1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 #include "ice.h" 8 9 /* For supporting double VLAN mode, it is necessary to enable or disable certain 10 * boost tcam entries. The metadata labels names that match the following 11 * prefixes will be saved to allow enabling double VLAN mode. 12 */ 13 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */ 14 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */ 15 16 /* To support tunneling entries by PF, the package will append the PF number to 17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 18 */ 19 #define ICE_TNL_PRE "TNL_" 20 static const struct ice_tunnel_type_scan tnls[] = { 21 { TNL_VXLAN, "TNL_VXLAN_PF" }, 22 { TNL_GENEVE, "TNL_GENEVE_PF" }, 23 { TNL_LAST, "" } 24 }; 25 26 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 27 /* SWITCH */ 28 { 29 ICE_SID_XLT0_SW, 30 ICE_SID_XLT_KEY_BUILDER_SW, 31 ICE_SID_XLT1_SW, 32 ICE_SID_XLT2_SW, 33 ICE_SID_PROFID_TCAM_SW, 34 ICE_SID_PROFID_REDIR_SW, 35 ICE_SID_FLD_VEC_SW, 36 ICE_SID_CDID_KEY_BUILDER_SW, 37 ICE_SID_CDID_REDIR_SW 38 }, 39 40 /* ACL */ 41 { 42 ICE_SID_XLT0_ACL, 43 ICE_SID_XLT_KEY_BUILDER_ACL, 44 ICE_SID_XLT1_ACL, 45 ICE_SID_XLT2_ACL, 46 ICE_SID_PROFID_TCAM_ACL, 47 ICE_SID_PROFID_REDIR_ACL, 48 ICE_SID_FLD_VEC_ACL, 49 ICE_SID_CDID_KEY_BUILDER_ACL, 50 ICE_SID_CDID_REDIR_ACL 51 }, 52 53 /* FD */ 54 { 55 ICE_SID_XLT0_FD, 56 ICE_SID_XLT_KEY_BUILDER_FD, 57 ICE_SID_XLT1_FD, 58 ICE_SID_XLT2_FD, 59 ICE_SID_PROFID_TCAM_FD, 60 ICE_SID_PROFID_REDIR_FD, 61 ICE_SID_FLD_VEC_FD, 62 ICE_SID_CDID_KEY_BUILDER_FD, 63 ICE_SID_CDID_REDIR_FD 64 }, 65 66 /* RSS */ 67 { 68 ICE_SID_XLT0_RSS, 69 ICE_SID_XLT_KEY_BUILDER_RSS, 70 ICE_SID_XLT1_RSS, 71 ICE_SID_XLT2_RSS, 72 ICE_SID_PROFID_TCAM_RSS, 73 ICE_SID_PROFID_REDIR_RSS, 74 ICE_SID_FLD_VEC_RSS, 75 ICE_SID_CDID_KEY_BUILDER_RSS, 76 ICE_SID_CDID_REDIR_RSS 77 }, 78 79 /* PE */ 80 { 81 ICE_SID_XLT0_PE, 82 ICE_SID_XLT_KEY_BUILDER_PE, 83 ICE_SID_XLT1_PE, 84 ICE_SID_XLT2_PE, 85 ICE_SID_PROFID_TCAM_PE, 86 ICE_SID_PROFID_REDIR_PE, 87 ICE_SID_FLD_VEC_PE, 88 ICE_SID_CDID_KEY_BUILDER_PE, 89 ICE_SID_CDID_REDIR_PE 90 } 91 }; 92 93 /** 94 * ice_sect_id - returns section ID 95 * @blk: block type 96 * @sect: section type 97 * 98 * This helper function returns the proper section ID given a block type and a 99 * section type. 100 */ 101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 102 { 103 return ice_sect_lkup[blk][sect]; 104 } 105 106 /** 107 * ice_pkg_val_buf 108 * @buf: pointer to the ice buffer 109 * 110 * This helper function validates a buffer's header. 111 */ 112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 113 { 114 struct ice_buf_hdr *hdr; 115 u16 section_count; 116 u16 data_end; 117 118 hdr = (struct ice_buf_hdr *)buf->buf; 119 /* verify data */ 120 section_count = le16_to_cpu(hdr->section_count); 121 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 122 return NULL; 123 124 data_end = le16_to_cpu(hdr->data_end); 125 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 126 return NULL; 127 128 return hdr; 129 } 130 131 /** 132 * ice_find_buf_table 133 * @ice_seg: pointer to the ice segment 134 * 135 * Returns the address of the buffer table within the ice segment. 136 */ 137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 138 { 139 struct ice_nvm_table *nvms; 140 141 nvms = (struct ice_nvm_table *) 142 (ice_seg->device_table + 143 le32_to_cpu(ice_seg->device_table_count)); 144 145 return (__force struct ice_buf_table *) 146 (nvms->vers + le32_to_cpu(nvms->table_count)); 147 } 148 149 /** 150 * ice_pkg_enum_buf 151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 152 * @state: pointer to the enum state 153 * 154 * This function will enumerate all the buffers in the ice segment. The first 155 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 156 * ice_seg is set to NULL which continues the enumeration. When the function 157 * returns a NULL pointer, then the end of the buffers has been reached, or an 158 * unexpected value has been detected (for example an invalid section count or 159 * an invalid buffer end value). 160 */ 161 static struct ice_buf_hdr * 162 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 163 { 164 if (ice_seg) { 165 state->buf_table = ice_find_buf_table(ice_seg); 166 if (!state->buf_table) 167 return NULL; 168 169 state->buf_idx = 0; 170 return ice_pkg_val_buf(state->buf_table->buf_array); 171 } 172 173 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 174 return ice_pkg_val_buf(state->buf_table->buf_array + 175 state->buf_idx); 176 else 177 return NULL; 178 } 179 180 /** 181 * ice_pkg_advance_sect 182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 183 * @state: pointer to the enum state 184 * 185 * This helper function will advance the section within the ice segment, 186 * also advancing the buffer if needed. 187 */ 188 static bool 189 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 190 { 191 if (!ice_seg && !state->buf) 192 return false; 193 194 if (!ice_seg && state->buf) 195 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 196 return true; 197 198 state->buf = ice_pkg_enum_buf(ice_seg, state); 199 if (!state->buf) 200 return false; 201 202 /* start of new buffer, reset section index */ 203 state->sect_idx = 0; 204 return true; 205 } 206 207 /** 208 * ice_pkg_enum_section 209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 210 * @state: pointer to the enum state 211 * @sect_type: section type to enumerate 212 * 213 * This function will enumerate all the sections of a particular type in the 214 * ice segment. The first call is made with the ice_seg parameter non-NULL; 215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 216 * When the function returns a NULL pointer, then the end of the matching 217 * sections has been reached. 218 */ 219 static void * 220 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 221 u32 sect_type) 222 { 223 u16 offset, size; 224 225 if (ice_seg) 226 state->type = sect_type; 227 228 if (!ice_pkg_advance_sect(ice_seg, state)) 229 return NULL; 230 231 /* scan for next matching section */ 232 while (state->buf->section_entry[state->sect_idx].type != 233 cpu_to_le32(state->type)) 234 if (!ice_pkg_advance_sect(NULL, state)) 235 return NULL; 236 237 /* validate section */ 238 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 239 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 240 return NULL; 241 242 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 243 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 244 return NULL; 245 246 /* make sure the section fits in the buffer */ 247 if (offset + size > ICE_PKG_BUF_SIZE) 248 return NULL; 249 250 state->sect_type = 251 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 252 253 /* calc pointer to this section */ 254 state->sect = ((u8 *)state->buf) + 255 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 256 257 return state->sect; 258 } 259 260 /** 261 * ice_pkg_enum_entry 262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 263 * @state: pointer to the enum state 264 * @sect_type: section type to enumerate 265 * @offset: pointer to variable that receives the offset in the table (optional) 266 * @handler: function that handles access to the entries into the section type 267 * 268 * This function will enumerate all the entries in particular section type in 269 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 271 * When the function returns a NULL pointer, then the end of the entries has 272 * been reached. 273 * 274 * Since each section may have a different header and entry size, the handler 275 * function is needed to determine the number and location entries in each 276 * section. 277 * 278 * The offset parameter is optional, but should be used for sections that 279 * contain an offset for each section table. For such cases, the section handler 280 * function must return the appropriate offset + index to give the absolution 281 * offset for each entry. For example, if the base for a section's header 282 * indicates a base offset of 10, and the index for the entry is 2, then 283 * section handler function should set the offset to 10 + 2 = 12. 284 */ 285 static void * 286 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 287 u32 sect_type, u32 *offset, 288 void *(*handler)(u32 sect_type, void *section, 289 u32 index, u32 *offset)) 290 { 291 void *entry; 292 293 if (ice_seg) { 294 if (!handler) 295 return NULL; 296 297 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 298 return NULL; 299 300 state->entry_idx = 0; 301 state->handler = handler; 302 } else { 303 state->entry_idx++; 304 } 305 306 if (!state->handler) 307 return NULL; 308 309 /* get entry */ 310 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 311 offset); 312 if (!entry) { 313 /* end of a section, look for another section of this type */ 314 if (!ice_pkg_enum_section(NULL, state, 0)) 315 return NULL; 316 317 state->entry_idx = 0; 318 entry = state->handler(state->sect_type, state->sect, 319 state->entry_idx, offset); 320 } 321 322 return entry; 323 } 324 325 /** 326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 327 * @hw: pointer to the HW structure 328 * @ptype: the hardware PTYPE 329 */ 330 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 331 { 332 return ptype < ICE_FLOW_PTYPE_MAX && 333 test_bit(ptype, hw->hw_ptype); 334 } 335 336 /** 337 * ice_marker_ptype_tcam_handler 338 * @sect_type: section type 339 * @section: pointer to section 340 * @index: index of the Marker PType TCAM entry to be returned 341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections 342 * 343 * This is a callback function that can be passed to ice_pkg_enum_entry. 344 * Handles enumeration of individual Marker PType TCAM entries. 345 */ 346 static void * 347 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index, 348 u32 *offset) 349 { 350 struct ice_marker_ptype_tcam_section *marker_ptype; 351 352 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) 353 return NULL; 354 355 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) 356 return NULL; 357 358 if (offset) 359 *offset = 0; 360 361 marker_ptype = section; 362 if (index >= le16_to_cpu(marker_ptype->count)) 363 return NULL; 364 365 return marker_ptype->tcam + index; 366 } 367 368 /** 369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information 370 * @hw: pointer to the HW structure 371 */ 372 static void ice_fill_hw_ptype(struct ice_hw *hw) 373 { 374 struct ice_marker_ptype_tcam_entry *tcam; 375 struct ice_seg *seg = hw->seg; 376 struct ice_pkg_enum state; 377 378 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); 379 if (!seg) 380 return; 381 382 memset(&state, 0, sizeof(state)); 383 384 do { 385 tcam = ice_pkg_enum_entry(seg, &state, 386 ICE_SID_RXPARSER_MARKER_PTYPE, NULL, 387 ice_marker_ptype_tcam_handler); 388 if (tcam && 389 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && 390 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) 391 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); 392 393 seg = NULL; 394 } while (tcam); 395 } 396 397 /** 398 * ice_boost_tcam_handler 399 * @sect_type: section type 400 * @section: pointer to section 401 * @index: index of the boost TCAM entry to be returned 402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 403 * 404 * This is a callback function that can be passed to ice_pkg_enum_entry. 405 * Handles enumeration of individual boost TCAM entries. 406 */ 407 static void * 408 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 409 { 410 struct ice_boost_tcam_section *boost; 411 412 if (!section) 413 return NULL; 414 415 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 416 return NULL; 417 418 /* cppcheck-suppress nullPointer */ 419 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 420 return NULL; 421 422 if (offset) 423 *offset = 0; 424 425 boost = section; 426 if (index >= le16_to_cpu(boost->count)) 427 return NULL; 428 429 return boost->tcam + index; 430 } 431 432 /** 433 * ice_find_boost_entry 434 * @ice_seg: pointer to the ice segment (non-NULL) 435 * @addr: Boost TCAM address of entry to search for 436 * @entry: returns pointer to the entry 437 * 438 * Finds a particular Boost TCAM entry and returns a pointer to that entry 439 * if it is found. The ice_seg parameter must not be NULL since the first call 440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 441 */ 442 static int 443 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 444 struct ice_boost_tcam_entry **entry) 445 { 446 struct ice_boost_tcam_entry *tcam; 447 struct ice_pkg_enum state; 448 449 memset(&state, 0, sizeof(state)); 450 451 if (!ice_seg) 452 return -EINVAL; 453 454 do { 455 tcam = ice_pkg_enum_entry(ice_seg, &state, 456 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 457 ice_boost_tcam_handler); 458 if (tcam && le16_to_cpu(tcam->addr) == addr) { 459 *entry = tcam; 460 return 0; 461 } 462 463 ice_seg = NULL; 464 } while (tcam); 465 466 *entry = NULL; 467 return -EIO; 468 } 469 470 /** 471 * ice_label_enum_handler 472 * @sect_type: section type 473 * @section: pointer to section 474 * @index: index of the label entry to be returned 475 * @offset: pointer to receive absolute offset, always zero for label sections 476 * 477 * This is a callback function that can be passed to ice_pkg_enum_entry. 478 * Handles enumeration of individual label entries. 479 */ 480 static void * 481 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 482 u32 *offset) 483 { 484 struct ice_label_section *labels; 485 486 if (!section) 487 return NULL; 488 489 /* cppcheck-suppress nullPointer */ 490 if (index > ICE_MAX_LABELS_IN_BUF) 491 return NULL; 492 493 if (offset) 494 *offset = 0; 495 496 labels = section; 497 if (index >= le16_to_cpu(labels->count)) 498 return NULL; 499 500 return labels->label + index; 501 } 502 503 /** 504 * ice_enum_labels 505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 506 * @type: the section type that will contain the label (0 on subsequent calls) 507 * @state: ice_pkg_enum structure that will hold the state of the enumeration 508 * @value: pointer to a value that will return the label's value if found 509 * 510 * Enumerates a list of labels in the package. The caller will call 511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 513 * the end of the list has been reached. 514 */ 515 static char * 516 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 517 u16 *value) 518 { 519 struct ice_label *label; 520 521 /* Check for valid label section on first call */ 522 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 523 return NULL; 524 525 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 526 ice_label_enum_handler); 527 if (!label) 528 return NULL; 529 530 *value = le16_to_cpu(label->value); 531 return label->name; 532 } 533 534 /** 535 * ice_add_tunnel_hint 536 * @hw: pointer to the HW structure 537 * @label_name: label text 538 * @val: value of the tunnel port boost entry 539 */ 540 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 541 { 542 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 543 u16 i; 544 545 for (i = 0; tnls[i].type != TNL_LAST; i++) { 546 size_t len = strlen(tnls[i].label_prefix); 547 548 /* Look for matching label start, before continuing */ 549 if (strncmp(label_name, tnls[i].label_prefix, len)) 550 continue; 551 552 /* Make sure this label matches our PF. Note that the PF 553 * character ('0' - '7') will be located where our 554 * prefix string's null terminator is located. 555 */ 556 if ((label_name[len] - '0') == hw->pf_id) { 557 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 558 hw->tnl.tbl[hw->tnl.count].valid = false; 559 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 560 hw->tnl.tbl[hw->tnl.count].port = 0; 561 hw->tnl.count++; 562 break; 563 } 564 } 565 } 566 } 567 568 /** 569 * ice_add_dvm_hint 570 * @hw: pointer to the HW structure 571 * @val: value of the boost entry 572 * @enable: true if entry needs to be enabled, or false if needs to be disabled 573 */ 574 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable) 575 { 576 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) { 577 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val; 578 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable; 579 hw->dvm_upd.count++; 580 } 581 } 582 583 /** 584 * ice_init_pkg_hints 585 * @hw: pointer to the HW structure 586 * @ice_seg: pointer to the segment of the package scan (non-NULL) 587 * 588 * This function will scan the package and save off relevant information 589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 590 * since the first call to ice_enum_labels requires a pointer to an actual 591 * ice_seg structure. 592 */ 593 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 594 { 595 struct ice_pkg_enum state; 596 char *label_name; 597 u16 val; 598 int i; 599 600 memset(&hw->tnl, 0, sizeof(hw->tnl)); 601 memset(&state, 0, sizeof(state)); 602 603 if (!ice_seg) 604 return; 605 606 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 607 &val); 608 609 while (label_name) { 610 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 611 /* check for a tunnel entry */ 612 ice_add_tunnel_hint(hw, label_name, val); 613 614 /* check for a dvm mode entry */ 615 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE))) 616 ice_add_dvm_hint(hw, val, true); 617 618 /* check for a svm mode entry */ 619 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE))) 620 ice_add_dvm_hint(hw, val, false); 621 622 label_name = ice_enum_labels(NULL, 0, &state, &val); 623 } 624 625 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 626 for (i = 0; i < hw->tnl.count; i++) { 627 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 628 &hw->tnl.tbl[i].boost_entry); 629 if (hw->tnl.tbl[i].boost_entry) { 630 hw->tnl.tbl[i].valid = true; 631 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 632 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 633 } 634 } 635 636 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */ 637 for (i = 0; i < hw->dvm_upd.count; i++) 638 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr, 639 &hw->dvm_upd.tbl[i].boost_entry); 640 } 641 642 /* Key creation */ 643 644 #define ICE_DC_KEY 0x1 /* don't care */ 645 #define ICE_DC_KEYINV 0x1 646 #define ICE_NM_KEY 0x0 /* never match */ 647 #define ICE_NM_KEYINV 0x0 648 #define ICE_0_KEY 0x1 /* match 0 */ 649 #define ICE_0_KEYINV 0x0 650 #define ICE_1_KEY 0x0 /* match 1 */ 651 #define ICE_1_KEYINV 0x1 652 653 /** 654 * ice_gen_key_word - generate 16-bits of a key/mask word 655 * @val: the value 656 * @valid: valid bits mask (change only the valid bits) 657 * @dont_care: don't care mask 658 * @nvr_mtch: never match mask 659 * @key: pointer to an array of where the resulting key portion 660 * @key_inv: pointer to an array of where the resulting key invert portion 661 * 662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 664 * of key and 8 bits of key invert. 665 * 666 * '0' = b01, always match a 0 bit 667 * '1' = b10, always match a 1 bit 668 * '?' = b11, don't care bit (always matches) 669 * '~' = b00, never match bit 670 * 671 * Input: 672 * val: b0 1 0 1 0 1 673 * dont_care: b0 0 1 1 0 0 674 * never_mtch: b0 0 0 0 1 1 675 * ------------------------------ 676 * Result: key: b01 10 11 11 00 00 677 */ 678 static int 679 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 680 u8 *key_inv) 681 { 682 u8 in_key = *key, in_key_inv = *key_inv; 683 u8 i; 684 685 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 686 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 687 return -EIO; 688 689 *key = 0; 690 *key_inv = 0; 691 692 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 693 for (i = 0; i < 8; i++) { 694 *key >>= 1; 695 *key_inv >>= 1; 696 697 if (!(valid & 0x1)) { /* change only valid bits */ 698 *key |= (in_key & 0x1) << 7; 699 *key_inv |= (in_key_inv & 0x1) << 7; 700 } else if (dont_care & 0x1) { /* don't care bit */ 701 *key |= ICE_DC_KEY << 7; 702 *key_inv |= ICE_DC_KEYINV << 7; 703 } else if (nvr_mtch & 0x1) { /* never match bit */ 704 *key |= ICE_NM_KEY << 7; 705 *key_inv |= ICE_NM_KEYINV << 7; 706 } else if (val & 0x01) { /* exact 1 match */ 707 *key |= ICE_1_KEY << 7; 708 *key_inv |= ICE_1_KEYINV << 7; 709 } else { /* exact 0 match */ 710 *key |= ICE_0_KEY << 7; 711 *key_inv |= ICE_0_KEYINV << 7; 712 } 713 714 dont_care >>= 1; 715 nvr_mtch >>= 1; 716 valid >>= 1; 717 val >>= 1; 718 in_key >>= 1; 719 in_key_inv >>= 1; 720 } 721 722 return 0; 723 } 724 725 /** 726 * ice_bits_max_set - determine if the number of bits set is within a maximum 727 * @mask: pointer to the byte array which is the mask 728 * @size: the number of bytes in the mask 729 * @max: the max number of set bits 730 * 731 * This function determines if there are at most 'max' number of bits set in an 732 * array. Returns true if the number for bits set is <= max or will return false 733 * otherwise. 734 */ 735 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 736 { 737 u16 count = 0; 738 u16 i; 739 740 /* check each byte */ 741 for (i = 0; i < size; i++) { 742 /* if 0, go to next byte */ 743 if (!mask[i]) 744 continue; 745 746 /* We know there is at least one set bit in this byte because of 747 * the above check; if we already have found 'max' number of 748 * bits set, then we can return failure now. 749 */ 750 if (count == max) 751 return false; 752 753 /* count the bits in this byte, checking threshold */ 754 count += hweight8(mask[i]); 755 if (count > max) 756 return false; 757 } 758 759 return true; 760 } 761 762 /** 763 * ice_set_key - generate a variable sized key with multiples of 16-bits 764 * @key: pointer to where the key will be stored 765 * @size: the size of the complete key in bytes (must be even) 766 * @val: array of 8-bit values that makes up the value portion of the key 767 * @upd: array of 8-bit masks that determine what key portion to update 768 * @dc: array of 8-bit masks that make up the don't care mask 769 * @nm: array of 8-bit masks that make up the never match mask 770 * @off: the offset of the first byte in the key to update 771 * @len: the number of bytes in the key update 772 * 773 * This function generates a key from a value, a don't care mask and a never 774 * match mask. 775 * upd, dc, and nm are optional parameters, and can be NULL: 776 * upd == NULL --> upd mask is all 1's (update all bits) 777 * dc == NULL --> dc mask is all 0's (no don't care bits) 778 * nm == NULL --> nm mask is all 0's (no never match bits) 779 */ 780 static int 781 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 782 u16 len) 783 { 784 u16 half_size; 785 u16 i; 786 787 /* size must be a multiple of 2 bytes. */ 788 if (size % 2) 789 return -EIO; 790 791 half_size = size / 2; 792 if (off + len > half_size) 793 return -EIO; 794 795 /* Make sure at most one bit is set in the never match mask. Having more 796 * than one never match mask bit set will cause HW to consume excessive 797 * power otherwise; this is a power management efficiency check. 