICE_PROT_TCP_IL, 1, 0 },
3554 	{ ICE_PROT_TCP_IL, 1, 2 },
3555 
3556 	{ ICE_PROT_UDP_OF, 1, 0 },
3557 	{ ICE_PROT_UDP_OF, 1, 2 },
3558 
3559 	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
3560 	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
3561 
3562 	{ ICE_PROT_SCTP_IL, 1, 0 },
3563 	{ ICE_PROT_SCTP_IL, 1, 2 }
3564 };
3565 
3566 #define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
3567 
3568 /**
3569  * ice_update_fd_swap - set register appropriately for a FD FV extraction
3570  * @hw: pointer to the HW struct
3571  * @prof_id: profile ID
3572  * @es: extraction sequence (length of array is determined by the block)
3573  */
3574 static enum ice_status
3575 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3576 {
3577 	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3578 	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3579 #define ICE_FD_FV_NOT_FOUND (-2)
3580 	s8 first_free = ICE_FD_FV_NOT_FOUND;
3581 	u8 used[ICE_MAX_FV_WORDS] = { 0 };
3582 	s8 orig_free, si;
3583 	u32 mask_sel = 0;
3584 	u8 i, j, k;
3585 
3586 	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3587 
3588 	/* This code assumes that the Flow Director field vectors are assigned
3589 	 * from the end of the FV indexes working towards the zero index, that
3590 	 * only complete fields will be included and will be consecutive, and
3591 	 * that there are no gaps between valid indexes.
3592 	 */
3593 
3594 	/* Determine swap fields present */
3595 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3596 		/* Find the first free entry, assuming right to left population.
3597 		 * This is where we can start adding additional pairs if needed.
3598 		 */
3599 		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
3600 		    ICE_PROT_INVALID)
3601 			first_free = i - 1;
3602 
3603 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3604 			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
3605 			    es[i].off == ice_fd_pairs[j].off) {
3606 				set_bit(j, pair_list);
3607 				pair_start[j] = i;
3608 			}
3609 	}
3610 
3611 	orig_free = first_free;
3612 
3613 	/* determine missing swap fields that need to be added */
3614 	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
3615 		u8 bit1 = test_bit(i + 1, pair_list);
3616 		u8 bit0 = test_bit(i, pair_list);
3617 
3618 		if (bit0 ^ bit1) {
3619 			u8 index;
3620 
3621 			/* add the appropriate 'paired' entry */
3622 			if (!bit0)
3623 				index = i;
3624 			else
3625 				index = i + 1;
3626 
3627 			/* check for room */
3628 			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
3629 				return ICE_ERR_MAX_LIMIT;
3630 
3631 			/* place in extraction sequence */
3632 			for (k = 0; k < ice_fd_pairs[index].count; k++) {
3633 				es[first_free - k].prot_id =
3634 					ice_fd_pairs[index].prot_id;
3635 				es[first_free - k].off =
3636 					ice_fd_pairs[index].off + (k * 2);
3637 
3638 				if (k > first_free)
3639 					return ICE_ERR_OUT_OF_RANGE;
3640 
3641 				/* keep track of non-relevant fields */
3642 				mask_sel |= BIT(first_free - k);
3643 			}
3644 
3645 			pair_start[index] = first_free;
3646 			first_free -= ice_fd_pairs[index].count;
3647 		}
3648 	}
3649 
3650 	/* fill in the swap array */
3651 	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
3652 	while (si >= 0) {
3653 		u8 indexes_used = 1;
3654 
3655 		/* assume flat at this index */
3656 #define ICE_SWAP_VALID	0x80
3657 		used[si] = si | ICE_SWAP_VALID;
3658 
3659 		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
3660 			si -= indexes_used;
3661 			continue;
3662 		}
3663 
3664 		/* check for a swap location */
3665 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3666 			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
3667 			    es[si].off == ice_fd_pairs[j].off) {
3668 				u8 idx;
3669 
3670 				/* determine the appropriate matching field */
3671 				idx = j + ((j % 2) ? -1 : 1);
3672 
3673 				indexes_used = ice_fd_pairs[idx].count;
3674 				for (k = 0; k < indexes_used; k++) {
3675 					used[si - k] = (pair_start[idx] - k) |
3676 						ICE_SWAP_VALID;
3677 				}
3678 
3679 				break;
3680 			}
3681 
3682 		si -= indexes_used;
3683 	}
3684 
3685 	/* for each set of 4 swap and 4 inset indexes, write the appropriate
3686 	 * register
3687 	 */
3688 	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
3689 		u32 raw_swap = 0;
3690 		u32 raw_in = 0;
3691 
3692 		for (k = 0; k < 4; k++) {
3693 			u8 idx;
3694 
3695 			idx = (j * 4) + k;
3696 			if (used[idx] && !(mask_sel & BIT(idx))) {
3697 				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
3698 #define ICE_INSET_DFLT 0x9f
3699 				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
3700 			}
3701 		}
3702 
3703 		/* write the appropriate swap register set */
3704 		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
3705 
3706 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
3707 			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
3708 
3709 		/* write the appropriate inset register set */
3710 		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
3711 
3712 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
3713 			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
3714 	}
3715 
3716 	/* initially clear the mask select for this profile */
3717 	ice_update_fd_mask(hw, prof_id, 0);
3718 
3719 	return 0;
3720 }
3721 
3722 /**
3723  * ice_add_prof - add profile
3724  * @hw: pointer to the HW struct
3725  * @blk: hardware block
3726  * @id: profile tracking ID
3727  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3728  * @es: extraction sequence (length of array is determined by the block)
3729  *
3730  * This function registers a profile, which matches a set of PTGs with a
3731  * particular extraction sequence. While the hardware profile is allocated
3732  * it will not be written until the first call to ice_add_flow that specifies
3733  * the ID value used here.
