1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 338 return NULL; 339 340 if (offset) 341 *offset = 0; 342 343 boost = section; 344 if (index >= le16_to_cpu(boost->count)) 345 return NULL; 346 347 return boost->tcam + index; 348 } 349 350 /** 351 * ice_find_boost_entry 352 * @ice_seg: pointer to the ice segment (non-NULL) 353 * @addr: Boost TCAM address of entry to search for 354 * @entry: returns pointer to the entry 355 * 356 * Finds a particular Boost TCAM entry and returns a pointer to that entry 357 * if it is found. The ice_seg parameter must not be NULL since the first call 358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 359 */ 360 static enum ice_status 361 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 362 struct ice_boost_tcam_entry **entry) 363 { 364 struct ice_boost_tcam_entry *tcam; 365 struct ice_pkg_enum state; 366 367 memset(&state, 0, sizeof(state)); 368 369 if (!ice_seg) 370 return ICE_ERR_PARAM; 371 372 do { 373 tcam = ice_pkg_enum_entry(ice_seg, &state, 374 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 375 ice_boost_tcam_handler); 376 if (tcam && le16_to_cpu(tcam->addr) == addr) { 377 *entry = tcam; 378 return 0; 379 } 380 381 ice_seg = NULL; 382 } while (tcam); 383 384 *entry = NULL; 385 return ICE_ERR_CFG; 386 } 387 388 /** 389 * ice_label_enum_handler 390 * @sect_type: section type 391 * @section: pointer to section 392 * @index: index of the label entry to be returned 393 * @offset: pointer to receive absolute offset, always zero for label sections 394 * 395 * This is a callback function that can be passed to ice_pkg_enum_entry. 396 * Handles enumeration of individual label entries. 397 */ 398 static void * 399 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 400 u32 *offset) 401 { 402 struct ice_label_section *labels; 403 404 if (!section) 405 return NULL; 406 407 if (index > ICE_MAX_LABELS_IN_BUF) 408 return NULL; 409 410 if (offset) 411 *offset = 0; 412 413 labels = section; 414 if (index >= le16_to_cpu(labels->count)) 415 return NULL; 416 417 return labels->label + index; 418 } 419 420 /** 421 * ice_enum_labels 422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 423 * @type: the section type that will contain the label (0 on subsequent calls) 424 * @state: ice_pkg_enum structure that will hold the state of the enumeration 425 * @value: pointer to a value that will return the label's value if found 426 * 427 * Enumerates a list of labels in the package. The caller will call 428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 430 * the end of the list has been reached. 431 */ 432 static char * 433 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 434 u16 *value) 435 { 436 struct ice_label *label; 437 438 /* Check for valid label section on first call */ 439 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 440 return NULL; 441 442 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 443 ice_label_enum_handler); 444 if (!label) 445 return NULL; 446 447 *value = le16_to_cpu(label->value); 448 return label->name; 449 } 450 451 /** 452 * ice_init_pkg_hints 453 * @hw: pointer to the HW structure 454 * @ice_seg: pointer to the segment of the package scan (non-NULL) 455 * 456 * This function will scan the package and save off relevant information 457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 458 * since the first call to ice_enum_labels requires a pointer to an actual 459 * ice_seg structure. 460 */ 461 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 462 { 463 struct ice_pkg_enum state; 464 char *label_name; 465 u16 val; 466 int i; 467 468 memset(&hw->tnl, 0, sizeof(hw->tnl)); 469 memset(&state, 0, sizeof(state)); 470 471 if (!ice_seg) 472 return; 473 474 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 475 &val); 476 477 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 478 for (i = 0; tnls[i].type != TNL_LAST; i++) { 479 size_t len = strlen(tnls[i].label_prefix); 480 481 /* Look for matching label start, before continuing */ 482 if (strncmp(label_name, tnls[i].label_prefix, len)) 483 continue; 484 485 /* Make sure this label matches our PF. Note that the PF 486 * character ('0' - '7') will be located where our 487 * prefix string's null terminator is located. 488 */ 489 if ((label_name[len] - '0') == hw->pf_id) { 490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 491 hw->tnl.tbl[hw->tnl.count].valid = false; 492 hw->tnl.tbl[hw->tnl.count].in_use = false; 493 hw->tnl.tbl[hw->tnl.count].marked = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) 509 hw->tnl.tbl[i].valid = true; 510 } 511 } 512 513 /* Key creation */ 514 515 #define ICE_DC_KEY 0x1 /* don't care */ 516 #define ICE_DC_KEYINV 0x1 517 #define ICE_NM_KEY 0x0 /* never match */ 518 #define ICE_NM_KEYINV 0x0 519 #define ICE_0_KEY 0x1 /* match 0 */ 520 #define ICE_0_KEYINV 0x0 521 #define ICE_1_KEY 0x0 /* match 1 */ 522 #define ICE_1_KEYINV 0x1 523 524 /** 525 * ice_gen_key_word - generate 16-bits of a key/mask word 526 * @val: the value 527 * @valid: valid bits mask (change only the valid bits) 528 * @dont_care: don't care mask 529 * @nvr_mtch: never match mask 530 * @key: pointer to an array of where the resulting key portion 531 * @key_inv: pointer to an array of where the resulting key invert portion 532 * 533 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 534 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 535 * of key and 8 bits of key invert. 536 * 537 * '0' = b01, always match a 0 bit 538 * '1' = b10, always match a 1 bit 539 * '?' = b11, don't care bit (always matches) 540 * '~' = b00, never match bit 541 * 542 * Input: 543 * val: b0 1 0 1 0 1 544 * dont_care: b0 0 1 1 0 0 545 * never_mtch: b0 0 0 0 1 1 546 * ------------------------------ 547 * Result: key: b01 10 11 11 00 00 548 */ 549 static enum ice_status 550 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 551 u8 *key_inv) 552 { 553 u8 in_key = *key, in_key_inv = *key_inv; 554 u8 i; 555 556 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 557 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 558 return ICE_ERR_CFG; 559 560 *key = 0; 561 *key_inv = 0; 562 563 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 564 for (i = 0; i < 8; i++) { 565 *key >>= 1; 566 *key_inv >>= 1; 567 568 if (!(valid & 0x1)) { /* change only valid bits */ 569 *key |= (in_key & 0x1) << 7; 570 *key_inv |= (in_key_inv & 0x1) << 7; 571 } else if (dont_care & 0x1) { /* don't care bit */ 572 *key |= ICE_DC_KEY << 7; 573 *key_inv |= ICE_DC_KEYINV << 7; 574 } else if (nvr_mtch & 0x1) { /* never match bit */ 575 *key |= ICE_NM_KEY << 7; 576 *key_inv |= ICE_NM_KEYINV << 7; 577 } else if (val & 0x01) { /* exact 1 match */ 578 *key |= ICE_1_KEY << 7; 579 *key_inv |= ICE_1_KEYINV << 7; 580 } else { /* exact 0 match */ 581 *key |= ICE_0_KEY << 7; 582 *key_inv |= ICE_0_KEYINV << 7; 583 } 584 585 dont_care >>= 1; 586 nvr_mtch >>= 1; 587 valid >>= 1; 588 val >>= 1; 589 in_key >>= 1; 590 in_key_inv >>= 1; 591 } 592 593 return 0; 594 } 595 596 /** 597 * ice_bits_max_set - determine if the number of bits set is within a maximum 598 * @mask: pointer to the byte array which is the mask 599 * @size: the number of bytes in the mask 600 * @max: the max number of set bits 601 * 602 * This function determines if there are at most 'max' number of bits set in an 603 * array. Returns true if the number for bits set is <= max or will return false 604 * otherwise. 605 */ 606 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 607 { 608 u16 count = 0; 609 u16 i; 610 611 /* check each byte */ 612 for (i = 0; i < size; i++) { 613 /* if 0, go to next byte */ 614 if (!mask[i]) 615 continue; 616 617 /* We know there is at least one set bit in this byte because of 618 * the above check; if we already have found 'max' number of 619 * bits set, then we can return failure now. 620 */ 621 if (count == max) 622 return false; 623 624 /* count the bits in this byte, checking threshold */ 625 count += hweight8(mask[i]); 626 if (count > max) 627 return false; 628 } 629 630 return true; 631 } 632 633 /** 634 * ice_set_key - generate a variable sized key with multiples of 16-bits 635 * @key: pointer to where the key will be stored 636 * @size: the size of the complete key in bytes (must be even) 637 * @val: array of 8-bit values that makes up the value portion of the key 638 * @upd: array of 8-bit masks that determine what key portion to update 639 * @dc: array of 8-bit masks that make up the don't care mask 640 * @nm: array of 8-bit masks that make up the never match mask 641 * @off: the offset of the first byte in the key to update 642 * @len: the number of bytes in the key update 643 * 644 * This function generates a key from a value, a don't care mask and a never 645 * match mask. 646 * upd, dc, and nm are optional parameters, and can be NULL: 647 * upd == NULL --> udp mask is all 1's (update all bits) 648 * dc == NULL --> dc mask is all 0's (no don't care bits) 649 * nm == NULL --> nm mask is all 0's (no never match bits) 650 */ 651 static enum ice_status 652 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 653 u16 len) 654 { 655 u16 half_size; 656 u16 i; 657 658 /* size must be a multiple of 2 bytes. */ 659 if (size % 2) 660 return ICE_ERR_CFG; 661 662 half_size = size / 2; 663 if (off + len > half_size) 664 return ICE_ERR_CFG; 665 666 /* Make sure at most one bit is set in the never match mask. Having more 667 * than one never match mask bit set will cause HW to consume excessive 668 * power otherwise; this is a power management efficiency check. 669 */ 670 #define ICE_NVR_MTCH_BITS_MAX 1 671 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 672 return ICE_ERR_CFG; 673 674 for (i = 0; i < len; i++) 675 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 676 dc ? dc[i] : 0, nm ? nm[i] : 0, 677 key + off + i, key + half_size + off + i)) 678 return ICE_ERR_CFG; 679 680 return 0; 681 } 682 683 /** 684 * ice_acquire_global_cfg_lock 685 * @hw: pointer to the HW structure 686 * @access: access type (read or write) 687 * 688 * This function will request ownership of the global config lock for reading 689 * or writing of the package. When attempting to obtain write access, the 690 * caller must check for the following two return values: 691 * 692 * ICE_SUCCESS - Means the caller has acquired the global config lock 693 * and can perform writing of the package. 694 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 695 * package or has found that no update was necessary; in 696 * this case, the caller can just skip performing any 697 * update of the package. 698 */ 699 static enum ice_status 700 ice_acquire_global_cfg_lock(struct ice_hw *hw, 701 enum ice_aq_res_access_type access) 702 { 703 enum ice_status status; 704 705 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 706 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 707 708 if (!status) 709 mutex_lock(&ice_global_cfg_lock_sw); 710 else if (status == ICE_ERR_AQ_NO_WORK) 711 ice_debug(hw, ICE_DBG_PKG, 712 "Global config lock: No work to do\n"); 713 714 return status; 715 } 716 717 /** 718 * ice_release_global_cfg_lock 719 * @hw: pointer to the HW structure 720 * 721 * This function will release the global config lock. 722 */ 723 static void ice_release_global_cfg_lock(struct ice_hw *hw) 724 { 725 mutex_unlock(&ice_global_cfg_lock_sw); 726 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 727 } 728 729 /** 730 * ice_acquire_change_lock 731 * @hw: pointer to the HW structure 732 * @access: access type (read or write) 733 * 734 * This function will request ownership of the change lock. 735 */ 736 static enum ice_status 737 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 738 { 739 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 740 ICE_CHANGE_LOCK_TIMEOUT); 741 } 742 743 /** 744 * ice_release_change_lock 745 * @hw: pointer to the HW structure 746 * 747 * This function will release the change lock using the proper Admin Command. 748 */ 749 static void ice_release_change_lock(struct ice_hw *hw) 750 { 751 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 752 } 753 754 /** 755 * ice_aq_download_pkg 756 * @hw: pointer to the hardware structure 757 * @pkg_buf: the package buffer to transfer 758 * @buf_size: the size of the package buffer 759 * @last_buf: last buffer indicator 760 * @error_offset: returns error offset 761 * @error_info: returns error information 762 * @cd: pointer to command details structure or NULL 763 * 764 * Download Package (0x0C40) 765 */ 766 static enum ice_status 767 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 768 u16 buf_size, bool last_buf, u32 *error_offset, 769 u32 *error_info, struct ice_sq_cd *cd) 770 { 771 struct ice_aqc_download_pkg *cmd; 772 struct ice_aq_desc desc; 773 enum ice_status status; 774 775 if (error_offset) 776 *error_offset = 0; 777 if (error_info) 778 *error_info = 0; 779 780 cmd = &desc.params.download_pkg; 781 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 782 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 783 784 if (last_buf) 785 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 786 787 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 788 if (status == ICE_ERR_AQ_ERROR) { 789 /* Read error from buffer only when the FW returned an error */ 790 struct ice_aqc_download_pkg_resp *resp; 791 792 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 793 if (error_offset) 794 *error_offset = le32_to_cpu(resp->error_offset); 795 if (error_info) 796 *error_info = le32_to_cpu(resp->error_info); 797 } 798 799 return status; 800 } 801 802 /** 803 * ice_aq_update_pkg 804 * @hw: pointer to the hardware structure 805 * @pkg_buf: the package cmd buffer 806 * @buf_size: the size of the package cmd buffer 807 * @last_buf: last buffer indicator 808 * @error_offset: returns error offset 809 * @error_info: returns error information 810 * @cd: pointer to command details structure or NULL 811 * 812 * Update Package (0x0C42) 813 */ 814 static enum ice_status 815 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 816 bool last_buf, u32 *error_offset, u32 *error_info, 817 struct ice_sq_cd *cd) 818 { 819 struct ice_aqc_download_pkg *cmd; 820 struct ice_aq_desc desc; 821 enum ice_status status; 822 823 if (error_offset) 824 *error_offset = 0; 825 if (error_info) 826 *error_info = 0; 827 828 cmd = &desc.params.download_pkg; 829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 830 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 831 832 if (last_buf) 833 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 834 835 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 836 if (status == ICE_ERR_AQ_ERROR) { 837 /* Read error from buffer only when the FW returned an error */ 838 struct ice_aqc_download_pkg_resp *resp; 839 840 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 841 if (error_offset) 842 *error_offset = le32_to_cpu(resp->error_offset); 843 if (error_info) 844 *error_info = le32_to_cpu(resp->error_info); 845 } 846 847 return status; 848 } 849 850 /** 851 * ice_find_seg_in_pkg 852 * @hw: pointer to the hardware structure 853 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 854 * @pkg_hdr: pointer to the package header to be searched 855 * 856 * This function searches a package file for a particular segment type. On 857 * success it returns a pointer to the segment header, otherwise it will 858 * return NULL. 859 */ 860 static struct ice_generic_seg_hdr * 861 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 862 struct ice_pkg_hdr *pkg_hdr) 863 { 864 u32 i; 865 866 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 867 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 868 pkg_hdr->pkg_format_ver.update, 869 pkg_hdr->pkg_format_ver.draft); 870 871 /* Search all package segments for the requested segment type */ 872 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 873 struct ice_generic_seg_hdr *seg; 874 875 seg = (struct ice_generic_seg_hdr *) 876 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 877 878 if (le32_to_cpu(seg->seg_type) == seg_type) 879 return seg; 880 } 881 882 return NULL; 883 } 884 885 /** 886 * ice_update_pkg 887 * @hw: pointer to the hardware structure 888 * @bufs: pointer to an array of buffers 889 * @count: the number of buffers in the array 890 * 891 * Obtains change lock and updates package. 892 */ 893 static enum ice_status 894 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 895 { 896 enum ice_status status; 897 u32 offset, info, i; 898 899 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 900 if (status) 901 return status; 902 903 for (i = 0; i < count; i++) { 904 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 905 bool last = ((i + 1) == count); 906 907 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 908 last, &offset, &info, NULL); 909 910 if (status) { 911 ice_debug(hw, ICE_DBG_PKG, 912 "Update pkg failed: err %d off %d inf %d\n", 913 status, offset, info); 914 break; 915 } 916 } 917 918 ice_release_change_lock(hw); 919 920 return status; 921 } 922 923 /** 924 * ice_dwnld_cfg_bufs 925 * @hw: pointer to the hardware structure 926 * @bufs: pointer to an array of buffers 927 * @count: the number of buffers in the array 928 * 929 * Obtains global config lock and downloads the package configuration buffers 930 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 931 * found indicates that the rest of the buffers are all metadata buffers. 