1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 /* cppcheck-suppress nullPointer */ 338 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 339 return NULL; 340 341 if (offset) 342 *offset = 0; 343 344 boost = section; 345 if (index >= le16_to_cpu(boost->count)) 346 return NULL; 347 348 return boost->tcam + index; 349 } 350 351 /** 352 * ice_find_boost_entry 353 * @ice_seg: pointer to the ice segment (non-NULL) 354 * @addr: Boost TCAM address of entry to search for 355 * @entry: returns pointer to the entry 356 * 357 * Finds a particular Boost TCAM entry and returns a pointer to that entry 358 * if it is found. The ice_seg parameter must not be NULL since the first call 359 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 360 */ 361 static enum ice_status 362 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 363 struct ice_boost_tcam_entry **entry) 364 { 365 struct ice_boost_tcam_entry *tcam; 366 struct ice_pkg_enum state; 367 368 memset(&state, 0, sizeof(state)); 369 370 if (!ice_seg) 371 return ICE_ERR_PARAM; 372 373 do { 374 tcam = ice_pkg_enum_entry(ice_seg, &state, 375 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 376 ice_boost_tcam_handler); 377 if (tcam && le16_to_cpu(tcam->addr) == addr) { 378 *entry = tcam; 379 return 0; 380 } 381 382 ice_seg = NULL; 383 } while (tcam); 384 385 *entry = NULL; 386 return ICE_ERR_CFG; 387 } 388 389 /** 390 * ice_label_enum_handler 391 * @sect_type: section type 392 * @section: pointer to section 393 * @index: index of the label entry to be returned 394 * @offset: pointer to receive absolute offset, always zero for label sections 395 * 396 * This is a callback function that can be passed to ice_pkg_enum_entry. 397 * Handles enumeration of individual label entries. 398 */ 399 static void * 400 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 401 u32 *offset) 402 { 403 struct ice_label_section *labels; 404 405 if (!section) 406 return NULL; 407 408 /* cppcheck-suppress nullPointer */ 409 if (index > ICE_MAX_LABELS_IN_BUF) 410 return NULL; 411 412 if (offset) 413 *offset = 0; 414 415 labels = section; 416 if (index >= le16_to_cpu(labels->count)) 417 return NULL; 418 419 return labels->label + index; 420 } 421 422 /** 423 * ice_enum_labels 424 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 425 * @type: the section type that will contain the label (0 on subsequent calls) 426 * @state: ice_pkg_enum structure that will hold the state of the enumeration 427 * @value: pointer to a value that will return the label's value if found 428 * 429 * Enumerates a list of labels in the package. The caller will call 430 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 431 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 432 * the end of the list has been reached. 433 */ 434 static char * 435 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 436 u16 *value) 437 { 438 struct ice_label *label; 439 440 /* Check for valid label section on first call */ 441 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 442 return NULL; 443 444 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 445 ice_label_enum_handler); 446 if (!label) 447 return NULL; 448 449 *value = le16_to_cpu(label->value); 450 return label->name; 451 } 452 453 /** 454 * ice_init_pkg_hints 455 * @hw: pointer to the HW structure 456 * @ice_seg: pointer to the segment of the package scan (non-NULL) 457 * 458 * This function will scan the package and save off relevant information 459 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 460 * since the first call to ice_enum_labels requires a pointer to an actual 461 * ice_seg structure. 462 */ 463 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 464 { 465 struct ice_pkg_enum state; 466 char *label_name; 467 u16 val; 468 int i; 469 470 memset(&hw->tnl, 0, sizeof(hw->tnl)); 471 memset(&state, 0, sizeof(state)); 472 473 if (!ice_seg) 474 return; 475 476 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 477 &val); 478 479 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 480 for (i = 0; tnls[i].type != TNL_LAST; i++) { 481 size_t len = strlen(tnls[i].label_prefix); 482 483 /* Look for matching label start, before continuing */ 484 if (strncmp(label_name, tnls[i].label_prefix, len)) 485 continue; 486 487 /* Make sure this label matches our PF. Note that the PF 488 * character ('0' - '7') will be located where our 489 * prefix string's null terminator is located. 490 */ 491 if ((label_name[len] - '0') == hw->pf_id) { 492 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 493 hw->tnl.tbl[hw->tnl.count].valid = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) { 509 hw->tnl.tbl[i].valid = true; 510 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 511 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 512 } 513 } 514 } 515 516 /* Key creation */ 517 518 #define ICE_DC_KEY 0x1 /* don't care */ 519 #define ICE_DC_KEYINV 0x1 520 #define ICE_NM_KEY 0x0 /* never match */ 521 #define ICE_NM_KEYINV 0x0 522 #define ICE_0_KEY 0x1 /* match 0 */ 523 #define ICE_0_KEYINV 0x0 524 #define ICE_1_KEY 0x0 /* match 1 */ 525 #define ICE_1_KEYINV 0x1 526 527 /** 528 * ice_gen_key_word - generate 16-bits of a key/mask word 529 * @val: the value 530 * @valid: valid bits mask (change only the valid bits) 531 * @dont_care: don't care mask 532 * @nvr_mtch: never match mask 533 * @key: pointer to an array of where the resulting key portion 534 * @key_inv: pointer to an array of where the resulting key invert portion 535 * 536 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 537 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 538 * of key and 8 bits of key invert. 539 * 540 * '0' = b01, always match a 0 bit 541 * '1' = b10, always match a 1 bit 542 * '?' = b11, don't care bit (always matches) 543 * '~' = b00, never match bit 544 * 545 * Input: 546 * val: b0 1 0 1 0 1 547 * dont_care: b0 0 1 1 0 0 548 * never_mtch: b0 0 0 0 1 1 549 * ------------------------------ 550 * Result: key: b01 10 11 11 00 00 551 */ 552 static enum ice_status 553 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 554 u8 *key_inv) 555 { 556 u8 in_key = *key, in_key_inv = *key_inv; 557 u8 i; 558 559 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 560 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 561 return ICE_ERR_CFG; 562 563 *key = 0; 564 *key_inv = 0; 565 566 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 567 for (i = 0; i < 8; i++) { 568 *key >>= 1; 569 *key_inv >>= 1; 570 571 if (!(valid & 0x1)) { /* change only valid bits */ 572 *key |= (in_key & 0x1) << 7; 573 *key_inv |= (in_key_inv & 0x1) << 7; 574 } else if (dont_care & 0x1) { /* don't care bit */ 575 *key |= ICE_DC_KEY << 7; 576 *key_inv |= ICE_DC_KEYINV << 7; 577 } else if (nvr_mtch & 0x1) { /* never match bit */ 578 *key |= ICE_NM_KEY << 7; 579 *key_inv |= ICE_NM_KEYINV << 7; 580 } else if (val & 0x01) { /* exact 1 match */ 581 *key |= ICE_1_KEY << 7; 582 *key_inv |= ICE_1_KEYINV << 7; 583 } else { /* exact 0 match */ 584 *key |= ICE_0_KEY << 7; 585 *key_inv |= ICE_0_KEYINV << 7; 586 } 587 588 dont_care >>= 1; 589 nvr_mtch >>= 1; 590 valid >>= 1; 591 val >>= 1; 592 in_key >>= 1; 593 in_key_inv >>= 1; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ice_bits_max_set - determine if the number of bits set is within a maximum 601 * @mask: pointer to the byte array which is the mask 602 * @size: the number of bytes in the mask 603 * @max: the max number of set bits 604 * 605 * This function determines if there are at most 'max' number of bits set in an 606 * array. Returns true if the number for bits set is <= max or will return false 607 * otherwise. 608 */ 609 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 610 { 611 u16 count = 0; 612 u16 i; 613 614 /* check each byte */ 615 for (i = 0; i < size; i++) { 616 /* if 0, go to next byte */ 617 if (!mask[i]) 618 continue; 619 620 /* We know there is at least one set bit in this byte because of 621 * the above check; if we already have found 'max' number of 622 * bits set, then we can return failure now. 623 */ 624 if (count == max) 625 return false; 626 627 /* count the bits in this byte, checking threshold */ 628 count += hweight8(mask[i]); 629 if (count > max) 630 return false; 631 } 632 633 return true; 634 } 635 636 /** 637 * ice_set_key - generate a variable sized key with multiples of 16-bits 638 * @key: pointer to where the key will be stored 639 * @size: the size of the complete key in bytes (must be even) 640 * @val: array of 8-bit values that makes up the value portion of the key 641 * @upd: array of 8-bit masks that determine what key portion to update 642 * @dc: array of 8-bit masks that make up the don't care mask 643 * @nm: array of 8-bit masks that make up the never match mask 644 * @off: the offset of the first byte in the key to update 645 * @len: the number of bytes in the key update 646 * 647 * This function generates a key from a value, a don't care mask and a never 648 * match mask. 649 * upd, dc, and nm are optional parameters, and can be NULL: 650 * upd == NULL --> upd mask is all 1's (update all bits) 651 * dc == NULL --> dc mask is all 0's (no don't care bits) 652 * nm == NULL --> nm mask is all 0's (no never match bits) 653 */ 654 static enum ice_status 655 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 656 u16 len) 657 { 658 u16 half_size; 659 u16 i; 660 661 /* size must be a multiple of 2 bytes. */ 662 if (size % 2) 663 return ICE_ERR_CFG; 664 665 half_size = size / 2; 666 if (off + len > half_size) 667 return ICE_ERR_CFG; 668 669 /* Make sure at most one bit is set in the never match mask. Having more 670 * than one never match mask bit set will cause HW to consume excessive 671 * power otherwise; this is a power management efficiency check. 672 */ 673 #define ICE_NVR_MTCH_BITS_MAX 1 674 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 675 return ICE_ERR_CFG; 676 677 for (i = 0; i < len; i++) 678 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 679 dc ? dc[i] : 0, nm ? nm[i] : 0, 680 key + off + i, key + half_size + off + i)) 681 return ICE_ERR_CFG; 682 683 return 0; 684 } 685 686 /** 687 * ice_acquire_global_cfg_lock 688 * @hw: pointer to the HW structure 689 * @access: access type (read or write) 690 * 691 * This function will request ownership of the global config lock for reading 692 * or writing of the package. When attempting to obtain write access, the 693 * caller must check for the following two return values: 694 * 695 * ICE_SUCCESS - Means the caller has acquired the global config lock 696 * and can perform writing of the package. 697 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 698 * package or has found that no update was necessary; in 699 * this case, the caller can just skip performing any 700 * update of the package. 701 */ 702 static enum ice_status 703 ice_acquire_global_cfg_lock(struct ice_hw *hw, 704 enum ice_aq_res_access_type access) 705 { 706 enum ice_status status; 707 708 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 709 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 710 711 if (!status) 712 mutex_lock(&ice_global_cfg_lock_sw); 713 else if (status == ICE_ERR_AQ_NO_WORK) 714 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 715 716 return status; 717 } 718 719 /** 720 * ice_release_global_cfg_lock 721 * @hw: pointer to the HW structure 722 * 723 * This function will release the global config lock. 724 */ 725 static void ice_release_global_cfg_lock(struct ice_hw *hw) 726 { 727 mutex_unlock(&ice_global_cfg_lock_sw); 728 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 729 } 730 731 /** 732 * ice_acquire_change_lock 733 * @hw: pointer to the HW structure 734 * @access: access type (read or write) 735 * 736 * This function will request ownership of the change lock. 737 */ 738 enum ice_status 739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 740 { 741 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 742 ICE_CHANGE_LOCK_TIMEOUT); 743 } 744 745 /** 746 * ice_release_change_lock 747 * @hw: pointer to the HW structure 748 * 749 * This function will release the change lock using the proper Admin Command. 750 */ 751 void ice_release_change_lock(struct ice_hw *hw) 752 { 753 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 754 } 755 756 /** 757 * ice_aq_download_pkg 758 * @hw: pointer to the hardware structure 759 * @pkg_buf: the package buffer to transfer 760 * @buf_size: the size of the package buffer 761 * @last_buf: last buffer indicator 762 * @error_offset: returns error offset 763 * @error_info: returns error information 764 * @cd: pointer to command details structure or NULL 765 * 766 * Download Package (0x0C40) 767 */ 768 static enum ice_status 769 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 770 u16 buf_size, bool last_buf, u32 *error_offset, 771 u32 *error_info, struct ice_sq_cd *cd) 772 { 773 struct ice_aqc_download_pkg *cmd; 774 struct ice_aq_desc desc; 775 enum ice_status status; 776 777 if (error_offset) 778 *error_offset = 0; 779 if (error_info) 780 *error_info = 0; 781 782 cmd = &desc.params.download_pkg; 783 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 784 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 785 786 if (last_buf) 787 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 788 789 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 790 if (status == ICE_ERR_AQ_ERROR) { 791 /* Read error from buffer only when the FW returned an error */ 792 struct ice_aqc_download_pkg_resp *resp; 793 794 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 795 if (error_offset) 796 *error_offset = le32_to_cpu(resp->error_offset); 797 if (error_info) 798 *error_info = le32_to_cpu(resp->error_info); 799 } 800 801 return status; 802 } 803 804 /** 805 * ice_aq_update_pkg 806 * @hw: pointer to the hardware structure 807 * @pkg_buf: the package cmd buffer 808 * @buf_size: the size of the package cmd buffer 809 * @last_buf: last buffer indicator 810 * @error_offset: returns error offset 811 * @error_info: returns error information 812 * @cd: pointer to command details structure or NULL 813 * 814 * Update Package (0x0C42) 815 */ 816 static enum ice_status 817 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 818 bool last_buf, u32 *error_offset, u32 *error_info, 819 struct ice_sq_cd *cd) 820 { 821 struct ice_aqc_download_pkg *cmd; 822 struct ice_aq_desc desc; 823 enum ice_status status; 824 825 if (error_offset) 826 *error_offset = 0; 827 if (error_info) 828 *error_info = 0; 829 830 cmd = &desc.params.download_pkg; 831 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 832 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 833 834 if (last_buf) 835 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 836 837 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 838 if (status == ICE_ERR_AQ_ERROR) { 839 /* Read error from buffer only when the FW returned an error */ 840 struct ice_aqc_download_pkg_resp *resp; 841 842 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 843 if (error_offset) 844 *error_offset = le32_to_cpu(resp->error_offset); 845 if (error_info) 846 *error_info = le32_to_cpu(resp->error_info); 847 } 848 849 return status; 850 } 851 852 /** 853 * ice_find_seg_in_pkg 854 * @hw: pointer to the hardware structure 855 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 856 * @pkg_hdr: pointer to the package header to be searched 857 * 858 * This function searches a package file for a particular segment type. On 859 * success it returns a pointer to the segment header, otherwise it will 860 * return NULL. 861 */ 862 static struct ice_generic_seg_hdr * 863 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 864 struct ice_pkg_hdr *pkg_hdr) 865 { 866 u32 i; 867 868 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 869 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 870 pkg_hdr->pkg_format_ver.update, 871 pkg_hdr->pkg_format_ver.draft); 872 873 /* Search all package segments for the requested segment type */ 874 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 875 struct ice_generic_seg_hdr *seg; 876 877 seg = (struct ice_generic_seg_hdr *) 878 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 879 880 if (le32_to_cpu(seg->seg_type) == seg_type) 881 return seg; 882 } 883 884 return NULL; 885 } 886 887 /** 888 * ice_update_pkg 889 * @hw: pointer to the hardware structure 890 * @bufs: pointer to an array of buffers 891 * @count: the number of buffers in the array 892 * 893 * Obtains change lock and updates package. 894 */ 895 static enum ice_status 896 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 897 { 898 enum ice_status status; 899 u32 offset, info, i; 900 901 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 902 if (status) 903 return status; 904 905 for (i = 0; i < count; i++) { 906 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 907 bool last = ((i + 1) == count); 908 909 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 910 last, &offset, &info, NULL); 911 912 if (status) { 913 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 914 status, offset, info); 915 break; 916 } 917 } 918 919 ice_release_change_lock(hw); 920 921 return status; 922 } 923 924 /** 925 * ice_dwnld_cfg_bufs 926 * @hw: pointer to the hardware structure 927 * @bufs: pointer to an array of buffers 928 * @count: the number of buffers in the array 929 * 930 * Obtains global config lock and downloads the package configuration buffers 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 932 * found indicates that the rest of the buffers are all metadata buffers. 933 */ 934 static enum ice_status 935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 936 { 937 enum ice_status status; 938 struct ice_buf_hdr *bh; 939 u32 offset, info, i; 940 941 if (!bufs || !count) 942 return ICE_ERR_PARAM; 943 944 /* If the first buffer's first section has its metadata bit set 945 * then there are no buffers to be downloaded, and the operation is 946 * considered a success. 