3734  */
3735 enum ice_status
3736 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3737 	     struct ice_fv_word *es)
3738 {
3739 	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3740 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3741 	struct ice_prof_map *prof;
3742 	enum ice_status status;
3743 	u8 byte = 0;
3744 	u8 prof_id;
3745 
3746 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3747 
3748 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3749 
3750 	/* search for existing profile */
3751 	status = ice_find_prof_id(hw, blk, es, &prof_id);
3752 	if (status) {
3753 		/* allocate profile ID */
3754 		status = ice_alloc_prof_id(hw, blk, &prof_id);
3755 		if (status)
3756 			goto err_ice_add_prof;
3757 		if (blk == ICE_BLK_FD) {
3758 			/* For Flow Director block, the extraction sequence may
3759 			 * need to be altered in the case where there are paired
3760 			 * fields that have no match. This is necessary because
3761 			 * for Flow Director, src and dest fields need to paired
3762 			 * for filter programming and these values are swapped
3763 			 * during Tx.
3764 			 */
3765 			status = ice_update_fd_swap(hw, prof_id, es);
3766 			if (status)
3767 				goto err_ice_add_prof;
3768 		}
3769 
3770 		/* and write new es */
3771 		ice_write_es(hw, blk, prof_id, es);
3772 	}
3773 
3774 	ice_prof_inc_ref(hw, blk, prof_id);
3775 
3776 	/* add profile info */
3777 	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3778 	if (!prof) {
3779 		status = ICE_ERR_NO_MEMORY;
3780 		goto err_ice_add_prof;
3781 	}
3782 
3783 	prof->profile_cookie = id;
3784 	prof->prof_id = prof_id;
3785 	prof->ptg_cnt = 0;
3786 	prof->context = 0;
3787 
3788 	/* build list of ptgs */
3789 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3790 		u8 bit;
3791 
3792 		if (!ptypes[byte]) {
3793 			bytes--;
3794 			byte++;
3795 			continue;
3796 		}
3797 
3798 		/* Examine 8 bits per byte */
3799 		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3800 				 BITS_PER_BYTE) {
3801 			u16 ptype;
3802 			u8 ptg;
3803 			u8 m;
3804 
3805 			ptype = byte * BITS_PER_BYTE + bit;
3806 
3807 			/* The package should place all ptypes in a non-zero
3808 			 * PTG, so the following call should never fail.
3809 			 */
3810 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3811 				continue;
3812 
3813 			/* If PTG is already added, skip and continue */
3814 			if (test_bit(ptg, ptgs_used))
3815 				continue;
3816 
3817 			set_bit(ptg, ptgs_used);
3818 			prof->ptg[prof->ptg_cnt] = ptg;
3819 
3820 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3821 				break;
3822 
3823 			/* nothing left in byte, then exit */
3824 			m = ~(u8)((1 << (bit + 1)) - 1);
3825 			if (!(ptypes[byte] & m))
3826 				break;
3827 		}
3828 
3829 		bytes--;
3830 		byte++;
3831 	}
3832 
3833 	list_add(&prof->list, &hw->blk[blk].es.prof_map);
3834 	status = 0;
3835 
3836 err_ice_add_prof:
3837 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3838 	return status;
3839 }
3840 
3841 /**
3842  * ice_search_prof_id - Search for a profile tracking ID
3843  * @hw: pointer to the HW struct
3844  * @blk: hardware block
3845  * @id: profile tracking ID
3846  *
3847  * This will search for a profile tracking ID which was previously added.
3848  * The profile map lock should be held before calling this function.
3849  */
3850 static struct ice_prof_map *
3851 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3852 {
3853 	struct ice_prof_map *entry = NULL;
3854 	struct ice_prof_map *map;
3855 
3856 	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3857 		if (map->profile_cookie == id) {
3858 			entry = map;
3859 			break;
3860 		}
3861 
3862 	return entry;
3863 }
3864 
3865 /**
3866  * ice_vsig_prof_id_count - count profiles in a VSIG
3867  * @hw: pointer to the HW struct
3868  * @blk: hardware block
3869  * @vsig: VSIG to remove the profile from
3870  */
3871 static u16
3872 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3873 {
3874 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3875 	struct ice_vsig_prof *p;
3876 
3877 	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3878 			    list)
3879 		count++;
3880 
3881 	return count;
3882 }
3883 
3884 /**
3885  * ice_rel_tcam_idx - release a TCAM index
3886  * @hw: pointer to the HW struct
3887  * @blk: hardware block
3888  * @idx: the index to release
3889  */
3890 static enum ice_status
3891 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3892 {
3893 	/* Masks to invoke a never match entry */
3894 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3895 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3896 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3897 	enum ice_status status;
3898 
3899 	/* write the TCAM entry */
3900 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3901 				      dc_msk, nm_msk);
3902 	if (status)
3903 		return status;
3904 
3905 	/* release the TCAM entry */
3906 	status = ice_free_tcam_ent(hw, blk, idx);
3907 
3908 	return status;
3909 }
3910 
3911 /**
3912  * ice_rem_prof_id - remove one profile from a VSIG
3913  * @hw: pointer to the HW struct
3914  * @blk: hardware block
3915  * @prof: pointer to profile structure to remove
3916  */
3917 static enum ice_status
3918 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3919 		struct ice_vsig_prof *prof)
3920 {
3921 	enum ice_status status;
3922 	u16 i;
3923 
3924 	for (i = 0; i < prof->tcam_count; i++)
3925 		if (prof->tcam[i].in_use) {
3926 			prof->tcam[i].in_use = false;
3927 			status = ice_rel_tcam_idx(hw, blk,
3928 						  prof->tcam[i].tcam_idx);
3929 			if (status)
3930 				return ICE_ERR_HW_TABLE;
3931 		}
3932 
3933 	return 0;
3934 }
3935 
3936 /**
3937  * ice_rem_vsig - remove VSIG
3938  * @hw: pointer to the HW struct
3939  * @blk: hardware block
3940  * @vsig: the VSIG to remove
3941  * @chg: the change list
3942  */
3943 static enum ice_status
3944 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3945 	     struct list_head *chg)
3946 {
3947 	u16 idx = vsig & ICE_VSIG_IDX_M;
3948 	struct ice_vsig_vsi *vsi_cur;
3949 	struct ice_vsig_prof *d, *t;
3950 	enum ice_status status;
3951 
3952 	/* remove TCAM entries */
3953 	list_for_each_entry_safe(d, t,
3954 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3955 				 list) {
3956 		status = ice_rem_prof_id(hw, blk, d);
3957 		if (status)
3958 			return status;
3959 
3960 		list_del(&d->list);
3961 		devm_kfree(ice_hw_to_dev(hw), d);
3962 	}
3963 
3964 	/* Move all VSIS associated with this VSIG to the default VSIG */
3965 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3966 	/* If the VSIG has at least 1 VSI then iterate through the list
3967 	 * and remove the VSIs before deleting the group.
