1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 #include "ice.h" 8 9 /* For supporting double VLAN mode, it is necessary to enable or disable certain 10 * boost tcam entries. The metadata labels names that match the following 11 * prefixes will be saved to allow enabling double VLAN mode. 12 */ 13 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */ 14 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */ 15 16 /* To support tunneling entries by PF, the package will append the PF number to 17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 18 */ 19 #define ICE_TNL_PRE "TNL_" 20 static const struct ice_tunnel_type_scan tnls[] = { 21 { TNL_VXLAN, "TNL_VXLAN_PF" }, 22 { TNL_GENEVE, "TNL_GENEVE_PF" }, 23 { TNL_LAST, "" } 24 }; 25 26 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 27 /* SWITCH */ 28 { 29 ICE_SID_XLT0_SW, 30 ICE_SID_XLT_KEY_BUILDER_SW, 31 ICE_SID_XLT1_SW, 32 ICE_SID_XLT2_SW, 33 ICE_SID_PROFID_TCAM_SW, 34 ICE_SID_PROFID_REDIR_SW, 35 ICE_SID_FLD_VEC_SW, 36 ICE_SID_CDID_KEY_BUILDER_SW, 37 ICE_SID_CDID_REDIR_SW 38 }, 39 40 /* ACL */ 41 { 42 ICE_SID_XLT0_ACL, 43 ICE_SID_XLT_KEY_BUILDER_ACL, 44 ICE_SID_XLT1_ACL, 45 ICE_SID_XLT2_ACL, 46 ICE_SID_PROFID_TCAM_ACL, 47 ICE_SID_PROFID_REDIR_ACL, 48 ICE_SID_FLD_VEC_ACL, 49 ICE_SID_CDID_KEY_BUILDER_ACL, 50 ICE_SID_CDID_REDIR_ACL 51 }, 52 53 /* FD */ 54 { 55 ICE_SID_XLT0_FD, 56 ICE_SID_XLT_KEY_BUILDER_FD, 57 ICE_SID_XLT1_FD, 58 ICE_SID_XLT2_FD, 59 ICE_SID_PROFID_TCAM_FD, 60 ICE_SID_PROFID_REDIR_FD, 61 ICE_SID_FLD_VEC_FD, 62 ICE_SID_CDID_KEY_BUILDER_FD, 63 ICE_SID_CDID_REDIR_FD 64 }, 65 66 /* RSS */ 67 { 68 ICE_SID_XLT0_RSS, 69 ICE_SID_XLT_KEY_BUILDER_RSS, 70 ICE_SID_XLT1_RSS, 71 ICE_SID_XLT2_RSS, 72 ICE_SID_PROFID_TCAM_RSS, 73 ICE_SID_PROFID_REDIR_RSS, 74 ICE_SID_FLD_VEC_RSS, 75 ICE_SID_CDID_KEY_BUILDER_RSS, 76 ICE_SID_CDID_REDIR_RSS 77 }, 78 79 /* PE */ 80 { 81 ICE_SID_XLT0_PE, 82 ICE_SID_XLT_KEY_BUILDER_PE, 83 ICE_SID_XLT1_PE, 84 ICE_SID_XLT2_PE, 85 ICE_SID_PROFID_TCAM_PE, 86 ICE_SID_PROFID_REDIR_PE, 87 ICE_SID_FLD_VEC_PE, 88 ICE_SID_CDID_KEY_BUILDER_PE, 89 ICE_SID_CDID_REDIR_PE 90 } 91 }; 92 93 /** 94 * ice_sect_id - returns section ID 95 * @blk: block type 96 * @sect: section type 97 * 98 * This helper function returns the proper section ID given a block type and a 99 * section type. 100 */ 101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 102 { 103 return ice_sect_lkup[blk][sect]; 104 } 105 106 /** 107 * ice_pkg_val_buf 108 * @buf: pointer to the ice buffer 109 * 110 * This helper function validates a buffer's header. 111 */ 112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 113 { 114 struct ice_buf_hdr *hdr; 115 u16 section_count; 116 u16 data_end; 117 118 hdr = (struct ice_buf_hdr *)buf->buf; 119 /* verify data */ 120 section_count = le16_to_cpu(hdr->section_count); 121 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 122 return NULL; 123 124 data_end = le16_to_cpu(hdr->data_end); 125 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 126 return NULL; 127 128 return hdr; 129 } 130 131 /** 132 * ice_find_buf_table 133 * @ice_seg: pointer to the ice segment 134 * 135 * Returns the address of the buffer table within the ice segment. 136 */ 137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 138 { 139 struct ice_nvm_table *nvms; 140 141 nvms = (struct ice_nvm_table *) 142 (ice_seg->device_table + 143 le32_to_cpu(ice_seg->device_table_count)); 144 145 return (__force struct ice_buf_table *) 146 (nvms->vers + le32_to_cpu(nvms->table_count)); 147 } 148 149 /** 150 * ice_pkg_enum_buf 151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 152 * @state: pointer to the enum state 153 * 154 * This function will enumerate all the buffers in the ice segment. The first 155 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 156 * ice_seg is set to NULL which continues the enumeration. When the function 157 * returns a NULL pointer, then the end of the buffers has been reached, or an 158 * unexpected value has been detected (for example an invalid section count or 159 * an invalid buffer end value). 160 */ 161 static struct ice_buf_hdr * 162 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 163 { 164 if (ice_seg) { 165 state->buf_table = ice_find_buf_table(ice_seg); 166 if (!state->buf_table) 167 return NULL; 168 169 state->buf_idx = 0; 170 return ice_pkg_val_buf(state->buf_table->buf_array); 171 } 172 173 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 174 return ice_pkg_val_buf(state->buf_table->buf_array + 175 state->buf_idx); 176 else 177 return NULL; 178 } 179 180 /** 181 * ice_pkg_advance_sect 182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 183 * @state: pointer to the enum state 184 * 185 * This helper function will advance the section within the ice segment, 186 * also advancing the buffer if needed. 187 */ 188 static bool 189 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 190 { 191 if (!ice_seg && !state->buf) 192 return false; 193 194 if (!ice_seg && state->buf) 195 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 196 return true; 197 198 state->buf = ice_pkg_enum_buf(ice_seg, state); 199 if (!state->buf) 200 return false; 201 202 /* start of new buffer, reset section index */ 203 state->sect_idx = 0; 204 return true; 205 } 206 207 /** 208 * ice_pkg_enum_section 209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 210 * @state: pointer to the enum state 211 * @sect_type: section type to enumerate 212 * 213 * This function will enumerate all the sections of a particular type in the 214 * ice segment. The first call is made with the ice_seg parameter non-NULL; 215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 216 * When the function returns a NULL pointer, then the end of the matching 217 * sections has been reached. 218 */ 219 static void * 220 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 221 u32 sect_type) 222 { 223 u16 offset, size; 224 225 if (ice_seg) 226 state->type = sect_type; 227 228 if (!ice_pkg_advance_sect(ice_seg, state)) 229 return NULL; 230 231 /* scan for next matching section */ 232 while (state->buf->section_entry[state->sect_idx].type != 233 cpu_to_le32(state->type)) 234 if (!ice_pkg_advance_sect(NULL, state)) 235 return NULL; 236 237 /* validate section */ 238 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 239 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 240 return NULL; 241 242 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 243 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 244 return NULL; 245 246 /* make sure the section fits in the buffer */ 247 if (offset + size > ICE_PKG_BUF_SIZE) 248 return NULL; 249 250 state->sect_type = 251 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 252 253 /* calc pointer to this section */ 254 state->sect = ((u8 *)state->buf) + 255 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 256 257 return state->sect; 258 } 259 260 /** 261 * ice_pkg_enum_entry 262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 263 * @state: pointer to the enum state 264 * @sect_type: section type to enumerate 265 * @offset: pointer to variable that receives the offset in the table (optional) 266 * @handler: function that handles access to the entries into the section type 267 * 268 * This function will enumerate all the entries in particular section type in 269 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 271 * When the function returns a NULL pointer, then the end of the entries has 272 * been reached. 273 * 274 * Since each section may have a different header and entry size, the handler 275 * function is needed to determine the number and location entries in each 276 * section. 277 * 278 * The offset parameter is optional, but should be used for sections that 279 * contain an offset for each section table. For such cases, the section handler 280 * function must return the appropriate offset + index to give the absolution 281 * offset for each entry. For example, if the base for a section's header 282 * indicates a base offset of 10, and the index for the entry is 2, then 283 * section handler function should set the offset to 10 + 2 = 12. 284 */ 285 static void * 286 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 287 u32 sect_type, u32 *offset, 288 void *(*handler)(u32 sect_type, void *section, 289 u32 index, u32 *offset)) 290 { 291 void *entry; 292 293 if (ice_seg) { 294 if (!handler) 295 return NULL; 296 297 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 298 return NULL; 299 300 state->entry_idx = 0; 301 state->handler = handler; 302 } else { 303 state->entry_idx++; 304 } 305 306 if (!state->handler) 307 return NULL; 308 309 /* get entry */ 310 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 311 offset); 312 if (!entry) { 313 /* end of a section, look for another section of this type */ 314 if (!ice_pkg_enum_section(NULL, state, 0)) 315 return NULL; 316 317 state->entry_idx = 0; 318 entry = state->handler(state->sect_type, state->sect, 319 state->entry_idx, offset); 320 } 321 322 return entry; 323 } 324 325 /** 326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 327 * @hw: pointer to the HW structure 328 * @ptype: the hardware PTYPE 329 */ 330 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 331 { 332 return ptype < ICE_FLOW_PTYPE_MAX && 333 test_bit(ptype, hw->hw_ptype); 334 } 335 336 /** 337 * ice_marker_ptype_tcam_handler 338 * @sect_type: section type 339 * @section: pointer to section 340 * @index: index of the Marker PType TCAM entry to be returned 341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections 342 * 343 * This is a callback function that can be passed to ice_pkg_enum_entry. 344 * Handles enumeration of individual Marker PType TCAM entries. 345 */ 346 static void * 347 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index, 348 u32 *offset) 349 { 350 struct ice_marker_ptype_tcam_section *marker_ptype; 351 352 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) 353 return NULL; 354 355 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) 356 return NULL; 357 358 if (offset) 359 *offset = 0; 360 361 marker_ptype = section; 362 if (index >= le16_to_cpu(marker_ptype->count)) 363 return NULL; 364 365 return marker_ptype->tcam + index; 366 } 367 368 /** 369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information 370 * @hw: pointer to the HW structure 371 */ 372 static void ice_fill_hw_ptype(struct ice_hw *hw) 373 { 374 struct ice_marker_ptype_tcam_entry *tcam; 375 struct ice_seg *seg = hw->seg; 376 struct ice_pkg_enum state; 377 378 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); 379 if (!seg) 380 return; 381 382 memset(&state, 0, sizeof(state)); 383 384 do { 385 tcam = ice_pkg_enum_entry(seg, &state, 386 ICE_SID_RXPARSER_MARKER_PTYPE, NULL, 387 ice_marker_ptype_tcam_handler); 388 if (tcam && 389 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && 390 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) 391 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); 392 393 seg = NULL; 394 } while (tcam); 395 } 396 397 /** 398 * ice_boost_tcam_handler 399 * @sect_type: section type 400 * @section: pointer to section 401 * @index: index of the boost TCAM entry to be returned 402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 403 * 404 * This is a callback function that can be passed to ice_pkg_enum_entry. 405 * Handles enumeration of individual boost TCAM entries. 406 */ 407 static void * 408 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 409 { 410 struct ice_boost_tcam_section *boost; 411 412 if (!section) 413 return NULL; 414 415 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 416 return NULL; 417 418 /* cppcheck-suppress nullPointer */ 419 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 420 return NULL; 421 422 if (offset) 423 *offset = 0; 424 425 boost = section; 426 if (index >= le16_to_cpu(boost->count)) 427 return NULL; 428 429 return boost->tcam + index; 430 } 431 432 /** 433 * ice_find_boost_entry 434 * @ice_seg: pointer to the ice segment (non-NULL) 435 * @addr: Boost TCAM address of entry to search for 436 * @entry: returns pointer to the entry 437 * 438 * Finds a particular Boost TCAM entry and returns a pointer to that entry 439 * if it is found. The ice_seg parameter must not be NULL since the first call 440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 441 */ 442 static int 443 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 444 struct ice_boost_tcam_entry **entry) 445 { 446 struct ice_boost_tcam_entry *tcam; 447 struct ice_pkg_enum state; 448 449 memset(&state, 0, sizeof(state)); 450 451 if (!ice_seg) 452 return -EINVAL; 453 454 do { 455 tcam = ice_pkg_enum_entry(ice_seg, &state, 456 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 457 ice_boost_tcam_handler); 458 if (tcam && le16_to_cpu(tcam->addr) == addr) { 459 *entry = tcam; 460 return 0; 461 } 462 463 ice_seg = NULL; 464 } while (tcam); 465 466 *entry = NULL; 467 return -EIO; 468 } 469 470 /** 471 * ice_label_enum_handler 472 * @sect_type: section type 473 * @section: pointer to section 474 * @index: index of the label entry to be returned 475 * @offset: pointer to receive absolute offset, always zero for label sections 476 * 477 * This is a callback function that can be passed to ice_pkg_enum_entry. 478 * Handles enumeration of individual label entries. 479 */ 480 static void * 481 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 482 u32 *offset) 483 { 484 struct ice_label_section *labels; 485 486 if (!section) 487 return NULL; 488 489 /* cppcheck-suppress nullPointer */ 490 if (index > ICE_MAX_LABELS_IN_BUF) 491 return NULL; 492 493 if (offset) 494 *offset = 0; 495 496 labels = section; 497 if (index >= le16_to_cpu(labels->count)) 498 return NULL; 499 500 return labels->label + index; 501 } 502 503 /** 504 * ice_enum_labels 505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 506 * @type: the section type that will contain the label (0 on subsequent calls) 507 * @state: ice_pkg_enum structure that will hold the state of the enumeration 508 * @value: pointer to a value that will return the label's value if found 509 * 510 * Enumerates a list of labels in the package. The caller will call 511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 513 * the end of the list has been reached. 514 */ 515 static char * 516 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 517 u16 *value) 518 { 519 struct ice_label *label; 520 521 /* Check for valid label section on first call */ 522 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 523 return NULL; 524 525 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 526 ice_label_enum_handler); 527 if (!label) 528 return NULL; 529 530 *value = le16_to_cpu(label->value); 531 return label->name; 532 } 533 534 /** 535 * ice_add_tunnel_hint 536 * @hw: pointer to the HW structure 537 * @label_name: label text 538 * @val: value of the tunnel port boost entry 539 */ 540 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 541 { 542 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 543 u16 i; 544 545 for (i = 0; tnls[i].type != TNL_LAST; i++) { 546 size_t len = strlen(tnls[i].label_prefix); 547 548 /* Look for matching label start, before continuing */ 549 if (strncmp(label_name, tnls[i].label_prefix, len)) 550 continue; 551 552 /* Make sure this label matches our PF. Note that the PF 553 * character ('0' - '7') will be located where our 554 * prefix string's null terminator is located. 555 */ 556 if ((label_name[len] - '0') == hw->pf_id) { 557 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 558 hw->tnl.tbl[hw->tnl.count].valid = false; 559 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 560 hw->tnl.tbl[hw->tnl.count].port = 0; 561 hw->tnl.count++; 562 break; 563 } 564 } 565 } 566 } 567 568 /** 569 * ice_add_dvm_hint 570 * @hw: pointer to the HW structure 571 * @val: value of the boost entry 572 * @enable: true if entry needs to be enabled, or false if needs to be disabled 573 */ 574 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable) 575 { 576 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) { 577 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val; 578 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable; 579 hw->dvm_upd.count++; 580 } 581 } 582 583 /** 584 * ice_init_pkg_hints 585 * @hw: pointer to the HW structure 586 * @ice_seg: pointer to the segment of the package scan (non-NULL) 587 * 588 * This function will scan the package and save off relevant information 589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 590 * since the first call to ice_enum_labels requires a pointer to an actual 591 * ice_seg structure. 592 */ 593 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 594 { 595 struct ice_pkg_enum state; 596 char *label_name; 597 u16 val; 598 int i; 599 600 memset(&hw->tnl, 0, sizeof(hw->tnl)); 601 memset(&state, 0, sizeof(state)); 602 603 if (!ice_seg) 604 return; 605 606 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 607 &val); 608 609 while (label_name) { 610 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 611 /* check for a tunnel entry */ 612 ice_add_tunnel_hint(hw, label_name, val); 613 614 /* check for a dvm mode entry */ 615 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE))) 616 ice_add_dvm_hint(hw, val, true); 617 618 /* check for a svm mode entry */ 619 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE))) 620 ice_add_dvm_hint(hw, val, false); 621 622 label_name = ice_enum_labels(NULL, 0, &state, &val); 623 } 624 625 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 626 for (i = 0; i < hw->tnl.count; i++) { 627 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 628 &hw->tnl.tbl[i].boost_entry); 629 if (hw->tnl.tbl[i].boost_entry) { 630 hw->tnl.tbl[i].valid = true; 631 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 632 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 633 } 634 } 635 636 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */ 637 for (i = 0; i < hw->dvm_upd.count; i++) 638 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr, 639 &hw->dvm_upd.tbl[i].boost_entry); 640 } 641 642 /* Key creation */ 643 644 #define ICE_DC_KEY 0x1 /* don't care */ 645 #define ICE_DC_KEYINV 0x1 646 #define ICE_NM_KEY 0x0 /* never match */ 647 #define ICE_NM_KEYINV 0x0 648 #define ICE_0_KEY 0x1 /* match 0 */ 649 #define ICE_0_KEYINV 0x0 650 #define ICE_1_KEY 0x0 /* match 1 */ 651 #define ICE_1_KEYINV 0x1 652 653 /** 654 * ice_gen_key_word - generate 16-bits of a key/mask word 655 * @val: the value 656 * @valid: valid bits mask (change only the valid bits) 657 * @dont_care: don't care mask 658 * @nvr_mtch: never match mask 659 * @key: pointer to an array of where the resulting key portion 660 * @key_inv: pointer to an array of where the resulting key invert portion 661 * 662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 664 * of key and 8 bits of key invert. 665 * 666 * '0' = b01, always match a 0 bit 667 * '1' = b10, always match a 1 bit 668 * '?' = b11, don't care bit (always matches) 669 * '~' = b00, never match bit 670 * 671 * Input: 672 * val: b0 1 0 1 0 1 673 * dont_care: b0 0 1 1 0 0 674 * never_mtch: b0 0 0 0 1 1 675 * ------------------------------ 676 * Result: key: b01 10 11 11 00 00 677 */ 678 static int 679 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 680 u8 *key_inv) 681 { 682 u8 in_key = *key, in_key_inv = *key_inv; 683 u8 i; 684 685 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 686 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 687 return -EIO; 688 689 *key = 0; 690 *key_inv = 0; 691 692 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 693 for (i = 0; i < 8; i++) { 694 *key >>= 1; 695 *key_inv >>= 1; 696 697 if (!(valid & 0x1)) { /* change only valid bits */ 698 *key |= (in_key & 0x1) << 7; 699 *key_inv |= (in_key_inv & 0x1) << 7; 700 } else if (dont_care & 0x1) { /* don't care bit */ 701 *key |= ICE_DC_KEY << 7; 702 *key_inv |= ICE_DC_KEYINV << 7; 703 } else if (nvr_mtch & 0x1) { /* never match bit */ 704 *key |= ICE_NM_KEY << 7; 705 *key_inv |= ICE_NM_KEYINV << 7; 706 } else if (val & 0x01) { /* exact 1 match */ 707 *key |= ICE_1_KEY << 7; 708 *key_inv |= ICE_1_KEYINV << 7; 709 } else { /* exact 0 match */ 710 *key |= ICE_0_KEY << 7; 711 *key_inv |= ICE_0_KEYINV << 7; 712 } 713 714 dont_care >>= 1; 715 nvr_mtch >>= 1; 716 valid >>= 1; 717 val >>= 1; 718 in_key >>= 1; 719 in_key_inv >>= 1; 720 } 721 722 return 0; 723 } 724 725 /** 726 * ice_bits_max_set - determine if the number of bits set is within a maximum 727 * @mask: pointer to the byte array which is the mask 728 * @size: the number of bytes in the mask 729 * @max: the max number of set bits 730 * 731 * This function determines if there are at most 'max' number of bits set in an 732 * array. Returns true if the number for bits set is <= max or will return false 733 * otherwise. 734 */ 735 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 736 { 737 u16 count = 0; 738 u16 i; 739 740 /* check each byte */ 741 for (i = 0; i < size; i++) { 742 /* if 0, go to next byte */ 743 if (!mask[i]) 744 continue; 745 746 /* We know there is at least one set bit in this byte because of 747 * the above check; if we already have found 'max' number of 748 * bits set, then we can return failure now. 749 */ 750 if (count == max) 751 return false; 752 753 /* count the bits in this byte, checking threshold */ 754 count += hweight8(mask[i]); 755 if (count > max) 756 return false; 757 } 758 759 return true; 760 } 761 762 /** 763 * ice_set_key - generate a variable sized key with multiples of 16-bits 764 * @key: pointer to where the key will be stored 765 * @size: the size of the complete key in bytes (must be even) 766 * @val: array of 8-bit values that makes up the value portion of the key 767 * @upd: array of 8-bit masks that determine what key portion to update 768 * @dc: array of 8-bit masks that make up the don't care mask 769 * @nm: array of 8-bit masks that make up the never match mask 770 * @off: the offset of the first byte in the key to update 771 * @len: the number of bytes in the key update 772 * 773 * This function generates a key from a value, a don't care mask and a never 774 * match mask. 775 * upd, dc, and nm are optional parameters, and can be NULL: 776 * upd == NULL --> upd mask is all 1's (update all bits) 777 * dc == NULL --> dc mask is all 0's (no don't care bits) 778 * nm == NULL --> nm mask is all 0's (no never match bits) 779 */ 780 static int 781 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 782 u16 len) 783 { 784 u16 half_size; 785 u16 i; 786 787 /* size must be a multiple of 2 bytes. */ 788 if (size % 2) 789 return -EIO; 790 791 half_size = size / 2; 792 if (off + len > half_size) 793 return -EIO; 794 795 /* Make sure at most one bit is set in the never match mask. Having more 796 * than one never match mask bit set will cause HW to consume excessive 797 * power otherwise; this is a power management efficiency check. 