798 */ 799 #define ICE_NVR_MTCH_BITS_MAX 1 800 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 801 return -EIO; 802 803 for (i = 0; i < len; i++) 804 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 805 dc ? dc[i] : 0, nm ? nm[i] : 0, 806 key + off + i, key + half_size + off + i)) 807 return -EIO; 808 809 return 0; 810 } 811 812 /** 813 * ice_acquire_global_cfg_lock 814 * @hw: pointer to the HW structure 815 * @access: access type (read or write) 816 * 817 * This function will request ownership of the global config lock for reading 818 * or writing of the package. When attempting to obtain write access, the 819 * caller must check for the following two return values: 820 * 821 * 0 - Means the caller has acquired the global config lock 822 * and can perform writing of the package. 823 * -EALREADY - Indicates another driver has already written the 824 * package or has found that no update was necessary; in 825 * this case, the caller can just skip performing any 826 * update of the package. 827 */ 828 static int 829 ice_acquire_global_cfg_lock(struct ice_hw *hw, 830 enum ice_aq_res_access_type access) 831 { 832 int status; 833 834 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 835 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 836 837 if (!status) 838 mutex_lock(&ice_global_cfg_lock_sw); 839 else if (status == -EALREADY) 840 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 841 842 return status; 843 } 844 845 /** 846 * ice_release_global_cfg_lock 847 * @hw: pointer to the HW structure 848 * 849 * This function will release the global config lock. 850 */ 851 static void ice_release_global_cfg_lock(struct ice_hw *hw) 852 { 853 mutex_unlock(&ice_global_cfg_lock_sw); 854 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 855 } 856 857 /** 858 * ice_acquire_change_lock 859 * @hw: pointer to the HW structure 860 * @access: access type (read or write) 861 * 862 * This function will request ownership of the change lock. 863 */ 864 int 865 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 866 { 867 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 868 ICE_CHANGE_LOCK_TIMEOUT); 869 } 870 871 /** 872 * ice_release_change_lock 873 * @hw: pointer to the HW structure 874 * 875 * This function will release the change lock using the proper Admin Command. 876 */ 877 void ice_release_change_lock(struct ice_hw *hw) 878 { 879 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 880 } 881 882 /** 883 * ice_aq_download_pkg 884 * @hw: pointer to the hardware structure 885 * @pkg_buf: the package buffer to transfer 886 * @buf_size: the size of the package buffer 887 * @last_buf: last buffer indicator 888 * @error_offset: returns error offset 889 * @error_info: returns error information 890 * @cd: pointer to command details structure or NULL 891 * 892 * Download Package (0x0C40) 893 */ 894 static int 895 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 896 u16 buf_size, bool last_buf, u32 *error_offset, 897 u32 *error_info, struct ice_sq_cd *cd) 898 { 899 struct ice_aqc_download_pkg *cmd; 900 struct ice_aq_desc desc; 901 int status; 902 903 if (error_offset) 904 *error_offset = 0; 905 if (error_info) 906 *error_info = 0; 907 908 cmd = &desc.params.download_pkg; 909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 910 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 911 912 if (last_buf) 913 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 914 915 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 916 if (status == -EIO) { 917 /* Read error from buffer only when the FW returned an error */ 918 struct ice_aqc_download_pkg_resp *resp; 919 920 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 921 if (error_offset) 922 *error_offset = le32_to_cpu(resp->error_offset); 923 if (error_info) 924 *error_info = le32_to_cpu(resp->error_info); 925 } 926 927 return status; 928 } 929 930 /** 931 * ice_aq_upload_section 932 * @hw: pointer to the hardware structure 933 * @pkg_buf: the package buffer which will receive the section 934 * @buf_size: the size of the package buffer 935 * @cd: pointer to command details structure or NULL 936 * 937 * Upload Section (0x0C41) 938 */ 939 int 940 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 941 u16 buf_size, struct ice_sq_cd *cd) 942 { 943 struct ice_aq_desc desc; 944 945 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 946 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 947 948 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 949 } 950 951 /** 952 * ice_aq_update_pkg 953 * @hw: pointer to the hardware structure 954 * @pkg_buf: the package cmd buffer 955 * @buf_size: the size of the package cmd buffer 956 * @last_buf: last buffer indicator 957 * @error_offset: returns error offset 958 * @error_info: returns error information 959 * @cd: pointer to command details structure or NULL 960 * 961 * Update Package (0x0C42) 962 */ 963 static int 964 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 965 bool last_buf, u32 *error_offset, u32 *error_info, 966 struct ice_sq_cd *cd) 967 { 968 struct ice_aqc_download_pkg *cmd; 969 struct ice_aq_desc desc; 970 int status; 971 972 if (error_offset) 973 *error_offset = 0; 974 if (error_info) 975 *error_info = 0; 976 977 cmd = &desc.params.download_pkg; 978 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 979 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 980 981 if (last_buf) 982 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 983 984 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 985 if (status == -EIO) { 986 /* Read error from buffer only when the FW returned an error */ 987 struct ice_aqc_download_pkg_resp *resp; 988 989 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 990 if (error_offset) 991 *error_offset = le32_to_cpu(resp->error_offset); 992 if (error_info) 993 *error_info = le32_to_cpu(resp->error_info); 994 } 995 996 return status; 997 } 998 999 /** 1000 * ice_find_seg_in_pkg 1001 * @hw: pointer to the hardware structure 1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 1003 * @pkg_hdr: pointer to the package header to be searched 1004 * 1005 * This function searches a package file for a particular segment type. On 1006 * success it returns a pointer to the segment header, otherwise it will 1007 * return NULL. 1008 */ 1009 static struct ice_generic_seg_hdr * 1010 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 1011 struct ice_pkg_hdr *pkg_hdr) 1012 { 1013 u32 i; 1014 1015 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 1016 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 1017 pkg_hdr->pkg_format_ver.update, 1018 pkg_hdr->pkg_format_ver.draft); 1019 1020 /* Search all package segments for the requested segment type */ 1021 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 1022 struct ice_generic_seg_hdr *seg; 1023 1024 seg = (struct ice_generic_seg_hdr *) 1025 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 1026 1027 if (le32_to_cpu(seg->seg_type) == seg_type) 1028 return seg; 1029 } 1030 1031 return NULL; 1032 } 1033 1034 /** 1035 * ice_update_pkg_no_lock 1036 * @hw: pointer to the hardware structure 1037 * @bufs: pointer to an array of buffers 1038 * @count: the number of buffers in the array 1039 */ 1040 static int 1041 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1042 { 1043 int status = 0; 1044 u32 i; 1045 1046 for (i = 0; i < count; i++) { 1047 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 1048 bool last = ((i + 1) == count); 1049 u32 offset, info; 1050 1051 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 1052 last, &offset, &info, NULL); 1053 1054 if (status) { 1055 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 1056 status, offset, info); 1057 break; 1058 } 1059 } 1060 1061 return status; 1062 } 1063 1064 /** 1065 * ice_update_pkg 1066 * @hw: pointer to the hardware structure 1067 * @bufs: pointer to an array of buffers 1068 * @count: the number of buffers in the array 1069 * 1070 * Obtains change lock and updates package. 1071 */ 1072 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1073 { 1074 int status; 1075 1076 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1077 if (status) 1078 return status; 1079 1080 status = ice_update_pkg_no_lock(hw, bufs, count); 1081 1082 ice_release_change_lock(hw); 1083 1084 return status; 1085 } 1086 1087 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) 1088 { 1089 switch (aq_err) { 1090 case ICE_AQ_RC_ENOSEC: 1091 case ICE_AQ_RC_EBADSIG: 1092 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; 1093 case ICE_AQ_RC_ESVN: 1094 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; 1095 case ICE_AQ_RC_EBADMAN: 1096 case ICE_AQ_RC_EBADBUF: 1097 return ICE_DDP_PKG_LOAD_ERROR; 1098 default: 1099 return ICE_DDP_PKG_ERR; 1100 } 1101 } 1102 1103 /** 1104 * ice_dwnld_cfg_bufs 1105 * @hw: pointer to the hardware structure 1106 * @bufs: pointer to an array of buffers 1107 * @count: the number of buffers in the array 1108 * 1109 * Obtains global config lock and downloads the package configuration buffers 1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1111 * found indicates that the rest of the buffers are all metadata buffers. 1112 */ 1113 static enum ice_ddp_state 1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1115 { 1116 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1117 struct ice_buf_hdr *bh; 1118 enum ice_aq_err err; 1119 u32 offset, info, i; 1120 int status; 1121 1122 if (!bufs || !count) 1123 return ICE_DDP_PKG_ERR; 1124 1125 /* If the first buffer's first section has its metadata bit set 1126 * then there are no buffers to be downloaded, and the operation is 1127 * considered a success. 1128 */ 1129 bh = (struct ice_buf_hdr *)bufs; 1130 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 1131 return ICE_DDP_PKG_SUCCESS; 1132 1133 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1134 if (status) { 1135 if (status == -EALREADY) 1136 return ICE_DDP_PKG_ALREADY_LOADED; 1137 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); 1138 } 1139 1140 for (i = 0; i < count; i++) { 1141 bool last = ((i + 1) == count); 1142 1143 if (!last) { 1144 /* check next buffer for metadata flag */ 1145 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1146 1147 /* A set metadata flag in the next buffer will signal 1148 * that the current buffer will be the last buffer 1149 * downloaded 1150 */ 1151 if (le16_to_cpu(bh->section_count)) 1152 if (le32_to_cpu(bh->section_entry[0].type) & 1153 ICE_METADATA_BUF) 1154 last = true; 1155 } 1156 1157 bh = (struct ice_buf_hdr *)(bufs + i); 1158 1159 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1160 &offset, &info, NULL); 1161 1162 /* Save AQ status from download package */ 1163 if (status) { 1164 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1165 status, offset, info); 1166 err = hw->adminq.sq_last_status; 1167 state = ice_map_aq_err_to_ddp_state(err); 1168 break; 1169 } 1170 1171 if (last) 1172 break; 1173 } 1174 1175 if (!status) { 1176 status = ice_set_vlan_mode(hw); 1177 if (status) 1178 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", 1179 status); 1180 } 1181 1182 ice_release_global_cfg_lock(hw); 1183 1184 return state; 1185 } 1186 1187 /** 1188 * ice_aq_get_pkg_info_list 1189 * @hw: pointer to the hardware structure 1190 * @pkg_info: the buffer which will receive the information list 1191 * @buf_size: the size of the pkg_info information buffer 1192 * @cd: pointer to command details structure or NULL 1193 * 1194 * Get Package Info List (0x0C43) 1195 */ 1196 static int 1197 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1198 struct ice_aqc_get_pkg_info_resp *pkg_info, 1199 u16 buf_size, struct ice_sq_cd *cd) 1200 { 1201 struct ice_aq_desc desc; 1202 1203 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1204 1205 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1206 } 1207 1208 /** 1209 * ice_download_pkg 1210 * @hw: pointer to the hardware structure 1211 * @ice_seg: pointer to the segment of the package to be downloaded 1212 * 1213 * Handles the download of a complete package. 1214 */ 1215 static enum ice_ddp_state 1216 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1217 { 1218 struct ice_buf_table *ice_buf_tbl; 1219 int status; 1220 1221 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1222 ice_seg->hdr.seg_format_ver.major, 1223 ice_seg->hdr.seg_format_ver.minor, 1224 ice_seg->hdr.seg_format_ver.update, 1225 ice_seg->hdr.seg_format_ver.draft); 1226 1227 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1228 le32_to_cpu(ice_seg->hdr.seg_type), 1229 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1230 1231 ice_buf_tbl = ice_find_buf_table(ice_seg); 1232 1233 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1234 le32_to_cpu(ice_buf_tbl->buf_count)); 1235 1236 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1237 le32_to_cpu(ice_buf_tbl->buf_count)); 1238 1239 ice_post_pkg_dwnld_vlan_mode_cfg(hw); 1240 1241 return status; 1242 } 1243 1244 /** 1245 * ice_init_pkg_info 1246 * @hw: pointer to the hardware structure 1247 * @pkg_hdr: pointer to the driver's package hdr 1248 * 1249 * Saves off the package details into the HW structure. 1250 */ 1251 static enum ice_ddp_state 1252 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1253 { 1254 struct ice_generic_seg_hdr *seg_hdr; 1255 1256 if (!pkg_hdr) 1257 return ICE_DDP_PKG_ERR; 1258 1259 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1260 if (seg_hdr) { 1261 struct ice_meta_sect *meta; 1262 struct ice_pkg_enum state; 1263 1264 memset(&state, 0, sizeof(state)); 1265 1266 /* Get package information from the Metadata Section */ 1267 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1268 ICE_SID_METADATA); 1269 if (!meta) { 1270 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1271 return ICE_DDP_PKG_INVALID_FILE; 1272 } 1273 1274 hw->pkg_ver = meta->ver; 1275 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1276 1277 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1278 meta->ver.major, meta->ver.minor, meta->ver.update, 1279 meta->ver.draft, meta->name); 1280 1281 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1282 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1283 sizeof(hw->ice_seg_id)); 1284 1285 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1286 seg_hdr->seg_format_ver.major, 1287 seg_hdr->seg_format_ver.minor, 1288 seg_hdr->seg_format_ver.update, 1289 seg_hdr->seg_format_ver.draft, 1290 seg_hdr->seg_id); 1291 } else { 1292 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1293 return ICE_DDP_PKG_INVALID_FILE; 1294 } 1295 1296 return ICE_DDP_PKG_SUCCESS; 1297 } 1298 1299 /** 1300 * ice_get_pkg_info 1301 * @hw: pointer to the hardware structure 1302 * 1303 * Store details of the package currently loaded in HW into the HW structure. 1304 */ 1305 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) 1306 { 1307 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1308 struct ice_aqc_get_pkg_info_resp *pkg_info; 1309 u16 size; 1310 u32 i; 1311 1312 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1313 pkg_info = kzalloc(size, GFP_KERNEL); 1314 if (!pkg_info) 1315 return ICE_DDP_PKG_ERR; 1316 1317 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { 1318 state = ICE_DDP_PKG_ERR; 1319 goto init_pkg_free_alloc; 1320 } 1321 1322 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1323 #define ICE_PKG_FLAG_COUNT 4 1324 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1325 u8 place = 0; 1326 1327 if (pkg_info->pkg_info[i].is_active) { 1328 flags[place++] = 'A'; 1329 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1330 hw->active_track_id = 1331 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1332 memcpy(hw->active_pkg_name, 1333 pkg_info->pkg_info[i].name, 1334 sizeof(pkg_info->pkg_info[i].name)); 1335 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1336 } 1337 if (pkg_info->pkg_info[i].is_active_at_boot) 1338 flags[place++] = 'B'; 1339 if (pkg_info->pkg_info[i].is_modified) 1340 flags[place++] = 'M'; 1341 if (pkg_info->pkg_info[i].is_in_nvm) 1342 flags[place++] = 'N'; 1343 1344 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1345 i, pkg_info->pkg_info[i].ver.major, 1346 pkg_info->pkg_info[i].ver.minor, 1347 pkg_info->pkg_info[i].ver.update, 1348 pkg_info->pkg_info[i].ver.draft, 1349 pkg_info->pkg_info[i].name, flags); 1350 } 1351 1352 init_pkg_free_alloc: 1353 kfree(pkg_info); 1354 1355 return state; 1356 } 1357 1358 /** 1359 * ice_verify_pkg - verify package 1360 * @pkg: pointer to the package buffer 1361 * @len: size of the package buffer 1362 * 1363 * Verifies various attributes of the package file, including length, format 1364 * version, and the requirement of at least one segment. 1365 */ 1366 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1367 { 1368 u32 seg_count; 1369 u32 i; 1370 1371 if (len < struct_size(pkg, seg_offset, 1)) 1372 return ICE_DDP_PKG_INVALID_FILE; 1373 1374 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1375 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1376 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1377 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1378 return ICE_DDP_PKG_INVALID_FILE; 1379 1380 /* pkg must have at least one segment */ 1381 seg_count = le32_to_cpu(pkg->seg_count); 1382 if (seg_count < 1) 1383 return ICE_DDP_PKG_INVALID_FILE; 1384 1385 /* make sure segment array fits in package length */ 1386 if (len < struct_size(pkg, seg_offset, seg_count)) 1387 return ICE_DDP_PKG_INVALID_FILE; 1388 1389 /* all segments must fit within length */ 1390 for (i = 0; i < seg_count; i++) { 1391 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1392 struct ice_generic_seg_hdr *seg; 1393 1394 /* segment header must fit */ 1395 if (len < off + sizeof(*seg)) 1396 return ICE_DDP_PKG_INVALID_FILE; 1397 1398 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1399 1400 /* segment body must fit */ 1401 if (len < off + le32_to_cpu(seg->seg_size)) 1402 return ICE_DDP_PKG_INVALID_FILE; 1403 } 1404 1405 return ICE_DDP_PKG_SUCCESS; 1406 } 1407 1408 /** 1409 * ice_free_seg - free package segment pointer 1410 * @hw: pointer to the hardware structure 1411 * 1412 * Frees the package segment pointer in the proper manner, depending on if the 1413 * segment was allocated or just the passed in pointer was stored. 1414 */ 1415 void ice_free_seg(struct ice_hw *hw) 1416 { 1417 if (hw->pkg_copy) { 1418 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1419 hw->pkg_copy = NULL; 1420 hw->pkg_size = 0; 1421 } 1422 hw->seg = NULL; 1423 } 1424 1425 /** 1426 * ice_init_pkg_regs - initialize additional package registers 1427 * @hw: pointer to the hardware structure 1428 */ 1429 static void ice_init_pkg_regs(struct ice_hw *hw) 1430 { 1431 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1432 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1433 #define ICE_SW_BLK_IDX 0 1434 1435 /* setup Switch block input mask, which is 48-bits in two parts */ 1436 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1437 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1438 } 1439 1440 /** 1441 * ice_chk_pkg_version - check package version for compatibility with driver 1442 * @pkg_ver: pointer to a version structure to check 1443 * 1444 * Check to make sure that the package about to be downloaded is compatible with 1445 * the driver. To be compatible, the major and minor components of the package 1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1447 * definitions. 1448 */ 1449 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1450 { 1451 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || 1452 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1453 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) 1454 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; 1455 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || 1456 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1457 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) 1458 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; 1459 1460 return ICE_DDP_PKG_SUCCESS; 1461 } 1462 1463 /** 1464 * ice_chk_pkg_compat 1465 * @hw: pointer to the hardware structure 1466 * @ospkg: pointer to the package hdr 1467 * @seg: pointer to the package segment hdr 1468 * 1469 * This function checks the package version compatibility with driver and NVM 1470 */ 1471 static enum ice_ddp_state 1472 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1473 struct ice_seg **seg) 1474 { 1475 struct ice_aqc_get_pkg_info_resp *pkg; 1476 enum ice_ddp_state state; 1477 u16 size; 1478 u32 i; 1479 1480 /* Check package version compatibility */ 1481 state = ice_chk_pkg_version(&hw->pkg_ver); 1482 if (state) { 1483 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1484 return state; 1485 } 1486 1487 /* find ICE segment in given package */ 1488 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1489 ospkg); 1490 if (!