3968 	 */
3969 	if (vsi_cur)
3970 		do {
3971 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3972 			struct ice_chs_chg *p;
3973 
3974 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3975 					 GFP_KERNEL);
3976 			if (!p)
3977 				return ICE_ERR_NO_MEMORY;
3978 
3979 			p->type = ICE_VSIG_REM;
3980 			p->orig_vsig = vsig;
3981 			p->vsig = ICE_DEFAULT_VSIG;
3982 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3983 
3984 			list_add(&p->list_entry, chg);
3985 
3986 			vsi_cur = tmp;
3987 		} while (vsi_cur);
3988 
3989 	return ice_vsig_free(hw, blk, vsig);
3990 }
3991 
3992 /**
3993  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3994  * @hw: pointer to the HW struct
3995  * @blk: hardware block
3996  * @vsig: VSIG to remove the profile from
3997  * @hdl: profile handle indicating which profile to remove
3998  * @chg: list to receive a record of changes
3999  */
4000 static enum ice_status
4001 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4002 		     struct list_head *chg)
4003 {
4004 	u16 idx = vsig & ICE_VSIG_IDX_M;
4005 	struct ice_vsig_prof *p, *t;
4006 	enum ice_status status;
4007 
4008 	list_for_each_entry_safe(p, t,
4009 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4010 				 list)
4011 		if (p->profile_cookie == hdl) {
4012 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4013 				/* this is the last profile, remove the VSIG */
4014 				return ice_rem_vsig(hw, blk, vsig, chg);
4015 
4016 			status = ice_rem_prof_id(hw, blk, p);
4017 			if (!status) {
4018 				list_del(&p->list);
4019 				devm_kfree(ice_hw_to_dev(hw), p);
4020 			}
4021 			return status;
4022 		}
4023 
4024 	return ICE_ERR_DOES_NOT_EXIST;
4025 }
4026 
4027 /**
4028  * ice_rem_flow_all - remove all flows with a particular profile
4029  * @hw: pointer to the HW struct
4030  * @blk: hardware block
4031  * @id: profile tracking ID
4032  */
4033 static enum ice_status
4034 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4035 {
4036 	struct ice_chs_chg *del, *tmp;
4037 	enum ice_status status;
4038 	struct list_head chg;
4039 	u16 i;
4040 
4041 	INIT_LIST_HEAD(&chg);
4042 
4043 	for (i = 1; i < ICE_MAX_VSIGS; i++)
4044 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4045 			if (ice_has_prof_vsig(hw, blk, i, id)) {
4046 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4047 							      &chg);
4048 				if (status)
4049 					goto err_ice_rem_flow_all;
4050 			}
4051 		}
4052 
4053 	status = ice_upd_prof_hw(hw, blk, &chg);
4054 
4055 err_ice_rem_flow_all:
4056 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4057 		list_del(&del->list_entry);
4058 		devm_kfree(ice_hw_to_dev(hw), del);
4059 	}
4060 
4061 	return status;
4062 }
4063 
4064 /**
4065  * ice_rem_prof - remove profile
4066  * @hw: pointer to the HW struct
4067  * @blk: hardware block
4068  * @id: profile tracking ID
4069  *
4070  * This will remove the profile specified by the ID parameter, which was
4071  * previously created through ice_add_prof. If any existing entries
4072  * are associated with this profile, they will be removed as well.