932 */ 933 static enum ice_status 934 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 935 { 936 enum ice_status status; 937 struct ice_buf_hdr *bh; 938 u32 offset, info, i; 939 940 if (!bufs || !count) 941 return ICE_ERR_PARAM; 942 943 /* If the first buffer's first section has its metadata bit set 944 * then there are no buffers to be downloaded, and the operation is 945 * considered a success. 946 */ 947 bh = (struct ice_buf_hdr *)bufs; 948 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 949 return 0; 950 951 /* reset pkg_dwnld_status in case this function is called in the 952 * reset/rebuild flow 953 */ 954 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 955 956 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 957 if (status) { 958 if (status == ICE_ERR_AQ_NO_WORK) 959 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 960 else 961 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 962 return status; 963 } 964 965 for (i = 0; i < count; i++) { 966 bool last = ((i + 1) == count); 967 968 if (!last) { 969 /* check next buffer for metadata flag */ 970 bh = (struct ice_buf_hdr *)(bufs + i + 1); 971 972 /* A set metadata flag in the next buffer will signal 973 * that the current buffer will be the last buffer 974 * downloaded 975 */ 976 if (le16_to_cpu(bh->section_count)) 977 if (le32_to_cpu(bh->section_entry[0].type) & 978 ICE_METADATA_BUF) 979 last = true; 980 } 981 982 bh = (struct ice_buf_hdr *)(bufs + i); 983 984 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 985 &offset, &info, NULL); 986 987 /* Save AQ status from download package */ 988 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 989 if (status) { 990 ice_debug(hw, ICE_DBG_PKG, 991 "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_global_metadata_seg *meta_seg; 1069 struct ice_generic_seg_hdr *seg_hdr; 1070 1071 if (!pkg_hdr) 1072 return ICE_ERR_PARAM; 1073 1074 meta_seg = (struct ice_global_metadata_seg *) 1075 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr); 1076 if (meta_seg) { 1077 hw->pkg_ver = meta_seg->pkg_ver; 1078 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name)); 1079 1080 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1081 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor, 1082 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft, 1083 meta_seg->pkg_name); 1084 } else { 1085 ice_debug(hw, ICE_DBG_INIT, 1086 "Did not find metadata segment in driver package\n"); 1087 return ICE_ERR_CFG; 1088 } 1089 1090 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1091 if (seg_hdr) { 1092 hw->ice_pkg_ver = seg_hdr->seg_format_ver; 1093 memcpy(hw->ice_pkg_name, seg_hdr->seg_id, 1094 sizeof(hw->ice_pkg_name)); 1095 1096 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1097 seg_hdr->seg_format_ver.major, 1098 seg_hdr->seg_format_ver.minor, 1099 seg_hdr->seg_format_ver.update, 1100 seg_hdr->seg_format_ver.draft, 1101 seg_hdr->seg_id); 1102 } else { 1103 ice_debug(hw, ICE_DBG_INIT, 1104 "Did not find ice segment in driver package\n"); 1105 return ICE_ERR_CFG; 1106 } 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_get_pkg_info 1113 * @hw: pointer to the hardware structure 1114 * 1115 * Store details of the package currently loaded in HW into the HW structure. 1116 */ 1117 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1118 { 1119 struct ice_aqc_get_pkg_info_resp *pkg_info; 1120 enum ice_status status; 1121 u16 size; 1122 u32 i; 1123 1124 size = sizeof(*pkg_info) + (sizeof(pkg_info->pkg_info[0]) * 1125 (ICE_PKG_CNT - 1)); 1126 pkg_info = kzalloc(size, GFP_KERNEL); 1127 if (!pkg_info) 1128 return ICE_ERR_NO_MEMORY; 1129 1130 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1131 if (status) 1132 goto init_pkg_free_alloc; 1133 1134 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1135 #define ICE_PKG_FLAG_COUNT 4 1136 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1137 u8 place = 0; 1138 1139 if (pkg_info->pkg_info[i].is_active) { 1140 flags[place++] = 'A'; 1141 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1142 hw->active_track_id = 1143 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1144 memcpy(hw->active_pkg_name, 1145 pkg_info->pkg_info[i].name, 1146 sizeof(pkg_info->pkg_info[i].name)); 1147 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1148 } 1149 if (pkg_info->pkg_info[i].is_active_at_boot) 1150 flags[place++] = 'B'; 1151 if (pkg_info->pkg_info[i].is_modified) 1152 flags[place++] = 'M'; 1153 if (pkg_info->pkg_info[i].is_in_nvm) 1154 flags[place++] = 'N'; 1155 1156 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1157 i, pkg_info->pkg_info[i].ver.major, 1158 pkg_info->pkg_info[i].ver.minor, 1159 pkg_info->pkg_info[i].ver.update, 1160 pkg_info->pkg_info[i].ver.draft, 1161 pkg_info->pkg_info[i].name, flags); 1162 } 1163 1164 init_pkg_free_alloc: 1165 kfree(pkg_info); 1166 1167 return status; 1168 } 1169 1170 /** 1171 * ice_verify_pkg - verify package 1172 * @pkg: pointer to the package buffer 1173 * @len: size of the package buffer 1174 * 1175 * Verifies various attributes of the package file, including length, format 1176 * version, and the requirement of at least one segment. 1177 */ 1178 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1179 { 1180 u32 seg_count; 1181 u32 i; 1182 1183 if (len < sizeof(*pkg)) 1184 return ICE_ERR_BUF_TOO_SHORT; 1185 1186 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1187 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1188 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1189 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1190 return ICE_ERR_CFG; 1191 1192 /* pkg must have at least one segment */ 1193 seg_count = le32_to_cpu(pkg->seg_count); 1194 if (seg_count < 1) 1195 return ICE_ERR_CFG; 1196 1197 /* make sure segment array fits in package length */ 1198 if (len < sizeof(*pkg) + ((seg_count - 1) * sizeof(pkg->seg_offset))) 1199 return ICE_ERR_BUF_TOO_SHORT; 1200 1201 /* all segments must fit within length */ 1202 for (i = 0; i < seg_count; i++) { 1203 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1204 struct ice_generic_seg_hdr *seg; 1205 1206 /* segment header must fit */ 1207 if (len < off + sizeof(*seg)) 1208 return ICE_ERR_BUF_TOO_SHORT; 1209 1210 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1211 1212 /* segment body must fit */ 1213 if (len < off + le32_to_cpu(seg->seg_size)) 1214 return ICE_ERR_BUF_TOO_SHORT; 1215 } 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * ice_free_seg - free package segment pointer 1222 * @hw: pointer to the hardware structure 1223 * 1224 * Frees the package segment pointer in the proper manner, depending on if the 1225 * segment was allocated or just the passed in pointer was stored. 1226 */ 1227 void ice_free_seg(struct ice_hw *hw) 1228 { 1229 if (hw->pkg_copy) { 1230 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1231 hw->pkg_copy = NULL; 1232 hw->pkg_size = 0; 1233 } 1234 hw->seg = NULL; 1235 } 1236 1237 /** 1238 * ice_init_pkg_regs - initialize additional package registers 1239 * @hw: pointer to the hardware structure 1240 */ 1241 static void ice_init_pkg_regs(struct ice_hw *hw) 1242 { 1243 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1244 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1245 #define ICE_SW_BLK_IDX 0 1246 1247 /* setup Switch block input mask, which is 48-bits in two parts */ 1248 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1249 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1250 } 1251 1252 /** 1253 * ice_chk_pkg_version - check package version for compatibility with driver 1254 * @pkg_ver: pointer to a version structure to check 1255 * 1256 * Check to make sure that the package about to be downloaded is compatible with 1257 * the driver. To be compatible, the major and minor components of the package 1258 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1259 * definitions. 1260 */ 1261 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1262 { 1263 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1264 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1265 return ICE_ERR_NOT_SUPPORTED; 1266 1267 return 0; 1268 } 1269 1270 /** 1271 * ice_chk_pkg_compat 1272 * @hw: pointer to the hardware structure 1273 * @ospkg: pointer to the package hdr 1274 * @seg: pointer to the package segment hdr 1275 * 1276 * This function checks the package version compatibility with driver and NVM 1277 */ 1278 static enum ice_status 1279 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1280 struct ice_seg **seg) 1281 { 1282 struct ice_aqc_get_pkg_info_resp *pkg; 1283 enum ice_status status; 1284 u16 size; 1285 u32 i; 1286 1287 /* Check package version compatibility */ 1288 status = ice_chk_pkg_version(&hw->pkg_ver); 1289 if (status) { 1290 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1291 return status; 1292 } 1293 1294 /* find ICE segment in given package */ 1295 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1296 ospkg); 1297 if (!*seg) { 1298 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1299 return ICE_ERR_CFG; 1300 } 1301 1302 /* Check if FW is compatible with the OS package */ 1303 size = struct_size(pkg, pkg_info, ICE_PKG_CNT - 1); 1304 pkg = kzalloc(size, GFP_KERNEL); 1305 if (!pkg) 1306 return ICE_ERR_NO_MEMORY; 1307 1308 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1309 if (status) 1310 goto fw_ddp_compat_free_alloc; 1311 1312 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1313 /* loop till we find the NVM package */ 1314 if (!pkg->pkg_info[i].is_in_nvm) 1315 continue; 1316 if ((*seg)->hdr.seg_format_ver.major != 1317 pkg->pkg_info[i].ver.major || 1318 (*seg)->hdr.seg_format_ver.minor > 1319 pkg->pkg_info[i].ver.minor) { 1320 status = ICE_ERR_FW_DDP_MISMATCH; 1321 ice_debug(hw, ICE_DBG_INIT, 1322 "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_init_pkg - initialize/download package 1334 * @hw: pointer to the hardware structure 1335 * @buf: pointer to the package buffer 1336 * @len: size of the package buffer 1337 * 1338 * This function initializes a package. The package contains HW tables 1339 * required to do packet processing. First, the function extracts package 1340 * information such as version. Then it finds the ice configuration segment 1341 * within the package; this function then saves a copy of the segment pointer 1342 * within the supplied package buffer. Next, the function will cache any hints 1343 * from the package, followed by downloading the package itself. Note, that if 1344 * a previous PF driver has already downloaded the package successfully, then 1345 * the current driver will not have to download the package again. 1346 * 1347 * The local package contents will be used to query default behavior and to 1348 * update specific sections of the HW's version of the package (e.g. to update 1349 * the parse graph to understand new protocols). 1350 * 1351 * This function stores a pointer to the package buffer memory, and it is 1352 * expected that the supplied buffer will not be freed immediately. If the 1353 * package buffer needs to be freed, such as when read from a file, use 1354 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1355 * case. 1356 */ 1357 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1358 { 1359 struct ice_pkg_hdr *pkg; 1360 enum ice_status status; 1361 struct ice_seg *seg; 1362 1363 if (!buf || !len) 1364 return ICE_ERR_PARAM; 1365 1366 pkg = (struct ice_pkg_hdr *)buf; 1367 status = ice_verify_pkg(pkg, len); 1368 if (status) { 1369 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1370 status); 1371 return status; 1372 } 1373 1374 /* initialize package info */ 1375 status = ice_init_pkg_info(hw, pkg); 1376 if (status) 1377 return status; 1378 1379 /* before downloading the package, check package version for 1380 * compatibility with driver 1381 */ 1382 status = ice_chk_pkg_compat(hw, pkg, &seg); 1383 if (status) 1384 return status; 1385 1386 /* initialize package hints and then download package */ 1387 ice_init_pkg_hints(hw, seg); 1388 status = ice_download_pkg(hw, seg); 1389 if (status == ICE_ERR_AQ_NO_WORK) { 1390 ice_debug(hw, ICE_DBG_INIT, 1391 "package previously loaded - no work.\n"); 1392 status = 0; 1393 } 1394 1395 /* Get information on the package currently loaded in HW, then make sure 1396 * the driver is compatible with this version. 1397 */ 1398 if (!status) { 1399 status = ice_get_pkg_info(hw); 1400 if (!status) 1401 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1402 } 1403 1404 if (!status) { 1405 hw->seg = seg; 1406 /* on successful package download update other required 1407 * registers to support the package and fill HW tables 1408 * with package content. 1409 */ 1410 ice_init_pkg_regs(hw); 1411 ice_fill_blk_tbls(hw); 1412 } else { 1413 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1414 status); 1415 } 1416 1417 return status; 1418 } 1419 1420 /** 1421 * ice_copy_and_init_pkg - initialize/download a copy of the package 1422 * @hw: pointer to the hardware structure 1423 * @buf: pointer to the package buffer 1424 * @len: size of the package buffer 1425 * 1426 * This function copies the package buffer, and then calls ice_init_pkg() to 1427 * initialize the copied package contents. 1428 * 1429 * The copying is necessary if the package buffer supplied is constant, or if 1430 * the memory may disappear shortly after calling this function. 1431 * 1432 * If the package buffer resides in the data segment and can be modified, the 1433 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1434 * 1435 * However, if the package buffer needs to be copied first, such as when being 1436 * read from a file, the caller should use ice_copy_and_init_pkg(). 1437 * 1438 * This function will first copy the package buffer, before calling 1439 * ice_init_pkg(). The caller is free to immediately destroy the original 1440 * package buffer, as the new copy will be managed by this function and 1441 * related routines. 1442 */ 1443 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1444 { 1445 enum ice_status status; 1446 u8 *buf_copy; 1447 1448 if (!buf || !len) 1449 return ICE_ERR_PARAM; 1450 1451 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1452 1453 status = ice_init_pkg(hw, buf_copy, len); 1454 if (status) { 1455 /* Free the copy, since we failed to initialize the package */ 1456 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1457 } else { 1458 /* Track the copied pkg so we can free it later */ 1459 hw->pkg_copy = buf_copy; 1460 hw->pkg_size = len; 1461 } 1462 1463 return status; 1464 } 1465 1466 /** 1467 * ice_pkg_buf_alloc 1468 * @hw: pointer to the HW structure 1469 * 1470 * Allocates a package buffer and returns a pointer to the buffer header. 1471 * Note: all package contents must be in Little Endian form. 1472 */ 1473 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1474 { 1475 struct ice_buf_build *bld; 1476 struct ice_buf_hdr *buf; 1477 1478 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1479 if (!bld) 1480 return NULL; 1481 1482 buf = (struct ice_buf_hdr *)bld; 1483 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1484 section_entry)); 1485 return bld; 1486 } 1487 1488 /** 1489 * ice_pkg_buf_free 1490 * @hw: pointer to the HW structure 1491 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1492 * 1493 * Frees a package buffer 1494 */ 1495 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1496 { 1497 devm_kfree(ice_hw_to_dev(hw), bld); 1498 } 1499 1500 /** 1501 * ice_pkg_buf_reserve_section 1502 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1503 * @count: the number of sections to reserve 1504 * 1505 * Reserves one or more section table entries in a package buffer. This routine 1506 * can be called multiple times as long as they are made before calling 1507 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1508 * is called once, the number of sections that can be allocated will not be able 1509 * to be increased; not using all reserved sections is fine, but this will 1510 * result in some wasted space in the buffer. 