947 */ 948 bh = (struct ice_buf_hdr *)bufs; 949 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 950 return 0; 951 952 /* reset pkg_dwnld_status in case this function is called in the 953 * reset/rebuild flow 954 */ 955 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 956 957 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 958 if (status) { 959 if (status == ICE_ERR_AQ_NO_WORK) 960 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 961 else 962 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 963 return status; 964 } 965 966 for (i = 0; i < count; i++) { 967 bool last = ((i + 1) == count); 968 969 if (!last) { 970 /* check next buffer for metadata flag */ 971 bh = (struct ice_buf_hdr *)(bufs + i + 1); 972 973 /* A set metadata flag in the next buffer will signal 974 * that the current buffer will be the last buffer 975 * downloaded 976 */ 977 if (le16_to_cpu(bh->section_count)) 978 if (le32_to_cpu(bh->section_entry[0].type) & 979 ICE_METADATA_BUF) 980 last = true; 981 } 982 983 bh = (struct ice_buf_hdr *)(bufs + i); 984 985 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 986 &offset, &info, NULL); 987 988 /* Save AQ status from download package */ 989 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 990 if (status) { 991 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_generic_seg_hdr *seg_hdr; 1069 1070 if (!pkg_hdr) 1071 return ICE_ERR_PARAM; 1072 1073 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1074 if (seg_hdr) { 1075 struct ice_meta_sect *meta; 1076 struct ice_pkg_enum state; 1077 1078 memset(&state, 0, sizeof(state)); 1079 1080 /* Get package information from the Metadata Section */ 1081 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1082 ICE_SID_METADATA); 1083 if (!meta) { 1084 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1085 return ICE_ERR_CFG; 1086 } 1087 1088 hw->pkg_ver = meta->ver; 1089 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1090 1091 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1092 meta->ver.major, meta->ver.minor, meta->ver.update, 1093 meta->ver.draft, meta->name); 1094 1095 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1096 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1097 sizeof(hw->ice_seg_id)); 1098 1099 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1100 seg_hdr->seg_format_ver.major, 1101 seg_hdr->seg_format_ver.minor, 1102 seg_hdr->seg_format_ver.update, 1103 seg_hdr->seg_format_ver.draft, 1104 seg_hdr->seg_id); 1105 } else { 1106 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1107 return ICE_ERR_CFG; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * ice_get_pkg_info 1115 * @hw: pointer to the hardware structure 1116 * 1117 * Store details of the package currently loaded in HW into the HW structure. 1118 */ 1119 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1120 { 1121 struct ice_aqc_get_pkg_info_resp *pkg_info; 1122 enum ice_status status; 1123 u16 size; 1124 u32 i; 1125 1126 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1127 pkg_info = kzalloc(size, GFP_KERNEL); 1128 if (!pkg_info) 1129 return ICE_ERR_NO_MEMORY; 1130 1131 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1132 if (status) 1133 goto init_pkg_free_alloc; 1134 1135 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1136 #define ICE_PKG_FLAG_COUNT 4 1137 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1138 u8 place = 0; 1139 1140 if (pkg_info->pkg_info[i].is_active) { 1141 flags[place++] = 'A'; 1142 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1143 hw->active_track_id = 1144 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1145 memcpy(hw->active_pkg_name, 1146 pkg_info->pkg_info[i].name, 1147 sizeof(pkg_info->pkg_info[i].name)); 1148 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1149 } 1150 if (pkg_info->pkg_info[i].is_active_at_boot) 1151 flags[place++] = 'B'; 1152 if (pkg_info->pkg_info[i].is_modified) 1153 flags[place++] = 'M'; 1154 if (pkg_info->pkg_info[i].is_in_nvm) 1155 flags[place++] = 'N'; 1156 1157 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1158 i, pkg_info->pkg_info[i].ver.major, 1159 pkg_info->pkg_info[i].ver.minor, 1160 pkg_info->pkg_info[i].ver.update, 1161 pkg_info->pkg_info[i].ver.draft, 1162 pkg_info->pkg_info[i].name, flags); 1163 } 1164 1165 init_pkg_free_alloc: 1166 kfree(pkg_info); 1167 1168 return status; 1169 } 1170 1171 /** 1172 * ice_verify_pkg - verify package 1173 * @pkg: pointer to the package buffer 1174 * @len: size of the package buffer 1175 * 1176 * Verifies various attributes of the package file, including length, format 1177 * version, and the requirement of at least one segment. 1178 */ 1179 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1180 { 1181 u32 seg_count; 1182 u32 i; 1183 1184 if (len < struct_size(pkg, seg_offset, 1)) 1185 return ICE_ERR_BUF_TOO_SHORT; 1186 1187 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1188 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1189 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1190 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1191 return ICE_ERR_CFG; 1192 1193 /* pkg must have at least one segment */ 1194 seg_count = le32_to_cpu(pkg->seg_count); 1195 if (seg_count < 1) 1196 return ICE_ERR_CFG; 1197 1198 /* make sure segment array fits in package length */ 1199 if (len < struct_size(pkg, seg_offset, seg_count)) 1200 return ICE_ERR_BUF_TOO_SHORT; 1201 1202 /* all segments must fit within length */ 1203 for (i = 0; i < seg_count; i++) { 1204 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1205 struct ice_generic_seg_hdr *seg; 1206 1207 /* segment header must fit */ 1208 if (len < off + sizeof(*seg)) 1209 return ICE_ERR_BUF_TOO_SHORT; 1210 1211 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1212 1213 /* segment body must fit */ 1214 if (len < off + le32_to_cpu(seg->seg_size)) 1215 return ICE_ERR_BUF_TOO_SHORT; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * ice_free_seg - free package segment pointer 1223 * @hw: pointer to the hardware structure 1224 * 1225 * Frees the package segment pointer in the proper manner, depending on if the 1226 * segment was allocated or just the passed in pointer was stored. 1227 */ 1228 void ice_free_seg(struct ice_hw *hw) 1229 { 1230 if (hw->pkg_copy) { 1231 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1232 hw->pkg_copy = NULL; 1233 hw->pkg_size = 0; 1234 } 1235 hw->seg = NULL; 1236 } 1237 1238 /** 1239 * ice_init_pkg_regs - initialize additional package registers 1240 * @hw: pointer to the hardware structure 1241 */ 1242 static void ice_init_pkg_regs(struct ice_hw *hw) 1243 { 1244 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1245 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1246 #define ICE_SW_BLK_IDX 0 1247 1248 /* setup Switch block input mask, which is 48-bits in two parts */ 1249 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1250 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1251 } 1252 1253 /** 1254 * ice_chk_pkg_version - check package version for compatibility with driver 1255 * @pkg_ver: pointer to a version structure to check 1256 * 1257 * Check to make sure that the package about to be downloaded is compatible with 1258 * the driver. To be compatible, the major and minor components of the package 1259 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1260 * definitions. 1261 */ 1262 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1263 { 1264 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1265 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1266 return ICE_ERR_NOT_SUPPORTED; 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * ice_chk_pkg_compat 1273 * @hw: pointer to the hardware structure 1274 * @ospkg: pointer to the package hdr 1275 * @seg: pointer to the package segment hdr 1276 * 1277 * This function checks the package version compatibility with driver and NVM 1278 */ 1279 static enum ice_status 1280 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1281 struct ice_seg **seg) 1282 { 1283 struct ice_aqc_get_pkg_info_resp *pkg; 1284 enum ice_status status; 1285 u16 size; 1286 u32 i; 1287 1288 /* Check package version compatibility */ 1289 status = ice_chk_pkg_version(&hw->pkg_ver); 1290 if (status) { 1291 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1292 return status; 1293 } 1294 1295 /* find ICE segment in given package */ 1296 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1297 ospkg); 1298 if (!*seg) { 1299 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1300 return ICE_ERR_CFG; 1301 } 1302 1303 /* Check if FW is compatible with the OS package */ 1304 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1305 pkg = kzalloc(size, GFP_KERNEL); 1306 if (!pkg) 1307 return ICE_ERR_NO_MEMORY; 1308 1309 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1310 if (status) 1311 goto fw_ddp_compat_free_alloc; 1312 1313 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1314 /* loop till we find the NVM package */ 1315 if (!pkg->pkg_info[i].is_in_nvm) 1316 continue; 1317 if ((*seg)->hdr.seg_format_ver.major != 1318 pkg->pkg_info[i].ver.major || 1319 (*seg)->hdr.seg_format_ver.minor > 1320 pkg->pkg_info[i].ver.minor) { 1321 status = ICE_ERR_FW_DDP_MISMATCH; 1322 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_sw_fv_handler 1334 * @sect_type: section type 1335 * @section: pointer to section 1336 * @index: index of the field vector entry to be returned 1337 * @offset: ptr to variable that receives the offset in the field vector table 1338 * 1339 * This is a callback function that can be passed to ice_pkg_enum_entry. 1340 * This function treats the given section as of type ice_sw_fv_section and 1341 * enumerates offset field. "offset" is an index into the field vector table. 1342 */ 1343 static void * 1344 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1345 { 1346 struct ice_sw_fv_section *fv_section = section; 1347 1348 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1349 return NULL; 1350 if (index >= le16_to_cpu(fv_section->count)) 1351 return NULL; 1352 if (offset) 1353 /* "index" passed in to this function is relative to a given 1354 * 4k block. To get to the true index into the field vector 1355 * table need to add the relative index to the base_offset 1356 * field of this section 1357 */ 1358 *offset = le16_to_cpu(fv_section->base_offset) + index; 1359 return fv_section->fv + index; 1360 } 1361 1362 /** 1363 * ice_get_prof_index_max - get the max profile index for used profile 1364 * @hw: pointer to the HW struct 1365 * 1366 * Calling this function will get the max profile index for used profile 1367 * and store the index number in struct ice_switch_info *switch_info 1368 * in HW for following use. 1369 */ 1370 static enum ice_status ice_get_prof_index_max(struct ice_hw *hw) 1371 { 1372 u16 prof_index = 0, j, max_prof_index = 0; 1373 struct ice_pkg_enum state; 1374 struct ice_seg *ice_seg; 1375 bool flag = false; 1376 struct ice_fv *fv; 1377 u32 offset; 1378 1379 memset(&state, 0, sizeof(state)); 1380 1381 if (!hw->seg) 1382 return ICE_ERR_PARAM; 1383 1384 ice_seg = hw->seg; 1385 1386 do { 1387 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1388 &offset, ice_sw_fv_handler); 1389 if (!fv) 1390 break; 1391 ice_seg = NULL; 1392 1393 /* in the profile that not be used, the prot_id is set to 0xff 1394 * and the off is set to 0x1ff for all the field vectors. 1395 */ 1396 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1397 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1398 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1399 flag = true; 1400 if (flag && prof_index > max_prof_index) 1401 max_prof_index = prof_index; 1402 1403 prof_index++; 1404 flag = false; 1405 } while (fv); 1406 1407 hw->switch_info->max_used_prof_index = max_prof_index; 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * ice_init_pkg - initialize/download package 1414 * @hw: pointer to the hardware structure 1415 * @buf: pointer to the package buffer 1416 * @len: size of the package buffer 1417 * 1418 * This function initializes a package. The package contains HW tables 1419 * required to do packet processing. First, the function extracts package 1420 * information such as version. Then it finds the ice configuration segment 1421 * within the package; this function then saves a copy of the segment pointer 1422 * within the supplied package buffer. Next, the function will cache any hints 1423 * from the package, followed by downloading the package itself. Note, that if 1424 * a previous PF driver has already downloaded the package successfully, then 1425 * the current driver will not have to download the package again. 1426 * 1427 * The local package contents will be used to query default behavior and to 1428 * update specific sections of the HW's version of the package (e.g. to update 1429 * the parse graph to understand new protocols). 1430 * 1431 * This function stores a pointer to the package buffer memory, and it is 1432 * expected that the supplied buffer will not be freed immediately. If the 1433 * package buffer needs to be freed, such as when read from a file, use 1434 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1435 * case. 1436 */ 1437 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1438 { 1439 struct ice_pkg_hdr *pkg; 1440 enum ice_status status; 1441 struct ice_seg *seg; 1442 1443 if (!buf || !len) 1444 return ICE_ERR_PARAM; 1445 1446 pkg = (struct ice_pkg_hdr *)buf; 1447 status = ice_verify_pkg(pkg, len); 1448 if (status) { 1449 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1450 status); 1451 return status; 1452 } 1453 1454 /* initialize package info */ 1455 status = ice_init_pkg_info(hw, pkg); 1456 if (status) 1457 return status; 1458 1459 /* before downloading the package, check package version for 1460 * compatibility with driver 1461 */ 1462 status = ice_chk_pkg_compat(hw, pkg, &seg); 1463 if (status) 1464 return status; 1465 1466 /* initialize package hints and then download package */ 1467 ice_init_pkg_hints(hw, seg); 1468 status = ice_download_pkg(hw, seg); 1469 if (status == ICE_ERR_AQ_NO_WORK) { 1470 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1471 status = 0; 1472 } 1473 1474 /* Get information on the package currently loaded in HW, then make sure 1475 * the driver is compatible with this version. 1476 */ 1477 if (!status) { 1478 status = ice_get_pkg_info(hw); 1479 if (!status) 1480 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1481 } 1482 1483 if (!status) { 1484 hw->seg = seg; 1485 /* on successful package download update other required 1486 * registers to support the package and fill HW tables 1487 * with package content. 1488 */ 1489 ice_init_pkg_regs(hw); 1490 ice_fill_blk_tbls(hw); 1491 ice_get_prof_index_max(hw); 1492 } else { 1493 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1494 status); 1495 } 1496 1497 return status; 1498 } 1499 1500 /** 1501 * ice_copy_and_init_pkg - initialize/download a copy of the package 1502 * @hw: pointer to the hardware structure 1503 * @buf: pointer to the package buffer 1504 * @len: size of the package buffer 1505 * 1506 * This function copies the package buffer, and then calls ice_init_pkg() to 1507 * initialize the copied package contents. 1508 * 1509 * The copying is necessary if the package buffer supplied is constant, or if 1510 * the memory may disappear shortly after calling this function. 1511 * 1512 * If the package buffer resides in the data segment and can be modified, the 1513 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1514 * 1515 * However, if the package buffer needs to be copied first, such as when being 1516 * read from a file, the caller should use ice_copy_and_init_pkg(). 1517 * 1518 * This function will first copy the package buffer, before calling 1519 * ice_init_pkg(). The caller is free to immediately destroy the original 1520 * package buffer, as the new copy will be managed by this function and 1521 * related routines. 1522 */ 1523 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1524 { 1525 enum ice_status status; 1526 u8 *buf_copy; 1527 1528 if (!buf || !len) 1529 return ICE_ERR_PARAM; 1530 1531 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1532 1533 status = ice_init_pkg(hw, buf_copy, len); 1534 if (status) { 1535 /* Free the copy, since we failed to initialize the package */ 1536 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1537 } else { 1538 /* Track the copied pkg so we can free it later */ 1539 hw->pkg_copy = buf_copy; 1540 hw->pkg_size = len; 1541 } 1542 1543 return status; 1544 } 1545 1546 /** 1547 * ice_pkg_buf_alloc 1548 * @hw: pointer to the HW structure 1549 * 1550 * Allocates a package buffer and returns a pointer to the buffer header. 1551 * Note: all package contents must be in Little Endian form. 1552 */ 1553 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1554 { 1555 struct ice_buf_build *bld; 1556 struct ice_buf_hdr *buf; 1557 1558 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1559 if (!bld) 1560 return NULL; 1561 1562 buf = (struct ice_buf_hdr *)bld; 1563 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1564 section_entry)); 1565 return bld; 1566 } 1567 1568 /** 1569 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1570 * @hw: pointer to hardware structure 1571 * @req_profs: type of profiles requested 1572 * @bm: pointer to memory for returning the bitmap of field vectors 1573 */ 1574 void 1575 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1576 unsigned long *bm) 1577 { 1578 struct ice_pkg_enum state; 1579 struct ice_seg *ice_seg; 1580 struct ice_fv *fv; 1581 1582 if (req_profs == ICE_PROF_ALL) { 1583 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1584 return; 1585 } 1586 1587 memset(&state, 0, sizeof(state)); 1588 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1589 ice_seg = hw->seg; 1590 do { 1591 u32 offset; 1592 1593 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1594 &offset, ice_sw_fv_handler); 1595 ice_seg = NULL; 1596 1597 if (fv) { 1598 if (req_profs & ICE_PROF_NON_TUN) 1599 set_bit((u16)offset, bm); 1600 } 1601 } while (fv); 1602 } 1603 1604 /** 1605 * ice_get_sw_fv_list 1606 * @hw: pointer to the HW structure 1607 * @prot_ids: field vector to search for with a given protocol ID 1608 * @ids_cnt: lookup/protocol count 1609 * @bm: bitmap of field vectors to consider 1610 * @fv_list: Head of a list 1611 * 1612 * Finds all the field vector entries from switch block that contain 1613 * a given protocol ID and returns a list of structures of type 1614 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1615 * definition and profile ID information 1616 * NOTE: The caller of the function is responsible for freeing the memory 1617 * allocated for every list entry. 