1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 338 return NULL; 339 340 if (offset) 341 *offset = 0; 342 343 boost = section; 344 if (index >= le16_to_cpu(boost->count)) 345 return NULL; 346 347 return boost->tcam + index; 348 } 349 350 /** 351 * ice_find_boost_entry 352 * @ice_seg: pointer to the ice segment (non-NULL) 353 * @addr: Boost TCAM address of entry to search for 354 * @entry: returns pointer to the entry 355 * 356 * Finds a particular Boost TCAM entry and returns a pointer to that entry 357 * if it is found. The ice_seg parameter must not be NULL since the first call 358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 359 */ 360 static enum ice_status 361 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 362 struct ice_boost_tcam_entry **entry) 363 { 364 struct ice_boost_tcam_entry *tcam; 365 struct ice_pkg_enum state; 366 367 memset(&state, 0, sizeof(state)); 368 369 if (!ice_seg) 370 return ICE_ERR_PARAM; 371 372 do { 373 tcam = ice_pkg_enum_entry(ice_seg, &state, 374 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 375 ice_boost_tcam_handler); 376 if (tcam && le16_to_cpu(tcam->addr) == addr) { 377 *entry = tcam; 378 return 0; 379 } 380 381 ice_seg = NULL; 382 } while (tcam); 383 384 *entry = NULL; 385 return ICE_ERR_CFG; 386 } 387 388 /** 389 * ice_label_enum_handler 390 * @sect_type: section type 391 * @section: pointer to section 392 * @index: index of the label entry to be returned 393 * @offset: pointer to receive absolute offset, always zero for label sections 394 * 395 * This is a callback function that can be passed to ice_pkg_enum_entry. 396 * Handles enumeration of individual label entries. 397 */ 398 static void * 399 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 400 u32 *offset) 401 { 402 struct ice_label_section *labels; 403 404 if (!section) 405 return NULL; 406 407 if (index > ICE_MAX_LABELS_IN_BUF) 408 return NULL; 409 410 if (offset) 411 *offset = 0; 412 413 labels = section; 414 if (index >= le16_to_cpu(labels->count)) 415 return NULL; 416 417 return labels->label + index; 418 } 419 420 /** 421 * ice_enum_labels 422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 423 * @type: the section type that will contain the label (0 on subsequent calls) 424 * @state: ice_pkg_enum structure that will hold the state of the enumeration 425 * @value: pointer to a value that will return the label's value if found 426 * 427 * Enumerates a list of labels in the package. The caller will call 428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 430 * the end of the list has been reached. 431 */ 432 static char * 433 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 434 u16 *value) 435 { 436 struct ice_label *label; 437 438 /* Check for valid label section on first call */ 439 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 440 return NULL; 441 442 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 443 ice_label_enum_handler); 444 if (!label) 445 return NULL; 446 447 *value = le16_to_cpu(label->value); 448 return label->name; 449 } 450 451 /** 452 * ice_init_pkg_hints 453 * @hw: pointer to the HW structure 454 * @ice_seg: pointer to the segment of the package scan (non-NULL) 455 * 456 * This function will scan the package and save off relevant information 457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 458 * since the first call to ice_enum_labels requires a pointer to an actual 459 * ice_seg structure. 460 */ 461 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 462 { 463 struct ice_pkg_enum state; 464 char *label_name; 465 u16 val; 466 int i; 467 468 memset(&hw->tnl, 0, sizeof(hw->tnl)); 469 memset(&state, 0, sizeof(state)); 470 471 if (!ice_seg) 472 return; 473 474 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 475 &val); 476 477 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 478 for (i = 0; tnls[i].type != TNL_LAST; i++) { 479 size_t len = strlen(tnls[i].label_prefix); 480 481 /* Look for matching label start, before continuing */ 482 if (strncmp(label_name, tnls[i].label_prefix, len)) 483 continue; 484 485 /* Make sure this label matches our PF. Note that the PF 486 * character ('0' - '7') will be located where our 487 * prefix string's null terminator is located. 488 */ 489 if ((label_name[len] - '0') == hw->pf_id) { 490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 491 hw->tnl.tbl[hw->tnl.count].valid = false; 492 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 493 hw->tnl.tbl[hw->tnl.count].port = 0; 494 hw->tnl.count++; 495 break; 496 } 497 } 498 499 label_name = ice_enum_labels(NULL, 0, &state, &val); 500 } 501 502 /* Cache the appropriate boost TCAM entry pointers */ 503 for (i = 0; i < hw->tnl.count; i++) { 504 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 505 &hw->tnl.tbl[i].boost_entry); 506 if (hw->tnl.tbl[i].boost_entry) { 507 hw->tnl.tbl[i].valid = true; 508 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 509 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 510 } 511 } 512 } 513 514 /* Key creation */ 515 516 #define ICE_DC_KEY 0x1 /* don't care */ 517 #define ICE_DC_KEYINV 0x1 518 #define ICE_NM_KEY 0x0 /* never match */ 519 #define ICE_NM_KEYINV 0x0 520 #define ICE_0_KEY 0x1 /* match 0 */ 521 #define ICE_0_KEYINV 0x0 522 #define ICE_1_KEY 0x0 /* match 1 */ 523 #define ICE_1_KEYINV 0x1 524 525 /** 526 * ice_gen_key_word - generate 16-bits of a key/mask word 527 * @val: the value 528 * @valid: valid bits mask (change only the valid bits) 529 * @dont_care: don't care mask 530 * @nvr_mtch: never match mask 531 * @key: pointer to an array of where the resulting key portion 532 * @key_inv: pointer to an array of where the resulting key invert portion 533 * 534 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 535 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 536 * of key and 8 bits of key invert. 537 * 538 * '0' = b01, always match a 0 bit 539 * '1' = b10, always match a 1 bit 540 * '?' = b11, don't care bit (always matches) 541 * '~' = b00, never match bit 542 * 543 * Input: 544 * val: b0 1 0 1 0 1 545 * dont_care: b0 0 1 1 0 0 546 * never_mtch: b0 0 0 0 1 1 547 * ------------------------------ 548 * Result: key: b01 10 11 11 00 00 549 */ 550 static enum ice_status 551 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 552 u8 *key_inv) 553 { 554 u8 in_key = *key, in_key_inv = *key_inv; 555 u8 i; 556 557 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 558 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 559 return ICE_ERR_CFG; 560 561 *key = 0; 562 *key_inv = 0; 563 564 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 565 for (i = 0; i < 8; i++) { 566 *key >>= 1; 567 *key_inv >>= 1; 568 569 if (!(valid & 0x1)) { /* change only valid bits */ 570 *key |= (in_key & 0x1) << 7; 571 *key_inv |= (in_key_inv & 0x1) << 7; 572 } else if (dont_care & 0x1) { /* don't care bit */ 573 *key |= ICE_DC_KEY << 7; 574 *key_inv |= ICE_DC_KEYINV << 7; 575 } else if (nvr_mtch & 0x1) { /* never match bit */ 576 *key |= ICE_NM_KEY << 7; 577 *key_inv |= ICE_NM_KEYINV << 7; 578 } else if (val & 0x01) { /* exact 1 match */ 579 *key |= ICE_1_KEY << 7; 580 *key_inv |= ICE_1_KEYINV << 7; 581 } else { /* exact 0 match */ 582 *key |= ICE_0_KEY << 7; 583 *key_inv |= ICE_0_KEYINV << 7; 584 } 585 586 dont_care >>= 1; 587 nvr_mtch >>= 1; 588 valid >>= 1; 589 val >>= 1; 590 in_key >>= 1; 591 in_key_inv >>= 1; 592 } 593 594 return 0; 595 } 596 597 /** 598 * ice_bits_max_set - determine if the number of bits set is within a maximum 599 * @mask: pointer to the byte array which is the mask 600 * @size: the number of bytes in the mask 601 * @max: the max number of set bits 602 * 603 * This function determines if there are at most 'max' number of bits set in an 604 * array. Returns true if the number for bits set is <= max or will return false 605 * otherwise. 606 */ 607 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 608 { 609 u16 count = 0; 610 u16 i; 611 612 /* check each byte */ 613 for (i = 0; i < size; i++) { 614 /* if 0, go to next byte */ 615 if (!mask[i]) 616 continue; 617 618 /* We know there is at least one set bit in this byte because of 619 * the above check; if we already have found 'max' number of 620 * bits set, then we can return failure now. 621 */ 622 if (count == max) 623 return false; 624 625 /* count the bits in this byte, checking threshold */ 626 count += hweight8(mask[i]); 627 if (count > max) 628 return false; 629 } 630 631 return true; 632 } 633 634 /** 635 * ice_set_key - generate a variable sized key with multiples of 16-bits 636 * @key: pointer to where the key will be stored 637 * @size: the size of the complete key in bytes (must be even) 638 * @val: array of 8-bit values that makes up the value portion of the key 639 * @upd: array of 8-bit masks that determine what key portion to update 640 * @dc: array of 8-bit masks that make up the don't care mask 641 * @nm: array of 8-bit masks that make up the never match mask 642 * @off: the offset of the first byte in the key to update 643 * @len: the number of bytes in the key update 644 * 645 * This function generates a key from a value, a don't care mask and a never 646 * match mask. 647 * upd, dc, and nm are optional parameters, and can be NULL: 648 * upd == NULL --> upd mask is all 1's (update all bits) 649 * dc == NULL --> dc mask is all 0's (no don't care bits) 650 * nm == NULL --> nm mask is all 0's (no never match bits) 651 */ 652 static enum ice_status 653 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 654 u16 len) 655 { 656 u16 half_size; 657 u16 i; 658 659 /* size must be a multiple of 2 bytes. */ 660 if (size % 2) 661 return ICE_ERR_CFG; 662 663 half_size = size / 2; 664 if (off + len > half_size) 665 return ICE_ERR_CFG; 666 667 /* Make sure at most one bit is set in the never match mask. Having more 668 * than one never match mask bit set will cause HW to consume excessive 669 * power otherwise; this is a power management efficiency check. 670 */ 671 #define ICE_NVR_MTCH_BITS_MAX 1 672 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 673 return ICE_ERR_CFG; 674 675 for (i = 0; i < len; i++) 676 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 677 dc ? dc[i] : 0, nm ? nm[i] : 0, 678 key + off + i, key + half_size + off + i)) 679 return ICE_ERR_CFG; 680 681 return 0; 682 } 683 684 /** 685 * ice_acquire_global_cfg_lock 686 * @hw: pointer to the HW structure 687 * @access: access type (read or write) 688 * 689 * This function will request ownership of the global config lock for reading 690 * or writing of the package. When attempting to obtain write access, the 691 * caller must check for the following two return values: 692 * 693 * ICE_SUCCESS - Means the caller has acquired the global config lock 694 * and can perform writing of the package. 695 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 696 * package or has found that no update was necessary; in 697 * this case, the caller can just skip performing any 698 * update of the package. 699 */ 700 static enum ice_status 701 ice_acquire_global_cfg_lock(struct ice_hw *hw, 702 enum ice_aq_res_access_type access) 703 { 704 enum ice_status status; 705 706 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 707 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 708 709 if (!status) 710 mutex_lock(&ice_global_cfg_lock_sw); 711 else if (status == ICE_ERR_AQ_NO_WORK) 712 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 713 714 return status; 715 } 716 717 /** 718 * ice_release_global_cfg_lock 719 * @hw: pointer to the HW structure 720 * 721 * This function will release the global config lock. 722 */ 723 static void ice_release_global_cfg_lock(struct ice_hw *hw) 724 { 725 mutex_unlock(&ice_global_cfg_lock_sw); 726 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 727 } 728 729 /** 730 * ice_acquire_change_lock 731 * @hw: pointer to the HW structure 732 * @access: access type (read or write) 733 * 734 * This function will request ownership of the change lock. 735 */ 736 static enum ice_status 737 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 738 { 739 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 740 ICE_CHANGE_LOCK_TIMEOUT); 741 } 742 743 /** 744 * ice_release_change_lock 745 * @hw: pointer to the HW structure 746 * 747 * This function will release the change lock using the proper Admin Command. 748 */ 749 static void ice_release_change_lock(struct ice_hw *hw) 750 { 751 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 752 } 753 754 /** 755 * ice_aq_download_pkg 756 * @hw: pointer to the hardware structure 757 * @pkg_buf: the package buffer to transfer 758 * @buf_size: the size of the package buffer 759 * @last_buf: last buffer indicator 760 * @error_offset: returns error offset 761 * @error_info: returns error information 762 * @cd: pointer to command details structure or NULL 763 * 764 * Download Package (0x0C40) 765 */ 766 static enum ice_status 767 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 768 u16 buf_size, bool last_buf, u32 *error_offset, 769 u32 *error_info, struct ice_sq_cd *cd) 770 { 771 struct ice_aqc_download_pkg *cmd; 772 struct ice_aq_desc desc; 773 enum ice_status status; 774 775 if (error_offset) 776 *error_offset = 0; 777 if (error_info) 778 *error_info = 0; 779 780 cmd = &desc.params.download_pkg; 781 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 782 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 783 784 if (last_buf) 785 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 786 787 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 788 if (status == ICE_ERR_AQ_ERROR) { 789 /* Read error from buffer only when the FW returned an error */ 790 struct ice_aqc_download_pkg_resp *resp; 791 792 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 793 if (error_offset) 794 *error_offset = le32_to_cpu(resp->error_offset); 795 if (error_info) 796 *error_info = le32_to_cpu(resp->error_info); 797 } 798 799 return status; 800 } 801 802 /** 803 * ice_aq_update_pkg 804 * @hw: pointer to the hardware structure 805 * @pkg_buf: the package cmd buffer 806 * @buf_size: the size of the package cmd buffer 807 * @last_buf: last buffer indicator 808 * @error_offset: returns error offset 809 * @error_info: returns error information 810 * @cd: pointer to command details structure or NULL 811 * 812 * Update Package (0x0C42) 813 */ 814 static enum ice_status 815 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 816 bool last_buf, u32 *error_offset, u32 *error_info, 817 struct ice_sq_cd *cd) 818 { 819 struct ice_aqc_download_pkg *cmd; 820 struct ice_aq_desc desc; 821 enum ice_status status; 822 823 if (error_offset) 824 *error_offset = 0; 825 if (error_info) 826 *error_info = 0; 827 828 cmd = &desc.params.download_pkg; 829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 830 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 831 832 if (last_buf) 833 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 834 835 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 836 if (status == ICE_ERR_AQ_ERROR) { 837 /* Read error from buffer only when the FW returned an error */ 838 struct ice_aqc_download_pkg_resp *resp; 839 840 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 841 if (error_offset) 842 *error_offset = le32_to_cpu(resp->error_offset); 843 if (error_info) 844 *error_info = le32_to_cpu(resp->error_info); 845 } 846 847 return status; 848 } 849 850 /** 851 * ice_find_seg_in_pkg 852 * @hw: pointer to the hardware structure 853 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 854 * @pkg_hdr: pointer to the package header to be searched 855 * 856 * This function searches a package file for a particular segment type. On 857 * success it returns a pointer to the segment header, otherwise it will 858 * return NULL. 859 */ 860 static struct ice_generic_seg_hdr * 861 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 862 struct ice_pkg_hdr *pkg_hdr) 863 { 864 u32 i; 865 866 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 867 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 868 pkg_hdr->pkg_format_ver.update, 869 pkg_hdr->pkg_format_ver.draft); 870 871 /* Search all package segments for the requested segment type */ 872 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 873 struct ice_generic_seg_hdr *seg; 874 875 seg = (struct ice_generic_seg_hdr *) 876 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 877 878 if (le32_to_cpu(seg->seg_type) == seg_type) 879 return seg; 880 } 881 882 return NULL; 883 } 884 885 /** 886 * ice_update_pkg 887 * @hw: pointer to the hardware structure 888 * @bufs: pointer to an array of buffers 889 * @count: the number of buffers in the array 890 * 891 * Obtains change lock and updates package. 892 */ 893 static enum ice_status 894 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 895 { 896 enum ice_status status; 897 u32 offset, info, i; 898 899 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 900 if (status) 901 return status; 902 903 for (i = 0; i < count; i++) { 904 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 905 bool last = ((i + 1) == count); 906 907 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 908 last, &offset, &info, NULL); 909 910 if (status) { 911 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 912 status, offset, info); 913 break; 914 } 915 } 916 917 ice_release_change_lock(hw); 918 919 return status; 920 } 921 922 /** 923 * ice_dwnld_cfg_bufs 924 * @hw: pointer to the hardware structure 925 * @bufs: pointer to an array of buffers 926 * @count: the number of buffers in the array 927 * 928 * Obtains global config lock and downloads the package configuration buffers 929 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 930 * found indicates that the rest of the buffers are all metadata buffers. 931 */ 932 static enum ice_status 933 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 934 { 935 enum ice_status status; 936 struct ice_buf_hdr *bh; 937 u32 offset, info, i; 938 939 if (!bufs || !count) 940 return ICE_ERR_PARAM; 941 942 /* If the first buffer's first section has its metadata bit set 943 * then there are no buffers to be downloaded, and the operation is 944 * considered a success. 