4073  */
4074 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4075 {
4076 	struct ice_prof_map *pmap;
4077 	enum ice_status status;
4078 
4079 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4080 
4081 	pmap = ice_search_prof_id(hw, blk, id);
4082 	if (!pmap) {
4083 		status = ICE_ERR_DOES_NOT_EXIST;
4084 		goto err_ice_rem_prof;
4085 	}
4086 
4087 	/* remove all flows with this profile */
4088 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4089 	if (status)
4090 		goto err_ice_rem_prof;
4091 
4092 	/* dereference profile, and possibly remove */
4093 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4094 
4095 	list_del(&pmap->list);
4096 	devm_kfree(ice_hw_to_dev(hw), pmap);
4097 
4098 err_ice_rem_prof:
4099 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4100 	return status;
4101 }
4102 
4103 /**
4104  * ice_get_prof - get profile
4105  * @hw: pointer to the HW struct
4106  * @blk: hardware block
4107  * @hdl: profile handle
4108  * @chg: change list
4109  */
4110 static enum ice_status
4111 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4112 	     struct list_head *chg)
4113 {
4114 	enum ice_status status = 0;
4115 	struct ice_prof_map *map;
4116 	struct ice_chs_chg *p;
4117 	u16 i;
4118 
4119 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4120 	/* Get the details on the profile specified by the handle ID */
4121 	map = ice_search_prof_id(hw, blk, hdl);
4122 	if (!map) {
4123 		status = ICE_ERR_DOES_NOT_EXIST;
4124 		goto err_ice_get_prof;
4125 	}
4126 
4127 	for (i = 0; i < map->ptg_cnt; i++)
4128 		if (!hw->blk[blk].es.written[map->prof_id]) {
4129 			/* add ES to change list */
4130 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4131 					 GFP_KERNEL);
4132 			if (!p) {
4133 				status = ICE_ERR_NO_MEMORY;
4134 				goto err_ice_get_prof;
4135 			}
4136 
4137 			p->type = ICE_PTG_ES_ADD;
4138 			p->ptype = 0;
4139 			p->ptg = map->ptg[i];
4140 			p->add_ptg = 0;
4141 
4142 			p->add_prof = 1;
4143 			p->prof_id = map->prof_id;
4144 
4145 			hw->blk[blk].es.written[map->prof_id] = true;
4146 
4147 			list_add(&p->list_entry, chg);
4148 		}
4149 
4150 err_ice_get_prof:
4151 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4152 	/* let caller clean up the change list */
4153 	return status;
4154 }
4155 
4156 /**
4157  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4158  * @hw: pointer to the HW struct
4159  * @blk: hardware block
4160  * @vsig: VSIG from which to copy the list
4161  * @lst: output list
4162  *
4163  * This routine makes a copy of the list of profiles in the specified VSIG.
4164  */
4165 static enum ice_status
4166 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4167 		   struct list_head *lst)
4168 {
4169 	struct ice_vsig_prof *ent1, *ent2;
4170 	u16 idx = vsig & ICE_VSIG_IDX_M;
4171 
4172 	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4173 			    list) {
4174 		struct ice_vsig_prof *p;
4175 
4176 		/* copy to the input list */
4177 		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
4178 				 GFP_KERNEL);
4179 		if (!p)
4180 			goto err_ice_get_profs_vsig;
4181 
4182 		list_add_tail(&p->list, lst);
4183 	}
4184 
4185 	return 0;
4186 
4187 err_ice_get_profs_vsig:
4188 	list_for_each_entry_safe(ent1, ent2, lst, list) {
4189 		list_del(&ent1->list);
4190 		devm_kfree(ice_hw_to_dev(hw), ent1);
4191 	}
4192 
4193 	return ICE_ERR_NO_MEMORY;
4194 }
4195 
4196 /**
4197  * ice_add_prof_to_lst - add profile entry to a list
4198  * @hw: pointer to the HW struct
4199  * @blk: hardware block
4200  * @lst: the list to be added to
4201  * @hdl: profile handle of entry to add
4202  */
4203 static enum ice_status
4204 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4205 		    struct list_head *lst, u64 hdl)
4206 {
4207 	enum ice_status status = 0;
4208 	struct ice_prof_map *map;
4209 	struct ice_vsig_prof *p;
4210 	u16 i;
4211 
4212 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4213 	map = ice_search_prof_id(hw, blk, hdl);
4214 	if (!map) {
4215 		status = ICE_ERR_DOES_NOT_EXIST;
4216 		goto err_ice_add_prof_to_lst;
4217 	}
4218 
4219 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4220 	if (!p) {
4221 		status = ICE_ERR_NO_MEMORY;
4222 		goto err_ice_add_prof_to_lst;
4223 	}
4224 
4225 	p->profile_cookie = map->profile_cookie;
4226 	p->prof_id = map->prof_id;
4227 	p->tcam_count = map->ptg_cnt;
4228 
4229 	for (i = 0; i < map->ptg_cnt; i++) {
4230 		p->tcam[i].prof_id = map->prof_id;
4231 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4232 		p->tcam[i].ptg = map->ptg[i];
4233 	}
4234 
4235 	list_add(&p->list, lst);
4236 
4237 err_ice_add_prof_to_lst:
4238 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4239 	return status;
4240 }
4241 
4242 /**
4243  * ice_move_vsi - move VSI to another VSIG
4244  * @hw: pointer to the HW struct
4245  * @blk: hardware block
4246  * @vsi: the VSI to move
4247  * @vsig: the VSIG to move the VSI to
4248  * @chg: the change list
4249  */
4250 static enum ice_status
4251 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4252 	     struct list_head *chg)
4253 {
4254 	enum ice_status status;
4255 	struct ice_chs_chg *p;
4256 	u16 orig_vsig;
4257 
4258 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4259 	if (!p)
4260 		return ICE_ERR_NO_MEMORY;
4261 
4262 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4263 	if (!status)
4264 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4265 
4266 	if (status) {
4267 		devm_kfree(ice_hw_to_dev(hw), p);
4268 		return status;
4269 	}
4270 
4271 	p->type = ICE_VSI_MOVE;
4272 	p->vsi = vsi;
4273 	p->orig_vsig = orig_vsig;
4274 	p->vsig = vsig;
4275 
4276 	list_add(&p->list_entry, chg);
4277 
4278 	return 0;
4279 }
4280 
4281 /**
4282  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4283  * @hw: pointer to the HW struct
4284  * @idx: the index of the TCAM entry to remove
4285  * @chg: the list of change structures to search
4286  */
4287 static void
4288 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
4289 {
4290 	struct ice_chs_chg *pos, *tmp;
4291 
4292 	list_for_each_entry_safe(tmp, pos, chg, list_entry)
4293 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4294 			list_del(&tmp->list_entry);
4295 			devm_kfree(ice_hw_to_dev(hw), tmp);
4296 		}
4297 }
4298 
4299 /**
4300  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4301  * @hw: pointer to the HW struct
4302  * @blk: hardware block
4303  * @enable: true to enable, false to disable
4304  * @vsig: the VSIG of the TCAM entry
4305  * @tcam: pointer the TCAM info structure of the TCAM to disable
4306  * @chg: the change list
4307  *
4308  * This function appends an enable or disable TCAM entry in the change log
4309  */
4310 static enum ice_status
4311 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4312 		      u16 vsig, struct ice_tcam_inf *tcam,
4313 		      struct list_head *chg)
4314 {
4315 	enum ice_status status;
4316 	struct ice_chs_chg *p;
4317 
4318 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4319 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4320 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4321 
4322 	/* if disabling, free the TCAM */
4323 	if (!enable) {
4324 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4325 
4326 		/* if we have already created a change for this TCAM entry, then
4327 		 * we need to remove that entry, in order to prevent writing to
4328 		 * a TCAM entry we no longer will have ownership of.