798 */ 799 #define ICE_NVR_MTCH_BITS_MAX 1 800 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 801 return -EIO; 802 803 for (i = 0; i < len; i++) 804 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 805 dc ? dc[i] : 0, nm ? nm[i] : 0, 806 key + off + i, key + half_size + off + i)) 807 return -EIO; 808 809 return 0; 810 } 811 812 /** 813 * ice_acquire_global_cfg_lock 814 * @hw: pointer to the HW structure 815 * @access: access type (read or write) 816 * 817 * This function will request ownership of the global config lock for reading 818 * or writing of the package. When attempting to obtain write access, the 819 * caller must check for the following two return values: 820 * 821 * 0 - Means the caller has acquired the global config lock 822 * and can perform writing of the package. 823 * -EALREADY - Indicates another driver has already written the 824 * package or has found that no update was necessary; in 825 * this case, the caller can just skip performing any 826 * update of the package. 827 */ 828 static int 829 ice_acquire_global_cfg_lock(struct ice_hw *hw, 830 enum ice_aq_res_access_type access) 831 { 832 int status; 833 834 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 835 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 836 837 if (!status) 838 mutex_lock(&ice_global_cfg_lock_sw); 839 else if (status == -EALREADY) 840 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 841 842 return status; 843 } 844 845 /** 846 * ice_release_global_cfg_lock 847 * @hw: pointer to the HW structure 848 * 849 * This function will release the global config lock. 850 */ 851 static void ice_release_global_cfg_lock(struct ice_hw *hw) 852 { 853 mutex_unlock(&ice_global_cfg_lock_sw); 854 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 855 } 856 857 /** 858 * ice_acquire_change_lock 859 * @hw: pointer to the HW structure 860 * @access: access type (read or write) 861 * 862 * This function will request ownership of the change lock. 863 */ 864 int 865 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 866 { 867 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 868 ICE_CHANGE_LOCK_TIMEOUT); 869 } 870 871 /** 872 * ice_release_change_lock 873 * @hw: pointer to the HW structure 874 * 875 * This function will release the change lock using the proper Admin Command. 876 */ 877 void ice_release_change_lock(struct ice_hw *hw) 878 { 879 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 880 } 881 882 /** 883 * ice_aq_download_pkg 884 * @hw: pointer to the hardware structure 885 * @pkg_buf: the package buffer to transfer 886 * @buf_size: the size of the package buffer 887 * @last_buf: last buffer indicator 888 * @error_offset: returns error offset 889 * @error_info: returns error information 890 * @cd: pointer to command details structure or NULL 891 * 892 * Download Package (0x0C40) 893 */ 894 static int 895 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 896 u16 buf_size, bool last_buf, u32 *error_offset, 897 u32 *error_info, struct ice_sq_cd *cd) 898 { 899 struct ice_aqc_download_pkg *cmd; 900 struct ice_aq_desc desc; 901 int status; 902 903 if (error_offset) 904 *error_offset = 0; 905 if (error_info) 906 *error_info = 0; 907 908 cmd = &desc.params.download_pkg; 909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 910 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 911 912 if (last_buf) 913 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 914 915 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 916 if (status == -EIO) { 917 /* Read error from buffer only when the FW returned an error */ 918 struct ice_aqc_download_pkg_resp *resp; 919 920 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 921 if (error_offset) 922 *error_offset = le32_to_cpu(resp->error_offset); 923 if (error_info) 924 *error_info = le32_to_cpu(resp->error_info); 925 } 926 927 return status; 928 } 929 930 /** 931 * ice_aq_upload_section 932 * @hw: pointer to the hardware structure 933 * @pkg_buf: the package buffer which will receive the section 934 * @buf_size: the size of the package buffer 935 * @cd: pointer to command details structure or NULL 936 * 937 * Upload Section (0x0C41) 938 */ 939 int 940 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 941 u16 buf_size, struct ice_sq_cd *cd) 942 { 943 struct ice_aq_desc desc; 944 945 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 946 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 947 948 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 949 } 950 951 /** 952 * ice_aq_update_pkg 953 * @hw: pointer to the hardware structure 954 * @pkg_buf: the package cmd buffer 955 * @buf_size: the size of the package cmd buffer 956 * @last_buf: last buffer indicator 957 * @error_offset: returns error offset 958 * @error_info: returns error information 959 * @cd: pointer to command details structure or NULL 960 * 961 * Update Package (0x0C42) 962 */ 963 static int 964 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 965 bool last_buf, u32 *error_offset, u32 *error_info, 966 struct ice_sq_cd *cd) 967 { 968 struct ice_aqc_download_pkg *cmd; 969 struct ice_aq_desc desc; 970 int status; 971 972 if (error_offset) 973 *error_offset = 0; 974 if (error_info) 975 *error_info = 0; 976 977 cmd = &desc.params.download_pkg; 978 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 979 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 980 981 if (last_buf) 982 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 983 984 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 985 if (status == -EIO) { 986 /* Read error from buffer only when the FW returned an error */ 987 struct ice_aqc_download_pkg_resp *resp; 988 989 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 990 if (error_offset) 991 *error_offset = le32_to_cpu(resp->error_offset); 992 if (error_info) 993 *error_info = le32_to_cpu(resp->error_info); 994 } 995 996 return status; 997 } 998 999 /** 1000 * ice_find_seg_in_pkg 1001 * @hw: pointer to the hardware structure 1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 1003 * @pkg_hdr: pointer to the package header to be searched 1004 * 1005 * This function searches a package file for a particular segment type. On 1006 * success it returns a pointer to the segment header, otherwise it will 1007 * return NULL. 1008 */ 1009 static struct ice_generic_seg_hdr * 1010 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 1011 struct ice_pkg_hdr *pkg_hdr) 1012 { 1013 u32 i; 1014 1015 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 1016 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 1017 pkg_hdr->pkg_format_ver.update, 1018 pkg_hdr->pkg_format_ver.draft); 1019 1020 /* Search all package segments for the requested segment type */ 1021 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 1022 struct ice_generic_seg_hdr *seg; 1023 1024 seg = (struct ice_generic_seg_hdr *) 1025 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 1026 1027 if (le32_to_cpu(seg->seg_type) == seg_type) 1028 return seg; 1029 } 1030 1031 return NULL; 1032 } 1033 1034 /** 1035 * ice_update_pkg_no_lock 1036 * @hw: pointer to the hardware structure 1037 * @bufs: pointer to an array of buffers 1038 * @count: the number of buffers in the array 1039 */ 1040 static int 1041 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1042 { 1043 int status = 0; 1044 u32 i; 1045 1046 for (i = 0; i < count; i++) { 1047 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 1048 bool last = ((i + 1) == count); 1049 u32 offset, info; 1050 1051 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 1052 last, &offset, &info, NULL); 1053 1054 if (status) { 1055 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 1056 status, offset, info); 1057 break; 1058 } 1059 } 1060 1061 return status; 1062 } 1063 1064 /** 1065 * ice_update_pkg 1066 * @hw: pointer to the hardware structure 1067 * @bufs: pointer to an array of buffers 1068 * @count: the number of buffers in the array 1069 * 1070 * Obtains change lock and updates package. 1071 */ 1072 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1073 { 1074 int status; 1075 1076 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1077 if (status) 1078 return status; 1079 1080 status = ice_update_pkg_no_lock(hw, bufs, count); 1081 1082 ice_release_change_lock(hw); 1083 1084 return status; 1085 } 1086 1087 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) 1088 { 1089 switch (aq_err) { 1090 case ICE_AQ_RC_ENOSEC: 1091 case ICE_AQ_RC_EBADSIG: 1092 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; 1093 case ICE_AQ_RC_ESVN: 1094 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; 1095 case ICE_AQ_RC_EBADMAN: 1096 case ICE_AQ_RC_EBADBUF: 1097 return ICE_DDP_PKG_LOAD_ERROR; 1098 default: 1099 return ICE_DDP_PKG_ERR; 1100 } 1101 } 1102 1103 /** 1104 * ice_dwnld_cfg_bufs 1105 * @hw: pointer to the hardware structure 1106 * @bufs: pointer to an array of buffers 1107 * @count: the number of buffers in the array 1108 * 1109 * Obtains global config lock and downloads the package configuration buffers 1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1111 * found indicates that the rest of the buffers are all metadata buffers. 1112 */ 1113 static enum ice_ddp_state 1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1115 { 1116 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1117 struct ice_buf_hdr *bh; 1118 enum ice_aq_err err; 1119 u32 offset, info, i; 1120 int status; 1121 1122 if (!bufs || !count) 1123 return ICE_DDP_PKG_ERR; 1124 1125 /* If the first buffer's first section has its metadata bit set 1126 * then there are no buffers to be downloaded, and the operation is 1127 * considered a success. 1128 */ 1129 bh = (struct ice_buf_hdr *)bufs; 1130 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 1131 return ICE_DDP_PKG_SUCCESS; 1132 1133 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1134 if (status) { 1135 if (status == -EALREADY) 1136 return ICE_DDP_PKG_ALREADY_LOADED; 1137 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); 1138 } 1139 1140 for (i = 0; i < count; i++) { 1141 bool last = ((i + 1) == count); 1142 1143 if (!last) { 1144 /* check next buffer for metadata flag */ 1145 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1146 1147 /* A set metadata flag in the next buffer will signal 1148 * that the current buffer will be the last buffer 1149 * downloaded 1150 */ 1151 if (le16_to_cpu(bh->section_count)) 1152 if (le32_to_cpu(bh->section_entry[0].type) & 1153 ICE_METADATA_BUF) 1154 last = true; 1155 } 1156 1157 bh = (struct ice_buf_hdr *)(bufs + i); 1158 1159 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1160 &offset, &info, NULL); 1161 1162 /* Save AQ status from download package */ 1163 if (status) { 1164 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1165 status, offset, info); 1166 err = hw->adminq.sq_last_status; 1167 state = ice_map_aq_err_to_ddp_state(err); 1168 break; 1169 } 1170 1171 if (last) 1172 break; 1173 } 1174 1175 if (!status) { 1176 status = ice_set_vlan_mode(hw); 1177 if (status) 1178 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", 1179 status); 1180 } 1181 1182 ice_release_global_cfg_lock(hw); 1183 1184 return state; 1185 } 1186 1187 /** 1188 * ice_aq_get_pkg_info_list 1189 * @hw: pointer to the hardware structure 1190 * @pkg_info: the buffer which will receive the information list 1191 * @buf_size: the size of the pkg_info information buffer 1192 * @cd: pointer to command details structure or NULL 1193 * 1194 * Get Package Info List (0x0C43) 1195 */ 1196 static int 1197 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1198 struct ice_aqc_get_pkg_info_resp *pkg_info, 1199 u16 buf_size, struct ice_sq_cd *cd) 1200 { 1201 struct ice_aq_desc desc; 1202 1203 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1204 1205 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1206 } 1207 1208 /** 1209 * ice_download_pkg 1210 * @hw: pointer to the hardware structure 1211 * @ice_seg: pointer to the segment of the package to be downloaded 1212 * 1213 * Handles the download of a complete package. 1214 */ 1215 static enum ice_ddp_state 1216 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1217 { 1218 struct ice_buf_table *ice_buf_tbl; 1219 int status; 1220 1221 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1222 ice_seg->hdr.seg_format_ver.major, 1223 ice_seg->hdr.seg_format_ver.minor, 1224 ice_seg->hdr.seg_format_ver.update, 1225 ice_seg->hdr.seg_format_ver.draft); 1226 1227 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1228 le32_to_cpu(ice_seg->hdr.seg_type), 1229 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1230 1231 ice_buf_tbl = ice_find_buf_table(ice_seg); 1232 1233 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1234 le32_to_cpu(ice_buf_tbl->buf_count)); 1235 1236 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1237 le32_to_cpu(ice_buf_tbl->buf_count)); 1238 1239 ice_post_pkg_dwnld_vlan_mode_cfg(hw); 1240 1241 return status; 1242 } 1243 1244 /** 1245 * ice_init_pkg_info 1246 * @hw: pointer to the hardware structure 1247 * @pkg_hdr: pointer to the driver's package hdr 1248 * 1249 * Saves off the package details into the HW structure. 1250 */ 1251 static enum ice_ddp_state 1252 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1253 { 1254 struct ice_generic_seg_hdr *seg_hdr; 1255 1256 if (!pkg_hdr) 1257 return ICE_DDP_PKG_ERR; 1258 1259 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1260 if (seg_hdr) { 1261 struct ice_meta_sect *meta; 1262 struct ice_pkg_enum state; 1263 1264 memset(&state, 0, sizeof(state)); 1265 1266 /* Get package information from the Metadata Section */ 1267 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1268 ICE_SID_METADATA); 1269 if (!meta) { 1270 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1271 return ICE_DDP_PKG_INVALID_FILE; 1272 } 1273 1274 hw->pkg_ver = meta->ver; 1275 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1276 1277 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1278 meta->ver.major, meta->ver.minor, meta->ver.update, 1279 meta->ver.draft, meta->name); 1280 1281 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1282 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1283 sizeof(hw->ice_seg_id)); 1284 1285 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1286 seg_hdr->seg_format_ver.major, 1287 seg_hdr->seg_format_ver.minor, 1288 seg_hdr->seg_format_ver.update, 1289 seg_hdr->seg_format_ver.draft, 1290 seg_hdr->seg_id); 1291 } else { 1292 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1293 return ICE_DDP_PKG_INVALID_FILE; 1294 } 1295 1296 return ICE_DDP_PKG_SUCCESS; 1297 } 1298 1299 /** 1300 * ice_get_pkg_info 1301 * @hw: pointer to the hardware structure 1302 * 1303 * Store details of the package currently loaded in HW into the HW structure. 1304 */ 1305 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) 1306 { 1307 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1308 struct ice_aqc_get_pkg_info_resp *pkg_info; 1309 u16 size; 1310 u32 i; 1311 1312 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1313 pkg_info = kzalloc(size, GFP_KERNEL); 1314 if (!pkg_info) 1315 return ICE_DDP_PKG_ERR; 1316 1317 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { 1318 state = ICE_DDP_PKG_ERR; 1319 goto init_pkg_free_alloc; 1320 } 1321 1322 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1323 #define ICE_PKG_FLAG_COUNT 4 1324 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1325 u8 place = 0; 1326 1327 if (pkg_info->pkg_info[i].is_active) { 1328 flags[place++] = 'A'; 1329 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1330 hw->active_track_id = 1331 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1332 memcpy(hw->active_pkg_name, 1333 pkg_info->pkg_info[i].name, 1334 sizeof(pkg_info->pkg_info[i].name)); 1335 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1336 } 1337 if (pkg_info->pkg_info[i].is_active_at_boot) 1338 flags[place++] = 'B'; 1339 if (pkg_info->pkg_info[i].is_modified) 1340 flags[place++] = 'M'; 1341 if (pkg_info->pkg_info[i].is_in_nvm) 1342 flags[place++] = 'N'; 1343 1344 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1345 i, pkg_info->pkg_info[i].ver.major, 1346 pkg_info->pkg_info[i].ver.minor, 1347 pkg_info->pkg_info[i].ver.update, 1348 pkg_info->pkg_info[i].ver.draft, 1349 pkg_info->pkg_info[i].name, flags); 1350 } 1351 1352 init_pkg_free_alloc: 1353 kfree(pkg_info); 1354 1355 return state; 1356 } 1357 1358 /** 1359 * ice_verify_pkg - verify package 1360 * @pkg: pointer to the package buffer 1361 * @len: size of the package buffer 1362 * 1363 * Verifies various attributes of the package file, including length, format 1364 * version, and the requirement of at least one segment. 1365 */ 1366 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1367 { 1368 u32 seg_count; 1369 u32 i; 1370 1371 if (len < struct_size(pkg, seg_offset, 1)) 1372 return ICE_DDP_PKG_INVALID_FILE; 1373 1374 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1375 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1376 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1377 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1378 return ICE_DDP_PKG_INVALID_FILE; 1379 1380 /* pkg must have at least one segment */ 1381 seg_count = le32_to_cpu(pkg->seg_count); 1382 if (seg_count < 1) 1383 return ICE_DDP_PKG_INVALID_FILE; 1384 1385 /* make sure segment array fits in package length */ 1386 if (len < struct_size(pkg, seg_offset, seg_count)) 1387 return ICE_DDP_PKG_INVALID_FILE; 1388 1389 /* all segments must fit within length */ 1390 for (i = 0; i < seg_count; i++) { 1391 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1392 struct ice_generic_seg_hdr *seg; 1393 1394 /* segment header must fit */ 1395 if (len < off + sizeof(*seg)) 1396 return ICE_DDP_PKG_INVALID_FILE; 1397 1398 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1399 1400 /* segment body must fit */ 1401 if (len < off + le32_to_cpu(seg->seg_size)) 1402 return ICE_DDP_PKG_INVALID_FILE; 1403 } 1404 1405 return ICE_DDP_PKG_SUCCESS; 1406 } 1407 1408 /** 1409 * ice_free_seg - free package segment pointer 1410 * @hw: pointer to the hardware structure 1411 * 1412 * Frees the package segment pointer in the proper manner, depending on if the 1413 * segment was allocated or just the passed in pointer was stored. 1414 */ 1415 void ice_free_seg(struct ice_hw *hw) 1416 { 1417 if (hw->pkg_copy) { 1418 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1419 hw->pkg_copy = NULL; 1420 hw->pkg_size = 0; 1421 } 1422 hw->seg = NULL; 1423 } 1424 1425 /** 1426 * ice_init_pkg_regs - initialize additional package registers 1427 * @hw: pointer to the hardware structure 1428 */ 1429 static void ice_init_pkg_regs(struct ice_hw *hw) 1430 { 1431 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1432 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1433 #define ICE_SW_BLK_IDX 0 1434 1435 /* setup Switch block input mask, which is 48-bits in two parts */ 1436 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1437 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1438 } 1439 1440 /** 1441 * ice_chk_pkg_version - check package version for compatibility with driver 1442 * @pkg_ver: pointer to a version structure to check 1443 * 1444 * Check to make sure that the package about to be downloaded is compatible with 1445 * the driver. To be compatible, the major and minor components of the package 1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1447 * definitions. 1448 */ 1449 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1450 { 1451 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || 1452 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1453 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) 1454 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; 1455 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || 1456 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 1457 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) 1458 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; 1459 1460 return ICE_DDP_PKG_SUCCESS; 1461 } 1462 1463 /** 1464 * ice_chk_pkg_compat 1465 * @hw: pointer to the hardware structure 1466 * @ospkg: pointer to the package hdr 1467 * @seg: pointer to the package segment hdr 1468 * 1469 * This function checks the package version compatibility with driver and NVM 1470 */ 1471 static enum ice_ddp_state 1472 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1473 struct ice_seg **seg) 1474 { 1475 struct ice_aqc_get_pkg_info_resp *pkg; 1476 enum ice_ddp_state state; 1477 u16 size; 1478 u32 i; 1479 1480 /* Check package version compatibility */ 1481 state = ice_chk_pkg_version(&hw->pkg_ver); 1482 if (state) { 1483 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1484 return state; 1485 } 1486 1487 /* find ICE segment in given package */ 1488 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1489 ospkg); 1490 if (!