945 */ 946 bh = (struct ice_buf_hdr *)bufs; 947 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 948 return 0; 949 950 /* reset pkg_dwnld_status in case this function is called in the 951 * reset/rebuild flow 952 */ 953 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 954 955 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 956 if (status) { 957 if (status == ICE_ERR_AQ_NO_WORK) 958 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 959 else 960 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 961 return status; 962 } 963 964 for (i = 0; i < count; i++) { 965 bool last = ((i + 1) == count); 966 967 if (!last) { 968 /* check next buffer for metadata flag */ 969 bh = (struct ice_buf_hdr *)(bufs + i + 1); 970 971 /* A set metadata flag in the next buffer will signal 972 * that the current buffer will be the last buffer 973 * downloaded 974 */ 975 if (le16_to_cpu(bh->section_count)) 976 if (le32_to_cpu(bh->section_entry[0].type) & 977 ICE_METADATA_BUF) 978 last = true; 979 } 980 981 bh = (struct ice_buf_hdr *)(bufs + i); 982 983 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 984 &offset, &info, NULL); 985 986 /* Save AQ status from download package */ 987 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 988 if (status) { 989 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 990 status, offset, info); 991 992 break; 993 } 994 995 if (last) 996 break; 997 } 998 999 ice_release_global_cfg_lock(hw); 1000 1001 return status; 1002 } 1003 1004 /** 1005 * ice_aq_get_pkg_info_list 1006 * @hw: pointer to the hardware structure 1007 * @pkg_info: the buffer which will receive the information list 1008 * @buf_size: the size of the pkg_info information buffer 1009 * @cd: pointer to command details structure or NULL 1010 * 1011 * Get Package Info List (0x0C43) 1012 */ 1013 static enum ice_status 1014 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1015 struct ice_aqc_get_pkg_info_resp *pkg_info, 1016 u16 buf_size, struct ice_sq_cd *cd) 1017 { 1018 struct ice_aq_desc desc; 1019 1020 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1021 1022 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1023 } 1024 1025 /** 1026 * ice_download_pkg 1027 * @hw: pointer to the hardware structure 1028 * @ice_seg: pointer to the segment of the package to be downloaded 1029 * 1030 * Handles the download of a complete package. 1031 */ 1032 static enum ice_status 1033 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1034 { 1035 struct ice_buf_table *ice_buf_tbl; 1036 1037 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1038 ice_seg->hdr.seg_format_ver.major, 1039 ice_seg->hdr.seg_format_ver.minor, 1040 ice_seg->hdr.seg_format_ver.update, 1041 ice_seg->hdr.seg_format_ver.draft); 1042 1043 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1044 le32_to_cpu(ice_seg->hdr.seg_type), 1045 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1046 1047 ice_buf_tbl = ice_find_buf_table(ice_seg); 1048 1049 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1050 le32_to_cpu(ice_buf_tbl->buf_count)); 1051 1052 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1053 le32_to_cpu(ice_buf_tbl->buf_count)); 1054 } 1055 1056 /** 1057 * ice_init_pkg_info 1058 * @hw: pointer to the hardware structure 1059 * @pkg_hdr: pointer to the driver's package hdr 1060 * 1061 * Saves off the package details into the HW structure. 1062 */ 1063 static enum ice_status 1064 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1065 { 1066 struct ice_global_metadata_seg *meta_seg; 1067 struct ice_generic_seg_hdr *seg_hdr; 1068 1069 if (!pkg_hdr) 1070 return ICE_ERR_PARAM; 1071 1072 meta_seg = (struct ice_global_metadata_seg *) 1073 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr); 1074 if (meta_seg) { 1075 hw->pkg_ver = meta_seg->pkg_ver; 1076 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name)); 1077 1078 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1079 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor, 1080 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft, 1081 meta_seg->pkg_name); 1082 } else { 1083 ice_debug(hw, ICE_DBG_INIT, "Did not find metadata segment in driver package\n"); 1084 return ICE_ERR_CFG; 1085 } 1086 1087 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1088 if (seg_hdr) { 1089 hw->ice_pkg_ver = seg_hdr->seg_format_ver; 1090 memcpy(hw->ice_pkg_name, seg_hdr->seg_id, 1091 sizeof(hw->ice_pkg_name)); 1092 1093 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1094 seg_hdr->seg_format_ver.major, 1095 seg_hdr->seg_format_ver.minor, 1096 seg_hdr->seg_format_ver.update, 1097 seg_hdr->seg_format_ver.draft, 1098 seg_hdr->seg_id); 1099 } else { 1100 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1101 return ICE_ERR_CFG; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * ice_get_pkg_info 1109 * @hw: pointer to the hardware structure 1110 * 1111 * Store details of the package currently loaded in HW into the HW structure. 1112 */ 1113 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1114 { 1115 struct ice_aqc_get_pkg_info_resp *pkg_info; 1116 enum ice_status status; 1117 u16 size; 1118 u32 i; 1119 1120 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1121 pkg_info = kzalloc(size, GFP_KERNEL); 1122 if (!pkg_info) 1123 return ICE_ERR_NO_MEMORY; 1124 1125 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1126 if (status) 1127 goto init_pkg_free_alloc; 1128 1129 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1130 #define ICE_PKG_FLAG_COUNT 4 1131 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1132 u8 place = 0; 1133 1134 if (pkg_info->pkg_info[i].is_active) { 1135 flags[place++] = 'A'; 1136 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1137 hw->active_track_id = 1138 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1139 memcpy(hw->active_pkg_name, 1140 pkg_info->pkg_info[i].name, 1141 sizeof(pkg_info->pkg_info[i].name)); 1142 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1143 } 1144 if (pkg_info->pkg_info[i].is_active_at_boot) 1145 flags[place++] = 'B'; 1146 if (pkg_info->pkg_info[i].is_modified) 1147 flags[place++] = 'M'; 1148 if (pkg_info->pkg_info[i].is_in_nvm) 1149 flags[place++] = 'N'; 1150 1151 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1152 i, pkg_info->pkg_info[i].ver.major, 1153 pkg_info->pkg_info[i].ver.minor, 1154 pkg_info->pkg_info[i].ver.update, 1155 pkg_info->pkg_info[i].ver.draft, 1156 pkg_info->pkg_info[i].name, flags); 1157 } 1158 1159 init_pkg_free_alloc: 1160 kfree(pkg_info); 1161 1162 return status; 1163 } 1164 1165 /** 1166 * ice_verify_pkg - verify package 1167 * @pkg: pointer to the package buffer 1168 * @len: size of the package buffer 1169 * 1170 * Verifies various attributes of the package file, including length, format 1171 * version, and the requirement of at least one segment. 1172 */ 1173 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1174 { 1175 u32 seg_count; 1176 u32 i; 1177 1178 if (len < struct_size(pkg, seg_offset, 1)) 1179 return ICE_ERR_BUF_TOO_SHORT; 1180 1181 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1182 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1183 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1184 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1185 return ICE_ERR_CFG; 1186 1187 /* pkg must have at least one segment */ 1188 seg_count = le32_to_cpu(pkg->seg_count); 1189 if (seg_count < 1) 1190 return ICE_ERR_CFG; 1191 1192 /* make sure segment array fits in package length */ 1193 if (len < struct_size(pkg, seg_offset, seg_count)) 1194 return ICE_ERR_BUF_TOO_SHORT; 1195 1196 /* all segments must fit within length */ 1197 for (i = 0; i < seg_count; i++) { 1198 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1199 struct ice_generic_seg_hdr *seg; 1200 1201 /* segment header must fit */ 1202 if (len < off + sizeof(*seg)) 1203 return ICE_ERR_BUF_TOO_SHORT; 1204 1205 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1206 1207 /* segment body must fit */ 1208 if (len < off + le32_to_cpu(seg->seg_size)) 1209 return ICE_ERR_BUF_TOO_SHORT; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_free_seg - free package segment pointer 1217 * @hw: pointer to the hardware structure 1218 * 1219 * Frees the package segment pointer in the proper manner, depending on if the 1220 * segment was allocated or just the passed in pointer was stored. 1221 */ 1222 void ice_free_seg(struct ice_hw *hw) 1223 { 1224 if (hw->pkg_copy) { 1225 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1226 hw->pkg_copy = NULL; 1227 hw->pkg_size = 0; 1228 } 1229 hw->seg = NULL; 1230 } 1231 1232 /** 1233 * ice_init_pkg_regs - initialize additional package registers 1234 * @hw: pointer to the hardware structure 1235 */ 1236 static void ice_init_pkg_regs(struct ice_hw *hw) 1237 { 1238 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1239 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1240 #define ICE_SW_BLK_IDX 0 1241 1242 /* setup Switch block input mask, which is 48-bits in two parts */ 1243 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1244 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1245 } 1246 1247 /** 1248 * ice_chk_pkg_version - check package version for compatibility with driver 1249 * @pkg_ver: pointer to a version structure to check 1250 * 1251 * Check to make sure that the package about to be downloaded is compatible with 1252 * the driver. To be compatible, the major and minor components of the package 1253 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1254 * definitions. 1255 */ 1256 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1257 { 1258 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1259 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1260 return ICE_ERR_NOT_SUPPORTED; 1261 1262 return 0; 1263 } 1264 1265 /** 1266 * ice_chk_pkg_compat 1267 * @hw: pointer to the hardware structure 1268 * @ospkg: pointer to the package hdr 1269 * @seg: pointer to the package segment hdr 1270 * 1271 * This function checks the package version compatibility with driver and NVM 1272 */ 1273 static enum ice_status 1274 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1275 struct ice_seg **seg) 1276 { 1277 struct ice_aqc_get_pkg_info_resp *pkg; 1278 enum ice_status status; 1279 u16 size; 1280 u32 i; 1281 1282 /* Check package version compatibility */ 1283 status = ice_chk_pkg_version(&hw->pkg_ver); 1284 if (status) { 1285 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1286 return status; 1287 } 1288 1289 /* find ICE segment in given package */ 1290 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1291 ospkg); 1292 if (!*seg) { 1293 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1294 return ICE_ERR_CFG; 1295 } 1296 1297 /* Check if FW is compatible with the OS package */ 1298 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1299 pkg = kzalloc(size, GFP_KERNEL); 1300 if (!pkg) 1301 return ICE_ERR_NO_MEMORY; 1302 1303 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1304 if (status) 1305 goto fw_ddp_compat_free_alloc; 1306 1307 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1308 /* loop till we find the NVM package */ 1309 if (!pkg->pkg_info[i].is_in_nvm) 1310 continue; 1311 if ((*seg)->hdr.seg_format_ver.major != 1312 pkg->pkg_info[i].ver.major || 1313 (*seg)->hdr.seg_format_ver.minor > 1314 pkg->pkg_info[i].ver.minor) { 1315 status = ICE_ERR_FW_DDP_MISMATCH; 1316 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1317 } 1318 /* done processing NVM package so break */ 1319 break; 1320 } 1321 fw_ddp_compat_free_alloc: 1322 kfree(pkg); 1323 return status; 1324 } 1325 1326 /** 1327 * ice_init_pkg - initialize/download package 1328 * @hw: pointer to the hardware structure 1329 * @buf: pointer to the package buffer 1330 * @len: size of the package buffer 1331 * 1332 * This function initializes a package. The package contains HW tables 1333 * required to do packet processing. First, the function extracts package 1334 * information such as version. Then it finds the ice configuration segment 1335 * within the package; this function then saves a copy of the segment pointer 1336 * within the supplied package buffer. Next, the function will cache any hints 1337 * from the package, followed by downloading the package itself. Note, that if 1338 * a previous PF driver has already downloaded the package successfully, then 1339 * the current driver will not have to download the package again. 1340 * 1341 * The local package contents will be used to query default behavior and to 1342 * update specific sections of the HW's version of the package (e.g. to update 1343 * the parse graph to understand new protocols). 1344 * 1345 * This function stores a pointer to the package buffer memory, and it is 1346 * expected that the supplied buffer will not be freed immediately. If the 1347 * package buffer needs to be freed, such as when read from a file, use 1348 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1349 * case. 1350 */ 1351 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1352 { 1353 struct ice_pkg_hdr *pkg; 1354 enum ice_status status; 1355 struct ice_seg *seg; 1356 1357 if (!buf || !len) 1358 return ICE_ERR_PARAM; 1359 1360 pkg = (struct ice_pkg_hdr *)buf; 1361 status = ice_verify_pkg(pkg, len); 1362 if (status) { 1363 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1364 status); 1365 return status; 1366 } 1367 1368 /* initialize package info */ 1369 status = ice_init_pkg_info(hw, pkg); 1370 if (status) 1371 return status; 1372 1373 /* before downloading the package, check package version for 1374 * compatibility with driver 1375 */ 1376 status = ice_chk_pkg_compat(hw, pkg, &seg); 1377 if (status) 1378 return status; 1379 1380 /* initialize package hints and then download package */ 1381 ice_init_pkg_hints(hw, seg); 1382 status = ice_download_pkg(hw, seg); 1383 if (status == ICE_ERR_AQ_NO_WORK) { 1384 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1385 status = 0; 1386 } 1387 1388 /* Get information on the package currently loaded in HW, then make sure 1389 * the driver is compatible with this version. 1390 */ 1391 if (!status) { 1392 status = ice_get_pkg_info(hw); 1393 if (!status) 1394 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1395 } 1396 1397 if (!status) { 1398 hw->seg = seg; 1399 /* on successful package download update other required 1400 * registers to support the package and fill HW tables 1401 * with package content. 1402 */ 1403 ice_init_pkg_regs(hw); 1404 ice_fill_blk_tbls(hw); 1405 } else { 1406 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1407 status); 1408 } 1409 1410 return status; 1411 } 1412 1413 /** 1414 * ice_copy_and_init_pkg - initialize/download a copy of the package 1415 * @hw: pointer to the hardware structure 1416 * @buf: pointer to the package buffer 1417 * @len: size of the package buffer 1418 * 1419 * This function copies the package buffer, and then calls ice_init_pkg() to 1420 * initialize the copied package contents. 1421 * 1422 * The copying is necessary if the package buffer supplied is constant, or if 1423 * the memory may disappear shortly after calling this function. 1424 * 1425 * If the package buffer resides in the data segment and can be modified, the 1426 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1427 * 1428 * However, if the package buffer needs to be copied first, such as when being 1429 * read from a file, the caller should use ice_copy_and_init_pkg(). 1430 * 1431 * This function will first copy the package buffer, before calling 1432 * ice_init_pkg(). The caller is free to immediately destroy the original 1433 * package buffer, as the new copy will be managed by this function and 1434 * related routines. 1435 */ 1436 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1437 { 1438 enum ice_status status; 1439 u8 *buf_copy; 1440 1441 if (!buf || !len) 1442 return ICE_ERR_PARAM; 1443 1444 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1445 1446 status = ice_init_pkg(hw, buf_copy, len); 1447 if (status) { 1448 /* Free the copy, since we failed to initialize the package */ 1449 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1450 } else { 1451 /* Track the copied pkg so we can free it later */ 1452 hw->pkg_copy = buf_copy; 1453 hw->pkg_size = len; 1454 } 1455 1456 return status; 1457 } 1458 1459 /** 1460 * ice_pkg_buf_alloc 1461 * @hw: pointer to the HW structure 1462 * 1463 * Allocates a package buffer and returns a pointer to the buffer header. 1464 * Note: all package contents must be in Little Endian form. 1465 */ 1466 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1467 { 1468 struct ice_buf_build *bld; 1469 struct ice_buf_hdr *buf; 1470 1471 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1472 if (!bld) 1473 return NULL; 1474 1475 buf = (struct ice_buf_hdr *)bld; 1476 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1477 section_entry)); 1478 return bld; 1479 } 1480 1481 /** 1482 * ice_pkg_buf_free 1483 * @hw: pointer to the HW structure 1484 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1485 * 1486 * Frees a package buffer 1487 */ 1488 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1489 { 1490 devm_kfree(ice_hw_to_dev(hw), bld); 1491 } 1492 1493 /** 1494 * ice_pkg_buf_reserve_section 1495 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1496 * @count: the number of sections to reserve 1497 * 1498 * Reserves one or more section table entries in a package buffer. This routine 1499 * can be called multiple times as long as they are made before calling 1500 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1501 * is called once, the number of sections that can be allocated will not be able 1502 * to be increased; not using all reserved sections is fine, but this will 1503 * result in some wasted space in the buffer. 1504 * Note: all package contents must be in Little Endian form. 1505 */ 1506 static enum ice_status 1507 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1508 { 1509 struct ice_buf_hdr *buf; 1510 u16 section_count; 1511 u16 data_end; 1512 1513 if (!bld) 1514 return ICE_ERR_PARAM; 1515 1516 buf = (struct ice_buf_hdr *)&bld->buf; 1517 1518 /* already an active section, can't increase table size */ 1519 section_count = le16_to_cpu(buf->section_count); 1520 if (section_count > 0) 1521 return ICE_ERR_CFG; 1522 1523 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1524 return ICE_ERR_CFG; 1525 bld->reserved_section_table_entries += count; 1526 1527 data_end = le16_to_cpu(buf->data_end) + 1528 flex_array_size(buf, section_entry, count); 1529 buf->data_end = cpu_to_le16(data_end); 1530 1531 return 0; 1532 } 1533 1534 /** 1535 * ice_pkg_buf_alloc_section 1536 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1537 * @type: the section type value 1538 * @size: the size of the section to reserve (in bytes) 1539 * 1540 * Reserves memory in the buffer for a section's content and updates the 1541 * buffers' status accordingly. This routine returns a pointer to the first 1542 * byte of the section start within the buffer, which is used to fill in the 1543 * section contents. 