*seg) { 1491 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1492 return ICE_DDP_PKG_INVALID_FILE; 1493 } 1494 1495 /* Check if FW is compatible with the OS package */ 1496 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1497 pkg = kzalloc(size, GFP_KERNEL); 1498 if (!pkg) 1499 return ICE_DDP_PKG_ERR; 1500 1501 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { 1502 state = ICE_DDP_PKG_LOAD_ERROR; 1503 goto fw_ddp_compat_free_alloc; 1504 } 1505 1506 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1507 /* loop till we find the NVM package */ 1508 if (!pkg->pkg_info[i].is_in_nvm) 1509 continue; 1510 if ((*seg)->hdr.seg_format_ver.major != 1511 pkg->pkg_info[i].ver.major || 1512 (*seg)->hdr.seg_format_ver.minor > 1513 pkg->pkg_info[i].ver.minor) { 1514 state = ICE_DDP_PKG_FW_MISMATCH; 1515 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1516 } 1517 /* done processing NVM package so break */ 1518 break; 1519 } 1520 fw_ddp_compat_free_alloc: 1521 kfree(pkg); 1522 return state; 1523 } 1524 1525 /** 1526 * ice_sw_fv_handler 1527 * @sect_type: section type 1528 * @section: pointer to section 1529 * @index: index of the field vector entry to be returned 1530 * @offset: ptr to variable that receives the offset in the field vector table 1531 * 1532 * This is a callback function that can be passed to ice_pkg_enum_entry. 1533 * This function treats the given section as of type ice_sw_fv_section and 1534 * enumerates offset field. "offset" is an index into the field vector table. 1535 */ 1536 static void * 1537 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1538 { 1539 struct ice_sw_fv_section *fv_section = section; 1540 1541 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1542 return NULL; 1543 if (index >= le16_to_cpu(fv_section->count)) 1544 return NULL; 1545 if (offset) 1546 /* "index" passed in to this function is relative to a given 1547 * 4k block. To get to the true index into the field vector 1548 * table need to add the relative index to the base_offset 1549 * field of this section 1550 */ 1551 *offset = le16_to_cpu(fv_section->base_offset) + index; 1552 return fv_section->fv + index; 1553 } 1554 1555 /** 1556 * ice_get_prof_index_max - get the max profile index for used profile 1557 * @hw: pointer to the HW struct 1558 * 1559 * Calling this function will get the max profile index for used profile 1560 * and store the index number in struct ice_switch_info *switch_info 1561 * in HW for following use. 1562 */ 1563 static int ice_get_prof_index_max(struct ice_hw *hw) 1564 { 1565 u16 prof_index = 0, j, max_prof_index = 0; 1566 struct ice_pkg_enum state; 1567 struct ice_seg *ice_seg; 1568 bool flag = false; 1569 struct ice_fv *fv; 1570 u32 offset; 1571 1572 memset(&state, 0, sizeof(state)); 1573 1574 if (!hw->seg) 1575 return -EINVAL; 1576 1577 ice_seg = hw->seg; 1578 1579 do { 1580 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1581 &offset, ice_sw_fv_handler); 1582 if (!fv) 1583 break; 1584 ice_seg = NULL; 1585 1586 /* in the profile that not be used, the prot_id is set to 0xff 1587 * and the off is set to 0x1ff for all the field vectors. 1588 */ 1589 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1590 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1591 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1592 flag = true; 1593 if (flag && prof_index > max_prof_index) 1594 max_prof_index = prof_index; 1595 1596 prof_index++; 1597 flag = false; 1598 } while (fv); 1599 1600 hw->switch_info->max_used_prof_index = max_prof_index; 1601 1602 return 0; 1603 } 1604 1605 /** 1606 * ice_get_ddp_pkg_state - get DDP pkg state after download 1607 * @hw: pointer to the HW struct 1608 * @already_loaded: indicates if pkg was already loaded onto the device 1609 */ 1610 static enum ice_ddp_state 1611 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) 1612 { 1613 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 1614 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 1615 hw->pkg_ver.update == hw->active_pkg_ver.update && 1616 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 1617 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { 1618 if (already_loaded) 1619 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; 1620 else 1621 return ICE_DDP_PKG_SUCCESS; 1622 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 1623 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 1624 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; 1625 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 1626 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 1627 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; 1628 } else { 1629 return ICE_DDP_PKG_ERR; 1630 } 1631 } 1632 1633 /** 1634 * ice_init_pkg - initialize/download package 1635 * @hw: pointer to the hardware structure 1636 * @buf: pointer to the package buffer 1637 * @len: size of the package buffer 1638 * 1639 * This function initializes a package. The package contains HW tables 1640 * required to do packet processing. First, the function extracts package 1641 * information such as version. Then it finds the ice configuration segment 1642 * within the package; this function then saves a copy of the segment pointer 1643 * within the supplied package buffer. Next, the function will cache any hints 1644 * from the package, followed by downloading the package itself. Note, that if 1645 * a previous PF driver has already downloaded the package successfully, then 1646 * the current driver will not have to download the package again. 1647 * 1648 * The local package contents will be used to query default behavior and to 1649 * update specific sections of the HW's version of the package (e.g. to update 1650 * the parse graph to understand new protocols). 1651 * 1652 * This function stores a pointer to the package buffer memory, and it is 1653 * expected that the supplied buffer will not be freed immediately. If the 1654 * package buffer needs to be freed, such as when read from a file, use 1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1656 * case. 1657 */ 1658 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1659 { 1660 bool already_loaded = false; 1661 enum ice_ddp_state state; 1662 struct ice_pkg_hdr *pkg; 1663 struct ice_seg *seg; 1664 1665 if (!buf || !len) 1666 return ICE_DDP_PKG_ERR; 1667 1668 pkg = (struct ice_pkg_hdr *)buf; 1669 state = ice_verify_pkg(pkg, len); 1670 if (state) { 1671 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1672 state); 1673 return state; 1674 } 1675 1676 /* initialize package info */ 1677 state = ice_init_pkg_info(hw, pkg); 1678 if (state) 1679 return state; 1680 1681 /* before downloading the package, check package version for 1682 * compatibility with driver 1683 */ 1684 state = ice_chk_pkg_compat(hw, pkg, &seg); 1685 if (state) 1686 return state; 1687 1688 /* initialize package hints and then download package */ 1689 ice_init_pkg_hints(hw, seg); 1690 state = ice_download_pkg(hw, seg); 1691 if (state == ICE_DDP_PKG_ALREADY_LOADED) { 1692 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1693 already_loaded = true; 1694 } 1695 1696 /* Get information on the package currently loaded in HW, then make sure 1697 * the driver is compatible with this version. 1698 */ 1699 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { 1700 state = ice_get_pkg_info(hw); 1701 if (!state) 1702 state = ice_get_ddp_pkg_state(hw, already_loaded); 1703 } 1704 1705 if (ice_is_init_pkg_successful(state)) { 1706 hw->seg = seg; 1707 /* on successful package download update other required 1708 * registers to support the package and fill HW tables 1709 * with package content. 1710 */ 1711 ice_init_pkg_regs(hw); 1712 ice_fill_blk_tbls(hw); 1713 ice_fill_hw_ptype(hw); 1714 ice_get_prof_index_max(hw); 1715 } else { 1716 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1717 state); 1718 } 1719 1720 return state; 1721 } 1722 1723 /** 1724 * ice_copy_and_init_pkg - initialize/download a copy of the package 1725 * @hw: pointer to the hardware structure 1726 * @buf: pointer to the package buffer 1727 * @len: size of the package buffer 1728 * 1729 * This function copies the package buffer, and then calls ice_init_pkg() to 1730 * initialize the copied package contents. 1731 * 1732 * The copying is necessary if the package buffer supplied is constant, or if 1733 * the memory may disappear shortly after calling this function. 1734 * 1735 * If the package buffer resides in the data segment and can be modified, the 1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1737 * 1738 * However, if the package buffer needs to be copied first, such as when being 1739 * read from a file, the caller should use ice_copy_and_init_pkg(). 1740 * 1741 * This function will first copy the package buffer, before calling 1742 * ice_init_pkg(). The caller is free to immediately destroy the original 1743 * package buffer, as the new copy will be managed by this function and 1744 * related routines. 1745 */ 1746 enum ice_ddp_state 1747 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1748 { 1749 enum ice_ddp_state state; 1750 u8 *buf_copy; 1751 1752 if (!buf || !len) 1753 return ICE_DDP_PKG_ERR; 1754 1755 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1756 1757 state = ice_init_pkg(hw, buf_copy, len); 1758 if (!ice_is_init_pkg_successful(state)) { 1759 /* Free the copy, since we failed to initialize the package */ 1760 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1761 } else { 1762 /* Track the copied pkg so we can free it later */ 1763 hw->pkg_copy = buf_copy; 1764 hw->pkg_size = len; 1765 } 1766 1767 return state; 1768 } 1769 1770 /** 1771 * ice_is_init_pkg_successful - check if DDP init was successful 1772 * @state: state of the DDP pkg after download 1773 */ 1774 bool ice_is_init_pkg_successful(enum ice_ddp_state state) 1775 { 1776 switch (state) { 1777 case ICE_DDP_PKG_SUCCESS: 1778 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 1779 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 1780 return true; 1781 default: 1782 return false; 1783 } 1784 } 1785 1786 /** 1787 * ice_pkg_buf_alloc 1788 * @hw: pointer to the HW structure 1789 * 1790 * Allocates a package buffer and returns a pointer to the buffer header. 1791 * Note: all package contents must be in Little Endian form. 1792 */ 1793 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1794 { 1795 struct ice_buf_build *bld; 1796 struct ice_buf_hdr *buf; 1797 1798 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1799 if (!bld) 1800 return NULL; 1801 1802 buf = (struct ice_buf_hdr *)bld; 1803 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1804 section_entry)); 1805 return bld; 1806 } 1807 1808 static bool ice_is_gtp_u_profile(u16 prof_idx) 1809 { 1810 return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID && 1811 prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) || 1812 prof_idx == ICE_PROFID_IPV4_GTPU_TEID; 1813 } 1814 1815 static bool ice_is_gtp_c_profile(u16 prof_idx) 1816 { 1817 switch (prof_idx) { 1818 case ICE_PROFID_IPV4_GTPC_TEID: 1819 case ICE_PROFID_IPV4_GTPC_NO_TEID: 1820 case ICE_PROFID_IPV6_GTPC_TEID: 1821 case ICE_PROFID_IPV6_GTPC_NO_TEID: 1822 return true; 1823 default: 1824 return false; 1825 } 1826 } 1827 1828 /** 1829 * ice_get_sw_prof_type - determine switch profile type 1830 * @hw: pointer to the HW structure 1831 * @fv: pointer to the switch field vector 1832 * @prof_idx: profile index to check 1833 */ 1834 static enum ice_prof_type 1835 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx) 1836 { 1837 u16 i; 1838 1839 if (ice_is_gtp_c_profile(prof_idx)) 1840 return ICE_PROF_TUN_GTPC; 1841 1842 if (ice_is_gtp_u_profile(prof_idx)) 1843 return ICE_PROF_TUN_GTPU; 1844 1845 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1846 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1847 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1848 fv->ew[i].off == ICE_VNI_OFFSET) 1849 return ICE_PROF_TUN_UDP; 1850 1851 /* GRE tunnel will have GRE protocol */ 1852 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1853 return ICE_PROF_TUN_GRE; 1854 } 1855 1856 return ICE_PROF_NON_TUN; 1857 } 1858 1859 /** 1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1861 * @hw: pointer to hardware structure 1862 * @req_profs: type of profiles requested 1863 * @bm: pointer to memory for returning the bitmap of field vectors 1864 */ 1865 void 1866 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1867 unsigned long *bm) 1868 { 1869 struct ice_pkg_enum state; 1870 struct ice_seg *ice_seg; 1871 struct ice_fv *fv; 1872 1873 if (req_profs == ICE_PROF_ALL) { 1874 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1875 return; 1876 } 1877 1878 memset(&state, 0, sizeof(state)); 1879 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1880 ice_seg = hw->seg; 1881 do { 1882 enum ice_prof_type prof_type; 1883 u32 offset; 1884 1885 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1886 &offset, ice_sw_fv_handler); 1887 ice_seg = NULL; 1888 1889 if (fv) { 1890 /* Determine field vector type */ 1891 prof_type = ice_get_sw_prof_type(hw, fv, offset); 1892 1893 if (req_profs & prof_type) 1894 set_bit((u16)offset, bm); 1895 } 1896 } while (fv); 1897 } 1898 1899 /** 1900 * ice_get_sw_fv_list 1901 * @hw: pointer to the HW structure 1902 * @lkups: list of protocol types 1903 * @bm: bitmap of field vectors to consider 1904 * @fv_list: Head of a list 1905 * 1906 * Finds all the field vector entries from switch block that contain 1907 * a given protocol ID and offset and returns a list of structures of type 1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1909 * definition and profile ID information 1910 * NOTE: The caller of the function is responsible for freeing the memory 1911 * allocated for every list entry. 1912 */ 1913 int 1914 ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, 1915 unsigned long *bm, struct list_head *fv_list) 1916 { 1917 struct ice_sw_fv_list_entry *fvl; 1918 struct ice_sw_fv_list_entry *tmp; 1919 struct ice_pkg_enum state; 1920 struct ice_seg *ice_seg; 1921 struct ice_fv *fv; 1922 u32 offset; 1923 1924 memset(&state, 0, sizeof(state)); 1925 1926 if (!lkups->n_val_words || !hw->seg) 1927 return -EINVAL; 1928 1929 ice_seg = hw->seg; 1930 do { 1931 u16 i; 1932 1933 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1934 &offset, ice_sw_fv_handler); 1935 if (!fv) 1936 break; 1937 ice_seg = NULL; 1938 1939 /* If field vector is not in the bitmap list, then skip this 1940 * profile. 1941 */ 1942 if (!test_bit((u16)offset, bm)) 1943 continue; 1944 1945 for (i = 0; i < lkups->n_val_words; i++) { 1946 int j; 1947 1948 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1949 if (fv->ew[j].prot_id == 1950 lkups->fv_words[i].prot_id && 1951 fv->ew[j].off == lkups->fv_words[i].off) 1952 break; 1953 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1954 break; 1955 if (i + 1 == lkups->n_val_words) { 1956 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1957 sizeof(*fvl), GFP_KERNEL); 1958 if (!fvl) 1959 goto err; 1960 fvl->fv_ptr = fv; 1961 fvl->profile_id = offset; 1962 list_add(&fvl->list_entry, fv_list); 1963 break; 1964 } 1965 } 1966 } while (fv); 1967 if (list_empty(fv_list)) 1968 return -EIO; 1969 return 0; 1970 1971 err: 1972 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1973 list_del(&fvl->list_entry); 1974 devm_kfree(ice_hw_to_dev(hw), fvl); 1975 } 1976 1977 return -ENOMEM; 1978 } 1979 1980 /** 1981 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1982 * @hw: pointer to hardware structure 1983 */ 1984 void ice_init_prof_result_bm(struct ice_hw *hw) 1985 { 1986 struct ice_pkg_enum state; 1987 struct ice_seg *ice_seg; 1988 struct ice_fv *fv; 1989 1990 memset(&state, 0, sizeof(state)); 1991 1992 if (!hw->seg) 1993 return; 1994 1995 ice_seg = hw->seg; 1996 do { 1997 u32 off; 1998 u16 i; 1999 2000 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 2001 &off, ice_sw_fv_handler); 2002 ice_seg = NULL; 2003 if (!fv) 2004 break; 2005 2006 bitmap_zero(hw->switch_info->prof_res_bm[off], 2007 ICE_MAX_FV_WORDS); 2008 2009 /* Determine empty field vector indices, these can be 2010 * used for recipe results. Skip index 0, since it is 2011 * always used for Switch ID. 2012 */ 2013 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 2014 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 2015 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 2016 set_bit(i, hw->switch_info->prof_res_bm[off]); 2017 } while (fv); 2018 } 2019 2020 /** 2021 * ice_pkg_buf_free 2022 * @hw: pointer to the HW structure 2023 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2024 * 2025 * Frees a package buffer 2026 */ 2027 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 2028 { 2029 devm_kfree(ice_hw_to_dev(hw), bld); 2030 } 2031 2032 /** 2033 * ice_pkg_buf_reserve_section 2034 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2035 * @count: the number of sections to reserve 2036 * 2037 * Reserves one or more section table entries in a package buffer. This routine 2038 * can be called multiple times as long as they are made before calling 2039 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 2040 * is called once, the number of sections that can be allocated will not be able 2041 * to be increased; not using all reserved sections is fine, but this will 2042 * result in some wasted space in the buffer. 2043 * Note: all package contents must be in Little Endian form. 2044 */ 2045 static int 2046 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 2047 { 2048 struct ice_buf_hdr *buf; 2049 u16 section_count; 2050 u16 data_end; 2051 2052 if (!bld) 2053 return -EINVAL; 2054 2055 buf = (struct ice_buf_hdr *)&bld->buf; 2056 2057 /* already an active section, can't increase table size */ 2058 section_count = le16_to_cpu(buf->section_count); 2059 if (section_count > 0) 2060 return -EIO; 2061 2062 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 2063 return -EIO; 2064 bld->reserved_section_table_entries += count; 2065 2066 data_end = le16_to_cpu(buf->data_end) + 2067 flex_array_size(buf, section_entry, count); 2068 buf->data_end = cpu_to_le16(data_end); 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * ice_pkg_buf_alloc_section 2075 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2076 * @type: the section type value 2077 * @size: the size of the section to reserve (in bytes) 2078 * 2079 * Reserves memory in the buffer for a section's content and updates the 2080 * buffers' status accordingly. This routine returns a pointer to the first 2081 * byte of the section start within the buffer, which is used to fill in the 2082 * section contents. 2083 * Note: all package contents must be in Little Endian form. 2084 */ 2085 static void * 2086 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 2087 { 2088 struct ice_buf_hdr *buf; 2089 u16 sect_count; 2090 u16 data_end; 2091 2092 if (!bld || !type || !size) 2093 return NULL; 2094 2095 buf = (struct ice_buf_hdr *)&bld->buf; 2096 2097 /* check for enough space left in buffer */ 2098 data_end = le16_to_cpu(buf->data_end); 2099 2100 /* section start must align on 4 byte boundary */ 2101 data_end = ALIGN(data_end, 4); 2102 2103 if ((data_end + size) > ICE_MAX_S_DATA_END) 2104 return NULL; 2105 2106 /* check for more available section table entries */ 2107 sect_count = le16_to_cpu(buf->section_count); 2108 if (sect_count < bld->reserved_section_table_entries) { 2109 void *section_ptr = ((u8 *)buf) + data_end; 2110 2111 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 2112 buf->section_entry[sect_count].size = cpu_to_le16(size); 2113 buf->section_entry[sect_count].type = cpu_to_le32(type); 2114 2115 data_end += size; 2116 buf->data_end = cpu_to_le16(data_end); 2117 2118 buf->section_count = cpu_to_le16(sect_count + 1); 2119 return section_ptr; 2120 } 2121 2122 /* no free section table entries */ 2123 return NULL; 2124 } 2125 2126 /** 2127 * ice_pkg_buf_alloc_single_section 2128 * @hw: pointer to the HW structure 2129 * @type: the section type value 2130 * @size: the size of the section to reserve (in bytes) 2131 * @section: returns pointer to the section 2132 * 2133 * Allocates a package buffer with a single section. 2134 * Note: all package contents must be in Little Endian form. 2135 */ 2136 struct ice_buf_build * 2137 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 2138 void **section) 2139 { 2140 struct ice_buf_build *buf; 2141 2142 if (!section) 2143 return NULL; 2144 2145 buf = ice_pkg_buf_alloc(hw); 2146 if (!buf) 2147 return NULL; 2148 2149 if (ice_pkg_buf_reserve_section(buf, 1)) 2150 goto ice_pkg_buf_alloc_single_section_err; 2151 2152 *section = ice_pkg_buf_alloc_section(buf, type, size); 2153 if (!*section) 2154 goto ice_pkg_buf_alloc_single_section_err; 2155 2156 return buf; 2157 2158 ice_pkg_buf_alloc_single_section_err: 2159 ice_pkg_buf_free(hw, buf); 2160 return NULL; 2161 } 2162 2163 /** 2164 * ice_pkg_buf_get_active_sections 2165 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2166 * 2167 * Returns the number of active sections. Before using the package buffer 2168 * in an update package command, the caller should make sure that there is at 2169 * least one active section - otherwise, the buffer is not legal and should 2170 * not be used. 2171 * Note: all package contents must be in Little Endian form. 2172 */ 2173 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2174 { 2175 struct ice_buf_hdr *buf; 2176 2177 if (!bld) 2178 return 0; 2179 2180 buf = (struct ice_buf_hdr *)&bld->buf; 2181 return le16_to_cpu(buf->section_count); 2182 } 2183 2184 /** 2185 * ice_pkg_buf 2186 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2187 * 2188 * Return a pointer to the buffer's header 2189 */ 2190 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2191 { 2192 if (!bld) 2193 return NULL; 2194 2195 return &bld->buf; 2196 } 2197 2198 /** 2199 * ice_get_open_tunnel_port - retrieve an open tunnel port 2200 * @hw: pointer to the HW structure 2201 * @port: returns open port 2202 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 2203 */ 2204 bool 2205 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 2206 enum ice_tunnel_type type) 2207 { 2208 bool res = false; 2209 u16 i; 2210 2211 mutex_lock(&hw->tnl_lock); 2212 2213 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2214 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 2215 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 2216 *port = hw->tnl.tbl[i].port; 2217 res = true; 2218 break; 2219 } 2220 2221 mutex_unlock(&hw->tnl_lock); 2222 2223 return res; 2224 } 2225 2226 /** 2227 * ice_upd_dvm_boost_entry 2228 * @hw: pointer to the HW structure 2229 * @entry: pointer to double vlan boost entry info 2230 */ 2231 static int 2232 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) 2233 { 2234 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2235 int status = -ENOSPC; 2236 struct ice_buf_build *bld; 2237 u8 val, dc, nm; 2238 2239 bld = ice_pkg_buf_alloc(hw); 2240 if (!bld) 2241 return -ENOMEM; 2242 2243 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2244 if (ice_pkg_buf_reserve_section(bld, 2)) 2245 goto ice_upd_dvm_boost_entry_err; 2246 2247 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2248 struct_size(sect_rx, tcam, 1)); 2249 if (!sect_rx) 2250 goto ice_upd_dvm_boost_entry_err; 2251 sect_rx->count = cpu_to_le16(1); 2252 2253 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2254 struct_size(sect_tx, tcam, 1)); 2255 if (!sect_tx) 2256 goto ice_upd_dvm_boost_entry_err; 2257 sect_tx->count = cpu_to_le16(1); 2258 2259 /* copy original boost entry to update package buffer */ 2260 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); 2261 2262 /* re-write the don't care and never match bits accordingly */ 2263 if (entry->enable) { 2264 /* all bits are don't care */ 2265 val = 0x00; 2266 dc = 0xFF; 2267 nm = 0x00; 2268 } else { 2269 /* disable, one never match bit, the rest are don't care */ 2270 val = 0x00; 2271 dc = 0xF7; 2272 nm = 0x08; 2273 } 2274 2275 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2276 &val, NULL, &dc, &nm, 0, sizeof(u8)); 2277 2278 /* exact copy of entry to Tx section entry */ 2279 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2280 2281 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); 2282 2283 ice_upd_dvm_boost_entry_err: 2284 ice_pkg_buf_free(hw, bld); 2285 2286 return status; 2287 } 2288 2289 /** 2290 * ice_set_dvm_boost_entries 2291 * @hw: pointer to the HW structure 2292 * 2293 * Enable double vlan by updating the appropriate boost tcam entries. 