4329 		 */
4330 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4331 		tcam->tcam_idx = 0;
4332 		tcam->in_use = 0;
4333 		return status;
4334 	}
4335 
4336 	/* for re-enabling, reallocate a TCAM */
4337 	status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx);
4338 	if (status)
4339 		return status;
4340 
4341 	/* add TCAM to change list */
4342 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4343 	if (!p)
4344 		return ICE_ERR_NO_MEMORY;
4345 
4346 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4347 				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4348 				      nm_msk);
4349 	if (status)
4350 		goto err_ice_prof_tcam_ena_dis;
4351 
4352 	tcam->in_use = 1;
4353 
4354 	p->type = ICE_TCAM_ADD;
4355 	p->add_tcam_idx = true;
4356 	p->prof_id = tcam->prof_id;
4357 	p->ptg = tcam->ptg;
4358 	p->vsig = 0;
4359 	p->tcam_idx = tcam->tcam_idx;
4360 
4361 	/* log change */
4362 	list_add(&p->list_entry, chg);
4363 
4364 	return 0;
4365 
4366 err_ice_prof_tcam_ena_dis:
4367 	devm_kfree(ice_hw_to_dev(hw), p);
4368 	return status;
4369 }
4370 
4371 /**
4372  * ice_adj_prof_priorities - adjust profile based on priorities
4373  * @hw: pointer to the HW struct
4374  * @blk: hardware block
4375  * @vsig: the VSIG for which to adjust profile priorities
4376  * @chg: the change list
4377  */
4378 static enum ice_status
4379 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4380 			struct list_head *chg)
4381 {
4382 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4383 	struct ice_vsig_prof *t;
4384 	enum ice_status status;
4385 	u16 idx;
4386 
4387 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4388 	idx = vsig & ICE_VSIG_IDX_M;
4389 
4390 	/* Priority is based on the order in which the profiles are added. The
4391 	 * newest added profile has highest priority and the oldest added
4392 	 * profile has the lowest priority. Since the profile property list for
4393 	 * a VSIG is sorted from newest to oldest, this code traverses the list
4394 	 * in order and enables the first of each PTG that it finds (that is not
4395 	 * already enabled); it also disables any duplicate PTGs that it finds
4396 	 * in the older profiles (that are currently enabled).
4397 	 */
4398 
4399 	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4400 			    list) {
4401 		u16 i;
4402 
4403 		for (i = 0; i < t->tcam_count; i++) {
4404 			/* Scan the priorities from newest to oldest.
4405 			 * Make sure that the newest profiles take priority.
4406 			 */
4407 			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
4408 			    t->tcam[i].in_use) {
4409 				/* need to mark this PTG as never match, as it
4410 				 * was already in use and therefore duplicate
4411 				 * (and lower priority)
4412 				 */
4413 				status = ice_prof_tcam_ena_dis(hw, blk, false,
4414 							       vsig,
4415 							       &t->tcam[i],
4416 							       chg);
4417 				if (status)
4418 					return status;
4419 			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
4420 				   !t->tcam[i].in_use) {
4421 				/* need to enable this PTG, as it in not in use
4422 				 * and not enabled (highest priority)
4423 				 */
4424 				status = ice_prof_tcam_ena_dis(hw, blk, true,
4425 							       vsig,
4426 							       &t->tcam[i],
4427 							       chg);
4428 				if (status)
4429 					return status;
4430 			}
4431 
4432 			/* keep track of used ptgs */
4433 			set_bit(t->tcam[i].ptg, ptgs_used);
4434 		}
4435 	}
4436 
4437 	return 0;
4438 }
4439 
4440 /**
4441  * ice_add_prof_id_vsig - add profile to VSIG
4442  * @hw: pointer to the HW struct
4443  * @blk: hardware block
4444  * @vsig: the VSIG to which this profile is to be added
4445  * @hdl: the profile handle indicating the profile to add
4446  * @rev: true to add entries to the end of the list
4447  * @chg: the change list
4448  */
4449 static enum ice_status
4450 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4451 		     bool rev, struct list_head *chg)
4452 {
4453 	/* Masks that ignore flags */
4454 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4455 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4456 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4457 	enum ice_status status = 0;
4458 	struct ice_prof_map *map;
4459 	struct ice_vsig_prof *t;
4460 	struct ice_chs_chg *p;
4461 	u16 vsig_idx, i;
4462 
4463 	/* Error, if this VSIG already has this profile */
4464 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
4465 		return ICE_ERR_ALREADY_EXISTS;
4466 
4467 	/* new VSIG profile structure */
4468 	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
4469 	if (!t)
4470 		return ICE_ERR_NO_MEMORY;
4471 
4472 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4473 	/* Get the details on the profile specified by the handle ID */
4474 	map = ice_search_prof_id(hw, blk, hdl);
4475 	if (!map) {
4476 		status = ICE_ERR_DOES_NOT_EXIST;
4477 		goto err_ice_add_prof_id_vsig;
4478 	}
4479 
4480 	t->profile_cookie = map->profile_cookie;
4481 	t->prof_id = map->prof_id;
4482 	t->tcam_count = map->ptg_cnt;
4483 
4484 	/* create TCAM entries */
4485 	for (i = 0; i < map->ptg_cnt; i++) {
4486 		u16 tcam_idx;
4487 
4488 		/* add TCAM to change list */
4489 		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4490 		if (!p) {
4491 			status = ICE_ERR_NO_MEMORY;