1544 * Note: all package contents must be in Little Endian form. 1545 */ 1546 static void * 1547 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1548 { 1549 struct ice_buf_hdr *buf; 1550 u16 sect_count; 1551 u16 data_end; 1552 1553 if (!bld || !type || !size) 1554 return NULL; 1555 1556 buf = (struct ice_buf_hdr *)&bld->buf; 1557 1558 /* check for enough space left in buffer */ 1559 data_end = le16_to_cpu(buf->data_end); 1560 1561 /* section start must align on 4 byte boundary */ 1562 data_end = ALIGN(data_end, 4); 1563 1564 if ((data_end + size) > ICE_MAX_S_DATA_END) 1565 return NULL; 1566 1567 /* check for more available section table entries */ 1568 sect_count = le16_to_cpu(buf->section_count); 1569 if (sect_count < bld->reserved_section_table_entries) { 1570 void *section_ptr = ((u8 *)buf) + data_end; 1571 1572 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1573 buf->section_entry[sect_count].size = cpu_to_le16(size); 1574 buf->section_entry[sect_count].type = cpu_to_le32(type); 1575 1576 data_end += size; 1577 buf->data_end = cpu_to_le16(data_end); 1578 1579 buf->section_count = cpu_to_le16(sect_count + 1); 1580 return section_ptr; 1581 } 1582 1583 /* no free section table entries */ 1584 return NULL; 1585 } 1586 1587 /** 1588 * ice_pkg_buf_get_active_sections 1589 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1590 * 1591 * Returns the number of active sections. Before using the package buffer 1592 * in an update package command, the caller should make sure that there is at 1593 * least one active section - otherwise, the buffer is not legal and should 1594 * not be used. 1595 * Note: all package contents must be in Little Endian form. 1596 */ 1597 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1598 { 1599 struct ice_buf_hdr *buf; 1600 1601 if (!bld) 1602 return 0; 1603 1604 buf = (struct ice_buf_hdr *)&bld->buf; 1605 return le16_to_cpu(buf->section_count); 1606 } 1607 1608 /** 1609 * ice_pkg_buf 1610 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1611 * 1612 * Return a pointer to the buffer's header 1613 */ 1614 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1615 { 1616 if (!bld) 1617 return NULL; 1618 1619 return &bld->buf; 1620 } 1621 1622 /** 1623 * ice_get_open_tunnel_port - retrieve an open tunnel port 1624 * @hw: pointer to the HW structure 1625 * @port: returns open port 1626 */ 1627 bool 1628 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) 1629 { 1630 bool res = false; 1631 u16 i; 1632 1633 mutex_lock(&hw->tnl_lock); 1634 1635 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1636 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { 1637 *port = hw->tnl.tbl[i].port; 1638 res = true; 1639 break; 1640 } 1641 1642 mutex_unlock(&hw->tnl_lock); 1643 1644 return res; 1645 } 1646 1647 /** 1648 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1649 * @hw: pointer to the HW structure 1650 * @type: type of tunnel 1651 * @idx: linear index 1652 * 1653 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1654 * but really the port table may be sprase, and types are mixed, so convert 1655 * the stack index into the device index. 1656 */ 1657 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1658 u16 idx) 1659 { 1660 u16 i; 1661 1662 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1663 if (hw->tnl.tbl[i].valid && 1664 hw->tnl.tbl[i].type == type && 1665 idx--) 1666 return i; 1667 1668 WARN_ON_ONCE(1); 1669 return 0; 1670 } 1671 1672 /** 1673 * ice_create_tunnel 1674 * @hw: pointer to the HW structure 1675 * @index: device table entry 1676 * @type: type of tunnel 1677 * @port: port of tunnel to create 1678 * 1679 * Create a tunnel by updating the parse graph in the parser. We do that by 1680 * creating a package buffer with the tunnel info and issuing an update package 1681 * command. 1682 */ 1683 static enum ice_status 1684 ice_create_tunnel(struct ice_hw *hw, u16 index, 1685 enum ice_tunnel_type type, u16 port) 1686 { 1687 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1688 enum ice_status status = ICE_ERR_MAX_LIMIT; 1689 struct ice_buf_build *bld; 1690 1691 mutex_lock(&hw->tnl_lock); 1692 1693 bld = ice_pkg_buf_alloc(hw); 1694 if (!bld) { 1695 status = ICE_ERR_NO_MEMORY; 1696 goto ice_create_tunnel_end; 1697 } 1698 1699 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1700 if (ice_pkg_buf_reserve_section(bld, 2)) 1701 goto ice_create_tunnel_err; 1702 1703 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1704 struct_size(sect_rx, tcam, 1)); 1705 if (!sect_rx) 1706 goto ice_create_tunnel_err; 1707 sect_rx->count = cpu_to_le16(1); 1708 1709 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1710 struct_size(sect_tx, tcam, 1)); 1711 if (!sect_tx) 1712 goto ice_create_tunnel_err; 1713 sect_tx->count = cpu_to_le16(1); 1714 1715 /* copy original boost entry to update package buffer */ 1716 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1717 sizeof(*sect_rx->tcam)); 1718 1719 /* over-write the never-match dest port key bits with the encoded port 1720 * bits 1721 */ 1722 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1723 (u8 *)&port, NULL, NULL, NULL, 1724 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1725 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1726 1727 /* exact copy of entry to Tx section entry */ 1728 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1729 1730 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1731 if (!status) 1732 hw->tnl.tbl[index].port = port; 1733 1734 ice_create_tunnel_err: 1735 ice_pkg_buf_free(hw, bld); 1736 1737 ice_create_tunnel_end: 1738 mutex_unlock(&hw->tnl_lock); 1739 1740 return status; 1741 } 1742 1743 /** 1744 * ice_destroy_tunnel 1745 * @hw: pointer to the HW structure 1746 * @index: device table entry 1747 * @type: type of tunnel 1748 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1749 * 1750 * Destroys a tunnel or all tunnels by creating an update package buffer 1751 * targeting the specific updates requested and then performing an update 1752 * package. 1753 */ 1754 static enum ice_status 1755 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 1756 u16 port) 1757 { 1758 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1759 enum ice_status status = ICE_ERR_MAX_LIMIT; 1760 struct ice_buf_build *bld; 1761 1762 mutex_lock(&hw->tnl_lock); 1763 1764 if (WARN_ON(!hw->tnl.tbl[index].valid || 1765 hw->tnl.tbl[index].type != type || 1766 hw->tnl.tbl[index].port != port)) { 1767 status = ICE_ERR_OUT_OF_RANGE; 1768 goto ice_destroy_tunnel_end; 1769 } 1770 1771 bld = ice_pkg_buf_alloc(hw); 1772 if (!bld) { 1773 status = ICE_ERR_NO_MEMORY; 1774 goto ice_destroy_tunnel_end; 1775 } 1776 1777 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1778 if (ice_pkg_buf_reserve_section(bld, 2)) 1779 goto ice_destroy_tunnel_err; 1780 1781 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1782 struct_size(sect_rx, tcam, 1)); 1783 if (!sect_rx) 1784 goto ice_destroy_tunnel_err; 1785 sect_rx->count = cpu_to_le16(1); 1786 1787 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1788 struct_size(sect_tx, tcam, 1)); 1789 if (!sect_tx) 1790 goto ice_destroy_tunnel_err; 1791 sect_tx->count = cpu_to_le16(1); 1792 1793 /* copy original boost entry to update package buffer, one copy to Rx 1794 * section, another copy to the Tx section 1795 */ 1796 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1797 sizeof(*sect_rx->tcam)); 1798 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 1799 sizeof(*sect_tx->tcam)); 1800 1801 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1802 if (!status) 1803 hw->tnl.tbl[index].port = 0; 1804 1805 ice_destroy_tunnel_err: 1806 ice_pkg_buf_free(hw, bld); 1807 1808 ice_destroy_tunnel_end: 1809 mutex_unlock(&hw->tnl_lock); 1810 1811 return status; 1812 } 1813 1814 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 1815 unsigned int idx, struct udp_tunnel_info *ti) 1816 { 1817 struct ice_netdev_priv *np = netdev_priv(netdev); 1818 struct ice_vsi *vsi = np->vsi; 1819 struct ice_pf *pf = vsi->back; 1820 enum ice_tunnel_type tnl_type; 1821 enum ice_status status; 1822 u16 index; 1823 1824 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1825 index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type); 1826 1827 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 1828 if (status) { 1829 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 1830 ice_stat_str(status)); 1831 return -EIO; 1832 } 1833 1834 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 1835 return 0; 1836 } 1837 1838 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 1839 unsigned int idx, struct udp_tunnel_info *ti) 1840 { 1841 struct ice_netdev_priv *np = netdev_priv(netdev); 1842 struct ice_vsi *vsi = np->vsi; 1843 struct ice_pf *pf = vsi->back; 1844 enum ice_tunnel_type tnl_type; 1845 enum ice_status status; 1846 1847 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1848 1849 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 1850 ntohs(ti->port)); 1851 if (status) { 1852 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 1853 ice_stat_str(status)); 1854 return -EIO; 1855 } 1856 1857 return 0; 1858 } 1859 1860 /* PTG Management */ 1861 1862 /** 1863 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 1864 * @hw: pointer to the hardware structure 1865 * @blk: HW block 1866 * @ptype: the ptype to search for 1867 * @ptg: pointer to variable that receives the PTG 1868 * 1869 * This function will search the PTGs for a particular ptype, returning the 1870 * PTG ID that contains it through the PTG parameter, with the value of 1871 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 1872 */ 1873 static enum ice_status 1874 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 1875 { 1876 if (ptype >= ICE_XLT1_CNT || !ptg) 1877 return ICE_ERR_PARAM; 1878 1879 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 1880 return 0; 1881 } 1882 1883 /** 1884 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 1885 * @hw: pointer to the hardware structure 1886 * @blk: HW block 1887 * @ptg: the PTG to allocate 1888 * 1889 * This function allocates a given packet type group ID specified by the PTG 1890 * parameter. 1891 */ 1892 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 1893 { 1894 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 1895 } 1896 1897 /** 1898 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 1899 * @hw: pointer to the hardware structure 1900 * @blk: HW block 1901 * @ptype: the ptype to remove 1902 * @ptg: the PTG to remove the ptype from 1903 * 1904 * This function will remove the ptype from the specific PTG, and move it to 1905 * the default PTG (ICE_DEFAULT_PTG). 1906 */ 1907 static enum ice_status 1908 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1909 { 1910 struct ice_ptg_ptype **ch; 1911 struct ice_ptg_ptype *p; 1912 1913 if (ptype > ICE_XLT1_CNT - 1) 1914 return ICE_ERR_PARAM; 1915 1916 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 1917 return ICE_ERR_DOES_NOT_EXIST; 1918 1919 /* Should not happen if .in_use is set, bad config */ 1920 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 1921 return ICE_ERR_CFG; 1922 1923 /* find the ptype within this PTG, and bypass the link over it */ 1924 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1925 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1926 while (p) { 1927 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 1928 *ch = p->next_ptype; 1929 break; 1930 } 1931 1932 ch = &p->next_ptype; 1933 p = p->next_ptype; 1934 } 1935 1936 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 1937 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 1938 1939 return 0; 1940 } 1941 1942 /** 1943 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 1944 * @hw: pointer to the hardware structure 1945 * @blk: HW block 1946 * @ptype: the ptype to add or move 1947 * @ptg: the PTG to add or move the ptype to 1948 * 1949 * This function will either add or move a ptype to a particular PTG depending 1950 * on if the ptype is already part of another group. Note that using a 1951 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 1952 * default PTG. 1953 */ 1954 static enum ice_status 1955 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1956 { 1957 enum ice_status status; 1958 u8 original_ptg; 1959 1960 if (ptype > ICE_XLT1_CNT - 1) 1961 return ICE_ERR_PARAM; 1962 1963 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 1964 return ICE_ERR_DOES_NOT_EXIST; 1965 1966 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 1967 if (status) 1968 return status; 1969 1970 /* Is ptype already in the correct PTG? */ 1971 if (original_ptg == ptg) 1972 return 0; 1973 1974 /* Remove from original PTG and move back to the default PTG */ 1975 if (original_ptg != ICE_DEFAULT_PTG) 1976 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 1977 1978 /* Moving to default PTG? Then we're done with this request */ 1979 if (ptg == ICE_DEFAULT_PTG) 1980 return 0; 1981 1982 /* Add ptype to PTG at beginning of list */ 1983 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 1984 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1985 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 1986 &hw->blk[blk].xlt1.ptypes[ptype]; 1987 1988 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 1989 hw->blk[blk].xlt1.t[ptype] = ptg; 1990 1991 return 0; 1992 } 1993 1994 /* Block / table size info */ 1995 struct ice_blk_size_details { 1996 u16 xlt1; /* # XLT1 entries */ 1997 u16 xlt2; /* # XLT2 entries */ 1998 u16 prof_tcam; /* # profile ID TCAM entries */ 1999 u16 prof_id; /* # profile IDs */ 2000 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2001 u16 prof_redir; /* # profile redirection entries */ 2002 u16 es; /* # extraction sequence entries */ 2003 u16 fvw; /* # field vector words */ 2004 u8 overwrite; /* overwrite existing entries allowed */ 2005 u8 reverse; /* reverse FV order */ 2006 }; 2007 2008 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2009 /** 2010 * Table Definitions 2011 * XLT1 - Number of entries in XLT1 table 2012 * XLT2 - Number of entries in XLT2 table 2013 * TCAM - Number of entries Profile ID TCAM table 2014 * CDID - Control Domain ID of the hardware block 2015 * PRED - Number of entries in the Profile Redirection Table 2016 * FV - Number of entries in the Field Vector 2017 * FVW - Width (in WORDs) of the Field Vector 2018 * OVR - Overwrite existing table entries 2019 * REV - Reverse FV 2020 */ 2021 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2022 /* Overwrite , Reverse FV */ 2023 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2024 false, false }, 2025 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2026 false, false }, 2027 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2028 false, true }, 2029 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2030 true, true }, 2031 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2032 false, false }, 2033 }; 2034 2035 enum ice_sid_all { 2036 ICE_SID_XLT1_OFF = 0, 2037 ICE_SID_XLT2_OFF, 2038 ICE_SID_PR_OFF, 2039 ICE_SID_PR_REDIR_OFF, 2040 ICE_SID_ES_OFF, 2041 ICE_SID_OFF_COUNT, 2042 }; 2043 2044 /* Characteristic handling */ 2045 2046 /** 2047 * ice_match_prop_lst - determine if properties of two lists match 2048 * @list1: first properties list 2049 * @list2: second properties list 2050 * 2051 * Count, cookies and the order must match in order to be considered equivalent. 2052 */ 2053 static bool 2054 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2055 { 2056 struct ice_vsig_prof *tmp1; 2057 struct ice_vsig_prof *tmp2; 2058 u16 chk_count = 0; 2059 u16 count = 0; 2060 2061 /* compare counts */ 2062 list_for_each_entry(tmp1, list1, list) 2063 count++; 2064 list_for_each_entry(tmp2, list2, list) 2065 chk_count++; 2066 if (!count || count != chk_count) 2067 return false; 2068 2069 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2070 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2071 2072 /* profile cookies must compare, and in the exact same order to take 2073 * into account priority 2074 */ 2075 while (count--) { 2076 if (tmp2->profile_cookie != tmp1->profile_cookie) 2077 return false; 2078 2079 tmp1 = list_next_entry(tmp1, list); 2080 tmp2 = list_next_entry(tmp2, list); 2081 } 2082 2083 return true; 2084 } 2085 2086 /* VSIG Management */ 2087 2088 /** 2089 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2090 * @hw: pointer to the hardware structure 2091 * @blk: HW block 2092 * @vsi: VSI of interest 2093 * @vsig: pointer to receive the VSI group 2094 * 2095 * This function will lookup the VSI entry in the XLT2 list and return 2096 * the VSI group its associated with. 2097 */ 2098 static enum ice_status 2099 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2100 { 2101 if (!vsig || vsi >= ICE_MAX_VSI) 2102 return ICE_ERR_PARAM; 2103 2104 /* As long as there's a default or valid VSIG associated with the input 2105 * VSI, the functions returns a success. Any handling of VSIG will be 2106 * done by the following add, update or remove functions. 2107 */ 2108 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * ice_vsig_alloc_val - allocate a new VSIG by value 2115 * @hw: pointer to the hardware structure 2116 * @blk: HW block 2117 * @vsig: the VSIG to allocate 2118 * 2119 * This function will allocate a given VSIG specified by the VSIG parameter. 2120 */ 2121 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2122 { 2123 u16 idx = vsig & ICE_VSIG_IDX_M; 2124 2125 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2126 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2127 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2128 } 2129 2130 return ICE_VSIG_VALUE(idx, hw->pf_id); 2131 } 2132 2133 /** 2134 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2135 * @hw: pointer to the hardware structure 2136 * @blk: HW block 2137 * 2138 * This function will iterate through the VSIG list and mark the first 2139 * unused entry for the new VSIG entry as used and return that value. 2140 */ 2141 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2142 { 2143 u16 i; 2144 2145 for (i = 1; i < ICE_MAX_VSIGS; i++) 2146 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2147 return ice_vsig_alloc_val(hw, blk, i); 2148 2149 return ICE_DEFAULT_VSIG; 2150 } 2151 2152 /** 2153 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2154 * @hw: pointer to the hardware structure 2155 * @blk: HW block 2156 * @chs: characteristic list 2157 * @vsig: returns the VSIG with the matching profiles, if found 2158 * 2159 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2160 * a group have the same characteristic set. To check if there exists a VSIG 2161 * which has the same characteristics as the input characteristics; this 2162 * function will iterate through the XLT2 list and return the VSIG that has a 2163 * matching configuration. In order to make sure that priorities are accounted 2164 * for, the list must match exactly, including the order in which the 2165 * characteristics are listed. 