*seg) { 1491 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1492 return ICE_DDP_PKG_INVALID_FILE; 1493 } 1494 1495 /* Check if FW is compatible with the OS package */ 1496 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1497 pkg = kzalloc(size, GFP_KERNEL); 1498 if (!pkg) 1499 return ICE_DDP_PKG_ERR; 1500 1501 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { 1502 state = ICE_DDP_PKG_LOAD_ERROR; 1503 goto fw_ddp_compat_free_alloc; 1504 } 1505 1506 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1507 /* loop till we find the NVM package */ 1508 if (!pkg->pkg_info[i].is_in_nvm) 1509 continue; 1510 if ((*seg)->hdr.seg_format_ver.major != 1511 pkg->pkg_info[i].ver.major || 1512 (*seg)->hdr.seg_format_ver.minor > 1513 pkg->pkg_info[i].ver.minor) { 1514 state = ICE_DDP_PKG_FW_MISMATCH; 1515 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1516 } 1517 /* done processing NVM package so break */ 1518 break; 1519 } 1520 fw_ddp_compat_free_alloc: 1521 kfree(pkg); 1522 return state; 1523 } 1524 1525 /** 1526 * ice_sw_fv_handler 1527 * @sect_type: section type 1528 * @section: pointer to section 1529 * @index: index of the field vector entry to be returned 1530 * @offset: ptr to variable that receives the offset in the field vector table 1531 * 1532 * This is a callback function that can be passed to ice_pkg_enum_entry. 1533 * This function treats the given section as of type ice_sw_fv_section and 1534 * enumerates offset field. "offset" is an index into the field vector table. 1535 */ 1536 static void * 1537 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1538 { 1539 struct ice_sw_fv_section *fv_section = section; 1540 1541 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1542 return NULL; 1543 if (index >= le16_to_cpu(fv_section->count)) 1544 return NULL; 1545 if (offset) 1546 /* "index" passed in to this function is relative to a given 1547 * 4k block. To get to the true index into the field vector 1548 * table need to add the relative index to the base_offset 1549 * field of this section 1550 */ 1551 *offset = le16_to_cpu(fv_section->base_offset) + index; 1552 return fv_section->fv + index; 1553 } 1554 1555 /** 1556 * ice_get_prof_index_max - get the max profile index for used profile 1557 * @hw: pointer to the HW struct 1558 * 1559 * Calling this function will get the max profile index for used profile 1560 * and store the index number in struct ice_switch_info *switch_info 1561 * in HW for following use. 1562 */ 1563 static int ice_get_prof_index_max(struct ice_hw *hw) 1564 { 1565 u16 prof_index = 0, j, max_prof_index = 0; 1566 struct ice_pkg_enum state; 1567 struct ice_seg *ice_seg; 1568 bool flag = false; 1569 struct ice_fv *fv; 1570 u32 offset; 1571 1572 memset(&state, 0, sizeof(state)); 1573 1574 if (!hw->seg) 1575 return -EINVAL; 1576 1577 ice_seg = hw->seg; 1578 1579 do { 1580 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1581 &offset, ice_sw_fv_handler); 1582 if (!fv) 1583 break; 1584 ice_seg = NULL; 1585 1586 /* in the profile that not be used, the prot_id is set to 0xff 1587 * and the off is set to 0x1ff for all the field vectors. 1588 */ 1589 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1590 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1591 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1592 flag = true; 1593 if (flag && prof_index > max_prof_index) 1594 max_prof_index = prof_index; 1595 1596 prof_index++; 1597 flag = false; 1598 } while (fv); 1599 1600 hw->switch_info->max_used_prof_index = max_prof_index; 1601 1602 return 0; 1603 } 1604 1605 /** 1606 * ice_get_ddp_pkg_state - get DDP pkg state after download 1607 * @hw: pointer to the HW struct 1608 * @already_loaded: indicates if pkg was already loaded onto the device 1609 */ 1610 static enum ice_ddp_state 1611 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) 1612 { 1613 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 1614 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 1615 hw->pkg_ver.update == hw->active_pkg_ver.update && 1616 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 1617 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { 1618 if (already_loaded) 1619 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; 1620 else 1621 return ICE_DDP_PKG_SUCCESS; 1622 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 1623 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 1624 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; 1625 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 1626 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 1627 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; 1628 } else { 1629 return ICE_DDP_PKG_ERR; 1630 } 1631 } 1632 1633 /** 1634 * ice_init_pkg - initialize/download package 1635 * @hw: pointer to the hardware structure 1636 * @buf: pointer to the package buffer 1637 * @len: size of the package buffer 1638 * 1639 * This function initializes a package. The package contains HW tables 1640 * required to do packet processing. First, the function extracts package 1641 * information such as version. Then it finds the ice configuration segment 1642 * within the package; this function then saves a copy of the segment pointer 1643 * within the supplied package buffer. Next, the function will cache any hints 1644 * from the package, followed by downloading the package itself. Note, that if 1645 * a previous PF driver has already downloaded the package successfully, then 1646 * the current driver will not have to download the package again. 1647 * 1648 * The local package contents will be used to query default behavior and to 1649 * update specific sections of the HW's version of the package (e.g. to update 1650 * the parse graph to understand new protocols). 1651 * 1652 * This function stores a pointer to the package buffer memory, and it is 1653 * expected that the supplied buffer will not be freed immediately. If the 1654 * package buffer needs to be freed, such as when read from a file, use 1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1656 * case. 1657 */ 1658 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1659 { 1660 bool already_loaded = false; 1661 enum ice_ddp_state state; 1662 struct ice_pkg_hdr *pkg; 1663 struct ice_seg *seg; 1664 1665 if (!buf || !len) 1666 return ICE_DDP_PKG_ERR; 1667 1668 pkg = (struct ice_pkg_hdr *)buf; 1669 state = ice_verify_pkg(pkg, len); 1670 if (state) { 1671 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1672 state); 1673 return state; 1674 } 1675 1676 /* initialize package info */ 1677 state = ice_init_pkg_info(hw, pkg); 1678 if (state) 1679 return state; 1680 1681 /* before downloading the package, check package version for 1682 * compatibility with driver 1683 */ 1684 state = ice_chk_pkg_compat(hw, pkg, &seg); 1685 if (state) 1686 return state; 1687 1688 /* initialize package hints and then download package */ 1689 ice_init_pkg_hints(hw, seg); 1690 state = ice_download_pkg(hw, seg); 1691 if (state == ICE_DDP_PKG_ALREADY_LOADED) { 1692 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1693 already_loaded = true; 1694 } 1695 1696 /* Get information on the package currently loaded in HW, then make sure 1697 * the driver is compatible with this version. 1698 */ 1699 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { 1700 state = ice_get_pkg_info(hw); 1701 if (!state) 1702 state = ice_get_ddp_pkg_state(hw, already_loaded); 1703 } 1704 1705 if (ice_is_init_pkg_successful(state)) { 1706 hw->seg = seg; 1707 /* on successful package download update other required 1708 * registers to support the package and fill HW tables 1709 * with package content. 1710 */ 1711 ice_init_pkg_regs(hw); 1712 ice_fill_blk_tbls(hw); 1713 ice_fill_hw_ptype(hw); 1714 ice_get_prof_index_max(hw); 1715 } else { 1716 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1717 state); 1718 } 1719 1720 return state; 1721 } 1722 1723 /** 1724 * ice_copy_and_init_pkg - initialize/download a copy of the package 1725 * @hw: pointer to the hardware structure 1726 * @buf: pointer to the package buffer 1727 * @len: size of the package buffer 1728 * 1729 * This function copies the package buffer, and then calls ice_init_pkg() to 1730 * initialize the copied package contents. 1731 * 1732 * The copying is necessary if the package buffer supplied is constant, or if 1733 * the memory may disappear shortly after calling this function. 1734 * 1735 * If the package buffer resides in the data segment and can be modified, the 1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1737 * 1738 * However, if the package buffer needs to be copied first, such as when being 1739 * read from a file, the caller should use ice_copy_and_init_pkg(). 1740 * 1741 * This function will first copy the package buffer, before calling 1742 * ice_init_pkg(). The caller is free to immediately destroy the original 1743 * package buffer, as the new copy will be managed by this function and 1744 * related routines. 1745 */ 1746 enum ice_ddp_state 1747 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1748 { 1749 enum ice_ddp_state state; 1750 u8 *buf_copy; 1751 1752 if (!buf || !len) 1753 return ICE_DDP_PKG_ERR; 1754 1755 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1756 1757 state = ice_init_pkg(hw, buf_copy, len); 1758 if (!ice_is_init_pkg_successful(state)) { 1759 /* Free the copy, since we failed to initialize the package */ 1760 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1761 } else { 1762 /* Track the copied pkg so we can free it later */ 1763 hw->pkg_copy = buf_copy; 1764 hw->pkg_size = len; 1765 } 1766 1767 return state; 1768 } 1769 1770 /** 1771 * ice_is_init_pkg_successful - check if DDP init was successful 1772 * @state: state of the DDP pkg after download 1773 */ 1774 bool ice_is_init_pkg_successful(enum ice_ddp_state state) 1775 { 1776 switch (state) { 1777 case ICE_DDP_PKG_SUCCESS: 1778 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 1779 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 1780 return true; 1781 default: 1782 return false; 1783 } 1784 } 1785 1786 /** 1787 * ice_pkg_buf_alloc 1788 * @hw: pointer to the HW structure 1789 * 1790 * Allocates a package buffer and returns a pointer to the buffer header. 1791 * Note: all package contents must be in Little Endian form. 1792 */ 1793 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1794 { 1795 struct ice_buf_build *bld; 1796 struct ice_buf_hdr *buf; 1797 1798 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1799 if (!bld) 1800 return NULL; 1801 1802 buf = (struct ice_buf_hdr *)bld; 1803 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1804 section_entry)); 1805 return bld; 1806 } 1807 1808 static bool ice_is_gtp_u_profile(u16 prof_idx) 1809 { 1810 return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID && 1811 prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) || 1812 prof_idx == ICE_PROFID_IPV4_GTPU_TEID; 1813 } 1814 1815 static bool ice_is_gtp_c_profile(u16 prof_idx) 1816 { 1817 switch (prof_idx) { 1818 case ICE_PROFID_IPV4_GTPC_TEID: 1819 case ICE_PROFID_IPV4_GTPC_NO_TEID: 1820 case ICE_PROFID_IPV6_GTPC_TEID: 1821 case ICE_PROFID_IPV6_GTPC_NO_TEID: 1822 return true; 1823 default: 1824 return false; 1825 } 1826 } 1827 1828 /** 1829 * ice_get_sw_prof_type - determine switch profile type 1830 * @hw: pointer to the HW structure 1831 * @fv: pointer to the switch field vector 1832 * @prof_idx: profile index to check 1833 */ 1834 static enum ice_prof_type 1835 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx) 1836 { 1837 u16 i; 1838 1839 if (ice_is_gtp_c_profile(prof_idx)) 1840 return ICE_PROF_TUN_GTPC; 1841 1842 if (ice_is_gtp_u_profile(prof_idx)) 1843 return ICE_PROF_TUN_GTPU; 1844 1845 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1846 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1847 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1848 fv->ew[i].off == ICE_VNI_OFFSET) 1849 return ICE_PROF_TUN_UDP; 1850 1851 /* GRE tunnel will have GRE protocol */ 1852 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1853 return ICE_PROF_TUN_GRE; 1854 } 1855 1856 return ICE_PROF_NON_TUN; 1857 } 1858 1859 /** 1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1861 * @hw: pointer to hardware structure 1862 * @req_profs: type of profiles requested 1863 * @bm: pointer to memory for returning the bitmap of field vectors 1864 */ 1865 void 1866 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1867 unsigned long *bm) 1868 { 1869 struct ice_pkg_enum state; 1870 struct ice_seg *ice_seg; 1871 struct ice_fv *fv; 1872 1873 if (req_profs == ICE_PROF_ALL) { 1874 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1875 return; 1876 } 1877 1878 memset(&state, 0, sizeof(state)); 1879 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1880 ice_seg = hw->seg; 1881 do { 1882 enum ice_prof_type prof_type; 1883 u32 offset; 1884 1885 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1886 &offset, ice_sw_fv_handler); 1887 ice_seg = NULL; 1888 1889 if (fv) { 1890 /* Determine field vector type */ 1891 prof_type = ice_get_sw_prof_type(hw, fv, offset); 1892 1893 if (req_profs & prof_type) 1894 set_bit((u16)offset, bm); 1895 } 1896 } while (fv); 1897 } 1898 1899 /** 1900 * ice_get_sw_fv_list 1901 * @hw: pointer to the HW structure 1902 * @lkups: list of protocol types 1903 * @bm: bitmap of field vectors to consider 1904 * @fv_list: Head of a list 1905 * 1906 * Finds all the field vector entries from switch block that contain 1907 * a given protocol ID and offset and returns a list of structures of type 1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1909 * definition and profile ID information 1910 * NOTE: The caller of the function is responsible for freeing the memory 1911 * allocated for every list entry. 1912 */ 1913 int 1914 ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, 1915 unsigned long *bm, struct list_head *fv_list) 1916 { 1917 struct ice_sw_fv_list_entry *fvl; 1918 struct ice_sw_fv_list_entry *tmp; 1919 struct ice_pkg_enum state; 1920 struct ice_seg *ice_seg; 1921 struct ice_fv *fv; 1922 u32 offset; 1923 1924 memset(&state, 0, sizeof(state)); 1925 1926 if (!lkups->n_val_words || !hw->seg) 1927 return -EINVAL; 1928 1929 ice_seg = hw->seg; 1930 do { 1931 u16 i; 1932 1933 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1934 &offset, ice_sw_fv_handler); 1935 if (!fv) 1936 break; 1937 ice_seg = NULL; 1938 1939 /* If field vector is not in the bitmap list, then skip this 1940 * profile. 1941 */ 1942 if (!test_bit((u16)offset, bm)) 1943 continue; 1944 1945 for (i = 0; i < lkups->n_val_words; i++) { 1946 int j; 1947 1948 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1949 if (fv->ew[j].prot_id == 1950 lkups->fv_words[i].prot_id && 1951 fv->ew[j].off == lkups->fv_words[i].off) 1952 break; 1953 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1954 break; 1955 if (i + 1 == lkups->n_val_words) { 1956 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1957 sizeof(*fvl), GFP_KERNEL); 1958 if (!fvl) 1959 goto err; 1960 fvl->fv_ptr = fv; 1961 fvl->profile_id = offset; 1962 list_add(&fvl->list_entry, fv_list); 1963 break; 1964 } 1965 } 1966 } while (fv); 1967 if (list_empty(fv_list)) { 1968 dev_warn(ice_hw_to_dev(hw), "Required profiles not found in currently loaded DDP package"); 1969 return -EIO; 1970 } 1971 1972 return 0; 1973 1974 err: 1975 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1976 list_del(&fvl->list_entry); 1977 devm_kfree(ice_hw_to_dev(hw), fvl); 1978 } 1979 1980 return -ENOMEM; 1981 } 1982 1983 /** 1984 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1985 * @hw: pointer to hardware structure 1986 */ 1987 void ice_init_prof_result_bm(struct ice_hw *hw) 1988 { 1989 struct ice_pkg_enum state; 1990 struct ice_seg *ice_seg; 1991 struct ice_fv *fv; 1992 1993 memset(&state, 0, sizeof(state)); 1994 1995 if (!hw->seg) 1996 return; 1997 1998 ice_seg = hw->seg; 1999 do { 2000 u32 off; 2001 u16 i; 2002 2003 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 2004 &off, ice_sw_fv_handler); 2005 ice_seg = NULL; 2006 if (!fv) 2007 break; 2008 2009 bitmap_zero(hw->switch_info->prof_res_bm[off], 2010 ICE_MAX_FV_WORDS); 2011 2012 /* Determine empty field vector indices, these can be 2013 * used for recipe results. Skip index 0, since it is 2014 * always used for Switch ID. 2015 */ 2016 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 2017 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 2018 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 2019 set_bit(i, hw->switch_info->prof_res_bm[off]); 2020 } while (fv); 2021 } 2022 2023 /** 2024 * ice_pkg_buf_free 2025 * @hw: pointer to the HW structure 2026 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2027 * 2028 * Frees a package buffer 2029 */ 2030 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 2031 { 2032 devm_kfree(ice_hw_to_dev(hw), bld); 2033 } 2034 2035 /** 2036 * ice_pkg_buf_reserve_section 2037 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2038 * @count: the number of sections to reserve 2039 * 2040 * Reserves one or more section table entries in a package buffer. This routine 2041 * can be called multiple times as long as they are made before calling 2042 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 2043 * is called once, the number of sections that can be allocated will not be able 2044 * to be increased; not using all reserved sections is fine, but this will 2045 * result in some wasted space in the buffer. 2046 * Note: all package contents must be in Little Endian form. 2047 */ 2048 static int 2049 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 2050 { 2051 struct ice_buf_hdr *buf; 2052 u16 section_count; 2053 u16 data_end; 2054 2055 if (!bld) 2056 return -EINVAL; 2057 2058 buf = (struct ice_buf_hdr *)&bld->buf; 2059 2060 /* already an active section, can't increase table size */ 2061 section_count = le16_to_cpu(buf->section_count); 2062 if (section_count > 0) 2063 return -EIO; 2064 2065 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 2066 return -EIO; 2067 bld->reserved_section_table_entries += count; 2068 2069 data_end = le16_to_cpu(buf->data_end) + 2070 flex_array_size(buf, section_entry, count); 2071 buf->data_end = cpu_to_le16(data_end); 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * ice_pkg_buf_alloc_section 2078 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2079 * @type: the section type value 2080 * @size: the size of the section to reserve (in bytes) 2081 * 2082 * Reserves memory in the buffer for a section's content and updates the 2083 * buffers' status accordingly. This routine returns a pointer to the first 2084 * byte of the section start within the buffer, which is used to fill in the 2085 * section contents. 2086 * Note: all package contents must be in Little Endian form. 2087 */ 2088 static void * 2089 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 2090 { 2091 struct ice_buf_hdr *buf; 2092 u16 sect_count; 2093 u16 data_end; 2094 2095 if (!bld || !type || !size) 2096 return NULL; 2097 2098 buf = (struct ice_buf_hdr *)&bld->buf; 2099 2100 /* check for enough space left in buffer */ 2101 data_end = le16_to_cpu(buf->data_end); 2102 2103 /* section start must align on 4 byte boundary */ 2104 data_end = ALIGN(data_end, 4); 2105 2106 if ((data_end + size) > ICE_MAX_S_DATA_END) 2107 return NULL; 2108 2109 /* check for more available section table entries */ 2110 sect_count = le16_to_cpu(buf->section_count); 2111 if (sect_count < bld->reserved_section_table_entries) { 2112 void *section_ptr = ((u8 *)buf) + data_end; 2113 2114 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 2115 buf->section_entry[sect_count].size = cpu_to_le16(size); 2116 buf->section_entry[sect_count].type = cpu_to_le32(type); 2117 2118 data_end += size; 2119 buf->data_end = cpu_to_le16(data_end); 2120 2121 buf->section_count = cpu_to_le16(sect_count + 1); 2122 return section_ptr; 2123 } 2124 2125 /* no free section table entries */ 2126 return NULL; 2127 } 2128 2129 /** 2130 * ice_pkg_buf_alloc_single_section 2131 * @hw: pointer to the HW structure 2132 * @type: the section type value 2133 * @size: the size of the section to reserve (in bytes) 2134 * @section: returns pointer to the section 2135 * 2136 * Allocates a package buffer with a single section. 2137 * Note: all package contents must be in Little Endian form. 2138 */ 2139 struct ice_buf_build * 2140 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 2141 void **section) 2142 { 2143 struct ice_buf_build *buf; 2144 2145 if (!section) 2146 return NULL; 2147 2148 buf = ice_pkg_buf_alloc(hw); 2149 if (!buf) 2150 return NULL; 2151 2152 if (ice_pkg_buf_reserve_section(buf, 1)) 2153 goto ice_pkg_buf_alloc_single_section_err; 2154 2155 *section = ice_pkg_buf_alloc_section(buf, type, size); 2156 if (!*section) 2157 goto ice_pkg_buf_alloc_single_section_err; 2158 2159 return buf; 2160 2161 ice_pkg_buf_alloc_single_section_err: 2162 ice_pkg_buf_free(hw, buf); 2163 return NULL; 2164 } 2165 2166 /** 2167 * ice_pkg_buf_get_active_sections 2168 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2169 * 2170 * Returns the number of active sections. Before using the package buffer 2171 * in an update package command, the caller should make sure that there is at 2172 * least one active section - otherwise, the buffer is not legal and should 2173 * not be used. 2174 * Note: all package contents must be in Little Endian form. 2175 */ 2176 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2177 { 2178 struct ice_buf_hdr *buf; 2179 2180 if (!bld) 2181 return 0; 2182 2183 buf = (struct ice_buf_hdr *)&bld->buf; 2184 return le16_to_cpu(buf->section_count); 2185 } 2186 2187 /** 2188 * ice_pkg_buf 2189 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2190 * 2191 * Return a pointer to the buffer's header 2192 */ 2193 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2194 { 2195 if (!bld) 2196 return NULL; 2197 2198 return &bld->buf; 2199 } 2200 2201 /** 2202 * ice_get_open_tunnel_port - retrieve an open tunnel port 2203 * @hw: pointer to the HW structure 2204 * @port: returns open port 2205 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 2206 */ 2207 bool 2208 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 2209 enum ice_tunnel_type type) 2210 { 2211 bool res = false; 2212 u16 i; 2213 2214 mutex_lock(&hw->tnl_lock); 2215 2216 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2217 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 2218 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 2219 *port = hw->tnl.tbl[i].port; 2220 res = true; 2221 break; 2222 } 2223 2224 mutex_unlock(&hw->tnl_lock); 2225 2226 return res; 2227 } 2228 2229 /** 2230 * ice_upd_dvm_boost_entry 2231 * @hw: pointer to the HW structure 2232 * @entry: pointer to double vlan boost entry info 2233 */ 2234 static int 2235 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) 2236 { 2237 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2238 int status = -ENOSPC; 2239 struct ice_buf_build *bld; 2240 u8 val, dc, nm; 2241 2242 bld = ice_pkg_buf_alloc(hw); 2243 if (!bld) 2244 return -ENOMEM; 2245 2246 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2247 if (ice_pkg_buf_reserve_section(bld, 2)) 2248 goto ice_upd_dvm_boost_entry_err; 2249 2250 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2251 struct_size(sect_rx, tcam, 1)); 2252 if (!sect_rx) 2253 goto ice_upd_dvm_boost_entry_err; 2254 sect_rx->count = cpu_to_le16(1); 2255 2256 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2257 struct_size(sect_tx, tcam, 1)); 2258 if (!sect_tx) 2259 goto ice_upd_dvm_boost_entry_err; 2260 sect_tx->count = cpu_to_le16(1); 2261 2262 /* copy original boost entry to update package buffer */ 2263 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); 2264 2265 /* re-write the don't care and never match bits accordingly */ 2266 if (entry->enable) { 2267 /* all bits are don't care */ 2268 val = 0x00; 2269 dc = 0xFF; 2270 nm = 0x00; 2271 } else { 2272 /* disable, one never match bit, the rest are don't care */ 2273 val = 0x00; 2274 dc = 0xF7; 2275 nm = 0x08; 2276 } 2277 2278 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2279 &val, NULL, &dc, &nm, 0, sizeof(u8)); 2280 2281 /* exact copy of entry to Tx section entry */ 2282 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2283 2284 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); 2285 2286 ice_upd_dvm_boost_entry_err: 2287 ice_pkg_buf_free(hw, bld); 2288 2289 return status; 2290 } 2291 2292 /** 2293 * ice_set_dvm_boost_entries 2294 * @hw: pointer to the HW structure 2295 * 2296 * Enable double vlan by updating the appropriate boost tcam entries. 