1511 * Note: all package contents must be in Little Endian form. 1512 */ 1513 static enum ice_status 1514 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1515 { 1516 struct ice_buf_hdr *buf; 1517 u16 section_count; 1518 u16 data_end; 1519 1520 if (!bld) 1521 return ICE_ERR_PARAM; 1522 1523 buf = (struct ice_buf_hdr *)&bld->buf; 1524 1525 /* already an active section, can't increase table size */ 1526 section_count = le16_to_cpu(buf->section_count); 1527 if (section_count > 0) 1528 return ICE_ERR_CFG; 1529 1530 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1531 return ICE_ERR_CFG; 1532 bld->reserved_section_table_entries += count; 1533 1534 data_end = le16_to_cpu(buf->data_end) + 1535 (count * sizeof(buf->section_entry[0])); 1536 buf->data_end = cpu_to_le16(data_end); 1537 1538 return 0; 1539 } 1540 1541 /** 1542 * ice_pkg_buf_alloc_section 1543 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1544 * @type: the section type value 1545 * @size: the size of the section to reserve (in bytes) 1546 * 1547 * Reserves memory in the buffer for a section's content and updates the 1548 * buffers' status accordingly. This routine returns a pointer to the first 1549 * byte of the section start within the buffer, which is used to fill in the 1550 * section contents. 1551 * Note: all package contents must be in Little Endian form. 1552 */ 1553 static void * 1554 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1555 { 1556 struct ice_buf_hdr *buf; 1557 u16 sect_count; 1558 u16 data_end; 1559 1560 if (!bld || !type || !size) 1561 return NULL; 1562 1563 buf = (struct ice_buf_hdr *)&bld->buf; 1564 1565 /* check for enough space left in buffer */ 1566 data_end = le16_to_cpu(buf->data_end); 1567 1568 /* section start must align on 4 byte boundary */ 1569 data_end = ALIGN(data_end, 4); 1570 1571 if ((data_end + size) > ICE_MAX_S_DATA_END) 1572 return NULL; 1573 1574 /* check for more available section table entries */ 1575 sect_count = le16_to_cpu(buf->section_count); 1576 if (sect_count < bld->reserved_section_table_entries) { 1577 void *section_ptr = ((u8 *)buf) + data_end; 1578 1579 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1580 buf->section_entry[sect_count].size = cpu_to_le16(size); 1581 buf->section_entry[sect_count].type = cpu_to_le32(type); 1582 1583 data_end += size; 1584 buf->data_end = cpu_to_le16(data_end); 1585 1586 buf->section_count = cpu_to_le16(sect_count + 1); 1587 return section_ptr; 1588 } 1589 1590 /* no free section table entries */ 1591 return NULL; 1592 } 1593 1594 /** 1595 * ice_pkg_buf_get_active_sections 1596 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1597 * 1598 * Returns the number of active sections. Before using the package buffer 1599 * in an update package command, the caller should make sure that there is at 1600 * least one active section - otherwise, the buffer is not legal and should 1601 * not be used. 1602 * Note: all package contents must be in Little Endian form. 1603 */ 1604 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1605 { 1606 struct ice_buf_hdr *buf; 1607 1608 if (!bld) 1609 return 0; 1610 1611 buf = (struct ice_buf_hdr *)&bld->buf; 1612 return le16_to_cpu(buf->section_count); 1613 } 1614 1615 /** 1616 * ice_pkg_buf 1617 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1618 * 1619 * Return a pointer to the buffer's header 1620 */ 1621 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1622 { 1623 if (!bld) 1624 return NULL; 1625 1626 return &bld->buf; 1627 } 1628 1629 /** 1630 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage 1631 * @hw: pointer to the HW structure 1632 * @port: port to search for 1633 * @index: optionally returns index 1634 * 1635 * Returns whether a port is already in use as a tunnel, and optionally its 1636 * index 1637 */ 1638 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index) 1639 { 1640 u16 i; 1641 1642 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1643 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 1644 if (index) 1645 *index = i; 1646 return true; 1647 } 1648 1649 return false; 1650 } 1651 1652 /** 1653 * ice_tunnel_port_in_use 1654 * @hw: pointer to the HW structure 1655 * @port: port to search for 1656 * @index: optionally returns index 1657 * 1658 * Returns whether a port is already in use as a tunnel, and optionally its 1659 * index 1660 */ 1661 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index) 1662 { 1663 bool res; 1664 1665 mutex_lock(&hw->tnl_lock); 1666 res = ice_tunnel_port_in_use_hlpr(hw, port, index); 1667 mutex_unlock(&hw->tnl_lock); 1668 1669 return res; 1670 } 1671 1672 /** 1673 * ice_find_free_tunnel_entry 1674 * @hw: pointer to the HW structure 1675 * @type: tunnel type 1676 * @index: optionally returns index 1677 * 1678 * Returns whether there is a free tunnel entry, and optionally its index 1679 */ 1680 static bool 1681 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1682 u16 *index) 1683 { 1684 u16 i; 1685 1686 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1687 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use && 1688 hw->tnl.tbl[i].type == type) { 1689 if (index) 1690 *index = i; 1691 return true; 1692 } 1693 1694 return false; 1695 } 1696 1697 /** 1698 * ice_get_open_tunnel_port - retrieve an open tunnel port 1699 * @hw: pointer to the HW structure 1700 * @type: tunnel type (TNL_ALL will return any open port) 1701 * @port: returns open port 1702 */ 1703 bool 1704 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type, 1705 u16 *port) 1706 { 1707 bool res = false; 1708 u16 i; 1709 1710 mutex_lock(&hw->tnl_lock); 1711 1712 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1713 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1714 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) { 1715 *port = hw->tnl.tbl[i].port; 1716 res = true; 1717 break; 1718 } 1719 1720 mutex_unlock(&hw->tnl_lock); 1721 1722 return res; 1723 } 1724 1725 /** 1726 * ice_create_tunnel 1727 * @hw: pointer to the HW structure 1728 * @type: type of tunnel 1729 * @port: port of tunnel to create 1730 * 1731 * Create a tunnel by updating the parse graph in the parser. We do that by 1732 * creating a package buffer with the tunnel info and issuing an update package 1733 * command. 1734 */ 1735 enum ice_status 1736 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port) 1737 { 1738 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1739 enum ice_status status = ICE_ERR_MAX_LIMIT; 1740 struct ice_buf_build *bld; 1741 u16 index; 1742 1743 mutex_lock(&hw->tnl_lock); 1744 1745 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) { 1746 hw->tnl.tbl[index].ref++; 1747 status = 0; 1748 goto ice_create_tunnel_end; 1749 } 1750 1751 if (!ice_find_free_tunnel_entry(hw, type, &index)) { 1752 status = ICE_ERR_OUT_OF_RANGE; 1753 goto ice_create_tunnel_end; 1754 } 1755 1756 bld = ice_pkg_buf_alloc(hw); 1757 if (!bld) { 1758 status = ICE_ERR_NO_MEMORY; 1759 goto ice_create_tunnel_end; 1760 } 1761 1762 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1763 if (ice_pkg_buf_reserve_section(bld, 2)) 1764 goto ice_create_tunnel_err; 1765 1766 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1767 sizeof(*sect_rx)); 1768 if (!sect_rx) 1769 goto ice_create_tunnel_err; 1770 sect_rx->count = cpu_to_le16(1); 1771 1772 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1773 sizeof(*sect_tx)); 1774 if (!sect_tx) 1775 goto ice_create_tunnel_err; 1776 sect_tx->count = cpu_to_le16(1); 1777 1778 /* copy original boost entry to update package buffer */ 1779 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1780 sizeof(*sect_rx->tcam)); 1781 1782 /* over-write the never-match dest port key bits with the encoded port 1783 * bits 1784 */ 1785 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1786 (u8 *)&port, NULL, NULL, NULL, 1787 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1788 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1789 1790 /* exact copy of entry to Tx section entry */ 1791 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1792 1793 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1794 if (!status) { 1795 hw->tnl.tbl[index].port = port; 1796 hw->tnl.tbl[index].in_use = true; 1797 hw->tnl.tbl[index].ref = 1; 1798 } 1799 1800 ice_create_tunnel_err: 1801 ice_pkg_buf_free(hw, bld); 1802 1803 ice_create_tunnel_end: 1804 mutex_unlock(&hw->tnl_lock); 1805 1806 return status; 1807 } 1808 1809 /** 1810 * ice_destroy_tunnel 1811 * @hw: pointer to the HW structure 1812 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1813 * @all: flag that states to destroy all tunnels 1814 * 1815 * Destroys a tunnel or all tunnels by creating an update package buffer 1816 * targeting the specific updates requested and then performing an update 1817 * package. 1818 */ 1819 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all) 1820 { 1821 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1822 enum ice_status status = ICE_ERR_MAX_LIMIT; 1823 struct ice_buf_build *bld; 1824 u16 count = 0; 1825 u16 index; 1826 u16 size; 1827 u16 i; 1828 1829 mutex_lock(&hw->tnl_lock); 1830 1831 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index)) 1832 if (hw->tnl.tbl[index].ref > 1) { 1833 hw->tnl.tbl[index].ref--; 1834 status = 0; 1835 goto ice_destroy_tunnel_end; 1836 } 1837 1838 /* determine count */ 1839 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1840 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1841 (all || hw->tnl.tbl[i].port == port)) 1842 count++; 1843 1844 if (!count) { 1845 status = ICE_ERR_PARAM; 1846 goto ice_destroy_tunnel_end; 1847 } 1848 1849 /* size of section - there is at least one entry */ 1850 size = struct_size(sect_rx, tcam, count - 1); 1851 1852 bld = ice_pkg_buf_alloc(hw); 1853 if (!bld) { 1854 status = ICE_ERR_NO_MEMORY; 1855 goto ice_destroy_tunnel_end; 1856 } 1857 1858 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1859 if (ice_pkg_buf_reserve_section(bld, 2)) 1860 goto ice_destroy_tunnel_err; 1861 1862 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1863 size); 1864 if (!sect_rx) 1865 goto ice_destroy_tunnel_err; 1866 sect_rx->count = cpu_to_le16(1); 1867 1868 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1869 size); 1870 if (!sect_tx) 1871 goto ice_destroy_tunnel_err; 1872 sect_tx->count = cpu_to_le16(1); 1873 1874 /* copy original boost entry to update package buffer, one copy to Rx 1875 * section, another copy to the Tx section 1876 */ 1877 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1878 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 1879 (all || hw->tnl.tbl[i].port == port)) { 1880 memcpy(sect_rx->tcam + i, hw->tnl.tbl[i].boost_entry, 1881 sizeof(*sect_rx->tcam)); 1882 memcpy(sect_tx->tcam + i, hw->tnl.tbl[i].boost_entry, 1883 sizeof(*sect_tx->tcam)); 1884 hw->tnl.tbl[i].marked = true; 1885 } 1886 1887 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1888 if (!status) 1889 for (i = 0; i < hw->tnl.count && 1890 i < ICE_TUNNEL_MAX_ENTRIES; i++) 1891 if (hw->tnl.tbl[i].marked) { 1892 hw->tnl.tbl[i].ref = 0; 1893 hw->tnl.tbl[i].port = 0; 1894 hw->tnl.tbl[i].in_use = false; 1895 hw->tnl.tbl[i].marked = false; 1896 } 1897 1898 ice_destroy_tunnel_err: 1899 ice_pkg_buf_free(hw, bld); 1900 1901 ice_destroy_tunnel_end: 1902 mutex_unlock(&hw->tnl_lock); 1903 1904 return status; 1905 } 1906 1907 /* PTG Management */ 1908 1909 /** 1910 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 1911 * @hw: pointer to the hardware structure 1912 * @blk: HW block 1913 * @ptype: the ptype to search for 1914 * @ptg: pointer to variable that receives the PTG 1915 * 1916 * This function will search the PTGs for a particular ptype, returning the 1917 * PTG ID that contains it through the PTG parameter, with the value of 1918 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 1919 */ 1920 static enum ice_status 1921 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 1922 { 1923 if (ptype >= ICE_XLT1_CNT || !ptg) 1924 return ICE_ERR_PARAM; 1925 1926 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 1927 return 0; 1928 } 1929 1930 /** 1931 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 1932 * @hw: pointer to the hardware structure 1933 * @blk: HW block 1934 * @ptg: the PTG to allocate 1935 * 1936 * This function allocates a given packet type group ID specified by the PTG 1937 * parameter. 1938 */ 1939 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 1940 { 1941 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 1942 } 1943 1944 /** 1945 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 1946 * @hw: pointer to the hardware structure 1947 * @blk: HW block 1948 * @ptype: the ptype to remove 1949 * @ptg: the PTG to remove the ptype from 1950 * 1951 * This function will remove the ptype from the specific PTG, and move it to 1952 * the default PTG (ICE_DEFAULT_PTG). 1953 */ 1954 static enum ice_status 1955 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1956 { 1957 struct ice_ptg_ptype **ch; 1958 struct ice_ptg_ptype *p; 1959 1960 if (ptype > ICE_XLT1_CNT - 1) 1961 return ICE_ERR_PARAM; 1962 1963 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 1964 return ICE_ERR_DOES_NOT_EXIST; 1965 1966 /* Should not happen if .in_use is set, bad config */ 1967 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 1968 return ICE_ERR_CFG; 1969 1970 /* find the ptype within this PTG, and bypass the link over it */ 1971 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1972 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1973 while (p) { 1974 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 1975 *ch = p->next_ptype; 1976 break; 1977 } 1978 1979 ch = &p->next_ptype; 1980 p = p->next_ptype; 1981 } 1982 1983 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 1984 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 1985 1986 return 0; 1987 } 1988 1989 /** 1990 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 1991 * @hw: pointer to the hardware structure 1992 * @blk: HW block 1993 * @ptype: the ptype to add or move 1994 * @ptg: the PTG to add or move the ptype to 1995 * 1996 * This function will either add or move a ptype to a particular PTG depending 1997 * on if the ptype is already part of another group. Note that using a 1998 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 1999 * default PTG. 2000 */ 2001 static enum ice_status 2002 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2003 { 2004 enum ice_status status; 2005 u8 original_ptg; 2006 2007 if (ptype > ICE_XLT1_CNT - 1) 2008 return ICE_ERR_PARAM; 2009 2010 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2011 return ICE_ERR_DOES_NOT_EXIST; 2012 2013 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2014 if (status) 2015 return status; 2016 2017 /* Is ptype already in the correct PTG? */ 2018 if (original_ptg == ptg) 2019 return 0; 2020 2021 /* Remove from original PTG and move back to the default PTG */ 2022 if (original_ptg != ICE_DEFAULT_PTG) 2023 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2024 2025 /* Moving to default PTG? Then we're done with this request */ 2026 if (ptg == ICE_DEFAULT_PTG) 2027 return 0; 2028 2029 /* Add ptype to PTG at beginning of list */ 2030 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2031 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2032 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2033 &hw->blk[blk].xlt1.ptypes[ptype]; 2034 2035 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2036 hw->blk[blk].xlt1.t[ptype] = ptg; 2037 2038 return 0; 2039 } 2040 2041 /* Block / table size info */ 2042 struct ice_blk_size_details { 2043 u16 xlt1; /* # XLT1 entries */ 2044 u16 xlt2; /* # XLT2 entries */ 2045 u16 prof_tcam; /* # profile ID TCAM entries */ 2046 u16 prof_id; /* # profile IDs */ 2047 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2048 u16 prof_redir; /* # profile redirection entries */ 2049 u16 es; /* # extraction sequence entries */ 2050 u16 fvw; /* # field vector words */ 2051 u8 overwrite; /* overwrite existing entries allowed */ 2052 u8 reverse; /* reverse FV order */ 2053 }; 2054 2055 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2056 /** 2057 * Table Definitions 2058 * XLT1 - Number of entries in XLT1 table 2059 * XLT2 - Number of entries in XLT2 table 2060 * TCAM - Number of entries Profile ID TCAM table 2061 * CDID - Control Domain ID of the hardware block 2062 * PRED - Number of entries in the Profile Redirection Table 2063 * FV - Number of entries in the Field Vector 2064 * FVW - Width (in WORDs) of the Field Vector 2065 * OVR - Overwrite existing table entries 2066 * REV - Reverse FV 2067 */ 2068 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2069 /* Overwrite , Reverse FV */ 2070 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2071 false, false }, 2072 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2073 false, false }, 2074 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2075 false, true }, 2076 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2077 true, true }, 2078 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2079 false, false }, 2080 }; 2081 2082 enum ice_sid_all { 2083 ICE_SID_XLT1_OFF = 0, 2084 ICE_SID_XLT2_OFF, 2085 ICE_SID_PR_OFF, 2086 ICE_SID_PR_REDIR_OFF, 2087 ICE_SID_ES_OFF, 2088 ICE_SID_OFF_COUNT, 2089 }; 2090 2091 /* Characteristic handling */ 2092 2093 /** 2094 * ice_match_prop_lst - determine if properties of two lists match 2095 * @list1: first properties list 2096 * @list2: second properties list 2097 * 2098 * Count, cookies and the order must match in order to be considered equivalent. 