4492 			goto err_ice_add_prof_id_vsig;
4493 		}
4494 
4495 		/* allocate the TCAM entry index */
4496 		status = ice_alloc_tcam_ent(hw, blk, &tcam_idx);
4497 		if (status) {
4498 			devm_kfree(ice_hw_to_dev(hw), p);
4499 			goto err_ice_add_prof_id_vsig;
4500 		}
4501 
4502 		t->tcam[i].ptg = map->ptg[i];
4503 		t->tcam[i].prof_id = map->prof_id;
4504 		t->tcam[i].tcam_idx = tcam_idx;
4505 		t->tcam[i].in_use = true;
4506 
4507 		p->type = ICE_TCAM_ADD;
4508 		p->add_tcam_idx = true;
4509 		p->prof_id = t->tcam[i].prof_id;
4510 		p->ptg = t->tcam[i].ptg;
4511 		p->vsig = vsig;
4512 		p->tcam_idx = t->tcam[i].tcam_idx;
4513 
4514 		/* write the TCAM entry */
4515 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
4516 					      t->tcam[i].prof_id,
4517 					      t->tcam[i].ptg, vsig, 0, 0,
4518 					      vl_msk, dc_msk, nm_msk);
4519 		if (status) {
4520 			devm_kfree(ice_hw_to_dev(hw), p);
4521 			goto err_ice_add_prof_id_vsig;
4522 		}
4523 
4524 		/* log change */
4525 		list_add(&p->list_entry, chg);
4526 	}
4527 
4528 	/* add profile to VSIG */
4529 	vsig_idx = vsig & ICE_VSIG_IDX_M;
4530 	if (rev)
4531 		list_add_tail(&t->list,
4532 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4533 	else
4534 		list_add(&t->list,
4535 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4536 
4537 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4538 	return status;
4539 
4540 err_ice_add_prof_id_vsig:
4541 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4542 	/* let caller clean up the change list */
4543 	devm_kfree(ice_hw_to_dev(hw), t);
4544 	return status;
4545 }
4546 
4547 /**
4548  * ice_create_prof_id_vsig - add a new VSIG with a single profile
4549  * @hw: pointer to the HW struct
4550  * @blk: hardware block
4551  * @vsi: the initial VSI that will be in VSIG
4552  * @hdl: the profile handle of the profile that will be added to the VSIG
4553  * @chg: the change list
4554  */
4555 static enum ice_status
4556 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
4557 			struct list_head *chg)
4558 {
4559 	enum ice_status status;
4560 	struct ice_chs_chg *p;
4561 	u16 new_vsig;
4562 
4563 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4564 	if (!p)
4565 		return ICE_ERR_NO_MEMORY;
4566 
4567 	new_vsig = ice_vsig_alloc(hw, blk);
4568 	if (!new_vsig) {
4569 		status = ICE_ERR_HW_TABLE;
4570 		goto err_ice_create_prof_id_vsig;
4571 	}
4572 
4573 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
4574 	if (status)
4575 		goto err_ice_create_prof_id_vsig;
4576 
4577 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
4578 	if (status)
4579 		goto err_ice_create_prof_id_vsig;
4580 
4581 	p->type = ICE_VSIG_ADD;
4582 	p->vsi = vsi;
4583 	p->orig_vsig = ICE_DEFAULT_VSIG;
4584 	p->vsig = new_vsig;
4585 
4586 	list_add(&p->list_entry, chg);
4587 
4588 	return 0;
4589 
4590 err_ice_create_prof_id_vsig:
4591 	/* let caller clean up the change list */
4592 	devm_kfree(ice_hw_to_dev(hw), p);
4593 	return status;
4594 }
4595 
4596 /**
4597  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
4598  * @hw: pointer to the HW struct
4599  * @blk: hardware block
4600  * @vsi: the initial VSI that will be in VSIG
4601  * @lst: the list of profile that will be added to the VSIG
4602  * @new_vsig: return of new VSIG
4603  * @chg: the change list
4604  */
4605 static enum ice_status
4606 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
4607 			 struct list_head *lst, u16 *new_vsig,
4608 			 struct list_head *chg)
4609 {
4610 	struct ice_vsig_prof *t;
4611 	enum ice_status status;
4612 	u16 vsig;
4613 
4614 	vsig = ice_vsig_alloc(hw, blk);
4615 	if (!vsig)
4616 		return ICE_ERR_HW_TABLE;
4617 
4618 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
4619 	if (status)
4620 		return status;
4621 
4622 	list_for_each_entry(t, lst, list) {
4623 		/* Reverse the order here since we are copying the list */
4624 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
4625 					      true, chg);
4626 		if (status)
4627 			return status;
4628 	}
4629 
4630 	*new_vsig = vsig;
4631 
4632 	return 0;
4633 }
4634 
4635 /**
4636  * ice_find_prof_vsig - find a VSIG with a specific profile handle
4637  * @hw: pointer to the HW struct
4638  * @blk: hardware block
4639  * @hdl: the profile handle of the profile to search for
4640  * @vsig: returns the VSIG with the matching profile
4641  */
4642 static bool
4643 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
4644 {
4645 	struct ice_vsig_prof *t;
4646 	enum ice_status status;
4647 	struct list_head lst;
4648 
4649 	INIT_LIST_HEAD(&lst);
4650 
4651 	t = kzalloc(sizeof(*t), GFP_KERNEL);
4652 	if (!t)
4653 		return false;
4654 
4655 	t->profile_cookie = hdl;
4656 	list_add(&t->list, &lst);
4657 
4658 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
4659 
4660 	list_del(&t->list);
4661 	kfree(t);
4662 
4663 	return !status;
4664 }
4665 
4666 /**
4667  * ice_add_prof_id_flow - add profile flow
4668  * @hw: pointer to the HW struct
4669  * @blk: hardware block
4670  * @vsi: the VSI to enable with the profile specified by ID
4671  * @hdl: profile handle
4672  *
4673  * Calling this function will update the hardware tables to enable the
4674  * profile indicated by the ID parameter for the VSIs specified in the VSI
4675  * array. Once successfully called, the flow will be enabled.