2297 */ 2298 int ice_set_dvm_boost_entries(struct ice_hw *hw) 2299 { 2300 int status; 2301 u16 i; 2302 2303 for (i = 0; i < hw->dvm_upd.count; i++) { 2304 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); 2305 if (status) 2306 return status; 2307 } 2308 2309 return 0; 2310 } 2311 2312 /** 2313 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 2314 * @hw: pointer to the HW structure 2315 * @type: type of tunnel 2316 * @idx: linear index 2317 * 2318 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 2319 * but really the port table may be sprase, and types are mixed, so convert 2320 * the stack index into the device index. 2321 */ 2322 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2323 u16 idx) 2324 { 2325 u16 i; 2326 2327 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2328 if (hw->tnl.tbl[i].valid && 2329 hw->tnl.tbl[i].type == type && 2330 idx-- == 0) 2331 return i; 2332 2333 WARN_ON_ONCE(1); 2334 return 0; 2335 } 2336 2337 /** 2338 * ice_create_tunnel 2339 * @hw: pointer to the HW structure 2340 * @index: device table entry 2341 * @type: type of tunnel 2342 * @port: port of tunnel to create 2343 * 2344 * Create a tunnel by updating the parse graph in the parser. We do that by 2345 * creating a package buffer with the tunnel info and issuing an update package 2346 * command. 2347 */ 2348 static int 2349 ice_create_tunnel(struct ice_hw *hw, u16 index, 2350 enum ice_tunnel_type type, u16 port) 2351 { 2352 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2353 struct ice_buf_build *bld; 2354 int status = -ENOSPC; 2355 2356 mutex_lock(&hw->tnl_lock); 2357 2358 bld = ice_pkg_buf_alloc(hw); 2359 if (!bld) { 2360 status = -ENOMEM; 2361 goto ice_create_tunnel_end; 2362 } 2363 2364 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2365 if (ice_pkg_buf_reserve_section(bld, 2)) 2366 goto ice_create_tunnel_err; 2367 2368 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2369 struct_size(sect_rx, tcam, 1)); 2370 if (!sect_rx) 2371 goto ice_create_tunnel_err; 2372 sect_rx->count = cpu_to_le16(1); 2373 2374 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2375 struct_size(sect_tx, tcam, 1)); 2376 if (!sect_tx) 2377 goto ice_create_tunnel_err; 2378 sect_tx->count = cpu_to_le16(1); 2379 2380 /* copy original boost entry to update package buffer */ 2381 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2382 sizeof(*sect_rx->tcam)); 2383 2384 /* over-write the never-match dest port key bits with the encoded port 2385 * bits 2386 */ 2387 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2388 (u8 *)&port, NULL, NULL, NULL, 2389 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2390 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2391 2392 /* exact copy of entry to Tx section entry */ 2393 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2394 2395 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2396 if (!status) 2397 hw->tnl.tbl[index].port = port; 2398 2399 ice_create_tunnel_err: 2400 ice_pkg_buf_free(hw, bld); 2401 2402 ice_create_tunnel_end: 2403 mutex_unlock(&hw->tnl_lock); 2404 2405 return status; 2406 } 2407 2408 /** 2409 * ice_destroy_tunnel 2410 * @hw: pointer to the HW structure 2411 * @index: device table entry 2412 * @type: type of tunnel 2413 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2414 * 2415 * Destroys a tunnel or all tunnels by creating an update package buffer 2416 * targeting the specific updates requested and then performing an update 2417 * package. 2418 */ 2419 static int 2420 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2421 u16 port) 2422 { 2423 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2424 struct ice_buf_build *bld; 2425 int status = -ENOSPC; 2426 2427 mutex_lock(&hw->tnl_lock); 2428 2429 if (WARN_ON(!hw->tnl.tbl[index].valid || 2430 hw->tnl.tbl[index].type != type || 2431 hw->tnl.tbl[index].port != port)) { 2432 status = -EIO; 2433 goto ice_destroy_tunnel_end; 2434 } 2435 2436 bld = ice_pkg_buf_alloc(hw); 2437 if (!bld) { 2438 status = -ENOMEM; 2439 goto ice_destroy_tunnel_end; 2440 } 2441 2442 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2443 if (ice_pkg_buf_reserve_section(bld, 2)) 2444 goto ice_destroy_tunnel_err; 2445 2446 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2447 struct_size(sect_rx, tcam, 1)); 2448 if (!sect_rx) 2449 goto ice_destroy_tunnel_err; 2450 sect_rx->count = cpu_to_le16(1); 2451 2452 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2453 struct_size(sect_tx, tcam, 1)); 2454 if (!sect_tx) 2455 goto ice_destroy_tunnel_err; 2456 sect_tx->count = cpu_to_le16(1); 2457 2458 /* copy original boost entry to update package buffer, one copy to Rx 2459 * section, another copy to the Tx section 2460 */ 2461 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2462 sizeof(*sect_rx->tcam)); 2463 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2464 sizeof(*sect_tx->tcam)); 2465 2466 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2467 if (!status) 2468 hw->tnl.tbl[index].port = 0; 2469 2470 ice_destroy_tunnel_err: 2471 ice_pkg_buf_free(hw, bld); 2472 2473 ice_destroy_tunnel_end: 2474 mutex_unlock(&hw->tnl_lock); 2475 2476 return status; 2477 } 2478 2479 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2480 unsigned int idx, struct udp_tunnel_info *ti) 2481 { 2482 struct ice_netdev_priv *np = netdev_priv(netdev); 2483 struct ice_vsi *vsi = np->vsi; 2484 struct ice_pf *pf = vsi->back; 2485 enum ice_tunnel_type tnl_type; 2486 int status; 2487 u16 index; 2488 2489 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2490 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2491 2492 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2493 if (status) { 2494 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 2495 status); 2496 return -EIO; 2497 } 2498 2499 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2500 return 0; 2501 } 2502 2503 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2504 unsigned int idx, struct udp_tunnel_info *ti) 2505 { 2506 struct ice_netdev_priv *np = netdev_priv(netdev); 2507 struct ice_vsi *vsi = np->vsi; 2508 struct ice_pf *pf = vsi->back; 2509 enum ice_tunnel_type tnl_type; 2510 int status; 2511 2512 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2513 2514 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2515 ntohs(ti->port)); 2516 if (status) { 2517 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 2518 status); 2519 return -EIO; 2520 } 2521 2522 return 0; 2523 } 2524 2525 /** 2526 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2527 * @hw: pointer to the hardware structure 2528 * @blk: hardware block 2529 * @prof: profile ID 2530 * @fv_idx: field vector word index 2531 * @prot: variable to receive the protocol ID 2532 * @off: variable to receive the protocol offset 2533 */ 2534 int 2535 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2536 u8 *prot, u16 *off) 2537 { 2538 struct ice_fv_word *fv_ext; 2539 2540 if (prof >= hw->blk[blk].es.count) 2541 return -EINVAL; 2542 2543 if (fv_idx >= hw->blk[blk].es.fvw) 2544 return -EINVAL; 2545 2546 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2547 2548 *prot = fv_ext[fv_idx].prot_id; 2549 *off = fv_ext[fv_idx].off; 2550 2551 return 0; 2552 } 2553 2554 /* PTG Management */ 2555 2556 /** 2557 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2558 * @hw: pointer to the hardware structure 2559 * @blk: HW block 2560 * @ptype: the ptype to search for 2561 * @ptg: pointer to variable that receives the PTG 2562 * 2563 * This function will search the PTGs for a particular ptype, returning the 2564 * PTG ID that contains it through the PTG parameter, with the value of 2565 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2566 */ 2567 static int 2568 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2569 { 2570 if (ptype >= ICE_XLT1_CNT || !ptg) 2571 return -EINVAL; 2572 2573 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2574 return 0; 2575 } 2576 2577 /** 2578 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2579 * @hw: pointer to the hardware structure 2580 * @blk: HW block 2581 * @ptg: the PTG to allocate 2582 * 2583 * This function allocates a given packet type group ID specified by the PTG 2584 * parameter. 2585 */ 2586 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2587 { 2588 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2589 } 2590 2591 /** 2592 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2593 * @hw: pointer to the hardware structure 2594 * @blk: HW block 2595 * @ptype: the ptype to remove 2596 * @ptg: the PTG to remove the ptype from 2597 * 2598 * This function will remove the ptype from the specific PTG, and move it to 2599 * the default PTG (ICE_DEFAULT_PTG). 2600 */ 2601 static int 2602 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2603 { 2604 struct ice_ptg_ptype **ch; 2605 struct ice_ptg_ptype *p; 2606 2607 if (ptype > ICE_XLT1_CNT - 1) 2608 return -EINVAL; 2609 2610 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2611 return -ENOENT; 2612 2613 /* Should not happen if .in_use is set, bad config */ 2614 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2615 return -EIO; 2616 2617 /* find the ptype within this PTG, and bypass the link over it */ 2618 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2619 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2620 while (p) { 2621 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2622 *ch = p->next_ptype; 2623 break; 2624 } 2625 2626 ch = &p->next_ptype; 2627 p = p->next_ptype; 2628 } 2629 2630 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2631 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2638 * @hw: pointer to the hardware structure 2639 * @blk: HW block 2640 * @ptype: the ptype to add or move 2641 * @ptg: the PTG to add or move the ptype to 2642 * 2643 * This function will either add or move a ptype to a particular PTG depending 2644 * on if the ptype is already part of another group. Note that using a 2645 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2646 * default PTG. 2647 */ 2648 static int 2649 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2650 { 2651 u8 original_ptg; 2652 int status; 2653 2654 if (ptype > ICE_XLT1_CNT - 1) 2655 return -EINVAL; 2656 2657 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2658 return -ENOENT; 2659 2660 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2661 if (status) 2662 return status; 2663 2664 /* Is ptype already in the correct PTG? */ 2665 if (original_ptg == ptg) 2666 return 0; 2667 2668 /* Remove from original PTG and move back to the default PTG */ 2669 if (original_ptg != ICE_DEFAULT_PTG) 2670 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2671 2672 /* Moving to default PTG? Then we're done with this request */ 2673 if (ptg == ICE_DEFAULT_PTG) 2674 return 0; 2675 2676 /* Add ptype to PTG at beginning of list */ 2677 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2678 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2679 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2680 &hw->blk[blk].xlt1.ptypes[ptype]; 2681 2682 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2683 hw->blk[blk].xlt1.t[ptype] = ptg; 2684 2685 return 0; 2686 } 2687 2688 /* Block / table size info */ 2689 struct ice_blk_size_details { 2690 u16 xlt1; /* # XLT1 entries */ 2691 u16 xlt2; /* # XLT2 entries */ 2692 u16 prof_tcam; /* # profile ID TCAM entries */ 2693 u16 prof_id; /* # profile IDs */ 2694 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2695 u16 prof_redir; /* # profile redirection entries */ 2696 u16 es; /* # extraction sequence entries */ 2697 u16 fvw; /* # field vector words */ 2698 u8 overwrite; /* overwrite existing entries allowed */ 2699 u8 reverse; /* reverse FV order */ 2700 }; 2701 2702 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2703 /** 2704 * Table Definitions 2705 * XLT1 - Number of entries in XLT1 table 2706 * XLT2 - Number of entries in XLT2 table 2707 * TCAM - Number of entries Profile ID TCAM table 2708 * CDID - Control Domain ID of the hardware block 2709 * PRED - Number of entries in the Profile Redirection Table 2710 * FV - Number of entries in the Field Vector 2711 * FVW - Width (in WORDs) of the Field Vector 2712 * OVR - Overwrite existing table entries 2713 * REV - Reverse FV 2714 */ 2715 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2716 /* Overwrite , Reverse FV */ 2717 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2718 false, false }, 2719 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2720 false, false }, 2721 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2722 false, true }, 2723 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2724 true, true }, 2725 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2726 false, false }, 2727 }; 2728 2729 enum ice_sid_all { 2730 ICE_SID_XLT1_OFF = 0, 2731 ICE_SID_XLT2_OFF, 2732 ICE_SID_PR_OFF, 2733 ICE_SID_PR_REDIR_OFF, 2734 ICE_SID_ES_OFF, 2735 ICE_SID_OFF_COUNT, 2736 }; 2737 2738 /* Characteristic handling */ 2739 2740 /** 2741 * ice_match_prop_lst - determine if properties of two lists match 2742 * @list1: first properties list 2743 * @list2: second properties list 2744 * 2745 * Count, cookies and the order must match in order to be considered equivalent. 2746 */ 2747 static bool 2748 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2749 { 2750 struct ice_vsig_prof *tmp1; 2751 struct ice_vsig_prof *tmp2; 2752 u16 chk_count = 0; 2753 u16 count = 0; 2754 2755 /* compare counts */ 2756 list_for_each_entry(tmp1, list1, list) 2757 count++; 2758 list_for_each_entry(tmp2, list2, list) 2759 chk_count++; 2760 /* cppcheck-suppress knownConditionTrueFalse */ 2761 if (!count || count != chk_count) 2762 return false; 2763 2764 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2765 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2766 2767 /* profile cookies must compare, and in the exact same order to take 2768 * into account priority 2769 */ 2770 while (count--) { 2771 if (tmp2->profile_cookie != tmp1->profile_cookie) 2772 return false; 2773 2774 tmp1 = list_next_entry(tmp1, list); 2775 tmp2 = list_next_entry(tmp2, list); 2776 } 2777 2778 return true; 2779 } 2780 2781 /* VSIG Management */ 2782 2783 /** 2784 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2785 * @hw: pointer to the hardware structure 2786 * @blk: HW block 2787 * @vsi: VSI of interest 2788 * @vsig: pointer to receive the VSI group 2789 * 2790 * This function will lookup the VSI entry in the XLT2 list and return 2791 * the VSI group its associated with. 2792 */ 2793 static int 2794 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2795 { 2796 if (!vsig || vsi >= ICE_MAX_VSI) 2797 return -EINVAL; 2798 2799 /* As long as there's a default or valid VSIG associated with the input 2800 * VSI, the functions returns a success. Any handling of VSIG will be 2801 * done by the following add, update or remove functions. 2802 */ 2803 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2804 2805 return 0; 2806 } 2807 2808 /** 2809 * ice_vsig_alloc_val - allocate a new VSIG by value 2810 * @hw: pointer to the hardware structure 2811 * @blk: HW block 2812 * @vsig: the VSIG to allocate 2813 * 2814 * This function will allocate a given VSIG specified by the VSIG parameter. 2815 */ 2816 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2817 { 2818 u16 idx = vsig & ICE_VSIG_IDX_M; 2819 2820 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2821 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2822 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2823 } 2824 2825 return ICE_VSIG_VALUE(idx, hw->pf_id); 2826 } 2827 2828 /** 2829 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2830 * @hw: pointer to the hardware structure 2831 * @blk: HW block 2832 * 2833 * This function will iterate through the VSIG list and mark the first 2834 * unused entry for the new VSIG entry as used and return that value. 2835 */ 2836 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2837 { 2838 u16 i; 2839 2840 for (i = 1; i < ICE_MAX_VSIGS; i++) 2841 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2842 return ice_vsig_alloc_val(hw, blk, i); 2843 2844 return ICE_DEFAULT_VSIG; 2845 } 2846 2847 /** 2848 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2849 * @hw: pointer to the hardware structure 2850 * @blk: HW block 2851 * @chs: characteristic list 2852 * @vsig: returns the VSIG with the matching profiles, if found 2853 * 2854 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2855 * a group have the same characteristic set. To check if there exists a VSIG 2856 * which has the same characteristics as the input characteristics; this 2857 * function will iterate through the XLT2 list and return the VSIG that has a 2858 * matching configuration. In order to make sure that priorities are accounted 2859 * for, the list must match exactly, including the order in which the 2860 * characteristics are listed. 2861 */ 2862 static int 2863 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2864 struct list_head *chs, u16 *vsig) 2865 { 2866 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2867 u16 i; 2868 2869 for (i = 0; i < xlt2->count; i++) 2870 if (xlt2->vsig_tbl[i].in_use && 2871 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2872 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2873 return 0; 2874 } 2875 2876 return -ENOENT; 2877 } 2878 2879 /** 2880 * ice_vsig_free - free VSI group 2881 * @hw: pointer to the hardware structure 2882 * @blk: HW block 2883 * @vsig: VSIG to remove 2884 * 2885 * The function will remove all VSIs associated with the input VSIG and move 2886 * them to the DEFAULT_VSIG and mark the VSIG available. 2887 */ 2888 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2889 { 2890 struct ice_vsig_prof *dtmp, *del; 2891 struct ice_vsig_vsi *vsi_cur; 2892 u16 idx; 2893 2894 idx = vsig & ICE_VSIG_IDX_M; 2895 if (idx >= ICE_MAX_VSIGS) 2896 return -EINVAL; 2897 2898 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2899 return -ENOENT; 2900 2901 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2902 2903 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2904 /* If the VSIG has at least 1 VSI then iterate through the 2905 * list and remove the VSIs before deleting the group. 2906 */ 2907 if (vsi_cur) { 2908 /* remove all vsis associated with this VSIG XLT2 entry */ 2909 do { 2910 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2911 2912 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2913 vsi_cur->changed = 1; 2914 vsi_cur->next_vsi = NULL; 2915 vsi_cur = tmp; 2916 } while (vsi_cur); 2917 2918 /* NULL terminate head of VSI list */ 2919 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2920 } 2921 2922 /* free characteristic list */ 2923 list_for_each_entry_safe(del, dtmp, 2924 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2925 list) { 2926 list_del(&del->list); 2927 devm_kfree(ice_hw_to_dev(hw), del); 2928 } 2929 2930 /* if VSIG characteristic list was cleared for reset 2931 * re-initialize the list head 2932 */ 2933 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * ice_vsig_remove_vsi - remove VSI from VSIG 2940 * @hw: pointer to the hardware structure 2941 * @blk: HW block 2942 * @vsi: VSI to remove 2943 * @vsig: VSI group to remove from 2944 * 2945 * The function will remove the input VSI from its VSI group and move it 2946 * to the DEFAULT_VSIG. 2947 */ 2948 static int 2949 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2950 { 2951 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2952 u16 idx; 2953 2954 idx = vsig & ICE_VSIG_IDX_M; 2955 2956 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2957 return -EINVAL; 2958 2959 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2960 return -ENOENT; 2961 2962 /* entry already in default VSIG, don't have to remove */ 2963 if (idx == ICE_DEFAULT_VSIG) 2964 return 0; 2965 2966 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2967 if (!