1618 */ 1619 enum ice_status 1620 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1621 unsigned long *bm, struct list_head *fv_list) 1622 { 1623 struct ice_sw_fv_list_entry *fvl; 1624 struct ice_sw_fv_list_entry *tmp; 1625 struct ice_pkg_enum state; 1626 struct ice_seg *ice_seg; 1627 struct ice_fv *fv; 1628 u32 offset; 1629 1630 memset(&state, 0, sizeof(state)); 1631 1632 if (!ids_cnt || !hw->seg) 1633 return ICE_ERR_PARAM; 1634 1635 ice_seg = hw->seg; 1636 do { 1637 u16 i; 1638 1639 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1640 &offset, ice_sw_fv_handler); 1641 if (!fv) 1642 break; 1643 ice_seg = NULL; 1644 1645 /* If field vector is not in the bitmap list, then skip this 1646 * profile. 1647 */ 1648 if (!test_bit((u16)offset, bm)) 1649 continue; 1650 1651 for (i = 0; i < ids_cnt; i++) { 1652 int j; 1653 1654 /* This code assumes that if a switch field vector line 1655 * has a matching protocol, then this line will contain 1656 * the entries necessary to represent every field in 1657 * that protocol header. 1658 */ 1659 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1660 if (fv->ew[j].prot_id == prot_ids[i]) 1661 break; 1662 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1663 break; 1664 if (i + 1 == ids_cnt) { 1665 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1666 sizeof(*fvl), GFP_KERNEL); 1667 if (!fvl) 1668 goto err; 1669 fvl->fv_ptr = fv; 1670 fvl->profile_id = offset; 1671 list_add(&fvl->list_entry, fv_list); 1672 break; 1673 } 1674 } 1675 } while (fv); 1676 if (list_empty(fv_list)) 1677 return ICE_ERR_CFG; 1678 return 0; 1679 1680 err: 1681 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1682 list_del(&fvl->list_entry); 1683 devm_kfree(ice_hw_to_dev(hw), fvl); 1684 } 1685 1686 return ICE_ERR_NO_MEMORY; 1687 } 1688 1689 /** 1690 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1691 * @hw: pointer to hardware structure 1692 */ 1693 void ice_init_prof_result_bm(struct ice_hw *hw) 1694 { 1695 struct ice_pkg_enum state; 1696 struct ice_seg *ice_seg; 1697 struct ice_fv *fv; 1698 1699 memset(&state, 0, sizeof(state)); 1700 1701 if (!hw->seg) 1702 return; 1703 1704 ice_seg = hw->seg; 1705 do { 1706 u32 off; 1707 u16 i; 1708 1709 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1710 &off, ice_sw_fv_handler); 1711 ice_seg = NULL; 1712 if (!fv) 1713 break; 1714 1715 bitmap_zero(hw->switch_info->prof_res_bm[off], 1716 ICE_MAX_FV_WORDS); 1717 1718 /* Determine empty field vector indices, these can be 1719 * used for recipe results. Skip index 0, since it is 1720 * always used for Switch ID. 1721 */ 1722 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1723 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1724 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1725 set_bit(i, hw->switch_info->prof_res_bm[off]); 1726 } while (fv); 1727 } 1728 1729 /** 1730 * ice_pkg_buf_free 1731 * @hw: pointer to the HW structure 1732 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1733 * 1734 * Frees a package buffer 1735 */ 1736 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1737 { 1738 devm_kfree(ice_hw_to_dev(hw), bld); 1739 } 1740 1741 /** 1742 * ice_pkg_buf_reserve_section 1743 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1744 * @count: the number of sections to reserve 1745 * 1746 * Reserves one or more section table entries in a package buffer. This routine 1747 * can be called multiple times as long as they are made before calling 1748 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1749 * is called once, the number of sections that can be allocated will not be able 1750 * to be increased; not using all reserved sections is fine, but this will 1751 * result in some wasted space in the buffer. 1752 * Note: all package contents must be in Little Endian form. 1753 */ 1754 static enum ice_status 1755 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1756 { 1757 struct ice_buf_hdr *buf; 1758 u16 section_count; 1759 u16 data_end; 1760 1761 if (!bld) 1762 return ICE_ERR_PARAM; 1763 1764 buf = (struct ice_buf_hdr *)&bld->buf; 1765 1766 /* already an active section, can't increase table size */ 1767 section_count = le16_to_cpu(buf->section_count); 1768 if (section_count > 0) 1769 return ICE_ERR_CFG; 1770 1771 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1772 return ICE_ERR_CFG; 1773 bld->reserved_section_table_entries += count; 1774 1775 data_end = le16_to_cpu(buf->data_end) + 1776 flex_array_size(buf, section_entry, count); 1777 buf->data_end = cpu_to_le16(data_end); 1778 1779 return 0; 1780 } 1781 1782 /** 1783 * ice_pkg_buf_alloc_section 1784 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1785 * @type: the section type value 1786 * @size: the size of the section to reserve (in bytes) 1787 * 1788 * Reserves memory in the buffer for a section's content and updates the 1789 * buffers' status accordingly. This routine returns a pointer to the first 1790 * byte of the section start within the buffer, which is used to fill in the 1791 * section contents. 1792 * Note: all package contents must be in Little Endian form. 1793 */ 1794 static void * 1795 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1796 { 1797 struct ice_buf_hdr *buf; 1798 u16 sect_count; 1799 u16 data_end; 1800 1801 if (!bld || !type || !size) 1802 return NULL; 1803 1804 buf = (struct ice_buf_hdr *)&bld->buf; 1805 1806 /* check for enough space left in buffer */ 1807 data_end = le16_to_cpu(buf->data_end); 1808 1809 /* section start must align on 4 byte boundary */ 1810 data_end = ALIGN(data_end, 4); 1811 1812 if ((data_end + size) > ICE_MAX_S_DATA_END) 1813 return NULL; 1814 1815 /* check for more available section table entries */ 1816 sect_count = le16_to_cpu(buf->section_count); 1817 if (sect_count < bld->reserved_section_table_entries) { 1818 void *section_ptr = ((u8 *)buf) + data_end; 1819 1820 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1821 buf->section_entry[sect_count].size = cpu_to_le16(size); 1822 buf->section_entry[sect_count].type = cpu_to_le32(type); 1823 1824 data_end += size; 1825 buf->data_end = cpu_to_le16(data_end); 1826 1827 buf->section_count = cpu_to_le16(sect_count + 1); 1828 return section_ptr; 1829 } 1830 1831 /* no free section table entries */ 1832 return NULL; 1833 } 1834 1835 /** 1836 * ice_pkg_buf_get_active_sections 1837 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1838 * 1839 * Returns the number of active sections. Before using the package buffer 1840 * in an update package command, the caller should make sure that there is at 1841 * least one active section - otherwise, the buffer is not legal and should 1842 * not be used. 1843 * Note: all package contents must be in Little Endian form. 1844 */ 1845 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1846 { 1847 struct ice_buf_hdr *buf; 1848 1849 if (!bld) 1850 return 0; 1851 1852 buf = (struct ice_buf_hdr *)&bld->buf; 1853 return le16_to_cpu(buf->section_count); 1854 } 1855 1856 /** 1857 * ice_pkg_buf 1858 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1859 * 1860 * Return a pointer to the buffer's header 1861 */ 1862 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1863 { 1864 if (!bld) 1865 return NULL; 1866 1867 return &bld->buf; 1868 } 1869 1870 /** 1871 * ice_get_open_tunnel_port - retrieve an open tunnel port 1872 * @hw: pointer to the HW structure 1873 * @port: returns open port 1874 */ 1875 bool 1876 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) 1877 { 1878 bool res = false; 1879 u16 i; 1880 1881 mutex_lock(&hw->tnl_lock); 1882 1883 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1884 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { 1885 *port = hw->tnl.tbl[i].port; 1886 res = true; 1887 break; 1888 } 1889 1890 mutex_unlock(&hw->tnl_lock); 1891 1892 return res; 1893 } 1894 1895 /** 1896 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1897 * @hw: pointer to the HW structure 1898 * @type: type of tunnel 1899 * @idx: linear index 1900 * 1901 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1902 * but really the port table may be sprase, and types are mixed, so convert 1903 * the stack index into the device index. 1904 */ 1905 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1906 u16 idx) 1907 { 1908 u16 i; 1909 1910 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1911 if (hw->tnl.tbl[i].valid && 1912 hw->tnl.tbl[i].type == type && 1913 idx--) 1914 return i; 1915 1916 WARN_ON_ONCE(1); 1917 return 0; 1918 } 1919 1920 /** 1921 * ice_create_tunnel 1922 * @hw: pointer to the HW structure 1923 * @index: device table entry 1924 * @type: type of tunnel 1925 * @port: port of tunnel to create 1926 * 1927 * Create a tunnel by updating the parse graph in the parser. We do that by 1928 * creating a package buffer with the tunnel info and issuing an update package 1929 * command. 1930 */ 1931 static enum ice_status 1932 ice_create_tunnel(struct ice_hw *hw, u16 index, 1933 enum ice_tunnel_type type, u16 port) 1934 { 1935 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1936 enum ice_status status = ICE_ERR_MAX_LIMIT; 1937 struct ice_buf_build *bld; 1938 1939 mutex_lock(&hw->tnl_lock); 1940 1941 bld = ice_pkg_buf_alloc(hw); 1942 if (!bld) { 1943 status = ICE_ERR_NO_MEMORY; 1944 goto ice_create_tunnel_end; 1945 } 1946 1947 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1948 if (ice_pkg_buf_reserve_section(bld, 2)) 1949 goto ice_create_tunnel_err; 1950 1951 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1952 struct_size(sect_rx, tcam, 1)); 1953 if (!sect_rx) 1954 goto ice_create_tunnel_err; 1955 sect_rx->count = cpu_to_le16(1); 1956 1957 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1958 struct_size(sect_tx, tcam, 1)); 1959 if (!sect_tx) 1960 goto ice_create_tunnel_err; 1961 sect_tx->count = cpu_to_le16(1); 1962 1963 /* copy original boost entry to update package buffer */ 1964 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1965 sizeof(*sect_rx->tcam)); 1966 1967 /* over-write the never-match dest port key bits with the encoded port 1968 * bits 1969 */ 1970 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1971 (u8 *)&port, NULL, NULL, NULL, 1972 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1973 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1974 1975 /* exact copy of entry to Tx section entry */ 1976 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1977 1978 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1979 if (!status) 1980 hw->tnl.tbl[index].port = port; 1981 1982 ice_create_tunnel_err: 1983 ice_pkg_buf_free(hw, bld); 1984 1985 ice_create_tunnel_end: 1986 mutex_unlock(&hw->tnl_lock); 1987 1988 return status; 1989 } 1990 1991 /** 1992 * ice_destroy_tunnel 1993 * @hw: pointer to the HW structure 1994 * @index: device table entry 1995 * @type: type of tunnel 1996 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1997 * 1998 * Destroys a tunnel or all tunnels by creating an update package buffer 1999 * targeting the specific updates requested and then performing an update 2000 * package. 2001 */ 2002 static enum ice_status 2003 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2004 u16 port) 2005 { 2006 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2007 enum ice_status status = ICE_ERR_MAX_LIMIT; 2008 struct ice_buf_build *bld; 2009 2010 mutex_lock(&hw->tnl_lock); 2011 2012 if (WARN_ON(!hw->tnl.tbl[index].valid || 2013 hw->tnl.tbl[index].type != type || 2014 hw->tnl.tbl[index].port != port)) { 2015 status = ICE_ERR_OUT_OF_RANGE; 2016 goto ice_destroy_tunnel_end; 2017 } 2018 2019 bld = ice_pkg_buf_alloc(hw); 2020 if (!bld) { 2021 status = ICE_ERR_NO_MEMORY; 2022 goto ice_destroy_tunnel_end; 2023 } 2024 2025 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2026 if (ice_pkg_buf_reserve_section(bld, 2)) 2027 goto ice_destroy_tunnel_err; 2028 2029 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2030 struct_size(sect_rx, tcam, 1)); 2031 if (!sect_rx) 2032 goto ice_destroy_tunnel_err; 2033 sect_rx->count = cpu_to_le16(1); 2034 2035 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2036 struct_size(sect_tx, tcam, 1)); 2037 if (!sect_tx) 2038 goto ice_destroy_tunnel_err; 2039 sect_tx->count = cpu_to_le16(1); 2040 2041 /* copy original boost entry to update package buffer, one copy to Rx 2042 * section, another copy to the Tx section 2043 */ 2044 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2045 sizeof(*sect_rx->tcam)); 2046 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2047 sizeof(*sect_tx->tcam)); 2048 2049 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2050 if (!status) 2051 hw->tnl.tbl[index].port = 0; 2052 2053 ice_destroy_tunnel_err: 2054 ice_pkg_buf_free(hw, bld); 2055 2056 ice_destroy_tunnel_end: 2057 mutex_unlock(&hw->tnl_lock); 2058 2059 return status; 2060 } 2061 2062 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2063 unsigned int idx, struct udp_tunnel_info *ti) 2064 { 2065 struct ice_netdev_priv *np = netdev_priv(netdev); 2066 struct ice_vsi *vsi = np->vsi; 2067 struct ice_pf *pf = vsi->back; 2068 enum ice_tunnel_type tnl_type; 2069 enum ice_status status; 2070 u16 index; 2071 2072 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2073 index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type); 2074 2075 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2076 if (status) { 2077 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 2078 ice_stat_str(status)); 2079 return -EIO; 2080 } 2081 2082 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2083 return 0; 2084 } 2085 2086 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2087 unsigned int idx, struct udp_tunnel_info *ti) 2088 { 2089 struct ice_netdev_priv *np = netdev_priv(netdev); 2090 struct ice_vsi *vsi = np->vsi; 2091 struct ice_pf *pf = vsi->back; 2092 enum ice_tunnel_type tnl_type; 2093 enum ice_status status; 2094 2095 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2096 2097 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2098 ntohs(ti->port)); 2099 if (status) { 2100 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 2101 ice_stat_str(status)); 2102 return -EIO; 2103 } 2104 2105 return 0; 2106 } 2107 2108 /** 2109 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2110 * @hw: pointer to the hardware structure 2111 * @blk: hardware block 2112 * @prof: profile ID 2113 * @fv_idx: field vector word index 2114 * @prot: variable to receive the protocol ID 2115 * @off: variable to receive the protocol offset 2116 */ 2117 enum ice_status 2118 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2119 u8 *prot, u16 *off) 2120 { 2121 struct ice_fv_word *fv_ext; 2122 2123 if (prof >= hw->blk[blk].es.count) 2124 return ICE_ERR_PARAM; 2125 2126 if (fv_idx >= hw->blk[blk].es.fvw) 2127 return ICE_ERR_PARAM; 2128 2129 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2130 2131 *prot = fv_ext[fv_idx].prot_id; 2132 *off = fv_ext[fv_idx].off; 2133 2134 return 0; 2135 } 2136 2137 /* PTG Management */ 2138 2139 /** 2140 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2141 * @hw: pointer to the hardware structure 2142 * @blk: HW block 2143 * @ptype: the ptype to search for 2144 * @ptg: pointer to variable that receives the PTG 2145 * 2146 * This function will search the PTGs for a particular ptype, returning the 2147 * PTG ID that contains it through the PTG parameter, with the value of 2148 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2149 */ 2150 static enum ice_status 2151 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2152 { 2153 if (ptype >= ICE_XLT1_CNT || !ptg) 2154 return ICE_ERR_PARAM; 2155 2156 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2157 return 0; 2158 } 2159 2160 /** 2161 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2162 * @hw: pointer to the hardware structure 2163 * @blk: HW block 2164 * @ptg: the PTG to allocate 2165 * 2166 * This function allocates a given packet type group ID specified by the PTG 2167 * parameter. 2168 */ 2169 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2170 { 2171 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2172 } 2173 2174 /** 2175 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2176 * @hw: pointer to the hardware structure 2177 * @blk: HW block 2178 * @ptype: the ptype to remove 2179 * @ptg: the PTG to remove the ptype from 2180 * 2181 * This function will remove the ptype from the specific PTG, and move it to 2182 * the default PTG (ICE_DEFAULT_PTG). 