2099 */ 2100 static bool 2101 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2102 { 2103 struct ice_vsig_prof *tmp1; 2104 struct ice_vsig_prof *tmp2; 2105 u16 chk_count = 0; 2106 u16 count = 0; 2107 2108 /* compare counts */ 2109 list_for_each_entry(tmp1, list1, list) 2110 count++; 2111 list_for_each_entry(tmp2, list2, list) 2112 chk_count++; 2113 if (!count || count != chk_count) 2114 return false; 2115 2116 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2117 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2118 2119 /* profile cookies must compare, and in the exact same order to take 2120 * into account priority 2121 */ 2122 while (count--) { 2123 if (tmp2->profile_cookie != tmp1->profile_cookie) 2124 return false; 2125 2126 tmp1 = list_next_entry(tmp1, list); 2127 tmp2 = list_next_entry(tmp2, list); 2128 } 2129 2130 return true; 2131 } 2132 2133 /* VSIG Management */ 2134 2135 /** 2136 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2137 * @hw: pointer to the hardware structure 2138 * @blk: HW block 2139 * @vsi: VSI of interest 2140 * @vsig: pointer to receive the VSI group 2141 * 2142 * This function will lookup the VSI entry in the XLT2 list and return 2143 * the VSI group its associated with. 2144 */ 2145 static enum ice_status 2146 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2147 { 2148 if (!vsig || vsi >= ICE_MAX_VSI) 2149 return ICE_ERR_PARAM; 2150 2151 /* As long as there's a default or valid VSIG associated with the input 2152 * VSI, the functions returns a success. Any handling of VSIG will be 2153 * done by the following add, update or remove functions. 2154 */ 2155 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2156 2157 return 0; 2158 } 2159 2160 /** 2161 * ice_vsig_alloc_val - allocate a new VSIG by value 2162 * @hw: pointer to the hardware structure 2163 * @blk: HW block 2164 * @vsig: the VSIG to allocate 2165 * 2166 * This function will allocate a given VSIG specified by the VSIG parameter. 2167 */ 2168 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2169 { 2170 u16 idx = vsig & ICE_VSIG_IDX_M; 2171 2172 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2173 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2174 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2175 } 2176 2177 return ICE_VSIG_VALUE(idx, hw->pf_id); 2178 } 2179 2180 /** 2181 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2182 * @hw: pointer to the hardware structure 2183 * @blk: HW block 2184 * 2185 * This function will iterate through the VSIG list and mark the first 2186 * unused entry for the new VSIG entry as used and return that value. 2187 */ 2188 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2189 { 2190 u16 i; 2191 2192 for (i = 1; i < ICE_MAX_VSIGS; i++) 2193 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2194 return ice_vsig_alloc_val(hw, blk, i); 2195 2196 return ICE_DEFAULT_VSIG; 2197 } 2198 2199 /** 2200 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2201 * @hw: pointer to the hardware structure 2202 * @blk: HW block 2203 * @chs: characteristic list 2204 * @vsig: returns the VSIG with the matching profiles, if found 2205 * 2206 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2207 * a group have the same characteristic set. To check if there exists a VSIG 2208 * which has the same characteristics as the input characteristics; this 2209 * function will iterate through the XLT2 list and return the VSIG that has a 2210 * matching configuration. In order to make sure that priorities are accounted 2211 * for, the list must match exactly, including the order in which the 2212 * characteristics are listed. 2213 */ 2214 static enum ice_status 2215 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2216 struct list_head *chs, u16 *vsig) 2217 { 2218 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2219 u16 i; 2220 2221 for (i = 0; i < xlt2->count; i++) 2222 if (xlt2->vsig_tbl[i].in_use && 2223 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2224 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2225 return 0; 2226 } 2227 2228 return ICE_ERR_DOES_NOT_EXIST; 2229 } 2230 2231 /** 2232 * ice_vsig_free - free VSI group 2233 * @hw: pointer to the hardware structure 2234 * @blk: HW block 2235 * @vsig: VSIG to remove 2236 * 2237 * The function will remove all VSIs associated with the input VSIG and move 2238 * them to the DEFAULT_VSIG and mark the VSIG available. 2239 */ 2240 static enum ice_status 2241 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2242 { 2243 struct ice_vsig_prof *dtmp, *del; 2244 struct ice_vsig_vsi *vsi_cur; 2245 u16 idx; 2246 2247 idx = vsig & ICE_VSIG_IDX_M; 2248 if (idx >= ICE_MAX_VSIGS) 2249 return ICE_ERR_PARAM; 2250 2251 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2252 return ICE_ERR_DOES_NOT_EXIST; 2253 2254 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2255 2256 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2257 /* If the VSIG has at least 1 VSI then iterate through the 2258 * list and remove the VSIs before deleting the group. 2259 */ 2260 if (vsi_cur) { 2261 /* remove all vsis associated with this VSIG XLT2 entry */ 2262 do { 2263 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2264 2265 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2266 vsi_cur->changed = 1; 2267 vsi_cur->next_vsi = NULL; 2268 vsi_cur = tmp; 2269 } while (vsi_cur); 2270 2271 /* NULL terminate head of VSI list */ 2272 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2273 } 2274 2275 /* free characteristic list */ 2276 list_for_each_entry_safe(del, dtmp, 2277 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2278 list) { 2279 list_del(&del->list); 2280 devm_kfree(ice_hw_to_dev(hw), del); 2281 } 2282 2283 /* if VSIG characteristic list was cleared for reset 2284 * re-initialize the list head 2285 */ 2286 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2287 2288 return 0; 2289 } 2290 2291 /** 2292 * ice_vsig_remove_vsi - remove VSI from VSIG 2293 * @hw: pointer to the hardware structure 2294 * @blk: HW block 2295 * @vsi: VSI to remove 2296 * @vsig: VSI group to remove from 2297 * 2298 * The function will remove the input VSI from its VSI group and move it 2299 * to the DEFAULT_VSIG. 2300 */ 2301 static enum ice_status 2302 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2303 { 2304 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2305 u16 idx; 2306 2307 idx = vsig & ICE_VSIG_IDX_M; 2308 2309 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2310 return ICE_ERR_PARAM; 2311 2312 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2313 return ICE_ERR_DOES_NOT_EXIST; 2314 2315 /* entry already in default VSIG, don't have to remove */ 2316 if (idx == ICE_DEFAULT_VSIG) 2317 return 0; 2318 2319 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2320 if (!(*vsi_head)) 2321 return ICE_ERR_CFG; 2322 2323 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2324 vsi_cur = (*vsi_head); 2325 2326 /* iterate the VSI list, skip over the entry to be removed */ 2327 while (vsi_cur) { 2328 if (vsi_tgt == vsi_cur) { 2329 (*vsi_head) = vsi_cur->next_vsi; 2330 break; 2331 } 2332 vsi_head = &vsi_cur->next_vsi; 2333 vsi_cur = vsi_cur->next_vsi; 2334 } 2335 2336 /* verify if VSI was removed from group list */ 2337 if (!vsi_cur) 2338 return ICE_ERR_DOES_NOT_EXIST; 2339 2340 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2341 vsi_cur->changed = 1; 2342 vsi_cur->next_vsi = NULL; 2343 2344 return 0; 2345 } 2346 2347 /** 2348 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2349 * @hw: pointer to the hardware structure 2350 * @blk: HW block 2351 * @vsi: VSI to move 2352 * @vsig: destination VSI group 2353 * 2354 * This function will move or add the input VSI to the target VSIG. 2355 * The function will find the original VSIG the VSI belongs to and 2356 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2357 * then move entry to the new VSIG. 2358 */ 2359 static enum ice_status 2360 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2361 { 2362 struct ice_vsig_vsi *tmp; 2363 enum ice_status status; 2364 u16 orig_vsig, idx; 2365 2366 idx = vsig & ICE_VSIG_IDX_M; 2367 2368 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2369 return ICE_ERR_PARAM; 2370 2371 /* if VSIG not in use and VSIG is not default type this VSIG 2372 * doesn't exist. 2373 */ 2374 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2375 vsig != ICE_DEFAULT_VSIG) 2376 return ICE_ERR_DOES_NOT_EXIST; 2377 2378 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2379 if (status) 2380 return status; 2381 2382 /* no update required if vsigs match */ 2383 if (orig_vsig == vsig) 2384 return 0; 2385 2386 if (orig_vsig != ICE_DEFAULT_VSIG) { 2387 /* remove entry from orig_vsig and add to default VSIG */ 2388 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2389 if (status) 2390 return status; 2391 } 2392 2393 if (idx == ICE_DEFAULT_VSIG) 2394 return 0; 2395 2396 /* Create VSI entry and add VSIG and prop_mask values */ 2397 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2398 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2399 2400 /* Add new entry to the head of the VSIG list */ 2401 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2402 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2403 &hw->blk[blk].xlt2.vsis[vsi]; 2404 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2405 hw->blk[blk].xlt2.t[vsi] = vsig; 2406 2407 return 0; 2408 } 2409 2410 /** 2411 * ice_find_prof_id - find profile ID for a given field vector 2412 * @hw: pointer to the hardware structure 2413 * @blk: HW block 2414 * @fv: field vector to search for 2415 * @prof_id: receives the profile ID 2416 */ 2417 static enum ice_status 2418 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 2419 struct ice_fv_word *fv, u8 *prof_id) 2420 { 2421 struct ice_es *es = &hw->blk[blk].es; 2422 u16 off; 2423 u8 i; 2424 2425 /* For FD, we don't want to re-use a existed profile with the same 2426 * field vector and mask. This will cause rule interference. 2427 */ 2428 if (blk == ICE_BLK_FD) 2429 return ICE_ERR_DOES_NOT_EXIST; 2430 2431 for (i = 0; i < (u8)es->count; i++) { 2432 off = i * es->fvw; 2433 2434 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2435 continue; 2436 2437 *prof_id = i; 2438 return 0; 2439 } 2440 2441 return ICE_ERR_DOES_NOT_EXIST; 2442 } 2443 2444 /** 2445 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2446 * @blk: the block type 2447 * @rsrc_type: pointer to variable to receive the resource type 2448 */ 2449 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2450 { 2451 switch (blk) { 2452 case ICE_BLK_FD: 2453 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2454 break; 2455 case ICE_BLK_RSS: 2456 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2457 break; 2458 default: 2459 return false; 2460 } 2461 return true; 2462 } 2463 2464 /** 2465 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2466 * @blk: the block type 2467 * @rsrc_type: pointer to variable to receive the resource type 2468 */ 2469 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2470 { 2471 switch (blk) { 2472 case ICE_BLK_FD: 2473 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2474 break; 2475 case ICE_BLK_RSS: 2476 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2477 break; 2478 default: 2479 return false; 2480 } 2481 return true; 2482 } 2483 2484 /** 2485 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2486 * @hw: pointer to the HW struct 2487 * @blk: the block to allocate the TCAM for 2488 * @tcam_idx: pointer to variable to receive the TCAM entry 2489 * 2490 * This function allocates a new entry in a Profile ID TCAM for a specific 2491 * block. 2492 */ 2493 static enum ice_status 2494 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx) 2495 { 2496 u16 res_type; 2497 2498 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2499 return ICE_ERR_PARAM; 2500 2501 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx); 2502 } 2503 2504 /** 2505 * ice_free_tcam_ent - free hardware TCAM entry 2506 * @hw: pointer to the HW struct 2507 * @blk: the block from which to free the TCAM entry 2508 * @tcam_idx: the TCAM entry to free 2509 * 2510 * This function frees an entry in a Profile ID TCAM for a specific block. 2511 */ 2512 static enum ice_status 2513 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2514 { 2515 u16 res_type; 2516 2517 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2518 return ICE_ERR_PARAM; 2519 2520 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2521 } 2522 2523 /** 2524 * ice_alloc_prof_id - allocate profile ID 2525 * @hw: pointer to the HW struct 2526 * @blk: the block to allocate the profile ID for 2527 * @prof_id: pointer to variable to receive the profile ID 2528 * 2529 * This function allocates a new profile ID, which also corresponds to a Field 2530 * Vector (Extraction Sequence) entry. 2531 */ 2532 static enum ice_status 2533 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2534 { 2535 enum ice_status status; 2536 u16 res_type; 2537 u16 get_prof; 2538 2539 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2540 return ICE_ERR_PARAM; 2541 2542 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2543 if (!status) 2544 *prof_id = (u8)get_prof; 2545 2546 return status; 2547 } 2548 2549 /** 2550 * ice_free_prof_id - free profile ID 2551 * @hw: pointer to the HW struct 2552 * @blk: the block from which to free the profile ID 2553 * @prof_id: the profile ID to free 2554 * 2555 * This function frees a profile ID, which also corresponds to a Field Vector. 2556 */ 2557 static enum ice_status 2558 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2559 { 2560 u16 tmp_prof_id = (u16)prof_id; 2561 u16 res_type; 2562 2563 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2564 return ICE_ERR_PARAM; 2565 2566 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2567 } 2568 2569 /** 2570 * ice_prof_inc_ref - increment reference count for profile 2571 * @hw: pointer to the HW struct 2572 * @blk: the block from which to free the profile ID 2573 * @prof_id: the profile ID for which to increment the reference count 2574 */ 2575 static enum ice_status 2576 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2577 { 2578 if (prof_id > hw->blk[blk].es.count) 2579 return ICE_ERR_PARAM; 2580 2581 hw->blk[blk].es.ref_count[prof_id]++; 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * ice_write_es - write an extraction sequence to hardware 2588 * @hw: pointer to the HW struct 2589 * @blk: the block in which to write the extraction sequence 2590 * @prof_id: the profile ID to write 2591 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 2592 */ 2593 static void 2594 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 2595 struct ice_fv_word *fv) 2596 { 2597 u16 off; 2598 2599 off = prof_id * hw->blk[blk].es.fvw; 2600 if (!fv) { 2601 memset(&hw->blk[blk].es.t[off], 0, 2602 hw->blk[blk].es.fvw * sizeof(*fv)); 2603 hw->blk[blk].es.written[prof_id] = false; 2604 } else { 2605 memcpy(&hw->blk[blk].es.t[off], fv, 2606 hw->blk[blk].es.fvw * sizeof(*fv)); 2607 } 2608 } 2609 2610 /** 2611 * ice_prof_dec_ref - decrement reference count for profile 2612 * @hw: pointer to the HW struct 2613 * @blk: the block from which to free the profile ID 2614 * @prof_id: the profile ID for which to decrement the reference count 2615 */ 2616 static enum ice_status 2617 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2618 { 2619 if (prof_id > hw->blk[blk].es.count) 2620 return ICE_ERR_PARAM; 2621 2622 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 2623 if (!