4676  */
4677 enum ice_status
4678 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4679 {
4680 	struct ice_vsig_prof *tmp1, *del1;
4681 	struct ice_chs_chg *tmp, *del;
4682 	struct list_head union_lst;
4683 	enum ice_status status;
4684 	struct list_head chg;
4685 	u16 vsig;
4686 
4687 	INIT_LIST_HEAD(&union_lst);
4688 	INIT_LIST_HEAD(&chg);
4689 
4690 	/* Get profile */
4691 	status = ice_get_prof(hw, blk, hdl, &chg);
4692 	if (status)
4693 		return status;
4694 
4695 	/* determine if VSI is already part of a VSIG */
4696 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4697 	if (!status && vsig) {
4698 		bool only_vsi;
4699 		u16 or_vsig;
4700 		u16 ref;
4701 
4702 		/* found in VSIG */
4703 		or_vsig = vsig;
4704 
4705 		/* make sure that there is no overlap/conflict between the new
4706 		 * characteristics and the existing ones; we don't support that
4707 		 * scenario
4708 		 */
4709 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4710 			status = ICE_ERR_ALREADY_EXISTS;
4711 			goto err_ice_add_prof_id_flow;
4712 		}
4713 
4714 		/* last VSI in the VSIG? */
4715 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4716 		if (status)
4717 			goto err_ice_add_prof_id_flow;
4718 		only_vsi = (ref == 1);
4719 
4720 		/* create a union of the current profiles and the one being
4721 		 * added
4722 		 */
4723 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4724 		if (status)
4725 			goto err_ice_add_prof_id_flow;
4726 
4727 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4728 		if (status)
4729 			goto err_ice_add_prof_id_flow;
4730 
4731 		/* search for an existing VSIG with an exact charc match */
4732 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4733 		if (!status) {
4734 			/* move VSI to the VSIG that matches */
4735 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4736 			if (status)
4737 				goto err_ice_add_prof_id_flow;
4738 
4739 			/* VSI has been moved out of or_vsig. If the or_vsig had
4740 			 * only that VSI it is now empty and can be removed.
4741 			 */
4742 			if (only_vsi) {
4743 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4744 				if (status)
4745 					goto err_ice_add_prof_id_flow;
4746 			}
4747 		} else if (only_vsi) {
4748 			/* If the original VSIG only contains one VSI, then it
4749 			 * will be the requesting VSI. In this case the VSI is
4750 			 * not sharing entries and we can simply add the new
4751 			 * profile to the VSIG.
4752 			 */
4753 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4754 						      &chg);
4755 			if (status)
4756 				goto err_ice_add_prof_id_flow;
4757 
4758 			/* Adjust priorities */
4759 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4760 			if (status)
4761 				goto err_ice_add_prof_id_flow;
4762 		} else {
4763 			/* No match, so we need a new VSIG */
4764 			status = ice_create_vsig_from_lst(hw, blk, vsi,
4765 							  &union_lst, &vsig,
4766 							  &chg);
4767 			if (status)
4768 				goto err_ice_add_prof_id_flow;
4769 
4770 			/* Adjust priorities */
4771 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4772 			if (status)
4773 				goto err_ice_add_prof_id_flow;
4774 		}
4775 	} else {
4776 		/* need to find or add a VSIG */
4777 		/* search for an existing VSIG with an exact charc match */
4778 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4779 			/* found an exact match */
4780 			/* add or move VSI to the VSIG that matches */
4781 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4782 			if (status)
4783 				goto err_ice_add_prof_id_flow;
4784 		} else {
4785 			/* we did not find an exact match */
4786 			/* we need to add a VSIG */
4787 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4788 							 &chg);
4789 			if (status)
4790 				goto err_ice_add_prof_id_flow;
4791 		}
4792 	}
4793 
4794 	/* update hardware */
4795 	if (!status)
4796 		status = ice_upd_prof_hw(hw, blk, &chg);
4797 
4798 err_ice_add_prof_id_flow:
4799 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4800 		list_del(&del->list_entry);
4801 		devm_kfree(ice_hw_to_dev(hw), del);
4802 	}
4803 
4804 	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4805 		list_del(&del1->list);
4806 		devm_kfree(ice_hw_to_dev(hw), del1);
4807 	}
4808 
4809 	return status;
4810 }
4811 
4812 /**
4813  * ice_rem_prof_from_list - remove a profile from list
4814  * @hw: pointer to the HW struct
4815  * @lst: list to remove the profile from
4816  * @hdl: the profile handle indicating the profile to remove
4817  */
4818 static enum ice_status
4819 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4820 {
4821 	struct ice_vsig_prof *ent, *tmp;
4822 
4823 	list_for_each_entry_safe(ent, tmp, lst, list)
4824 		if (ent->profile_cookie == hdl) {
4825 			list_del(&ent->list);
4826 			devm_kfree(ice_hw_to_dev(hw), ent);
4827 			return 0;
4828 		}
4829 
4830 	return ICE_ERR_DOES_NOT_EXIST;
4831 }
4832 
4833 /**
4834  * ice_rem_prof_id_flow - remove flow
4835  * @hw: pointer to the HW struct
4836  * @blk: hardware block
4837  * @vsi: the VSI from which to remove the profile specified by ID
4838  * @hdl: profile tracking handle
4839  *
4840  * Calling this function will update the hardware tables to remove the
4841  * profile indicated by the ID parameter for the VSIs specified in the VSI
4842  * array. Once successfully called, the flow will be disabled.