2183 */ 2184 static enum ice_status 2185 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2186 { 2187 struct ice_ptg_ptype **ch; 2188 struct ice_ptg_ptype *p; 2189 2190 if (ptype > ICE_XLT1_CNT - 1) 2191 return ICE_ERR_PARAM; 2192 2193 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2194 return ICE_ERR_DOES_NOT_EXIST; 2195 2196 /* Should not happen if .in_use is set, bad config */ 2197 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2198 return ICE_ERR_CFG; 2199 2200 /* find the ptype within this PTG, and bypass the link over it */ 2201 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2202 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2203 while (p) { 2204 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2205 *ch = p->next_ptype; 2206 break; 2207 } 2208 2209 ch = &p->next_ptype; 2210 p = p->next_ptype; 2211 } 2212 2213 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2214 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2221 * @hw: pointer to the hardware structure 2222 * @blk: HW block 2223 * @ptype: the ptype to add or move 2224 * @ptg: the PTG to add or move the ptype to 2225 * 2226 * This function will either add or move a ptype to a particular PTG depending 2227 * on if the ptype is already part of another group. Note that using a 2228 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2229 * default PTG. 2230 */ 2231 static enum ice_status 2232 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2233 { 2234 enum ice_status status; 2235 u8 original_ptg; 2236 2237 if (ptype > ICE_XLT1_CNT - 1) 2238 return ICE_ERR_PARAM; 2239 2240 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2241 return ICE_ERR_DOES_NOT_EXIST; 2242 2243 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2244 if (status) 2245 return status; 2246 2247 /* Is ptype already in the correct PTG? */ 2248 if (original_ptg == ptg) 2249 return 0; 2250 2251 /* Remove from original PTG and move back to the default PTG */ 2252 if (original_ptg != ICE_DEFAULT_PTG) 2253 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2254 2255 /* Moving to default PTG? Then we're done with this request */ 2256 if (ptg == ICE_DEFAULT_PTG) 2257 return 0; 2258 2259 /* Add ptype to PTG at beginning of list */ 2260 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2261 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2262 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2263 &hw->blk[blk].xlt1.ptypes[ptype]; 2264 2265 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2266 hw->blk[blk].xlt1.t[ptype] = ptg; 2267 2268 return 0; 2269 } 2270 2271 /* Block / table size info */ 2272 struct ice_blk_size_details { 2273 u16 xlt1; /* # XLT1 entries */ 2274 u16 xlt2; /* # XLT2 entries */ 2275 u16 prof_tcam; /* # profile ID TCAM entries */ 2276 u16 prof_id; /* # profile IDs */ 2277 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2278 u16 prof_redir; /* # profile redirection entries */ 2279 u16 es; /* # extraction sequence entries */ 2280 u16 fvw; /* # field vector words */ 2281 u8 overwrite; /* overwrite existing entries allowed */ 2282 u8 reverse; /* reverse FV order */ 2283 }; 2284 2285 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2286 /** 2287 * Table Definitions 2288 * XLT1 - Number of entries in XLT1 table 2289 * XLT2 - Number of entries in XLT2 table 2290 * TCAM - Number of entries Profile ID TCAM table 2291 * CDID - Control Domain ID of the hardware block 2292 * PRED - Number of entries in the Profile Redirection Table 2293 * FV - Number of entries in the Field Vector 2294 * FVW - Width (in WORDs) of the Field Vector 2295 * OVR - Overwrite existing table entries 2296 * REV - Reverse FV 2297 */ 2298 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2299 /* Overwrite , Reverse FV */ 2300 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2301 false, false }, 2302 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2303 false, false }, 2304 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2305 false, true }, 2306 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2307 true, true }, 2308 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2309 false, false }, 2310 }; 2311 2312 enum ice_sid_all { 2313 ICE_SID_XLT1_OFF = 0, 2314 ICE_SID_XLT2_OFF, 2315 ICE_SID_PR_OFF, 2316 ICE_SID_PR_REDIR_OFF, 2317 ICE_SID_ES_OFF, 2318 ICE_SID_OFF_COUNT, 2319 }; 2320 2321 /* Characteristic handling */ 2322 2323 /** 2324 * ice_match_prop_lst - determine if properties of two lists match 2325 * @list1: first properties list 2326 * @list2: second properties list 2327 * 2328 * Count, cookies and the order must match in order to be considered equivalent. 2329 */ 2330 static bool 2331 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2332 { 2333 struct ice_vsig_prof *tmp1; 2334 struct ice_vsig_prof *tmp2; 2335 u16 chk_count = 0; 2336 u16 count = 0; 2337 2338 /* compare counts */ 2339 list_for_each_entry(tmp1, list1, list) 2340 count++; 2341 list_for_each_entry(tmp2, list2, list) 2342 chk_count++; 2343 /* cppcheck-suppress knownConditionTrueFalse */ 2344 if (!count || count != chk_count) 2345 return false; 2346 2347 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2348 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2349 2350 /* profile cookies must compare, and in the exact same order to take 2351 * into account priority 2352 */ 2353 while (count--) { 2354 if (tmp2->profile_cookie != tmp1->profile_cookie) 2355 return false; 2356 2357 tmp1 = list_next_entry(tmp1, list); 2358 tmp2 = list_next_entry(tmp2, list); 2359 } 2360 2361 return true; 2362 } 2363 2364 /* VSIG Management */ 2365 2366 /** 2367 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2368 * @hw: pointer to the hardware structure 2369 * @blk: HW block 2370 * @vsi: VSI of interest 2371 * @vsig: pointer to receive the VSI group 2372 * 2373 * This function will lookup the VSI entry in the XLT2 list and return 2374 * the VSI group its associated with. 2375 */ 2376 static enum ice_status 2377 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2378 { 2379 if (!vsig || vsi >= ICE_MAX_VSI) 2380 return ICE_ERR_PARAM; 2381 2382 /* As long as there's a default or valid VSIG associated with the input 2383 * VSI, the functions returns a success. Any handling of VSIG will be 2384 * done by the following add, update or remove functions. 2385 */ 2386 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2387 2388 return 0; 2389 } 2390 2391 /** 2392 * ice_vsig_alloc_val - allocate a new VSIG by value 2393 * @hw: pointer to the hardware structure 2394 * @blk: HW block 2395 * @vsig: the VSIG to allocate 2396 * 2397 * This function will allocate a given VSIG specified by the VSIG parameter. 2398 */ 2399 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2400 { 2401 u16 idx = vsig & ICE_VSIG_IDX_M; 2402 2403 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2404 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2405 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2406 } 2407 2408 return ICE_VSIG_VALUE(idx, hw->pf_id); 2409 } 2410 2411 /** 2412 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2413 * @hw: pointer to the hardware structure 2414 * @blk: HW block 2415 * 2416 * This function will iterate through the VSIG list and mark the first 2417 * unused entry for the new VSIG entry as used and return that value. 2418 */ 2419 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2420 { 2421 u16 i; 2422 2423 for (i = 1; i < ICE_MAX_VSIGS; i++) 2424 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2425 return ice_vsig_alloc_val(hw, blk, i); 2426 2427 return ICE_DEFAULT_VSIG; 2428 } 2429 2430 /** 2431 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2432 * @hw: pointer to the hardware structure 2433 * @blk: HW block 2434 * @chs: characteristic list 2435 * @vsig: returns the VSIG with the matching profiles, if found 2436 * 2437 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2438 * a group have the same characteristic set. To check if there exists a VSIG 2439 * which has the same characteristics as the input characteristics; this 2440 * function will iterate through the XLT2 list and return the VSIG that has a 2441 * matching configuration. In order to make sure that priorities are accounted 2442 * for, the list must match exactly, including the order in which the 2443 * characteristics are listed. 2444 */ 2445 static enum ice_status 2446 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2447 struct list_head *chs, u16 *vsig) 2448 { 2449 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2450 u16 i; 2451 2452 for (i = 0; i < xlt2->count; i++) 2453 if (xlt2->vsig_tbl[i].in_use && 2454 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2455 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2456 return 0; 2457 } 2458 2459 return ICE_ERR_DOES_NOT_EXIST; 2460 } 2461 2462 /** 2463 * ice_vsig_free - free VSI group 2464 * @hw: pointer to the hardware structure 2465 * @blk: HW block 2466 * @vsig: VSIG to remove 2467 * 2468 * The function will remove all VSIs associated with the input VSIG and move 2469 * them to the DEFAULT_VSIG and mark the VSIG available. 2470 */ 2471 static enum ice_status 2472 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2473 { 2474 struct ice_vsig_prof *dtmp, *del; 2475 struct ice_vsig_vsi *vsi_cur; 2476 u16 idx; 2477 2478 idx = vsig & ICE_VSIG_IDX_M; 2479 if (idx >= ICE_MAX_VSIGS) 2480 return ICE_ERR_PARAM; 2481 2482 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2483 return ICE_ERR_DOES_NOT_EXIST; 2484 2485 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2486 2487 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2488 /* If the VSIG has at least 1 VSI then iterate through the 2489 * list and remove the VSIs before deleting the group. 2490 */ 2491 if (vsi_cur) { 2492 /* remove all vsis associated with this VSIG XLT2 entry */ 2493 do { 2494 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2495 2496 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2497 vsi_cur->changed = 1; 2498 vsi_cur->next_vsi = NULL; 2499 vsi_cur = tmp; 2500 } while (vsi_cur); 2501 2502 /* NULL terminate head of VSI list */ 2503 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2504 } 2505 2506 /* free characteristic list */ 2507 list_for_each_entry_safe(del, dtmp, 2508 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2509 list) { 2510 list_del(&del->list); 2511 devm_kfree(ice_hw_to_dev(hw), del); 2512 } 2513 2514 /* if VSIG characteristic list was cleared for reset 2515 * re-initialize the list head 2516 */ 2517 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2518 2519 return 0; 2520 } 2521 2522 /** 2523 * ice_vsig_remove_vsi - remove VSI from VSIG 2524 * @hw: pointer to the hardware structure 2525 * @blk: HW block 2526 * @vsi: VSI to remove 2527 * @vsig: VSI group to remove from 2528 * 2529 * The function will remove the input VSI from its VSI group and move it 2530 * to the DEFAULT_VSIG. 2531 */ 2532 static enum ice_status 2533 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2534 { 2535 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2536 u16 idx; 2537 2538 idx = vsig & ICE_VSIG_IDX_M; 2539 2540 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2541 return ICE_ERR_PARAM; 2542 2543 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2544 return ICE_ERR_DOES_NOT_EXIST; 2545 2546 /* entry already in default VSIG, don't have to remove */ 2547 if (idx == ICE_DEFAULT_VSIG) 2548 return 0; 2549 2550 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2551 if (!(*vsi_head)) 2552 return ICE_ERR_CFG; 2553 2554 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2555 vsi_cur = (*vsi_head); 2556 2557 /* iterate the VSI list, skip over the entry to be removed */ 2558 while (vsi_cur) { 2559 if (vsi_tgt == vsi_cur) { 2560 (*vsi_head) = vsi_cur->next_vsi; 2561 break; 2562 } 2563 vsi_head = &vsi_cur->next_vsi; 2564 vsi_cur = vsi_cur->next_vsi; 2565 } 2566 2567 /* verify if VSI was removed from group list */ 2568 if (!vsi_cur) 2569 return ICE_ERR_DOES_NOT_EXIST; 2570 2571 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2572 vsi_cur->changed = 1; 2573 vsi_cur->next_vsi = NULL; 2574 2575 return 0; 2576 } 2577 2578 /** 2579 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2580 * @hw: pointer to the hardware structure 2581 * @blk: HW block 2582 * @vsi: VSI to move 2583 * @vsig: destination VSI group 2584 * 2585 * This function will move or add the input VSI to the target VSIG. 2586 * The function will find the original VSIG the VSI belongs to and 2587 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2588 * then move entry to the new VSIG. 2589 */ 2590 static enum ice_status 2591 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2592 { 2593 struct ice_vsig_vsi *tmp; 2594 enum ice_status status; 2595 u16 orig_vsig, idx; 2596 2597 idx = vsig & ICE_VSIG_IDX_M; 2598 2599 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2600 return ICE_ERR_PARAM; 2601 2602 /* if VSIG not in use and VSIG is not default type this VSIG 2603 * doesn't exist. 2604 */ 2605 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2606 vsig != ICE_DEFAULT_VSIG) 2607 return ICE_ERR_DOES_NOT_EXIST; 2608 2609 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2610 if (status) 2611 return status; 2612 2613 /* no update required if vsigs match */ 2614 if (orig_vsig == vsig) 2615 return 0; 2616 2617 if (orig_vsig != ICE_DEFAULT_VSIG) { 2618 /* remove entry from orig_vsig and add to default VSIG */ 2619 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2620 if (status) 2621 return status; 2622 } 2623 2624 if (idx == ICE_DEFAULT_VSIG) 2625 return 0; 2626 2627 /* Create VSI entry and add VSIG and prop_mask values */ 2628 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2629 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2630 2631 /* Add new entry to the head of the VSIG list */ 2632 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2633 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2634 &hw->blk[blk].xlt2.vsis[vsi]; 2635 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2636 hw->blk[blk].xlt2.t[vsi] = vsig; 2637 2638 return 0; 2639 } 2640 2641 /** 2642 * ice_prof_has_mask_idx - determine if profile index masking is identical 2643 * @hw: pointer to the hardware structure 2644 * @blk: HW block 2645 * @prof: profile to check 2646 * @idx: profile index to check 2647 * @mask: mask to match 2648 */ 2649 static bool 2650 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2651 u16 mask) 2652 { 2653 bool expect_no_mask = false; 2654 bool found = false; 2655 bool match = false; 2656 u16 i; 2657 2658 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2659 if (mask == 0 || mask == 0xffff) 2660 expect_no_mask = true; 2661 2662 /* Scan the enabled masks on this profile, for the specified idx */ 2663 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2664 hw->blk[blk].masks.count; i++) 2665 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2666 if (hw->blk[blk].masks.masks[i].in_use && 2667 hw->blk[blk].masks.masks[i].idx == idx) { 2668 found = true; 2669 if (hw->blk[blk].masks.masks[i].mask == mask) 2670 match = true; 2671 break; 2672 } 2673 2674 if (expect_no_mask) { 2675 if (found) 2676 return false; 2677 } else { 2678 if (!match) 2679 return false; 2680 } 2681 2682 return true; 2683 } 2684 2685 /** 2686 * ice_prof_has_mask - determine if profile masking is identical 2687 * @hw: pointer to the hardware structure 2688 * @blk: HW block 2689 * @prof: profile to check 2690 * @masks: masks to match 2691 */ 2692 static bool 2693 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2694 { 2695 u16 i; 2696 2697 /* es->mask_ena[prof] will have the mask */ 2698 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2699 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2700 return false; 2701 2702 return true; 2703 } 2704 2705 /** 2706 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2707 * @hw: pointer to the hardware structure 2708 * @blk: HW block 2709 * @fv: field vector to search for 2710 * @masks: masks for FV 2711 * @prof_id: receives the profile ID 2712 */ 2713 static enum ice_status 2714 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2715 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2716 { 2717 struct ice_es *es = &hw->blk[blk].es; 2718 u8 i; 2719 2720 /* For FD, we don't want to re-use a existed profile with the same 2721 * field vector and mask. This will cause rule interference. 2722 */ 2723 if (blk == ICE_BLK_FD) 2724 return ICE_ERR_DOES_NOT_EXIST; 2725 2726 for (i = 0; i < (u8)es->count; i++) { 2727 u16 off = i * es->fvw; 2728 2729 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2730 continue; 2731 2732 /* check if masks settings are the same for this profile */ 2733 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2734 continue; 2735 2736 *prof_id = i; 2737 return 0; 2738 } 2739 2740 return ICE_ERR_DOES_NOT_EXIST; 2741 } 2742 2743 /** 2744 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2745 * @blk: the block type 2746 * @rsrc_type: pointer to variable to receive the resource type 2747 */ 2748 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2749 { 2750 switch (blk) { 2751 case ICE_BLK_FD: 2752 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2753 break; 2754 case ICE_BLK_RSS: 2755 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2756 break; 2757 default: 2758 return false; 2759 } 2760 return true; 2761 } 2762 2763 /** 2764 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2765 * @blk: the block type 2766 * @rsrc_type: pointer to variable to receive the resource type 2767 */ 2768 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2769 { 2770 switch (blk) { 2771 case ICE_BLK_FD: 2772 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2773 break; 2774 case ICE_BLK_RSS: 2775 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2776 break; 2777 default: 2778 return false; 2779 } 2780 return true; 2781 } 2782 2783 /** 2784 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2785 * @hw: pointer to the HW struct 2786 * @blk: the block to allocate the TCAM for 2787 * @btm: true to allocate from bottom of table, false to allocate from top 2788 * @tcam_idx: pointer to variable to receive the TCAM entry 2789 * 2790 * This function allocates a new entry in a Profile ID TCAM for a specific 2791 * block. 2792 */ 2793 static enum ice_status 2794 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2795 u16 *tcam_idx) 2796 { 2797 u16 res_type; 2798 2799 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2800 return ICE_ERR_PARAM; 2801 2802 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2803 } 2804 2805 /** 2806 * ice_free_tcam_ent - free hardware TCAM entry 2807 * @hw: pointer to the HW struct 2808 * @blk: the block from which to free the TCAM entry 2809 * @tcam_idx: the TCAM entry to free 2810 * 2811 * This function frees an entry in a Profile ID TCAM for a specific block. 