(*vsi_head)) 2968 return -EIO; 2969 2970 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2971 vsi_cur = (*vsi_head); 2972 2973 /* iterate the VSI list, skip over the entry to be removed */ 2974 while (vsi_cur) { 2975 if (vsi_tgt == vsi_cur) { 2976 (*vsi_head) = vsi_cur->next_vsi; 2977 break; 2978 } 2979 vsi_head = &vsi_cur->next_vsi; 2980 vsi_cur = vsi_cur->next_vsi; 2981 } 2982 2983 /* verify if VSI was removed from group list */ 2984 if (!vsi_cur) 2985 return -ENOENT; 2986 2987 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2988 vsi_cur->changed = 1; 2989 vsi_cur->next_vsi = NULL; 2990 2991 return 0; 2992 } 2993 2994 /** 2995 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2996 * @hw: pointer to the hardware structure 2997 * @blk: HW block 2998 * @vsi: VSI to move 2999 * @vsig: destination VSI group 3000 * 3001 * This function will move or add the input VSI to the target VSIG. 3002 * The function will find the original VSIG the VSI belongs to and 3003 * move the entry to the DEFAULT_VSIG, update the original VSIG and 3004 * then move entry to the new VSIG. 3005 */ 3006 static int 3007 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3008 { 3009 struct ice_vsig_vsi *tmp; 3010 u16 orig_vsig, idx; 3011 int status; 3012 3013 idx = vsig & ICE_VSIG_IDX_M; 3014 3015 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3016 return -EINVAL; 3017 3018 /* if VSIG not in use and VSIG is not default type this VSIG 3019 * doesn't exist. 3020 */ 3021 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 3022 vsig != ICE_DEFAULT_VSIG) 3023 return -ENOENT; 3024 3025 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3026 if (status) 3027 return status; 3028 3029 /* no update required if vsigs match */ 3030 if (orig_vsig == vsig) 3031 return 0; 3032 3033 if (orig_vsig != ICE_DEFAULT_VSIG) { 3034 /* remove entry from orig_vsig and add to default VSIG */ 3035 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3036 if (status) 3037 return status; 3038 } 3039 3040 if (idx == ICE_DEFAULT_VSIG) 3041 return 0; 3042 3043 /* Create VSI entry and add VSIG and prop_mask values */ 3044 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3045 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3046 3047 /* Add new entry to the head of the VSIG list */ 3048 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3049 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3050 &hw->blk[blk].xlt2.vsis[vsi]; 3051 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3052 hw->blk[blk].xlt2.t[vsi] = vsig; 3053 3054 return 0; 3055 } 3056 3057 /** 3058 * ice_prof_has_mask_idx - determine if profile index masking is identical 3059 * @hw: pointer to the hardware structure 3060 * @blk: HW block 3061 * @prof: profile to check 3062 * @idx: profile index to check 3063 * @mask: mask to match 3064 */ 3065 static bool 3066 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 3067 u16 mask) 3068 { 3069 bool expect_no_mask = false; 3070 bool found = false; 3071 bool match = false; 3072 u16 i; 3073 3074 /* If mask is 0x0000 or 0xffff, then there is no masking */ 3075 if (mask == 0 || mask == 0xffff) 3076 expect_no_mask = true; 3077 3078 /* Scan the enabled masks on this profile, for the specified idx */ 3079 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 3080 hw->blk[blk].masks.count; i++) 3081 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 3082 if (hw->blk[blk].masks.masks[i].in_use && 3083 hw->blk[blk].masks.masks[i].idx == idx) { 3084 found = true; 3085 if (hw->blk[blk].masks.masks[i].mask == mask) 3086 match = true; 3087 break; 3088 } 3089 3090 if (expect_no_mask) { 3091 if (found) 3092 return false; 3093 } else { 3094 if (!match) 3095 return false; 3096 } 3097 3098 return true; 3099 } 3100 3101 /** 3102 * ice_prof_has_mask - determine if profile masking is identical 3103 * @hw: pointer to the hardware structure 3104 * @blk: HW block 3105 * @prof: profile to check 3106 * @masks: masks to match 3107 */ 3108 static bool 3109 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 3110 { 3111 u16 i; 3112 3113 /* es->mask_ena[prof] will have the mask */ 3114 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3115 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 3116 return false; 3117 3118 return true; 3119 } 3120 3121 /** 3122 * ice_find_prof_id_with_mask - find profile ID for a given field vector 3123 * @hw: pointer to the hardware structure 3124 * @blk: HW block 3125 * @fv: field vector to search for 3126 * @masks: masks for FV 3127 * @prof_id: receives the profile ID 3128 */ 3129 static int 3130 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 3131 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 3132 { 3133 struct ice_es *es = &hw->blk[blk].es; 3134 u8 i; 3135 3136 /* For FD, we don't want to re-use a existed profile with the same 3137 * field vector and mask. This will cause rule interference. 3138 */ 3139 if (blk == ICE_BLK_FD) 3140 return -ENOENT; 3141 3142 for (i = 0; i < (u8)es->count; i++) { 3143 u16 off = i * es->fvw; 3144 3145 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3146 continue; 3147 3148 /* check if masks settings are the same for this profile */ 3149 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 3150 continue; 3151 3152 *prof_id = i; 3153 return 0; 3154 } 3155 3156 return -ENOENT; 3157 } 3158 3159 /** 3160 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3161 * @blk: the block type 3162 * @rsrc_type: pointer to variable to receive the resource type 3163 */ 3164 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3165 { 3166 switch (blk) { 3167 case ICE_BLK_FD: 3168 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 3169 break; 3170 case ICE_BLK_RSS: 3171 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3172 break; 3173 default: 3174 return false; 3175 } 3176 return true; 3177 } 3178 3179 /** 3180 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3181 * @blk: the block type 3182 * @rsrc_type: pointer to variable to receive the resource type 3183 */ 3184 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3185 { 3186 switch (blk) { 3187 case ICE_BLK_FD: 3188 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 3189 break; 3190 case ICE_BLK_RSS: 3191 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3192 break; 3193 default: 3194 return false; 3195 } 3196 return true; 3197 } 3198 3199 /** 3200 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3201 * @hw: pointer to the HW struct 3202 * @blk: the block to allocate the TCAM for 3203 * @btm: true to allocate from bottom of table, false to allocate from top 3204 * @tcam_idx: pointer to variable to receive the TCAM entry 3205 * 3206 * This function allocates a new entry in a Profile ID TCAM for a specific 3207 * block. 3208 */ 3209 static int 3210 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 3211 u16 *tcam_idx) 3212 { 3213 u16 res_type; 3214 3215 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3216 return -EINVAL; 3217 3218 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 3219 } 3220 3221 /** 3222 * ice_free_tcam_ent - free hardware TCAM entry 3223 * @hw: pointer to the HW struct 3224 * @blk: the block from which to free the TCAM entry 3225 * @tcam_idx: the TCAM entry to free 3226 * 3227 * This function frees an entry in a Profile ID TCAM for a specific block. 3228 */ 3229 static int 3230 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3231 { 3232 u16 res_type; 3233 3234 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3235 return -EINVAL; 3236 3237 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3238 } 3239 3240 /** 3241 * ice_alloc_prof_id - allocate profile ID 3242 * @hw: pointer to the HW struct 3243 * @blk: the block to allocate the profile ID for 3244 * @prof_id: pointer to variable to receive the profile ID 3245 * 3246 * This function allocates a new profile ID, which also corresponds to a Field 3247 * Vector (Extraction Sequence) entry. 3248 */ 3249 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3250 { 3251 u16 res_type; 3252 u16 get_prof; 3253 int status; 3254 3255 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3256 return -EINVAL; 3257 3258 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3259 if (!status) 3260 *prof_id = (u8)get_prof; 3261 3262 return status; 3263 } 3264 3265 /** 3266 * ice_free_prof_id - free profile ID 3267 * @hw: pointer to the HW struct 3268 * @blk: the block from which to free the profile ID 3269 * @prof_id: the profile ID to free 3270 * 3271 * This function frees a profile ID, which also corresponds to a Field Vector. 3272 */ 3273 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3274 { 3275 u16 tmp_prof_id = (u16)prof_id; 3276 u16 res_type; 3277 3278 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3279 return -EINVAL; 3280 3281 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3282 } 3283 3284 /** 3285 * ice_prof_inc_ref - increment reference count for profile 3286 * @hw: pointer to the HW struct 3287 * @blk: the block from which to free the profile ID 3288 * @prof_id: the profile ID for which to increment the reference count 3289 */ 3290 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3291 { 3292 if (prof_id > hw->blk[blk].es.count) 3293 return -EINVAL; 3294 3295 hw->blk[blk].es.ref_count[prof_id]++; 3296 3297 return 0; 3298 } 3299 3300 /** 3301 * ice_write_prof_mask_reg - write profile mask register 3302 * @hw: pointer to the HW struct 3303 * @blk: hardware block 3304 * @mask_idx: mask index 3305 * @idx: index of the FV which will use the mask 3306 * @mask: the 16-bit mask 3307 */ 3308 static void 3309 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 3310 u16 idx, u16 mask) 3311 { 3312 u32 offset; 3313 u32 val; 3314 3315 switch (blk) { 3316 case ICE_BLK_RSS: 3317 offset = GLQF_HMASK(mask_idx); 3318 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 3319 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 3320 break; 3321 case ICE_BLK_FD: 3322 offset = GLQF_FDMASK(mask_idx); 3323 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 3324 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 3325 break; 3326 default: 3327 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3328 blk); 3329 return; 3330 } 3331 3332 wr32(hw, offset, val); 3333 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 3334 blk, idx, offset, val); 3335 } 3336 3337 /** 3338 * ice_write_prof_mask_enable_res - write profile mask enable register 3339 * @hw: pointer to the HW struct 3340 * @blk: hardware block 3341 * @prof_id: profile ID 3342 * @enable_mask: enable mask 3343 */ 3344 static void 3345 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 3346 u16 prof_id, u32 enable_mask) 3347 { 3348 u32 offset; 3349 3350 switch (blk) { 3351 case ICE_BLK_RSS: 3352 offset = GLQF_HMASK_SEL(prof_id); 3353 break; 3354 case ICE_BLK_FD: 3355 offset = GLQF_FDMASK_SEL(prof_id); 3356 break; 3357 default: 3358 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 3359 blk); 3360 return; 3361 } 3362 3363 wr32(hw, offset, enable_mask); 3364 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 3365 blk, prof_id, offset, enable_mask); 3366 } 3367 3368 /** 3369 * ice_init_prof_masks - initial prof masks 3370 * @hw: pointer to the HW struct 3371 * @blk: hardware block 3372 */ 3373 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 3374 { 3375 u16 per_pf; 3376 u16 i; 3377 3378 mutex_init(&hw->blk[blk].masks.lock); 3379 3380 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 3381 3382 hw->blk[blk].masks.count = per_pf; 3383 hw->blk[blk].masks.first = hw->pf_id * per_pf; 3384 3385 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3386 3387 for (i = hw->blk[blk].masks.first; 3388 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3389 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3390 } 3391 3392 /** 3393 * ice_init_all_prof_masks - initialize all prof masks 3394 * @hw: pointer to the HW struct 3395 */ 3396 static void ice_init_all_prof_masks(struct ice_hw *hw) 3397 { 3398 ice_init_prof_masks(hw, ICE_BLK_RSS); 3399 ice_init_prof_masks(hw, ICE_BLK_FD); 3400 } 3401 3402 /** 3403 * ice_alloc_prof_mask - allocate profile mask 3404 * @hw: pointer to the HW struct 3405 * @blk: hardware block 3406 * @idx: index of FV which will use the mask 3407 * @mask: the 16-bit mask 3408 * @mask_idx: variable to receive the mask index 3409 */ 3410 static int 3411 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3412 u16 *mask_idx) 3413 { 3414 bool found_unused = false, found_copy = false; 3415 u16 unused_idx = 0, copy_idx = 0; 3416 int status = -ENOSPC; 3417 u16 i; 3418 3419 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3420 return -EINVAL; 3421 3422 mutex_lock(&hw->blk[blk].masks.lock); 3423 3424 for (i = hw->blk[blk].masks.first; 3425 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3426 if (hw->blk[blk].masks.masks[i].in_use) { 3427 /* if mask is in use and it exactly duplicates the 3428 * desired mask and index, then in can be reused 3429 */ 3430 if (hw->blk[blk].masks.masks[i].mask == mask && 3431 hw->blk[blk].masks.masks[i].idx == idx) { 3432 found_copy = true; 3433 copy_idx = i; 3434 break; 3435 } 3436 } else { 3437 /* save off unused index, but keep searching in case 3438 * there is an exact match later on 3439 */ 3440 if (!found_unused) { 3441 found_unused = true; 3442 unused_idx = i; 3443 } 3444 } 3445 3446 if (found_copy) 3447 i = copy_idx; 3448 else if (found_unused) 3449 i = unused_idx; 3450 else 3451 goto err_ice_alloc_prof_mask; 3452 3453 /* update mask for a new entry */ 3454 if (found_unused) { 3455 hw->blk[blk].masks.masks[i].in_use = true; 3456 hw->blk[blk].masks.masks[i].mask = mask; 3457 hw->blk[blk].masks.masks[i].idx = idx; 3458 hw->blk[blk].masks.masks[i].ref = 0; 3459 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3460 } 3461 3462 hw->blk[blk].masks.masks[i].ref++; 3463 *mask_idx = i; 3464 status = 0; 3465 3466 err_ice_alloc_prof_mask: 3467 mutex_unlock(&hw->blk[blk].masks.lock); 3468 3469 return status; 3470 } 3471 3472 /** 3473 * ice_free_prof_mask - free profile mask 3474 * @hw: pointer to the HW struct 3475 * @blk: hardware block 3476 * @mask_idx: index of mask 3477 */ 3478 static int 3479 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3480 { 3481 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3482 return -EINVAL; 3483 3484 if (!(mask_idx >= hw->blk[blk].masks.first && 3485 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3486 return -ENOENT; 3487 3488 mutex_lock(&hw->blk[blk].masks.lock); 3489 3490 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3491 goto exit_ice_free_prof_mask; 3492 3493 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3494 hw->blk[blk].masks.masks[mask_idx].ref--; 3495 goto exit_ice_free_prof_mask; 3496 } 3497 3498 /* remove mask */ 3499 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3500 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3501 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3502 3503 /* update mask as unused entry */ 3504 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3505 mask_idx); 3506 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3507 3508 exit_ice_free_prof_mask: 3509 mutex_unlock(&hw->blk[blk].masks.lock); 3510 3511 return 0; 3512 } 3513 3514 /** 3515 * ice_free_prof_masks - free all profile masks for a profile 3516 * @hw: pointer to the HW struct 3517 * @blk: hardware block 3518 * @prof_id: profile ID 3519 */ 3520 static int 3521 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3522 { 3523 u32 mask_bm; 3524 u16 i; 3525 3526 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3527 return -EINVAL; 3528 3529 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3530 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3531 if (mask_bm & BIT(i)) 3532 ice_free_prof_mask(hw, blk, i); 3533 3534 return 0; 3535 } 3536 3537 /** 3538 * ice_shutdown_prof_masks - releases lock for masking 3539 * @hw: pointer to the HW struct 3540 * @blk: hardware block 3541 * 3542 * This should be called before unloading the driver 3543 */ 3544 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3545 { 3546 u16 i; 3547 3548 mutex_lock(&hw->blk[blk].masks.lock); 3549 3550 for (i = hw->blk[blk].masks.first; 3551 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3552 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3553 3554 hw->blk[blk].masks.masks[i].in_use = false; 3555 hw->blk[blk].masks.masks[i].idx = 0; 3556 hw->blk[blk].masks.masks[i].mask = 0; 3557 } 3558 3559 mutex_unlock(&hw->blk[blk].masks.lock); 3560 mutex_destroy(&hw->blk[blk].masks.lock); 3561 } 3562 3563 /** 3564 * ice_shutdown_all_prof_masks - releases all locks for masking 3565 * @hw: pointer to the HW struct 3566 * 3567 * This should be called before unloading the driver 3568 */ 3569 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3570 { 3571 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3572 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3573 } 3574 3575 /** 3576 * ice_update_prof_masking - set registers according to masking 3577 * @hw: pointer to the HW struct 3578 * @blk: hardware block 3579 * @prof_id: profile ID 3580 * @masks: masks 3581 */ 3582 static int 3583 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3584 u16 *masks) 3585 { 3586 bool err = false; 3587 u32 ena_mask = 0; 3588 u16 idx; 3589 u16 i; 3590 3591 /* Only support FD and RSS masking, otherwise nothing to be done */ 3592 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3593 return 0; 3594 3595 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3596 if (masks[i] && masks[i] != 0xFFFF) { 3597 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3598 ena_mask |= BIT(idx); 3599 } else { 3600 /* not enough bitmaps */ 3601 err = true; 3602 break; 3603 } 3604 } 3605 3606 if (err) { 3607 /* free any bitmaps we have allocated */ 3608 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3609 if (ena_mask & BIT(i)) 3610 ice_free_prof_mask(hw, blk, i); 3611 3612 return -EIO; 3613 } 3614 3615 /* enable the masks for this profile */ 3616 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3617 3618 /* store enabled masks with profile so that they can be freed later */ 3619 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3620 3621 return 0; 3622 } 3623 3624 /** 3625 * ice_write_es - write an extraction sequence to hardware 3626 * @hw: pointer to the HW struct 3627 * @blk: the block in which to write the extraction sequence 3628 * @prof_id: the profile ID to write 3629 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3630 */ 3631 static void 3632 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3633 struct ice_fv_word *fv) 3634 { 3635 u16 off; 3636 3637 off = prof_id * hw->blk[blk].es.fvw; 3638 if (!fv) { 3639 memset(&hw->blk[blk].es.t[off], 0, 3640 hw->blk[blk].es.fvw * sizeof(*fv)); 3641 hw->blk[blk].es.written[prof_id] = false; 3642 } else { 3643 memcpy(&hw->blk[blk].es.t[off], fv, 3644 hw->blk[blk].es.fvw * sizeof(*fv)); 3645 } 3646 } 3647 3648 /** 3649 * ice_prof_dec_ref - decrement reference count for profile 3650 * @hw: pointer to the HW struct 3651 * @blk: the block from which to free the profile ID 3652 * @prof_id: the profile ID for which to decrement the reference count 3653 */ 3654 static int 3655 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3656 { 3657 if (prof_id > hw->blk[blk].es.count) 3658 return -EINVAL; 3659 3660 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3661 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3662 ice_write_es(hw, blk, prof_id, NULL); 3663 ice_free_prof_masks(hw, blk, prof_id); 3664 return ice_free_prof_id(hw, blk, prof_id); 3665 } 3666 } 3667 3668 return 0; 3669 } 3670 3671 /* Block / table section IDs */ 3672 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3673 /* SWITCH */ 3674 { ICE_SID_XLT1_SW, 3675 ICE_SID_XLT2_SW, 3676 ICE_SID_PROFID_TCAM_SW, 3677 ICE_SID_PROFID_REDIR_SW, 3678 ICE_SID_FLD_VEC_SW 3679 }, 3680 3681 /* ACL */ 3682 { ICE_SID_XLT1_ACL, 3683 ICE_SID_XLT2_ACL, 3684 ICE_SID_PROFID_TCAM_ACL, 3685 ICE_SID_PROFID_REDIR_ACL, 3686 ICE_SID_FLD_VEC_ACL 3687 }, 3688 3689 /* FD */ 3690 { ICE_SID_XLT1_FD, 3691 ICE_SID_XLT2_FD, 3692 ICE_SID_PROFID_TCAM_FD, 3693 ICE_SID_PROFID_REDIR_FD, 3694 ICE_SID_FLD_VEC_FD 3695 }, 3696 3697 /* RSS */ 3698 { ICE_SID_XLT1_RSS, 3699 ICE_SID_XLT2_RSS, 3700 ICE_SID_PROFID_TCAM_RSS, 3701 ICE_SID_PROFID_REDIR_RSS, 3702 ICE_SID_FLD_VEC_RSS 3703 }, 3704 3705 /* PE */ 3706 { ICE_SID_XLT1_PE, 3707 ICE_SID_XLT2_PE, 3708 ICE_SID_PROFID_TCAM_PE, 3709 ICE_SID_PROFID_REDIR_PE, 3710 ICE_SID_FLD_VEC_PE 3711 } 3712 }; 3713 3714 /** 3715 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3716 * @hw: pointer to the hardware structure 3717 * @blk: the HW block to initialize 3718 */ 3719 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3720 { 3721 u16 pt; 3722 3723 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3724 u8 ptg; 3725 3726 ptg = hw->blk[blk].xlt1.t[pt]; 3727 if (ptg != ICE_DEFAULT_PTG) { 3728 ice_ptg_alloc_val(hw, blk, ptg); 3729 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3730 } 3731 } 3732 } 3733 3734 /** 3735 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3736 * @hw: pointer to the hardware structure 3737 * @blk: the HW block to initialize 3738 */ 3739 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3740 { 3741 u16 vsi; 3742 3743 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3744 u16 vsig; 3745 3746 vsig = hw->blk[blk].xlt2.t[vsi]; 3747 if (vsig) { 3748 ice_vsig_alloc_val(hw, blk, vsig); 3749 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3750 /* no changes at this time, since this has been 3751 * initialized from the original package 3752 */ 3753 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3754 } 3755 } 3756 } 3757 3758 /** 3759 * ice_init_sw_db - init software database from HW tables 3760 * @hw: pointer to the hardware structure 3761 */ 3762 static void ice_init_sw_db(struct ice_hw *hw) 3763 { 3764 u16 i; 3765 3766 for (i = 0; i < ICE_BLK_COUNT; i++) { 3767 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3768 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3769 } 3770 } 3771 3772 /** 3773 * ice_fill_tbl - Reads content of a single table type into database 3774 * @hw: pointer to the hardware structure 3775 * @block_id: Block ID of the table to copy 3776 * @sid: Section ID of the table to copy 3777 * 3778 * Will attempt to read the entire content of a given table of a single block 3779 * into the driver database. We assume that the buffer will always 3780 * be as large or larger than the data contained in the package. If 3781 * this condition is not met, there is most likely an error in the package 3782 * contents. 