--hw->blk[blk].es.ref_count[prof_id]) { 2624 ice_write_es(hw, blk, prof_id, NULL); 2625 return ice_free_prof_id(hw, blk, prof_id); 2626 } 2627 } 2628 2629 return 0; 2630 } 2631 2632 /* Block / table section IDs */ 2633 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 2634 /* SWITCH */ 2635 { ICE_SID_XLT1_SW, 2636 ICE_SID_XLT2_SW, 2637 ICE_SID_PROFID_TCAM_SW, 2638 ICE_SID_PROFID_REDIR_SW, 2639 ICE_SID_FLD_VEC_SW 2640 }, 2641 2642 /* ACL */ 2643 { ICE_SID_XLT1_ACL, 2644 ICE_SID_XLT2_ACL, 2645 ICE_SID_PROFID_TCAM_ACL, 2646 ICE_SID_PROFID_REDIR_ACL, 2647 ICE_SID_FLD_VEC_ACL 2648 }, 2649 2650 /* FD */ 2651 { ICE_SID_XLT1_FD, 2652 ICE_SID_XLT2_FD, 2653 ICE_SID_PROFID_TCAM_FD, 2654 ICE_SID_PROFID_REDIR_FD, 2655 ICE_SID_FLD_VEC_FD 2656 }, 2657 2658 /* RSS */ 2659 { ICE_SID_XLT1_RSS, 2660 ICE_SID_XLT2_RSS, 2661 ICE_SID_PROFID_TCAM_RSS, 2662 ICE_SID_PROFID_REDIR_RSS, 2663 ICE_SID_FLD_VEC_RSS 2664 }, 2665 2666 /* PE */ 2667 { ICE_SID_XLT1_PE, 2668 ICE_SID_XLT2_PE, 2669 ICE_SID_PROFID_TCAM_PE, 2670 ICE_SID_PROFID_REDIR_PE, 2671 ICE_SID_FLD_VEC_PE 2672 } 2673 }; 2674 2675 /** 2676 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 2677 * @hw: pointer to the hardware structure 2678 * @blk: the HW block to initialize 2679 */ 2680 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 2681 { 2682 u16 pt; 2683 2684 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 2685 u8 ptg; 2686 2687 ptg = hw->blk[blk].xlt1.t[pt]; 2688 if (ptg != ICE_DEFAULT_PTG) { 2689 ice_ptg_alloc_val(hw, blk, ptg); 2690 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 2691 } 2692 } 2693 } 2694 2695 /** 2696 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 2697 * @hw: pointer to the hardware structure 2698 * @blk: the HW block to initialize 2699 */ 2700 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 2701 { 2702 u16 vsi; 2703 2704 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 2705 u16 vsig; 2706 2707 vsig = hw->blk[blk].xlt2.t[vsi]; 2708 if (vsig) { 2709 ice_vsig_alloc_val(hw, blk, vsig); 2710 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 2711 /* no changes at this time, since this has been 2712 * initialized from the original package 2713 */ 2714 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2715 } 2716 } 2717 } 2718 2719 /** 2720 * ice_init_sw_db - init software database from HW tables 2721 * @hw: pointer to the hardware structure 2722 */ 2723 static void ice_init_sw_db(struct ice_hw *hw) 2724 { 2725 u16 i; 2726 2727 for (i = 0; i < ICE_BLK_COUNT; i++) { 2728 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 2729 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 2730 } 2731 } 2732 2733 /** 2734 * ice_fill_tbl - Reads content of a single table type into database 2735 * @hw: pointer to the hardware structure 2736 * @block_id: Block ID of the table to copy 2737 * @sid: Section ID of the table to copy 2738 * 2739 * Will attempt to read the entire content of a given table of a single block 2740 * into the driver database. We assume that the buffer will always 2741 * be as large or larger than the data contained in the package. If 2742 * this condition is not met, there is most likely an error in the package 2743 * contents. 2744 */ 2745 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 2746 { 2747 u32 dst_len, sect_len, offset = 0; 2748 struct ice_prof_redir_section *pr; 2749 struct ice_prof_id_section *pid; 2750 struct ice_xlt1_section *xlt1; 2751 struct ice_xlt2_section *xlt2; 2752 struct ice_sw_fv_section *es; 2753 struct ice_pkg_enum state; 2754 u8 *src, *dst; 2755 void *sect; 2756 2757 /* if the HW segment pointer is null then the first iteration of 2758 * ice_pkg_enum_section() will fail. In this case the HW tables will 2759 * not be filled and return success. 2760 */ 2761 if (!hw->seg) { 2762 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 2763 return; 2764 } 2765 2766 memset(&state, 0, sizeof(state)); 2767 2768 sect = ice_pkg_enum_section(hw->seg, &state, sid); 2769 2770 while (sect) { 2771 switch (sid) { 2772 case ICE_SID_XLT1_SW: 2773 case ICE_SID_XLT1_FD: 2774 case ICE_SID_XLT1_RSS: 2775 case ICE_SID_XLT1_ACL: 2776 case ICE_SID_XLT1_PE: 2777 xlt1 = (struct ice_xlt1_section *)sect; 2778 src = xlt1->value; 2779 sect_len = le16_to_cpu(xlt1->count) * 2780 sizeof(*hw->blk[block_id].xlt1.t); 2781 dst = hw->blk[block_id].xlt1.t; 2782 dst_len = hw->blk[block_id].xlt1.count * 2783 sizeof(*hw->blk[block_id].xlt1.t); 2784 break; 2785 case ICE_SID_XLT2_SW: 2786 case ICE_SID_XLT2_FD: 2787 case ICE_SID_XLT2_RSS: 2788 case ICE_SID_XLT2_ACL: 2789 case ICE_SID_XLT2_PE: 2790 xlt2 = (struct ice_xlt2_section *)sect; 2791 src = (__force u8 *)xlt2->value; 2792 sect_len = le16_to_cpu(xlt2->count) * 2793 sizeof(*hw->blk[block_id].xlt2.t); 2794 dst = (u8 *)hw->blk[block_id].xlt2.t; 2795 dst_len = hw->blk[block_id].xlt2.count * 2796 sizeof(*hw->blk[block_id].xlt2.t); 2797 break; 2798 case ICE_SID_PROFID_TCAM_SW: 2799 case ICE_SID_PROFID_TCAM_FD: 2800 case ICE_SID_PROFID_TCAM_RSS: 2801 case ICE_SID_PROFID_TCAM_ACL: 2802 case ICE_SID_PROFID_TCAM_PE: 2803 pid = (struct ice_prof_id_section *)sect; 2804 src = (u8 *)pid->entry; 2805 sect_len = le16_to_cpu(pid->count) * 2806 sizeof(*hw->blk[block_id].prof.t); 2807 dst = (u8 *)hw->blk[block_id].prof.t; 2808 dst_len = hw->blk[block_id].prof.count * 2809 sizeof(*hw->blk[block_id].prof.t); 2810 break; 2811 case ICE_SID_PROFID_REDIR_SW: 2812 case ICE_SID_PROFID_REDIR_FD: 2813 case ICE_SID_PROFID_REDIR_RSS: 2814 case ICE_SID_PROFID_REDIR_ACL: 2815 case ICE_SID_PROFID_REDIR_PE: 2816 pr = (struct ice_prof_redir_section *)sect; 2817 src = pr->redir_value; 2818 sect_len = le16_to_cpu(pr->count) * 2819 sizeof(*hw->blk[block_id].prof_redir.t); 2820 dst = hw->blk[block_id].prof_redir.t; 2821 dst_len = hw->blk[block_id].prof_redir.count * 2822 sizeof(*hw->blk[block_id].prof_redir.t); 2823 break; 2824 case ICE_SID_FLD_VEC_SW: 2825 case ICE_SID_FLD_VEC_FD: 2826 case ICE_SID_FLD_VEC_RSS: 2827 case ICE_SID_FLD_VEC_ACL: 2828 case ICE_SID_FLD_VEC_PE: 2829 es = (struct ice_sw_fv_section *)sect; 2830 src = (u8 *)es->fv; 2831 sect_len = (u32)(le16_to_cpu(es->count) * 2832 hw->blk[block_id].es.fvw) * 2833 sizeof(*hw->blk[block_id].es.t); 2834 dst = (u8 *)hw->blk[block_id].es.t; 2835 dst_len = (u32)(hw->blk[block_id].es.count * 2836 hw->blk[block_id].es.fvw) * 2837 sizeof(*hw->blk[block_id].es.t); 2838 break; 2839 default: 2840 return; 2841 } 2842 2843 /* if the section offset exceeds destination length, terminate 2844 * table fill. 2845 */ 2846 if (offset > dst_len) 2847 return; 2848 2849 /* if the sum of section size and offset exceed destination size 2850 * then we are out of bounds of the HW table size for that PF. 2851 * Changing section length to fill the remaining table space 2852 * of that PF. 2853 */ 2854 if ((offset + sect_len) > dst_len) 2855 sect_len = dst_len - offset; 2856 2857 memcpy(dst + offset, src, sect_len); 2858 offset += sect_len; 2859 sect = ice_pkg_enum_section(NULL, &state, sid); 2860 } 2861 } 2862 2863 /** 2864 * ice_fill_blk_tbls - Read package context for tables 2865 * @hw: pointer to the hardware structure 2866 * 2867 * Reads the current package contents and populates the driver 2868 * database with the data iteratively for all advanced feature 2869 * blocks. Assume that the HW tables have been allocated. 2870 */ 2871 void ice_fill_blk_tbls(struct ice_hw *hw) 2872 { 2873 u8 i; 2874 2875 for (i = 0; i < ICE_BLK_COUNT; i++) { 2876 enum ice_block blk_id = (enum ice_block)i; 2877 2878 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 2879 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 2880 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 2881 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 2882 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 2883 } 2884 2885 ice_init_sw_db(hw); 2886 } 2887 2888 /** 2889 * ice_free_prof_map - free profile map 2890 * @hw: pointer to the hardware structure 2891 * @blk_idx: HW block index 2892 */ 2893 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 2894 { 2895 struct ice_es *es = &hw->blk[blk_idx].es; 2896 struct ice_prof_map *del, *tmp; 2897 2898 mutex_lock(&es->prof_map_lock); 2899 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 2900 list_del(&del->list); 2901 devm_kfree(ice_hw_to_dev(hw), del); 2902 } 2903 INIT_LIST_HEAD(&es->prof_map); 2904 mutex_unlock(&es->prof_map_lock); 2905 } 2906 2907 /** 2908 * ice_free_flow_profs - free flow profile entries 2909 * @hw: pointer to the hardware structure 2910 * @blk_idx: HW block index 2911 */ 2912 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 2913 { 2914 struct ice_flow_prof *p, *tmp; 2915 2916 mutex_lock(&hw->fl_profs_locks[blk_idx]); 2917 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 2918 struct ice_flow_entry *e, *t; 2919 2920 list_for_each_entry_safe(e, t, &p->entries, l_entry) 2921 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 2922 ICE_FLOW_ENTRY_HNDL(e)); 2923 2924 list_del(&p->l_entry); 2925 devm_kfree(ice_hw_to_dev(hw), p); 2926 } 2927 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 2928 2929 /* if driver is in reset and tables are being cleared 2930 * re-initialize the flow profile list heads 2931 */ 2932 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2933 } 2934 2935 /** 2936 * ice_free_vsig_tbl - free complete VSIG table entries 2937 * @hw: pointer to the hardware structure 2938 * @blk: the HW block on which to free the VSIG table entries 2939 */ 2940 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 2941 { 2942 u16 i; 2943 2944 if (!hw->blk[blk].xlt2.vsig_tbl) 2945 return; 2946 2947 for (i = 1; i < ICE_MAX_VSIGS; i++) 2948 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2949 ice_vsig_free(hw, blk, i); 2950 } 2951 2952 /** 2953 * ice_free_hw_tbls - free hardware table memory 2954 * @hw: pointer to the hardware structure 2955 */ 2956 void ice_free_hw_tbls(struct ice_hw *hw) 2957 { 2958 struct ice_rss_cfg *r, *rt; 2959 u8 i; 2960 2961 for (i = 0; i < ICE_BLK_COUNT; i++) { 2962 if (hw->blk[i].is_list_init) { 2963 struct ice_es *es = &hw->blk[i].es; 2964 2965 ice_free_prof_map(hw, i); 2966 mutex_destroy(&es->prof_map_lock); 2967 2968 ice_free_flow_profs(hw, i); 2969 mutex_destroy(&hw->fl_profs_locks[i]); 2970 2971 hw->blk[i].is_list_init = false; 2972 } 2973 ice_free_vsig_tbl(hw, (enum ice_block)i); 2974 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 2975 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 2976 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 2977 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 2978 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 2979 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 2980 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 2981 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 2982 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 2983 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 2984 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 2985 } 2986 2987 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 2988 list_del(&r->l_entry); 2989 devm_kfree(ice_hw_to_dev(hw), r); 2990 } 2991 mutex_destroy(&hw->rss_locks); 2992 memset(hw->blk, 0, sizeof(hw->blk)); 2993 } 2994 2995 /** 2996 * ice_init_flow_profs - init flow profile locks and list heads 2997 * @hw: pointer to the hardware structure 2998 * @blk_idx: HW block index 2999 */ 3000 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3001 { 3002 mutex_init(&hw->fl_profs_locks[blk_idx]); 3003 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3004 } 3005 3006 /** 3007 * ice_clear_hw_tbls - clear HW tables and flow profiles 3008 * @hw: pointer to the hardware structure 3009 */ 3010 void ice_clear_hw_tbls(struct ice_hw *hw) 3011 { 3012 u8 i; 3013 3014 for (i = 0; i < ICE_BLK_COUNT; i++) { 3015 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3016 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3017 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3018 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3019 struct ice_es *es = &hw->blk[i].es; 3020 3021 if (hw->blk[i].is_list_init) { 3022 ice_free_prof_map(hw, i); 3023 ice_free_flow_profs(hw, i); 3024 } 3025 3026 ice_free_vsig_tbl(hw, (enum ice_block)i); 3027 3028 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3029 memset(xlt1->ptg_tbl, 0, 3030 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3031 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3032 3033 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3034 memset(xlt2->vsig_tbl, 0, 3035 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3036 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3037 3038 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3039 memset(prof_redir->t, 0, 3040 prof_redir->count * sizeof(*prof_redir->t)); 3041 3042 memset(es->t, 0, es->count * sizeof(*es->t)); 3043 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3044 memset(es->written, 0, es->count * sizeof(*es->written)); 3045 } 3046 } 3047 3048 /** 3049 * ice_init_hw_tbls - init hardware table memory 3050 * @hw: pointer to the hardware structure 3051 */ 3052 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3053 { 3054 u8 i; 3055 3056 mutex_init(&hw->rss_locks); 3057 INIT_LIST_HEAD(&hw->rss_list_head); 3058 for (i = 0; i < ICE_BLK_COUNT; i++) { 3059 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3060 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3061 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3062 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3063 struct ice_es *es = &hw->blk[i].es; 3064 u16 j; 3065 3066 if (hw->blk[i].is_list_init) 3067 continue; 3068 3069 ice_init_flow_profs(hw, i); 3070 mutex_init(&es->prof_map_lock); 3071 INIT_LIST_HEAD(&es->prof_map); 3072 hw->blk[i].is_list_init = true; 3073 3074 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3075 es->reverse = blk_sizes[i].reverse; 3076 3077 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3078 xlt1->count = blk_sizes[i].xlt1; 3079 3080 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3081 sizeof(*xlt1->ptypes), GFP_KERNEL); 3082 3083 if (!xlt1->ptypes) 3084 goto err; 3085 3086 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3087 sizeof(*xlt1->ptg_tbl), 3088 GFP_KERNEL); 3089 3090 if (!xlt1->ptg_tbl) 3091 goto err; 3092 3093 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3094 sizeof(*xlt1->t), GFP_KERNEL); 3095 if (!xlt1->t) 3096 goto err; 3097 3098 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3099 xlt2->count = blk_sizes[i].xlt2; 3100 3101 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3102 sizeof(*xlt2->vsis), GFP_KERNEL); 3103 3104 if (!xlt2->vsis) 3105 goto err; 3106 3107 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3108 sizeof(*xlt2->vsig_tbl), 3109 GFP_KERNEL); 3110 if (!xlt2->vsig_tbl) 3111 goto err; 3112 3113 for (j = 0; j < xlt2->count; j++) 3114 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3115 3116 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3117 sizeof(*xlt2->t), GFP_KERNEL); 3118 if (!xlt2->t) 3119 goto err; 3120 3121 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3122 prof->count = blk_sizes[i].prof_tcam; 3123 prof->max_prof_id = blk_sizes[i].prof_id; 3124 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3125 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3126 sizeof(*prof->t), GFP_KERNEL); 3127 3128 if (!prof->t) 3129 goto err; 3130 3131 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3132 prof_redir->count = blk_sizes[i].prof_redir; 3133 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3134 prof_redir->count, 3135 sizeof(*prof_redir->t), 3136 GFP_KERNEL); 3137 3138 if (!prof_redir->t) 3139 goto err; 3140 3141 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3142 es->count = blk_sizes[i].es; 3143 es->fvw = blk_sizes[i].fvw; 3144 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3145 (u32)(es->count * es->fvw), 3146 sizeof(*es->t), GFP_KERNEL); 3147 if (!es->t) 3148 goto err; 3149 3150 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3151 sizeof(*es->ref_count), 3152 GFP_KERNEL); 3153 3154 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3155 sizeof(*es->written), GFP_KERNEL); 3156 if (!es->ref_count) 3157 goto err; 3158 } 3159 return 0; 3160 3161 err: 3162 ice_free_hw_tbls(hw); 3163 return ICE_ERR_NO_MEMORY; 3164 } 3165 3166 /** 3167 * ice_prof_gen_key - generate profile ID key 3168 * @hw: pointer to the HW struct 3169 * @blk: the block in which to write profile ID to 3170 * @ptg: packet type group (PTG) portion of key 3171 * @vsig: VSIG portion of key 3172 * @cdid: CDID portion of key 3173 * @flags: flag portion of key 3174 * @vl_msk: valid mask 3175 * @dc_msk: don't care mask 3176 * @nm_msk: never match mask 3177 * @key: output of profile ID key 3178 */ 3179 static enum ice_status 3180 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3181 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3182 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3183 u8 key[ICE_TCAM_KEY_SZ]) 3184 { 3185 struct ice_prof_id_key inkey; 3186 3187 inkey.xlt1 = ptg; 3188 inkey.xlt2_cdid = cpu_to_le16(vsig); 3189 inkey.flags = cpu_to_le16(flags); 3190 3191 switch (hw->blk[blk].prof.cdid_bits) { 3192 case 0: 3193 break; 3194 case 2: 3195 #define ICE_CD_2_M 0xC000U 3196 #define ICE_CD_2_S 14 3197 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3198 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3199 break; 3200 case 4: 3201 #define ICE_CD_4_M 0xF000U 3202 #define ICE_CD_4_S 12 3203 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3204 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3205 break; 3206 case 8: 3207 #define ICE_CD_8_M 0xFF00U 3208 #define ICE_CD_8_S 16 3209 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3210 