2812 */ 2813 static enum ice_status 2814 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2815 { 2816 u16 res_type; 2817 2818 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2819 return ICE_ERR_PARAM; 2820 2821 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2822 } 2823 2824 /** 2825 * ice_alloc_prof_id - allocate profile ID 2826 * @hw: pointer to the HW struct 2827 * @blk: the block to allocate the profile ID for 2828 * @prof_id: pointer to variable to receive the profile ID 2829 * 2830 * This function allocates a new profile ID, which also corresponds to a Field 2831 * Vector (Extraction Sequence) entry. 2832 */ 2833 static enum ice_status 2834 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2835 { 2836 enum ice_status status; 2837 u16 res_type; 2838 u16 get_prof; 2839 2840 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2841 return ICE_ERR_PARAM; 2842 2843 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2844 if (!status) 2845 *prof_id = (u8)get_prof; 2846 2847 return status; 2848 } 2849 2850 /** 2851 * ice_free_prof_id - free profile ID 2852 * @hw: pointer to the HW struct 2853 * @blk: the block from which to free the profile ID 2854 * @prof_id: the profile ID to free 2855 * 2856 * This function frees a profile ID, which also corresponds to a Field Vector. 2857 */ 2858 static enum ice_status 2859 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2860 { 2861 u16 tmp_prof_id = (u16)prof_id; 2862 u16 res_type; 2863 2864 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2865 return ICE_ERR_PARAM; 2866 2867 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2868 } 2869 2870 /** 2871 * ice_prof_inc_ref - increment reference count for profile 2872 * @hw: pointer to the HW struct 2873 * @blk: the block from which to free the profile ID 2874 * @prof_id: the profile ID for which to increment the reference count 2875 */ 2876 static enum ice_status 2877 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2878 { 2879 if (prof_id > hw->blk[blk].es.count) 2880 return ICE_ERR_PARAM; 2881 2882 hw->blk[blk].es.ref_count[prof_id]++; 2883 2884 return 0; 2885 } 2886 2887 /** 2888 * ice_write_prof_mask_reg - write profile mask register 2889 * @hw: pointer to the HW struct 2890 * @blk: hardware block 2891 * @mask_idx: mask index 2892 * @idx: index of the FV which will use the mask 2893 * @mask: the 16-bit mask 2894 */ 2895 static void 2896 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 2897 u16 idx, u16 mask) 2898 { 2899 u32 offset; 2900 u32 val; 2901 2902 switch (blk) { 2903 case ICE_BLK_RSS: 2904 offset = GLQF_HMASK(mask_idx); 2905 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 2906 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 2907 break; 2908 case ICE_BLK_FD: 2909 offset = GLQF_FDMASK(mask_idx); 2910 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 2911 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 2912 break; 2913 default: 2914 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2915 blk); 2916 return; 2917 } 2918 2919 wr32(hw, offset, val); 2920 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 2921 blk, idx, offset, val); 2922 } 2923 2924 /** 2925 * ice_write_prof_mask_enable_res - write profile mask enable register 2926 * @hw: pointer to the HW struct 2927 * @blk: hardware block 2928 * @prof_id: profile ID 2929 * @enable_mask: enable mask 2930 */ 2931 static void 2932 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 2933 u16 prof_id, u32 enable_mask) 2934 { 2935 u32 offset; 2936 2937 switch (blk) { 2938 case ICE_BLK_RSS: 2939 offset = GLQF_HMASK_SEL(prof_id); 2940 break; 2941 case ICE_BLK_FD: 2942 offset = GLQF_FDMASK_SEL(prof_id); 2943 break; 2944 default: 2945 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2946 blk); 2947 return; 2948 } 2949 2950 wr32(hw, offset, enable_mask); 2951 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 2952 blk, prof_id, offset, enable_mask); 2953 } 2954 2955 /** 2956 * ice_init_prof_masks - initial prof masks 2957 * @hw: pointer to the HW struct 2958 * @blk: hardware block 2959 */ 2960 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 2961 { 2962 u16 per_pf; 2963 u16 i; 2964 2965 mutex_init(&hw->blk[blk].masks.lock); 2966 2967 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 2968 2969 hw->blk[blk].masks.count = per_pf; 2970 hw->blk[blk].masks.first = hw->pf_id * per_pf; 2971 2972 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 2973 2974 for (i = hw->blk[blk].masks.first; 2975 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 2976 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 2977 } 2978 2979 /** 2980 * ice_init_all_prof_masks - initialize all prof masks 2981 * @hw: pointer to the HW struct 2982 */ 2983 static void ice_init_all_prof_masks(struct ice_hw *hw) 2984 { 2985 ice_init_prof_masks(hw, ICE_BLK_RSS); 2986 ice_init_prof_masks(hw, ICE_BLK_FD); 2987 } 2988 2989 /** 2990 * ice_alloc_prof_mask - allocate profile mask 2991 * @hw: pointer to the HW struct 2992 * @blk: hardware block 2993 * @idx: index of FV which will use the mask 2994 * @mask: the 16-bit mask 2995 * @mask_idx: variable to receive the mask index 2996 */ 2997 static enum ice_status 2998 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 2999 u16 *mask_idx) 3000 { 3001 bool found_unused = false, found_copy = false; 3002 enum ice_status status = ICE_ERR_MAX_LIMIT; 3003 u16 unused_idx = 0, copy_idx = 0; 3004 u16 i; 3005 3006 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3007 return ICE_ERR_PARAM; 3008 3009 mutex_lock(&hw->blk[blk].masks.lock); 3010 3011 for (i = hw->blk[blk].masks.first; 3012 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3013 if (hw->blk[blk].masks.masks[i].in_use) { 3014 /* if mask is in use and it exactly duplicates the 3015 * desired mask and index, then in can be reused 3016 */ 3017 if (hw->blk[blk].masks.masks[i].mask == mask && 3018 hw->blk[blk].masks.masks[i].idx == idx) { 3019 found_copy = true; 3020 copy_idx = i; 3021 break; 3022 } 3023 } else { 3024 /* save off unused index, but keep searching in case 3025 * there is an exact match later on 3026 */ 3027 if (!found_unused) { 3028 found_unused = true; 3029 unused_idx = i; 3030 } 3031 } 3032 3033 if (found_copy) 3034 i = copy_idx; 3035 else if (found_unused) 3036 i = unused_idx; 3037 else 3038 goto err_ice_alloc_prof_mask; 3039 3040 /* update mask for a new entry */ 3041 if (found_unused) { 3042 hw->blk[blk].masks.masks[i].in_use = true; 3043 hw->blk[blk].masks.masks[i].mask = mask; 3044 hw->blk[blk].masks.masks[i].idx = idx; 3045 hw->blk[blk].masks.masks[i].ref = 0; 3046 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3047 } 3048 3049 hw->blk[blk].masks.masks[i].ref++; 3050 *mask_idx = i; 3051 status = 0; 3052 3053 err_ice_alloc_prof_mask: 3054 mutex_unlock(&hw->blk[blk].masks.lock); 3055 3056 return status; 3057 } 3058 3059 /** 3060 * ice_free_prof_mask - free profile mask 3061 * @hw: pointer to the HW struct 3062 * @blk: hardware block 3063 * @mask_idx: index of mask 3064 */ 3065 static enum ice_status 3066 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3067 { 3068 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3069 return ICE_ERR_PARAM; 3070 3071 if (!(mask_idx >= hw->blk[blk].masks.first && 3072 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3073 return ICE_ERR_DOES_NOT_EXIST; 3074 3075 mutex_lock(&hw->blk[blk].masks.lock); 3076 3077 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3078 goto exit_ice_free_prof_mask; 3079 3080 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3081 hw->blk[blk].masks.masks[mask_idx].ref--; 3082 goto exit_ice_free_prof_mask; 3083 } 3084 3085 /* remove mask */ 3086 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3087 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3088 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3089 3090 /* update mask as unused entry */ 3091 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3092 mask_idx); 3093 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3094 3095 exit_ice_free_prof_mask: 3096 mutex_unlock(&hw->blk[blk].masks.lock); 3097 3098 return 0; 3099 } 3100 3101 /** 3102 * ice_free_prof_masks - free all profile masks for a profile 3103 * @hw: pointer to the HW struct 3104 * @blk: hardware block 3105 * @prof_id: profile ID 3106 */ 3107 static enum ice_status 3108 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3109 { 3110 u32 mask_bm; 3111 u16 i; 3112 3113 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3114 return ICE_ERR_PARAM; 3115 3116 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3117 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3118 if (mask_bm & BIT(i)) 3119 ice_free_prof_mask(hw, blk, i); 3120 3121 return 0; 3122 } 3123 3124 /** 3125 * ice_shutdown_prof_masks - releases lock for masking 3126 * @hw: pointer to the HW struct 3127 * @blk: hardware block 3128 * 3129 * This should be called before unloading the driver 3130 */ 3131 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3132 { 3133 u16 i; 3134 3135 mutex_lock(&hw->blk[blk].masks.lock); 3136 3137 for (i = hw->blk[blk].masks.first; 3138 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3139 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3140 3141 hw->blk[blk].masks.masks[i].in_use = false; 3142 hw->blk[blk].masks.masks[i].idx = 0; 3143 hw->blk[blk].masks.masks[i].mask = 0; 3144 } 3145 3146 mutex_unlock(&hw->blk[blk].masks.lock); 3147 mutex_destroy(&hw->blk[blk].masks.lock); 3148 } 3149 3150 /** 3151 * ice_shutdown_all_prof_masks - releases all locks for masking 3152 * @hw: pointer to the HW struct 3153 * 3154 * This should be called before unloading the driver 3155 */ 3156 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3157 { 3158 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3159 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3160 } 3161 3162 /** 3163 * ice_update_prof_masking - set registers according to masking 3164 * @hw: pointer to the HW struct 3165 * @blk: hardware block 3166 * @prof_id: profile ID 3167 * @masks: masks 3168 */ 3169 static enum ice_status 3170 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3171 u16 *masks) 3172 { 3173 bool err = false; 3174 u32 ena_mask = 0; 3175 u16 idx; 3176 u16 i; 3177 3178 /* Only support FD and RSS masking, otherwise nothing to be done */ 3179 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3180 return 0; 3181 3182 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3183 if (masks[i] && masks[i] != 0xFFFF) { 3184 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3185 ena_mask |= BIT(idx); 3186 } else { 3187 /* not enough bitmaps */ 3188 err = true; 3189 break; 3190 } 3191 } 3192 3193 if (err) { 3194 /* free any bitmaps we have allocated */ 3195 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3196 if (ena_mask & BIT(i)) 3197 ice_free_prof_mask(hw, blk, i); 3198 3199 return ICE_ERR_OUT_OF_RANGE; 3200 } 3201 3202 /* enable the masks for this profile */ 3203 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3204 3205 /* store enabled masks with profile so that they can be freed later */ 3206 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3207 3208 return 0; 3209 } 3210 3211 /** 3212 * ice_write_es - write an extraction sequence to hardware 3213 * @hw: pointer to the HW struct 3214 * @blk: the block in which to write the extraction sequence 3215 * @prof_id: the profile ID to write 3216 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3217 */ 3218 static void 3219 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3220 struct ice_fv_word *fv) 3221 { 3222 u16 off; 3223 3224 off = prof_id * hw->blk[blk].es.fvw; 3225 if (!fv) { 3226 memset(&hw->blk[blk].es.t[off], 0, 3227 hw->blk[blk].es.fvw * sizeof(*fv)); 3228 hw->blk[blk].es.written[prof_id] = false; 3229 } else { 3230 memcpy(&hw->blk[blk].es.t[off], fv, 3231 hw->blk[blk].es.fvw * sizeof(*fv)); 3232 } 3233 } 3234 3235 /** 3236 * ice_prof_dec_ref - decrement reference count for profile 3237 * @hw: pointer to the HW struct 3238 * @blk: the block from which to free the profile ID 3239 * @prof_id: the profile ID for which to decrement the reference count 3240 */ 3241 static enum ice_status 3242 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3243 { 3244 if (prof_id > hw->blk[blk].es.count) 3245 return ICE_ERR_PARAM; 3246 3247 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3248 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3249 ice_write_es(hw, blk, prof_id, NULL); 3250 ice_free_prof_masks(hw, blk, prof_id); 3251 return ice_free_prof_id(hw, blk, prof_id); 3252 } 3253 } 3254 3255 return 0; 3256 } 3257 3258 /* Block / table section IDs */ 3259 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3260 /* SWITCH */ 3261 { ICE_SID_XLT1_SW, 3262 ICE_SID_XLT2_SW, 3263 ICE_SID_PROFID_TCAM_SW, 3264 ICE_SID_PROFID_REDIR_SW, 3265 ICE_SID_FLD_VEC_SW 3266 }, 3267 3268 /* ACL */ 3269 { ICE_SID_XLT1_ACL, 3270 ICE_SID_XLT2_ACL, 3271 ICE_SID_PROFID_TCAM_ACL, 3272 ICE_SID_PROFID_REDIR_ACL, 3273 ICE_SID_FLD_VEC_ACL 3274 }, 3275 3276 /* FD */ 3277 { ICE_SID_XLT1_FD, 3278 ICE_SID_XLT2_FD, 3279 ICE_SID_PROFID_TCAM_FD, 3280 ICE_SID_PROFID_REDIR_FD, 3281 ICE_SID_FLD_VEC_FD 3282 }, 3283 3284 /* RSS */ 3285 { ICE_SID_XLT1_RSS, 3286 ICE_SID_XLT2_RSS, 3287 ICE_SID_PROFID_TCAM_RSS, 3288 ICE_SID_PROFID_REDIR_RSS, 3289 ICE_SID_FLD_VEC_RSS 3290 }, 3291 3292 /* PE */ 3293 { ICE_SID_XLT1_PE, 3294 ICE_SID_XLT2_PE, 3295 ICE_SID_PROFID_TCAM_PE, 3296 ICE_SID_PROFID_REDIR_PE, 3297 ICE_SID_FLD_VEC_PE 3298 } 3299 }; 3300 3301 /** 3302 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3303 * @hw: pointer to the hardware structure 3304 * @blk: the HW block to initialize 3305 */ 3306 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3307 { 3308 u16 pt; 3309 3310 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3311 u8 ptg; 3312 3313 ptg = hw->blk[blk].xlt1.t[pt]; 3314 if (ptg != ICE_DEFAULT_PTG) { 3315 ice_ptg_alloc_val(hw, blk, ptg); 3316 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3317 } 3318 } 3319 } 3320 3321 /** 3322 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3323 * @hw: pointer to the hardware structure 3324 * @blk: the HW block to initialize 3325 */ 3326 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3327 { 3328 u16 vsi; 3329 3330 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3331 u16 vsig; 3332 3333 vsig = hw->blk[blk].xlt2.t[vsi]; 3334 if (vsig) { 3335 ice_vsig_alloc_val(hw, blk, vsig); 3336 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3337 /* no changes at this time, since this has been 3338 * initialized from the original package 3339 */ 3340 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3341 } 3342 } 3343 } 3344 3345 /** 3346 * ice_init_sw_db - init software database from HW tables 3347 * @hw: pointer to the hardware structure 3348 */ 3349 static void ice_init_sw_db(struct ice_hw *hw) 3350 { 3351 u16 i; 3352 3353 for (i = 0; i < ICE_BLK_COUNT; i++) { 3354 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3355 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3356 } 3357 } 3358 3359 /** 3360 * ice_fill_tbl - Reads content of a single table type into database 3361 * @hw: pointer to the hardware structure 3362 * @block_id: Block ID of the table to copy 3363 * @sid: Section ID of the table to copy 3364 * 3365 * Will attempt to read the entire content of a given table of a single block 3366 * into the driver database. We assume that the buffer will always 3367 * be as large or larger than the data contained in the package. If 3368 * this condition is not met, there is most likely an error in the package 3369 * contents. 3370 */ 3371 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3372 { 3373 u32 dst_len, sect_len, offset = 0; 3374 struct ice_prof_redir_section *pr; 3375 struct ice_prof_id_section *pid; 3376 struct ice_xlt1_section *xlt1; 3377 struct ice_xlt2_section *xlt2; 3378 struct ice_sw_fv_section *es; 3379 struct ice_pkg_enum state; 3380 u8 *src, *dst; 3381 void *sect; 3382 3383 /* if the HW segment pointer is null then the first iteration of 3384 * ice_pkg_enum_section() will fail. In this case the HW tables will 3385 * not be filled and return success. 3386 */ 3387 if (!hw->seg) { 3388 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3389 return; 3390 } 3391 3392 memset(&state, 0, sizeof(state)); 3393 3394 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3395 3396 while (sect) { 3397 switch (sid) { 3398 case ICE_SID_XLT1_SW: 3399 case ICE_SID_XLT1_FD: 3400 case ICE_SID_XLT1_RSS: 3401 case ICE_SID_XLT1_ACL: 3402 case ICE_SID_XLT1_PE: 3403 xlt1 = sect; 3404 src = xlt1->value; 3405 sect_len = le16_to_cpu(xlt1->count) * 3406 sizeof(*hw->blk[block_id].xlt1.t); 3407 dst = hw->blk[block_id].xlt1.t; 3408 dst_len = hw->blk[block_id].xlt1.count * 3409 sizeof(*hw->blk[block_id].xlt1.t); 3410 break; 3411 case ICE_SID_XLT2_SW: 3412 case ICE_SID_XLT2_FD: 3413 case ICE_SID_XLT2_RSS: 3414 case ICE_SID_XLT2_ACL: 3415 case ICE_SID_XLT2_PE: 3416 xlt2 = sect; 3417 src = (__force u8 *)xlt2->value; 3418 sect_len = le16_to_cpu(xlt2->count) * 3419 sizeof(*hw->blk[block_id].xlt2.t); 3420 dst = (u8 *)hw->blk[block_id].xlt2.t; 3421 dst_len = hw->blk[block_id].xlt2.count * 3422 sizeof(*hw->blk[block_id].xlt2.t); 3423 break; 3424 case ICE_SID_PROFID_TCAM_SW: 3425 case ICE_SID_PROFID_TCAM_FD: 3426 case ICE_SID_PROFID_TCAM_RSS: 3427 case ICE_SID_PROFID_TCAM_ACL: 3428 case ICE_SID_PROFID_TCAM_PE: 3429 pid = sect; 3430 src = (u8 *)pid->entry; 3431 sect_len = le16_to_cpu(pid->count) * 3432 sizeof(*hw->blk[block_id].prof.t); 3433 dst = (u8 *)hw->blk[block_id].prof.t; 3434 dst_len = hw->blk[block_id].prof.count * 3435 sizeof(*hw->blk[block_id].prof.t); 3436 break; 3437 case ICE_SID_PROFID_REDIR_SW: 3438 case ICE_SID_PROFID_REDIR_FD: 3439 case ICE_SID_PROFID_REDIR_RSS: 3440 case ICE_SID_PROFID_REDIR_ACL: 3441 case ICE_SID_PROFID_REDIR_PE: 3442 pr = sect; 3443 src = pr->redir_value; 3444 sect_len = le16_to_cpu(pr->count) * 3445 sizeof(*hw->blk[block_id].prof_redir.t); 3446 dst = hw->blk[block_id].prof_redir.t; 3447 dst_len = hw->blk[block_id].prof_redir.count * 3448 sizeof(*hw->blk[block_id].prof_redir.t); 3449 break; 3450 case ICE_SID_FLD_VEC_SW: 3451 case ICE_SID_FLD_VEC_FD: 3452 case ICE_SID_FLD_VEC_RSS: 3453 case ICE_SID_FLD_VEC_ACL: 3454 case ICE_SID_FLD_VEC_PE: 3455 es = sect; 3456 src = (u8 *)es->fv; 3457 sect_len = (u32)(le16_to_cpu(es->count) * 3458 hw->blk[block_id].es.fvw) * 3459 sizeof(*hw->blk[block_id].es.t); 3460 dst = (u8 *)hw->blk[block_id].es.t; 3461 dst_len = (u32)(hw->blk[block_id].es.count * 3462 hw->blk[block_id].es.fvw) * 3463 sizeof(*hw->blk[block_id].es.t); 3464 break; 3465 default: 3466 return; 3467 } 3468 3469 /* if the section offset exceeds destination length, terminate 3470 * table fill. 3471 */ 3472 if (offset > dst_len) 3473 return; 3474 3475 /* if the sum of section size and offset exceed destination size 3476 * then we are out of bounds of the HW table size for that PF. 3477 * Changing section length to fill the remaining table space 3478 * of that PF. 3479 */ 3480 if ((offset + sect_len) > dst_len) 3481 sect_len = dst_len - offset; 3482 3483 memcpy(dst + offset, src, sect_len); 3484 offset += sect_len; 3485 sect = ice_pkg_enum_section(NULL, &state, sid); 3486 } 3487 } 3488 3489 /** 3490 * ice_fill_blk_tbls - Read package context for tables 3491 * @hw: pointer to the hardware structure 3492 * 3493 * Reads the current package contents and populates the driver 3494 * database with the data iteratively for all advanced feature 3495 * blocks. Assume that the HW tables have been allocated. 