3783 */ 3784 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3785 { 3786 u32 dst_len, sect_len, offset = 0; 3787 struct ice_prof_redir_section *pr; 3788 struct ice_prof_id_section *pid; 3789 struct ice_xlt1_section *xlt1; 3790 struct ice_xlt2_section *xlt2; 3791 struct ice_sw_fv_section *es; 3792 struct ice_pkg_enum state; 3793 u8 *src, *dst; 3794 void *sect; 3795 3796 /* if the HW segment pointer is null then the first iteration of 3797 * ice_pkg_enum_section() will fail. In this case the HW tables will 3798 * not be filled and return success. 3799 */ 3800 if (!hw->seg) { 3801 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3802 return; 3803 } 3804 3805 memset(&state, 0, sizeof(state)); 3806 3807 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3808 3809 while (sect) { 3810 switch (sid) { 3811 case ICE_SID_XLT1_SW: 3812 case ICE_SID_XLT1_FD: 3813 case ICE_SID_XLT1_RSS: 3814 case ICE_SID_XLT1_ACL: 3815 case ICE_SID_XLT1_PE: 3816 xlt1 = sect; 3817 src = xlt1->value; 3818 sect_len = le16_to_cpu(xlt1->count) * 3819 sizeof(*hw->blk[block_id].xlt1.t); 3820 dst = hw->blk[block_id].xlt1.t; 3821 dst_len = hw->blk[block_id].xlt1.count * 3822 sizeof(*hw->blk[block_id].xlt1.t); 3823 break; 3824 case ICE_SID_XLT2_SW: 3825 case ICE_SID_XLT2_FD: 3826 case ICE_SID_XLT2_RSS: 3827 case ICE_SID_XLT2_ACL: 3828 case ICE_SID_XLT2_PE: 3829 xlt2 = sect; 3830 src = (__force u8 *)xlt2->value; 3831 sect_len = le16_to_cpu(xlt2->count) * 3832 sizeof(*hw->blk[block_id].xlt2.t); 3833 dst = (u8 *)hw->blk[block_id].xlt2.t; 3834 dst_len = hw->blk[block_id].xlt2.count * 3835 sizeof(*hw->blk[block_id].xlt2.t); 3836 break; 3837 case ICE_SID_PROFID_TCAM_SW: 3838 case ICE_SID_PROFID_TCAM_FD: 3839 case ICE_SID_PROFID_TCAM_RSS: 3840 case ICE_SID_PROFID_TCAM_ACL: 3841 case ICE_SID_PROFID_TCAM_PE: 3842 pid = sect; 3843 src = (u8 *)pid->entry; 3844 sect_len = le16_to_cpu(pid->count) * 3845 sizeof(*hw->blk[block_id].prof.t); 3846 dst = (u8 *)hw->blk[block_id].prof.t; 3847 dst_len = hw->blk[block_id].prof.count * 3848 sizeof(*hw->blk[block_id].prof.t); 3849 break; 3850 case ICE_SID_PROFID_REDIR_SW: 3851 case ICE_SID_PROFID_REDIR_FD: 3852 case ICE_SID_PROFID_REDIR_RSS: 3853 case ICE_SID_PROFID_REDIR_ACL: 3854 case ICE_SID_PROFID_REDIR_PE: 3855 pr = sect; 3856 src = pr->redir_value; 3857 sect_len = le16_to_cpu(pr->count) * 3858 sizeof(*hw->blk[block_id].prof_redir.t); 3859 dst = hw->blk[block_id].prof_redir.t; 3860 dst_len = hw->blk[block_id].prof_redir.count * 3861 sizeof(*hw->blk[block_id].prof_redir.t); 3862 break; 3863 case ICE_SID_FLD_VEC_SW: 3864 case ICE_SID_FLD_VEC_FD: 3865 case ICE_SID_FLD_VEC_RSS: 3866 case ICE_SID_FLD_VEC_ACL: 3867 case ICE_SID_FLD_VEC_PE: 3868 es = sect; 3869 src = (u8 *)es->fv; 3870 sect_len = (u32)(le16_to_cpu(es->count) * 3871 hw->blk[block_id].es.fvw) * 3872 sizeof(*hw->blk[block_id].es.t); 3873 dst = (u8 *)hw->blk[block_id].es.t; 3874 dst_len = (u32)(hw->blk[block_id].es.count * 3875 hw->blk[block_id].es.fvw) * 3876 sizeof(*hw->blk[block_id].es.t); 3877 break; 3878 default: 3879 return; 3880 } 3881 3882 /* if the section offset exceeds destination length, terminate 3883 * table fill. 3884 */ 3885 if (offset > dst_len) 3886 return; 3887 3888 /* if the sum of section size and offset exceed destination size 3889 * then we are out of bounds of the HW table size for that PF. 3890 * Changing section length to fill the remaining table space 3891 * of that PF. 3892 */ 3893 if ((offset + sect_len) > dst_len) 3894 sect_len = dst_len - offset; 3895 3896 memcpy(dst + offset, src, sect_len); 3897 offset += sect_len; 3898 sect = ice_pkg_enum_section(NULL, &state, sid); 3899 } 3900 } 3901 3902 /** 3903 * ice_fill_blk_tbls - Read package context for tables 3904 * @hw: pointer to the hardware structure 3905 * 3906 * Reads the current package contents and populates the driver 3907 * database with the data iteratively for all advanced feature 3908 * blocks. Assume that the HW tables have been allocated. 3909 */ 3910 void ice_fill_blk_tbls(struct ice_hw *hw) 3911 { 3912 u8 i; 3913 3914 for (i = 0; i < ICE_BLK_COUNT; i++) { 3915 enum ice_block blk_id = (enum ice_block)i; 3916 3917 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3918 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3919 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3920 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3921 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3922 } 3923 3924 ice_init_sw_db(hw); 3925 } 3926 3927 /** 3928 * ice_free_prof_map - free profile map 3929 * @hw: pointer to the hardware structure 3930 * @blk_idx: HW block index 3931 */ 3932 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3933 { 3934 struct ice_es *es = &hw->blk[blk_idx].es; 3935 struct ice_prof_map *del, *tmp; 3936 3937 mutex_lock(&es->prof_map_lock); 3938 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3939 list_del(&del->list); 3940 devm_kfree(ice_hw_to_dev(hw), del); 3941 } 3942 INIT_LIST_HEAD(&es->prof_map); 3943 mutex_unlock(&es->prof_map_lock); 3944 } 3945 3946 /** 3947 * ice_free_flow_profs - free flow profile entries 3948 * @hw: pointer to the hardware structure 3949 * @blk_idx: HW block index 3950 */ 3951 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3952 { 3953 struct ice_flow_prof *p, *tmp; 3954 3955 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3956 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3957 struct ice_flow_entry *e, *t; 3958 3959 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3960 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3961 ICE_FLOW_ENTRY_HNDL(e)); 3962 3963 list_del(&p->l_entry); 3964 3965 mutex_destroy(&p->entries_lock); 3966 devm_kfree(ice_hw_to_dev(hw), p); 3967 } 3968 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3969 3970 /* if driver is in reset and tables are being cleared 3971 * re-initialize the flow profile list heads 3972 */ 3973 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3974 } 3975 3976 /** 3977 * ice_free_vsig_tbl - free complete VSIG table entries 3978 * @hw: pointer to the hardware structure 3979 * @blk: the HW block on which to free the VSIG table entries 3980 */ 3981 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3982 { 3983 u16 i; 3984 3985 if (!hw->blk[blk].xlt2.vsig_tbl) 3986 return; 3987 3988 for (i = 1; i < ICE_MAX_VSIGS; i++) 3989 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3990 ice_vsig_free(hw, blk, i); 3991 } 3992 3993 /** 3994 * ice_free_hw_tbls - free hardware table memory 3995 * @hw: pointer to the hardware structure 3996 */ 3997 void ice_free_hw_tbls(struct ice_hw *hw) 3998 { 3999 struct ice_rss_cfg *r, *rt; 4000 u8 i; 4001 4002 for (i = 0; i < ICE_BLK_COUNT; i++) { 4003 if (hw->blk[i].is_list_init) { 4004 struct ice_es *es = &hw->blk[i].es; 4005 4006 ice_free_prof_map(hw, i); 4007 mutex_destroy(&es->prof_map_lock); 4008 4009 ice_free_flow_profs(hw, i); 4010 mutex_destroy(&hw->fl_profs_locks[i]); 4011 4012 hw->blk[i].is_list_init = false; 4013 } 4014 ice_free_vsig_tbl(hw, (enum ice_block)i); 4015 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 4016 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 4017 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 4018 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 4019 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 4020 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 4021 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 4022 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 4023 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 4024 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 4025 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 4026 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 4027 } 4028 4029 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 4030 list_del(&r->l_entry); 4031 devm_kfree(ice_hw_to_dev(hw), r); 4032 } 4033 mutex_destroy(&hw->rss_locks); 4034 ice_shutdown_all_prof_masks(hw); 4035 memset(hw->blk, 0, sizeof(hw->blk)); 4036 } 4037 4038 /** 4039 * ice_init_flow_profs - init flow profile locks and list heads 4040 * @hw: pointer to the hardware structure 4041 * @blk_idx: HW block index 4042 */ 4043 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 4044 { 4045 mutex_init(&hw->fl_profs_locks[blk_idx]); 4046 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 4047 } 4048 4049 /** 4050 * ice_clear_hw_tbls - clear HW tables and flow profiles 4051 * @hw: pointer to the hardware structure 4052 */ 4053 void ice_clear_hw_tbls(struct ice_hw *hw) 4054 { 4055 u8 i; 4056 4057 for (i = 0; i < ICE_BLK_COUNT; i++) { 4058 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4059 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4060 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4061 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4062 struct ice_es *es = &hw->blk[i].es; 4063 4064 if (hw->blk[i].is_list_init) { 4065 ice_free_prof_map(hw, i); 4066 ice_free_flow_profs(hw, i); 4067 } 4068 4069 ice_free_vsig_tbl(hw, (enum ice_block)i); 4070 4071 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 4072 memset(xlt1->ptg_tbl, 0, 4073 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 4074 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 4075 4076 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 4077 memset(xlt2->vsig_tbl, 0, 4078 xlt2->count * sizeof(*xlt2->vsig_tbl)); 4079 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 4080 4081 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 4082 memset(prof_redir->t, 0, 4083 prof_redir->count * sizeof(*prof_redir->t)); 4084 4085 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 4086 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 4087 memset(es->written, 0, es->count * sizeof(*es->written)); 4088 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 4089 } 4090 } 4091 4092 /** 4093 * ice_init_hw_tbls - init hardware table memory 4094 * @hw: pointer to the hardware structure 4095 */ 4096 int ice_init_hw_tbls(struct ice_hw *hw) 4097 { 4098 u8 i; 4099 4100 mutex_init(&hw->rss_locks); 4101 INIT_LIST_HEAD(&hw->rss_list_head); 4102 ice_init_all_prof_masks(hw); 4103 for (i = 0; i < ICE_BLK_COUNT; i++) { 4104 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 4105 struct ice_prof_tcam *prof = &hw->blk[i].prof; 4106 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 4107 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 4108 struct ice_es *es = &hw->blk[i].es; 4109 u16 j; 4110 4111 if (hw->blk[i].is_list_init) 4112 continue; 4113 4114 ice_init_flow_profs(hw, i); 4115 mutex_init(&es->prof_map_lock); 4116 INIT_LIST_HEAD(&es->prof_map); 4117 hw->blk[i].is_list_init = true; 4118 4119 hw->blk[i].overwrite = blk_sizes[i].overwrite; 4120 es->reverse = blk_sizes[i].reverse; 4121 4122 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 4123 xlt1->count = blk_sizes[i].xlt1; 4124 4125 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4126 sizeof(*xlt1->ptypes), GFP_KERNEL); 4127 4128 if (!xlt1->ptypes) 4129 goto err; 4130 4131 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 4132 sizeof(*xlt1->ptg_tbl), 4133 GFP_KERNEL); 4134 4135 if (!xlt1->ptg_tbl) 4136 goto err; 4137 4138 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 4139 sizeof(*xlt1->t), GFP_KERNEL); 4140 if (!xlt1->t) 4141 goto err; 4142 4143 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 4144 xlt2->count = blk_sizes[i].xlt2; 4145 4146 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4147 sizeof(*xlt2->vsis), GFP_KERNEL); 4148 4149 if (!xlt2->vsis) 4150 goto err; 4151 4152 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4153 sizeof(*xlt2->vsig_tbl), 4154 GFP_KERNEL); 4155 if (!xlt2->vsig_tbl) 4156 goto err; 4157 4158 for (j = 0; j < xlt2->count; j++) 4159 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 4160 4161 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 4162 sizeof(*xlt2->t), GFP_KERNEL); 4163 if (!xlt2->t) 4164 goto err; 4165 4166 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 4167 prof->count = blk_sizes[i].prof_tcam; 4168 prof->max_prof_id = blk_sizes[i].prof_id; 4169 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 4170 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 4171 sizeof(*prof->t), GFP_KERNEL); 4172 4173 if (!prof->t) 4174 goto err; 4175 4176 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 4177 prof_redir->count = blk_sizes[i].prof_redir; 4178 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 4179 prof_redir->count, 4180 sizeof(*prof_redir->t), 4181 GFP_KERNEL); 4182 4183 if (!prof_redir->t) 4184 goto err; 4185 4186 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 4187 es->count = blk_sizes[i].es; 4188 es->fvw = blk_sizes[i].fvw; 4189 es->t = devm_kcalloc(ice_hw_to_dev(hw), 4190 (u32)(es->count * es->fvw), 4191 sizeof(*es->t), GFP_KERNEL); 4192 if (!es->t) 4193 goto err; 4194 4195 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4196 sizeof(*es->ref_count), 4197 GFP_KERNEL); 4198 if (!es->ref_count) 4199 goto err; 4200 4201 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4202 sizeof(*es->written), GFP_KERNEL); 4203 if (!es->written) 4204 goto err; 4205 4206 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 4207 sizeof(*es->mask_ena), GFP_KERNEL); 4208 if (!es->mask_ena) 4209 goto err; 4210 } 4211 return 0; 4212 4213 err: 4214 ice_free_hw_tbls(hw); 4215 return -ENOMEM; 4216 } 4217 4218 /** 4219 * ice_prof_gen_key - generate profile ID key 4220 * @hw: pointer to the HW struct 4221 * @blk: the block in which to write profile ID to 4222 * @ptg: packet type group (PTG) portion of key 4223 * @vsig: VSIG portion of key 4224 * @cdid: CDID portion of key 4225 * @flags: flag portion of key 4226 * @vl_msk: valid mask 4227 * @dc_msk: don't care mask 4228 * @nm_msk: never match mask 4229 * @key: output of profile ID key 4230 */ 4231 static int 4232 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 4233 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4234 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 4235 u8 key[ICE_TCAM_KEY_SZ]) 4236 { 4237 struct ice_prof_id_key inkey; 4238 4239 inkey.xlt1 = ptg; 4240 inkey.xlt2_cdid = cpu_to_le16(vsig); 4241 inkey.flags = cpu_to_le16(flags); 4242 4243 switch (hw->blk[blk].prof.cdid_bits) { 4244 case 0: 4245 break; 4246 case 2: 4247 #define ICE_CD_2_M 0xC000U 4248 #define ICE_CD_2_S 14 4249 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 4250 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 4251 break; 4252 case 4: 4253 #define ICE_CD_4_M 0xF000U 4254 #define ICE_CD_4_S 12 4255 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 4256 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 4257 break; 4258 case 8: 4259 #define ICE_CD_8_M 0xFF00U 4260 #define ICE_CD_8_S 16 4261 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 4262 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 4263 break; 4264 default: 4265 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 4266 break; 4267 } 4268 4269 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 4270 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 4271 } 4272 4273 /** 4274 * ice_tcam_write_entry - write TCAM entry 4275 * @hw: pointer to the HW struct 4276 * @blk: the block in which to write profile ID to 4277 * @idx: the entry index to write to 4278 * @prof_id: profile ID 4279 * @ptg: packet type group (PTG) portion of key 4280 * @vsig: VSIG portion of key 4281 * @cdid: CDID portion of key 4282 * @flags: flag portion of key 4283 * @vl_msk: valid mask 4284 * @dc_msk: don't care mask 4285 * @nm_msk: never match mask 4286 */ 4287 static int 4288 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4289 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4290 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4291 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4292 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4293 { 4294 struct ice_prof_tcam_entry; 4295 int status; 4296 4297 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4298 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4299 if (!status) { 4300 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 4301 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4302 } 4303 4304 return status; 4305 } 4306 4307 /** 4308 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4309 * @hw: pointer to the hardware structure 4310 * @blk: HW block 4311 * @vsig: VSIG to query 4312 * @refs: pointer to variable to receive the reference count 4313 */ 4314 static int 4315 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4316 { 4317 u16 idx = vsig & ICE_VSIG_IDX_M; 4318 struct ice_vsig_vsi *ptr; 4319 4320 *refs = 0; 4321 4322 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4323 return -ENOENT; 4324 4325 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4326 while (ptr) { 4327 (*refs)++; 4328 ptr = ptr->next_vsi; 4329 } 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4336 * @hw: pointer to the hardware structure 4337 * @blk: HW block 4338 * @vsig: VSIG to check against 4339 * @hdl: profile handle 4340 */ 4341 static bool 4342 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4343 { 4344 u16 idx = vsig & ICE_VSIG_IDX_M; 4345 struct ice_vsig_prof *ent; 4346 4347 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4348 list) 4349 if (ent->profile_cookie == hdl) 4350 return true; 4351 4352 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4353 vsig); 4354 return false; 4355 } 4356 4357 /** 4358 * ice_prof_bld_es - build profile ID extraction sequence changes 4359 * @hw: pointer to the HW struct 4360 * @blk: hardware block 4361 * @bld: the update package buffer build to add to 4362 * @chgs: the list of changes to make in hardware 4363 */ 4364 static int 4365 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4366 struct ice_buf_build *bld, struct list_head *chgs) 4367 { 4368 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4369 struct ice_chs_chg *tmp; 4370 4371 list_for_each_entry(tmp, chgs, list_entry) 4372 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4373 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4374 struct ice_pkg_es *p; 4375 u32 id; 4376 4377 id = ice_sect_id(blk, ICE_VEC_TBL); 4378 p = ice_pkg_buf_alloc_section(bld, id, 4379 struct_size(p, es, 1) + 4380 vec_size - 4381 sizeof(p->es[0])); 4382 4383 if (!p) 4384 return -ENOSPC; 4385 4386 p->count = cpu_to_le16(1); 4387 p->offset = cpu_to_le16(tmp->prof_id); 4388 4389 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4390 } 4391 4392 return 0; 4393 } 4394 4395 /** 4396 * ice_prof_bld_tcam - build profile ID TCAM changes 4397 * @hw: pointer to the HW struct 4398 * @blk: hardware block 4399 * @bld: the update package buffer build to add to 4400 * @chgs: the list of changes to make in hardware 4401 */ 4402 static int 4403 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4404 struct ice_buf_build *bld, struct list_head *chgs) 4405 { 4406 struct ice_chs_chg *tmp; 4407 4408 list_for_each_entry(tmp, chgs, list_entry) 4409 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4410 struct ice_prof_id_section *p; 4411 u32 id; 4412 4413 id = ice_sect_id(blk, ICE_PROF_TCAM); 4414 p = ice_pkg_buf_alloc_section(bld, id, 4415 struct_size(p, entry, 1)); 4416 4417 if (!p) 4418 return -ENOSPC; 4419 4420 p->count = cpu_to_le16(1); 4421 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4422 p->entry[0].prof_id = tmp->prof_id; 4423 4424 memcpy(p->entry[0].key, 4425 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4426 sizeof(hw->blk[blk].prof.t->key)); 4427 } 4428 4429 return 0; 4430 } 4431 4432 /** 4433 * ice_prof_bld_xlt1 - build XLT1 changes 4434 * @blk: hardware block 4435 * @bld: the update package buffer build to add to 4436 * @chgs: the list of changes to make in hardware 4437 */ 4438 static int 4439 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4440 struct list_head *chgs) 4441 { 4442 struct ice_chs_chg *tmp; 4443 4444 list_for_each_entry(tmp, chgs, list_entry) 4445 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4446 struct ice_xlt1_section *p; 4447 u32 id; 4448 4449 id = ice_sect_id(blk, ICE_XLT1); 4450 p = ice_pkg_buf_alloc_section(bld, id, 4451 struct_size(p, value, 1)); 4452 4453 if (!p) 4454 return -ENOSPC; 4455 4456 p->count = cpu_to_le16(1); 4457 p->offset = cpu_to_le16(tmp->ptype); 4458 p->value[0] = tmp->ptg; 4459 } 4460 4461 return 0; 4462 } 4463 4464 /** 4465 * ice_prof_bld_xlt2 - build XLT2 changes 4466 * @blk: hardware block 4467 * @bld: the update package buffer build to add to 4468 * @chgs: the list of changes to make in hardware 4469 */ 4470 static int 4471 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4472 struct list_head *chgs) 4473 { 4474 struct ice_chs_chg *tmp; 4475 4476 list_for_each_entry(tmp, chgs, list_entry) { 4477 struct ice_xlt2_section *p; 4478 u32 id; 4479 4480 switch (tmp->type) { 4481 case ICE_VSIG_ADD: 4482 case ICE_VSI_MOVE: 4483 case ICE_VSIG_REM: 4484 id = ice_sect_id(blk, ICE_XLT2); 4485 p = ice_pkg_buf_alloc_section(bld, id, 4486 struct_size(p, value, 1)); 4487 4488 if (!p) 4489 return -ENOSPC; 4490 4491 p->count = cpu_to_le16(1); 4492 p->offset = cpu_to_le16(tmp->vsi); 4493 p->value[0] = cpu_to_le16(tmp->vsig); 4494 break; 4495 default: 4496 break; 4497 } 4498 } 4499 4500 return 0; 4501 } 4502 4503 /** 4504 * ice_upd_prof_hw - update hardware using the change list 4505 * @hw: pointer to the HW struct 4506 * @blk: hardware block 4507 * @chgs: the list of changes to make in hardware 4508 */ 4509 static int 4510 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4511 struct list_head *chgs) 4512 { 4513 struct ice_buf_build *b; 4514 struct ice_chs_chg *tmp; 4515 u16 pkg_sects; 4516 u16 xlt1 = 0; 4517 u16 xlt2 = 0; 4518 u16 tcam = 0; 4519 u16 es = 0; 4520 int status; 4521 u16 sects; 4522 4523 /* count number of sections we need */ 4524 list_for_each_entry(tmp, chgs, list_entry) { 4525 switch (tmp->type) { 4526 case ICE_PTG_ES_ADD: 4527 if (tmp->add_ptg) 4528 xlt1++; 4529 if (tmp->add_prof) 4530 es++; 4531 break; 4532 case ICE_TCAM_ADD: 4533 tcam++; 4534 break; 4535 case ICE_VSIG_ADD: 4536 case ICE_VSI_MOVE: 4537 case ICE_VSIG_REM: 4538 xlt2++; 4539 break; 4540 default: 4541 break; 4542 } 4543 } 4544 sects = xlt1 + xlt2 + tcam + es; 4545 4546 if (!sects) 4547 return 0; 4548 4549 /* Build update package buffer */ 4550 b = ice_pkg_buf_alloc(hw); 4551 if (!b) 4552 return -ENOMEM; 4553 4554 status = ice_pkg_buf_reserve_section(b, sects); 4555 if (status) 4556 goto error_tmp; 4557 4558 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4559 if (es) { 4560 status = ice_prof_bld_es(hw, blk, b, chgs); 4561 if (status) 4562 goto error_tmp; 4563 } 4564 4565 if (tcam) { 4566 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4567 if (status) 4568 goto error_tmp; 4569 } 4570 4571 if (xlt1) { 4572 status = ice_prof_bld_xlt1(blk, b, chgs); 4573 if (status) 4574 goto error_tmp; 4575 } 4576 4577 if (xlt2) { 4578 status = ice_prof_bld_xlt2(blk, b, chgs); 4579 if (status) 4580 goto error_tmp; 4581 } 4582 4583 /* After package buffer build check if the section count in buffer is 4584 * non-zero and matches the number of sections detected for package 4585 * update. 