2294 */ 2295 int ice_set_dvm_boost_entries(struct ice_hw *hw) 2296 { 2297 int status; 2298 u16 i; 2299 2300 for (i = 0; i < hw->dvm_upd.count; i++) { 2301 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); 2302 if (status) 2303 return status; 2304 } 2305 2306 return 0; 2307 } 2308 2309 /** 2310 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 2311 * @hw: pointer to the HW structure 2312 * @type: type of tunnel 2313 * @idx: linear index 2314 * 2315 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 2316 * but really the port table may be sprase, and types are mixed, so convert 2317 * the stack index into the device index. 2318 */ 2319 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2320 u16 idx) 2321 { 2322 u16 i; 2323 2324 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2325 if (hw->tnl.tbl[i].valid && 2326 hw->tnl.tbl[i].type == type && 2327 idx-- == 0) 2328 return i; 2329 2330 WARN_ON_ONCE(1); 2331 return 0; 2332 } 2333 2334 /** 2335 * ice_create_tunnel 2336 * @hw: pointer to the HW structure 2337 * @index: device table entry 2338 * @type: type of tunnel 2339 * @port: port of tunnel to create 2340 * 2341 * Create a tunnel by updating the parse graph in the parser. We do that by 2342 * creating a package buffer with the tunnel info and issuing an update package 2343 * command. 2344 */ 2345 static int 2346 ice_create_tunnel(struct ice_hw *hw, u16 index, 2347 enum ice_tunnel_type type, u16 port) 2348 { 2349 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2350 struct ice_buf_build *bld; 2351 int status = -ENOSPC; 2352 2353 mutex_lock(&hw->tnl_lock); 2354 2355 bld = ice_pkg_buf_alloc(hw); 2356 if (!bld) { 2357 status = -ENOMEM; 2358 goto ice_create_tunnel_end; 2359 } 2360 2361 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2362 if (ice_pkg_buf_reserve_section(bld, 2)) 2363 goto ice_create_tunnel_err; 2364 2365 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2366 struct_size(sect_rx, tcam, 1)); 2367 if (!sect_rx) 2368 goto ice_create_tunnel_err; 2369 sect_rx->count = cpu_to_le16(1); 2370 2371 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2372 struct_size(sect_tx, tcam, 1)); 2373 if (!sect_tx) 2374 goto ice_create_tunnel_err; 2375 sect_tx->count = cpu_to_le16(1); 2376 2377 /* copy original boost entry to update package buffer */ 2378 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2379 sizeof(*sect_rx->tcam)); 2380 2381 /* over-write the never-match dest port key bits with the encoded port 2382 * bits 2383 */ 2384 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2385 (u8 *)&port, NULL, NULL, NULL, 2386 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2387 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2388 2389 /* exact copy of entry to Tx section entry */ 2390 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2391 2392 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2393 if (!status) 2394 hw->tnl.tbl[index].port = port; 2395 2396 ice_create_tunnel_err: 2397 ice_pkg_buf_free(hw, bld); 2398 2399 ice_create_tunnel_end: 2400 mutex_unlock(&hw->tnl_lock); 2401 2402 return status; 2403 } 2404 2405 /** 2406 * ice_destroy_tunnel 2407 * @hw: pointer to the HW structure 2408 * @index: device table entry 2409 * @type: type of tunnel 2410 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2411 * 2412 * Destroys a tunnel or all tunnels by creating an update package buffer 2413 * targeting the specific updates requested and then performing an update 2414 * package. 2415 */ 2416 static int 2417 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2418 u16 port) 2419 { 2420 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2421 struct ice_buf_build *bld; 2422 int status = -ENOSPC; 2423 2424 mutex_lock(&hw->tnl_lock); 2425 2426 if (WARN_ON(!hw->tnl.tbl[index].valid || 2427 hw->tnl.tbl[index].type != type || 2428 hw->tnl.tbl[index].port != port)) { 2429 status = -EIO; 2430 goto ice_destroy_tunnel_end; 2431 } 2432 2433 bld = ice_pkg_buf_alloc(hw); 2434 if (!bld) { 2435 status = -ENOMEM; 2436 goto ice_destroy_tunnel_end; 2437 } 2438 2439 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2440 if (ice_pkg_buf_reserve_section(bld, 2)) 2441 goto ice_destroy_tunnel_err; 2442 2443 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2444 struct_size(sect_rx, tcam, 1)); 2445 if (!sect_rx) 2446 goto ice_destroy_tunnel_err; 2447 sect_rx->count = cpu_to_le16(1); 2448 2449 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2450 struct_size(sect_tx, tcam, 1)); 2451 if (!sect_tx) 2452 goto ice_destroy_tunnel_err; 2453 sect_tx->count = cpu_to_le16(1); 2454 2455 /* copy original boost entry to update package buffer, one copy to Rx 2456 * section, another copy to the Tx section 2457 */ 2458 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2459 sizeof(*sect_rx->tcam)); 2460 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2461 sizeof(*sect_tx->tcam)); 2462 2463 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2464 if (!status) 2465 hw->tnl.tbl[index].port = 0; 2466 2467 ice_destroy_tunnel_err: 2468 ice_pkg_buf_free(hw, bld); 2469 2470 ice_destroy_tunnel_end: 2471 mutex_unlock(&hw->tnl_lock); 2472 2473 return status; 2474 } 2475 2476 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2477 unsigned int idx, struct udp_tunnel_info *ti) 2478 { 2479 struct ice_netdev_priv *np = netdev_priv(netdev); 2480 struct ice_vsi *vsi = np->vsi; 2481 struct ice_pf *pf = vsi->back; 2482 enum ice_tunnel_type tnl_type; 2483 int status; 2484 u16 index; 2485 2486 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2487 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2488 2489 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2490 if (status) { 2491 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 2492 status); 2493 return -EIO; 2494 } 2495 2496 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2497 return 0; 2498 } 2499 2500 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2501 unsigned int idx, struct udp_tunnel_info *ti) 2502 { 2503 struct ice_netdev_priv *np = netdev_priv(netdev); 2504 struct ice_vsi *vsi = np->vsi; 2505 struct ice_pf *pf = vsi->back; 2506 enum ice_tunnel_type tnl_type; 2507 int status; 2508 2509 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2510 2511 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2512 ntohs(ti->port)); 2513 if (status) { 2514 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 2515 status); 2516 return -EIO; 2517 } 2518 2519 return 0; 2520 } 2521 2522 /** 2523 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2524 * @hw: pointer to the hardware structure 2525 * @blk: hardware block 2526 * @prof: profile ID 2527 * @fv_idx: field vector word index 2528 * @prot: variable to receive the protocol ID 2529 * @off: variable to receive the protocol offset 2530 */ 2531 int 2532 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2533 u8 *prot, u16 *off) 2534 { 2535 struct ice_fv_word *fv_ext; 2536 2537 if (prof >= hw->blk[blk].es.count) 2538 return -EINVAL; 2539 2540 if (fv_idx >= hw->blk[blk].es.fvw) 2541 return -EINVAL; 2542 2543 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2544 2545 *prot = fv_ext[fv_idx].prot_id; 2546 *off = fv_ext[fv_idx].off; 2547 2548 return 0; 2549 } 2550 2551 /* PTG Management */ 2552 2553 /** 2554 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2555 * @hw: pointer to the hardware structure 2556 * @blk: HW block 2557 * @ptype: the ptype to search for 2558 * @ptg: pointer to variable that receives the PTG 2559 * 2560 * This function will search the PTGs for a particular ptype, returning the 2561 * PTG ID that contains it through the PTG parameter, with the value of 2562 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2563 */ 2564 static int 2565 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2566 { 2567 if (ptype >= ICE_XLT1_CNT || !ptg) 2568 return -EINVAL; 2569 2570 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2571 return 0; 2572 } 2573 2574 /** 2575 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2576 * @hw: pointer to the hardware structure 2577 * @blk: HW block 2578 * @ptg: the PTG to allocate 2579 * 2580 * This function allocates a given packet type group ID specified by the PTG 2581 * parameter. 2582 */ 2583 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2584 { 2585 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2586 } 2587 2588 /** 2589 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2590 * @hw: pointer to the hardware structure 2591 * @blk: HW block 2592 * @ptype: the ptype to remove 2593 * @ptg: the PTG to remove the ptype from 2594 * 2595 * This function will remove the ptype from the specific PTG, and move it to 2596 * the default PTG (ICE_DEFAULT_PTG). 2597 */ 2598 static int 2599 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2600 { 2601 struct ice_ptg_ptype **ch; 2602 struct ice_ptg_ptype *p; 2603 2604 if (ptype > ICE_XLT1_CNT - 1) 2605 return -EINVAL; 2606 2607 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2608 return -ENOENT; 2609 2610 /* Should not happen if .in_use is set, bad config */ 2611 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2612 return -EIO; 2613 2614 /* find the ptype within this PTG, and bypass the link over it */ 2615 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2616 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2617 while (p) { 2618 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2619 *ch = p->next_ptype; 2620 break; 2621 } 2622 2623 ch = &p->next_ptype; 2624 p = p->next_ptype; 2625 } 2626 2627 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2628 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2629 2630 return 0; 2631 } 2632 2633 /** 2634 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2635 * @hw: pointer to the hardware structure 2636 * @blk: HW block 2637 * @ptype: the ptype to add or move 2638 * @ptg: the PTG to add or move the ptype to 2639 * 2640 * This function will either add or move a ptype to a particular PTG depending 2641 * on if the ptype is already part of another group. Note that using a 2642 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2643 * default PTG. 2644 */ 2645 static int 2646 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2647 { 2648 u8 original_ptg; 2649 int status; 2650 2651 if (ptype > ICE_XLT1_CNT - 1) 2652 return -EINVAL; 2653 2654 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2655 return -ENOENT; 2656 2657 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2658 if (status) 2659 return status; 2660 2661 /* Is ptype already in the correct PTG? */ 2662 if (original_ptg == ptg) 2663 return 0; 2664 2665 /* Remove from original PTG and move back to the default PTG */ 2666 if (original_ptg != ICE_DEFAULT_PTG) 2667 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2668 2669 /* Moving to default PTG? Then we're done with this request */ 2670 if (ptg == ICE_DEFAULT_PTG) 2671 return 0; 2672 2673 /* Add ptype to PTG at beginning of list */ 2674 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2675 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2676 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2677 &hw->blk[blk].xlt1.ptypes[ptype]; 2678 2679 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2680 hw->blk[blk].xlt1.t[ptype] = ptg; 2681 2682 return 0; 2683 } 2684 2685 /* Block / table size info */ 2686 struct ice_blk_size_details { 2687 u16 xlt1; /* # XLT1 entries */ 2688 u16 xlt2; /* # XLT2 entries */ 2689 u16 prof_tcam; /* # profile ID TCAM entries */ 2690 u16 prof_id; /* # profile IDs */ 2691 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2692 u16 prof_redir; /* # profile redirection entries */ 2693 u16 es; /* # extraction sequence entries */ 2694 u16 fvw; /* # field vector words */ 2695 u8 overwrite; /* overwrite existing entries allowed */ 2696 u8 reverse; /* reverse FV order */ 2697 }; 2698 2699 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2700 /** 2701 * Table Definitions 2702 * XLT1 - Number of entries in XLT1 table 2703 * XLT2 - Number of entries in XLT2 table 2704 * TCAM - Number of entries Profile ID TCAM table 2705 * CDID - Control Domain ID of the hardware block 2706 * PRED - Number of entries in the Profile Redirection Table 2707 * FV - Number of entries in the Field Vector 2708 * FVW - Width (in WORDs) of the Field Vector 2709 * OVR - Overwrite existing table entries 2710 * REV - Reverse FV 2711 */ 2712 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2713 /* Overwrite , Reverse FV */ 2714 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2715 false, false }, 2716 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2717 false, false }, 2718 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2719 false, true }, 2720 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2721 true, true }, 2722 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2723 false, false }, 2724 }; 2725 2726 enum ice_sid_all { 2727 ICE_SID_XLT1_OFF = 0, 2728 ICE_SID_XLT2_OFF, 2729 ICE_SID_PR_OFF, 2730 ICE_SID_PR_REDIR_OFF, 2731 ICE_SID_ES_OFF, 2732 ICE_SID_OFF_COUNT, 2733 }; 2734 2735 /* Characteristic handling */ 2736 2737 /** 2738 * ice_match_prop_lst - determine if properties of two lists match 2739 * @list1: first properties list 2740 * @list2: second properties list 2741 * 2742 * Count, cookies and the order must match in order to be considered equivalent. 2743 */ 2744 static bool 2745 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2746 { 2747 struct ice_vsig_prof *tmp1; 2748 struct ice_vsig_prof *tmp2; 2749 u16 chk_count = 0; 2750 u16 count = 0; 2751 2752 /* compare counts */ 2753 list_for_each_entry(tmp1, list1, list) 2754 count++; 2755 list_for_each_entry(tmp2, list2, list) 2756 chk_count++; 2757 /* cppcheck-suppress knownConditionTrueFalse */ 2758 if (!count || count != chk_count) 2759 return false; 2760 2761 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2762 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2763 2764 /* profile cookies must compare, and in the exact same order to take 2765 * into account priority 2766 */ 2767 while (count--) { 2768 if (tmp2->profile_cookie != tmp1->profile_cookie) 2769 return false; 2770 2771 tmp1 = list_next_entry(tmp1, list); 2772 tmp2 = list_next_entry(tmp2, list); 2773 } 2774 2775 return true; 2776 } 2777 2778 /* VSIG Management */ 2779 2780 /** 2781 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2782 * @hw: pointer to the hardware structure 2783 * @blk: HW block 2784 * @vsi: VSI of interest 2785 * @vsig: pointer to receive the VSI group 2786 * 2787 * This function will lookup the VSI entry in the XLT2 list and return 2788 * the VSI group its associated with. 2789 */ 2790 static int 2791 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2792 { 2793 if (!vsig || vsi >= ICE_MAX_VSI) 2794 return -EINVAL; 2795 2796 /* As long as there's a default or valid VSIG associated with the input 2797 * VSI, the functions returns a success. Any handling of VSIG will be 2798 * done by the following add, update or remove functions. 2799 */ 2800 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * ice_vsig_alloc_val - allocate a new VSIG by value 2807 * @hw: pointer to the hardware structure 2808 * @blk: HW block 2809 * @vsig: the VSIG to allocate 2810 * 2811 * This function will allocate a given VSIG specified by the VSIG parameter. 2812 */ 2813 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2814 { 2815 u16 idx = vsig & ICE_VSIG_IDX_M; 2816 2817 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2818 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2819 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2820 } 2821 2822 return ICE_VSIG_VALUE(idx, hw->pf_id); 2823 } 2824 2825 /** 2826 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2827 * @hw: pointer to the hardware structure 2828 * @blk: HW block 2829 * 2830 * This function will iterate through the VSIG list and mark the first 2831 * unused entry for the new VSIG entry as used and return that value. 2832 */ 2833 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2834 { 2835 u16 i; 2836 2837 for (i = 1; i < ICE_MAX_VSIGS; i++) 2838 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2839 return ice_vsig_alloc_val(hw, blk, i); 2840 2841 return ICE_DEFAULT_VSIG; 2842 } 2843 2844 /** 2845 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2846 * @hw: pointer to the hardware structure 2847 * @blk: HW block 2848 * @chs: characteristic list 2849 * @vsig: returns the VSIG with the matching profiles, if found 2850 * 2851 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2852 * a group have the same characteristic set. To check if there exists a VSIG 2853 * which has the same characteristics as the input characteristics; this 2854 * function will iterate through the XLT2 list and return the VSIG that has a 2855 * matching configuration. In order to make sure that priorities are accounted 2856 * for, the list must match exactly, including the order in which the 2857 * characteristics are listed. 2858 */ 2859 static int 2860 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2861 struct list_head *chs, u16 *vsig) 2862 { 2863 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2864 u16 i; 2865 2866 for (i = 0; i < xlt2->count; i++) 2867 if (xlt2->vsig_tbl[i].in_use && 2868 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2869 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2870 return 0; 2871 } 2872 2873 return -ENOENT; 2874 } 2875 2876 /** 2877 * ice_vsig_free - free VSI group 2878 * @hw: pointer to the hardware structure 2879 * @blk: HW block 2880 * @vsig: VSIG to remove 2881 * 2882 * The function will remove all VSIs associated with the input VSIG and move 2883 * them to the DEFAULT_VSIG and mark the VSIG available. 2884 */ 2885 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2886 { 2887 struct ice_vsig_prof *dtmp, *del; 2888 struct ice_vsig_vsi *vsi_cur; 2889 u16 idx; 2890 2891 idx = vsig & ICE_VSIG_IDX_M; 2892 if (idx >= ICE_MAX_VSIGS) 2893 return -EINVAL; 2894 2895 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2896 return -ENOENT; 2897 2898 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2899 2900 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2901 /* If the VSIG has at least 1 VSI then iterate through the 2902 * list and remove the VSIs before deleting the group. 2903 */ 2904 if (vsi_cur) { 2905 /* remove all vsis associated with this VSIG XLT2 entry */ 2906 do { 2907 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2908 2909 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2910 vsi_cur->changed = 1; 2911 vsi_cur->next_vsi = NULL; 2912 vsi_cur = tmp; 2913 } while (vsi_cur); 2914 2915 /* NULL terminate head of VSI list */ 2916 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2917 } 2918 2919 /* free characteristic list */ 2920 list_for_each_entry_safe(del, dtmp, 2921 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2922 list) { 2923 list_del(&del->list); 2924 devm_kfree(ice_hw_to_dev(hw), del); 2925 } 2926 2927 /* if VSIG characteristic list was cleared for reset 2928 * re-initialize the list head 2929 */ 2930 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2931 2932 return 0; 2933 } 2934 2935 /** 2936 * ice_vsig_remove_vsi - remove VSI from VSIG 2937 * @hw: pointer to the hardware structure 2938 * @blk: HW block 2939 * @vsi: VSI to remove 2940 * @vsig: VSI group to remove from 2941 * 2942 * The function will remove the input VSI from its VSI group and move it 2943 * to the DEFAULT_VSIG. 2944 */ 2945 static int 2946 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2947 { 2948 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2949 u16 idx; 2950 2951 idx = vsig & ICE_VSIG_IDX_M; 2952 2953 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2954 return -EINVAL; 2955 2956 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2957 return -ENOENT; 2958 2959 /* entry already in default VSIG, don't have to remove */ 2960 if (idx == ICE_DEFAULT_VSIG) 2961 return 0; 2962 2963 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2964 if (!