3496 */ 3497 void ice_fill_blk_tbls(struct ice_hw *hw) 3498 { 3499 u8 i; 3500 3501 for (i = 0; i < ICE_BLK_COUNT; i++) { 3502 enum ice_block blk_id = (enum ice_block)i; 3503 3504 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3505 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3506 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3507 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3508 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3509 } 3510 3511 ice_init_sw_db(hw); 3512 } 3513 3514 /** 3515 * ice_free_prof_map - free profile map 3516 * @hw: pointer to the hardware structure 3517 * @blk_idx: HW block index 3518 */ 3519 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3520 { 3521 struct ice_es *es = &hw->blk[blk_idx].es; 3522 struct ice_prof_map *del, *tmp; 3523 3524 mutex_lock(&es->prof_map_lock); 3525 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3526 list_del(&del->list); 3527 devm_kfree(ice_hw_to_dev(hw), del); 3528 } 3529 INIT_LIST_HEAD(&es->prof_map); 3530 mutex_unlock(&es->prof_map_lock); 3531 } 3532 3533 /** 3534 * ice_free_flow_profs - free flow profile entries 3535 * @hw: pointer to the hardware structure 3536 * @blk_idx: HW block index 3537 */ 3538 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3539 { 3540 struct ice_flow_prof *p, *tmp; 3541 3542 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3543 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3544 struct ice_flow_entry *e, *t; 3545 3546 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3547 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3548 ICE_FLOW_ENTRY_HNDL(e)); 3549 3550 list_del(&p->l_entry); 3551 3552 mutex_destroy(&p->entries_lock); 3553 devm_kfree(ice_hw_to_dev(hw), p); 3554 } 3555 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3556 3557 /* if driver is in reset and tables are being cleared 3558 * re-initialize the flow profile list heads 3559 */ 3560 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3561 } 3562 3563 /** 3564 * ice_free_vsig_tbl - free complete VSIG table entries 3565 * @hw: pointer to the hardware structure 3566 * @blk: the HW block on which to free the VSIG table entries 3567 */ 3568 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3569 { 3570 u16 i; 3571 3572 if (!hw->blk[blk].xlt2.vsig_tbl) 3573 return; 3574 3575 for (i = 1; i < ICE_MAX_VSIGS; i++) 3576 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3577 ice_vsig_free(hw, blk, i); 3578 } 3579 3580 /** 3581 * ice_free_hw_tbls - free hardware table memory 3582 * @hw: pointer to the hardware structure 3583 */ 3584 void ice_free_hw_tbls(struct ice_hw *hw) 3585 { 3586 struct ice_rss_cfg *r, *rt; 3587 u8 i; 3588 3589 for (i = 0; i < ICE_BLK_COUNT; i++) { 3590 if (hw->blk[i].is_list_init) { 3591 struct ice_es *es = &hw->blk[i].es; 3592 3593 ice_free_prof_map(hw, i); 3594 mutex_destroy(&es->prof_map_lock); 3595 3596 ice_free_flow_profs(hw, i); 3597 mutex_destroy(&hw->fl_profs_locks[i]); 3598 3599 hw->blk[i].is_list_init = false; 3600 } 3601 ice_free_vsig_tbl(hw, (enum ice_block)i); 3602 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3603 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3604 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3605 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3606 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3607 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3608 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3609 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3610 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3611 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3612 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3613 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3614 } 3615 3616 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3617 list_del(&r->l_entry); 3618 devm_kfree(ice_hw_to_dev(hw), r); 3619 } 3620 mutex_destroy(&hw->rss_locks); 3621 ice_shutdown_all_prof_masks(hw); 3622 memset(hw->blk, 0, sizeof(hw->blk)); 3623 } 3624 3625 /** 3626 * ice_init_flow_profs - init flow profile locks and list heads 3627 * @hw: pointer to the hardware structure 3628 * @blk_idx: HW block index 3629 */ 3630 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3631 { 3632 mutex_init(&hw->fl_profs_locks[blk_idx]); 3633 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3634 } 3635 3636 /** 3637 * ice_clear_hw_tbls - clear HW tables and flow profiles 3638 * @hw: pointer to the hardware structure 3639 */ 3640 void ice_clear_hw_tbls(struct ice_hw *hw) 3641 { 3642 u8 i; 3643 3644 for (i = 0; i < ICE_BLK_COUNT; i++) { 3645 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3646 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3647 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3648 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3649 struct ice_es *es = &hw->blk[i].es; 3650 3651 if (hw->blk[i].is_list_init) { 3652 ice_free_prof_map(hw, i); 3653 ice_free_flow_profs(hw, i); 3654 } 3655 3656 ice_free_vsig_tbl(hw, (enum ice_block)i); 3657 3658 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3659 memset(xlt1->ptg_tbl, 0, 3660 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3661 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3662 3663 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3664 memset(xlt2->vsig_tbl, 0, 3665 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3666 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3667 3668 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3669 memset(prof_redir->t, 0, 3670 prof_redir->count * sizeof(*prof_redir->t)); 3671 3672 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3673 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3674 memset(es->written, 0, es->count * sizeof(*es->written)); 3675 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3676 } 3677 } 3678 3679 /** 3680 * ice_init_hw_tbls - init hardware table memory 3681 * @hw: pointer to the hardware structure 3682 */ 3683 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3684 { 3685 u8 i; 3686 3687 mutex_init(&hw->rss_locks); 3688 INIT_LIST_HEAD(&hw->rss_list_head); 3689 ice_init_all_prof_masks(hw); 3690 for (i = 0; i < ICE_BLK_COUNT; i++) { 3691 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3692 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3693 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3694 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3695 struct ice_es *es = &hw->blk[i].es; 3696 u16 j; 3697 3698 if (hw->blk[i].is_list_init) 3699 continue; 3700 3701 ice_init_flow_profs(hw, i); 3702 mutex_init(&es->prof_map_lock); 3703 INIT_LIST_HEAD(&es->prof_map); 3704 hw->blk[i].is_list_init = true; 3705 3706 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3707 es->reverse = blk_sizes[i].reverse; 3708 3709 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3710 xlt1->count = blk_sizes[i].xlt1; 3711 3712 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3713 sizeof(*xlt1->ptypes), GFP_KERNEL); 3714 3715 if (!xlt1->ptypes) 3716 goto err; 3717 3718 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3719 sizeof(*xlt1->ptg_tbl), 3720 GFP_KERNEL); 3721 3722 if (!xlt1->ptg_tbl) 3723 goto err; 3724 3725 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3726 sizeof(*xlt1->t), GFP_KERNEL); 3727 if (!xlt1->t) 3728 goto err; 3729 3730 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3731 xlt2->count = blk_sizes[i].xlt2; 3732 3733 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3734 sizeof(*xlt2->vsis), GFP_KERNEL); 3735 3736 if (!xlt2->vsis) 3737 goto err; 3738 3739 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3740 sizeof(*xlt2->vsig_tbl), 3741 GFP_KERNEL); 3742 if (!xlt2->vsig_tbl) 3743 goto err; 3744 3745 for (j = 0; j < xlt2->count; j++) 3746 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3747 3748 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3749 sizeof(*xlt2->t), GFP_KERNEL); 3750 if (!xlt2->t) 3751 goto err; 3752 3753 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3754 prof->count = blk_sizes[i].prof_tcam; 3755 prof->max_prof_id = blk_sizes[i].prof_id; 3756 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3757 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3758 sizeof(*prof->t), GFP_KERNEL); 3759 3760 if (!prof->t) 3761 goto err; 3762 3763 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3764 prof_redir->count = blk_sizes[i].prof_redir; 3765 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3766 prof_redir->count, 3767 sizeof(*prof_redir->t), 3768 GFP_KERNEL); 3769 3770 if (!prof_redir->t) 3771 goto err; 3772 3773 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3774 es->count = blk_sizes[i].es; 3775 es->fvw = blk_sizes[i].fvw; 3776 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3777 (u32)(es->count * es->fvw), 3778 sizeof(*es->t), GFP_KERNEL); 3779 if (!es->t) 3780 goto err; 3781 3782 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3783 sizeof(*es->ref_count), 3784 GFP_KERNEL); 3785 if (!es->ref_count) 3786 goto err; 3787 3788 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3789 sizeof(*es->written), GFP_KERNEL); 3790 if (!es->written) 3791 goto err; 3792 3793 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3794 sizeof(*es->mask_ena), GFP_KERNEL); 3795 if (!es->mask_ena) 3796 goto err; 3797 } 3798 return 0; 3799 3800 err: 3801 ice_free_hw_tbls(hw); 3802 return ICE_ERR_NO_MEMORY; 3803 } 3804 3805 /** 3806 * ice_prof_gen_key - generate profile ID key 3807 * @hw: pointer to the HW struct 3808 * @blk: the block in which to write profile ID to 3809 * @ptg: packet type group (PTG) portion of key 3810 * @vsig: VSIG portion of key 3811 * @cdid: CDID portion of key 3812 * @flags: flag portion of key 3813 * @vl_msk: valid mask 3814 * @dc_msk: don't care mask 3815 * @nm_msk: never match mask 3816 * @key: output of profile ID key 3817 */ 3818 static enum ice_status 3819 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3820 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3821 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3822 u8 key[ICE_TCAM_KEY_SZ]) 3823 { 3824 struct ice_prof_id_key inkey; 3825 3826 inkey.xlt1 = ptg; 3827 inkey.xlt2_cdid = cpu_to_le16(vsig); 3828 inkey.flags = cpu_to_le16(flags); 3829 3830 switch (hw->blk[blk].prof.cdid_bits) { 3831 case 0: 3832 break; 3833 case 2: 3834 #define ICE_CD_2_M 0xC000U 3835 #define ICE_CD_2_S 14 3836 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3837 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3838 break; 3839 case 4: 3840 #define ICE_CD_4_M 0xF000U 3841 #define ICE_CD_4_S 12 3842 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3843 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3844 break; 3845 case 8: 3846 #define ICE_CD_8_M 0xFF00U 3847 #define ICE_CD_8_S 16 3848 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3849 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3850 break; 3851 default: 3852 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3853 break; 3854 } 3855 3856 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3857 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3858 } 3859 3860 /** 3861 * ice_tcam_write_entry - write TCAM entry 3862 * @hw: pointer to the HW struct 3863 * @blk: the block in which to write profile ID to 3864 * @idx: the entry index to write to 3865 * @prof_id: profile ID 3866 * @ptg: packet type group (PTG) portion of key 3867 * @vsig: VSIG portion of key 3868 * @cdid: CDID portion of key 3869 * @flags: flag portion of key 3870 * @vl_msk: valid mask 3871 * @dc_msk: don't care mask 3872 * @nm_msk: never match mask 3873 */ 3874 static enum ice_status 3875 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3876 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3877 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3878 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3879 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3880 { 3881 struct ice_prof_tcam_entry; 3882 enum ice_status status; 3883 3884 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3885 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3886 if (!status) { 3887 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3888 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3889 } 3890 3891 return status; 3892 } 3893 3894 /** 3895 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3896 * @hw: pointer to the hardware structure 3897 * @blk: HW block 3898 * @vsig: VSIG to query 3899 * @refs: pointer to variable to receive the reference count 3900 */ 3901 static enum ice_status 3902 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3903 { 3904 u16 idx = vsig & ICE_VSIG_IDX_M; 3905 struct ice_vsig_vsi *ptr; 3906 3907 *refs = 0; 3908 3909 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3910 return ICE_ERR_DOES_NOT_EXIST; 3911 3912 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3913 while (ptr) { 3914 (*refs)++; 3915 ptr = ptr->next_vsi; 3916 } 3917 3918 return 0; 3919 } 3920 3921 /** 3922 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3923 * @hw: pointer to the hardware structure 3924 * @blk: HW block 3925 * @vsig: VSIG to check against 3926 * @hdl: profile handle 3927 */ 3928 static bool 3929 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3930 { 3931 u16 idx = vsig & ICE_VSIG_IDX_M; 3932 struct ice_vsig_prof *ent; 3933 3934 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3935 list) 3936 if (ent->profile_cookie == hdl) 3937 return true; 3938 3939 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 3940 vsig); 3941 return false; 3942 } 3943 3944 /** 3945 * ice_prof_bld_es - build profile ID extraction sequence changes 3946 * @hw: pointer to the HW struct 3947 * @blk: hardware block 3948 * @bld: the update package buffer build to add to 3949 * @chgs: the list of changes to make in hardware 3950 */ 3951 static enum ice_status 3952 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3953 struct ice_buf_build *bld, struct list_head *chgs) 3954 { 3955 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3956 struct ice_chs_chg *tmp; 3957 3958 list_for_each_entry(tmp, chgs, list_entry) 3959 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3960 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3961 struct ice_pkg_es *p; 3962 u32 id; 3963 3964 id = ice_sect_id(blk, ICE_VEC_TBL); 3965 p = ice_pkg_buf_alloc_section(bld, id, 3966 struct_size(p, es, 1) + 3967 vec_size - 3968 sizeof(p->es[0])); 3969 3970 if (!p) 3971 return ICE_ERR_MAX_LIMIT; 3972 3973 p->count = cpu_to_le16(1); 3974 p->offset = cpu_to_le16(tmp->prof_id); 3975 3976 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3977 } 3978 3979 return 0; 3980 } 3981 3982 /** 3983 * ice_prof_bld_tcam - build profile ID TCAM changes 3984 * @hw: pointer to the HW struct 3985 * @blk: hardware block 3986 * @bld: the update package buffer build to add to 3987 * @chgs: the list of changes to make in hardware 3988 */ 3989 static enum ice_status 3990 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3991 struct ice_buf_build *bld, struct list_head *chgs) 3992 { 3993 struct ice_chs_chg *tmp; 3994 3995 list_for_each_entry(tmp, chgs, list_entry) 3996 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3997 struct ice_prof_id_section *p; 3998 u32 id; 3999 4000 id = ice_sect_id(blk, ICE_PROF_TCAM); 4001 p = ice_pkg_buf_alloc_section(bld, id, 4002 struct_size(p, entry, 1)); 4003 4004 if (!p) 4005 return ICE_ERR_MAX_LIMIT; 4006 4007 p->count = cpu_to_le16(1); 4008 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4009 p->entry[0].prof_id = tmp->prof_id; 4010 4011 memcpy(p->entry[0].key, 4012 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4013 sizeof(hw->blk[blk].prof.t->key)); 4014 } 4015 4016 return 0; 4017 } 4018 4019 /** 4020 * ice_prof_bld_xlt1 - build XLT1 changes 4021 * @blk: hardware block 4022 * @bld: the update package buffer build to add to 4023 * @chgs: the list of changes to make in hardware 4024 */ 4025 static enum ice_status 4026 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4027 struct list_head *chgs) 4028 { 4029 struct ice_chs_chg *tmp; 4030 4031 list_for_each_entry(tmp, chgs, list_entry) 4032 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4033 struct ice_xlt1_section *p; 4034 u32 id; 4035 4036 id = ice_sect_id(blk, ICE_XLT1); 4037 p = ice_pkg_buf_alloc_section(bld, id, 4038 struct_size(p, value, 1)); 4039 4040 if (!p) 4041 return ICE_ERR_MAX_LIMIT; 4042 4043 p->count = cpu_to_le16(1); 4044 p->offset = cpu_to_le16(tmp->ptype); 4045 p->value[0] = tmp->ptg; 4046 } 4047 4048 return 0; 4049 } 4050 4051 /** 4052 * ice_prof_bld_xlt2 - build XLT2 changes 4053 * @blk: hardware block 4054 * @bld: the update package buffer build to add to 4055 * @chgs: the list of changes to make in hardware 4056 */ 4057 static enum ice_status 4058 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4059 struct list_head *chgs) 4060 { 4061 struct ice_chs_chg *tmp; 4062 4063 list_for_each_entry(tmp, chgs, list_entry) { 4064 struct ice_xlt2_section *p; 4065 u32 id; 4066 4067 switch (tmp->type) { 4068 case ICE_VSIG_ADD: 4069 case ICE_VSI_MOVE: 4070 case ICE_VSIG_REM: 4071 id = ice_sect_id(blk, ICE_XLT2); 4072 p = ice_pkg_buf_alloc_section(bld, id, 4073 struct_size(p, value, 1)); 4074 4075 if (!p) 4076 return ICE_ERR_MAX_LIMIT; 4077 4078 p->count = cpu_to_le16(1); 4079 p->offset = cpu_to_le16(tmp->vsi); 4080 p->value[0] = cpu_to_le16(tmp->vsig); 4081 break; 4082 default: 4083 break; 4084 } 4085 } 4086 4087 return 0; 4088 } 4089 4090 /** 4091 * ice_upd_prof_hw - update hardware using the change list 4092 * @hw: pointer to the HW struct 4093 * @blk: hardware block 4094 * @chgs: the list of changes to make in hardware 4095 */ 4096 static enum ice_status 4097 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4098 struct list_head *chgs) 4099 { 4100 struct ice_buf_build *b; 4101 struct ice_chs_chg *tmp; 4102 enum ice_status status; 4103 u16 pkg_sects; 4104 u16 xlt1 = 0; 4105 u16 xlt2 = 0; 4106 u16 tcam = 0; 4107 u16 es = 0; 4108 u16 sects; 4109 4110 /* count number of sections we need */ 4111 list_for_each_entry(tmp, chgs, list_entry) { 4112 switch (tmp->type) { 4113 case ICE_PTG_ES_ADD: 4114 if (tmp->add_ptg) 4115 xlt1++; 4116 if (tmp->add_prof) 4117 es++; 4118 break; 4119 case ICE_TCAM_ADD: 4120 tcam++; 4121 break; 4122 case ICE_VSIG_ADD: 4123 case ICE_VSI_MOVE: 4124 case ICE_VSIG_REM: 4125 xlt2++; 4126 break; 4127 default: 4128 break; 4129 } 4130 } 4131 sects = xlt1 + xlt2 + tcam + es; 4132 4133 if (!sects) 4134 return 0; 4135 4136 /* Build update package buffer */ 4137 b = ice_pkg_buf_alloc(hw); 4138 if (!b) 4139 return ICE_ERR_NO_MEMORY; 4140 4141 status = ice_pkg_buf_reserve_section(b, sects); 4142 if (status) 4143 goto error_tmp; 4144 4145 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4146 if (es) { 4147 status = ice_prof_bld_es(hw, blk, b, chgs); 4148 if (status) 4149 goto error_tmp; 4150 } 4151 4152 if (tcam) { 4153 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4154 if (status) 4155 goto error_tmp; 4156 } 4157 4158 if (xlt1) { 4159 status = ice_prof_bld_xlt1(blk, b, chgs); 4160 if (status) 4161 goto error_tmp; 4162 } 4163 4164 if (xlt2) { 4165 status = ice_prof_bld_xlt2(blk, b, chgs); 4166 if (status) 4167 goto error_tmp; 4168 } 4169 4170 /* After package buffer build check if the section count in buffer is 4171 * non-zero and matches the number of sections detected for package 4172 * update. 4173 */ 4174 pkg_sects = ice_pkg_buf_get_active_sections(b); 4175 if (!pkg_sects || pkg_sects != sects) { 4176 status = ICE_ERR_INVAL_SIZE; 4177 goto error_tmp; 4178 } 4179 4180 /* update package */ 4181 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4182 if (status == ICE_ERR_AQ_ERROR) 4183 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4184 4185 error_tmp: 4186 ice_pkg_buf_free(hw, b); 4187 return status; 4188 } 4189 4190 /** 4191 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4192 * @hw: pointer to the HW struct 4193 * @prof_id: profile ID 4194 * @mask_sel: mask select 4195 * 4196 * This function enable any of the masks selected by the mask select parameter 4197 * for the profile specified. 4198 */ 4199 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4200 { 4201 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4202 4203 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4204 GLQF_FDMASK_SEL(prof_id), mask_sel); 4205 } 4206 4207 struct ice_fd_src_dst_pair { 4208 u8 prot_id; 4209 u8 count; 4210 u16 off; 4211 }; 4212 4213 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4214 /* These are defined in pairs */ 4215 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4216 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4217 4218 { ICE_PROT_IPV4_IL, 2, 12 }, 4219 { ICE_PROT_IPV4_IL, 2, 16 }, 4220 4221 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4222 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4223 4224 { ICE_PROT_IPV6_IL, 8, 8 }, 4225 { ICE_PROT_IPV6_IL, 8, 24 }, 4226 4227 { ICE_PROT_TCP_IL, 1, 0 }, 4228 { ICE_PROT_TCP_IL, 1, 2 }, 4229 4230 { ICE_PROT_UDP_OF, 1, 0 }, 4231 { ICE_PROT_UDP_OF, 1, 2 }, 4232 4233 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4234 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4235 4236 { ICE_PROT_SCTP_IL, 1, 0 }, 4237 { ICE_PROT_SCTP_IL, 1, 2 } 4238 }; 4239 4240 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4241 4242 /** 4243 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4244 * @hw: pointer to the HW struct 4245 * @prof_id: profile ID 4246 * @es: extraction sequence (length of array is determined by the block) 4247 */ 4248 static enum ice_status 4249 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4250 { 4251 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4252 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4253 #define ICE_FD_FV_NOT_FOUND (-2) 4254 s8 first_free = ICE_FD_FV_NOT_FOUND; 4255 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4256 s8 orig_free, si; 4257 u32 mask_sel = 0; 4258 u8 i, j, k; 4259 4260 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4261 4262 /* This code assumes that the Flow Director field vectors are assigned 4263 * from the end of the FV indexes working towards the zero index, that 4264 * only complete fields will be included and will be consecutive, and 4265 * that there are no gaps between valid indexes. 4266 */ 4267 4268 /* Determine swap fields present */ 4269 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4270 /* Find the first free entry, assuming right to left population. 4271 * This is where we can start adding additional pairs if needed. 4272 */ 4273 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4274 ICE_PROT_INVALID) 4275 first_free = i - 1; 4276 4277 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4278 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4279 es[i].off == ice_fd_pairs[j].off) { 4280 set_bit(j, pair_list); 4281 pair_start[j] = i; 4282 } 4283 } 4284 4285 orig_free = first_free; 4286 4287 /* determine missing swap fields that need to be added */ 4288 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4289 u8 bit1 = test_bit(i + 1, pair_list); 4290 u8 bit0 = test_bit(i, pair_list); 4291 4292 if (bit0 ^ bit1) { 4293 u8 index; 4294 4295 /* add the appropriate 'paired' entry */ 4296 if (!bit0) 4297 index = i; 4298 else 4299 index = i + 1; 4300 4301 /* check for room */ 4302 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4303 return ICE_ERR_MAX_LIMIT; 4304 4305 /* place in extraction sequence */ 4306 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4307 es[first_free - k].prot_id = 4308 ice_fd_pairs[index].prot_id; 4309 es[first_free - k].off = 4310 ice_fd_pairs[index].off + (k * 2); 4311 4312 if (k > first_free) 4313 return ICE_ERR_OUT_OF_RANGE; 4314 4315 /* keep track of non-relevant fields */ 4316 mask_sel |= BIT(first_free - k); 4317 } 4318 4319 pair_start[index] = first_free; 4320 first_free -= ice_fd_pairs[index].count; 4321 } 4322 } 4323 4324 /* fill in the swap array */ 4325 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4326 while (si >= 0) { 4327 u8 indexes_used = 1; 4328 4329 /* assume flat at this index */ 4330 #define ICE_SWAP_VALID 0x80 4331 used[si] = si | ICE_SWAP_VALID; 4332 4333 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4334 si -= indexes_used; 4335 continue; 4336 } 4337 4338 /* check for a swap location */ 4339 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4340 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4341 es[si].off == ice_fd_pairs[j].off) { 4342 u8 idx; 4343 4344 /* determine the appropriate matching field */ 4345 idx = j + ((j % 2) ? -1 : 1); 4346 4347 indexes_used = ice_fd_pairs[idx].count; 4348 for (k = 0; k < indexes_used; k++) { 4349 used[si - k] = (pair_start[idx] - k) | 4350 ICE_SWAP_VALID; 4351 } 4352 4353 break; 4354 } 4355 4356 si -= indexes_used; 4357 } 4358 4359 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4360 * register 4361 */ 4362 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4363 u32 raw_swap = 0; 4364 u32 raw_in = 0; 4365 4366 for (k = 0; k < 4; k++) { 4367 u8 idx; 4368 4369 idx = (j * 4) + k; 4370 if (used[idx] && !(mask_sel & BIT(idx))) { 4371 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4372 #define ICE_INSET_DFLT 0x9f 4373 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4374 } 4375 } 4376 4377 /* write the appropriate swap register set */ 4378 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4379 4380 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4381 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4382 4383 /* write the appropriate inset register set */ 4384 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4385 4386 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4387 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4388 } 4389 4390 /* initially clear the mask select for this profile */ 4391 ice_update_fd_mask(hw, prof_id, 0); 4392 4393 return 0; 4394 } 4395 4396 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4397 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4398 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4399 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4400 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4401 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4402 }; 4403 4404 /** 4405 * ice_get_ptype_attrib_info - get PTYPE attribute information 4406 * @type: attribute type 4407 * @info: pointer to variable to the attribute information 4408 */ 4409 static void 4410 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4411 struct ice_ptype_attrib_info *info) 4412 { 4413 *info = ice_ptype_attributes[type]; 4414 } 4415 4416 /** 4417 * ice_add_prof_attrib - add any PTG with attributes to profile 4418 * @prof: pointer to the profile to which PTG entries will be added 4419 * @ptg: PTG to be added 4420 * @ptype: PTYPE that needs to be looked up 4421 * @attr: array of attributes that will be considered 4422 * @attr_cnt: number of elements in the attribute array 4423 */ 4424 static enum ice_status 4425 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4426 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4427 { 4428 bool found = false; 4429 u16 i; 4430 4431 for (i = 0; i < attr_cnt; i++) 4432 if (attr[i].ptype == ptype) { 4433 found = true; 4434 4435 prof->ptg[prof->ptg_cnt] = ptg; 4436 ice_get_ptype_attrib_info(attr[i].attrib, 4437 &prof->attr[prof->ptg_cnt]); 4438 4439 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4440 return ICE_ERR_MAX_LIMIT; 4441 } 4442 4443 if (!found) 4444 return ICE_ERR_DOES_NOT_EXIST; 4445 4446 return 0; 4447 } 4448 4449 /** 4450 * ice_add_prof - add profile 4451 * @hw: pointer to the HW struct 4452 * @blk: hardware block 4453 * @id: profile tracking ID 4454 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4455 * @attr: array of attributes 4456 * @attr_cnt: number of elements in attr array 4457 * @es: extraction sequence (length of array is determined by the block) 4458 * @masks: mask for extraction sequence 4459 * 4460 * This function registers a profile, which matches a set of PTYPES with a 4461 * particular extraction sequence. While the hardware profile is allocated 4462 * it will not be written until the first call to ice_add_flow that specifies 4463 * the ID value used here. 4464 */ 4465 enum ice_status 4466 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4467 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4468 struct ice_fv_word *es, u16 *masks) 4469 { 4470 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4471 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4472 struct ice_prof_map *prof; 4473 enum ice_status status; 4474 u8 byte = 0; 4475 u8 prof_id; 4476 4477 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4478 4479 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4480 4481 /* search for existing profile */ 4482 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4483 if (status) { 4484 /* allocate profile ID */ 4485 status = ice_alloc_prof_id(hw, blk, &prof_id); 4486 if (status) 4487 goto err_ice_add_prof; 4488 if (blk == ICE_BLK_FD) { 4489 /* For Flow Director block, the extraction sequence may 4490 * need to be altered in the case where there are paired 4491 * fields that have no match. This is necessary because 4492 * for Flow Director, src and dest fields need to paired 4493 * for filter programming and these values are swapped 4494 * during Tx. 4495 */ 4496 status = ice_update_fd_swap(hw, prof_id, es); 4497 if (status) 4498 goto err_ice_add_prof; 4499 } 4500 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4501 if (status) 4502 goto err_ice_add_prof; 4503 4504 /* and write new es */ 4505 ice_write_es(hw, blk, prof_id, es); 4506 } 4507 4508 ice_prof_inc_ref(hw, blk, prof_id); 4509 4510 /* add profile info */ 4511 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4512 if (!prof) { 4513 status = ICE_ERR_NO_MEMORY; 4514 goto err_ice_add_prof; 4515 } 4516 4517 prof->profile_cookie = id; 4518 prof->prof_id = prof_id; 4519 prof->ptg_cnt = 0; 4520 prof->context = 0; 4521 4522 /* build list of ptgs */ 4523 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4524 u8 bit; 4525 4526 if (!ptypes[byte]) { 4527 bytes--; 4528 byte++; 4529 continue; 4530 } 4531 4532 /* Examine 8 bits per byte */ 4533 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4534 BITS_PER_BYTE) { 4535 u16 ptype; 4536 u8 ptg; 4537 4538 ptype = byte * BITS_PER_BYTE + bit; 4539 4540 /* The package should place all ptypes in a non-zero 4541 * PTG, so the following call should never fail. 4542 */ 4543 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4544 continue; 4545 4546 /* If PTG is already added, skip and continue */ 4547 if (test_bit(ptg, ptgs_used)) 4548 continue; 4549 4550 set_bit(ptg, ptgs_used); 4551 /* Check to see there are any attributes for 4552 * this PTYPE, and add them if found. 4553 */ 4554 status = ice_add_prof_attrib(prof, ptg, ptype, 4555 attr, attr_cnt); 4556 if (status == ICE_ERR_MAX_LIMIT) 4557 break; 4558 if (status) { 4559 /* This is simple a PTYPE/PTG with no 4560 * attribute 4561 */ 4562 prof->ptg[prof->ptg_cnt] = ptg; 4563 prof->attr[prof->ptg_cnt].flags = 0; 4564 prof->attr[prof->ptg_cnt].mask = 0; 4565 4566 if (++prof->ptg_cnt >= 4567 ICE_MAX_PTG_PER_PROFILE) 4568 break; 4569 } 4570 } 4571 4572 bytes--; 4573 byte++; 4574 } 4575 4576 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4577 status = 0; 4578 4579 err_ice_add_prof: 4580 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4581 return status; 4582 } 4583 4584 /** 4585 * ice_search_prof_id - Search for a profile tracking ID 4586 * @hw: pointer to the HW struct 4587 * @blk: hardware block 4588 * @id: profile tracking ID 4589 * 4590 * This will search for a profile tracking ID which was previously added. 4591 * The profile map lock should be held before calling this function. 4592 */ 4593 static struct ice_prof_map * 4594 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4595 { 4596 struct ice_prof_map *entry = NULL; 4597 struct ice_prof_map *map; 4598 4599 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4600 if (map->profile_cookie == id) { 4601 entry = map; 4602 break; 4603 } 4604 4605 return entry; 4606 } 4607 4608 /** 4609 * ice_vsig_prof_id_count - count profiles in a VSIG 4610 * @hw: pointer to the HW struct 4611 * @blk: hardware block 4612 * @vsig: VSIG to remove the profile from 4613 */ 4614 static u16 4615 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4616 { 4617 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4618 struct ice_vsig_prof *p; 4619 4620 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4621 list) 4622 count++; 4623 4624 return count; 4625 } 4626 4627 /** 4628 * ice_rel_tcam_idx - release a TCAM index 4629 * @hw: pointer to the HW struct 4630 * @blk: hardware block 4631 * @idx: the index to release 4632 */ 4633 static enum ice_status 4634 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4635 { 4636 /* Masks to invoke a never match entry */ 4637 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4638 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4639 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4640 enum ice_status status; 4641 4642 /* write the TCAM entry */ 4643 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4644 dc_msk, nm_msk); 4645 if (status) 4646 return status; 4647 4648 /* release the TCAM entry */ 4649 status = ice_free_tcam_ent(hw, blk, idx); 4650 4651 return status; 4652 } 4653 4654 /** 4655 * ice_rem_prof_id - remove one profile from a VSIG 4656 * @hw: pointer to the HW struct 4657 * @blk: hardware block 4658 * @prof: pointer to profile structure to remove 4659 */ 4660 static enum ice_status 4661 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4662 struct ice_vsig_prof *prof) 4663 { 4664 enum ice_status status; 4665 u16 i; 4666 4667 for (i = 0; i < prof->tcam_count; i++) 4668 if (prof->tcam[i].in_use) { 4669 prof->tcam[i].in_use = false; 4670 status = ice_rel_tcam_idx(hw, blk, 4671 prof->tcam[i].tcam_idx); 4672 if (status) 4673 return ICE_ERR_HW_TABLE; 4674 } 4675 4676 return 0; 4677 } 4678 4679 /** 4680 * ice_rem_vsig - remove VSIG 4681 * @hw: pointer to the HW struct 4682 * @blk: hardware block 4683 * @vsig: the VSIG to remove 4684 * @chg: the change list 4685 */ 4686 static enum ice_status 4687 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4688 struct list_head *chg) 4689 { 4690 u16 idx = vsig & ICE_VSIG_IDX_M; 4691 struct ice_vsig_vsi *vsi_cur; 4692 struct ice_vsig_prof *d, *t; 4693 enum ice_status status; 4694 4695 /* remove TCAM entries */ 4696 list_for_each_entry_safe(d, t, 4697 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4698 list) { 4699 status = ice_rem_prof_id(hw, blk, d); 4700 if (status) 4701 return status; 4702 4703 list_del(&d->list); 4704 devm_kfree(ice_hw_to_dev(hw), d); 4705 } 4706 4707 /* Move all VSIS associated with this VSIG to the default VSIG */ 4708 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4709 /* If the VSIG has at least 1 VSI then iterate through the list 4710 * and remove the VSIs before deleting the group. 