4586 */ 4587 pkg_sects = ice_pkg_buf_get_active_sections(b); 4588 if (!pkg_sects || pkg_sects != sects) { 4589 status = -EINVAL; 4590 goto error_tmp; 4591 } 4592 4593 /* update package */ 4594 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4595 if (status == -EIO) 4596 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4597 4598 error_tmp: 4599 ice_pkg_buf_free(hw, b); 4600 return status; 4601 } 4602 4603 /** 4604 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4605 * @hw: pointer to the HW struct 4606 * @prof_id: profile ID 4607 * @mask_sel: mask select 4608 * 4609 * This function enable any of the masks selected by the mask select parameter 4610 * for the profile specified. 4611 */ 4612 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4613 { 4614 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4615 4616 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4617 GLQF_FDMASK_SEL(prof_id), mask_sel); 4618 } 4619 4620 struct ice_fd_src_dst_pair { 4621 u8 prot_id; 4622 u8 count; 4623 u16 off; 4624 }; 4625 4626 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4627 /* These are defined in pairs */ 4628 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4629 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4630 4631 { ICE_PROT_IPV4_IL, 2, 12 }, 4632 { ICE_PROT_IPV4_IL, 2, 16 }, 4633 4634 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4635 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4636 4637 { ICE_PROT_IPV6_IL, 8, 8 }, 4638 { ICE_PROT_IPV6_IL, 8, 24 }, 4639 4640 { ICE_PROT_TCP_IL, 1, 0 }, 4641 { ICE_PROT_TCP_IL, 1, 2 }, 4642 4643 { ICE_PROT_UDP_OF, 1, 0 }, 4644 { ICE_PROT_UDP_OF, 1, 2 }, 4645 4646 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4647 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4648 4649 { ICE_PROT_SCTP_IL, 1, 0 }, 4650 { ICE_PROT_SCTP_IL, 1, 2 } 4651 }; 4652 4653 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4654 4655 /** 4656 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4657 * @hw: pointer to the HW struct 4658 * @prof_id: profile ID 4659 * @es: extraction sequence (length of array is determined by the block) 4660 */ 4661 static int 4662 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4663 { 4664 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4665 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4666 #define ICE_FD_FV_NOT_FOUND (-2) 4667 s8 first_free = ICE_FD_FV_NOT_FOUND; 4668 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4669 s8 orig_free, si; 4670 u32 mask_sel = 0; 4671 u8 i, j, k; 4672 4673 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4674 4675 /* This code assumes that the Flow Director field vectors are assigned 4676 * from the end of the FV indexes working towards the zero index, that 4677 * only complete fields will be included and will be consecutive, and 4678 * that there are no gaps between valid indexes. 4679 */ 4680 4681 /* Determine swap fields present */ 4682 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4683 /* Find the first free entry, assuming right to left population. 4684 * This is where we can start adding additional pairs if needed. 4685 */ 4686 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4687 ICE_PROT_INVALID) 4688 first_free = i - 1; 4689 4690 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4691 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4692 es[i].off == ice_fd_pairs[j].off) { 4693 __set_bit(j, pair_list); 4694 pair_start[j] = i; 4695 } 4696 } 4697 4698 orig_free = first_free; 4699 4700 /* determine missing swap fields that need to be added */ 4701 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4702 u8 bit1 = test_bit(i + 1, pair_list); 4703 u8 bit0 = test_bit(i, pair_list); 4704 4705 if (bit0 ^ bit1) { 4706 u8 index; 4707 4708 /* add the appropriate 'paired' entry */ 4709 if (!bit0) 4710 index = i; 4711 else 4712 index = i + 1; 4713 4714 /* check for room */ 4715 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4716 return -ENOSPC; 4717 4718 /* place in extraction sequence */ 4719 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4720 es[first_free - k].prot_id = 4721 ice_fd_pairs[index].prot_id; 4722 es[first_free - k].off = 4723 ice_fd_pairs[index].off + (k * 2); 4724 4725 if (k > first_free) 4726 return -EIO; 4727 4728 /* keep track of non-relevant fields */ 4729 mask_sel |= BIT(first_free - k); 4730 } 4731 4732 pair_start[index] = first_free; 4733 first_free -= ice_fd_pairs[index].count; 4734 } 4735 } 4736 4737 /* fill in the swap array */ 4738 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4739 while (si >= 0) { 4740 u8 indexes_used = 1; 4741 4742 /* assume flat at this index */ 4743 #define ICE_SWAP_VALID 0x80 4744 used[si] = si | ICE_SWAP_VALID; 4745 4746 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4747 si -= indexes_used; 4748 continue; 4749 } 4750 4751 /* check for a swap location */ 4752 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4753 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4754 es[si].off == ice_fd_pairs[j].off) { 4755 u8 idx; 4756 4757 /* determine the appropriate matching field */ 4758 idx = j + ((j % 2) ? -1 : 1); 4759 4760 indexes_used = ice_fd_pairs[idx].count; 4761 for (k = 0; k < indexes_used; k++) { 4762 used[si - k] = (pair_start[idx] - k) | 4763 ICE_SWAP_VALID; 4764 } 4765 4766 break; 4767 } 4768 4769 si -= indexes_used; 4770 } 4771 4772 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4773 * register 4774 */ 4775 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4776 u32 raw_swap = 0; 4777 u32 raw_in = 0; 4778 4779 for (k = 0; k < 4; k++) { 4780 u8 idx; 4781 4782 idx = (j * 4) + k; 4783 if (used[idx] && !(mask_sel & BIT(idx))) { 4784 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4785 #define ICE_INSET_DFLT 0x9f 4786 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4787 } 4788 } 4789 4790 /* write the appropriate swap register set */ 4791 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4792 4793 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4794 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4795 4796 /* write the appropriate inset register set */ 4797 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4798 4799 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4800 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4801 } 4802 4803 /* initially clear the mask select for this profile */ 4804 ice_update_fd_mask(hw, prof_id, 0); 4805 4806 return 0; 4807 } 4808 4809 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4810 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4811 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4812 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4813 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4814 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4815 }; 4816 4817 /** 4818 * ice_get_ptype_attrib_info - get PTYPE attribute information 4819 * @type: attribute type 4820 * @info: pointer to variable to the attribute information 4821 */ 4822 static void 4823 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4824 struct ice_ptype_attrib_info *info) 4825 { 4826 *info = ice_ptype_attributes[type]; 4827 } 4828 4829 /** 4830 * ice_add_prof_attrib - add any PTG with attributes to profile 4831 * @prof: pointer to the profile to which PTG entries will be added 4832 * @ptg: PTG to be added 4833 * @ptype: PTYPE that needs to be looked up 4834 * @attr: array of attributes that will be considered 4835 * @attr_cnt: number of elements in the attribute array 4836 */ 4837 static int 4838 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4839 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4840 { 4841 bool found = false; 4842 u16 i; 4843 4844 for (i = 0; i < attr_cnt; i++) 4845 if (attr[i].ptype == ptype) { 4846 found = true; 4847 4848 prof->ptg[prof->ptg_cnt] = ptg; 4849 ice_get_ptype_attrib_info(attr[i].attrib, 4850 &prof->attr[prof->ptg_cnt]); 4851 4852 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4853 return -ENOSPC; 4854 } 4855 4856 if (!found) 4857 return -ENOENT; 4858 4859 return 0; 4860 } 4861 4862 /** 4863 * ice_add_prof - add profile 4864 * @hw: pointer to the HW struct 4865 * @blk: hardware block 4866 * @id: profile tracking ID 4867 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4868 * @attr: array of attributes 4869 * @attr_cnt: number of elements in attr array 4870 * @es: extraction sequence (length of array is determined by the block) 4871 * @masks: mask for extraction sequence 4872 * 4873 * This function registers a profile, which matches a set of PTYPES with a 4874 * particular extraction sequence. While the hardware profile is allocated 4875 * it will not be written until the first call to ice_add_flow that specifies 4876 * the ID value used here. 4877 */ 4878 int 4879 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4880 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4881 struct ice_fv_word *es, u16 *masks) 4882 { 4883 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4884 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4885 struct ice_prof_map *prof; 4886 u8 byte = 0; 4887 u8 prof_id; 4888 int status; 4889 4890 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4891 4892 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4893 4894 /* search for existing profile */ 4895 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4896 if (status) { 4897 /* allocate profile ID */ 4898 status = ice_alloc_prof_id(hw, blk, &prof_id); 4899 if (status) 4900 goto err_ice_add_prof; 4901 if (blk == ICE_BLK_FD) { 4902 /* For Flow Director block, the extraction sequence may 4903 * need to be altered in the case where there are paired 4904 * fields that have no match. This is necessary because 4905 * for Flow Director, src and dest fields need to paired 4906 * for filter programming and these values are swapped 4907 * during Tx. 4908 */ 4909 status = ice_update_fd_swap(hw, prof_id, es); 4910 if (status) 4911 goto err_ice_add_prof; 4912 } 4913 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4914 if (status) 4915 goto err_ice_add_prof; 4916 4917 /* and write new es */ 4918 ice_write_es(hw, blk, prof_id, es); 4919 } 4920 4921 ice_prof_inc_ref(hw, blk, prof_id); 4922 4923 /* add profile info */ 4924 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4925 if (!prof) { 4926 status = -ENOMEM; 4927 goto err_ice_add_prof; 4928 } 4929 4930 prof->profile_cookie = id; 4931 prof->prof_id = prof_id; 4932 prof->ptg_cnt = 0; 4933 prof->context = 0; 4934 4935 /* build list of ptgs */ 4936 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4937 u8 bit; 4938 4939 if (!ptypes[byte]) { 4940 bytes--; 4941 byte++; 4942 continue; 4943 } 4944 4945 /* Examine 8 bits per byte */ 4946 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4947 BITS_PER_BYTE) { 4948 u16 ptype; 4949 u8 ptg; 4950 4951 ptype = byte * BITS_PER_BYTE + bit; 4952 4953 /* The package should place all ptypes in a non-zero 4954 * PTG, so the following call should never fail. 4955 */ 4956 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4957 continue; 4958 4959 /* If PTG is already added, skip and continue */ 4960 if (test_bit(ptg, ptgs_used)) 4961 continue; 4962 4963 __set_bit(ptg, ptgs_used); 4964 /* Check to see there are any attributes for 4965 * this PTYPE, and add them if found. 4966 */ 4967 status = ice_add_prof_attrib(prof, ptg, ptype, 4968 attr, attr_cnt); 4969 if (status == -ENOSPC) 4970 break; 4971 if (status) { 4972 /* This is simple a PTYPE/PTG with no 4973 * attribute 4974 */ 4975 prof->ptg[prof->ptg_cnt] = ptg; 4976 prof->attr[prof->ptg_cnt].flags = 0; 4977 prof->attr[prof->ptg_cnt].mask = 0; 4978 4979 if (++prof->ptg_cnt >= 4980 ICE_MAX_PTG_PER_PROFILE) 4981 break; 4982 } 4983 } 4984 4985 bytes--; 4986 byte++; 4987 } 4988 4989 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4990 status = 0; 4991 4992 err_ice_add_prof: 4993 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4994 return status; 4995 } 4996 4997 /** 4998 * ice_search_prof_id - Search for a profile tracking ID 4999 * @hw: pointer to the HW struct 5000 * @blk: hardware block 5001 * @id: profile tracking ID 5002 * 5003 * This will search for a profile tracking ID which was previously added. 5004 * The profile map lock should be held before calling this function. 5005 */ 5006 static struct ice_prof_map * 5007 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 5008 { 5009 struct ice_prof_map *entry = NULL; 5010 struct ice_prof_map *map; 5011 5012 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 5013 if (map->profile_cookie == id) { 5014 entry = map; 5015 break; 5016 } 5017 5018 return entry; 5019 } 5020 5021 /** 5022 * ice_vsig_prof_id_count - count profiles in a VSIG 5023 * @hw: pointer to the HW struct 5024 * @blk: hardware block 5025 * @vsig: VSIG to remove the profile from 5026 */ 5027 static u16 5028 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 5029 { 5030 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 5031 struct ice_vsig_prof *p; 5032 5033 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5034 list) 5035 count++; 5036 5037 return count; 5038 } 5039 5040 /** 5041 * ice_rel_tcam_idx - release a TCAM index 5042 * @hw: pointer to the HW struct 5043 * @blk: hardware block 5044 * @idx: the index to release 5045 */ 5046 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 5047 { 5048 /* Masks to invoke a never match entry */ 5049 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5050 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 5051 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 5052 int status; 5053 5054 /* write the TCAM entry */ 5055 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 5056 dc_msk, nm_msk); 5057 if (status) 5058 return status; 5059 5060 /* release the TCAM entry */ 5061 status = ice_free_tcam_ent(hw, blk, idx); 5062 5063 return status; 5064 } 5065 5066 /** 5067 * ice_rem_prof_id - remove one profile from a VSIG 5068 * @hw: pointer to the HW struct 5069 * @blk: hardware block 5070 * @prof: pointer to profile structure to remove 5071 */ 5072 static int 5073 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 5074 struct ice_vsig_prof *prof) 5075 { 5076 int status; 5077 u16 i; 5078 5079 for (i = 0; i < prof->tcam_count; i++) 5080 if (prof->tcam[i].in_use) { 5081 prof->tcam[i].in_use = false; 5082 status = ice_rel_tcam_idx(hw, blk, 5083 prof->tcam[i].tcam_idx); 5084 if (status) 5085 return -EIO; 5086 } 5087 5088 return 0; 5089 } 5090 5091 /** 5092 * ice_rem_vsig - remove VSIG 5093 * @hw: pointer to the HW struct 5094 * @blk: hardware block 5095 * @vsig: the VSIG to remove 5096 * @chg: the change list 5097 */ 5098 static int 5099 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5100 struct list_head *chg) 5101 { 5102 u16 idx = vsig & ICE_VSIG_IDX_M; 5103 struct ice_vsig_vsi *vsi_cur; 5104 struct ice_vsig_prof *d, *t; 5105 int status; 5106 5107 /* remove TCAM entries */ 5108 list_for_each_entry_safe(d, t, 5109 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5110 list) { 5111 status = ice_rem_prof_id(hw, blk, d); 5112 if (status) 5113 return status; 5114 5115 list_del(&d->list); 5116 devm_kfree(ice_hw_to_dev(hw), d); 5117 } 5118 5119 /* Move all VSIS associated with this VSIG to the default VSIG */ 5120 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 5121 /* If the VSIG has at least 1 VSI then iterate through the list 5122 * and remove the VSIs before deleting the group. 5123 */ 5124 if (vsi_cur) 5125 do { 5126 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 5127 struct ice_chs_chg *p; 5128 5129 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5130 GFP_KERNEL); 5131 if (!p) 5132 return -ENOMEM; 5133 5134 p->type = ICE_VSIG_REM; 5135 p->orig_vsig = vsig; 5136 p->vsig = ICE_DEFAULT_VSIG; 5137 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 5138 5139 list_add(&p->list_entry, chg); 5140 5141 vsi_cur = tmp; 5142 } while (vsi_cur); 5143 5144 return ice_vsig_free(hw, blk, vsig); 5145 } 5146 5147 /** 5148 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 5149 * @hw: pointer to the HW struct 5150 * @blk: hardware block 5151 * @vsig: VSIG to remove the profile from 5152 * @hdl: profile handle indicating which profile to remove 5153 * @chg: list to receive a record of changes 5154 */ 5155 static int 5156 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5157 struct list_head *chg) 5158 { 5159 u16 idx = vsig & ICE_VSIG_IDX_M; 5160 struct ice_vsig_prof *p, *t; 5161 int status; 5162 5163 list_for_each_entry_safe(p, t, 5164 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5165 list) 5166 if (p->profile_cookie == hdl) { 5167 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 5168 /* this is the last profile, remove the VSIG */ 5169 return ice_rem_vsig(hw, blk, vsig, chg); 5170 5171 status = ice_rem_prof_id(hw, blk, p); 5172 if (!status) { 5173 list_del(&p->list); 5174 devm_kfree(ice_hw_to_dev(hw), p); 5175 } 5176 return status; 5177 } 5178 5179 return -ENOENT; 5180 } 5181 5182 /** 5183 * ice_rem_flow_all - remove all flows with a particular profile 5184 * @hw: pointer to the HW struct 5185 * @blk: hardware block 5186 * @id: profile tracking ID 5187 */ 5188 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 5189 { 5190 struct ice_chs_chg *del, *tmp; 5191 struct list_head chg; 5192 int status; 5193 u16 i; 5194 5195 INIT_LIST_HEAD(&chg); 5196 5197 for (i = 1; i < ICE_MAX_VSIGS; i++) 5198 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 5199 if (ice_has_prof_vsig(hw, blk, i, id)) { 5200 status = ice_rem_prof_id_vsig(hw, blk, i, id, 5201 &chg); 5202 if (status) 5203 goto err_ice_rem_flow_all; 5204 } 5205 } 5206 5207 status = ice_upd_prof_hw(hw, blk, &chg); 5208 5209 err_ice_rem_flow_all: 5210 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5211 list_del(&del->list_entry); 5212 devm_kfree(ice_hw_to_dev(hw), del); 5213 } 5214 5215 return status; 5216 } 5217 5218 /** 5219 * ice_rem_prof - remove profile 5220 * @hw: pointer to the HW struct 5221 * @blk: hardware block 5222 * @id: profile tracking ID 5223 * 5224 * This will remove the profile specified by the ID parameter, which was 5225 * previously created through ice_add_prof. If any existing entries 5226 * are associated with this profile, they will be removed as well. 5227 */ 5228 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 5229 { 5230 struct ice_prof_map *pmap; 5231 int status; 5232 5233 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5234 5235 pmap = ice_search_prof_id(hw, blk, id); 5236 if (!pmap) { 5237 status = -ENOENT; 5238 goto err_ice_rem_prof; 5239 } 5240 5241 /* remove all flows with this profile */ 5242 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 5243 if (status) 5244 goto err_ice_rem_prof; 5245 5246 /* dereference profile, and possibly remove */ 5247 ice_prof_dec_ref(hw, blk, pmap->prof_id); 5248 5249 list_del(&pmap->list); 5250 devm_kfree(ice_hw_to_dev(hw), pmap); 5251 5252 err_ice_rem_prof: 5253 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5254 return status; 5255 } 5256 5257 /** 5258 * ice_get_prof - get profile 5259 * @hw: pointer to the HW struct 5260 * @blk: hardware block 5261 * @hdl: profile handle 5262 * @chg: change list 5263 */ 5264 static int 5265 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 5266 struct list_head *chg) 5267 { 5268 struct ice_prof_map *map; 5269 struct ice_chs_chg *p; 5270 int status = 0; 5271 u16 i; 5272 5273 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5274 /* Get the details on the profile specified by the handle ID */ 5275 map = ice_search_prof_id(hw, blk, hdl); 5276 if (!map) { 5277 status = -ENOENT; 5278 goto err_ice_get_prof; 5279 } 5280 5281 for (i = 0; i < map->ptg_cnt; i++) 5282 if (!hw->blk[blk].es.written[map->prof_id]) { 5283 /* add ES to change list */ 5284 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 5285 GFP_KERNEL); 5286 if (!p) { 5287 status = -ENOMEM; 5288 goto err_ice_get_prof; 5289 } 5290 5291 p->type = ICE_PTG_ES_ADD; 5292 p->ptype = 0; 5293 p->ptg = map->ptg[i]; 5294 p->add_ptg = 0; 5295 5296 p->add_prof = 1; 5297 p->prof_id = map->prof_id; 5298 5299 hw->blk[blk].es.written[map->prof_id] = true; 5300 5301 list_add(&p->list_entry, chg); 5302 } 5303 5304 err_ice_get_prof: 5305 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5306 /* let caller clean up the change list */ 5307 return status; 5308 } 5309 5310 /** 5311 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 5312 * @hw: pointer to the HW struct 5313 * @blk: hardware block 5314 * @vsig: VSIG from which to copy the list 5315 * @lst: output list 5316 * 5317 * This routine makes a copy of the list of profiles in the specified VSIG. 5318 */ 5319 static int 5320 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5321 struct list_head *lst) 5322 { 5323 struct ice_vsig_prof *ent1, *ent2; 5324 u16 idx = vsig & ICE_VSIG_IDX_M; 5325 5326 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5327 list) { 5328 struct ice_vsig_prof *p; 5329 5330 /* copy to the input list */ 5331 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 5332 GFP_KERNEL); 5333 if (!p) 5334 goto err_ice_get_profs_vsig; 5335 5336 list_add_tail(&p->list, lst); 5337 } 5338 5339 return 0; 5340 5341 err_ice_get_profs_vsig: 5342 list_for_each_entry_safe(ent1, ent2, lst, list) { 5343 list_del(&ent1->list); 5344 devm_kfree(ice_hw_to_dev(hw), ent1); 5345 } 5346 5347 return -ENOMEM; 5348 } 5349 5350 /** 5351 * ice_add_prof_to_lst - add profile entry to a list 5352 * @hw: pointer to the HW struct 