(*vsi_head)) 2965 return -EIO; 2966 2967 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2968 vsi_cur = (*vsi_head); 2969 2970 /* iterate the VSI list, skip over the entry to be removed */ 2971 while (vsi_cur) { 2972 if (vsi_tgt == vsi_cur) { 2973 (*vsi_head) = vsi_cur->next_vsi; 2974 break; 2975 } 2976 vsi_head = &vsi_cur->next_vsi; 2977 vsi_cur = vsi_cur->next_vsi; 2978 } 2979 2980 /* verify if VSI was removed from group list */ 2981 if (!vsi_cur) 2982 return -ENOENT; 2983 2984 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2985 vsi_cur->changed = 1; 2986 vsi_cur->next_vsi = NULL; 2987 2988 return 0; 2989 } 2990 2991 /** 2992 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2993 * @hw: pointer to the hardware structure 2994 * @blk: HW block 2995 * @vsi: VSI to move 2996 * @vsig: destination VSI group 2997 * 2998 * This function will move or add the input VSI to the target VSIG. 2999 * The function will find the original VSIG the VSI belongs to and 3000 * move the entry to the DEFAULT_VSIG, update the original VSIG and 3001 * then move entry to the new VSIG. 3002 */ 3003 static int 3004 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3005 { 3006 struct ice_vsig_vsi *tmp; 3007 u16 orig_vsig, idx; 3008 int status; 3009 3010 idx = vsig & ICE_VSIG_IDX_M; 3011 3012 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3013 return -EINVAL; 3014 3015 /* if VSIG not in use and VSIG is not default type this VSIG 3016 * doesn't exist. 3017 */ 3018 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 3019 vsig != ICE_DEFAULT_VSIG) 3020 return -ENOENT; 3021 3022 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3023 if (status) 3024 return status; 3025 3026 /* no update required if vsigs match */ 3027 if (orig_vsig == vsig) 3028 return 0; 3029 3030 if (orig_vsig != ICE_DEFAULT_VSIG) { 3031 /* remove entry from orig_vsig and add to default VSIG */ 3032 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3033 if (status) 3034 return status; 3035 } 3036 3037 if (idx == ICE_DEFAULT_VSIG) 3038 return 0; 3039 3040 /* Create VSI entry and add VSIG and prop_mask values */ 3041 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3042 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3043 3044 /* Add new entry to the head of the VSIG list */ 3045 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3046 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3047 &hw->blk[blk].xlt2.vsis[vsi]; 3048 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3049 hw->blk[blk].xlt2.t[vsi] = vsig; 3050 3051 return 0; 3052 } 3053 3054 /** 3055 * ice_prof_has_mask_idx - determine if profile index masking is identical 3056 * @hw: pointer to the hardware structure 3057 * @blk: HW block 3058 * @prof: profile to check 3059 * @idx: profile index to check 3060 * @mask: mask to match 3061 */ 3062 static bool 3063 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 3064 u16 mask) 3065 { 3066 bool expect_no_mask = false; 3067 bool found = false; 3068 bool match = false; 3069 u16 i; 3070 3071 /* If mask is 0x0000 or 0xffff, then there is no masking */ 3072 if (mask == 0 || mask == 0xffff) 3073 expect_no_mask = true; 3074 3075 /* Scan the enabled masks on this profile, for the specified idx */ 3076 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 3077 hw->blk[blk].masks.count; i++) 3078 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 3079 if (hw->blk[blk].masks.masks[i].in_use && 3080 hw->blk[blk].masks.masks[i].idx == idx) { 3081 found = true; 3082 if (hw->blk[blk].masks.masks[i].mask == mask) 3083 match = true; 3084 break; 3085 } 3086 3087 if (expect_no_mask) { 3088 if (found) 3089 return false; 3090 } else { 3091 if (!match) 3092 return false; 3093 } 3094 3095 return true; 3096 } 3097 3098 /** 3099 * ice_prof_has_mask - determine if profile masking is identical 3100 * @hw: pointer to the hardware structure 3101 * @blk: HW block 3102 * @prof: profile to check 3103 * @masks: masks to match 3104 */ 3105 static bool 3106 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 3107 { 3108 u16 i; 3109 3110 /* es->mask_ena[prof] will have the mask */ 3111 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3112 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 3113 return false; 3114 3115 return true; 3116 } 3117 3118 /** 3119 * ice_find_prof_id_with_mask - find profile ID for a given field vector 3120 * @hw: pointer to the hardware structure 3121 * @blk: HW block 3122 * @fv: field vector to search for 3123 * @masks: masks for FV 3124 * @prof_id: receives the profile ID 3125 */ 3126 static int 3127 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 3128 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 3129 { 3130 struct ice_es *es = &hw->blk[blk].es; 3131 u8 i; 3132 3133 /* For FD, we don't want to re-use a existed profile with the same 3134 * field vector and mask. This will cause rule interference. 3135 */ 3136 if (blk == ICE_BLK_FD) 3137 return -ENOENT; 3138 3139 for (i = 0; i < (u8)es->count; i++) { 3140 u16 off = i * es->fvw; 3141 3142 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3143 continue; 3144 3145 /* check if masks settings are the same for this profile */ 3146 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 3147 continue; 3148 3149 *prof_id = i; 3150 return 0; 3151 } 3152 3153 return -ENOENT; 3154 } 3155 3156 /** 3157 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3158 * @blk: the block type 3159 * @rsrc_type: pointer to variable to receive the resource type 3160 */ 3161 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3162 { 3163 switch (blk) { 3164 case ICE_BLK_FD: 3165 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 3166 break; 3167 case ICE_BLK_RSS: 3168 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3169 break; 3170 default: 3171 return false; 3172 } 3173 return true; 3174 } 3175 3176 /** 3177 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3178 * @blk: the block type 3179 * @rsrc_type: pointer to variable to receive the resource type 3180 */ 3181 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3182 { 3183 switch (blk) { 3184 case ICE_BLK_FD: 3185 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 3186 break; 3187 case ICE_BLK_RSS: 3188 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3189 break; 3190 default: 3191 return false; 3192 } 3193 return true; 3194 } 3195 3196 /** 3197 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3198 * @hw: pointer to the HW struct 3199 * @blk: the block to allocate the TCAM for 3200 * @btm: true to allocate from bottom of table, false to allocate from top 3201 * @tcam_idx: pointer to variable to receive the TCAM entry 3202 * 3203 * This function allocates a new entry in a Profile ID TCAM for a specific 3204 * block. 3205 */ 3206 static int 3207 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 3208 u16 *tcam_idx) 3209 { 3210 u16 res_type; 3211 3212 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3213 return -EINVAL; 3214 3215 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 3216 } 3217 3218 /** 3219 * ice_free_tcam_ent - free hardware TCAM entry 3220 * @hw: pointer to the HW struct 3221 * @blk: the block from which to free the TCAM entry 3222 * @tcam_idx: the TCAM entry to free 3223 * 3224 * This function frees an entry in a Profile ID TCAM for a specific block. 3225 */ 3226 static int 3227 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3228 { 3229 u16 res_type; 3230 3231 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3232 return -EINVAL; 3233 3234 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3235 } 3236 3237 /** 3238 * ice_alloc_prof_id - allocate profile ID 3239 * @hw: pointer to the HW struct 3240 * @blk: the block to allocate the profile ID for 3241 * @prof_id: pointer to variable to receive the profile ID 3242 * 3243 * This function allocates a new profile ID, which also corresponds to a Field 3244 * Vector (Extraction Sequence) entry. 3245 */ 3246 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3247 { 3248 u16 res_type; 3249 u16 get_prof; 3250 int status; 3251 3252 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3253 return -EINVAL; 3254 3255 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3256 if (!status) 3257 *prof_id = (u8)get_prof; 3258 3259 return status; 3260 } 3261 3262 /** 3263 * ice_free_prof_id - free profile ID 3264 * @hw: pointer to the HW struct 3265 * @blk: the block from which to free the profile ID 3266 * @prof_id: the profile ID to free 3267 * 3268 * This function frees a profile ID, which also corresponds to a Field Vector. 3269 */ 3270 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3271 { 3272 u16 tmp_prof_id = (u16)prof_id; 3273 u16 res_type; 3274 3275 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3276 return -EINVAL; 3277 3278 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3279 } 3280 3281 /** 3282 * ice_prof_inc_ref - increment reference count for profile 3283 * @hw: pointer to the HW struct 3284 * @blk: the block from which to free the profile ID 3285 * @prof_id: the profile ID for which to increment the reference count 3286 */ 3287 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3288 { 3289 if (prof_id > hw->blk[blk].es.count) 3290 return -EINVAL; 3291 3292 hw->blk[blk].es.ref_count[prof_id]++; 3293 3294 return 0; 3295 } 3296 3297 /** 3298 * ice_write_prof_mask_reg - write profile mask register 3299 * @hw: pointer to the HW struct 3300 * @blk: hardware block 3301 * @mask_idx: mask index 3302 * @idx: index of the FV which will use the mask 3303 * @mask: the 16-bit mask 3304 */ 3305 static void 3306 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 3307 u16 idx, u16 mask) 3308 { 3309 u32 offset; 3310 u32 val; 3311 3312 switch (blk) { 3313 case ICE_BLK_RSS: 3314 offset = GLQF_HMASK(mask_idx); 3315 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 3316 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 3317 break; 3318 case ICE_BLK_FD: 3319 offset = GLQF_FDMASK(mask_idx); 3320 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 3321 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 3322 break; 3323 default: 3324 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3325 blk); 3326 return; 3327 } 3328 3329 wr32(hw, offset, val); 3330 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 3331 blk, idx, offset, val); 3332 } 3333 3334 /** 3335 * ice_write_prof_mask_enable_res - write profile mask enable register 3336 * @hw: pointer to the HW struct 3337 * @blk: hardware block 3338 * @prof_id: profile ID 3339 * @enable_mask: enable mask 3340 */ 3341 static void 3342 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 3343 u16 prof_id, u32 enable_mask) 3344 { 3345 u32 offset; 3346 3347 switch (blk) { 3348 case ICE_BLK_RSS: 3349 offset = GLQF_HMASK_SEL(prof_id); 3350 break; 3351 case ICE_BLK_FD: 3352 offset = GLQF_FDMASK_SEL(prof_id); 3353 break; 3354 default: 3355 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3356 blk); 3357 return; 3358 } 3359 3360 wr32(hw, offset, enable_mask); 3361 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 3362 blk, prof_id, offset, enable_mask); 3363 } 3364 3365 /** 3366 * ice_init_prof_masks - initial prof masks 3367 * @hw: pointer to the HW struct 3368 * @blk: hardware block 3369 */ 3370 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 3371 { 3372 u16 per_pf; 3373 u16 i; 3374 3375 mutex_init(&hw->blk[blk].masks.lock); 3376 3377 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 3378 3379 hw->blk[blk].masks.count = per_pf; 3380 hw->blk[blk].masks.first = hw->pf_id * per_pf; 3381 3382 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3383 3384 for (i = hw->blk[blk].masks.first; 3385 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3386 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3387 } 3388 3389 /** 3390 * ice_init_all_prof_masks - initialize all prof masks 3391 * @hw: pointer to the HW struct 3392 */ 3393 static void ice_init_all_prof_masks(struct ice_hw *hw) 3394 { 3395 ice_init_prof_masks(hw, ICE_BLK_RSS); 3396 ice_init_prof_masks(hw, ICE_BLK_FD); 3397 } 3398 3399 /** 3400 * ice_alloc_prof_mask - allocate profile mask 3401 * @hw: pointer to the HW struct 3402 * @blk: hardware block 3403 * @idx: index of FV which will use the mask 3404 * @mask: the 16-bit mask 3405 * @mask_idx: variable to receive the mask index 3406 */ 3407 static int 3408 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3409 u16 *mask_idx) 3410 { 3411 bool found_unused = false, found_copy = false; 3412 u16 unused_idx = 0, copy_idx = 0; 3413 int status = -ENOSPC; 3414 u16 i; 3415 3416 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3417 return -EINVAL; 3418 3419 mutex_lock(&hw->blk[blk].masks.lock); 3420 3421 for (i = hw->blk[blk].masks.first; 3422 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3423 if (hw->blk[blk].masks.masks[i].in_use) { 3424 /* if mask is in use and it exactly duplicates the 3425 * desired mask and index, then in can be reused 3426 */ 3427 if (hw->blk[blk].masks.masks[i].mask == mask && 3428 hw->blk[blk].masks.masks[i].idx == idx) { 3429 found_copy = true; 3430 copy_idx = i; 3431 break; 3432 } 3433 } else { 3434 /* save off unused index, but keep searching in case 3435 * there is an exact match later on 3436 */ 3437 if (!found_unused) { 3438 found_unused = true; 3439 unused_idx = i; 3440 } 3441 } 3442 3443 if (found_copy) 3444 i = copy_idx; 3445 else if (found_unused) 3446 i = unused_idx; 3447 else 3448 goto err_ice_alloc_prof_mask; 3449 3450 /* update mask for a new entry */ 3451 if (found_unused) { 3452 hw->blk[blk].masks.masks[i].in_use = true; 3453 hw->blk[blk].masks.masks[i].mask = mask; 3454 hw->blk[blk].masks.masks[i].idx = idx; 3455 hw->blk[blk].masks.masks[i].ref = 0; 3456 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3457 } 3458 3459 hw->blk[blk].masks.masks[i].ref++; 3460 *mask_idx = i; 3461 status = 0; 3462 3463 err_ice_alloc_prof_mask: 3464 mutex_unlock(&hw->blk[blk].masks.lock); 3465 3466 return status; 3467 } 3468 3469 /** 3470 * ice_free_prof_mask - free profile mask 3471 * @hw: pointer to the HW struct 3472 * @blk: hardware block 3473 * @mask_idx: index of mask 3474 */ 3475 static int 3476 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3477 { 3478 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3479 return -EINVAL; 3480 3481 if (!(mask_idx >= hw->blk[blk].masks.first && 3482 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3483 return -ENOENT; 3484 3485 mutex_lock(&hw->blk[blk].masks.lock); 3486 3487 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3488 goto exit_ice_free_prof_mask; 3489 3490 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3491 hw->blk[blk].masks.masks[mask_idx].ref--; 3492 goto exit_ice_free_prof_mask; 3493 } 3494 3495 /* remove mask */ 3496 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3497 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3498 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3499 3500 /* update mask as unused entry */ 3501 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3502 mask_idx); 3503 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3504 3505 exit_ice_free_prof_mask: 3506 mutex_unlock(&hw->blk[blk].masks.lock); 3507 3508 return 0; 3509 } 3510 3511 /** 3512 * ice_free_prof_masks - free all profile masks for a profile 3513 * @hw: pointer to the HW struct 3514 * @blk: hardware block 3515 * @prof_id: profile ID 3516 */ 3517 static int 3518 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3519 { 3520 u32 mask_bm; 3521 u16 i; 3522 3523 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3524 return -EINVAL; 3525 3526 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3527 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3528 if (mask_bm & BIT(i)) 3529 ice_free_prof_mask(hw, blk, i); 3530 3531 return 0; 3532 } 3533 3534 /** 3535 * ice_shutdown_prof_masks - releases lock for masking 3536 * @hw: pointer to the HW struct 3537 * @blk: hardware block 3538 * 3539 * This should be called before unloading the driver 3540 */ 3541 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3542 { 3543 u16 i; 3544 3545 mutex_lock(&hw->blk[blk].masks.lock); 3546 3547 for (i = hw->blk[blk].masks.first; 3548 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3549 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3550 3551 hw->blk[blk].masks.masks[i].in_use = false; 3552 hw->blk[blk].masks.masks[i].idx = 0; 3553 hw->blk[blk].masks.masks[i].mask = 0; 3554 } 3555 3556 mutex_unlock(&hw->blk[blk].masks.lock); 3557 mutex_destroy(&hw->blk[blk].masks.lock); 3558 } 3559 3560 /** 3561 * ice_shutdown_all_prof_masks - releases all locks for masking 3562 * @hw: pointer to the HW struct 3563 * 3564 * This should be called before unloading the driver 3565 */ 3566 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3567 { 3568 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3569 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3570 } 3571 3572 /** 3573 * ice_update_prof_masking - set registers according to masking 3574 * @hw: pointer to the HW struct 3575 * @blk: hardware block 3576 * @prof_id: profile ID 3577 * @masks: masks 3578 */ 3579 static int 3580 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3581 u16 *masks) 3582 { 3583 bool err = false; 3584 u32 ena_mask = 0; 3585 u16 idx; 3586 u16 i; 3587 3588 /* Only support FD and RSS masking, otherwise nothing to be done */ 3589 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3590 return 0; 3591 3592 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3593 if (masks[i] && masks[i] != 0xFFFF) { 3594 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3595 ena_mask |= BIT(idx); 3596 } else { 3597 /* not enough bitmaps */ 3598 err = true; 3599 break; 3600 } 3601 } 3602 3603 if (err) { 3604 /* free any bitmaps we have allocated */ 3605 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3606 if (ena_mask & BIT(i)) 3607 ice_free_prof_mask(hw, blk, i); 3608 3609 return -EIO; 3610 } 3611 3612 /* enable the masks for this profile */ 3613 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3614 3615 /* store enabled masks with profile so that they can be freed later */ 3616 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3617 3618 return 0; 3619 } 3620 3621 /** 3622 * ice_write_es - write an extraction sequence to hardware 3623 * @hw: pointer to the HW struct 3624 * @blk: the block in which to write the extraction sequence 3625 * @prof_id: the profile ID to write 3626 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3627 */ 3628 static void 3629 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3630 struct ice_fv_word *fv) 3631 { 3632 u16 off; 3633 3634 off = prof_id * hw->blk[blk].es.fvw; 3635 if (!fv) { 3636 memset(&hw->blk[blk].es.t[off], 0, 3637 hw->blk[blk].es.fvw * sizeof(*fv)); 3638 hw->blk[blk].es.written[prof_id] = false; 3639 } else { 3640 memcpy(&hw->blk[blk].es.t[off], fv, 3641 hw->blk[blk].es.fvw * sizeof(*fv)); 3642 } 3643 } 3644 3645 /** 3646 * ice_prof_dec_ref - decrement reference count for profile 3647 * @hw: pointer to the HW struct 3648 * @blk: the block from which to free the profile ID 3649 * @prof_id: the profile ID for which to decrement the reference count 3650 */ 3651 static int 3652 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3653 { 3654 if (prof_id > hw->blk[blk].es.count) 3655 return -EINVAL; 3656 3657 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3658 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3659 ice_write_es(hw, blk, prof_id, NULL); 3660 ice_free_prof_masks(hw, blk, prof_id); 3661 return ice_free_prof_id(hw, blk, prof_id); 3662 } 3663 } 3664 3665 return 0; 3666 } 3667 3668 /* Block / table section IDs */ 3669 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3670 /* SWITCH */ 3671 { ICE_SID_XLT1_SW, 3672 ICE_SID_XLT2_SW, 3673 ICE_SID_PROFID_TCAM_SW, 3674 ICE_SID_PROFID_REDIR_SW, 3675 ICE_SID_FLD_VEC_SW 3676 }, 3677 3678 /* ACL */ 3679 { ICE_SID_XLT1_ACL, 3680 ICE_SID_XLT2_ACL, 3681 ICE_SID_PROFID_TCAM_ACL, 3682 ICE_SID_PROFID_REDIR_ACL, 3683 ICE_SID_FLD_VEC_ACL 3684 }, 3685 3686 /* FD */ 3687 { ICE_SID_XLT1_FD, 3688 ICE_SID_XLT2_FD, 3689 ICE_SID_PROFID_TCAM_FD, 3690 ICE_SID_PROFID_REDIR_FD, 3691 ICE_SID_FLD_VEC_FD 3692 }, 3693 3694 /* RSS */ 3695 { ICE_SID_XLT1_RSS, 3696 ICE_SID_XLT2_RSS, 3697 ICE_SID_PROFID_TCAM_RSS, 3698 ICE_SID_PROFID_REDIR_RSS, 3699 ICE_SID_FLD_VEC_RSS 3700 }, 3701 3702 /* PE */ 3703 { ICE_SID_XLT1_PE, 3704 ICE_SID_XLT2_PE, 3705 ICE_SID_PROFID_TCAM_PE, 3706 ICE_SID_PROFID_REDIR_PE, 3707 ICE_SID_FLD_VEC_PE 3708 } 3709 }; 3710 3711 /** 3712 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3713 * @hw: pointer to the hardware structure 3714 * @blk: the HW block to initialize 3715 */ 3716 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3717 { 3718 u16 pt; 3719 3720 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3721 u8 ptg; 3722 3723 ptg = hw->blk[blk].xlt1.t[pt]; 3724 if (ptg != ICE_DEFAULT_PTG) { 3725 ice_ptg_alloc_val(hw, blk, ptg); 3726 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3727 } 3728 } 3729 } 3730 3731 /** 3732 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3733 * @hw: pointer to the hardware structure 3734 * @blk: the HW block to initialize 3735 */ 3736 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3737 { 3738 u16 vsi; 3739 3740 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3741 u16 vsig; 3742 3743 vsig = hw->blk[blk].xlt2.t[vsi]; 3744 if (vsig) { 3745 ice_vsig_alloc_val(hw, blk, vsig); 3746 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3747 /* no changes at this time, since this has been 3748 * initialized from the original package 3749 */ 3750 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3751 } 3752 } 3753 } 3754 3755 /** 3756 * ice_init_sw_db - init software database from HW tables 3757 * @hw: pointer to the hardware structure 3758 */ 3759 static void ice_init_sw_db(struct ice_hw *hw) 3760 { 3761 u16 i; 3762 3763 for (i = 0; i < ICE_BLK_COUNT; i++) { 3764 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3765 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3766 } 3767 } 3768 3769 /** 3770 * ice_fill_tbl - Reads content of a single table type into database 3771 * @hw: pointer to the hardware structure 3772 * @block_id: Block ID of the table to copy 3773 * @sid: Section ID of the table to copy 3774 * 3775 * Will attempt to read the entire content of a given table of a single block 3776 * into the driver database. We assume that the buffer will always 3777 * be as large or larger than the data contained in the package. If 3778 * this condition is not met, there is most likely an error in the package 3779 * contents. 