2166 */ 2167 static enum ice_status 2168 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2169 struct list_head *chs, u16 *vsig) 2170 { 2171 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2172 u16 i; 2173 2174 for (i = 0; i < xlt2->count; i++) 2175 if (xlt2->vsig_tbl[i].in_use && 2176 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2177 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2178 return 0; 2179 } 2180 2181 return ICE_ERR_DOES_NOT_EXIST; 2182 } 2183 2184 /** 2185 * ice_vsig_free - free VSI group 2186 * @hw: pointer to the hardware structure 2187 * @blk: HW block 2188 * @vsig: VSIG to remove 2189 * 2190 * The function will remove all VSIs associated with the input VSIG and move 2191 * them to the DEFAULT_VSIG and mark the VSIG available. 2192 */ 2193 static enum ice_status 2194 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2195 { 2196 struct ice_vsig_prof *dtmp, *del; 2197 struct ice_vsig_vsi *vsi_cur; 2198 u16 idx; 2199 2200 idx = vsig & ICE_VSIG_IDX_M; 2201 if (idx >= ICE_MAX_VSIGS) 2202 return ICE_ERR_PARAM; 2203 2204 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2205 return ICE_ERR_DOES_NOT_EXIST; 2206 2207 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2208 2209 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2210 /* If the VSIG has at least 1 VSI then iterate through the 2211 * list and remove the VSIs before deleting the group. 2212 */ 2213 if (vsi_cur) { 2214 /* remove all vsis associated with this VSIG XLT2 entry */ 2215 do { 2216 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2217 2218 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2219 vsi_cur->changed = 1; 2220 vsi_cur->next_vsi = NULL; 2221 vsi_cur = tmp; 2222 } while (vsi_cur); 2223 2224 /* NULL terminate head of VSI list */ 2225 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2226 } 2227 2228 /* free characteristic list */ 2229 list_for_each_entry_safe(del, dtmp, 2230 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2231 list) { 2232 list_del(&del->list); 2233 devm_kfree(ice_hw_to_dev(hw), del); 2234 } 2235 2236 /* if VSIG characteristic list was cleared for reset 2237 * re-initialize the list head 2238 */ 2239 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2240 2241 return 0; 2242 } 2243 2244 /** 2245 * ice_vsig_remove_vsi - remove VSI from VSIG 2246 * @hw: pointer to the hardware structure 2247 * @blk: HW block 2248 * @vsi: VSI to remove 2249 * @vsig: VSI group to remove from 2250 * 2251 * The function will remove the input VSI from its VSI group and move it 2252 * to the DEFAULT_VSIG. 2253 */ 2254 static enum ice_status 2255 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2256 { 2257 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2258 u16 idx; 2259 2260 idx = vsig & ICE_VSIG_IDX_M; 2261 2262 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2263 return ICE_ERR_PARAM; 2264 2265 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2266 return ICE_ERR_DOES_NOT_EXIST; 2267 2268 /* entry already in default VSIG, don't have to remove */ 2269 if (idx == ICE_DEFAULT_VSIG) 2270 return 0; 2271 2272 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2273 if (!(*vsi_head)) 2274 return ICE_ERR_CFG; 2275 2276 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2277 vsi_cur = (*vsi_head); 2278 2279 /* iterate the VSI list, skip over the entry to be removed */ 2280 while (vsi_cur) { 2281 if (vsi_tgt == vsi_cur) { 2282 (*vsi_head) = vsi_cur->next_vsi; 2283 break; 2284 } 2285 vsi_head = &vsi_cur->next_vsi; 2286 vsi_cur = vsi_cur->next_vsi; 2287 } 2288 2289 /* verify if VSI was removed from group list */ 2290 if (!vsi_cur) 2291 return ICE_ERR_DOES_NOT_EXIST; 2292 2293 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2294 vsi_cur->changed = 1; 2295 vsi_cur->next_vsi = NULL; 2296 2297 return 0; 2298 } 2299 2300 /** 2301 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2302 * @hw: pointer to the hardware structure 2303 * @blk: HW block 2304 * @vsi: VSI to move 2305 * @vsig: destination VSI group 2306 * 2307 * This function will move or add the input VSI to the target VSIG. 2308 * The function will find the original VSIG the VSI belongs to and 2309 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2310 * then move entry to the new VSIG. 2311 */ 2312 static enum ice_status 2313 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2314 { 2315 struct ice_vsig_vsi *tmp; 2316 enum ice_status status; 2317 u16 orig_vsig, idx; 2318 2319 idx = vsig & ICE_VSIG_IDX_M; 2320 2321 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2322 return ICE_ERR_PARAM; 2323 2324 /* if VSIG not in use and VSIG is not default type this VSIG 2325 * doesn't exist. 2326 */ 2327 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2328 vsig != ICE_DEFAULT_VSIG) 2329 return ICE_ERR_DOES_NOT_EXIST; 2330 2331 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2332 if (status) 2333 return status; 2334 2335 /* no update required if vsigs match */ 2336 if (orig_vsig == vsig) 2337 return 0; 2338 2339 if (orig_vsig != ICE_DEFAULT_VSIG) { 2340 /* remove entry from orig_vsig and add to default VSIG */ 2341 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2342 if (status) 2343 return status; 2344 } 2345 2346 if (idx == ICE_DEFAULT_VSIG) 2347 return 0; 2348 2349 /* Create VSI entry and add VSIG and prop_mask values */ 2350 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2351 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2352 2353 /* Add new entry to the head of the VSIG list */ 2354 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2355 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2356 &hw->blk[blk].xlt2.vsis[vsi]; 2357 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2358 hw->blk[blk].xlt2.t[vsi] = vsig; 2359 2360 return 0; 2361 } 2362 2363 /** 2364 * ice_prof_has_mask_idx - determine if profile index masking is identical 2365 * @hw: pointer to the hardware structure 2366 * @blk: HW block 2367 * @prof: profile to check 2368 * @idx: profile index to check 2369 * @mask: mask to match 2370 */ 2371 static bool 2372 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2373 u16 mask) 2374 { 2375 bool expect_no_mask = false; 2376 bool found = false; 2377 bool match = false; 2378 u16 i; 2379 2380 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2381 if (mask == 0 || mask == 0xffff) 2382 expect_no_mask = true; 2383 2384 /* Scan the enabled masks on this profile, for the specified idx */ 2385 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2386 hw->blk[blk].masks.count; i++) 2387 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2388 if (hw->blk[blk].masks.masks[i].in_use && 2389 hw->blk[blk].masks.masks[i].idx == idx) { 2390 found = true; 2391 if (hw->blk[blk].masks.masks[i].mask == mask) 2392 match = true; 2393 break; 2394 } 2395 2396 if (expect_no_mask) { 2397 if (found) 2398 return false; 2399 } else { 2400 if (!match) 2401 return false; 2402 } 2403 2404 return true; 2405 } 2406 2407 /** 2408 * ice_prof_has_mask - determine if profile masking is identical 2409 * @hw: pointer to the hardware structure 2410 * @blk: HW block 2411 * @prof: profile to check 2412 * @masks: masks to match 2413 */ 2414 static bool 2415 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2416 { 2417 u16 i; 2418 2419 /* es->mask_ena[prof] will have the mask */ 2420 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2421 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2422 return false; 2423 2424 return true; 2425 } 2426 2427 /** 2428 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2429 * @hw: pointer to the hardware structure 2430 * @blk: HW block 2431 * @fv: field vector to search for 2432 * @masks: masks for FV 2433 * @prof_id: receives the profile ID 2434 */ 2435 static enum ice_status 2436 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2437 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2438 { 2439 struct ice_es *es = &hw->blk[blk].es; 2440 u8 i; 2441 2442 /* For FD, we don't want to re-use a existed profile with the same 2443 * field vector and mask. This will cause rule interference. 2444 */ 2445 if (blk == ICE_BLK_FD) 2446 return ICE_ERR_DOES_NOT_EXIST; 2447 2448 for (i = 0; i < (u8)es->count; i++) { 2449 u16 off = i * es->fvw; 2450 2451 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2452 continue; 2453 2454 /* check if masks settings are the same for this profile */ 2455 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2456 continue; 2457 2458 *prof_id = i; 2459 return 0; 2460 } 2461 2462 return ICE_ERR_DOES_NOT_EXIST; 2463 } 2464 2465 /** 2466 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2467 * @blk: the block type 2468 * @rsrc_type: pointer to variable to receive the resource type 2469 */ 2470 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2471 { 2472 switch (blk) { 2473 case ICE_BLK_FD: 2474 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2475 break; 2476 case ICE_BLK_RSS: 2477 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2478 break; 2479 default: 2480 return false; 2481 } 2482 return true; 2483 } 2484 2485 /** 2486 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2487 * @blk: the block type 2488 * @rsrc_type: pointer to variable to receive the resource type 2489 */ 2490 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2491 { 2492 switch (blk) { 2493 case ICE_BLK_FD: 2494 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2495 break; 2496 case ICE_BLK_RSS: 2497 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2498 break; 2499 default: 2500 return false; 2501 } 2502 return true; 2503 } 2504 2505 /** 2506 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2507 * @hw: pointer to the HW struct 2508 * @blk: the block to allocate the TCAM for 2509 * @btm: true to allocate from bottom of table, false to allocate from top 2510 * @tcam_idx: pointer to variable to receive the TCAM entry 2511 * 2512 * This function allocates a new entry in a Profile ID TCAM for a specific 2513 * block. 2514 */ 2515 static enum ice_status 2516 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2517 u16 *tcam_idx) 2518 { 2519 u16 res_type; 2520 2521 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2522 return ICE_ERR_PARAM; 2523 2524 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2525 } 2526 2527 /** 2528 * ice_free_tcam_ent - free hardware TCAM entry 2529 * @hw: pointer to the HW struct 2530 * @blk: the block from which to free the TCAM entry 2531 * @tcam_idx: the TCAM entry to free 2532 * 2533 * This function frees an entry in a Profile ID TCAM for a specific block. 2534 */ 2535 static enum ice_status 2536 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2537 { 2538 u16 res_type; 2539 2540 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2541 return ICE_ERR_PARAM; 2542 2543 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2544 } 2545 2546 /** 2547 * ice_alloc_prof_id - allocate profile ID 2548 * @hw: pointer to the HW struct 2549 * @blk: the block to allocate the profile ID for 2550 * @prof_id: pointer to variable to receive the profile ID 2551 * 2552 * This function allocates a new profile ID, which also corresponds to a Field 2553 * Vector (Extraction Sequence) entry. 2554 */ 2555 static enum ice_status 2556 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2557 { 2558 enum ice_status status; 2559 u16 res_type; 2560 u16 get_prof; 2561 2562 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2563 return ICE_ERR_PARAM; 2564 2565 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2566 if (!status) 2567 *prof_id = (u8)get_prof; 2568 2569 return status; 2570 } 2571 2572 /** 2573 * ice_free_prof_id - free profile ID 2574 * @hw: pointer to the HW struct 2575 * @blk: the block from which to free the profile ID 2576 * @prof_id: the profile ID to free 2577 * 2578 * This function frees a profile ID, which also corresponds to a Field Vector. 2579 */ 2580 static enum ice_status 2581 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2582 { 2583 u16 tmp_prof_id = (u16)prof_id; 2584 u16 res_type; 2585 2586 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2587 return ICE_ERR_PARAM; 2588 2589 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2590 } 2591 2592 /** 2593 * ice_prof_inc_ref - increment reference count for profile 2594 * @hw: pointer to the HW struct 2595 * @blk: the block from which to free the profile ID 2596 * @prof_id: the profile ID for which to increment the reference count 2597 */ 2598 static enum ice_status 2599 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2600 { 2601 if (prof_id > hw->blk[blk].es.count) 2602 return ICE_ERR_PARAM; 2603 2604 hw->blk[blk].es.ref_count[prof_id]++; 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ice_write_prof_mask_reg - write profile mask register 2611 * @hw: pointer to the HW struct 2612 * @blk: hardware block 2613 * @mask_idx: mask index 2614 * @idx: index of the FV which will use the mask 2615 * @mask: the 16-bit mask 2616 */ 2617 static void 2618 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 2619 u16 idx, u16 mask) 2620 { 2621 u32 offset; 2622 u32 val; 2623 2624 switch (blk) { 2625 case ICE_BLK_RSS: 2626 offset = GLQF_HMASK(mask_idx); 2627 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 2628 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 2629 break; 2630 case ICE_BLK_FD: 2631 offset = GLQF_FDMASK(mask_idx); 2632 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 2633 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 2634 break; 2635 default: 2636 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2637 blk); 2638 return; 2639 } 2640 2641 wr32(hw, offset, val); 2642 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 2643 blk, idx, offset, val); 2644 } 2645 2646 /** 2647 * ice_write_prof_mask_enable_res - write profile mask enable register 2648 * @hw: pointer to the HW struct 2649 * @blk: hardware block 2650 * @prof_id: profile ID 2651 * @enable_mask: enable mask 2652 */ 2653 static void 2654 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 2655 u16 prof_id, u32 enable_mask) 2656 { 2657 u32 offset; 2658 2659 switch (blk) { 2660 case ICE_BLK_RSS: 2661 offset = GLQF_HMASK_SEL(prof_id); 2662 break; 2663 case ICE_BLK_FD: 2664 offset = GLQF_FDMASK_SEL(prof_id); 2665 break; 2666 default: 2667 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2668 blk); 2669 return; 2670 } 2671 2672 wr32(hw, offset, enable_mask); 2673 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 2674 blk, prof_id, offset, enable_mask); 2675 } 2676 2677 /** 2678 * ice_init_prof_masks - initial prof masks 2679 * @hw: pointer to the HW struct 2680 * @blk: hardware block 2681 */ 2682 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 2683 { 2684 u16 per_pf; 2685 u16 i; 2686 2687 mutex_init(&hw->blk[blk].masks.lock); 2688 2689 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 2690 2691 hw->blk[blk].masks.count = per_pf; 2692 hw->blk[blk].masks.first = hw->pf_id * per_pf; 2693 2694 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 2695 2696 for (i = hw->blk[blk].masks.first; 2697 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 2698 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 2699 } 2700 2701 /** 2702 * ice_init_all_prof_masks - initialize all prof masks 2703 * @hw: pointer to the HW struct 2704 */ 2705 static void ice_init_all_prof_masks(struct ice_hw *hw) 2706 { 2707 ice_init_prof_masks(hw, ICE_BLK_RSS); 2708 ice_init_prof_masks(hw, ICE_BLK_FD); 2709 } 2710 2711 /** 2712 * ice_alloc_prof_mask - allocate profile mask 2713 * @hw: pointer to the HW struct 2714 * @blk: hardware block 2715 * @idx: index of FV which will use the mask 2716 * @mask: the 16-bit mask 2717 * @mask_idx: variable to receive the mask index 2718 */ 2719 static enum ice_status 2720 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 2721 u16 *mask_idx) 2722 { 2723 bool found_unused = false, found_copy = false; 2724 enum ice_status status = ICE_ERR_MAX_LIMIT; 2725 u16 unused_idx = 0, copy_idx = 0; 2726 u16 i; 2727 2728 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2729 return ICE_ERR_PARAM; 2730 2731 mutex_lock(&hw->blk[blk].masks.lock); 2732 2733 for (i = hw->blk[blk].masks.first; 2734 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 2735 if (hw->blk[blk].masks.masks[i].in_use) { 2736 /* if mask is in use and it exactly duplicates the 2737 * desired mask and index, then in can be reused 2738 */ 2739 if (hw->blk[blk].masks.masks[i].mask == mask && 2740 hw->blk[blk].masks.masks[i].idx == idx) { 2741 found_copy = true; 2742 copy_idx = i; 2743 break; 2744 } 2745 } else { 2746 /* save off unused index, but keep searching in case 2747 * there is an exact match later on 2748 */ 2749 if (!found_unused) { 2750 found_unused = true; 2751 unused_idx = i; 2752 } 2753 } 2754 2755 if (found_copy) 2756 i = copy_idx; 2757 else if (found_unused) 2758 i = unused_idx; 2759 else 2760 goto err_ice_alloc_prof_mask; 2761 2762 /* update mask for a new entry */ 2763 if (found_unused) { 2764 hw->blk[blk].masks.masks[i].in_use = true; 2765 hw->blk[blk].masks.masks[i].mask = mask; 2766 hw->blk[blk].masks.masks[i].idx = idx; 2767 hw->blk[blk].masks.masks[i].ref = 0; 2768 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 2769 } 2770 2771 hw->blk[blk].masks.masks[i].ref++; 2772 *mask_idx = i; 2773 status = 0; 2774 2775 err_ice_alloc_prof_mask: 2776 mutex_unlock(&hw->blk[blk].masks.lock); 2777 2778 return status; 2779 } 2780 2781 /** 2782 * ice_free_prof_mask - free profile mask 2783 * @hw: pointer to the HW struct 2784 * @blk: hardware block 2785 * @mask_idx: index of mask 2786 */ 2787 static enum ice_status 2788 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 2789 { 2790 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2791 return ICE_ERR_PARAM; 2792 2793 if (!