5353 * @blk: hardware block 5354 * @lst: the list to be added to 5355 * @hdl: profile handle of entry to add 5356 */ 5357 static int 5358 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 5359 struct list_head *lst, u64 hdl) 5360 { 5361 struct ice_prof_map *map; 5362 struct ice_vsig_prof *p; 5363 int status = 0; 5364 u16 i; 5365 5366 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5367 map = ice_search_prof_id(hw, blk, hdl); 5368 if (!map) { 5369 status = -ENOENT; 5370 goto err_ice_add_prof_to_lst; 5371 } 5372 5373 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5374 if (!p) { 5375 status = -ENOMEM; 5376 goto err_ice_add_prof_to_lst; 5377 } 5378 5379 p->profile_cookie = map->profile_cookie; 5380 p->prof_id = map->prof_id; 5381 p->tcam_count = map->ptg_cnt; 5382 5383 for (i = 0; i < map->ptg_cnt; i++) { 5384 p->tcam[i].prof_id = map->prof_id; 5385 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5386 p->tcam[i].ptg = map->ptg[i]; 5387 } 5388 5389 list_add(&p->list, lst); 5390 5391 err_ice_add_prof_to_lst: 5392 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5393 return status; 5394 } 5395 5396 /** 5397 * ice_move_vsi - move VSI to another VSIG 5398 * @hw: pointer to the HW struct 5399 * @blk: hardware block 5400 * @vsi: the VSI to move 5401 * @vsig: the VSIG to move the VSI to 5402 * @chg: the change list 5403 */ 5404 static int 5405 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5406 struct list_head *chg) 5407 { 5408 struct ice_chs_chg *p; 5409 u16 orig_vsig; 5410 int status; 5411 5412 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5413 if (!p) 5414 return -ENOMEM; 5415 5416 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5417 if (!status) 5418 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5419 5420 if (status) { 5421 devm_kfree(ice_hw_to_dev(hw), p); 5422 return status; 5423 } 5424 5425 p->type = ICE_VSI_MOVE; 5426 p->vsi = vsi; 5427 p->orig_vsig = orig_vsig; 5428 p->vsig = vsig; 5429 5430 list_add(&p->list_entry, chg); 5431 5432 return 0; 5433 } 5434 5435 /** 5436 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5437 * @hw: pointer to the HW struct 5438 * @idx: the index of the TCAM entry to remove 5439 * @chg: the list of change structures to search 5440 */ 5441 static void 5442 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5443 { 5444 struct ice_chs_chg *pos, *tmp; 5445 5446 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5447 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5448 list_del(&tmp->list_entry); 5449 devm_kfree(ice_hw_to_dev(hw), tmp); 5450 } 5451 } 5452 5453 /** 5454 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5455 * @hw: pointer to the HW struct 5456 * @blk: hardware block 5457 * @enable: true to enable, false to disable 5458 * @vsig: the VSIG of the TCAM entry 5459 * @tcam: pointer the TCAM info structure of the TCAM to disable 5460 * @chg: the change list 5461 * 5462 * This function appends an enable or disable TCAM entry in the change log 5463 */ 5464 static int 5465 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5466 u16 vsig, struct ice_tcam_inf *tcam, 5467 struct list_head *chg) 5468 { 5469 struct ice_chs_chg *p; 5470 int status; 5471 5472 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5473 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5474 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5475 5476 /* if disabling, free the TCAM */ 5477 if (!enable) { 5478 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5479 5480 /* if we have already created a change for this TCAM entry, then 5481 * we need to remove that entry, in order to prevent writing to 5482 * a TCAM entry we no longer will have ownership of. 5483 */ 5484 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5485 tcam->tcam_idx = 0; 5486 tcam->in_use = 0; 5487 return status; 5488 } 5489 5490 /* for re-enabling, reallocate a TCAM */ 5491 /* for entries with empty attribute masks, allocate entry from 5492 * the bottom of the TCAM table; otherwise, allocate from the 5493 * top of the table in order to give it higher priority 5494 */ 5495 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5496 &tcam->tcam_idx); 5497 if (status) 5498 return status; 5499 5500 /* add TCAM to change list */ 5501 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5502 if (!p) 5503 return -ENOMEM; 5504 5505 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5506 tcam->ptg, vsig, 0, tcam->attr.flags, 5507 vl_msk, dc_msk, nm_msk); 5508 if (status) 5509 goto err_ice_prof_tcam_ena_dis; 5510 5511 tcam->in_use = 1; 5512 5513 p->type = ICE_TCAM_ADD; 5514 p->add_tcam_idx = true; 5515 p->prof_id = tcam->prof_id; 5516 p->ptg = tcam->ptg; 5517 p->vsig = 0; 5518 p->tcam_idx = tcam->tcam_idx; 5519 5520 /* log change */ 5521 list_add(&p->list_entry, chg); 5522 5523 return 0; 5524 5525 err_ice_prof_tcam_ena_dis: 5526 devm_kfree(ice_hw_to_dev(hw), p); 5527 return status; 5528 } 5529 5530 /** 5531 * ice_adj_prof_priorities - adjust profile based on priorities 5532 * @hw: pointer to the HW struct 5533 * @blk: hardware block 5534 * @vsig: the VSIG for which to adjust profile priorities 5535 * @chg: the change list 5536 */ 5537 static int 5538 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5539 struct list_head *chg) 5540 { 5541 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5542 struct ice_vsig_prof *t; 5543 int status; 5544 u16 idx; 5545 5546 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5547 idx = vsig & ICE_VSIG_IDX_M; 5548 5549 /* Priority is based on the order in which the profiles are added. The 5550 * newest added profile has highest priority and the oldest added 5551 * profile has the lowest priority. Since the profile property list for 5552 * a VSIG is sorted from newest to oldest, this code traverses the list 5553 * in order and enables the first of each PTG that it finds (that is not 5554 * already enabled); it also disables any duplicate PTGs that it finds 5555 * in the older profiles (that are currently enabled). 5556 */ 5557 5558 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5559 list) { 5560 u16 i; 5561 5562 for (i = 0; i < t->tcam_count; i++) { 5563 /* Scan the priorities from newest to oldest. 5564 * Make sure that the newest profiles take priority. 5565 */ 5566 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5567 t->tcam[i].in_use) { 5568 /* need to mark this PTG as never match, as it 5569 * was already in use and therefore duplicate 5570 * (and lower priority) 5571 */ 5572 status = ice_prof_tcam_ena_dis(hw, blk, false, 5573 vsig, 5574 &t->tcam[i], 5575 chg); 5576 if (status) 5577 return status; 5578 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5579 !t->tcam[i].in_use) { 5580 /* need to enable this PTG, as it in not in use 5581 * and not enabled (highest priority) 5582 */ 5583 status = ice_prof_tcam_ena_dis(hw, blk, true, 5584 vsig, 5585 &t->tcam[i], 5586 chg); 5587 if (status) 5588 return status; 5589 } 5590 5591 /* keep track of used ptgs */ 5592 __set_bit(t->tcam[i].ptg, ptgs_used); 5593 } 5594 } 5595 5596 return 0; 5597 } 5598 5599 /** 5600 * ice_add_prof_id_vsig - add profile to VSIG 5601 * @hw: pointer to the HW struct 5602 * @blk: hardware block 5603 * @vsig: the VSIG to which this profile is to be added 5604 * @hdl: the profile handle indicating the profile to add 5605 * @rev: true to add entries to the end of the list 5606 * @chg: the change list 5607 */ 5608 static int 5609 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5610 bool rev, struct list_head *chg) 5611 { 5612 /* Masks that ignore flags */ 5613 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5614 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5615 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5616 struct ice_prof_map *map; 5617 struct ice_vsig_prof *t; 5618 struct ice_chs_chg *p; 5619 u16 vsig_idx, i; 5620 int status = 0; 5621 5622 /* Error, if this VSIG already has this profile */ 5623 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5624 return -EEXIST; 5625 5626 /* new VSIG profile structure */ 5627 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5628 if (!t) 5629 return -ENOMEM; 5630 5631 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5632 /* Get the details on the profile specified by the handle ID */ 5633 map = ice_search_prof_id(hw, blk, hdl); 5634 if (!map) { 5635 status = -ENOENT; 5636 goto err_ice_add_prof_id_vsig; 5637 } 5638 5639 t->profile_cookie = map->profile_cookie; 5640 t->prof_id = map->prof_id; 5641 t->tcam_count = map->ptg_cnt; 5642 5643 /* create TCAM entries */ 5644 for (i = 0; i < map->ptg_cnt; i++) { 5645 u16 tcam_idx; 5646 5647 /* add TCAM to change list */ 5648 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5649 if (!p) { 5650 status = -ENOMEM; 5651 goto err_ice_add_prof_id_vsig; 5652 } 5653 5654 /* allocate the TCAM entry index */ 5655 /* for entries with empty attribute masks, allocate entry from 5656 * the bottom of the TCAM table; otherwise, allocate from the 5657 * top of the table in order to give it higher priority 5658 */ 5659 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5660 &tcam_idx); 5661 if (status) { 5662 devm_kfree(ice_hw_to_dev(hw), p); 5663 goto err_ice_add_prof_id_vsig; 5664 } 5665 5666 t->tcam[i].ptg = map->ptg[i]; 5667 t->tcam[i].prof_id = map->prof_id; 5668 t->tcam[i].tcam_idx = tcam_idx; 5669 t->tcam[i].attr = map->attr[i]; 5670 t->tcam[i].in_use = true; 5671 5672 p->type = ICE_TCAM_ADD; 5673 p->add_tcam_idx = true; 5674 p->prof_id = t->tcam[i].prof_id; 5675 p->ptg = t->tcam[i].ptg; 5676 p->vsig = vsig; 5677 p->tcam_idx = t->tcam[i].tcam_idx; 5678 5679 /* write the TCAM entry */ 5680 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5681 t->tcam[i].prof_id, 5682 t->tcam[i].ptg, vsig, 0, 0, 5683 vl_msk, dc_msk, nm_msk); 5684 if (status) { 5685 devm_kfree(ice_hw_to_dev(hw), p); 5686 goto err_ice_add_prof_id_vsig; 5687 } 5688 5689 /* log change */ 5690 list_add(&p->list_entry, chg); 5691 } 5692 5693 /* add profile to VSIG */ 5694 vsig_idx = vsig & ICE_VSIG_IDX_M; 5695 if (rev) 5696 list_add_tail(&t->list, 5697 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5698 else 5699 list_add(&t->list, 5700 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5701 5702 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5703 return status; 5704 5705 err_ice_add_prof_id_vsig: 5706 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5707 /* let caller clean up the change list */ 5708 devm_kfree(ice_hw_to_dev(hw), t); 5709 return status; 5710 } 5711 5712 /** 5713 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5714 * @hw: pointer to the HW struct 5715 * @blk: hardware block 5716 * @vsi: the initial VSI that will be in VSIG 5717 * @hdl: the profile handle of the profile that will be added to the VSIG 5718 * @chg: the change list 5719 */ 5720 static int 5721 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5722 struct list_head *chg) 5723 { 5724 struct ice_chs_chg *p; 5725 u16 new_vsig; 5726 int status; 5727 5728 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5729 if (!p) 5730 return -ENOMEM; 5731 5732 new_vsig = ice_vsig_alloc(hw, blk); 5733 if (!new_vsig) { 5734 status = -EIO; 5735 goto err_ice_create_prof_id_vsig; 5736 } 5737 5738 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5739 if (status) 5740 goto err_ice_create_prof_id_vsig; 5741 5742 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5743 if (status) 5744 goto err_ice_create_prof_id_vsig; 5745 5746 p->type = ICE_VSIG_ADD; 5747 p->vsi = vsi; 5748 p->orig_vsig = ICE_DEFAULT_VSIG; 5749 p->vsig = new_vsig; 5750 5751 list_add(&p->list_entry, chg); 5752 5753 return 0; 5754 5755 err_ice_create_prof_id_vsig: 5756 /* let caller clean up the change list */ 5757 devm_kfree(ice_hw_to_dev(hw), p); 5758 return status; 5759 } 5760 5761 /** 5762 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5763 * @hw: pointer to the HW struct 5764 * @blk: hardware block 5765 * @vsi: the initial VSI that will be in VSIG 5766 * @lst: the list of profile that will be added to the VSIG 5767 * @new_vsig: return of new VSIG 5768 * @chg: the change list 5769 */ 5770 static int 5771 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5772 struct list_head *lst, u16 *new_vsig, 5773 struct list_head *chg) 5774 { 5775 struct ice_vsig_prof *t; 5776 int status; 5777 u16 vsig; 5778 5779 vsig = ice_vsig_alloc(hw, blk); 5780 if (!vsig) 5781 return -EIO; 5782 5783 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5784 if (status) 5785 return status; 5786 5787 list_for_each_entry(t, lst, list) { 5788 /* Reverse the order here since we are copying the list */ 5789 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5790 true, chg); 5791 if (status) 5792 return status; 5793 } 5794 5795 *new_vsig = vsig; 5796 5797 return 0; 5798 } 5799 5800 /** 5801 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5802 * @hw: pointer to the HW struct 5803 * @blk: hardware block 5804 * @hdl: the profile handle of the profile to search for 5805 * @vsig: returns the VSIG with the matching profile 5806 */ 5807 static bool 5808 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5809 { 5810 struct ice_vsig_prof *t; 5811 struct list_head lst; 5812 int status; 5813 5814 INIT_LIST_HEAD(&lst); 5815 5816 t = kzalloc(sizeof(*t), GFP_KERNEL); 5817 if (!t) 5818 return false; 5819 5820 t->profile_cookie = hdl; 5821 list_add(&t->list, &lst); 5822 5823 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5824 5825 list_del(&t->list); 5826 kfree(t); 5827 5828 return !status; 5829 } 5830 5831 /** 5832 * ice_add_prof_id_flow - add profile flow 5833 * @hw: pointer to the HW struct 5834 * @blk: hardware block 5835 * @vsi: the VSI to enable with the profile specified by ID 5836 * @hdl: profile handle 5837 * 5838 * Calling this function will update the hardware tables to enable the 5839 * profile indicated by the ID parameter for the VSIs specified in the VSI 5840 * array. Once successfully called, the flow will be enabled. 5841 */ 5842 int 5843 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5844 { 5845 struct ice_vsig_prof *tmp1, *del1; 5846 struct ice_chs_chg *tmp, *del; 5847 struct list_head union_lst; 5848 struct list_head chg; 5849 int status; 5850 u16 vsig; 5851 5852 INIT_LIST_HEAD(&union_lst); 5853 INIT_LIST_HEAD(&chg); 5854 5855 /* Get profile */ 5856 status = ice_get_prof(hw, blk, hdl, &chg); 5857 if (status) 5858 return status; 5859 5860 /* determine if VSI is already part of a VSIG */ 5861 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5862 if (!status && vsig) { 5863 bool only_vsi; 5864 u16 or_vsig; 5865 u16 ref; 5866 5867 /* found in VSIG */ 5868 or_vsig = vsig; 5869 5870 /* make sure that there is no overlap/conflict between the new 5871 * characteristics and the existing ones; we don't support that 5872 * scenario 5873 */ 5874 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5875 status = -EEXIST; 5876 goto err_ice_add_prof_id_flow; 5877 } 5878 5879 /* last VSI in the VSIG? */ 5880 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5881 if (status) 5882 goto err_ice_add_prof_id_flow; 5883 only_vsi = (ref == 1); 5884 5885 /* create a union of the current profiles and the one being 5886 * added 5887 */ 5888 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5889 if (status) 5890 goto err_ice_add_prof_id_flow; 5891 5892 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5893 if (status) 5894 goto err_ice_add_prof_id_flow; 5895 5896 /* search for an existing VSIG with an exact charc match */ 5897 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5898 if (!status) { 5899 /* move VSI to the VSIG that matches */ 5900 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5901 if (status) 5902 goto err_ice_add_prof_id_flow; 5903 5904 /* VSI has been moved out of or_vsig. If the or_vsig had 5905 * only that VSI it is now empty and can be removed. 5906 */ 5907 if (only_vsi) { 5908 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5909 if (status) 5910 goto err_ice_add_prof_id_flow; 5911 } 5912 } else if (only_vsi) { 5913 /* If the original VSIG only contains one VSI, then it 5914 * will be the requesting VSI. In this case the VSI is 5915 * not sharing entries and we can simply add the new 5916 * profile to the VSIG. 5917 */ 5918 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5919 &chg); 5920 if (status) 5921 goto err_ice_add_prof_id_flow; 5922 5923 /* Adjust priorities */ 5924 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5925 if (status) 5926 goto err_ice_add_prof_id_flow; 5927 } else { 5928 /* No match, so we need a new VSIG */ 5929 status = ice_create_vsig_from_lst(hw, blk, vsi, 5930 &union_lst, &vsig, 5931 &chg); 5932 if (status) 5933 goto err_ice_add_prof_id_flow; 5934 5935 /* Adjust priorities */ 5936 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5937 if (status) 5938 goto err_ice_add_prof_id_flow; 5939 } 5940 } else { 5941 /* need to find or add a VSIG */ 5942 /* search for an existing VSIG with an exact charc match */ 5943 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5944 /* found an exact match */ 5945 /* add or move VSI to the VSIG that matches */ 5946 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5947 if (status) 5948 goto err_ice_add_prof_id_flow; 5949 } else { 5950 /* we did not find an exact match */ 5951 /* we need to add a VSIG */ 5952 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5953 &chg); 5954 if (status) 5955 goto err_ice_add_prof_id_flow; 5956 } 5957 } 5958 5959 /* update hardware */ 5960 if (!status) 5961 status = ice_upd_prof_hw(hw, blk, &chg); 5962 5963 err_ice_add_prof_id_flow: 5964 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5965 list_del(&del->list_entry); 5966 devm_kfree(ice_hw_to_dev(hw), del); 5967 } 5968 5969 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5970 list_del(&del1->list); 5971 devm_kfree(ice_hw_to_dev(hw), del1); 5972 } 5973 5974 return status; 5975 } 5976 5977 /** 5978 * ice_rem_prof_from_list - remove a profile from list 5979 * @hw: pointer to the HW struct 5980 * @lst: list to remove the profile from 5981 * @hdl: the profile handle indicating the profile to remove 5982 */ 5983 static int 5984 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5985 { 5986 struct ice_vsig_prof *ent, *tmp; 5987 5988 list_for_each_entry_safe(ent, tmp, lst, list) 5989 if (ent->profile_cookie == hdl) { 5990 list_del(&ent->list); 5991 devm_kfree(ice_hw_to_dev(hw), ent); 5992 return 0; 5993 } 5994 5995 return -ENOENT; 5996 } 5997 5998 /** 5999 * ice_rem_prof_id_flow - remove flow 6000 * @hw: pointer to the HW struct 6001 * @blk: hardware block 6002 * @vsi: the VSI from which to remove the profile specified by ID 6003 * @hdl: profile tracking handle 6004 * 6005 * Calling this function will update the hardware tables to remove the 6006 * profile indicated by the ID parameter for the VSIs specified in the VSI 6007 * array. Once successfully called, the flow will be disabled. 6008 */ 6009 int 6010 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 6011 { 6012 struct ice_vsig_prof *tmp1, *del1; 6013 struct ice_chs_chg *tmp, *del; 6014 struct list_head chg, copy; 6015 int status; 6016 u16 vsig; 6017 6018 INIT_LIST_HEAD(©); 6019 INIT_LIST_HEAD(&chg); 6020 6021 /* determine if VSI is already part of a VSIG */ 6022 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 6023 if (!status && vsig) { 6024 bool last_profile; 6025 bool only_vsi; 6026 u16 ref; 6027 6028 /* found in VSIG */ 6029 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 6030 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 6031 if (status) 6032 goto err_ice_rem_prof_id_flow; 6033 only_vsi = (ref == 1); 6034 6035 if (only_vsi) { 6036 /* If the original VSIG only contains one reference, 6037 * which will be the requesting VSI, then the VSI is not 6038 * sharing entries and we can simply remove the specific 6039 * characteristics from the VSIG. 6040 */ 6041 6042 if (last_profile) { 6043 /* If there are no profiles left for this VSIG, 6044 * then simply remove the VSIG. 6045 */ 6046 status = ice_rem_vsig(hw, blk, vsig, &chg); 6047 if (status) 6048 goto err_ice_rem_prof_id_flow; 6049 } else { 6050 status = ice_rem_prof_id_vsig(hw, blk, vsig, 6051 hdl, &chg); 6052 if (status) 6053 goto err_ice_rem_prof_id_flow; 6054 6055 /* Adjust priorities */ 6056 status = ice_adj_prof_priorities(hw, blk, vsig, 6057 &chg); 6058 if (status) 6059 goto err_ice_rem_prof_id_flow; 6060 } 6061 6062 } else { 6063 /* Make a copy of the VSIG's list of Profiles */ 6064 status = ice_get_profs_vsig(hw, blk, vsig, ©); 6065 if (status) 6066 goto err_ice_rem_prof_id_flow; 6067 6068 /* Remove specified profile entry from the list */ 6069 status = ice_rem_prof_from_list(hw, ©, hdl); 6070 if (status) 6071 goto err_ice_rem_prof_id_flow; 6072 6073 if (list_empty(©)) { 6074 status = ice_move_vsi(hw, blk, vsi, 6075 ICE_DEFAULT_VSIG, &chg); 6076 if (status) 6077 goto err_ice_rem_prof_id_flow; 6078 6079 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 6080 &vsig)) { 6081 /* found an exact match */ 6082 /* add or move VSI to the VSIG that matches */ 6083 /* Search for a VSIG with a matching profile 6084 * list 6085 */ 6086 6087 /* Found match, move VSI to the matching VSIG */ 6088 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 6089 if (status) 6090 goto err_ice_rem_prof_id_flow; 6091 } else { 6092 /* since no existing VSIG supports this 6093 * characteristic pattern, we need to create a 6094 * new VSIG and TCAM entries 6095 */ 6096 status = ice_create_vsig_from_lst(hw, blk, vsi, 6097 ©, &vsig, 6098 &chg); 6099 if (status) 6100 goto err_ice_rem_prof_id_flow; 6101 6102 /* Adjust priorities */ 6103 status = ice_adj_prof_priorities(hw, blk, vsig, 6104 &chg); 6105 if (status) 6106 goto err_ice_rem_prof_id_flow; 6107 } 6108 } 6109 } else { 6110 status = -ENOENT; 6111 } 6112 6113 /* update hardware tables */ 6114 if (!status) 6115 status = ice_upd_prof_hw(hw, blk, &chg); 6116 6117 err_ice_rem_prof_id_flow: 6118 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 6119 list_del(&del->list_entry); 6120 devm_kfree(ice_hw_to_dev(hw), del); 6121 } 6122 6123 list_for_each_entry_safe(del1, tmp1, ©, list) { 6124 list_del(&del1->list); 6125 devm_kfree(ice_hw_to_dev(hw), del1); 6126 } 6127 6128 return status; 6129 } 6130