3780 */ 3781 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3782 { 3783 u32 dst_len, sect_len, offset = 0; 3784 struct ice_prof_redir_section *pr; 3785 struct ice_prof_id_section *pid; 3786 struct ice_xlt1_section *xlt1; 3787 struct ice_xlt2_section *xlt2; 3788 struct ice_sw_fv_section *es; 3789 struct ice_pkg_enum state; 3790 u8 *src, *dst; 3791 void *sect; 3792 3793 /* if the HW segment pointer is null then the first iteration of 3794 * ice_pkg_enum_section() will fail. In this case the HW tables will 3795 * not be filled and return success. 3796 */ 3797 if (!hw->seg) { 3798 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3799 return; 3800 } 3801 3802 memset(&state, 0, sizeof(state)); 3803 3804 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3805 3806 while (sect) { 3807 switch (sid) { 3808 case ICE_SID_XLT1_SW: 3809 case ICE_SID_XLT1_FD: 3810 case ICE_SID_XLT1_RSS: 3811 case ICE_SID_XLT1_ACL: 3812 case ICE_SID_XLT1_PE: 3813 xlt1 = sect; 3814 src = xlt1->value; 3815 sect_len = le16_to_cpu(xlt1->count) * 3816 sizeof(*hw->blk[block_id].xlt1.t); 3817 dst = hw->blk[block_id].xlt1.t; 3818 dst_len = hw->blk[block_id].xlt1.count * 3819 sizeof(*hw->blk[block_id].xlt1.t); 3820 break; 3821 case ICE_SID_XLT2_SW: 3822 case ICE_SID_XLT2_FD: 3823 case ICE_SID_XLT2_RSS: 3824 case ICE_SID_XLT2_ACL: 3825 case ICE_SID_XLT2_PE: 3826 xlt2 = sect; 3827 src = (__force u8 *)xlt2->value; 3828 sect_len = le16_to_cpu(xlt2->count) * 3829 sizeof(*hw->blk[block_id].xlt2.t); 3830 dst = (u8 *)hw->blk[block_id].xlt2.t; 3831 dst_len = hw->blk[block_id].xlt2.count * 3832 sizeof(*hw->blk[block_id].xlt2.t); 3833 break; 3834 case ICE_SID_PROFID_TCAM_SW: 3835 case ICE_SID_PROFID_TCAM_FD: 3836 case ICE_SID_PROFID_TCAM_RSS: 3837 case ICE_SID_PROFID_TCAM_ACL: 3838 case ICE_SID_PROFID_TCAM_PE: 3839 pid = sect; 3840 src = (u8 *)pid->entry; 3841 sect_len = le16_to_cpu(pid->count) * 3842 sizeof(*hw->blk[block_id].prof.t); 3843 dst = (u8 *)hw->blk[block_id].prof.t; 3844 dst_len = hw->blk[block_id].prof.count * 3845 sizeof(*hw->blk[block_id].prof.t); 3846 break; 3847 case ICE_SID_PROFID_REDIR_SW: 3848 case ICE_SID_PROFID_REDIR_FD: 3849 case ICE_SID_PROFID_REDIR_RSS: 3850 case ICE_SID_PROFID_REDIR_ACL: 3851 case ICE_SID_PROFID_REDIR_PE: 3852 pr = sect; 3853 src = pr->redir_value; 3854 sect_len = le16_to_cpu(pr->count) * 3855 sizeof(*hw->blk[block_id].prof_redir.t); 3856 dst = hw->blk[block_id].prof_redir.t; 3857 dst_len = hw->blk[block_id].prof_redir.count * 3858 sizeof(*hw->blk[block_id].prof_redir.t); 3859 break; 3860 case ICE_SID_FLD_VEC_SW: 3861 case ICE_SID_FLD_VEC_FD: 3862 case ICE_SID_FLD_VEC_RSS: 3863 case ICE_SID_FLD_VEC_ACL: 3864 case ICE_SID_FLD_VEC_PE: 3865 es = sect; 3866 src = (u8 *)es->fv; 3867 sect_len = (u32)(le16_to_cpu(es->count) * 3868 hw->blk[block_id].es.fvw) * 3869 sizeof(*hw->blk[block_id].es.t); 3870 dst = (u8 *)hw->blk[block_id].es.t; 3871 dst_len = (u32)(hw->blk[block_id].es.count * 3872 hw->blk[block_id].es.fvw) * 3873 sizeof(*hw->blk[block_id].es.t); 3874 break; 3875 default: 3876 return; 3877 } 3878 3879 /* if the section offset exceeds destination length, terminate 3880 * table fill. 3881 */ 3882 if (offset > dst_len) 3883 return; 3884 3885 /* if the sum of section size and offset exceed destination size 3886 * then we are out of bounds of the HW table size for that PF. 3887 * Changing section length to fill the remaining table space 3888 * of that PF. 3889 */ 3890 if ((offset + sect_len) > dst_len) 3891 sect_len = dst_len - offset; 3892 3893 memcpy(dst + offset, src, sect_len); 3894 offset += sect_len; 3895 sect = ice_pkg_enum_section(NULL, &state, sid); 3896 } 3897 } 3898 3899 /** 3900 * ice_fill_blk_tbls - Read package context for tables 3901 * @hw: pointer to the hardware structure 3902 * 3903 * Reads the current package contents and populates the driver 3904 * database with the data iteratively for all advanced feature 3905 * blocks. Assume that the HW tables have been allocated. 3906 */ 3907 void ice_fill_blk_tbls(struct ice_hw *hw) 3908 { 3909 u8 i; 3910 3911 for (i = 0; i < ICE_BLK_COUNT; i++) { 3912 enum ice_block blk_id = (enum ice_block)i; 3913 3914 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3915 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3916 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3917 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3918 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3919 } 3920 3921 ice_init_sw_db(hw); 3922 } 3923 3924 /** 3925 * ice_free_prof_map - free profile map 3926 * @hw: pointer to the hardware structure 3927 * @blk_idx: HW block index 3928 */ 3929 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3930 { 3931 struct ice_es *es = &hw->blk[blk_idx].es; 3932 struct ice_prof_map *del, *tmp; 3933 3934 mutex_lock(&es->prof_map_lock); 3935 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3936 list_del(&del->list); 3937 devm_kfree(ice_hw_to_dev(hw), del); 3938 } 3939 INIT_LIST_HEAD(&es->prof_map); 3940 mutex_unlock(&es->prof_map_lock); 3941 } 3942 3943 /** 3944 * ice_free_flow_profs - free flow profile entries 3945 * @hw: pointer to the hardware structure 3946 * @blk_idx: HW block index 3947 */ 3948 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3949 { 3950 struct ice_flow_prof *p, *tmp; 3951 3952 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3953 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3954 struct ice_flow_entry *e, *t; 3955 3956 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3957 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3958 ICE_FLOW_ENTRY_HNDL(e)); 3959 3960 list_del(&p->l_entry); 3961 3962 mutex_destroy(&p->entries_lock); 3963 devm_kfree(ice_hw_to_dev(hw), p); 3964 } 3965 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3966 3967 /* if driver is in reset and tables are being cleared 3968 * re-initialize the flow profile list heads 3969 */ 3970 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3971 } 3972 3973 /** 3974 * ice_free_vsig_tbl - free complete VSIG table entries 3975 * @hw: pointer to the hardware structure 3976 * @blk: the HW block on which to free the VSIG table entries 3977 */ 3978 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3979 { 3980 u16 i; 3981 3982 if (!hw->blk[blk].xlt2.vsig_tbl) 3983 return; 3984 3985 for (i = 1; i < ICE_MAX_VSIGS; i++) 3986 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3987 ice_vsig_free(hw, blk, i); 3988 } 3989 3990 /** 3991 * ice_free_hw_tbls - free hardware table memory 3992 * @hw: pointer to the hardware structure 3993 */ 3994 void ice_free_hw_tbls(struct ice_hw *hw) 3995 { 3996 struct ice_rss_cfg *r, *rt; 3997 u8 i; 3998 3999 for (i = 0; i < ICE_BLK_COUNT; i++) { 4000 if (hw->blk[i].is_list_init) { 4001 struct ice_es *es = &hw->blk[i].es; 4002 4003 ice_free_prof_map(hw, i); 4004 mutex_destroy(&es->prof_map_lock); 4005 4006 ice_free_flow_profs(hw, i); 4007 mutex_destroy(&hw->fl_profs_locks[i]); 4008 4009 hw->blk[i].is_list_init = false; 4010 } 4011 ice_free_vsig_tbl(hw, (enum ice_block)i); 4012 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 4013 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 4014 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 4015 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 4016 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 4017 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 4018 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 4019 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 4020 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 4021 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 4022 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 4023 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 4024 } 4025 4026 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 4027 list_del(&r->l_entry); 4028 devm_kfree(ice_hw_to_dev(hw), r); 4029 } 4030 mutex_destroy(&hw->rss_locks); 4031 ice_shutdown_all_prof_masks(hw); 4032 memset(hw->blk, 0, sizeof(hw->blk)); 4033 } 4034 4035 /** 4036 * ice_init_flow_profs - init flow profile locks and list heads 4037 * @hw: pointer to the hardware structure 4038 * @blk_idx: HW block index 4039 */ 4040 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 4041 { 4042 mutex_init(&hw->fl_profs_locks[blk_idx]); 4043 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 4044 } 4045 4046 /** 4047 * ice_clear_hw_tbls - clear HW tables and flow profiles 4048 * @hw: pointer to the hardware structure 4049 */ 4050 void ice_clear_hw_tbls(struct ice_hw *hw) 4051 { 4052 u8 i; 4053 4054 for (i = 0; i < ICE_BLK_COUNT; i++) { 4055 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4056 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4057 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4058 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4059 struct ice_es *es = &hw->blk[i].es; 4060 4061 if (hw->blk[i].is_list_init) { 4062 ice_free_prof_map(hw, i); 4063 ice_free_flow_profs(hw, i); 4064 } 4065 4066 ice_free_vsig_tbl(hw, (enum ice_block)i); 4067 4068 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 4069 memset(xlt1->ptg_tbl, 0, 4070 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 4071 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 4072 4073 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 4074 memset(xlt2->vsig_tbl, 0, 4075 xlt2->count * sizeof(*xlt2->vsig_tbl)); 4076 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 4077 4078 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 4079 memset(prof_redir->t, 0, 4080 prof_redir->count * sizeof(*prof_redir->t)); 4081 4082 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 4083 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 4084 memset(es->written, 0, es->count * sizeof(*es->written)); 4085 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 4086 } 4087 } 4088 4089 /** 4090 * ice_init_hw_tbls - init hardware table memory 4091 * @hw: pointer to the hardware structure 4092 */ 4093 int ice_init_hw_tbls(struct ice_hw *hw) 4094 { 4095 u8 i; 4096 4097 mutex_init(&hw->rss_locks); 4098 INIT_LIST_HEAD(&hw->rss_list_head); 4099 ice_init_all_prof_masks(hw); 4100 for (i = 0; i < ICE_BLK_COUNT; i++) { 4101 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4102 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4103 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4104 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4105 struct ice_es *es = &hw->blk[i].es; 4106 u16 j; 4107 4108 if (hw->blk[i].is_list_init) 4109 continue; 4110 4111 ice_init_flow_profs(hw, i); 4112 mutex_init(&es->prof_map_lock); 4113 INIT_LIST_HEAD(&es->prof_map); 4114 hw->blk[i].is_list_init = true; 4115 4116 hw->blk[i].overwrite = blk_sizes[i].overwrite; 4117 es->reverse = blk_sizes[i].reverse; 4118 4119 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 4120 xlt1->count = blk_sizes[i].xlt1; 4121 4122 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4123 sizeof(*xlt1->ptypes), GFP_KERNEL); 4124 4125 if (!xlt1->ptypes) 4126 goto err; 4127 4128 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 4129 sizeof(*xlt1->ptg_tbl), 4130 GFP_KERNEL); 4131 4132 if (!xlt1->ptg_tbl) 4133 goto err; 4134 4135 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4136 sizeof(*xlt1->t), GFP_KERNEL); 4137 if (!xlt1->t) 4138 goto err; 4139 4140 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 4141 xlt2->count = blk_sizes[i].xlt2; 4142 4143 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4144 sizeof(*xlt2->vsis), GFP_KERNEL); 4145 4146 if (!xlt2->vsis) 4147 goto err; 4148 4149 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4150 sizeof(*xlt2->vsig_tbl), 4151 GFP_KERNEL); 4152 if (!xlt2->vsig_tbl) 4153 goto err; 4154 4155 for (j = 0; j < xlt2->count; j++) 4156 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 4157 4158 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4159 sizeof(*xlt2->t), GFP_KERNEL); 4160 if (!xlt2->t) 4161 goto err; 4162 4163 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 4164 prof->count = blk_sizes[i].prof_tcam; 4165 prof->max_prof_id = blk_sizes[i].prof_id; 4166 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 4167 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 4168 sizeof(*prof->t), GFP_KERNEL); 4169 4170 if (!prof->t) 4171 goto err; 4172 4173 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 4174 prof_redir->count = blk_sizes[i].prof_redir; 4175 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 4176 prof_redir->count, 4177 sizeof(*prof_redir->t), 4178 GFP_KERNEL); 4179 4180 if (!prof_redir->t) 4181 goto err; 4182 4183 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 4184 es->count = blk_sizes[i].es; 4185 es->fvw = blk_sizes[i].fvw; 4186 es->t = devm_kcalloc(ice_hw_to_dev(hw), 4187 (u32)(es->count * es->fvw), 4188 sizeof(*es->t), GFP_KERNEL); 4189 if (!es->t) 4190 goto err; 4191 4192 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4193 sizeof(*es->ref_count), 4194 GFP_KERNEL); 4195 if (!es->ref_count) 4196 goto err; 4197 4198 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4199 sizeof(*es->written), GFP_KERNEL); 4200 if (!es->written) 4201 goto err; 4202 4203 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4204 sizeof(*es->mask_ena), GFP_KERNEL); 4205 if (!es->mask_ena) 4206 goto err; 4207 } 4208 return 0; 4209 4210 err: 4211 ice_free_hw_tbls(hw); 4212 return -ENOMEM; 4213 } 4214 4215 /** 4216 * ice_prof_gen_key - generate profile ID key 4217 * @hw: pointer to the HW struct 4218 * @blk: the block in which to write profile ID to 4219 * @ptg: packet type group (PTG) portion of key 4220 * @vsig: VSIG portion of key 4221 * @cdid: CDID portion of key 4222 * @flags: flag portion of key 4223 * @vl_msk: valid mask 4224 * @dc_msk: don't care mask 4225 * @nm_msk: never match mask 4226 * @key: output of profile ID key 4227 */ 4228 static int 4229 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 4230 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4231 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 4232 u8 key[ICE_TCAM_KEY_SZ]) 4233 { 4234 struct ice_prof_id_key inkey; 4235 4236 inkey.xlt1 = ptg; 4237 inkey.xlt2_cdid = cpu_to_le16(vsig); 4238 inkey.flags = cpu_to_le16(flags); 4239 4240 switch (hw->blk[blk].prof.cdid_bits) { 4241 case 0: 4242 break; 4243 case 2: 4244 #define ICE_CD_2_M 0xC000U 4245 #define ICE_CD_2_S 14 4246 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 4247 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 4248 break; 4249 case 4: 4250 #define ICE_CD_4_M 0xF000U 4251 #define ICE_CD_4_S 12 4252 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 4253 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 4254 break; 4255 case 8: 4256 #define ICE_CD_8_M 0xFF00U 4257 #define ICE_CD_8_S 16 4258 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 4259 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 4260 break; 4261 default: 4262 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 4263 break; 4264 } 4265 4266 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 4267 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 4268 } 4269 4270 /** 4271 * ice_tcam_write_entry - write TCAM entry 4272 * @hw: pointer to the HW struct 4273 * @blk: the block in which to write profile ID to 4274 * @idx: the entry index to write to 4275 * @prof_id: profile ID 4276 * @ptg: packet type group (PTG) portion of key 4277 * @vsig: VSIG portion of key 4278 * @cdid: CDID portion of key 4279 * @flags: flag portion of key 4280 * @vl_msk: valid mask 4281 * @dc_msk: don't care mask 4282 * @nm_msk: never match mask 4283 */ 4284 static int 4285 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4286 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4287 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4288 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4289 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4290 { 4291 struct ice_prof_tcam_entry; 4292 int status; 4293 4294 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4295 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4296 if (!status) { 4297 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 4298 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4299 } 4300 4301 return status; 4302 } 4303 4304 /** 4305 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4306 * @hw: pointer to the hardware structure 4307 * @blk: HW block 4308 * @vsig: VSIG to query 4309 * @refs: pointer to variable to receive the reference count 4310 */ 4311 static int 4312 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4313 { 4314 u16 idx = vsig & ICE_VSIG_IDX_M; 4315 struct ice_vsig_vsi *ptr; 4316 4317 *refs = 0; 4318 4319 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4320 return -ENOENT; 4321 4322 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4323 while (ptr) { 4324 (*refs)++; 4325 ptr = ptr->next_vsi; 4326 } 4327 4328 return 0; 4329 } 4330 4331 /** 4332 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4333 * @hw: pointer to the hardware structure 4334 * @blk: HW block 4335 * @vsig: VSIG to check against 4336 * @hdl: profile handle 4337 */ 4338 static bool 4339 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4340 { 4341 u16 idx = vsig & ICE_VSIG_IDX_M; 4342 struct ice_vsig_prof *ent; 4343 4344 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4345 list) 4346 if (ent->profile_cookie == hdl) 4347 return true; 4348 4349 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4350 vsig); 4351 return false; 4352 } 4353 4354 /** 4355 * ice_prof_bld_es - build profile ID extraction sequence changes 4356 * @hw: pointer to the HW struct 4357 * @blk: hardware block 4358 * @bld: the update package buffer build to add to 4359 * @chgs: the list of changes to make in hardware 4360 */ 4361 static int 4362 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4363 struct ice_buf_build *bld, struct list_head *chgs) 4364 { 4365 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4366 struct ice_chs_chg *tmp; 4367 4368 list_for_each_entry(tmp, chgs, list_entry) 4369 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4370 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4371 struct ice_pkg_es *p; 4372 u32 id; 4373 4374 id = ice_sect_id(blk, ICE_VEC_TBL); 4375 p = ice_pkg_buf_alloc_section(bld, id, 4376 struct_size(p, es, 1) + 4377 vec_size - 4378 sizeof(p->es[0])); 4379 4380 if (!p) 4381 return -ENOSPC; 4382 4383 p->count = cpu_to_le16(1); 4384 p->offset = cpu_to_le16(tmp->prof_id); 4385 4386 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4387 } 4388 4389 return 0; 4390 } 4391 4392 /** 4393 * ice_prof_bld_tcam - build profile ID TCAM changes 4394 * @hw: pointer to the HW struct 4395 * @blk: hardware block 4396 * @bld: the update package buffer build to add to 4397 * @chgs: the list of changes to make in hardware 4398 */ 4399 static int 4400 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4401 struct ice_buf_build *bld, struct list_head *chgs) 4402 { 4403 struct ice_chs_chg *tmp; 4404 4405 list_for_each_entry(tmp, chgs, list_entry) 4406 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4407 struct ice_prof_id_section *p; 4408 u32 id; 4409 4410 id = ice_sect_id(blk, ICE_PROF_TCAM); 4411 p = ice_pkg_buf_alloc_section(bld, id, 4412 struct_size(p, entry, 1)); 4413 4414 if (!p) 4415 return -ENOSPC; 4416 4417 p->count = cpu_to_le16(1); 4418 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4419 p->entry[0].prof_id = tmp->prof_id; 4420 4421 memcpy(p->entry[0].key, 4422 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4423 sizeof(hw->blk[blk].prof.t->key)); 4424 } 4425 4426 return 0; 4427 } 4428 4429 /** 4430 * ice_prof_bld_xlt1 - build XLT1 changes 4431 * @blk: hardware block 4432 * @bld: the update package buffer build to add to 4433 * @chgs: the list of changes to make in hardware 4434 */ 4435 static int 4436 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4437 struct list_head *chgs) 4438 { 4439 struct ice_chs_chg *tmp; 4440 4441 list_for_each_entry(tmp, chgs, list_entry) 4442 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4443 struct ice_xlt1_section *p; 4444 u32 id; 4445 4446 id = ice_sect_id(blk, ICE_XLT1); 4447 p = ice_pkg_buf_alloc_section(bld, id, 4448 struct_size(p, value, 1)); 4449 4450 if (!p) 4451 return -ENOSPC; 4452 4453 p->count = cpu_to_le16(1); 4454 p->offset = cpu_to_le16(tmp->ptype); 4455 p->value[0] = tmp->ptg; 4456 } 4457 4458 return 0; 4459 } 4460 4461 /** 4462 * ice_prof_bld_xlt2 - build XLT2 changes 4463 * @blk: hardware block 4464 * @bld: the update package buffer build to add to 4465 * @chgs: the list of changes to make in hardware 4466 */ 4467 static int 4468 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4469 struct list_head *chgs) 4470 { 4471 struct ice_chs_chg *tmp; 4472 4473 list_for_each_entry(tmp, chgs, list_entry) { 4474 struct ice_xlt2_section *p; 4475 u32 id; 4476 4477 switch (tmp->type) { 4478 case ICE_VSIG_ADD: 4479 case ICE_VSI_MOVE: 4480 case ICE_VSIG_REM: 4481 id = ice_sect_id(blk, ICE_XLT2); 4482 p = ice_pkg_buf_alloc_section(bld, id, 4483 struct_size(p, value, 1)); 4484 4485 if (!p) 4486 return -ENOSPC; 4487 4488 p->count = cpu_to_le16(1); 4489 p->offset = cpu_to_le16(tmp->vsi); 4490 p->value[0] = cpu_to_le16(tmp->vsig); 4491 break; 4492 default: 4493 break; 4494 } 4495 } 4496 4497 return 0; 4498 } 4499 4500 /** 4501 * ice_upd_prof_hw - update hardware using the change list 4502 * @hw: pointer to the HW struct 4503 * @blk: hardware block 4504 * @chgs: the list of changes to make in hardware 4505 */ 4506 static int 4507 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4508 struct list_head *chgs) 4509 { 4510 struct ice_buf_build *b; 4511 struct ice_chs_chg *tmp; 4512 u16 pkg_sects; 4513 u16 xlt1 = 0; 4514 u16 xlt2 = 0; 4515 u16 tcam = 0; 4516 u16 es = 0; 4517 int status; 4518 u16 sects; 4519 4520 /* count number of sections we need */ 4521 list_for_each_entry(tmp, chgs, list_entry) { 4522 switch (tmp->type) { 4523 case ICE_PTG_ES_ADD: 4524 if (tmp->add_ptg) 4525 xlt1++; 4526 if (tmp->add_prof) 4527 es++; 4528 break; 4529 case ICE_TCAM_ADD: 4530 tcam++; 4531 break; 4532 case ICE_VSIG_ADD: 4533 case ICE_VSI_MOVE: 4534 case ICE_VSIG_REM: 4535 xlt2++; 4536 break; 4537 default: 4538 break; 4539 } 4540 } 4541 sects = xlt1 + xlt2 + tcam + es; 4542 4543 if (!sects) 4544 return 0; 4545 4546 /* Build update package buffer */ 4547 b = ice_pkg_buf_alloc(hw); 4548 if (!b) 4549 return -ENOMEM; 4550 4551 status = ice_pkg_buf_reserve_section(b, sects); 4552 if (status) 4553 goto error_tmp; 4554 4555 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4556 if (es) { 4557 status = ice_prof_bld_es(hw, blk, b, chgs); 4558 if (status) 4559 goto error_tmp; 4560 } 4561 4562 if (tcam) { 4563 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4564 if (status) 4565 goto error_tmp; 4566 } 4567 4568 if (xlt1) { 4569 status = ice_prof_bld_xlt1(blk, b, chgs); 4570 if (status) 4571 goto error_tmp; 4572 } 4573 4574 if (xlt2) { 4575 status = ice_prof_bld_xlt2(blk, b, chgs); 4576 if (status) 4577 goto error_tmp; 4578 } 4579 4580 /* After package buffer build check if the section count in buffer is 4581 * non-zero and matches the number of sections detected for package 4582 * update. 