(mask_idx >= hw->blk[blk].masks.first && 2794 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 2795 return ICE_ERR_DOES_NOT_EXIST; 2796 2797 mutex_lock(&hw->blk[blk].masks.lock); 2798 2799 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 2800 goto exit_ice_free_prof_mask; 2801 2802 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 2803 hw->blk[blk].masks.masks[mask_idx].ref--; 2804 goto exit_ice_free_prof_mask; 2805 } 2806 2807 /* remove mask */ 2808 hw->blk[blk].masks.masks[mask_idx].in_use = false; 2809 hw->blk[blk].masks.masks[mask_idx].mask = 0; 2810 hw->blk[blk].masks.masks[mask_idx].idx = 0; 2811 2812 /* update mask as unused entry */ 2813 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 2814 mask_idx); 2815 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 2816 2817 exit_ice_free_prof_mask: 2818 mutex_unlock(&hw->blk[blk].masks.lock); 2819 2820 return 0; 2821 } 2822 2823 /** 2824 * ice_free_prof_masks - free all profile masks for a profile 2825 * @hw: pointer to the HW struct 2826 * @blk: hardware block 2827 * @prof_id: profile ID 2828 */ 2829 static enum ice_status 2830 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 2831 { 2832 u32 mask_bm; 2833 u16 i; 2834 2835 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2836 return ICE_ERR_PARAM; 2837 2838 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 2839 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 2840 if (mask_bm & BIT(i)) 2841 ice_free_prof_mask(hw, blk, i); 2842 2843 return 0; 2844 } 2845 2846 /** 2847 * ice_shutdown_prof_masks - releases lock for masking 2848 * @hw: pointer to the HW struct 2849 * @blk: hardware block 2850 * 2851 * This should be called before unloading the driver 2852 */ 2853 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 2854 { 2855 u16 i; 2856 2857 mutex_lock(&hw->blk[blk].masks.lock); 2858 2859 for (i = hw->blk[blk].masks.first; 2860 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 2861 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 2862 2863 hw->blk[blk].masks.masks[i].in_use = false; 2864 hw->blk[blk].masks.masks[i].idx = 0; 2865 hw->blk[blk].masks.masks[i].mask = 0; 2866 } 2867 2868 mutex_unlock(&hw->blk[blk].masks.lock); 2869 mutex_destroy(&hw->blk[blk].masks.lock); 2870 } 2871 2872 /** 2873 * ice_shutdown_all_prof_masks - releases all locks for masking 2874 * @hw: pointer to the HW struct 2875 * 2876 * This should be called before unloading the driver 2877 */ 2878 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 2879 { 2880 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 2881 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 2882 } 2883 2884 /** 2885 * ice_update_prof_masking - set registers according to masking 2886 * @hw: pointer to the HW struct 2887 * @blk: hardware block 2888 * @prof_id: profile ID 2889 * @masks: masks 2890 */ 2891 static enum ice_status 2892 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 2893 u16 *masks) 2894 { 2895 bool err = false; 2896 u32 ena_mask = 0; 2897 u16 idx; 2898 u16 i; 2899 2900 /* Only support FD and RSS masking, otherwise nothing to be done */ 2901 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2902 return 0; 2903 2904 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2905 if (masks[i] && masks[i] != 0xFFFF) { 2906 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 2907 ena_mask |= BIT(idx); 2908 } else { 2909 /* not enough bitmaps */ 2910 err = true; 2911 break; 2912 } 2913 } 2914 2915 if (err) { 2916 /* free any bitmaps we have allocated */ 2917 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 2918 if (ena_mask & BIT(i)) 2919 ice_free_prof_mask(hw, blk, i); 2920 2921 return ICE_ERR_OUT_OF_RANGE; 2922 } 2923 2924 /* enable the masks for this profile */ 2925 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 2926 2927 /* store enabled masks with profile so that they can be freed later */ 2928 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 2929 2930 return 0; 2931 } 2932 2933 /** 2934 * ice_write_es - write an extraction sequence to hardware 2935 * @hw: pointer to the HW struct 2936 * @blk: the block in which to write the extraction sequence 2937 * @prof_id: the profile ID to write 2938 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 2939 */ 2940 static void 2941 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 2942 struct ice_fv_word *fv) 2943 { 2944 u16 off; 2945 2946 off = prof_id * hw->blk[blk].es.fvw; 2947 if (!fv) { 2948 memset(&hw->blk[blk].es.t[off], 0, 2949 hw->blk[blk].es.fvw * sizeof(*fv)); 2950 hw->blk[blk].es.written[prof_id] = false; 2951 } else { 2952 memcpy(&hw->blk[blk].es.t[off], fv, 2953 hw->blk[blk].es.fvw * sizeof(*fv)); 2954 } 2955 } 2956 2957 /** 2958 * ice_prof_dec_ref - decrement reference count for profile 2959 * @hw: pointer to the HW struct 2960 * @blk: the block from which to free the profile ID 2961 * @prof_id: the profile ID for which to decrement the reference count 2962 */ 2963 static enum ice_status 2964 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2965 { 2966 if (prof_id > hw->blk[blk].es.count) 2967 return ICE_ERR_PARAM; 2968 2969 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 2970 if (!--hw->blk[blk].es.ref_count[prof_id]) { 2971 ice_write_es(hw, blk, prof_id, NULL); 2972 ice_free_prof_masks(hw, blk, prof_id); 2973 return ice_free_prof_id(hw, blk, prof_id); 2974 } 2975 } 2976 2977 return 0; 2978 } 2979 2980 /* Block / table section IDs */ 2981 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 2982 /* SWITCH */ 2983 { ICE_SID_XLT1_SW, 2984 ICE_SID_XLT2_SW, 2985 ICE_SID_PROFID_TCAM_SW, 2986 ICE_SID_PROFID_REDIR_SW, 2987 ICE_SID_FLD_VEC_SW 2988 }, 2989 2990 /* ACL */ 2991 { ICE_SID_XLT1_ACL, 2992 ICE_SID_XLT2_ACL, 2993 ICE_SID_PROFID_TCAM_ACL, 2994 ICE_SID_PROFID_REDIR_ACL, 2995 ICE_SID_FLD_VEC_ACL 2996 }, 2997 2998 /* FD */ 2999 { ICE_SID_XLT1_FD, 3000 ICE_SID_XLT2_FD, 3001 ICE_SID_PROFID_TCAM_FD, 3002 ICE_SID_PROFID_REDIR_FD, 3003 ICE_SID_FLD_VEC_FD 3004 }, 3005 3006 /* RSS */ 3007 { ICE_SID_XLT1_RSS, 3008 ICE_SID_XLT2_RSS, 3009 ICE_SID_PROFID_TCAM_RSS, 3010 ICE_SID_PROFID_REDIR_RSS, 3011 ICE_SID_FLD_VEC_RSS 3012 }, 3013 3014 /* PE */ 3015 { ICE_SID_XLT1_PE, 3016 ICE_SID_XLT2_PE, 3017 ICE_SID_PROFID_TCAM_PE, 3018 ICE_SID_PROFID_REDIR_PE, 3019 ICE_SID_FLD_VEC_PE 3020 } 3021 }; 3022 3023 /** 3024 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3025 * @hw: pointer to the hardware structure 3026 * @blk: the HW block to initialize 3027 */ 3028 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3029 { 3030 u16 pt; 3031 3032 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3033 u8 ptg; 3034 3035 ptg = hw->blk[blk].xlt1.t[pt]; 3036 if (ptg != ICE_DEFAULT_PTG) { 3037 ice_ptg_alloc_val(hw, blk, ptg); 3038 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3039 } 3040 } 3041 } 3042 3043 /** 3044 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3045 * @hw: pointer to the hardware structure 3046 * @blk: the HW block to initialize 3047 */ 3048 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3049 { 3050 u16 vsi; 3051 3052 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3053 u16 vsig; 3054 3055 vsig = hw->blk[blk].xlt2.t[vsi]; 3056 if (vsig) { 3057 ice_vsig_alloc_val(hw, blk, vsig); 3058 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3059 /* no changes at this time, since this has been 3060 * initialized from the original package 3061 */ 3062 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3063 } 3064 } 3065 } 3066 3067 /** 3068 * ice_init_sw_db - init software database from HW tables 3069 * @hw: pointer to the hardware structure 3070 */ 3071 static void ice_init_sw_db(struct ice_hw *hw) 3072 { 3073 u16 i; 3074 3075 for (i = 0; i < ICE_BLK_COUNT; i++) { 3076 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3077 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3078 } 3079 } 3080 3081 /** 3082 * ice_fill_tbl - Reads content of a single table type into database 3083 * @hw: pointer to the hardware structure 3084 * @block_id: Block ID of the table to copy 3085 * @sid: Section ID of the table to copy 3086 * 3087 * Will attempt to read the entire content of a given table of a single block 3088 * into the driver database. We assume that the buffer will always 3089 * be as large or larger than the data contained in the package. If 3090 * this condition is not met, there is most likely an error in the package 3091 * contents. 3092 */ 3093 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3094 { 3095 u32 dst_len, sect_len, offset = 0; 3096 struct ice_prof_redir_section *pr; 3097 struct ice_prof_id_section *pid; 3098 struct ice_xlt1_section *xlt1; 3099 struct ice_xlt2_section *xlt2; 3100 struct ice_sw_fv_section *es; 3101 struct ice_pkg_enum state; 3102 u8 *src, *dst; 3103 void *sect; 3104 3105 /* if the HW segment pointer is null then the first iteration of 3106 * ice_pkg_enum_section() will fail. In this case the HW tables will 3107 * not be filled and return success. 3108 */ 3109 if (!hw->seg) { 3110 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3111 return; 3112 } 3113 3114 memset(&state, 0, sizeof(state)); 3115 3116 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3117 3118 while (sect) { 3119 switch (sid) { 3120 case ICE_SID_XLT1_SW: 3121 case ICE_SID_XLT1_FD: 3122 case ICE_SID_XLT1_RSS: 3123 case ICE_SID_XLT1_ACL: 3124 case ICE_SID_XLT1_PE: 3125 xlt1 = sect; 3126 src = xlt1->value; 3127 sect_len = le16_to_cpu(xlt1->count) * 3128 sizeof(*hw->blk[block_id].xlt1.t); 3129 dst = hw->blk[block_id].xlt1.t; 3130 dst_len = hw->blk[block_id].xlt1.count * 3131 sizeof(*hw->blk[block_id].xlt1.t); 3132 break; 3133 case ICE_SID_XLT2_SW: 3134 case ICE_SID_XLT2_FD: 3135 case ICE_SID_XLT2_RSS: 3136 case ICE_SID_XLT2_ACL: 3137 case ICE_SID_XLT2_PE: 3138 xlt2 = sect; 3139 src = (__force u8 *)xlt2->value; 3140 sect_len = le16_to_cpu(xlt2->count) * 3141 sizeof(*hw->blk[block_id].xlt2.t); 3142 dst = (u8 *)hw->blk[block_id].xlt2.t; 3143 dst_len = hw->blk[block_id].xlt2.count * 3144 sizeof(*hw->blk[block_id].xlt2.t); 3145 break; 3146 case ICE_SID_PROFID_TCAM_SW: 3147 case ICE_SID_PROFID_TCAM_FD: 3148 case ICE_SID_PROFID_TCAM_RSS: 3149 case ICE_SID_PROFID_TCAM_ACL: 3150 case ICE_SID_PROFID_TCAM_PE: 3151 pid = sect; 3152 src = (u8 *)pid->entry; 3153 sect_len = le16_to_cpu(pid->count) * 3154 sizeof(*hw->blk[block_id].prof.t); 3155 dst = (u8 *)hw->blk[block_id].prof.t; 3156 dst_len = hw->blk[block_id].prof.count * 3157 sizeof(*hw->blk[block_id].prof.t); 3158 break; 3159 case ICE_SID_PROFID_REDIR_SW: 3160 case ICE_SID_PROFID_REDIR_FD: 3161 case ICE_SID_PROFID_REDIR_RSS: 3162 case ICE_SID_PROFID_REDIR_ACL: 3163 case ICE_SID_PROFID_REDIR_PE: 3164 pr = sect; 3165 src = pr->redir_value; 3166 sect_len = le16_to_cpu(pr->count) * 3167 sizeof(*hw->blk[block_id].prof_redir.t); 3168 dst = hw->blk[block_id].prof_redir.t; 3169 dst_len = hw->blk[block_id].prof_redir.count * 3170 sizeof(*hw->blk[block_id].prof_redir.t); 3171 break; 3172 case ICE_SID_FLD_VEC_SW: 3173 case ICE_SID_FLD_VEC_FD: 3174 case ICE_SID_FLD_VEC_RSS: 3175 case ICE_SID_FLD_VEC_ACL: 3176 case ICE_SID_FLD_VEC_PE: 3177 es = sect; 3178 src = (u8 *)es->fv; 3179 sect_len = (u32)(le16_to_cpu(es->count) * 3180 hw->blk[block_id].es.fvw) * 3181 sizeof(*hw->blk[block_id].es.t); 3182 dst = (u8 *)hw->blk[block_id].es.t; 3183 dst_len = (u32)(hw->blk[block_id].es.count * 3184 hw->blk[block_id].es.fvw) * 3185 sizeof(*hw->blk[block_id].es.t); 3186 break; 3187 default: 3188 return; 3189 } 3190 3191 /* if the section offset exceeds destination length, terminate 3192 * table fill. 3193 */ 3194 if (offset > dst_len) 3195 return; 3196 3197 /* if the sum of section size and offset exceed destination size 3198 * then we are out of bounds of the HW table size for that PF. 3199 * Changing section length to fill the remaining table space 3200 * of that PF. 3201 */ 3202 if ((offset + sect_len) > dst_len) 3203 sect_len = dst_len - offset; 3204 3205 memcpy(dst + offset, src, sect_len); 3206 offset += sect_len; 3207 sect = ice_pkg_enum_section(NULL, &state, sid); 3208 } 3209 } 3210 3211 /** 3212 * ice_fill_blk_tbls - Read package context for tables 3213 * @hw: pointer to the hardware structure 3214 * 3215 * Reads the current package contents and populates the driver 3216 * database with the data iteratively for all advanced feature 3217 * blocks. Assume that the HW tables have been allocated. 3218 */ 3219 void ice_fill_blk_tbls(struct ice_hw *hw) 3220 { 3221 u8 i; 3222 3223 for (i = 0; i < ICE_BLK_COUNT; i++) { 3224 enum ice_block blk_id = (enum ice_block)i; 3225 3226 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3227 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3228 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3229 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3230 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3231 } 3232 3233 ice_init_sw_db(hw); 3234 } 3235 3236 /** 3237 * ice_free_prof_map - free profile map 3238 * @hw: pointer to the hardware structure 3239 * @blk_idx: HW block index 3240 */ 3241 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3242 { 3243 struct ice_es *es = &hw->blk[blk_idx].es; 3244 struct ice_prof_map *del, *tmp; 3245 3246 mutex_lock(&es->prof_map_lock); 3247 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3248 list_del(&del->list); 3249 devm_kfree(ice_hw_to_dev(hw), del); 3250 } 3251 INIT_LIST_HEAD(&es->prof_map); 3252 mutex_unlock(&es->prof_map_lock); 3253 } 3254 3255 /** 3256 * ice_free_flow_profs - free flow profile entries 3257 * @hw: pointer to the hardware structure 3258 * @blk_idx: HW block index 3259 */ 3260 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3261 { 3262 struct ice_flow_prof *p, *tmp; 3263 3264 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3265 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3266 struct ice_flow_entry *e, *t; 3267 3268 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3269 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3270 ICE_FLOW_ENTRY_HNDL(e)); 3271 3272 list_del(&p->l_entry); 3273 3274 mutex_destroy(&p->entries_lock); 3275 devm_kfree(ice_hw_to_dev(hw), p); 3276 } 3277 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3278 3279 /* if driver is in reset and tables are being cleared 3280 * re-initialize the flow profile list heads 3281 */ 3282 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3283 } 3284 3285 /** 3286 * ice_free_vsig_tbl - free complete VSIG table entries 3287 * @hw: pointer to the hardware structure 3288 * @blk: the HW block on which to free the VSIG table entries 3289 */ 3290 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3291 { 3292 u16 i; 3293 3294 if (!hw->blk[blk].xlt2.vsig_tbl) 3295 return; 3296 3297 for (i = 1; i < ICE_MAX_VSIGS; i++) 3298 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3299 ice_vsig_free(hw, blk, i); 3300 } 3301 3302 /** 3303 * ice_free_hw_tbls - free hardware table memory 3304 * @hw: pointer to the hardware structure 3305 */ 3306 void ice_free_hw_tbls(struct ice_hw *hw) 3307 { 3308 struct ice_rss_cfg *r, *rt; 3309 u8 i; 3310 3311 for (i = 0; i < ICE_BLK_COUNT; i++) { 3312 if (hw->blk[i].is_list_init) { 3313 struct ice_es *es = &hw->blk[i].es; 3314 3315 ice_free_prof_map(hw, i); 3316 mutex_destroy(&es->prof_map_lock); 3317 3318 ice_free_flow_profs(hw, i); 3319 mutex_destroy(&hw->fl_profs_locks[i]); 3320 3321 hw->blk[i].is_list_init = false; 3322 } 3323 ice_free_vsig_tbl(hw, (enum ice_block)i); 3324 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3325 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3326 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3327 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3328 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3329 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3330 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3331 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3332 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3333 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3334 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3335 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3336 } 3337 3338 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3339 list_del(&r->l_entry); 3340 devm_kfree(ice_hw_to_dev(hw), r); 3341 } 3342 mutex_destroy(&hw->rss_locks); 3343 ice_shutdown_all_prof_masks(hw); 3344 memset(hw->blk, 0, sizeof(hw->blk)); 3345 } 3346 3347 /** 3348 * ice_init_flow_profs - init flow profile locks and list heads 3349 * @hw: pointer to the hardware structure 3350 * @blk_idx: HW block index 3351 */ 3352 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3353 { 3354 mutex_init(&hw->fl_profs_locks[blk_idx]); 3355 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3356 } 3357 3358 /** 3359 * ice_clear_hw_tbls - clear HW tables and flow profiles 3360 * @hw: pointer to the hardware structure 3361 */ 3362 void ice_clear_hw_tbls(struct ice_hw *hw) 3363 { 3364 u8 i; 3365 3366 for (i = 0; i < ICE_BLK_COUNT; i++) { 3367 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3368 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3369 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3370 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3371 struct ice_es *es = &hw->blk[i].es; 3372 3373 if (hw->blk[i].is_list_init) { 3374 ice_free_prof_map(hw, i); 3375 ice_free_flow_profs(hw, i); 3376 } 3377 3378 ice_free_vsig_tbl(hw, (enum ice_block)i); 3379 3380 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3381 memset(xlt1->ptg_tbl, 0, 3382 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3383 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3384 3385 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3386 memset(xlt2->vsig_tbl, 0, 3387 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3388 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3389 3390 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3391 memset(prof_redir->t, 0, 3392 prof_redir->count * sizeof(*prof_redir->t)); 3393 3394 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3395 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3396 memset(es->written, 0, es->count * sizeof(*es->written)); 3397 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3398 } 3399 } 3400 3401 /** 3402 * ice_init_hw_tbls - init hardware table memory 3403 * @hw: pointer to the hardware structure 3404 */ 3405 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3406 { 3407 u8 i; 3408 3409 mutex_init(&hw->rss_locks); 3410 INIT_LIST_HEAD(&hw->rss_list_head); 3411 ice_init_all_prof_masks(hw); 3412 for (i = 0; i < ICE_BLK_COUNT; i++) { 3413 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3414 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3415 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3416 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3417 struct ice_es *es = &hw->blk[i].es; 3418 u16 j; 3419 3420 if (hw->blk[i].is_list_init) 3421 continue; 3422 3423 ice_init_flow_profs(hw, i); 3424 mutex_init(&es->prof_map_lock); 3425 INIT_LIST_HEAD(&es->prof_map); 3426 hw->blk[i].is_list_init = true; 3427 3428 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3429 es->reverse = blk_sizes[i].reverse; 3430 3431 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3432 xlt1->count = blk_sizes[i].xlt1; 3433 3434 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3435 sizeof(*xlt1->ptypes), GFP_KERNEL); 3436 3437 if (!xlt1->ptypes) 3438 goto err; 3439 3440 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3441 sizeof(*xlt1->ptg_tbl), 3442 GFP_KERNEL); 3443 3444 if (!xlt1->ptg_tbl) 3445 goto err; 3446 3447 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3448 sizeof(*xlt1->t), GFP_KERNEL); 3449 if (!xlt1->t) 3450 goto err; 3451 3452 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3453 xlt2->count = blk_sizes[i].xlt2; 3454 3455 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3456 sizeof(*xlt2->vsis), GFP_KERNEL); 3457 3458 if (!xlt2->vsis) 3459 goto err; 3460 3461 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3462 