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3211 break; 3212 default: 3213 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3214 break; 3215 } 3216 3217 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3218 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3219 } 3220 3221 /** 3222 * ice_tcam_write_entry - write TCAM entry 3223 * @hw: pointer to the HW struct 3224 * @blk: the block in which to write profile ID to 3225 * @idx: the entry index to write to 3226 * @prof_id: profile ID 3227 * @ptg: packet type group (PTG) portion of key 3228 * @vsig: VSIG portion of key 3229 * @cdid: CDID portion of key 3230 * @flags: flag portion of key 3231 * @vl_msk: valid mask 3232 * @dc_msk: don't care mask 3233 * @nm_msk: never match mask 3234 */ 3235 static enum ice_status 3236 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3237 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3238 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3239 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3240 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3241 { 3242 struct ice_prof_tcam_entry; 3243 enum ice_status status; 3244 3245 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3246 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3247 if (!status) { 3248 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3249 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3250 } 3251 3252 return status; 3253 } 3254 3255 /** 3256 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3257 * @hw: pointer to the hardware structure 3258 * @blk: HW block 3259 * @vsig: VSIG to query 3260 * @refs: pointer to variable to receive the reference count 3261 */ 3262 static enum ice_status 3263 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3264 { 3265 u16 idx = vsig & ICE_VSIG_IDX_M; 3266 struct ice_vsig_vsi *ptr; 3267 3268 *refs = 0; 3269 3270 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3271 return ICE_ERR_DOES_NOT_EXIST; 3272 3273 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3274 while (ptr) { 3275 (*refs)++; 3276 ptr = ptr->next_vsi; 3277 } 3278 3279 return 0; 3280 } 3281 3282 /** 3283 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3284 * @hw: pointer to the hardware structure 3285 * @blk: HW block 3286 * @vsig: VSIG to check against 3287 * @hdl: profile handle 3288 */ 3289 static bool 3290 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3291 { 3292 u16 idx = vsig & ICE_VSIG_IDX_M; 3293 struct ice_vsig_prof *ent; 3294 3295 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3296 list) 3297 if (ent->profile_cookie == hdl) 3298 return true; 3299 3300 ice_debug(hw, ICE_DBG_INIT, 3301 "Characteristic list for VSI group %d not found.\n", 3302 vsig); 3303 return false; 3304 } 3305 3306 /** 3307 * ice_prof_bld_es - build profile ID extraction sequence changes 3308 * @hw: pointer to the HW struct 3309 * @blk: hardware block 3310 * @bld: the update package buffer build to add to 3311 * @chgs: the list of changes to make in hardware 3312 */ 3313 static enum ice_status 3314 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3315 struct ice_buf_build *bld, struct list_head *chgs) 3316 { 3317 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3318 struct ice_chs_chg *tmp; 3319 3320 list_for_each_entry(tmp, chgs, list_entry) 3321 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3322 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3323 struct ice_pkg_es *p; 3324 u32 id; 3325 3326 id = ice_sect_id(blk, ICE_VEC_TBL); 3327 p = (struct ice_pkg_es *) 3328 ice_pkg_buf_alloc_section(bld, id, sizeof(*p) + 3329 vec_size - 3330 sizeof(p->es[0])); 3331 3332 if (!p) 3333 return ICE_ERR_MAX_LIMIT; 3334 3335 p->count = cpu_to_le16(1); 3336 p->offset = cpu_to_le16(tmp->prof_id); 3337 3338 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3339 } 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ice_prof_bld_tcam - build profile ID TCAM changes 3346 * @hw: pointer to the HW struct 3347 * @blk: hardware block 3348 * @bld: the update package buffer build to add to 3349 * @chgs: the list of changes to make in hardware 3350 */ 3351 static enum ice_status 3352 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3353 struct ice_buf_build *bld, struct list_head *chgs) 3354 { 3355 struct ice_chs_chg *tmp; 3356 3357 list_for_each_entry(tmp, chgs, list_entry) 3358 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3359 struct ice_prof_id_section *p; 3360 u32 id; 3361 3362 id = ice_sect_id(blk, ICE_PROF_TCAM); 3363 p = (struct ice_prof_id_section *) 3364 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 3365 3366 if (!p) 3367 return ICE_ERR_MAX_LIMIT; 3368 3369 p->count = cpu_to_le16(1); 3370 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 3371 p->entry[0].prof_id = tmp->prof_id; 3372 3373 memcpy(p->entry[0].key, 3374 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 3375 sizeof(hw->blk[blk].prof.t->key)); 3376 } 3377 3378 return 0; 3379 } 3380 3381 /** 3382 * ice_prof_bld_xlt1 - build XLT1 changes 3383 * @blk: hardware block 3384 * @bld: the update package buffer build to add to 3385 * @chgs: the list of changes to make in hardware 3386 */ 3387 static enum ice_status 3388 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 3389 struct list_head *chgs) 3390 { 3391 struct ice_chs_chg *tmp; 3392 3393 list_for_each_entry(tmp, chgs, list_entry) 3394 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 3395 struct ice_xlt1_section *p; 3396 u32 id; 3397 3398 id = ice_sect_id(blk, ICE_XLT1); 3399 p = (struct ice_xlt1_section *) 3400 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 3401 3402 if (!p) 3403 return ICE_ERR_MAX_LIMIT; 3404 3405 p->count = cpu_to_le16(1); 3406 p->offset = cpu_to_le16(tmp->ptype); 3407 p->value[0] = tmp->ptg; 3408 } 3409 3410 return 0; 3411 } 3412 3413 /** 3414 * ice_prof_bld_xlt2 - build XLT2 changes 3415 * @blk: hardware block 3416 * @bld: the update package buffer build to add to 3417 * @chgs: the list of changes to make in hardware 3418 */ 3419 static enum ice_status 3420 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 3421 struct list_head *chgs) 3422 { 3423 struct ice_chs_chg *tmp; 3424 3425 list_for_each_entry(tmp, chgs, list_entry) { 3426 struct ice_xlt2_section *p; 3427 u32 id; 3428 3429 switch (tmp->type) { 3430 case ICE_VSIG_ADD: 3431 case ICE_VSI_MOVE: 3432 case ICE_VSIG_REM: 3433 id = ice_sect_id(blk, ICE_XLT2); 3434 p = (struct ice_xlt2_section *) 3435 ice_pkg_buf_alloc_section(bld, id, sizeof(*p)); 3436 3437 if (!p) 3438 return ICE_ERR_MAX_LIMIT; 3439 3440 p->count = cpu_to_le16(1); 3441 p->offset = cpu_to_le16(tmp->vsi); 3442 p->value[0] = cpu_to_le16(tmp->vsig); 3443 break; 3444 default: 3445 break; 3446 } 3447 } 3448 3449 return 0; 3450 } 3451 3452 /** 3453 * ice_upd_prof_hw - update hardware using the change list 3454 * @hw: pointer to the HW struct 3455 * @blk: hardware block 3456 * @chgs: the list of changes to make in hardware 3457 */ 3458 static enum ice_status 3459 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 3460 struct list_head *chgs) 3461 { 3462 struct ice_buf_build *b; 3463 struct ice_chs_chg *tmp; 3464 enum ice_status status; 3465 u16 pkg_sects; 3466 u16 xlt1 = 0; 3467 u16 xlt2 = 0; 3468 u16 tcam = 0; 3469 u16 es = 0; 3470 u16 sects; 3471 3472 /* count number of sections we need */ 3473 list_for_each_entry(tmp, chgs, list_entry) { 3474 switch (tmp->type) { 3475 case ICE_PTG_ES_ADD: 3476 if (tmp->add_ptg) 3477 xlt1++; 3478 if (tmp->add_prof) 3479 es++; 3480 break; 3481 case ICE_TCAM_ADD: 3482 tcam++; 3483 break; 3484 case ICE_VSIG_ADD: 3485 case ICE_VSI_MOVE: 3486 case ICE_VSIG_REM: 3487 xlt2++; 3488 break; 3489 default: 3490 break; 3491 } 3492 } 3493 sects = xlt1 + xlt2 + tcam + es; 3494 3495 if (!sects) 3496 return 0; 3497 3498 /* Build update package buffer */ 3499 b = ice_pkg_buf_alloc(hw); 3500 if (!b) 3501 return ICE_ERR_NO_MEMORY; 3502 3503 status = ice_pkg_buf_reserve_section(b, sects); 3504 if (status) 3505 goto error_tmp; 3506 3507 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 3508 if (es) { 3509 status = ice_prof_bld_es(hw, blk, b, chgs); 3510 if (status) 3511 goto error_tmp; 3512 } 3513 3514 if (tcam) { 3515 status = ice_prof_bld_tcam(hw, blk, b, chgs); 3516 if (status) 3517 goto error_tmp; 3518 } 3519 3520 if (xlt1) { 3521 status = ice_prof_bld_xlt1(blk, b, chgs); 3522 if (status) 3523 goto error_tmp; 3524 } 3525 3526 if (xlt2) { 3527 status = ice_prof_bld_xlt2(blk, b, chgs); 3528 if (status) 3529 goto error_tmp; 3530 } 3531 3532 /* After package buffer build check if the section count in buffer is 3533 * non-zero and matches the number of sections detected for package 3534 * update. 3535 */ 3536 pkg_sects = ice_pkg_buf_get_active_sections(b); 3537 if (!pkg_sects || pkg_sects != sects) { 3538 status = ICE_ERR_INVAL_SIZE; 3539 goto error_tmp; 3540 } 3541 3542 /* update package */ 3543 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 3544 if (status == ICE_ERR_AQ_ERROR) 3545 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 3546 3547 error_tmp: 3548 ice_pkg_buf_free(hw, b); 3549 return status; 3550 } 3551 3552 /** 3553 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 3554 * @hw: pointer to the HW struct 3555 * @prof_id: profile ID 3556 * @mask_sel: mask select 3557 * 3558 * This function enable any of the masks selected by the mask select parameter 3559 * for the profile specified. 3560 */ 3561 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 3562 { 3563 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 3564 3565 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 3566 GLQF_FDMASK_SEL(prof_id), mask_sel); 3567 } 3568 3569 struct ice_fd_src_dst_pair { 3570 u8 prot_id; 3571 u8 count; 3572 u16 off; 3573 }; 3574 3575 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 3576 /* These are defined in pairs */ 3577 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 3578 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 3579 3580 { ICE_PROT_IPV4_IL, 2, 12 }, 3581 { ICE_PROT_IPV4_IL, 2, 16 }, 3582 3583 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 3584 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 3585 3586 { ICE_PROT_IPV6_IL, 8, 8 }, 3587 { ICE_PROT_IPV6_IL, 8, 24 }, 3588 3589 { ICE_PROT_TCP_IL, 1, 0 }, 3590 { ICE_PROT_TCP_IL, 1, 2 }, 3591 3592 { ICE_PROT_UDP_OF, 1, 0 }, 3593 { ICE_PROT_UDP_OF, 1, 2 }, 3594 3595 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 3596 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 3597 3598 { ICE_PROT_SCTP_IL, 1, 0 }, 3599 { ICE_PROT_SCTP_IL, 1, 2 } 3600 }; 3601 3602 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 3603 3604 /** 3605 * ice_update_fd_swap - set register appropriately for a FD FV extraction 3606 * @hw: pointer to the HW struct 3607 * @prof_id: profile ID 3608 * @es: extraction sequence (length of array is determined by the block) 3609 */ 3610 static enum ice_status 3611 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 3612 { 3613 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3614 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 3615 #define ICE_FD_FV_NOT_FOUND (-2) 3616 s8 first_free = ICE_FD_FV_NOT_FOUND; 3617 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 3618 s8 orig_free, si; 3619 u32 mask_sel = 0; 3620 u8 i, j, k; 3621 3622 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3623 3624 /* This code assumes that the Flow Director field vectors are assigned 3625 * from the end of the FV indexes working towards the zero index, that 3626 * only complete fields will be included and will be consecutive, and 3627 * that there are no gaps between valid indexes. 3628 */ 3629 3630 /* Determine swap fields present */ 3631 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 3632 /* Find the first free entry, assuming right to left population. 3633 * This is where we can start adding additional pairs if needed. 3634 */ 3635 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 3636 ICE_PROT_INVALID) 3637 first_free = i - 1; 3638 3639 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3640 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 3641 es[i].off == ice_fd_pairs[j].off) { 3642 set_bit(j, pair_list); 3643 pair_start[j] = i; 3644 } 3645 } 3646 3647 orig_free = first_free; 3648 3649 /* determine missing swap fields that need to be added */ 3650 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 3651 u8 bit1 = test_bit(i + 1, pair_list); 3652 u8 bit0 = test_bit(i, pair_list); 3653 3654 if (bit0 ^ bit1) { 3655 u8 index; 3656 3657 /* add the appropriate 'paired' entry */ 3658 if (!bit0) 3659 index = i; 3660 else 3661 index = i + 1; 3662 3663 /* check for room */ 3664 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 3665 return ICE_ERR_MAX_LIMIT; 3666 3667 /* place in extraction sequence */ 3668 for (k = 0; k < ice_fd_pairs[index].count; k++) { 3669 es[first_free - k].prot_id = 3670 ice_fd_pairs[index].prot_id; 3671 es[first_free - k].off = 3672 ice_fd_pairs[index].off + (k * 2); 3673 3674 if (k > first_free) 3675 return ICE_ERR_OUT_OF_RANGE; 3676 3677 /* keep track of non-relevant fields */ 3678 mask_sel |= BIT(first_free - k); 3679 } 3680 3681 pair_start[index] = first_free; 3682 first_free -= ice_fd_pairs[index].count; 3683 } 3684 } 3685 3686 /* fill in the swap array */ 3687 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 3688 while (si >= 0) { 3689 u8 indexes_used = 1; 3690 3691 /* assume flat at this index */ 3692 #define ICE_SWAP_VALID 0x80 3693 used[si] = si | ICE_SWAP_VALID; 3694 3695 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 3696 si -= indexes_used; 3697 continue; 3698 } 3699 3700 /* check for a swap location */ 3701 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 3702 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 3703 es[si].off == ice_fd_pairs[j].off) { 3704 u8 idx; 3705 3706 /* determine the appropriate matching field */ 3707 idx = j + ((j % 2) ? -1 : 1); 3708 3709 indexes_used = ice_fd_pairs[idx].count; 3710 for (k = 0; k < indexes_used; k++) { 3711 used[si - k] = (pair_start[idx] - k) | 3712 ICE_SWAP_VALID; 3713 } 3714 3715 break; 3716 } 3717 3718 si -= indexes_used; 3719 } 3720 3721 /* for each set of 4 swap and 4 inset indexes, write the appropriate 3722 * register 3723 */ 3724 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 3725 u32 raw_swap = 0; 3726 u32 raw_in = 0; 3727 3728 for (k = 0; k < 4; k++) { 3729 u8 idx; 3730 3731 idx = (j * 4) + k; 3732 if (used[idx] && !(mask_sel & BIT(idx))) { 3733 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 3734 #define ICE_INSET_DFLT 0x9f 3735 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 3736 } 3737 } 3738 3739 /* write the appropriate swap register set */ 3740 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 3741 3742 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 3743 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 3744 3745 /* write the appropriate inset register set */ 3746 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 3747 3748 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 3749 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 3750 } 3751 3752 /* initially clear the mask select for this profile */ 3753 ice_update_fd_mask(hw, prof_id, 0); 3754 3755 return 0; 3756 } 3757 3758 /** 3759 * ice_add_prof - add profile 3760 * @hw: pointer to the HW struct 3761 * @blk: hardware block 3762 * @id: profile tracking ID 3763 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 3764 * @es: extraction sequence (length of array is determined by the block) 3765 * 3766 * This function registers a profile, which matches a set of PTGs with a 3767 * particular extraction sequence. While the hardware profile is allocated 3768 * it will not be written until the first call to ice_add_flow that specifies 3769 * the ID value used here. 3770 */ 3771 enum ice_status 3772 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 3773 struct ice_fv_word *es) 3774 { 3775 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 3776 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3777 struct ice_prof_map *prof; 3778 enum ice_status status; 3779 u8 byte = 0; 3780 u8 prof_id; 3781 3782 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3783 3784 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3785 3786 /* search for existing profile */ 3787 status = ice_find_prof_id(hw, blk, es, &prof_id); 3788 if (status) { 3789 /* allocate profile ID */ 3790 status = ice_alloc_prof_id(hw, blk, &prof_id); 3791 if (status) 3792 goto err_ice_add_prof; 3793 if (blk == ICE_BLK_FD) { 3794 /* For Flow Director block, the extraction sequence may 3795 * need to be altered in the case where there are paired 3796 * fields that have no match. This is necessary because 3797 * for Flow Director, src and dest fields need to paired 3798 * for filter programming and these values are swapped 3799 * during Tx. 3800 */ 3801 status = ice_update_fd_swap(hw, prof_id, es); 3802 if (status) 3803 goto err_ice_add_prof; 3804 } 3805 3806 /* and write new es */ 3807 ice_write_es(hw, blk, prof_id, es); 3808 } 3809 3810 ice_prof_inc_ref(hw, blk, prof_id); 3811 3812 /* add profile info */ 3813 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 3814 if (!prof) { 3815 status = ICE_ERR_NO_MEMORY; 3816 goto err_ice_add_prof; 3817 } 3818 3819 prof->profile_cookie = id; 3820 prof->prof_id = prof_id; 3821 prof->ptg_cnt = 0; 3822 prof->context = 0; 3823 3824 /* build list of ptgs */ 3825 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 3826 u8 bit; 3827 3828 if (!ptypes[byte]) { 3829 bytes--; 3830 byte++; 3831 continue; 3832 } 3833 3834 /* Examine 8 bits per byte */ 3835 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 3836 BITS_PER_BYTE) { 3837 u16 ptype; 3838 u8 ptg; 3839 u8 m; 3840 3841 ptype = byte * BITS_PER_BYTE + bit; 3842 3843 /* The package should place all ptypes in a non-zero 3844 * PTG, so the following call should never fail. 3845 */ 3846 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 3847 continue; 3848 3849 /* If PTG is already added, skip and continue */ 3850 if (test_bit(ptg, ptgs_used)) 3851 continue; 3852 3853 set_bit(ptg, ptgs_used); 3854 prof->ptg[prof->ptg_cnt] = ptg; 3855 3856 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 3857 break; 3858 3859 /* nothing left in byte, then exit */ 3860 m = ~(u8)((1 << (bit + 1)) - 1); 3861 if (!