4583 */ 4584 pkg_sects = ice_pkg_buf_get_active_sections(b); 4585 if (!pkg_sects || pkg_sects != sects) { 4586 status = -EINVAL; 4587 goto error_tmp; 4588 } 4589 4590 /* update package */ 4591 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4592 if (status == -EIO) 4593 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4594 4595 error_tmp: 4596 ice_pkg_buf_free(hw, b); 4597 return status; 4598 } 4599 4600 /** 4601 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4602 * @hw: pointer to the HW struct 4603 * @prof_id: profile ID 4604 * @mask_sel: mask select 4605 * 4606 * This function enable any of the masks selected by the mask select parameter 4607 * for the profile specified. 4608 */ 4609 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4610 { 4611 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4612 4613 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4614 GLQF_FDMASK_SEL(prof_id), mask_sel); 4615 } 4616 4617 struct ice_fd_src_dst_pair { 4618 u8 prot_id; 4619 u8 count; 4620 u16 off; 4621 }; 4622 4623 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4624 /* These are defined in pairs */ 4625 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4626 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4627 4628 { ICE_PROT_IPV4_IL, 2, 12 }, 4629 { ICE_PROT_IPV4_IL, 2, 16 }, 4630 4631 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4632 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4633 4634 { ICE_PROT_IPV6_IL, 8, 8 }, 4635 { ICE_PROT_IPV6_IL, 8, 24 }, 4636 4637 { ICE_PROT_TCP_IL, 1, 0 }, 4638 { ICE_PROT_TCP_IL, 1, 2 }, 4639 4640 { ICE_PROT_UDP_OF, 1, 0 }, 4641 { ICE_PROT_UDP_OF, 1, 2 }, 4642 4643 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4644 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4645 4646 { ICE_PROT_SCTP_IL, 1, 0 }, 4647 { ICE_PROT_SCTP_IL, 1, 2 } 4648 }; 4649 4650 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4651 4652 /** 4653 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4654 * @hw: pointer to the HW struct 4655 * @prof_id: profile ID 4656 * @es: extraction sequence (length of array is determined by the block) 4657 */ 4658 static int 4659 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4660 { 4661 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4662 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4663 #define ICE_FD_FV_NOT_FOUND (-2) 4664 s8 first_free = ICE_FD_FV_NOT_FOUND; 4665 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4666 s8 orig_free, si; 4667 u32 mask_sel = 0; 4668 u8 i, j, k; 4669 4670 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4671 4672 /* This code assumes that the Flow Director field vectors are assigned 4673 * from the end of the FV indexes working towards the zero index, that 4674 * only complete fields will be included and will be consecutive, and 4675 * that there are no gaps between valid indexes. 4676 */ 4677 4678 /* Determine swap fields present */ 4679 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4680 /* Find the first free entry, assuming right to left population. 4681 * This is where we can start adding additional pairs if needed. 4682 */ 4683 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4684 ICE_PROT_INVALID) 4685 first_free = i - 1; 4686 4687 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4688 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4689 es[i].off == ice_fd_pairs[j].off) { 4690 __set_bit(j, pair_list); 4691 pair_start[j] = i; 4692 } 4693 } 4694 4695 orig_free = first_free; 4696 4697 /* determine missing swap fields that need to be added */ 4698 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4699 u8 bit1 = test_bit(i + 1, pair_list); 4700 u8 bit0 = test_bit(i, pair_list); 4701 4702 if (bit0 ^ bit1) { 4703 u8 index; 4704 4705 /* add the appropriate 'paired' entry */ 4706 if (!bit0) 4707 index = i; 4708 else 4709 index = i + 1; 4710 4711 /* check for room */ 4712 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4713 return -ENOSPC; 4714 4715 /* place in extraction sequence */ 4716 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4717 es[first_free - k].prot_id = 4718 ice_fd_pairs[index].prot_id; 4719 es[first_free - k].off = 4720 ice_fd_pairs[index].off + (k * 2); 4721 4722 if (k > first_free) 4723 return -EIO; 4724 4725 /* keep track of non-relevant fields */ 4726 mask_sel |= BIT(first_free - k); 4727 } 4728 4729 pair_start[index] = first_free; 4730 first_free -= ice_fd_pairs[index].count; 4731 } 4732 } 4733 4734 /* fill in the swap array */ 4735 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4736 while (si >= 0) { 4737 u8 indexes_used = 1; 4738 4739 /* assume flat at this index */ 4740 #define ICE_SWAP_VALID 0x80 4741 used[si] = si | ICE_SWAP_VALID; 4742 4743 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4744 si -= indexes_used; 4745 continue; 4746 } 4747 4748 /* check for a swap location */ 4749 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4750 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4751 es[si].off == ice_fd_pairs[j].off) { 4752 u8 idx; 4753 4754 /* determine the appropriate matching field */ 4755 idx = j + ((j % 2) ? -1 : 1); 4756 4757 indexes_used = ice_fd_pairs[idx].count; 4758 for (k = 0; k < indexes_used; k++) { 4759 used[si - k] = (pair_start[idx] - k) | 4760 ICE_SWAP_VALID; 4761 } 4762 4763 break; 4764 } 4765 4766 si -= indexes_used; 4767 } 4768 4769 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4770 * register 4771 */ 4772 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4773 u32 raw_swap = 0; 4774 u32 raw_in = 0; 4775 4776 for (k = 0; k < 4; k++) { 4777 u8 idx; 4778 4779 idx = (j * 4) + k; 4780 if (used[idx] && !(mask_sel & BIT(idx))) { 4781 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4782 #define ICE_INSET_DFLT 0x9f 4783 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4784 } 4785 } 4786 4787 /* write the appropriate swap register set */ 4788 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4789 4790 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4791 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4792 4793 /* write the appropriate inset register set */ 4794 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4795 4796 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4797 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4798 } 4799 4800 /* initially clear the mask select for this profile */ 4801 ice_update_fd_mask(hw, prof_id, 0); 4802 4803 return 0; 4804 } 4805 4806 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4807 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4808 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4809 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4810 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4811 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4812 }; 4813 4814 /** 4815 * ice_get_ptype_attrib_info - get PTYPE attribute information 4816 * @type: attribute type 4817 * @info: pointer to variable to the attribute information 4818 */ 4819 static void 4820 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4821 struct ice_ptype_attrib_info *info) 4822 { 4823 *info = ice_ptype_attributes[type]; 4824 } 4825 4826 /** 4827 * ice_add_prof_attrib - add any PTG with attributes to profile 4828 * @prof: pointer to the profile to which PTG entries will be added 4829 * @ptg: PTG to be added 4830 * @ptype: PTYPE that needs to be looked up 4831 * @attr: array of attributes that will be considered 4832 * @attr_cnt: number of elements in the attribute array 4833 */ 4834 static int 4835 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4836 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4837 { 4838 bool found = false; 4839 u16 i; 4840 4841 for (i = 0; i < attr_cnt; i++) 4842 if (attr[i].ptype == ptype) { 4843 found = true; 4844 4845 prof->ptg[prof->ptg_cnt] = ptg; 4846 ice_get_ptype_attrib_info(attr[i].attrib, 4847 &prof->attr[prof->ptg_cnt]); 4848 4849 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4850 return -ENOSPC; 4851 } 4852 4853 if (!found) 4854 return -ENOENT; 4855 4856 return 0; 4857 } 4858 4859 /** 4860 * ice_add_prof - add profile 4861 * @hw: pointer to the HW struct 4862 * @blk: hardware block 4863 * @id: profile tracking ID 4864 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4865 * @attr: array of attributes 4866 * @attr_cnt: number of elements in attr array 4867 * @es: extraction sequence (length of array is determined by the block) 4868 * @masks: mask for extraction sequence 4869 * 4870 * This function registers a profile, which matches a set of PTYPES with a 4871 * particular extraction sequence. While the hardware profile is allocated 4872 * it will not be written until the first call to ice_add_flow that specifies 4873 * the ID value used here. 4874 */ 4875 int 4876 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4877 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4878 struct ice_fv_word *es, u16 *masks) 4879 { 4880 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4881 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4882 struct ice_prof_map *prof; 4883 u8 byte = 0; 4884 u8 prof_id; 4885 int status; 4886 4887 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4888 4889 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4890 4891 /* search for existing profile */ 4892 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4893 if (status) { 4894 /* allocate profile ID */ 4895 status = ice_alloc_prof_id(hw, blk, &prof_id); 4896 if (status) 4897 goto err_ice_add_prof; 4898 if (blk == ICE_BLK_FD) { 4899 /* For Flow Director block, the extraction sequence may 4900 * need to be altered in the case where there are paired 4901 * fields that have no match. This is necessary because 4902 * for Flow Director, src and dest fields need to paired 4903 * for filter programming and these values are swapped 4904 * during Tx. 4905 */ 4906 status = ice_update_fd_swap(hw, prof_id, es); 4907 if (status) 4908 goto err_ice_add_prof; 4909 } 4910 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4911 if (status) 4912 goto err_ice_add_prof; 4913 4914 /* and write new es */ 4915 ice_write_es(hw, blk, prof_id, es); 4916 } 4917 4918 ice_prof_inc_ref(hw, blk, prof_id); 4919 4920 /* add profile info */ 4921 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4922 if (!prof) { 4923 status = -ENOMEM; 4924 goto err_ice_add_prof; 4925 } 4926 4927 prof->profile_cookie = id; 4928 prof->prof_id = prof_id; 4929 prof->ptg_cnt = 0; 4930 prof->context = 0; 4931 4932 /* build list of ptgs */ 4933 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4934 u8 bit; 4935 4936 if (!ptypes[byte]) { 4937 bytes--; 4938 byte++; 4939 continue; 4940 } 4941 4942 /* Examine 8 bits per byte */ 4943 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4944 BITS_PER_BYTE) { 4945 u16 ptype; 4946 u8 ptg; 4947 4948 ptype = byte * BITS_PER_BYTE + bit; 4949 4950 /* The package should place all ptypes in a non-zero 4951 * PTG, so the following call should never fail. 4952 */ 4953 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4954 continue; 4955 4956 /* If PTG is already added, skip and continue */ 4957 if (test_bit(ptg, ptgs_used)) 4958 continue; 4959 4960 __set_bit(ptg, ptgs_used); 4961 /* Check to see there are any attributes for 4962 * this PTYPE, and add them if found. 4963 */ 4964 status = ice_add_prof_attrib(prof, ptg, ptype, 4965 attr, attr_cnt); 4966 if (status == -ENOSPC) 4967 break; 4968 if (status) { 4969 /* This is simple a PTYPE/PTG with no 4970 * attribute 4971 */ 4972 prof->ptg[prof->ptg_cnt] = ptg; 4973 prof->attr[prof->ptg_cnt].flags = 0; 4974 prof->attr[prof->ptg_cnt].mask = 0; 4975 4976 if (++prof->ptg_cnt >= 4977 ICE_MAX_PTG_PER_PROFILE) 4978 break; 4979 } 4980 } 4981 4982 bytes--; 4983 byte++; 4984 } 4985 4986 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4987 status = 0; 4988 4989 err_ice_add_prof: 4990 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4991 return status; 4992 } 4993 4994 /** 4995 * ice_search_prof_id - Search for a profile tracking ID 4996 * @hw: pointer to the HW struct 4997 * @blk: hardware block 4998 * @id: profile tracking ID 4999 * 5000 * This will search for a profile tracking ID which was previously added. 5001 * The profile map lock should be held before calling this function. 5002 */ 5003 static struct ice_prof_map * 5004 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 5005 { 5006 struct ice_prof_map *entry = NULL; 5007 struct ice_prof_map *map; 5008 5009 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 5010 if (map->profile_cookie == id) { 5011 entry = map; 5012 break; 5013 } 5014 5015 return entry; 5016 } 5017 5018 /** 5019 * ice_vsig_prof_id_count - count profiles in a VSIG 5020 * @hw: pointer to the HW struct 5021 * @blk: hardware block 5022 * @vsig: VSIG to remove the profile from 5023 */ 5024 static u16 5025 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 5026 { 5027 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 5028 struct ice_vsig_prof *p; 5029 5030 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5031 list) 5032 count++; 5033 5034 return count; 5035 } 5036 5037 /** 5038 * ice_rel_tcam_idx - release a TCAM index 5039 * @hw: pointer to the HW struct 5040 * @blk: hardware block 5041 * @idx: the index to release 5042 */ 5043 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 5044 { 5045 /* Masks to invoke a never match entry */ 5046 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5047 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 5048 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 5049 int status; 5050 5051 /* write the TCAM entry */ 5052 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 5053 dc_msk, nm_msk); 5054 if (status) 5055 return status; 5056 5057 /* release the TCAM entry */ 5058 status = ice_free_tcam_ent(hw, blk, idx); 5059 5060 return status; 5061 } 5062 5063 /** 5064 * ice_rem_prof_id - remove one profile from a VSIG 5065 * @hw: pointer to the HW struct 5066 * @blk: hardware block 5067 * @prof: pointer to profile structure to remove 5068 */ 5069 static int 5070 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 5071 struct ice_vsig_prof *prof) 5072 { 5073 int status; 5074 u16 i; 5075 5076 for (i = 0; i < prof->tcam_count; i++) 5077 if (prof->tcam[i].in_use) { 5078 prof->tcam[i].in_use = false; 5079 status = ice_rel_tcam_idx(hw, blk, 5080 prof->tcam[i].tcam_idx); 5081 if (status) 5082 return -EIO; 5083 } 5084 5085 return 0; 5086 } 5087 5088 /** 5089 * ice_rem_vsig - remove VSIG 5090 * @hw: pointer to the HW struct 5091 * @blk: hardware block 5092 * @vsig: the VSIG to remove 5093 * @chg: the change list 5094 */ 5095 static int 5096 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5097 struct list_head *chg) 5098 { 5099 u16 idx = vsig & ICE_VSIG_IDX_M; 5100 struct ice_vsig_vsi *vsi_cur; 5101 struct ice_vsig_prof *d, *t; 5102 int status; 5103 5104 /* remove TCAM entries */ 5105 list_for_each_entry_safe(d, t, 5106 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5107 list) { 5108 status = ice_rem_prof_id(hw, blk, d); 5109 if (status) 5110 return status; 5111 5112 list_del(&d->list); 5113 devm_kfree(ice_hw_to_dev(hw), d); 5114 } 5115 5116 /* Move all VSIS associated with this VSIG to the default VSIG */ 5117 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 5118 /* If the VSIG has at least 1 VSI then iterate through the list 5119 * and remove the VSIs before deleting the group. 5120 */ 5121 if (vsi_cur) 5122 do { 5123 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 5124 struct ice_chs_chg *p; 5125 5126 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5127 GFP_KERNEL); 5128 if (!p) 5129 return -ENOMEM; 5130 5131 p->type = ICE_VSIG_REM; 5132 p->orig_vsig = vsig; 5133 p->vsig = ICE_DEFAULT_VSIG; 5134 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 5135 5136 list_add(&p->list_entry, chg); 5137 5138 vsi_cur = tmp; 5139 } while (vsi_cur); 5140 5141 return ice_vsig_free(hw, blk, vsig); 5142 } 5143 5144 /** 5145 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 5146 * @hw: pointer to the HW struct 5147 * @blk: hardware block 5148 * @vsig: VSIG to remove the profile from 5149 * @hdl: profile handle indicating which profile to remove 5150 * @chg: list to receive a record of changes 5151 */ 5152 static int 5153 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5154 struct list_head *chg) 5155 { 5156 u16 idx = vsig & ICE_VSIG_IDX_M; 5157 struct ice_vsig_prof *p, *t; 5158 int status; 5159 5160 list_for_each_entry_safe(p, t, 5161 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5162 list) 5163 if (p->profile_cookie == hdl) { 5164 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 5165 /* this is the last profile, remove the VSIG */ 5166 return ice_rem_vsig(hw, blk, vsig, chg); 5167 5168 status = ice_rem_prof_id(hw, blk, p); 5169 if (!status) { 5170 list_del(&p->list); 5171 devm_kfree(ice_hw_to_dev(hw), p); 5172 } 5173 return status; 5174 } 5175 5176 return -ENOENT; 5177 } 5178 5179 /** 5180 * ice_rem_flow_all - remove all flows with a particular profile 5181 * @hw: pointer to the HW struct 5182 * @blk: hardware block 5183 * @id: profile tracking ID 5184 */ 5185 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 5186 { 5187 struct ice_chs_chg *del, *tmp; 5188 struct list_head chg; 5189 int status; 5190 u16 i; 5191 5192 INIT_LIST_HEAD(&chg); 5193 5194 for (i = 1; i < ICE_MAX_VSIGS; i++) 5195 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 5196 if (ice_has_prof_vsig(hw, blk, i, id)) { 5197 status = ice_rem_prof_id_vsig(hw, blk, i, id, 5198 &chg); 5199 if (status) 5200 goto err_ice_rem_flow_all; 5201 } 5202 } 5203 5204 status = ice_upd_prof_hw(hw, blk, &chg); 5205 5206 err_ice_rem_flow_all: 5207 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5208 list_del(&del->list_entry); 5209 devm_kfree(ice_hw_to_dev(hw), del); 5210 } 5211 5212 return status; 5213 } 5214 5215 /** 5216 * ice_rem_prof - remove profile 5217 * @hw: pointer to the HW struct 5218 * @blk: hardware block 5219 * @id: profile tracking ID 5220 * 5221 * This will remove the profile specified by the ID parameter, which was 5222 * previously created through ice_add_prof. If any existing entries 5223 * are associated with this profile, they will be removed as well. 5224 */ 5225 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 5226 { 5227 struct ice_prof_map *pmap; 5228 int status; 5229 5230 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5231 5232 pmap = ice_search_prof_id(hw, blk, id); 5233 if (!pmap) { 5234 status = -ENOENT; 5235 goto err_ice_rem_prof; 5236 } 5237 5238 /* remove all flows with this profile */ 5239 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 5240 if (status) 5241 goto err_ice_rem_prof; 5242 5243 /* dereference profile, and possibly remove */ 5244 ice_prof_dec_ref(hw, blk, pmap->prof_id); 5245 5246 list_del(&pmap->list); 5247 devm_kfree(ice_hw_to_dev(hw), pmap); 5248 5249 err_ice_rem_prof: 5250 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5251 return status; 5252 } 5253 5254 /** 5255 * ice_get_prof - get profile 5256 * @hw: pointer to the HW struct 5257 * @blk: hardware block 5258 * @hdl: profile handle 5259 * @chg: change list 5260 */ 5261 static int 5262 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 5263 struct list_head *chg) 5264 { 5265 struct ice_prof_map *map; 5266 struct ice_chs_chg *p; 5267 int status = 0; 5268 u16 i; 5269 5270 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5271 /* Get the details on the profile specified by the handle ID */ 5272 map = ice_search_prof_id(hw, blk, hdl); 5273 if (!map) { 5274 status = -ENOENT; 5275 goto err_ice_get_prof; 5276 } 5277 5278 for (i = 0; i < map->ptg_cnt; i++) 5279 if (!hw->blk[blk].es.written[map->prof_id]) { 5280 /* add ES to change list */ 5281 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5282 GFP_KERNEL); 5283 if (!p) { 5284 status = -ENOMEM; 5285 goto err_ice_get_prof; 5286 } 5287 5288 p->type = ICE_PTG_ES_ADD; 5289 p->ptype = 0; 5290 p->ptg = map->ptg[i]; 5291 p->add_ptg = 0; 5292 5293 p->add_prof = 1; 5294 p->prof_id = map->prof_id; 5295 5296 hw->blk[blk].es.written[map->prof_id] = true; 5297 5298 list_add(&p->list_entry, chg); 5299 } 5300 5301 err_ice_get_prof: 5302 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5303 /* let caller clean up the change list */ 5304 return status; 5305 } 5306 5307 /** 5308 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 5309 * @hw: pointer to the HW struct 5310 * @blk: hardware block 5311 * @vsig: VSIG from which to copy the list 5312 * @lst: output list 5313 * 5314 * This routine makes a copy of the list of profiles in the specified VSIG. 5315 */ 5316 static int 5317 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5318 struct list_head *lst) 5319 { 5320 struct ice_vsig_prof *ent1, *ent2; 5321 u16 idx = vsig & ICE_VSIG_IDX_M; 5322 5323 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5324 list) { 5325 struct ice_vsig_prof *p; 5326 5327 /* copy to the input list */ 5328 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 5329 GFP_KERNEL); 5330 if (!p) 5331 goto err_ice_get_profs_vsig; 5332 5333 list_add_tail(&p->list, lst); 5334 } 5335 5336 return 0; 5337 5338 err_ice_get_profs_vsig: 5339 list_for_each_entry_safe(ent1, ent2, lst, list) { 5340 list_del(&ent1->list); 5341 devm_kfree(ice_hw_to_dev(hw), ent1); 5342 } 5343 5344 return -ENOMEM; 5345 } 5346 5347 /** 5348 * ice_add_prof_to_lst - add profile entry to a list 5349 * @hw: pointer to the HW