sizeof(*xlt2->vsig_tbl), 3463 GFP_KERNEL); 3464 if (!xlt2->vsig_tbl) 3465 goto err; 3466 3467 for (j = 0; j < xlt2->count; j++) 3468 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3469 3470 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3471 sizeof(*xlt2->t), GFP_KERNEL); 3472 if (!xlt2->t) 3473 goto err; 3474 3475 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3476 prof->count = blk_sizes[i].prof_tcam; 3477 prof->max_prof_id = blk_sizes[i].prof_id; 3478 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3479 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3480 sizeof(*prof->t), GFP_KERNEL); 3481 3482 if (!prof->t) 3483 goto err; 3484 3485 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3486 prof_redir->count = blk_sizes[i].prof_redir; 3487 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3488 prof_redir->count, 3489 sizeof(*prof_redir->t), 3490 GFP_KERNEL); 3491 3492 if (!prof_redir->t) 3493 goto err; 3494 3495 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3496 es->count = blk_sizes[i].es; 3497 es->fvw = blk_sizes[i].fvw; 3498 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3499 (u32)(es->count * es->fvw), 3500 sizeof(*es->t), GFP_KERNEL); 3501 if (!es->t) 3502 goto err; 3503 3504 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3505 sizeof(*es->ref_count), 3506 GFP_KERNEL); 3507 if (!es->ref_count) 3508 goto err; 3509 3510 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3511 sizeof(*es->written), GFP_KERNEL); 3512 if (!es->written) 3513 goto err; 3514 3515 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3516 sizeof(*es->mask_ena), GFP_KERNEL); 3517 if (!es->mask_ena) 3518 goto err; 3519 } 3520 return 0; 3521 3522 err: 3523 ice_free_hw_tbls(hw); 3524 return ICE_ERR_NO_MEMORY; 3525 } 3526 3527 /** 3528 * ice_prof_gen_key - generate profile ID key 3529 * @hw: pointer to the HW struct 3530 * @blk: the block in which to write profile ID to 3531 * @ptg: packet type group (PTG) portion of key 3532 * @vsig: VSIG portion of key 3533 * @cdid: CDID portion of key 3534 * @flags: flag portion of key 3535 * @vl_msk: valid mask 3536 * @dc_msk: don't care mask 3537 * @nm_msk: never match mask 3538 * @key: output of profile ID key 3539 */ 3540 static enum ice_status 3541 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3542 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3543 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3544 u8 key[ICE_TCAM_KEY_SZ]) 3545 { 3546 struct ice_prof_id_key inkey; 3547 3548 inkey.xlt1 = ptg; 3549 inkey.xlt2_cdid = cpu_to_le16(vsig); 3550 inkey.flags = cpu_to_le16(flags); 3551 3552 switch (hw->blk[blk].prof.cdid_bits) { 3553 case 0: 3554 break; 3555 case 2: 3556 #define ICE_CD_2_M 0xC000U 3557 #define ICE_CD_2_S 14 3558 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3559 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3560 break; 3561 case 4: 3562 #define ICE_CD_4_M 0xF000U 3563 #define ICE_CD_4_S 12 3564 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3565 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3566 break; 3567 case 8: 3568 #define ICE_CD_8_M 0xFF00U 3569 #define ICE_CD_8_S 16 3570 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3571 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3572 break; 3573 default: 3574 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3575 break; 3576 } 3577 3578 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3579 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3580 } 3581 3582 /** 3583 * ice_tcam_write_entry - write TCAM entry 3584 * @hw: pointer to the HW struct 3585 * @blk: the block in which to write profile ID to 3586 * @idx: the entry index to write to 3587 * @prof_id: profile ID 3588 * @ptg: packet type group (PTG) portion of key 3589 * @vsig: VSIG portion of key 3590 * @cdid: CDID portion of key 3591 * @flags: flag portion of key 3592 * @vl_msk: valid mask 3593 * @dc_msk: don't care mask 3594 * @nm_msk: never match mask 3595 */ 3596 static enum ice_status 3597 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3598 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3599 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3600 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3601 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3602 { 3603 struct ice_prof_tcam_entry; 3604 enum ice_status status; 3605 3606 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3607 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3608 if (!status) { 3609 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3610 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3611 } 3612 3613 return status; 3614 } 3615 3616 /** 3617 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3618 * @hw: pointer to the hardware structure 3619 * @blk: HW block 3620 * @vsig: VSIG to query 3621 * @refs: pointer to variable to receive the reference count 3622 */ 3623 static enum ice_status 3624 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3625 { 3626 u16 idx = vsig & ICE_VSIG_IDX_M; 3627 struct ice_vsig_vsi *ptr; 3628 3629 *refs = 0; 3630 3631 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3632 return ICE_ERR_DOES_NOT_EXIST; 3633 3634 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3635 while (ptr) { 3636 (*refs)++; 3637 ptr = ptr->next_vsi; 3638 } 3639 3640 return 0; 3641 } 3642 3643 /** 3644 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3645 * @hw: pointer to the hardware structure 3646 * @blk: HW block 3647 * @vsig: VSIG to check against 3648 * @hdl: profile handle 3649 */ 3650 static bool 3651 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3652 { 3653 u16 idx = vsig & ICE_VSIG_IDX_M; 3654 struct ice_vsig_prof *ent; 3655 3656 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3657 list) 3658 if (ent->profile_cookie == hdl) 3659 return true; 3660 3661 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 3662 vsig); 3663 return false; 3664 } 3665 3666 /** 3667 * ice_prof_bld_es - build profile ID extraction sequence changes 3668 * @hw: pointer to the HW struct 3669 * @blk: hardware block 3670 * @bld: the update package buffer build to add to 3671 * @chgs: the list of changes to make in hardware 3672 */ 3673 static enum ice_status 3674 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3675 struct ice_buf_build *bld, struct list_head *chgs) 3676 { 3677 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3678 struct ice_chs_chg *tmp; 3679 3680 list_for_each_entry(tmp, chgs, list_entry) 3681 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3682 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3683 struct ice_pkg_es *p; 3684 u32 id; 3685 3686 id = ice_sect_id(blk, ICE_VEC_TBL); 3687 p = ice_pkg_buf_alloc_section(bld, id, 3688 struct_size(p, es, 1) + 3689 vec_size - 3690 sizeof(p->es[0])); 3691 3692 if (!p) 3693 return ICE_ERR_MAX_LIMIT; 3694 3695 p->count = cpu_to_le16(1); 3696 p->offset = cpu_to_le16(tmp->prof_id); 3697 3698 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3699 } 3700 3701 return 0; 3702 } 3703 3704 /** 3705 * ice_prof_bld_tcam - build profile ID TCAM changes 3706 * @hw: pointer to the HW struct 3707 * @blk: hardware block 3708 * @bld: the update package buffer build to add to 3709 * @chgs: the list of changes to make in hardware 3710 */ 3711 static enum ice_status 3712 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3713 struct ice_buf_build *bld, struct list_head *chgs) 3714 { 3715 struct ice_chs_chg *tmp; 3716 3717 list_for_each_entry(tmp, chgs, list_entry) 3718 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3719 struct ice_prof_id_section *p; 3720 u32 id; 3721 3722 id = ice_sect_id(blk, ICE_PROF_TCAM); 3723 p = ice_pkg_buf_alloc_section(bld, id, 3724 struct_size(p, entry, 1)); 3725 3726 if (!p) 3727 return ICE_ERR_MAX_LIMIT; 3728 3729 p->count = cpu_to_le16(1); 3730 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 3731 p->entry[0].prof_id = tmp->prof_id; 3732 3733 memcpy(p->entry[0].key, 3734 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 3735 sizeof(hw->blk[blk].prof.t->key)); 3736 } 3737 3738 return 0; 3739 } 3740 3741 /** 3742 * ice_prof_bld_xlt1 - build XLT1 changes 3743 * @blk: hardware block 3744 * @bld: the update package buffer build to add to 3745 * @chgs: the list of changes to make in hardware 3746 */ 3747 static enum ice_status 3748 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 3749 struct list_head *chgs) 3750 { 3751 struct ice_chs_chg *tmp; 3752 3753 list_for_each_entry(tmp, chgs, list_entry) 3754 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 3755 struct ice_xlt1_section *p; 3756 u32 id; 3757 3758 id = ice_sect_id(blk, ICE_XLT1); 3759 p = ice_pkg_buf_alloc_section(bld, id, 3760 struct_size(p, value, 1)); 3761 3762 if (!p) 3763 return ICE_ERR_MAX_LIMIT; 3764 3765 p->count = cpu_to_le16(1); 3766 p->offset = cpu_to_le16(tmp->ptype); 3767 p->value[0] = tmp->ptg; 3768 } 3769 3770 return 0; 3771 } 3772 3773 /** 3774 * ice_prof_bld_xlt2 - build XLT2 changes 3775 * @blk: hardware block 3776 * @bld: the update package buffer build to add to 3777 * @chgs: the list of changes to make in hardware 3778 */ 3779 static enum ice_status 3780 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 3781 struct list_head *chgs) 3782 { 3783 struct ice_chs_chg *tmp; 3784 3785 list_for_each_entry(tmp, chgs, list_entry) { 3786 struct ice_xlt2_section *p; 3787 u32 id; 3788 3789 switch (tmp->type) { 3790 case ICE_VSIG_ADD: 3791 case ICE_VSI_MOVE: 3792 case ICE_VSIG_REM: 3793 id = ice_sect_id(blk, ICE_XLT2); 3794 p = ice_pkg_buf_alloc_section(bld, id, 3795 struct_size(p, value, 1)); 3796 3797 if (!p) 3798 return ICE_ERR_MAX_LIMIT; 3799 3800 p->count = cpu_to_le16(1); 3801 p->offset = cpu_to_le16(tmp->vsi); 3802 p->value[0] = cpu_to_le16(tmp->vsig); 3803 break; 3804 default: 3805 break; 3806 } 3807 } 3808 3809 return 0; 3810 } 3811 3812 /** 3813 * ice_upd_prof_hw - update hardware using the change list 3814 * @hw: pointer to the HW struct 3815 * @blk: hardware block 3816 * @chgs: the list of changes to make in hardware 3817 */ 3818 static enum ice_status 3819 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 3820 struct list_head *chgs) 3821 { 3822 struct ice_buf_build *b; 3823 struct ice_chs_chg *tmp; 3824 enum ice_status status; 3825 u16 pkg_sects; 3826 u16 xlt1 = 0; 3827 u16 xlt2 = 0; 3828 u16 tcam = 0; 3829 u16 es = 0; 3830 u16 sects; 3831 3832 /* count number of sections we need */ 3833 list_for_each_entry(tmp, chgs, list_entry) { 3834 switch (tmp->type) { 3835 case ICE_PTG_ES_ADD: 3836 if (tmp->add_ptg) 3837 xlt1++; 3838 if (tmp->add_prof) 3839 es++; 3840 break; 3841 case ICE_TCAM_ADD: 3842 tcam++; 3843 break; 3844 case ICE_VSIG_ADD: 3845 case ICE_VSI_MOVE: 3846 case ICE_VSIG_REM: 3847 xlt2++; 3848 break; 3849 default: 3850 break; 3851 } 3852 } 3853 sects = xlt1 + xlt2 + tcam + es; 3854 3855 if (!sects) 3856 return 0; 3857 3858 /* Build update package buffer */ 3859 b = ice_pkg_buf_alloc(hw); 3860 if (!b) 3861 return ICE_ERR_NO_MEMORY; 3862 3863 status = ice_pkg_buf_reserve_section(b, sects); 3864 if (status) 3865 goto error_tmp; 3866 3867 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 3868 if (es) { 3869 status = ice_prof_bld_es(hw, blk, b, chgs); 3870 if (status) 3871 goto error_tmp; 3872 } 3873 3874 if (tcam) { 3875 status = ice_prof_bld_tcam(hw, blk, b, chgs); 3876 if (status) 3877 goto error_tmp; 3878 } 3879 3880 if (xlt1) { 3881 status = ice_prof_bld_xlt1(blk, b, chgs); 3882 if (status) 3883 goto error_tmp; 3884 } 3885 3886 if (xlt2) { 3887 status = ice_prof_bld_xlt2(blk, b, chgs); 3888 if (status) 3889 goto error_tmp; 3890 } 3891 3892 /* After package buffer build check if the section count in buffer is 3893 * non-zero and matches the number of sections detected for package 3894 * update. 3895 */ 3896 pkg_sects = ice_pkg_buf_get_active_sections(b); 3897 if (!pkg_sects || pkg_sects != sects) { 3898 status = ICE_ERR_INVAL_SIZE; 3899 goto error_tmp; 3900 } 3901 3902 /* update package */ 3903 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 3904 if (status == ICE_ERR_AQ_ERROR) 3905 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 3906 3907 error_tmp: 3908 ice_pkg_buf_free(hw, b); 3909 return status; 3910 } 3911 3912 /** 3913 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 3914 * @hw: pointer to the HW struct 3915 * @prof_id: profile ID 3916 * @mask_sel: mask select 3917 * 3918 * This function enable any of the masks selected by the mask select parameter 3919 * for the profile specified. 3920 */ 3921 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 3922 { 3923 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 3924 3925 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 3926 GLQF_FDMASK_SEL(prof_id), mask_sel); 3927 } 3928 3929 struct ice_fd_src_dst_pair { 3930 u8 prot_id; 3931 u8 count; 3932 u16 off; 3933 }; 3934 3935 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 3936 /* These are defined in pairs */ 3937 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 3938 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 3939 3940 { ICE_PROT_IPV4_IL, 2, 12 }, 3941 { ICE_PROT_IPV4_IL, 2, 16 }, 3942 3943 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 3944 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 3945 3946 { ICE_PROT_IPV6_IL, 8, 8 }, 3947 { ICE_PROT_IPV6_IL, 8, 24 }, 3948 3949 { ICE_PROT_TCP_IL, 1, 0 }, 3950 { ICE_PROT_TCP_IL, 1, 2 }, 3951 3952 { ICE_PROT_UDP_OF, 1, 0 }, 3953 { ICE_PROT_UDP_OF, 1, 2 }, 3954 3955 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 3956 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 3957 3958 { ICE_PROT_SCTP_IL, 1, 0 }, 3959 { ICE_PROT_SCTP_IL, 1, 2 } 3960 }; 3961 3962 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 3963 3964 /** 3965 * ice_update_fd_swap - set register appropriately for a FD FV extraction 3966 * @hw: pointer to the HW struct 3967 * @prof_id: profile ID 3968 * @es: extraction sequence (length of array is determined by the block) 3969 */ 3970 static enum ice_status 3971 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 3972 { 3973 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3974 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 3975 #define ICE_FD_FV_NOT_FOUND (-2) 3976 s8 first_free = ICE_FD_FV_NOT_FOUND; 3977 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 3978 s8 orig_free, si; 3979 u32 mask_sel = 0; 3980 u8 i, j, k; 3981 3982 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3983 3984 /* This code assumes that the Flow Director field vectors are assigned 3985 * from the end of the FV indexes working towards the zero index, that 3986 * only complete fields will be included and will be consecutive, and 3987 * that there are no gaps between valid indexes. 3988 */ 3989 3990 /* Determine swap fields present */ 3991 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 3992 /* Find the first free entry, assuming right to left population. 3993 * This is where we can start adding additional pairs if needed. 3994 */ 3995 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 3996 ICE_PROT_INVALID) 3997 first_free = i - 1; 3998 3999 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4000 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4001 es[i].off == ice_fd_pairs[j].off) { 4002 set_bit(j, pair_list); 4003 pair_start[j] = i; 4004 } 4005 } 4006 4007 orig_free = first_free; 4008 4009 /* determine missing swap fields that need to be added */ 4010 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4011 u8 bit1 = test_bit(i + 1, pair_list); 4012 u8 bit0 = test_bit(i, pair_list); 4013 4014 if (bit0 ^ bit1) { 4015 u8 index; 4016 4017 /* add the appropriate 'paired' entry */ 4018 if (!bit0) 4019 index = i; 4020 else 4021 index = i + 1; 4022 4023 /* check for room */ 4024 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4025 return ICE_ERR_MAX_LIMIT; 4026 4027 /* place in extraction sequence */ 4028 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4029 es[first_free - k].prot_id = 4030 ice_fd_pairs[index].prot_id; 4031 es[first_free - k].off = 4032 ice_fd_pairs[index].off + (k * 2); 4033 4034 if (k > first_free) 4035 return ICE_ERR_OUT_OF_RANGE; 4036 4037 /* keep track of non-relevant fields */ 4038 mask_sel |= BIT(first_free - k); 4039 } 4040 4041 pair_start[index] = first_free; 4042 first_free -= ice_fd_pairs[index].count; 4043 } 4044 } 4045 4046 /* fill in the swap array */ 4047 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4048 while (si >= 0) { 4049 u8 indexes_used = 1; 4050 4051 /* assume flat at this index */ 4052 #define ICE_SWAP_VALID 0x80 4053 used[si] = si | ICE_SWAP_VALID; 4054 4055 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4056 si -= indexes_used; 4057 continue; 4058 } 4059 4060 /* check for a swap location */ 4061 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4062 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4063 es[si].off == ice_fd_pairs[j].off) { 4064 u8 idx; 4065 4066 /* determine the appropriate matching field */ 4067 idx = j + ((j % 2) ? -1 : 1); 4068 4069 indexes_used = ice_fd_pairs[idx].count; 4070 for (k = 0; k < indexes_used; k++) { 4071 used[si - k] = (pair_start[idx] - k) | 4072 ICE_SWAP_VALID; 4073 } 4074 4075 break; 4076 } 4077 4078 si -= indexes_used; 4079 } 4080 4081 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4082 * register 4083 */ 4084 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4085 u32 raw_swap = 0; 4086 u32 raw_in = 0; 4087 4088 for (k = 0; k < 4; k++) { 4089 u8 idx; 4090 4091 idx = (j * 4) + k; 4092 if (used[idx] && !