4843  */
4844 enum ice_status
4845 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4846 {
4847 	struct ice_vsig_prof *tmp1, *del1;
4848 	struct ice_chs_chg *tmp, *del;
4849 	struct list_head chg, copy;
4850 	enum ice_status status;
4851 	u16 vsig;
4852 
4853 	INIT_LIST_HEAD(&copy);
4854 	INIT_LIST_HEAD(&chg);
4855 
4856 	/* determine if VSI is already part of a VSIG */
4857 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4858 	if (!status && vsig) {
4859 		bool last_profile;
4860 		bool only_vsi;
4861 		u16 ref;
4862 
4863 		/* found in VSIG */
4864 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4865 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4866 		if (status)
4867 			goto err_ice_rem_prof_id_flow;
4868 		only_vsi = (ref == 1);
4869 
4870 		if (only_vsi) {
4871 			/* If the original VSIG only contains one reference,
4872 			 * which will be the requesting VSI, then the VSI is not
4873 			 * sharing entries and we can simply remove the specific
4874 			 * characteristics from the VSIG.
4875 			 */
4876 
4877 			if (last_profile) {
4878 				/* If there are no profiles left for this VSIG,
4879 				 * then simply remove the VSIG.
4880 				 */
4881 				status = ice_rem_vsig(hw, blk, vsig, &chg);
4882 				if (status)
4883 					goto err_ice_rem_prof_id_flow;
4884 			} else {
4885 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
4886 							      hdl, &chg);
4887 				if (status)
4888 					goto err_ice_rem_prof_id_flow;
4889 
4890 				/* Adjust priorities */
4891 				status = ice_adj_prof_priorities(hw, blk, vsig,
4892 								 &chg);
4893 				if (status)
4894 					goto err_ice_rem_prof_id_flow;
4895 			}
4896 
4897 		} else {
4898 			/* Make a copy of the VSIG's list of Profiles */
4899 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4900 			if (status)
4901 				goto err_ice_rem_prof_id_flow;
4902 
4903 			/* Remove specified profile entry from the list */
4904 			status = ice_rem_prof_from_list(hw, &copy, hdl);
4905 			if (status)
4906 				goto err_ice_rem_prof_id_flow;
4907 
4908 			if (list_empty(&copy)) {
4909 				status = ice_move_vsi(hw, blk, vsi,
4910 						      ICE_DEFAULT_VSIG, &chg);
4911 				if (status)
4912 					goto err_ice_rem_prof_id_flow;
4913 
4914 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4915 							    &vsig)) {
4916 				/* found an exact match */
4917 				/* add or move VSI to the VSIG that matches */
4918 				/* Search for a VSIG with a matching profile
4919 				 * list
4920 				 */
4921 
4922 				/* Found match, move VSI to the matching VSIG */
4923 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4924 				if (status)
4925 					goto err_ice_rem_prof_id_flow;
4926 			} else {
4927 				/* since no existing VSIG supports this
4928 				 * characteristic pattern, we need to create a
4929 				 * new VSIG and TCAM entries
4930 				 */
4931 				status = ice_create_vsig_from_lst(hw, blk, vsi,
4932 								  &copy, &vsig,
4933 								  &chg);
4934 				if (status)
4935 					goto err_ice_rem_prof_id_flow;
4936 
4937 				/* Adjust priorities */
4938 				status = ice_adj_prof_priorities(hw, blk, vsig,
4939 								 &chg);
4940 				if (status)
4941 					goto err_ice_rem_prof_id_flow;
4942 			}
4943 		}
4944 	} else {
4945 		status = ICE_ERR_DOES_NOT_EXIST;
4946 	}
4947 
4948 	/* update hardware tables */
4949 	if (!status)
4950 		status = ice_upd_prof_hw(hw, blk, &chg);
4951 
4952 err_ice_rem_prof_id_flow:
4953 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4954 		list_del(&del->list_entry);
4955 		devm_kfree(ice_hw_to_dev(hw), del);
4956 	}
4957 
4958 	list_for_each_entry_safe(del1, tmp1, &copy, list) {
4959 		list_del(&del1->list);
4960 		devm_kfree(ice_hw_to_dev(hw), del1);
4961 	}
4962 
4963 	return status;
4964 }
4965