(ptypes[byte] & m)) 3862 break; 3863 } 3864 3865 bytes--; 3866 byte++; 3867 } 3868 3869 list_add(&prof->list, &hw->blk[blk].es.prof_map); 3870 status = 0; 3871 3872 err_ice_add_prof: 3873 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3874 return status; 3875 } 3876 3877 /** 3878 * ice_search_prof_id_low - Search for a profile tracking ID low level 3879 * @hw: pointer to the HW struct 3880 * @blk: hardware block 3881 * @id: profile tracking ID 3882 * 3883 * This will search for a profile tracking ID which was previously added. This 3884 * version assumes that the caller has already acquired the prof map lock. 3885 */ 3886 static struct ice_prof_map * 3887 ice_search_prof_id_low(struct ice_hw *hw, enum ice_block blk, u64 id) 3888 { 3889 struct ice_prof_map *entry = NULL; 3890 struct ice_prof_map *map; 3891 3892 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 3893 if (map->profile_cookie == id) { 3894 entry = map; 3895 break; 3896 } 3897 3898 return entry; 3899 } 3900 3901 /** 3902 * ice_search_prof_id - Search for a profile tracking ID 3903 * @hw: pointer to the HW struct 3904 * @blk: hardware block 3905 * @id: profile tracking ID 3906 * 3907 * This will search for a profile tracking ID which was previously added. 3908 */ 3909 static struct ice_prof_map * 3910 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 3911 { 3912 struct ice_prof_map *entry; 3913 3914 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3915 entry = ice_search_prof_id_low(hw, blk, id); 3916 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3917 3918 return entry; 3919 } 3920 3921 /** 3922 * ice_vsig_prof_id_count - count profiles in a VSIG 3923 * @hw: pointer to the HW struct 3924 * @blk: hardware block 3925 * @vsig: VSIG to remove the profile from 3926 */ 3927 static u16 3928 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3929 { 3930 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 3931 struct ice_vsig_prof *p; 3932 3933 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3934 list) 3935 count++; 3936 3937 return count; 3938 } 3939 3940 /** 3941 * ice_rel_tcam_idx - release a TCAM index 3942 * @hw: pointer to the HW struct 3943 * @blk: hardware block 3944 * @idx: the index to release 3945 */ 3946 static enum ice_status 3947 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 3948 { 3949 /* Masks to invoke a never match entry */ 3950 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3951 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 3952 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 3953 enum ice_status status; 3954 3955 /* write the TCAM entry */ 3956 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 3957 dc_msk, nm_msk); 3958 if (status) 3959 return status; 3960 3961 /* release the TCAM entry */ 3962 status = ice_free_tcam_ent(hw, blk, idx); 3963 3964 return status; 3965 } 3966 3967 /** 3968 * ice_rem_prof_id - remove one profile from a VSIG 3969 * @hw: pointer to the HW struct 3970 * @blk: hardware block 3971 * @prof: pointer to profile structure to remove 3972 */ 3973 static enum ice_status 3974 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 3975 struct ice_vsig_prof *prof) 3976 { 3977 enum ice_status status; 3978 u16 i; 3979 3980 for (i = 0; i < prof->tcam_count; i++) 3981 if (prof->tcam[i].in_use) { 3982 prof->tcam[i].in_use = false; 3983 status = ice_rel_tcam_idx(hw, blk, 3984 prof->tcam[i].tcam_idx); 3985 if (status) 3986 return ICE_ERR_HW_TABLE; 3987 } 3988 3989 return 0; 3990 } 3991 3992 /** 3993 * ice_rem_vsig - remove VSIG 3994 * @hw: pointer to the HW struct 3995 * @blk: hardware block 3996 * @vsig: the VSIG to remove 3997 * @chg: the change list 3998 */ 3999 static enum ice_status 4000 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4001 struct list_head *chg) 4002 { 4003 u16 idx = vsig & ICE_VSIG_IDX_M; 4004 struct ice_vsig_vsi *vsi_cur; 4005 struct ice_vsig_prof *d, *t; 4006 enum ice_status status; 4007 4008 /* remove TCAM entries */ 4009 list_for_each_entry_safe(d, t, 4010 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4011 list) { 4012 status = ice_rem_prof_id(hw, blk, d); 4013 if (status) 4014 return status; 4015 4016 list_del(&d->list); 4017 devm_kfree(ice_hw_to_dev(hw), d); 4018 } 4019 4020 /* Move all VSIS associated with this VSIG to the default VSIG */ 4021 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4022 /* If the VSIG has at least 1 VSI then iterate through the list 4023 * and remove the VSIs before deleting the group. 4024 */ 4025 if (vsi_cur) 4026 do { 4027 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4028 struct ice_chs_chg *p; 4029 4030 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4031 GFP_KERNEL); 4032 if (!p) 4033 return ICE_ERR_NO_MEMORY; 4034 4035 p->type = ICE_VSIG_REM; 4036 p->orig_vsig = vsig; 4037 p->vsig = ICE_DEFAULT_VSIG; 4038 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4039 4040 list_add(&p->list_entry, chg); 4041 4042 vsi_cur = tmp; 4043 } while (vsi_cur); 4044 4045 return ice_vsig_free(hw, blk, vsig); 4046 } 4047 4048 /** 4049 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4050 * @hw: pointer to the HW struct 4051 * @blk: hardware block 4052 * @vsig: VSIG to remove the profile from 4053 * @hdl: profile handle indicating which profile to remove 4054 * @chg: list to receive a record of changes 4055 */ 4056 static enum ice_status 4057 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4058 struct list_head *chg) 4059 { 4060 u16 idx = vsig & ICE_VSIG_IDX_M; 4061 struct ice_vsig_prof *p, *t; 4062 enum ice_status status; 4063 4064 list_for_each_entry_safe(p, t, 4065 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4066 list) 4067 if (p->profile_cookie == hdl) { 4068 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4069 /* this is the last profile, remove the VSIG */ 4070 return ice_rem_vsig(hw, blk, vsig, chg); 4071 4072 status = ice_rem_prof_id(hw, blk, p); 4073 if (!status) { 4074 list_del(&p->list); 4075 devm_kfree(ice_hw_to_dev(hw), p); 4076 } 4077 return status; 4078 } 4079 4080 return ICE_ERR_DOES_NOT_EXIST; 4081 } 4082 4083 /** 4084 * ice_rem_flow_all - remove all flows with a particular profile 4085 * @hw: pointer to the HW struct 4086 * @blk: hardware block 4087 * @id: profile tracking ID 4088 */ 4089 static enum ice_status 4090 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4091 { 4092 struct ice_chs_chg *del, *tmp; 4093 enum ice_status status; 4094 struct list_head chg; 4095 u16 i; 4096 4097 INIT_LIST_HEAD(&chg); 4098 4099 for (i = 1; i < ICE_MAX_VSIGS; i++) 4100 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4101 if (ice_has_prof_vsig(hw, blk, i, id)) { 4102 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4103 &chg); 4104 if (status) 4105 goto err_ice_rem_flow_all; 4106 } 4107 } 4108 4109 status = ice_upd_prof_hw(hw, blk, &chg); 4110 4111 err_ice_rem_flow_all: 4112 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4113 list_del(&del->list_entry); 4114 devm_kfree(ice_hw_to_dev(hw), del); 4115 } 4116 4117 return status; 4118 } 4119 4120 /** 4121 * ice_rem_prof - remove profile 4122 * @hw: pointer to the HW struct 4123 * @blk: hardware block 4124 * @id: profile tracking ID 4125 * 4126 * This will remove the profile specified by the ID parameter, which was 4127 * previously created through ice_add_prof. If any existing entries 4128 * are associated with this profile, they will be removed as well. 4129 */ 4130 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4131 { 4132 struct ice_prof_map *pmap; 4133 enum ice_status status; 4134 4135 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4136 4137 pmap = ice_search_prof_id_low(hw, blk, id); 4138 if (!pmap) { 4139 status = ICE_ERR_DOES_NOT_EXIST; 4140 goto err_ice_rem_prof; 4141 } 4142 4143 /* remove all flows with this profile */ 4144 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4145 if (status) 4146 goto err_ice_rem_prof; 4147 4148 /* dereference profile, and possibly remove */ 4149 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4150 4151 list_del(&pmap->list); 4152 devm_kfree(ice_hw_to_dev(hw), pmap); 4153 4154 err_ice_rem_prof: 4155 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4156 return status; 4157 } 4158 4159 /** 4160 * ice_get_prof - get profile 4161 * @hw: pointer to the HW struct 4162 * @blk: hardware block 4163 * @hdl: profile handle 4164 * @chg: change list 4165 */ 4166 static enum ice_status 4167 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4168 struct list_head *chg) 4169 { 4170 struct ice_prof_map *map; 4171 struct ice_chs_chg *p; 4172 u16 i; 4173 4174 /* Get the details on the profile specified by the handle ID */ 4175 map = ice_search_prof_id(hw, blk, hdl); 4176 if (!map) 4177 return ICE_ERR_DOES_NOT_EXIST; 4178 4179 for (i = 0; i < map->ptg_cnt; i++) 4180 if (!hw->blk[blk].es.written[map->prof_id]) { 4181 /* add ES to change list */ 4182 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4183 GFP_KERNEL); 4184 if (!p) 4185 goto err_ice_get_prof; 4186 4187 p->type = ICE_PTG_ES_ADD; 4188 p->ptype = 0; 4189 p->ptg = map->ptg[i]; 4190 p->add_ptg = 0; 4191 4192 p->add_prof = 1; 4193 p->prof_id = map->prof_id; 4194 4195 hw->blk[blk].es.written[map->prof_id] = true; 4196 4197 list_add(&p->list_entry, chg); 4198 } 4199 4200 return 0; 4201 4202 err_ice_get_prof: 4203 /* let caller clean up the change list */ 4204 return ICE_ERR_NO_MEMORY; 4205 } 4206 4207 /** 4208 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4209 * @hw: pointer to the HW struct 4210 * @blk: hardware block 4211 * @vsig: VSIG from which to copy the list 4212 * @lst: output list 4213 * 4214 * This routine makes a copy of the list of profiles in the specified VSIG. 4215 */ 4216 static enum ice_status 4217 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4218 struct list_head *lst) 4219 { 4220 struct ice_vsig_prof *ent1, *ent2; 4221 u16 idx = vsig & ICE_VSIG_IDX_M; 4222 4223 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4224 list) { 4225 struct ice_vsig_prof *p; 4226 4227 /* copy to the input list */ 4228 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4229 GFP_KERNEL); 4230 if (!p) 4231 goto err_ice_get_profs_vsig; 4232 4233 list_add_tail(&p->list, lst); 4234 } 4235 4236 return 0; 4237 4238 err_ice_get_profs_vsig: 4239 list_for_each_entry_safe(ent1, ent2, lst, list) { 4240 list_del(&ent1->list); 4241 devm_kfree(ice_hw_to_dev(hw), ent1); 4242 } 4243 4244 return ICE_ERR_NO_MEMORY; 4245 } 4246 4247 /** 4248 * ice_add_prof_to_lst - add profile entry to a list 4249 * @hw: pointer to the HW struct 4250 * @blk: hardware block 4251 * @lst: the list to be added to 4252 * @hdl: profile handle of entry to add 4253 */ 4254 static enum ice_status 4255 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4256 struct list_head *lst, u64 hdl) 4257 { 4258 struct ice_prof_map *map; 4259 struct ice_vsig_prof *p; 4260 u16 i; 4261 4262 map = ice_search_prof_id(hw, blk, hdl); 4263 if (!map) 4264 return ICE_ERR_DOES_NOT_EXIST; 4265 4266 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4267 if (!p) 4268 return ICE_ERR_NO_MEMORY; 4269 4270 p->profile_cookie = map->profile_cookie; 4271 p->prof_id = map->prof_id; 4272 p->tcam_count = map->ptg_cnt; 4273 4274 for (i = 0; i < map->ptg_cnt; i++) { 4275 p->tcam[i].prof_id = map->prof_id; 4276 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4277 p->tcam[i].ptg = map->ptg[i]; 4278 } 4279 4280 list_add(&p->list, lst); 4281 4282 return 0; 4283 } 4284 4285 /** 4286 * ice_move_vsi - move VSI to another VSIG 4287 * @hw: pointer to the HW struct 4288 * @blk: hardware block 4289 * @vsi: the VSI to move 4290 * @vsig: the VSIG to move the VSI to 4291 * @chg: the change list 4292 */ 4293 static enum ice_status 4294 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4295 struct list_head *chg) 4296 { 4297 enum ice_status status; 4298 struct ice_chs_chg *p; 4299 u16 orig_vsig; 4300 4301 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4302 if (!p) 4303 return ICE_ERR_NO_MEMORY; 4304 4305 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4306 if (!status) 4307 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4308 4309 if (status) { 4310 devm_kfree(ice_hw_to_dev(hw), p); 4311 return status; 4312 } 4313 4314 p->type = ICE_VSI_MOVE; 4315 p->vsi = vsi; 4316 p->orig_vsig = orig_vsig; 4317 p->vsig = vsig; 4318 4319 list_add(&p->list_entry, chg); 4320 4321 return 0; 4322 } 4323 4324 /** 4325 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4326 * @hw: pointer to the HW struct 4327 * @idx: the index of the TCAM entry to remove 4328 * @chg: the list of change structures to search 4329 */ 4330 static void 4331 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 4332 { 4333 struct ice_chs_chg *pos, *tmp; 4334 4335 list_for_each_entry_safe(tmp, pos, chg, list_entry) 4336 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4337 list_del(&tmp->list_entry); 4338 devm_kfree(ice_hw_to_dev(hw), tmp); 4339 } 4340 } 4341 4342 /** 4343 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4344 * @hw: pointer to the HW struct 4345 * @blk: hardware block 4346 * @enable: true to enable, false to disable 4347 * @vsig: the VSIG of the TCAM entry 4348 * @tcam: pointer the TCAM info structure of the TCAM to disable 4349 * @chg: the change list 4350 * 4351 * This function appends an enable or disable TCAM entry in the change log 4352 */ 4353 static enum ice_status 4354 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4355 u16 vsig, struct ice_tcam_inf *tcam, 4356 struct list_head *chg) 4357 { 4358 enum ice_status status; 4359 struct ice_chs_chg *p; 4360 4361 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4362 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4363 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4364 4365 /* if disabling, free the TCAM */ 4366 if (!enable) { 4367 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4368 4369 /* if we have already created a change for this TCAM entry, then 4370 * we need to remove that entry, in order to prevent writing to 4371 * a TCAM entry we no longer will have ownership of. 4372 */ 4373 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4374 tcam->tcam_idx = 0; 4375 tcam->in_use = 0; 4376 return status; 4377 } 4378 4379 /* for re-enabling, reallocate a TCAM */ 4380 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx); 4381 if (status) 4382 return status; 4383 4384 /* add TCAM to change list */ 4385 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4386 if (!p) 4387 return ICE_ERR_NO_MEMORY; 4388 4389 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4390 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4391 nm_msk); 4392 if (status) 4393 goto err_ice_prof_tcam_ena_dis; 4394 4395 tcam->in_use = 1; 4396 4397 p->type = ICE_TCAM_ADD; 4398 p->add_tcam_idx = true; 4399 p->prof_id = tcam->prof_id; 4400 p->ptg = tcam->ptg; 4401 p->vsig = 0; 4402 p->tcam_idx = tcam->tcam_idx; 4403 4404 /* log change */ 4405 list_add(&p->list_entry, chg); 4406 4407 return 0; 4408 4409 err_ice_prof_tcam_ena_dis: 4410 devm_kfree(ice_hw_to_dev(hw), p); 4411 return status; 4412 } 4413 4414 /** 4415 * ice_adj_prof_priorities - adjust profile based on priorities 4416 * @hw: pointer to the HW struct 4417 * @blk: hardware block 4418 * @vsig: the VSIG for which to adjust profile priorities 4419 * @chg: the change list 4420 */ 4421 static enum ice_status 4422 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4423 struct list_head *chg) 4424 { 4425 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4426 struct ice_vsig_prof *t; 4427 enum ice_status status; 4428 u16 idx; 4429 4430 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4431 idx = vsig & ICE_VSIG_IDX_M; 4432 4433 /* Priority is based on the order in which the profiles are added. The 4434 * newest added profile has highest priority and the oldest added 4435 * profile has the lowest priority. Since the profile property list for 4436 * a VSIG is sorted from newest to oldest, this code traverses the list 4437 * in order and enables the first of each PTG that it finds (that is not 4438 * already enabled); it also disables any duplicate PTGs that it finds 4439 * in the older profiles (that are currently enabled). 