(mask_sel & BIT(idx))) { 4093 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4094 #define ICE_INSET_DFLT 0x9f 4095 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4096 } 4097 } 4098 4099 /* write the appropriate swap register set */ 4100 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4101 4102 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4103 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4104 4105 /* write the appropriate inset register set */ 4106 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4107 4108 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4109 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4110 } 4111 4112 /* initially clear the mask select for this profile */ 4113 ice_update_fd_mask(hw, prof_id, 0); 4114 4115 return 0; 4116 } 4117 4118 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4119 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4120 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4121 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4122 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4123 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4124 }; 4125 4126 /** 4127 * ice_get_ptype_attrib_info - get PTYPE attribute information 4128 * @type: attribute type 4129 * @info: pointer to variable to the attribute information 4130 */ 4131 static void 4132 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4133 struct ice_ptype_attrib_info *info) 4134 { 4135 *info = ice_ptype_attributes[type]; 4136 } 4137 4138 /** 4139 * ice_add_prof_attrib - add any PTG with attributes to profile 4140 * @prof: pointer to the profile to which PTG entries will be added 4141 * @ptg: PTG to be added 4142 * @ptype: PTYPE that needs to be looked up 4143 * @attr: array of attributes that will be considered 4144 * @attr_cnt: number of elements in the attribute array 4145 */ 4146 static enum ice_status 4147 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4148 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4149 { 4150 bool found = false; 4151 u16 i; 4152 4153 for (i = 0; i < attr_cnt; i++) 4154 if (attr[i].ptype == ptype) { 4155 found = true; 4156 4157 prof->ptg[prof->ptg_cnt] = ptg; 4158 ice_get_ptype_attrib_info(attr[i].attrib, 4159 &prof->attr[prof->ptg_cnt]); 4160 4161 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4162 return ICE_ERR_MAX_LIMIT; 4163 } 4164 4165 if (!found) 4166 return ICE_ERR_DOES_NOT_EXIST; 4167 4168 return 0; 4169 } 4170 4171 /** 4172 * ice_add_prof - add profile 4173 * @hw: pointer to the HW struct 4174 * @blk: hardware block 4175 * @id: profile tracking ID 4176 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4177 * @attr: array of attributes 4178 * @attr_cnt: number of elements in attr array 4179 * @es: extraction sequence (length of array is determined by the block) 4180 * @masks: mask for extraction sequence 4181 * 4182 * This function registers a profile, which matches a set of PTYPES with a 4183 * particular extraction sequence. While the hardware profile is allocated 4184 * it will not be written until the first call to ice_add_flow that specifies 4185 * the ID value used here. 4186 */ 4187 enum ice_status 4188 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4189 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4190 struct ice_fv_word *es, u16 *masks) 4191 { 4192 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4193 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4194 struct ice_prof_map *prof; 4195 enum ice_status status; 4196 u8 byte = 0; 4197 u8 prof_id; 4198 4199 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4200 4201 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4202 4203 /* search for existing profile */ 4204 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4205 if (status) { 4206 /* allocate profile ID */ 4207 status = ice_alloc_prof_id(hw, blk, &prof_id); 4208 if (status) 4209 goto err_ice_add_prof; 4210 if (blk == ICE_BLK_FD) { 4211 /* For Flow Director block, the extraction sequence may 4212 * need to be altered in the case where there are paired 4213 * fields that have no match. This is necessary because 4214 * for Flow Director, src and dest fields need to paired 4215 * for filter programming and these values are swapped 4216 * during Tx. 4217 */ 4218 status = ice_update_fd_swap(hw, prof_id, es); 4219 if (status) 4220 goto err_ice_add_prof; 4221 } 4222 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4223 if (status) 4224 goto err_ice_add_prof; 4225 4226 /* and write new es */ 4227 ice_write_es(hw, blk, prof_id, es); 4228 } 4229 4230 ice_prof_inc_ref(hw, blk, prof_id); 4231 4232 /* add profile info */ 4233 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4234 if (!prof) { 4235 status = ICE_ERR_NO_MEMORY; 4236 goto err_ice_add_prof; 4237 } 4238 4239 prof->profile_cookie = id; 4240 prof->prof_id = prof_id; 4241 prof->ptg_cnt = 0; 4242 prof->context = 0; 4243 4244 /* build list of ptgs */ 4245 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4246 u8 bit; 4247 4248 if (!ptypes[byte]) { 4249 bytes--; 4250 byte++; 4251 continue; 4252 } 4253 4254 /* Examine 8 bits per byte */ 4255 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4256 BITS_PER_BYTE) { 4257 u16 ptype; 4258 u8 ptg; 4259 4260 ptype = byte * BITS_PER_BYTE + bit; 4261 4262 /* The package should place all ptypes in a non-zero 4263 * PTG, so the following call should never fail. 4264 */ 4265 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4266 continue; 4267 4268 /* If PTG is already added, skip and continue */ 4269 if (test_bit(ptg, ptgs_used)) 4270 continue; 4271 4272 set_bit(ptg, ptgs_used); 4273 /* Check to see there are any attributes for 4274 * this PTYPE, and add them if found. 4275 */ 4276 status = ice_add_prof_attrib(prof, ptg, ptype, 4277 attr, attr_cnt); 4278 if (status == ICE_ERR_MAX_LIMIT) 4279 break; 4280 if (status) { 4281 /* This is simple a PTYPE/PTG with no 4282 * attribute 4283 */ 4284 prof->ptg[prof->ptg_cnt] = ptg; 4285 prof->attr[prof->ptg_cnt].flags = 0; 4286 prof->attr[prof->ptg_cnt].mask = 0; 4287 4288 if (++prof->ptg_cnt >= 4289 ICE_MAX_PTG_PER_PROFILE) 4290 break; 4291 } 4292 } 4293 4294 bytes--; 4295 byte++; 4296 } 4297 4298 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4299 status = 0; 4300 4301 err_ice_add_prof: 4302 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4303 return status; 4304 } 4305 4306 /** 4307 * ice_search_prof_id - Search for a profile tracking ID 4308 * @hw: pointer to the HW struct 4309 * @blk: hardware block 4310 * @id: profile tracking ID 4311 * 4312 * This will search for a profile tracking ID which was previously added. 4313 * The profile map lock should be held before calling this function. 4314 */ 4315 static struct ice_prof_map * 4316 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4317 { 4318 struct ice_prof_map *entry = NULL; 4319 struct ice_prof_map *map; 4320 4321 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4322 if (map->profile_cookie == id) { 4323 entry = map; 4324 break; 4325 } 4326 4327 return entry; 4328 } 4329 4330 /** 4331 * ice_vsig_prof_id_count - count profiles in a VSIG 4332 * @hw: pointer to the HW struct 4333 * @blk: hardware block 4334 * @vsig: VSIG to remove the profile from 4335 */ 4336 static u16 4337 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4338 { 4339 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4340 struct ice_vsig_prof *p; 4341 4342 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4343 list) 4344 count++; 4345 4346 return count; 4347 } 4348 4349 /** 4350 * ice_rel_tcam_idx - release a TCAM index 4351 * @hw: pointer to the HW struct 4352 * @blk: hardware block 4353 * @idx: the index to release 4354 */ 4355 static enum ice_status 4356 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4357 { 4358 /* Masks to invoke a never match entry */ 4359 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4360 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4361 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4362 enum ice_status status; 4363 4364 /* write the TCAM entry */ 4365 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4366 dc_msk, nm_msk); 4367 if (status) 4368 return status; 4369 4370 /* release the TCAM entry */ 4371 status = ice_free_tcam_ent(hw, blk, idx); 4372 4373 return status; 4374 } 4375 4376 /** 4377 * ice_rem_prof_id - remove one profile from a VSIG 4378 * @hw: pointer to the HW struct 4379 * @blk: hardware block 4380 * @prof: pointer to profile structure to remove 4381 */ 4382 static enum ice_status 4383 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4384 struct ice_vsig_prof *prof) 4385 { 4386 enum ice_status status; 4387 u16 i; 4388 4389 for (i = 0; i < prof->tcam_count; i++) 4390 if (prof->tcam[i].in_use) { 4391 prof->tcam[i].in_use = false; 4392 status = ice_rel_tcam_idx(hw, blk, 4393 prof->tcam[i].tcam_idx); 4394 if (status) 4395 return ICE_ERR_HW_TABLE; 4396 } 4397 4398 return 0; 4399 } 4400 4401 /** 4402 * ice_rem_vsig - remove VSIG 4403 * @hw: pointer to the HW struct 4404 * @blk: hardware block 4405 * @vsig: the VSIG to remove 4406 * @chg: the change list 4407 */ 4408 static enum ice_status 4409 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4410 struct list_head *chg) 4411 { 4412 u16 idx = vsig & ICE_VSIG_IDX_M; 4413 struct ice_vsig_vsi *vsi_cur; 4414 struct ice_vsig_prof *d, *t; 4415 enum ice_status status; 4416 4417 /* remove TCAM entries */ 4418 list_for_each_entry_safe(d, t, 4419 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4420 list) { 4421 status = ice_rem_prof_id(hw, blk, d); 4422 if (status) 4423 return status; 4424 4425 list_del(&d->list); 4426 devm_kfree(ice_hw_to_dev(hw), d); 4427 } 4428 4429 /* Move all VSIS associated with this VSIG to the default VSIG */ 4430 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4431 /* If the VSIG has at least 1 VSI then iterate through the list 4432 * and remove the VSIs before deleting the group. 4433 */ 4434 if (vsi_cur) 4435 do { 4436 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4437 struct ice_chs_chg *p; 4438 4439 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4440 GFP_KERNEL); 4441 if (!p) 4442 return ICE_ERR_NO_MEMORY; 4443 4444 p->type = ICE_VSIG_REM; 4445 p->orig_vsig = vsig; 4446 p->vsig = ICE_DEFAULT_VSIG; 4447 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4448 4449 list_add(&p->list_entry, chg); 4450 4451 vsi_cur = tmp; 4452 } while (vsi_cur); 4453 4454 return ice_vsig_free(hw, blk, vsig); 4455 } 4456 4457 /** 4458 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4459 * @hw: pointer to the HW struct 4460 * @blk: hardware block 4461 * @vsig: VSIG to remove the profile from 4462 * @hdl: profile handle indicating which profile to remove 4463 * @chg: list to receive a record of changes 4464 */ 4465 static enum ice_status 4466 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4467 struct list_head *chg) 4468 { 4469 u16 idx = vsig & ICE_VSIG_IDX_M; 4470 struct ice_vsig_prof *p, *t; 4471 enum ice_status status; 4472 4473 list_for_each_entry_safe(p, t, 4474 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4475 list) 4476 if (p->profile_cookie == hdl) { 4477 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4478 /* this is the last profile, remove the VSIG */ 4479 return ice_rem_vsig(hw, blk, vsig, chg); 4480 4481 status = ice_rem_prof_id(hw, blk, p); 4482 if (!status) { 4483 list_del(&p->list); 4484 devm_kfree(ice_hw_to_dev(hw), p); 4485 } 4486 return status; 4487 } 4488 4489 return ICE_ERR_DOES_NOT_EXIST; 4490 } 4491 4492 /** 4493 * ice_rem_flow_all - remove all flows with a particular profile 4494 * @hw: pointer to the HW struct 4495 * @blk: hardware block 4496 * @id: profile tracking ID 4497 */ 4498 static enum ice_status 4499 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4500 { 4501 struct ice_chs_chg *del, *tmp; 4502 enum ice_status status; 4503 struct list_head chg; 4504 u16 i; 4505 4506 INIT_LIST_HEAD(&chg); 4507 4508 for (i = 1; i < ICE_MAX_VSIGS; i++) 4509 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4510 if (ice_has_prof_vsig(hw, blk, i, id)) { 4511 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4512 &chg); 4513 if (status) 4514 goto err_ice_rem_flow_all; 4515 } 4516 } 4517 4518 status = ice_upd_prof_hw(hw, blk, &chg); 4519 4520 err_ice_rem_flow_all: 4521 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4522 list_del(&del->list_entry); 4523 devm_kfree(ice_hw_to_dev(hw), del); 4524 } 4525 4526 return status; 4527 } 4528 4529 /** 4530 * ice_rem_prof - remove profile 4531 * @hw: pointer to the HW struct 4532 * @blk: hardware block 4533 * @id: profile tracking ID 4534 * 4535 * This will remove the profile specified by the ID parameter, which was 4536 * previously created through ice_add_prof. If any existing entries 4537 * are associated with this profile, they will be removed as well. 4538 */ 4539 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4540 { 4541 struct ice_prof_map *pmap; 4542 enum ice_status status; 4543 4544 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4545 4546 pmap = ice_search_prof_id(hw, blk, id); 4547 if (!pmap) { 4548 status = ICE_ERR_DOES_NOT_EXIST; 4549 goto err_ice_rem_prof; 4550 } 4551 4552 /* remove all flows with this profile */ 4553 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4554 if (status) 4555 goto err_ice_rem_prof; 4556 4557 /* dereference profile, and possibly remove */ 4558 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4559 4560 list_del(&pmap->list); 4561 devm_kfree(ice_hw_to_dev(hw), pmap); 4562 4563 err_ice_rem_prof: 4564 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4565 return status; 4566 } 4567 4568 /** 4569 * ice_get_prof - get profile 4570 * @hw: pointer to the HW struct 4571 * @blk: hardware block 4572 * @hdl: profile handle 4573 * @chg: change list 4574 */ 4575 static enum ice_status 4576 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4577 struct list_head *chg) 4578 { 4579 enum ice_status status = 0; 4580 struct ice_prof_map *map; 4581 struct ice_chs_chg *p; 4582 u16 i; 4583 4584 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4585 /* Get the details on the profile specified by the handle ID */ 4586 map = ice_search_prof_id(hw, blk, hdl); 4587 if (!map) { 4588 status = ICE_ERR_DOES_NOT_EXIST; 4589 goto err_ice_get_prof; 4590 } 4591 4592 for (i = 0; i < map->ptg_cnt; i++) 4593 if (!hw->blk[blk].es.written[map->prof_id]) { 4594 /* add ES to change list */ 4595 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4596 GFP_KERNEL); 4597 if (!p) { 4598 status = ICE_ERR_NO_MEMORY; 4599 goto err_ice_get_prof; 4600 } 4601 4602 p->type = ICE_PTG_ES_ADD; 4603 p->ptype = 0; 4604 p->ptg = map->ptg[i]; 4605 p->add_ptg = 0; 4606 4607 p->add_prof = 1; 4608 p->prof_id = map->prof_id; 4609 4610 hw->blk[blk].es.written[map->prof_id] = true; 4611 4612 list_add(&p->list_entry, chg); 4613 } 4614 4615 err_ice_get_prof: 4616 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4617 /* let caller clean up the change list */ 4618 return status; 4619 } 4620 4621 /** 4622 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4623 * @hw: pointer to the HW struct 4624 * @blk: hardware block 4625 * @vsig: VSIG from which to copy the list 4626 * @lst: output list 4627 * 4628 * This routine makes a copy of the list of profiles in the specified VSIG. 4629 */ 4630 static enum ice_status 4631 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4632 struct list_head *lst) 4633 { 4634 struct ice_vsig_prof *ent1, *ent2; 4635 u16 idx = vsig & ICE_VSIG_IDX_M; 4636 4637 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4638 list) { 4639 struct ice_vsig_prof *p; 4640 4641 /* copy to the input list */ 4642 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4643 GFP_KERNEL); 4644 if (!p) 4645 goto err_ice_get_profs_vsig; 4646 4647 list_add_tail(&p->list, lst); 4648 } 4649 4650 return 0; 4651 4652 err_ice_get_profs_vsig: 4653 list_for_each_entry_safe(ent1, ent2, lst, list) { 4654 list_del(&ent1->list); 4655 devm_kfree(ice_hw_to_dev(hw), ent1); 4656 } 4657 4658 return ICE_ERR_NO_MEMORY; 4659 } 4660 4661 /** 4662 * ice_add_prof_to_lst - add profile entry to a list 4663 * @hw: pointer to the HW struct 4664 * @blk: hardware block 4665 * @lst: the list to be added to 4666 * @hdl: profile handle of entry to add 4667 */ 4668 static enum ice_status 4669 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4670 struct list_head *lst, u64 hdl) 4671 { 4672 enum ice_status status = 0; 4673 struct ice_prof_map *map; 4674 struct ice_vsig_prof *p; 4675 u16 i; 4676 4677 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4678 map = ice_search_prof_id(hw, blk, hdl); 4679 if (!map) { 4680 status = ICE_ERR_DOES_NOT_EXIST; 4681 goto err_ice_add_prof_to_lst; 4682 } 4683 4684 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4685 if (!p) { 4686 status = ICE_ERR_NO_MEMORY; 4687 goto err_ice_add_prof_to_lst; 4688 } 4689 4690 p->profile_cookie = map->profile_cookie; 4691 p->prof_id = map->prof_id; 4692 p->tcam_count = map->ptg_cnt; 4693 4694 for (i = 0; i < map->ptg_cnt; i++) { 4695 p->tcam[i].prof_id = map->prof_id; 4696 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4697 p->tcam[i].ptg = map->ptg[i]; 4698 } 4699 4700 list_add(&p->list, lst); 4701 4702 err_ice_add_prof_to_lst: 4703 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4704 return status; 4705 } 4706 4707 /** 4708 * ice_move_vsi - move VSI to another VSIG 4709 * @hw: pointer to the HW struct 4710 * @blk: hardware block 4711 * @vsi: the VSI to move 4712 * @vsig: the VSIG to move the VSI to 4713 * @chg: the change list 4714 */ 4715 static enum ice_status 4716 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4717 struct list_head *chg) 4718 { 4719 enum ice_status status; 4720 struct ice_chs_chg *p; 4721 u16 orig_vsig; 4722 4723 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4724 if (!p) 4725 return ICE_ERR_NO_MEMORY; 4726 4727 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4728 if (!status) 4729 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4730 4731 if (status) { 4732 devm_kfree(ice_hw_to_dev(hw), p); 4733 return status; 4734 } 4735 4736 p->type = ICE_VSI_MOVE; 4737 p->vsi = vsi; 4738 p->orig_vsig = orig_vsig; 4739 p->vsig = vsig; 4740 4741 list_add(&p->list_entry, chg); 4742 4743 return 0; 4744 } 4745 4746 /** 4747 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4748 * @hw: pointer to the HW struct 4749 * @idx: the index of the TCAM entry to remove 4750 * @chg: the list of change structures to search 4751 */ 4752 static void 4753 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 4754 { 4755 struct ice_chs_chg *pos, *tmp; 4756 4757 list_for_each_entry_safe(tmp, pos, chg, list_entry) 4758 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4759 list_del(&tmp->list_entry); 4760 devm_kfree(ice_hw_to_dev(hw), tmp); 4761 } 4762 } 4763 4764 /** 4765 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4766 * @hw: pointer to the HW struct 4767 * @blk: hardware block 4768 * @enable: true to enable, false to disable 4769 * @vsig: the VSIG of the TCAM entry 4770 * @tcam: pointer the TCAM info structure of the TCAM to disable 4771 * @chg: the change list 4772 * 4773 * This function appends an enable or disable TCAM entry in the change log 4774 */ 4775 static enum ice_status 4776 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4777 u16 vsig, struct ice_tcam_inf *tcam, 4778 struct list_head *chg) 4779 { 4780 enum ice_status status; 4781 struct ice_chs_chg *p; 4782 4783 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4784 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4785 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4786 4787 /* if disabling, free the TCAM */ 4788 if (!enable) { 4789 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4790 4791 /* if we have already created a change for this TCAM entry, then 4792 * we need to remove that entry, in order to prevent writing to 4793 * a TCAM entry we no longer will have ownership of. 4794 */ 4795 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4796 tcam->tcam_idx = 0; 4797 tcam->in_use = 0; 4798 return status; 4799 } 4800 4801 /* for re-enabling, reallocate a TCAM */ 4802 /* for entries with empty attribute masks, allocate entry from 4803 * the bottom of the TCAM table; otherwise, allocate from the 4804 * top of the table in order to give it higher priority 4805 */ 4806 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 4807 &tcam->tcam_idx); 4808 if (status) 4809 return status; 4810 4811 /* add TCAM to change list */ 4812 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4813 if (!p) 4814 return ICE_ERR_NO_MEMORY; 4815 4816 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4817 tcam->ptg, vsig, 0, tcam->attr.flags, 4818 vl_msk, dc_msk, nm_msk); 4819 if (status) 4820 goto err_ice_prof_tcam_ena_dis; 4821 4822 tcam->in_use = 1; 4823 4824 p->type = ICE_TCAM_ADD; 4825 p->add_tcam_idx = true; 4826 p->prof_id = tcam->prof_id; 4827 p->ptg = tcam->ptg; 4828 p->vsig = 0; 4829 p->tcam_idx = tcam->tcam_idx; 4830 4831 /* log change */ 4832 list_add(&p->list_entry, chg); 4833 4834 return 0; 4835 4836 err_ice_prof_tcam_ena_dis: 4837 devm_kfree(ice_hw_to_dev(hw), p); 4838 return status; 4839 } 4840 4841 /** 4842 * ice_adj_prof_priorities - adjust profile based on priorities 4843 * @hw: pointer to the HW struct 4844 * @blk: hardware block 4845 * @vsig: the VSIG for which to adjust profile priorities 4846 * @chg: the change list 4847 */ 4848 static enum ice_status 4849 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4850 struct list_head *chg) 4851 { 4852 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4853 struct ice_vsig_prof *t; 4854 enum ice_status status; 4855 u16 idx; 4856 4857 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4858 idx = vsig & ICE_VSIG_IDX_M; 4859 4860 /* Priority is based on the order in which the profiles are added. The 4861 * newest added profile has highest priority and the oldest added 4862 * profile has the lowest priority. Since the profile property list for 4863 * a VSIG is sorted from newest to oldest, this code traverses the list 4864 * in order and enables the first of each PTG that it finds (that is not 4865 * already enabled); it also disables any duplicate PTGs that it finds 4866 * in the older profiles (that are currently enabled). 