struct 5350 * @blk: hardware block 5351 * @lst: the list to be added to 5352 * @hdl: profile handle of entry to add 5353 */ 5354 static int 5355 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 5356 struct list_head *lst, u64 hdl) 5357 { 5358 struct ice_prof_map *map; 5359 struct ice_vsig_prof *p; 5360 int status = 0; 5361 u16 i; 5362 5363 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5364 map = ice_search_prof_id(hw, blk, hdl); 5365 if (!map) { 5366 status = -ENOENT; 5367 goto err_ice_add_prof_to_lst; 5368 } 5369 5370 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5371 if (!p) { 5372 status = -ENOMEM; 5373 goto err_ice_add_prof_to_lst; 5374 } 5375 5376 p->profile_cookie = map->profile_cookie; 5377 p->prof_id = map->prof_id; 5378 p->tcam_count = map->ptg_cnt; 5379 5380 for (i = 0; i < map->ptg_cnt; i++) { 5381 p->tcam[i].prof_id = map->prof_id; 5382 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5383 p->tcam[i].ptg = map->ptg[i]; 5384 } 5385 5386 list_add(&p->list, lst); 5387 5388 err_ice_add_prof_to_lst: 5389 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5390 return status; 5391 } 5392 5393 /** 5394 * ice_move_vsi - move VSI to another VSIG 5395 * @hw: pointer to the HW struct 5396 * @blk: hardware block 5397 * @vsi: the VSI to move 5398 * @vsig: the VSIG to move the VSI to 5399 * @chg: the change list 5400 */ 5401 static int 5402 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5403 struct list_head *chg) 5404 { 5405 struct ice_chs_chg *p; 5406 u16 orig_vsig; 5407 int status; 5408 5409 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5410 if (!p) 5411 return -ENOMEM; 5412 5413 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5414 if (!status) 5415 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5416 5417 if (status) { 5418 devm_kfree(ice_hw_to_dev(hw), p); 5419 return status; 5420 } 5421 5422 p->type = ICE_VSI_MOVE; 5423 p->vsi = vsi; 5424 p->orig_vsig = orig_vsig; 5425 p->vsig = vsig; 5426 5427 list_add(&p->list_entry, chg); 5428 5429 return 0; 5430 } 5431 5432 /** 5433 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5434 * @hw: pointer to the HW struct 5435 * @idx: the index of the TCAM entry to remove 5436 * @chg: the list of change structures to search 5437 */ 5438 static void 5439 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5440 { 5441 struct ice_chs_chg *pos, *tmp; 5442 5443 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5444 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5445 list_del(&tmp->list_entry); 5446 devm_kfree(ice_hw_to_dev(hw), tmp); 5447 } 5448 } 5449 5450 /** 5451 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5452 * @hw: pointer to the HW struct 5453 * @blk: hardware block 5454 * @enable: true to enable, false to disable 5455 * @vsig: the VSIG of the TCAM entry 5456 * @tcam: pointer the TCAM info structure of the TCAM to disable 5457 * @chg: the change list 5458 * 5459 * This function appends an enable or disable TCAM entry in the change log 5460 */ 5461 static int 5462 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5463 u16 vsig, struct ice_tcam_inf *tcam, 5464 struct list_head *chg) 5465 { 5466 struct ice_chs_chg *p; 5467 int status; 5468 5469 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5470 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5471 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5472 5473 /* if disabling, free the TCAM */ 5474 if (!enable) { 5475 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5476 5477 /* if we have already created a change for this TCAM entry, then 5478 * we need to remove that entry, in order to prevent writing to 5479 * a TCAM entry we no longer will have ownership of. 5480 */ 5481 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5482 tcam->tcam_idx = 0; 5483 tcam->in_use = 0; 5484 return status; 5485 } 5486 5487 /* for re-enabling, reallocate a TCAM */ 5488 /* for entries with empty attribute masks, allocate entry from 5489 * the bottom of the TCAM table; otherwise, allocate from the 5490 * top of the table in order to give it higher priority 5491 */ 5492 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5493 &tcam->tcam_idx); 5494 if (status) 5495 return status; 5496 5497 /* add TCAM to change list */ 5498 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5499 if (!p) 5500 return -ENOMEM; 5501 5502 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5503 tcam->ptg, vsig, 0, tcam->attr.flags, 5504 vl_msk, dc_msk, nm_msk); 5505 if (status) 5506 goto err_ice_prof_tcam_ena_dis; 5507 5508 tcam->in_use = 1; 5509 5510 p->type = ICE_TCAM_ADD; 5511 p->add_tcam_idx = true; 5512 p->prof_id = tcam->prof_id; 5513 p->ptg = tcam->ptg; 5514 p->vsig = 0; 5515 p->tcam_idx = tcam->tcam_idx; 5516 5517 /* log change */ 5518 list_add(&p->list_entry, chg); 5519 5520 return 0; 5521 5522 err_ice_prof_tcam_ena_dis: 5523 devm_kfree(ice_hw_to_dev(hw), p); 5524 return status; 5525 } 5526 5527 /** 5528 * ice_adj_prof_priorities - adjust profile based on priorities 5529 * @hw: pointer to the HW struct 5530 * @blk: hardware block 5531 * @vsig: the VSIG for which to adjust profile priorities 5532 * @chg: the change list 5533 */ 5534 static int 5535 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5536 struct list_head *chg) 5537 { 5538 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5539 struct ice_vsig_prof *t; 5540 int status; 5541 u16 idx; 5542 5543 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5544 idx = vsig & ICE_VSIG_IDX_M; 5545 5546 /* Priority is based on the order in which the profiles are added. The 5547 * newest added profile has highest priority and the oldest added 5548 * profile has the lowest priority. Since the profile property list for 5549 * a VSIG is sorted from newest to oldest, this code traverses the list 5550 * in order and enables the first of each PTG that it finds (that is not 5551 * already enabled); it also disables any duplicate PTGs that it finds 5552 * in the older profiles (that are currently enabled). 5553 */ 5554 5555 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5556 list) { 5557 u16 i; 5558 5559 for (i = 0; i < t->tcam_count; i++) { 5560 /* Scan the priorities from newest to oldest. 5561 * Make sure that the newest profiles take priority. 5562 */ 5563 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5564 t->tcam[i].in_use) { 5565 /* need to mark this PTG as never match, as it 5566 * was already in use and therefore duplicate 5567 * (and lower priority) 5568 */ 5569 status = ice_prof_tcam_ena_dis(hw, blk, false, 5570 vsig, 5571 &t->tcam[i], 5572 chg); 5573 if (status) 5574 return status; 5575 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5576 !t->tcam[i].in_use) { 5577 /* need to enable this PTG, as it in not in use 5578 * and not enabled (highest priority) 5579 */ 5580 status = ice_prof_tcam_ena_dis(hw, blk, true, 5581 vsig, 5582 &t->tcam[i], 5583 chg); 5584 if (status) 5585 return status; 5586 } 5587 5588 /* keep track of used ptgs */ 5589 __set_bit(t->tcam[i].ptg, ptgs_used); 5590 } 5591 } 5592 5593 return 0; 5594 } 5595 5596 /** 5597 * ice_add_prof_id_vsig - add profile to VSIG 5598 * @hw: pointer to the HW struct 5599 * @blk: hardware block 5600 * @vsig: the VSIG to which this profile is to be added 5601 * @hdl: the profile handle indicating the profile to add 5602 * @rev: true to add entries to the end of the list 5603 * @chg: the change list 5604 */ 5605 static int 5606 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5607 bool rev, struct list_head *chg) 5608 { 5609 /* Masks that ignore flags */ 5610 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5611 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5612 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5613 struct ice_prof_map *map; 5614 struct ice_vsig_prof *t; 5615 struct ice_chs_chg *p; 5616 u16 vsig_idx, i; 5617 int status = 0; 5618 5619 /* Error, if this VSIG already has this profile */ 5620 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5621 return -EEXIST; 5622 5623 /* new VSIG profile structure */ 5624 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5625 if (!t) 5626 return -ENOMEM; 5627 5628 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5629 /* Get the details on the profile specified by the handle ID */ 5630 map = ice_search_prof_id(hw, blk, hdl); 5631 if (!map) { 5632 status = -ENOENT; 5633 goto err_ice_add_prof_id_vsig; 5634 } 5635 5636 t->profile_cookie = map->profile_cookie; 5637 t->prof_id = map->prof_id; 5638 t->tcam_count = map->ptg_cnt; 5639 5640 /* create TCAM entries */ 5641 for (i = 0; i < map->ptg_cnt; i++) { 5642 u16 tcam_idx; 5643 5644 /* add TCAM to change list */ 5645 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5646 if (!p) { 5647 status = -ENOMEM; 5648 goto err_ice_add_prof_id_vsig; 5649 } 5650 5651 /* allocate the TCAM entry index */ 5652 /* for entries with empty attribute masks, allocate entry from 5653 * the bottom of the TCAM table; otherwise, allocate from the 5654 * top of the table in order to give it higher priority 5655 */ 5656 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5657 &tcam_idx); 5658 if (status) { 5659 devm_kfree(ice_hw_to_dev(hw), p); 5660 goto err_ice_add_prof_id_vsig; 5661 } 5662 5663 t->tcam[i].ptg = map->ptg[i]; 5664 t->tcam[i].prof_id = map->prof_id; 5665 t->tcam[i].tcam_idx = tcam_idx; 5666 t->tcam[i].attr = map->attr[i]; 5667 t->tcam[i].in_use = true; 5668 5669 p->type = ICE_TCAM_ADD; 5670 p->add_tcam_idx = true; 5671 p->prof_id = t->tcam[i].prof_id; 5672 p->ptg = t->tcam[i].ptg; 5673 p->vsig = vsig; 5674 p->tcam_idx = t->tcam[i].tcam_idx; 5675 5676 /* write the TCAM entry */ 5677 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5678 t->tcam[i].prof_id, 5679 t->tcam[i].ptg, vsig, 0, 0, 5680 vl_msk, dc_msk, nm_msk); 5681 if (status) { 5682 devm_kfree(ice_hw_to_dev(hw), p); 5683 goto err_ice_add_prof_id_vsig; 5684 } 5685 5686 /* log change */ 5687 list_add(&p->list_entry, chg); 5688 } 5689 5690 /* add profile to VSIG */ 5691 vsig_idx = vsig & ICE_VSIG_IDX_M; 5692 if (rev) 5693 list_add_tail(&t->list, 5694 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5695 else 5696 list_add(&t->list, 5697 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5698 5699 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5700 return status; 5701 5702 err_ice_add_prof_id_vsig: 5703 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5704 /* let caller clean up the change list */ 5705 devm_kfree(ice_hw_to_dev(hw), t); 5706 return status; 5707 } 5708 5709 /** 5710 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5711 * @hw: pointer to the HW struct 5712 * @blk: hardware block 5713 * @vsi: the initial VSI that will be in VSIG 5714 * @hdl: the profile handle of the profile that will be added to the VSIG 5715 * @chg: the change list 5716 */ 5717 static int 5718 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5719 struct list_head *chg) 5720 { 5721 struct ice_chs_chg *p; 5722 u16 new_vsig; 5723 int status; 5724 5725 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5726 if (!p) 5727 return -ENOMEM; 5728 5729 new_vsig = ice_vsig_alloc(hw, blk); 5730 if (!new_vsig) { 5731 status = -EIO; 5732 goto err_ice_create_prof_id_vsig; 5733 } 5734 5735 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5736 if (status) 5737 goto err_ice_create_prof_id_vsig; 5738 5739 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5740 if (status) 5741 goto err_ice_create_prof_id_vsig; 5742 5743 p->type = ICE_VSIG_ADD; 5744 p->vsi = vsi; 5745 p->orig_vsig = ICE_DEFAULT_VSIG; 5746 p->vsig = new_vsig; 5747 5748 list_add(&p->list_entry, chg); 5749 5750 return 0; 5751 5752 err_ice_create_prof_id_vsig: 5753 /* let caller clean up the change list */ 5754 devm_kfree(ice_hw_to_dev(hw), p); 5755 return status; 5756 } 5757 5758 /** 5759 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5760 * @hw: pointer to the HW struct 5761 * @blk: hardware block 5762 * @vsi: the initial VSI that will be in VSIG 5763 * @lst: the list of profile that will be added to the VSIG 5764 * @new_vsig: return of new VSIG 5765 * @chg: the change list 5766 */ 5767 static int 5768 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5769 struct list_head *lst, u16 *new_vsig, 5770 struct list_head *chg) 5771 { 5772 struct ice_vsig_prof *t; 5773 int status; 5774 u16 vsig; 5775 5776 vsig = ice_vsig_alloc(hw, blk); 5777 if (!vsig) 5778 return -EIO; 5779 5780 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5781 if (status) 5782 return status; 5783 5784 list_for_each_entry(t, lst, list) { 5785 /* Reverse the order here since we are copying the list */ 5786 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5787 true, chg); 5788 if (status) 5789 return status; 5790 } 5791 5792 *new_vsig = vsig; 5793 5794 return 0; 5795 } 5796 5797 /** 5798 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5799 * @hw: pointer to the HW struct 5800 * @blk: hardware block 5801 * @hdl: the profile handle of the profile to search for 5802 * @vsig: returns the VSIG with the matching profile 5803 */ 5804 static bool 5805 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5806 { 5807 struct ice_vsig_prof *t; 5808 struct list_head lst; 5809 int status; 5810 5811 INIT_LIST_HEAD(&lst); 5812 5813 t = kzalloc(sizeof(*t), GFP_KERNEL); 5814 if (!t) 5815 return false; 5816 5817 t->profile_cookie = hdl; 5818 list_add(&t->list, &lst); 5819 5820 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5821 5822 list_del(&t->list); 5823 kfree(t); 5824 5825 return !status; 5826 } 5827 5828 /** 5829 * ice_add_prof_id_flow - add profile flow 5830 * @hw: pointer to the HW struct 5831 * @blk: hardware block 5832 * @vsi: the VSI to enable with the profile specified by ID 5833 * @hdl: profile handle 5834 * 5835 * Calling this function will update the hardware tables to enable the 5836 * profile indicated by the ID parameter for the VSIs specified in the VSI 5837 * array. Once successfully called, the flow will be enabled. 5838 */ 5839 int 5840 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5841 { 5842 struct ice_vsig_prof *tmp1, *del1; 5843 struct ice_chs_chg *tmp, *del; 5844 struct list_head union_lst; 5845 struct list_head chg; 5846 int status; 5847 u16 vsig; 5848 5849 INIT_LIST_HEAD(&union_lst); 5850 INIT_LIST_HEAD(&chg); 5851 5852 /* Get profile */ 5853 status = ice_get_prof(hw, blk, hdl, &chg); 5854 if (status) 5855 return status; 5856 5857 /* determine if VSI is already part of a VSIG */ 5858 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5859 if (!status && vsig) { 5860 bool only_vsi; 5861 u16 or_vsig; 5862 u16 ref; 5863 5864 /* found in VSIG */ 5865 or_vsig = vsig; 5866 5867 /* make sure that there is no overlap/conflict between the new 5868 * characteristics and the existing ones; we don't support that 5869 * scenario 5870 */ 5871 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5872 status = -EEXIST; 5873 goto err_ice_add_prof_id_flow; 5874 } 5875 5876 /* last VSI in the VSIG? */ 5877 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5878 if (status) 5879 goto err_ice_add_prof_id_flow; 5880 only_vsi = (ref == 1); 5881 5882 /* create a union of the current profiles and the one being 5883 * added 5884 */ 5885 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5886 if (status) 5887 goto err_ice_add_prof_id_flow; 5888 5889 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5890 if (status) 5891 goto err_ice_add_prof_id_flow; 5892 5893 /* search for an existing VSIG with an exact charc match */ 5894 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5895 if (!status) { 5896 /* move VSI to the VSIG that matches */ 5897 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5898 if (status) 5899 goto err_ice_add_prof_id_flow; 5900 5901 /* VSI has been moved out of or_vsig. If the or_vsig had 5902 * only that VSI it is now empty and can be removed. 5903 */ 5904 if (only_vsi) { 5905 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5906 if (status) 5907 goto err_ice_add_prof_id_flow; 5908 } 5909 } else if (only_vsi) { 5910 /* If the original VSIG only contains one VSI, then it 5911 * will be the requesting VSI. In this case the VSI is 5912 * not sharing entries and we can simply add the new 5913 * profile to the VSIG. 5914 */ 5915 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5916 &chg); 5917 if (status) 5918 goto err_ice_add_prof_id_flow; 5919 5920 /* Adjust priorities */ 5921 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5922 if (status) 5923 goto err_ice_add_prof_id_flow; 5924 } else { 5925 /* No match, so we need a new VSIG */ 5926 status = ice_create_vsig_from_lst(hw, blk, vsi, 5927 &union_lst, &vsig, 5928 &chg); 5929 if (status) 5930 goto err_ice_add_prof_id_flow; 5931 5932 /* Adjust priorities */ 5933 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5934 if (status) 5935 goto err_ice_add_prof_id_flow; 5936 } 5937 } else { 5938 /* need to find or add a VSIG */ 5939 /* search for an existing VSIG with an exact charc match */ 5940 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5941 /* found an exact match */ 5942 /* add or move VSI to the VSIG that matches */ 5943 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5944 if (status) 5945 goto err_ice_add_prof_id_flow; 5946 } else { 5947 /* we did not find an exact match */ 5948 /* we need to add a VSIG */ 5949 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5950 &chg); 5951 if (status) 5952 goto err_ice_add_prof_id_flow; 5953 } 5954 } 5955 5956 /* update hardware */ 5957 if (!status) 5958 status = ice_upd_prof_hw(hw, blk, &chg); 5959 5960 err_ice_add_prof_id_flow: 5961 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5962 list_del(&del->list_entry); 5963 devm_kfree(ice_hw_to_dev(hw), del); 5964 } 5965 5966 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5967 list_del(&del1->list); 5968 devm_kfree(ice_hw_to_dev(hw), del1); 5969 } 5970 5971 return status; 5972 } 5973 5974 /** 5975 * ice_rem_prof_from_list - remove a profile from list 5976 * @hw: pointer to the HW struct 5977 * @lst: list to remove the profile from 5978 * @hdl: the profile handle indicating the profile to remove 5979 */ 5980 static int 5981 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5982 { 5983 struct ice_vsig_prof *ent, *tmp; 5984 5985 list_for_each_entry_safe(ent, tmp, lst, list) 5986 if (ent->profile_cookie == hdl) { 5987 list_del(&ent->list); 5988 devm_kfree(ice_hw_to_dev(hw), ent); 5989 return 0; 5990 } 5991 5992 return -ENOENT; 5993 } 5994 5995 /** 5996 * ice_rem_prof_id_flow - remove flow 5997 * @hw: pointer to the HW struct 5998 * @blk: hardware block 5999 * @vsi: the VSI from which to remove the profile specified by ID 6000 * @hdl: profile tracking handle 6001 * 6002 * Calling this function will update the hardware tables to remove the 6003 * profile indicated by the ID parameter for the VSIs specified in the VSI 6004 * array. Once successfully called, the flow will be disabled. 6005 */ 6006 int 6007 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 6008 { 6009 struct ice_vsig_prof *tmp1, *del1; 6010 struct ice_chs_chg *tmp, *del; 6011 struct list_head chg, copy; 6012 int status; 6013 u16 vsig; 6014 6015 INIT_LIST_HEAD(©); 6016 INIT_LIST_HEAD(&chg); 6017 6018 /* determine if VSI is already part of a VSIG */ 6019 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 6020 if (!status && vsig) { 6021 bool last_profile; 6022 bool only_vsi; 6023 u16 ref; 6024 6025 /* found in VSIG */ 6026 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 6027 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 6028 if (status) 6029 goto err_ice_rem_prof_id_flow; 6030 only_vsi = (ref == 1); 6031 6032 if (only_vsi) { 6033 /* If the original VSIG only contains one reference, 6034 * which will be the requesting VSI, then the VSI is not 6035 * sharing entries and we can simply remove the specific 6036 * characteristics from the VSIG. 6037 */ 6038 6039 if (last_profile) { 6040 /* If there are no profiles left for this VSIG, 6041 * then simply remove the VSIG. 6042 */ 6043 status = ice_rem_vsig(hw, blk, vsig, &chg); 6044 if (status) 6045 goto err_ice_rem_prof_id_flow; 6046 } else { 6047 status = ice_rem_prof_id_vsig(hw, blk, vsig, 6048 hdl, &chg); 6049 if (status) 6050 goto err_ice_rem_prof_id_flow; 6051 6052 /* Adjust priorities */ 6053 status = ice_adj_prof_priorities(hw, blk, vsig, 6054 &chg); 6055 if (status) 6056 goto err_ice_rem_prof_id_flow; 6057 } 6058 6059 } else { 6060 /* Make a copy of the VSIG's list of Profiles */ 6061 status = ice_get_profs_vsig(hw, blk, vsig, ©); 6062 if (status) 6063 goto err_ice_rem_prof_id_flow; 6064 6065 /* Remove specified profile entry from the list */ 6066 status = ice_rem_prof_from_list(hw, ©, hdl); 6067 if (status) 6068 goto err_ice_rem_prof_id_flow; 6069 6070 if (list_empty(©)) { 6071 status = ice_move_vsi(hw, blk, vsi, 6072 ICE_DEFAULT_VSIG, &chg); 6073 if (status) 6074 goto err_ice_rem_prof_id_flow; 6075 6076 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 6077 &vsig)) { 6078 /* found an exact match */ 6079 /* add or move VSI to the VSIG that matches */ 6080 /* Search for a VSIG with a matching profile 6081 * list 6082 */ 6083 6084 /* Found match, move VSI to the matching VSIG */ 6085 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 6086 if (status) 6087 goto err_ice_rem_prof_id_flow; 6088 } else { 6089 /* since no existing VSIG supports this 6090 * characteristic pattern, we need to create a 6091 * new VSIG and TCAM entries 6092 */ 6093 status = ice_create_vsig_from_lst(hw, blk, vsi, 6094 ©, &vsig, 6095 &chg); 6096 if (status) 6097 goto err_ice_rem_prof_id_flow; 6098 6099 /* Adjust priorities */ 6100 status = ice_adj_prof_priorities(hw, blk, vsig, 6101 &chg); 6102 if (status) 6103 goto err_ice_rem_prof_id_flow; 6104 } 6105 } 6106 } else { 6107 status = -ENOENT; 6108 } 6109 6110 /* update hardware tables */ 6111 if (!status) 6112 status = ice_upd_prof_hw(hw, blk, &chg); 6113 6114 err_ice_rem_prof_id_flow: 6115 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 6116 list_del(&del->list_entry); 6117 devm_kfree(ice_hw_to_dev(hw), del); 6118 } 6119 6120 list_for_each_entry_safe(del1, tmp1, ©, list) { 6121 list_del(&del1->list); 6122 devm_kfree(ice_hw_to_dev(hw), del1); 6123 } 6124 6125 return status; 6126 } 6127