4440 */ 4441 4442 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4443 list) { 4444 u16 i; 4445 4446 for (i = 0; i < t->tcam_count; i++) { 4447 /* Scan the priorities from newest to oldest. 4448 * Make sure that the newest profiles take priority. 4449 */ 4450 if (test_bit(t->tcam[i].ptg, ptgs_used) && 4451 t->tcam[i].in_use) { 4452 /* need to mark this PTG as never match, as it 4453 * was already in use and therefore duplicate 4454 * (and lower priority) 4455 */ 4456 status = ice_prof_tcam_ena_dis(hw, blk, false, 4457 vsig, 4458 &t->tcam[i], 4459 chg); 4460 if (status) 4461 return status; 4462 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 4463 !t->tcam[i].in_use) { 4464 /* need to enable this PTG, as it in not in use 4465 * and not enabled (highest priority) 4466 */ 4467 status = ice_prof_tcam_ena_dis(hw, blk, true, 4468 vsig, 4469 &t->tcam[i], 4470 chg); 4471 if (status) 4472 return status; 4473 } 4474 4475 /* keep track of used ptgs */ 4476 set_bit(t->tcam[i].ptg, ptgs_used); 4477 } 4478 } 4479 4480 return 0; 4481 } 4482 4483 /** 4484 * ice_add_prof_id_vsig - add profile to VSIG 4485 * @hw: pointer to the HW struct 4486 * @blk: hardware block 4487 * @vsig: the VSIG to which this profile is to be added 4488 * @hdl: the profile handle indicating the profile to add 4489 * @rev: true to add entries to the end of the list 4490 * @chg: the change list 4491 */ 4492 static enum ice_status 4493 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4494 bool rev, struct list_head *chg) 4495 { 4496 /* Masks that ignore flags */ 4497 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4498 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4499 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4500 struct ice_prof_map *map; 4501 struct ice_vsig_prof *t; 4502 struct ice_chs_chg *p; 4503 u16 vsig_idx, i; 4504 4505 /* Get the details on the profile specified by the handle ID */ 4506 map = ice_search_prof_id(hw, blk, hdl); 4507 if (!map) 4508 return ICE_ERR_DOES_NOT_EXIST; 4509 4510 /* Error, if this VSIG already has this profile */ 4511 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 4512 return ICE_ERR_ALREADY_EXISTS; 4513 4514 /* new VSIG profile structure */ 4515 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 4516 if (!t) 4517 return ICE_ERR_NO_MEMORY; 4518 4519 t->profile_cookie = map->profile_cookie; 4520 t->prof_id = map->prof_id; 4521 t->tcam_count = map->ptg_cnt; 4522 4523 /* create TCAM entries */ 4524 for (i = 0; i < map->ptg_cnt; i++) { 4525 enum ice_status status; 4526 u16 tcam_idx; 4527 4528 /* add TCAM to change list */ 4529 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4530 if (!p) 4531 goto err_ice_add_prof_id_vsig; 4532 4533 /* allocate the TCAM entry index */ 4534 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx); 4535 if (status) { 4536 devm_kfree(ice_hw_to_dev(hw), p); 4537 goto err_ice_add_prof_id_vsig; 4538 } 4539 4540 t->tcam[i].ptg = map->ptg[i]; 4541 t->tcam[i].prof_id = map->prof_id; 4542 t->tcam[i].tcam_idx = tcam_idx; 4543 t->tcam[i].in_use = true; 4544 4545 p->type = ICE_TCAM_ADD; 4546 p->add_tcam_idx = true; 4547 p->prof_id = t->tcam[i].prof_id; 4548 p->ptg = t->tcam[i].ptg; 4549 p->vsig = vsig; 4550 p->tcam_idx = t->tcam[i].tcam_idx; 4551 4552 /* write the TCAM entry */ 4553 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 4554 t->tcam[i].prof_id, 4555 t->tcam[i].ptg, vsig, 0, 0, 4556 vl_msk, dc_msk, nm_msk); 4557 if (status) { 4558 devm_kfree(ice_hw_to_dev(hw), p); 4559 goto err_ice_add_prof_id_vsig; 4560 } 4561 4562 /* log change */ 4563 list_add(&p->list_entry, chg); 4564 } 4565 4566 /* add profile to VSIG */ 4567 vsig_idx = vsig & ICE_VSIG_IDX_M; 4568 if (rev) 4569 list_add_tail(&t->list, 4570 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4571 else 4572 list_add(&t->list, 4573 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 4574 4575 return 0; 4576 4577 err_ice_add_prof_id_vsig: 4578 /* let caller clean up the change list */ 4579 devm_kfree(ice_hw_to_dev(hw), t); 4580 return ICE_ERR_NO_MEMORY; 4581 } 4582 4583 /** 4584 * ice_create_prof_id_vsig - add a new VSIG with a single profile 4585 * @hw: pointer to the HW struct 4586 * @blk: hardware block 4587 * @vsi: the initial VSI that will be in VSIG 4588 * @hdl: the profile handle of the profile that will be added to the VSIG 4589 * @chg: the change list 4590 */ 4591 static enum ice_status 4592 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 4593 struct list_head *chg) 4594 { 4595 enum ice_status status; 4596 struct ice_chs_chg *p; 4597 u16 new_vsig; 4598 4599 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4600 if (!p) 4601 return ICE_ERR_NO_MEMORY; 4602 4603 new_vsig = ice_vsig_alloc(hw, blk); 4604 if (!new_vsig) { 4605 status = ICE_ERR_HW_TABLE; 4606 goto err_ice_create_prof_id_vsig; 4607 } 4608 4609 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 4610 if (status) 4611 goto err_ice_create_prof_id_vsig; 4612 4613 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 4614 if (status) 4615 goto err_ice_create_prof_id_vsig; 4616 4617 p->type = ICE_VSIG_ADD; 4618 p->vsi = vsi; 4619 p->orig_vsig = ICE_DEFAULT_VSIG; 4620 p->vsig = new_vsig; 4621 4622 list_add(&p->list_entry, chg); 4623 4624 return 0; 4625 4626 err_ice_create_prof_id_vsig: 4627 /* let caller clean up the change list */ 4628 devm_kfree(ice_hw_to_dev(hw), p); 4629 return status; 4630 } 4631 4632 /** 4633 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 4634 * @hw: pointer to the HW struct 4635 * @blk: hardware block 4636 * @vsi: the initial VSI that will be in VSIG 4637 * @lst: the list of profile that will be added to the VSIG 4638 * @new_vsig: return of new VSIG 4639 * @chg: the change list 4640 */ 4641 static enum ice_status 4642 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 4643 struct list_head *lst, u16 *new_vsig, 4644 struct list_head *chg) 4645 { 4646 struct ice_vsig_prof *t; 4647 enum ice_status status; 4648 u16 vsig; 4649 4650 vsig = ice_vsig_alloc(hw, blk); 4651 if (!vsig) 4652 return ICE_ERR_HW_TABLE; 4653 4654 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 4655 if (status) 4656 return status; 4657 4658 list_for_each_entry(t, lst, list) { 4659 /* Reverse the order here since we are copying the list */ 4660 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 4661 true, chg); 4662 if (status) 4663 return status; 4664 } 4665 4666 *new_vsig = vsig; 4667 4668 return 0; 4669 } 4670 4671 /** 4672 * ice_find_prof_vsig - find a VSIG with a specific profile handle 4673 * @hw: pointer to the HW struct 4674 * @blk: hardware block 4675 * @hdl: the profile handle of the profile to search for 4676 * @vsig: returns the VSIG with the matching profile 4677 */ 4678 static bool 4679 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 4680 { 4681 struct ice_vsig_prof *t; 4682 enum ice_status status; 4683 struct list_head lst; 4684 4685 INIT_LIST_HEAD(&lst); 4686 4687 t = kzalloc(sizeof(*t), GFP_KERNEL); 4688 if (!t) 4689 return false; 4690 4691 t->profile_cookie = hdl; 4692 list_add(&t->list, &lst); 4693 4694 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 4695 4696 list_del(&t->list); 4697 kfree(t); 4698 4699 return !status; 4700 } 4701 4702 /** 4703 * ice_add_prof_id_flow - add profile flow 4704 * @hw: pointer to the HW struct 4705 * @blk: hardware block 4706 * @vsi: the VSI to enable with the profile specified by ID 4707 * @hdl: profile handle 4708 * 4709 * Calling this function will update the hardware tables to enable the 4710 * profile indicated by the ID parameter for the VSIs specified in the VSI 4711 * array. Once successfully called, the flow will be enabled. 4712 */ 4713 enum ice_status 4714 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4715 { 4716 struct ice_vsig_prof *tmp1, *del1; 4717 struct ice_chs_chg *tmp, *del; 4718 struct list_head union_lst; 4719 enum ice_status status; 4720 struct list_head chg; 4721 u16 vsig; 4722 4723 INIT_LIST_HEAD(&union_lst); 4724 INIT_LIST_HEAD(&chg); 4725 4726 /* Get profile */ 4727 status = ice_get_prof(hw, blk, hdl, &chg); 4728 if (status) 4729 return status; 4730 4731 /* determine if VSI is already part of a VSIG */ 4732 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4733 if (!status && vsig) { 4734 bool only_vsi; 4735 u16 or_vsig; 4736 u16 ref; 4737 4738 /* found in VSIG */ 4739 or_vsig = vsig; 4740 4741 /* make sure that there is no overlap/conflict between the new 4742 * characteristics and the existing ones; we don't support that 4743 * scenario 4744 */ 4745 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 4746 status = ICE_ERR_ALREADY_EXISTS; 4747 goto err_ice_add_prof_id_flow; 4748 } 4749 4750 /* last VSI in the VSIG? */ 4751 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4752 if (status) 4753 goto err_ice_add_prof_id_flow; 4754 only_vsi = (ref == 1); 4755 4756 /* create a union of the current profiles and the one being 4757 * added 4758 */ 4759 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 4760 if (status) 4761 goto err_ice_add_prof_id_flow; 4762 4763 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 4764 if (status) 4765 goto err_ice_add_prof_id_flow; 4766 4767 /* search for an existing VSIG with an exact charc match */ 4768 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 4769 if (!status) { 4770 /* move VSI to the VSIG that matches */ 4771 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4772 if (status) 4773 goto err_ice_add_prof_id_flow; 4774 4775 /* VSI has been moved out of or_vsig. If the or_vsig had 4776 * only that VSI it is now empty and can be removed. 4777 */ 4778 if (only_vsi) { 4779 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 4780 if (status) 4781 goto err_ice_add_prof_id_flow; 4782 } 4783 } else if (only_vsi) { 4784 /* If the original VSIG only contains one VSI, then it 4785 * will be the requesting VSI. In this case the VSI is 4786 * not sharing entries and we can simply add the new 4787 * profile to the VSIG. 4788 */ 4789 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 4790 &chg); 4791 if (status) 4792 goto err_ice_add_prof_id_flow; 4793 4794 /* Adjust priorities */ 4795 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4796 if (status) 4797 goto err_ice_add_prof_id_flow; 4798 } else { 4799 /* No match, so we need a new VSIG */ 4800 status = ice_create_vsig_from_lst(hw, blk, vsi, 4801 &union_lst, &vsig, 4802 &chg); 4803 if (status) 4804 goto err_ice_add_prof_id_flow; 4805 4806 /* Adjust priorities */ 4807 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4808 if (status) 4809 goto err_ice_add_prof_id_flow; 4810 } 4811 } else { 4812 /* need to find or add a VSIG */ 4813 /* search for an existing VSIG with an exact charc match */ 4814 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 4815 /* found an exact match */ 4816 /* add or move VSI to the VSIG that matches */ 4817 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4818 if (status) 4819 goto err_ice_add_prof_id_flow; 4820 } else { 4821 /* we did not find an exact match */ 4822 /* we need to add a VSIG */ 4823 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 4824 &chg); 4825 if (status) 4826 goto err_ice_add_prof_id_flow; 4827 } 4828 } 4829 4830 /* update hardware */ 4831 if (!status) 4832 status = ice_upd_prof_hw(hw, blk, &chg); 4833 4834 err_ice_add_prof_id_flow: 4835 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4836 list_del(&del->list_entry); 4837 devm_kfree(ice_hw_to_dev(hw), del); 4838 } 4839 4840 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 4841 list_del(&del1->list); 4842 devm_kfree(ice_hw_to_dev(hw), del1); 4843 } 4844 4845 return status; 4846 } 4847 4848 /** 4849 * ice_rem_prof_from_list - remove a profile from list 4850 * @hw: pointer to the HW struct 4851 * @lst: list to remove the profile from 4852 * @hdl: the profile handle indicating the profile to remove 4853 */ 4854 static enum ice_status 4855 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 4856 { 4857 struct ice_vsig_prof *ent, *tmp; 4858 4859 list_for_each_entry_safe(ent, tmp, lst, list) 4860 if (ent->profile_cookie == hdl) { 4861 list_del(&ent->list); 4862 devm_kfree(ice_hw_to_dev(hw), ent); 4863 return 0; 4864 } 4865 4866 return ICE_ERR_DOES_NOT_EXIST; 4867 } 4868 4869 /** 4870 * ice_rem_prof_id_flow - remove flow 4871 * @hw: pointer to the HW struct 4872 * @blk: hardware block 4873 * @vsi: the VSI from which to remove the profile specified by ID 4874 * @hdl: profile tracking handle 4875 * 4876 * Calling this function will update the hardware tables to remove the 4877 * profile indicated by the ID parameter for the VSIs specified in the VSI 4878 * array. Once successfully called, the flow will be disabled. 4879 */ 4880 enum ice_status 4881 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4882 { 4883 struct ice_vsig_prof *tmp1, *del1; 4884 struct ice_chs_chg *tmp, *del; 4885 struct list_head chg, copy; 4886 enum ice_status status; 4887 u16 vsig; 4888 4889 INIT_LIST_HEAD(©); 4890 INIT_LIST_HEAD(&chg); 4891 4892 /* determine if VSI is already part of a VSIG */ 4893 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4894 if (!status && vsig) { 4895 bool last_profile; 4896 bool only_vsi; 4897 u16 ref; 4898 4899 /* found in VSIG */ 4900 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 4901 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4902 if (status) 4903 goto err_ice_rem_prof_id_flow; 4904 only_vsi = (ref == 1); 4905 4906 if (only_vsi) { 4907 /* If the original VSIG only contains one reference, 4908 * which will be the requesting VSI, then the VSI is not 4909 * sharing entries and we can simply remove the specific 4910 * characteristics from the VSIG. 4911 */ 4912 4913 if (last_profile) { 4914 /* If there are no profiles left for this VSIG, 4915 * then simply remove the the VSIG. 4916 */ 4917 status = ice_rem_vsig(hw, blk, vsig, &chg); 4918 if (status) 4919 goto err_ice_rem_prof_id_flow; 4920 } else { 4921 status = ice_rem_prof_id_vsig(hw, blk, vsig, 4922 hdl, &chg); 4923 if (status) 4924 goto err_ice_rem_prof_id_flow; 4925 4926 /* Adjust priorities */ 4927 status = ice_adj_prof_priorities(hw, blk, vsig, 4928 &chg); 4929 if (status) 4930 goto err_ice_rem_prof_id_flow; 4931 } 4932 4933 } else { 4934 /* Make a copy of the VSIG's list of Profiles */ 4935 status = ice_get_profs_vsig(hw, blk, vsig, ©); 4936 if (status) 4937 goto err_ice_rem_prof_id_flow; 4938 4939 /* Remove specified profile entry from the list */ 4940 status = ice_rem_prof_from_list(hw, ©, hdl); 4941 if (status) 4942 goto err_ice_rem_prof_id_flow; 4943 4944 if (list_empty(©)) { 4945 status = ice_move_vsi(hw, blk, vsi, 4946 ICE_DEFAULT_VSIG, &chg); 4947 if (status) 4948 goto err_ice_rem_prof_id_flow; 4949 4950 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 4951 &vsig)) { 4952 /* found an exact match */ 4953 /* add or move VSI to the VSIG that matches */ 4954 /* Search for a VSIG with a matching profile 4955 * list 4956 */ 4957 4958 /* Found match, move VSI to the matching VSIG */ 4959 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4960 if (status) 4961 goto err_ice_rem_prof_id_flow; 4962 } else { 4963 /* since no existing VSIG supports this 4964 * characteristic pattern, we need to create a 4965 * new VSIG and TCAM entries 4966 */ 4967 status = ice_create_vsig_from_lst(hw, blk, vsi, 4968 ©, &vsig, 4969 &chg); 4970 if (status) 4971 goto err_ice_rem_prof_id_flow; 4972 4973 /* Adjust priorities */ 4974 status = ice_adj_prof_priorities(hw, blk, vsig, 4975 &chg); 4976 if (status) 4977 goto err_ice_rem_prof_id_flow; 4978 } 4979 } 4980 } else { 4981 status = ICE_ERR_DOES_NOT_EXIST; 4982 } 4983 4984 /* update hardware tables */ 4985 if (!status) 4986 status = ice_upd_prof_hw(hw, blk, &chg); 4987 4988 err_ice_rem_prof_id_flow: 4989 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4990 list_del(&del->list_entry); 4991 devm_kfree(ice_hw_to_dev(hw), del); 4992 } 4993 4994 list_for_each_entry_safe(del1, tmp1, ©, list) { 4995 list_del(&del1->list); 4996 devm_kfree(ice_hw_to_dev(hw), del1); 4997 } 4998 4999 return status; 5000 } 5001