4867 */ 4868 4869 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4870 list) { 4871 u16 i; 4872 4873 for (i = 0; i < t->tcam_count; i++) { 4874 /* Scan the priorities from newest to oldest. 4875 * Make sure that the newest profiles take priority. 4876 */ 4877 if (test_bit(t->tcam[i].ptg, ptgs_used) && 4878 t->tcam[i].in_use) { 4879 /* need to mark this PTG as never match, as it 4880 * was already in use and therefore duplicate 4881 * (and lower priority) 4882 */ 4883 status = ice_prof_tcam_ena_dis(hw, blk, false, 4884 vsig, 4885 &t->tcam[i], 4886 chg); 4887 if (status) 4888 return status; 4889 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 4890 !t->tcam[i].in_use) { 4891 /* need to enable this PTG, as it in not in use 4892 * and not enabled (highest priority) 4893 */ 4894 status = ice_prof_tcam_ena_dis(hw, blk, true, 4895 vsig, 4896 &t->tcam[i], 4897 chg); 4898 if (status) 4899 return status; 4900 } 4901 4902 /* keep track of used ptgs */ 4903 set_bit(t->tcam[i].ptg, ptgs_used); 4904 } 4905 } 4906 4907 return 0; 4908 } 4909 4910 /** 4911 * ice_add_prof_id_vsig - add profile to VSIG 4912 * @hw: pointer to the HW struct 4913 * @blk: hardware block 4914 * @vsig: the VSIG to which this profile is to be added 4915 * @hdl: the profile handle indicating the profile to add 4916 * @rev: true to add entries to the end of the list 4917 * @chg: the change list 4918 */ 4919 static enum ice_status 4920 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4921 bool rev, struct list_head *chg) 4922 { 4923 /* Masks that ignore flags */ 4924 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4925 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4926 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4927 enum ice_status status = 0; 4928 struct ice_prof_map *map; 4929 struct ice_vsig_prof *t; 4930 struct ice_chs_chg *p; 4931 u16 vsig_idx, i; 4932 4933 /* Error, if this VSIG already has this profile */ 4934 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 4935 return ICE_ERR_ALREADY_EXISTS; 4936 4937 /* new VSIG profile structure */ 4938 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 4939 if (!t) 4940 return ICE_ERR_NO_MEMORY; 4941 4942 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4943 /* Get the details on the profile specified by the handle ID */ 4944 map = ice_search_prof_id(hw, blk, hdl); 4945 if (!map) { 4946 status = ICE_ERR_DOES_NOT_EXIST; 4947 goto err_ice_add_prof_id_vsig; 4948 } 4949 4950 t->profile_cookie = map->profile_cookie; 4951 t->prof_id = map->prof_id; 4952 t->tcam_count = map->ptg_cnt; 4953 4954 /* create TCAM entries */ 4955 for (i = 0; i < map->ptg_cnt; i++) { 4956 u16 tcam_idx; 4957 4958 /* add TCAM to change list */ 4959 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4960 if (!p) { 4961 status = ICE_ERR_NO_MEMORY; 4962 goto err_ice_add_prof_id_vsig; 4963 } 4964 4965 /* allocate the TCAM entry index */ 4966 /* for entries with empty attribute masks, allocate entry from 4967 * the bottom of the TCAM table; otherwise, allocate from the 4968 * top of the table in order to give it higher priority 4969 */ 4970 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 4971 &tcam_idx); 4972 if (status) { 4973 devm_kfree(ice_hw_to_dev(hw), p); 4974 goto err_ice_add_prof_id_vsig; 4975 } 4976 4977 t->tcam[i].ptg = map->ptg[i]; 4978 t->tcam[i].prof_id = map->prof_id; 4979 t->tcam[i].tcam_idx = tcam_idx; 4980 t->tcam[i].attr = map->attr[i]; 4981 t->tcam[i].in_use = true; 4982 4983 p->type = ICE_TCAM_ADD; 4984 p->add_tcam_idx = true; 4985 p->prof_id = t->tcam[i].prof_id; 4986 p->ptg = t->tcam[i].ptg; 4987 p->vsig = vsig; 4988 p->tcam_idx = t->tcam[i].tcam_idx; 4989 4990 /* write the TCAM entry */ 4991 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 4992 t->tcam[i].prof_id, 4993 t->tcam[i].ptg, vsig, 0, 0, 4994 vl_msk, dc_msk, nm_msk); 4995 if (status) { 4996 devm_kfree(ice_hw_to_dev(hw), p); 4997 goto err_ice_add_prof_id_vsig; 4998 } 4999 5000 /* log change */ 5001 list_add(&p->list_entry, chg); 5002 } 5003 5004 /* add profile to VSIG */ 5005 vsig_idx = vsig & ICE_VSIG_IDX_M; 5006 if (rev) 5007 list_add_tail(&t->list, 5008 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5009 else 5010 list_add(&t->list, 5011 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5012 5013 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5014 return status; 5015 5016 err_ice_add_prof_id_vsig: 5017 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5018 /* let caller clean up the change list */ 5019 devm_kfree(ice_hw_to_dev(hw), t); 5020 return status; 5021 } 5022 5023 /** 5024 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5025 * @hw: pointer to the HW struct 5026 * @blk: hardware block 5027 * @vsi: the initial VSI that will be in VSIG 5028 * @hdl: the profile handle of the profile that will be added to the VSIG 5029 * @chg: the change list 5030 */ 5031 static enum ice_status 5032 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5033 struct list_head *chg) 5034 { 5035 enum ice_status status; 5036 struct ice_chs_chg *p; 5037 u16 new_vsig; 5038 5039 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5040 if (!p) 5041 return ICE_ERR_NO_MEMORY; 5042 5043 new_vsig = ice_vsig_alloc(hw, blk); 5044 if (!new_vsig) { 5045 status = ICE_ERR_HW_TABLE; 5046 goto err_ice_create_prof_id_vsig; 5047 } 5048 5049 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5050 if (status) 5051 goto err_ice_create_prof_id_vsig; 5052 5053 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5054 if (status) 5055 goto err_ice_create_prof_id_vsig; 5056 5057 p->type = ICE_VSIG_ADD; 5058 p->vsi = vsi; 5059 p->orig_vsig = ICE_DEFAULT_VSIG; 5060 p->vsig = new_vsig; 5061 5062 list_add(&p->list_entry, chg); 5063 5064 return 0; 5065 5066 err_ice_create_prof_id_vsig: 5067 /* let caller clean up the change list */ 5068 devm_kfree(ice_hw_to_dev(hw), p); 5069 return status; 5070 } 5071 5072 /** 5073 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5074 * @hw: pointer to the HW struct 5075 * @blk: hardware block 5076 * @vsi: the initial VSI that will be in VSIG 5077 * @lst: the list of profile that will be added to the VSIG 5078 * @new_vsig: return of new VSIG 5079 * @chg: the change list 5080 */ 5081 static enum ice_status 5082 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5083 struct list_head *lst, u16 *new_vsig, 5084 struct list_head *chg) 5085 { 5086 struct ice_vsig_prof *t; 5087 enum ice_status status; 5088 u16 vsig; 5089 5090 vsig = ice_vsig_alloc(hw, blk); 5091 if (!vsig) 5092 return ICE_ERR_HW_TABLE; 5093 5094 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5095 if (status) 5096 return status; 5097 5098 list_for_each_entry(t, lst, list) { 5099 /* Reverse the order here since we are copying the list */ 5100 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5101 true, chg); 5102 if (status) 5103 return status; 5104 } 5105 5106 *new_vsig = vsig; 5107 5108 return 0; 5109 } 5110 5111 /** 5112 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5113 * @hw: pointer to the HW struct 5114 * @blk: hardware block 5115 * @hdl: the profile handle of the profile to search for 5116 * @vsig: returns the VSIG with the matching profile 5117 */ 5118 static bool 5119 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5120 { 5121 struct ice_vsig_prof *t; 5122 enum ice_status status; 5123 struct list_head lst; 5124 5125 INIT_LIST_HEAD(&lst); 5126 5127 t = kzalloc(sizeof(*t), GFP_KERNEL); 5128 if (!t) 5129 return false; 5130 5131 t->profile_cookie = hdl; 5132 list_add(&t->list, &lst); 5133 5134 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5135 5136 list_del(&t->list); 5137 kfree(t); 5138 5139 return !status; 5140 } 5141 5142 /** 5143 * ice_add_prof_id_flow - add profile flow 5144 * @hw: pointer to the HW struct 5145 * @blk: hardware block 5146 * @vsi: the VSI to enable with the profile specified by ID 5147 * @hdl: profile handle 5148 * 5149 * Calling this function will update the hardware tables to enable the 5150 * profile indicated by the ID parameter for the VSIs specified in the VSI 5151 * array. Once successfully called, the flow will be enabled. 5152 */ 5153 enum ice_status 5154 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5155 { 5156 struct ice_vsig_prof *tmp1, *del1; 5157 struct ice_chs_chg *tmp, *del; 5158 struct list_head union_lst; 5159 enum ice_status status; 5160 struct list_head chg; 5161 u16 vsig; 5162 5163 INIT_LIST_HEAD(&union_lst); 5164 INIT_LIST_HEAD(&chg); 5165 5166 /* Get profile */ 5167 status = ice_get_prof(hw, blk, hdl, &chg); 5168 if (status) 5169 return status; 5170 5171 /* determine if VSI is already part of a VSIG */ 5172 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5173 if (!status && vsig) { 5174 bool only_vsi; 5175 u16 or_vsig; 5176 u16 ref; 5177 5178 /* found in VSIG */ 5179 or_vsig = vsig; 5180 5181 /* make sure that there is no overlap/conflict between the new 5182 * characteristics and the existing ones; we don't support that 5183 * scenario 5184 */ 5185 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5186 status = ICE_ERR_ALREADY_EXISTS; 5187 goto err_ice_add_prof_id_flow; 5188 } 5189 5190 /* last VSI in the VSIG? */ 5191 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5192 if (status) 5193 goto err_ice_add_prof_id_flow; 5194 only_vsi = (ref == 1); 5195 5196 /* create a union of the current profiles and the one being 5197 * added 5198 */ 5199 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5200 if (status) 5201 goto err_ice_add_prof_id_flow; 5202 5203 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5204 if (status) 5205 goto err_ice_add_prof_id_flow; 5206 5207 /* search for an existing VSIG with an exact charc match */ 5208 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5209 if (!status) { 5210 /* move VSI to the VSIG that matches */ 5211 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5212 if (status) 5213 goto err_ice_add_prof_id_flow; 5214 5215 /* VSI has been moved out of or_vsig. If the or_vsig had 5216 * only that VSI it is now empty and can be removed. 5217 */ 5218 if (only_vsi) { 5219 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5220 if (status) 5221 goto err_ice_add_prof_id_flow; 5222 } 5223 } else if (only_vsi) { 5224 /* If the original VSIG only contains one VSI, then it 5225 * will be the requesting VSI. In this case the VSI is 5226 * not sharing entries and we can simply add the new 5227 * profile to the VSIG. 5228 */ 5229 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5230 &chg); 5231 if (status) 5232 goto err_ice_add_prof_id_flow; 5233 5234 /* Adjust priorities */ 5235 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5236 if (status) 5237 goto err_ice_add_prof_id_flow; 5238 } else { 5239 /* No match, so we need a new VSIG */ 5240 status = ice_create_vsig_from_lst(hw, blk, vsi, 5241 &union_lst, &vsig, 5242 &chg); 5243 if (status) 5244 goto err_ice_add_prof_id_flow; 5245 5246 /* Adjust priorities */ 5247 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5248 if (status) 5249 goto err_ice_add_prof_id_flow; 5250 } 5251 } else { 5252 /* need to find or add a VSIG */ 5253 /* search for an existing VSIG with an exact charc match */ 5254 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5255 /* found an exact match */ 5256 /* add or move VSI to the VSIG that matches */ 5257 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5258 if (status) 5259 goto err_ice_add_prof_id_flow; 5260 } else { 5261 /* we did not find an exact match */ 5262 /* we need to add a VSIG */ 5263 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5264 &chg); 5265 if (status) 5266 goto err_ice_add_prof_id_flow; 5267 } 5268 } 5269 5270 /* update hardware */ 5271 if (!status) 5272 status = ice_upd_prof_hw(hw, blk, &chg); 5273 5274 err_ice_add_prof_id_flow: 5275 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5276 list_del(&del->list_entry); 5277 devm_kfree(ice_hw_to_dev(hw), del); 5278 } 5279 5280 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5281 list_del(&del1->list); 5282 devm_kfree(ice_hw_to_dev(hw), del1); 5283 } 5284 5285 return status; 5286 } 5287 5288 /** 5289 * ice_rem_prof_from_list - remove a profile from list 5290 * @hw: pointer to the HW struct 5291 * @lst: list to remove the profile from 5292 * @hdl: the profile handle indicating the profile to remove 5293 */ 5294 static enum ice_status 5295 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5296 { 5297 struct ice_vsig_prof *ent, *tmp; 5298 5299 list_for_each_entry_safe(ent, tmp, lst, list) 5300 if (ent->profile_cookie == hdl) { 5301 list_del(&ent->list); 5302 devm_kfree(ice_hw_to_dev(hw), ent); 5303 return 0; 5304 } 5305 5306 return ICE_ERR_DOES_NOT_EXIST; 5307 } 5308 5309 /** 5310 * ice_rem_prof_id_flow - remove flow 5311 * @hw: pointer to the HW struct 5312 * @blk: hardware block 5313 * @vsi: the VSI from which to remove the profile specified by ID 5314 * @hdl: profile tracking handle 5315 * 5316 * Calling this function will update the hardware tables to remove the 5317 * profile indicated by the ID parameter for the VSIs specified in the VSI 5318 * array. Once successfully called, the flow will be disabled. 5319 */ 5320 enum ice_status 5321 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5322 { 5323 struct ice_vsig_prof *tmp1, *del1; 5324 struct ice_chs_chg *tmp, *del; 5325 struct list_head chg, copy; 5326 enum ice_status status; 5327 u16 vsig; 5328 5329 INIT_LIST_HEAD(©); 5330 INIT_LIST_HEAD(&chg); 5331 5332 /* determine if VSI is already part of a VSIG */ 5333 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5334 if (!status && vsig) { 5335 bool last_profile; 5336 bool only_vsi; 5337 u16 ref; 5338 5339 /* found in VSIG */ 5340 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5341 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5342 if (status) 5343 goto err_ice_rem_prof_id_flow; 5344 only_vsi = (ref == 1); 5345 5346 if (only_vsi) { 5347 /* If the original VSIG only contains one reference, 5348 * which will be the requesting VSI, then the VSI is not 5349 * sharing entries and we can simply remove the specific 5350 * characteristics from the VSIG. 5351 */ 5352 5353 if (last_profile) { 5354 /* If there are no profiles left for this VSIG, 5355 * then simply remove the VSIG. 5356 */ 5357 status = ice_rem_vsig(hw, blk, vsig, &chg); 5358 if (status) 5359 goto err_ice_rem_prof_id_flow; 5360 } else { 5361 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5362 hdl, &chg); 5363 if (status) 5364 goto err_ice_rem_prof_id_flow; 5365 5366 /* Adjust priorities */ 5367 status = ice_adj_prof_priorities(hw, blk, vsig, 5368 &chg); 5369 if (status) 5370 goto err_ice_rem_prof_id_flow; 5371 } 5372 5373 } else { 5374 /* Make a copy of the VSIG's list of Profiles */ 5375 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5376 if (status) 5377 goto err_ice_rem_prof_id_flow; 5378 5379 /* Remove specified profile entry from the list */ 5380 status = ice_rem_prof_from_list(hw, ©, hdl); 5381 if (status) 5382 goto err_ice_rem_prof_id_flow; 5383 5384 if (list_empty(©)) { 5385 status = ice_move_vsi(hw, blk, vsi, 5386 ICE_DEFAULT_VSIG, &chg); 5387 if (status) 5388 goto err_ice_rem_prof_id_flow; 5389 5390 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5391 &vsig)) { 5392 /* found an exact match */ 5393 /* add or move VSI to the VSIG that matches */ 5394 /* Search for a VSIG with a matching profile 5395 * list 5396 */ 5397 5398 /* Found match, move VSI to the matching VSIG */ 5399 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5400 if (status) 5401 goto err_ice_rem_prof_id_flow; 5402 } else { 5403 /* since no existing VSIG supports this 5404 * characteristic pattern, we need to create a 5405 * new VSIG and TCAM entries 5406 */ 5407 status = ice_create_vsig_from_lst(hw, blk, vsi, 5408 ©, &vsig, 5409 &chg); 5410 if (status) 5411 goto err_ice_rem_prof_id_flow; 5412 5413 /* Adjust priorities */ 5414 status = ice_adj_prof_priorities(hw, blk, vsig, 5415 &chg); 5416 if (status) 5417 goto err_ice_rem_prof_id_flow; 5418 } 5419 } 5420 } else { 5421 status = ICE_ERR_DOES_NOT_EXIST; 5422 } 5423 5424 /* update hardware tables */ 5425 if (!status) 5426 status = ice_upd_prof_hw(hw, blk, &chg); 5427 5428 err_ice_rem_prof_id_flow: 5429 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5430 list_del(&del->list_entry); 5431 devm_kfree(ice_hw_to_dev(hw), del); 5432 } 5433 5434 list_for_each_entry_safe(del1, tmp1, ©, list) { 5435 list_del(&del1->list); 5436 devm_kfree(ice_hw_to_dev(hw), del1); 5437 } 5438 5439 return status; 5440 } 5441