4711 */ 4712 if (vsi_cur) 4713 do { 4714 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4715 struct ice_chs_chg *p; 4716 4717 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4718 GFP_KERNEL); 4719 if (!p) 4720 return ICE_ERR_NO_MEMORY; 4721 4722 p->type = ICE_VSIG_REM; 4723 p->orig_vsig = vsig; 4724 p->vsig = ICE_DEFAULT_VSIG; 4725 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4726 4727 list_add(&p->list_entry, chg); 4728 4729 vsi_cur = tmp; 4730 } while (vsi_cur); 4731 4732 return ice_vsig_free(hw, blk, vsig); 4733 } 4734 4735 /** 4736 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4737 * @hw: pointer to the HW struct 4738 * @blk: hardware block 4739 * @vsig: VSIG to remove the profile from 4740 * @hdl: profile handle indicating which profile to remove 4741 * @chg: list to receive a record of changes 4742 */ 4743 static enum ice_status 4744 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4745 struct list_head *chg) 4746 { 4747 u16 idx = vsig & ICE_VSIG_IDX_M; 4748 struct ice_vsig_prof *p, *t; 4749 enum ice_status status; 4750 4751 list_for_each_entry_safe(p, t, 4752 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4753 list) 4754 if (p->profile_cookie == hdl) { 4755 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4756 /* this is the last profile, remove the VSIG */ 4757 return ice_rem_vsig(hw, blk, vsig, chg); 4758 4759 status = ice_rem_prof_id(hw, blk, p); 4760 if (!status) { 4761 list_del(&p->list); 4762 devm_kfree(ice_hw_to_dev(hw), p); 4763 } 4764 return status; 4765 } 4766 4767 return ICE_ERR_DOES_NOT_EXIST; 4768 } 4769 4770 /** 4771 * ice_rem_flow_all - remove all flows with a particular profile 4772 * @hw: pointer to the HW struct 4773 * @blk: hardware block 4774 * @id: profile tracking ID 4775 */ 4776 static enum ice_status 4777 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4778 { 4779 struct ice_chs_chg *del, *tmp; 4780 enum ice_status status; 4781 struct list_head chg; 4782 u16 i; 4783 4784 INIT_LIST_HEAD(&chg); 4785 4786 for (i = 1; i < ICE_MAX_VSIGS; i++) 4787 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4788 if (ice_has_prof_vsig(hw, blk, i, id)) { 4789 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4790 &chg); 4791 if (status) 4792 goto err_ice_rem_flow_all; 4793 } 4794 } 4795 4796 status = ice_upd_prof_hw(hw, blk, &chg); 4797 4798 err_ice_rem_flow_all: 4799 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4800 list_del(&del->list_entry); 4801 devm_kfree(ice_hw_to_dev(hw), del); 4802 } 4803 4804 return status; 4805 } 4806 4807 /** 4808 * ice_rem_prof - remove profile 4809 * @hw: pointer to the HW struct 4810 * @blk: hardware block 4811 * @id: profile tracking ID 4812 * 4813 * This will remove the profile specified by the ID parameter, which was 4814 * previously created through ice_add_prof. If any existing entries 4815 * are associated with this profile, they will be removed as well. 4816 */ 4817 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4818 { 4819 struct ice_prof_map *pmap; 4820 enum ice_status status; 4821 4822 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4823 4824 pmap = ice_search_prof_id(hw, blk, id); 4825 if (!pmap) { 4826 status = ICE_ERR_DOES_NOT_EXIST; 4827 goto err_ice_rem_prof; 4828 } 4829 4830 /* remove all flows with this profile */ 4831 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4832 if (status) 4833 goto err_ice_rem_prof; 4834 4835 /* dereference profile, and possibly remove */ 4836 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4837 4838 list_del(&pmap->list); 4839 devm_kfree(ice_hw_to_dev(hw), pmap); 4840 4841 err_ice_rem_prof: 4842 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4843 return status; 4844 } 4845 4846 /** 4847 * ice_get_prof - get profile 4848 * @hw: pointer to the HW struct 4849 * @blk: hardware block 4850 * @hdl: profile handle 4851 * @chg: change list 4852 */ 4853 static enum ice_status 4854 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4855 struct list_head *chg) 4856 { 4857 enum ice_status status = 0; 4858 struct ice_prof_map *map; 4859 struct ice_chs_chg *p; 4860 u16 i; 4861 4862 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4863 /* Get the details on the profile specified by the handle ID */ 4864 map = ice_search_prof_id(hw, blk, hdl); 4865 if (!map) { 4866 status = ICE_ERR_DOES_NOT_EXIST; 4867 goto err_ice_get_prof; 4868 } 4869 4870 for (i = 0; i < map->ptg_cnt; i++) 4871 if (!hw->blk[blk].es.written[map->prof_id]) { 4872 /* add ES to change list */ 4873 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4874 GFP_KERNEL); 4875 if (!p) { 4876 status = ICE_ERR_NO_MEMORY; 4877 goto err_ice_get_prof; 4878 } 4879 4880 p->type = ICE_PTG_ES_ADD; 4881 p->ptype = 0; 4882 p->ptg = map->ptg[i]; 4883 p->add_ptg = 0; 4884 4885 p->add_prof = 1; 4886 p->prof_id = map->prof_id; 4887 4888 hw->blk[blk].es.written[map->prof_id] = true; 4889 4890 list_add(&p->list_entry, chg); 4891 } 4892 4893 err_ice_get_prof: 4894 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4895 /* let caller clean up the change list */ 4896 return status; 4897 } 4898 4899 /** 4900 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4901 * @hw: pointer to the HW struct 4902 * @blk: hardware block 4903 * @vsig: VSIG from which to copy the list 4904 * @lst: output list 4905 * 4906 * This routine makes a copy of the list of profiles in the specified VSIG. 4907 */ 4908 static enum ice_status 4909 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4910 struct list_head *lst) 4911 { 4912 struct ice_vsig_prof *ent1, *ent2; 4913 u16 idx = vsig & ICE_VSIG_IDX_M; 4914 4915 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4916 list) { 4917 struct ice_vsig_prof *p; 4918 4919 /* copy to the input list */ 4920 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4921 GFP_KERNEL); 4922 if (!p) 4923 goto err_ice_get_profs_vsig; 4924 4925 list_add_tail(&p->list, lst); 4926 } 4927 4928 return 0; 4929 4930 err_ice_get_profs_vsig: 4931 list_for_each_entry_safe(ent1, ent2, lst, list) { 4932 list_del(&ent1->list); 4933 devm_kfree(ice_hw_to_dev(hw), ent1); 4934 } 4935 4936 return ICE_ERR_NO_MEMORY; 4937 } 4938 4939 /** 4940 * ice_add_prof_to_lst - add profile entry to a list 4941 * @hw: pointer to the HW struct 4942 * @blk: hardware block 4943 * @lst: the list to be added to 4944 * @hdl: profile handle of entry to add 4945 */ 4946 static enum ice_status 4947 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4948 struct list_head *lst, u64 hdl) 4949 { 4950 enum ice_status status = 0; 4951 struct ice_prof_map *map; 4952 struct ice_vsig_prof *p; 4953 u16 i; 4954 4955 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4956 map = ice_search_prof_id(hw, blk, hdl); 4957 if (!map) { 4958 status = ICE_ERR_DOES_NOT_EXIST; 4959 goto err_ice_add_prof_to_lst; 4960 } 4961 4962 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4963 if (!p) { 4964 status = ICE_ERR_NO_MEMORY; 4965 goto err_ice_add_prof_to_lst; 4966 } 4967 4968 p->profile_cookie = map->profile_cookie; 4969 p->prof_id = map->prof_id; 4970 p->tcam_count = map->ptg_cnt; 4971 4972 for (i = 0; i < map->ptg_cnt; i++) { 4973 p->tcam[i].prof_id = map->prof_id; 4974 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4975 p->tcam[i].ptg = map->ptg[i]; 4976 } 4977 4978 list_add(&p->list, lst); 4979 4980 err_ice_add_prof_to_lst: 4981 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4982 return status; 4983 } 4984 4985 /** 4986 * ice_move_vsi - move VSI to another VSIG 4987 * @hw: pointer to the HW struct 4988 * @blk: hardware block 4989 * @vsi: the VSI to move 4990 * @vsig: the VSIG to move the VSI to 4991 * @chg: the change list 4992 */ 4993 static enum ice_status 4994 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4995 struct list_head *chg) 4996 { 4997 enum ice_status status; 4998 struct ice_chs_chg *p; 4999 u16 orig_vsig; 5000 5001 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5002 if (!p) 5003 return ICE_ERR_NO_MEMORY; 5004 5005 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5006 if (!status) 5007 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5008 5009 if (status) { 5010 devm_kfree(ice_hw_to_dev(hw), p); 5011 return status; 5012 } 5013 5014 p->type = ICE_VSI_MOVE; 5015 p->vsi = vsi; 5016 p->orig_vsig = orig_vsig; 5017 p->vsig = vsig; 5018 5019 list_add(&p->list_entry, chg); 5020 5021 return 0; 5022 } 5023 5024 /** 5025 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5026 * @hw: pointer to the HW struct 5027 * @idx: the index of the TCAM entry to remove 5028 * @chg: the list of change structures to search 5029 */ 5030 static void 5031 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5032 { 5033 struct ice_chs_chg *pos, *tmp; 5034 5035 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5036 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5037 list_del(&tmp->list_entry); 5038 devm_kfree(ice_hw_to_dev(hw), tmp); 5039 } 5040 } 5041 5042 /** 5043 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5044 * @hw: pointer to the HW struct 5045 * @blk: hardware block 5046 * @enable: true to enable, false to disable 5047 * @vsig: the VSIG of the TCAM entry 5048 * @tcam: pointer the TCAM info structure of the TCAM to disable 5049 * @chg: the change list 5050 * 5051 * This function appends an enable or disable TCAM entry in the change log 5052 */ 5053 static enum ice_status 5054 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5055 u16 vsig, struct ice_tcam_inf *tcam, 5056 struct list_head *chg) 5057 { 5058 enum ice_status status; 5059 struct ice_chs_chg *p; 5060 5061 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5062 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5063 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5064 5065 /* if disabling, free the TCAM */ 5066 if (!enable) { 5067 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5068 5069 /* if we have already created a change for this TCAM entry, then 5070 * we need to remove that entry, in order to prevent writing to 5071 * a TCAM entry we no longer will have ownership of. 5072 */ 5073 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5074 tcam->tcam_idx = 0; 5075 tcam->in_use = 0; 5076 return status; 5077 } 5078 5079 /* for re-enabling, reallocate a TCAM */ 5080 /* for entries with empty attribute masks, allocate entry from 5081 * the bottom of the TCAM table; otherwise, allocate from the 5082 * top of the table in order to give it higher priority 5083 */ 5084 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5085 &tcam->tcam_idx); 5086 if (status) 5087 return status; 5088 5089 /* add TCAM to change list */ 5090 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5091 if (!p) 5092 return ICE_ERR_NO_MEMORY; 5093 5094 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5095 tcam->ptg, vsig, 0, tcam->attr.flags, 5096 vl_msk, dc_msk, nm_msk); 5097 if (status) 5098 goto err_ice_prof_tcam_ena_dis; 5099 5100 tcam->in_use = 1; 5101 5102 p->type = ICE_TCAM_ADD; 5103 p->add_tcam_idx = true; 5104 p->prof_id = tcam->prof_id; 5105 p->ptg = tcam->ptg; 5106 p->vsig = 0; 5107 p->tcam_idx = tcam->tcam_idx; 5108 5109 /* log change */ 5110 list_add(&p->list_entry, chg); 5111 5112 return 0; 5113 5114 err_ice_prof_tcam_ena_dis: 5115 devm_kfree(ice_hw_to_dev(hw), p); 5116 return status; 5117 } 5118 5119 /** 5120 * ice_adj_prof_priorities - adjust profile based on priorities 5121 * @hw: pointer to the HW struct 5122 * @blk: hardware block 5123 * @vsig: the VSIG for which to adjust profile priorities 5124 * @chg: the change list 5125 */ 5126 static enum ice_status 5127 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5128 struct list_head *chg) 5129 { 5130 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5131 struct ice_vsig_prof *t; 5132 enum ice_status status; 5133 u16 idx; 5134 5135 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5136 idx = vsig & ICE_VSIG_IDX_M; 5137 5138 /* Priority is based on the order in which the profiles are added. The 5139 * newest added profile has highest priority and the oldest added 5140 * profile has the lowest priority. Since the profile property list for 5141 * a VSIG is sorted from newest to oldest, this code traverses the list 5142 * in order and enables the first of each PTG that it finds (that is not 5143 * already enabled); it also disables any duplicate PTGs that it finds 5144 * in the older profiles (that are currently enabled). 5145 */ 5146 5147 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5148 list) { 5149 u16 i; 5150 5151 for (i = 0; i < t->tcam_count; i++) { 5152 /* Scan the priorities from newest to oldest. 5153 * Make sure that the newest profiles take priority. 5154 */ 5155 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5156 t->tcam[i].in_use) { 5157 /* need to mark this PTG as never match, as it 5158 * was already in use and therefore duplicate 5159 * (and lower priority) 5160 */ 5161 status = ice_prof_tcam_ena_dis(hw, blk, false, 5162 vsig, 5163 &t->tcam[i], 5164 chg); 5165 if (status) 5166 return status; 5167 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5168 !t->tcam[i].in_use) { 5169 /* need to enable this PTG, as it in not in use 5170 * and not enabled (highest priority) 5171 */ 5172 status = ice_prof_tcam_ena_dis(hw, blk, true, 5173 vsig, 5174 &t->tcam[i], 5175 chg); 5176 if (status) 5177 return status; 5178 } 5179 5180 /* keep track of used ptgs */ 5181 set_bit(t->tcam[i].ptg, ptgs_used); 5182 } 5183 } 5184 5185 return 0; 5186 } 5187 5188 /** 5189 * ice_add_prof_id_vsig - add profile to VSIG 5190 * @hw: pointer to the HW struct 5191 * @blk: hardware block 5192 * @vsig: the VSIG to which this profile is to be added 5193 * @hdl: the profile handle indicating the profile to add 5194 * @rev: true to add entries to the end of the list 5195 * @chg: the change list 5196 */ 5197 static enum ice_status 5198 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5199 bool rev, struct list_head *chg) 5200 { 5201 /* Masks that ignore flags */ 5202 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5203 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5204 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5205 enum ice_status status = 0; 5206 struct ice_prof_map *map; 5207 struct ice_vsig_prof *t; 5208 struct ice_chs_chg *p; 5209 u16 vsig_idx, i; 5210 5211 /* Error, if this VSIG already has this profile */ 5212 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5213 return ICE_ERR_ALREADY_EXISTS; 5214 5215 /* new VSIG profile structure */ 5216 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5217 if (!t) 5218 return ICE_ERR_NO_MEMORY; 5219 5220 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5221 /* Get the details on the profile specified by the handle ID */ 5222 map = ice_search_prof_id(hw, blk, hdl); 5223 if (!map) { 5224 status = ICE_ERR_DOES_NOT_EXIST; 5225 goto err_ice_add_prof_id_vsig; 5226 } 5227 5228 t->profile_cookie = map->profile_cookie; 5229 t->prof_id = map->prof_id; 5230 t->tcam_count = map->ptg_cnt; 5231 5232 /* create TCAM entries */ 5233 for (i = 0; i < map->ptg_cnt; i++) { 5234 u16 tcam_idx; 5235 5236 /* add TCAM to change list */ 5237 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5238 if (!p) { 5239 status = ICE_ERR_NO_MEMORY; 5240 goto err_ice_add_prof_id_vsig; 5241 } 5242 5243 /* allocate the TCAM entry index */ 5244 /* for entries with empty attribute masks, allocate entry from 5245 * the bottom of the TCAM table; otherwise, allocate from the 5246 * top of the table in order to give it higher priority 5247 */ 5248 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5249 &tcam_idx); 5250 if (status) { 5251 devm_kfree(ice_hw_to_dev(hw), p); 5252 goto err_ice_add_prof_id_vsig; 5253 } 5254 5255 t->tcam[i].ptg = map->ptg[i]; 5256 t->tcam[i].prof_id = map->prof_id; 5257 t->tcam[i].tcam_idx = tcam_idx; 5258 t->tcam[i].attr = map->attr[i]; 5259 t->tcam[i].in_use = true; 5260 5261 p->type = ICE_TCAM_ADD; 5262 p->add_tcam_idx = true; 5263 p->prof_id = t->tcam[i].prof_id; 5264 p->ptg = t->tcam[i].ptg; 5265 p->vsig = vsig; 5266 p->tcam_idx = t->tcam[i].tcam_idx; 5267 5268 /* write the TCAM entry */ 5269 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5270 t->tcam[i].prof_id, 5271 t->tcam[i].ptg, vsig, 0, 0, 5272 vl_msk, dc_msk, nm_msk); 5273 if (status) { 5274 devm_kfree(ice_hw_to_dev(hw), p); 5275 goto err_ice_add_prof_id_vsig; 5276 } 5277 5278 /* log change */ 5279 list_add(&p->list_entry, chg); 5280 } 5281 5282 /* add profile to VSIG */ 5283 vsig_idx = vsig & ICE_VSIG_IDX_M; 5284 if (rev) 5285 list_add_tail(&t->list, 5286 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5287 else 5288 list_add(&t->list, 5289 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5290 5291 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5292 return status; 5293 5294 err_ice_add_prof_id_vsig: 5295 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5296 /* let caller clean up the change list */ 5297 devm_kfree(ice_hw_to_dev(hw), t); 5298 return status; 5299 } 5300 5301 /** 5302 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5303 * @hw: pointer to the HW struct 5304 * @blk: hardware block 5305 * @vsi: the initial VSI that will be in VSIG 5306 * @hdl: the profile handle of the profile that will be added to the VSIG 5307 * @chg: the change list 5308 */ 5309 static enum ice_status 5310 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5311 struct list_head *chg) 5312 { 5313 enum ice_status status; 5314 struct ice_chs_chg *p; 5315 u16 new_vsig; 5316 5317 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5318 if (!p) 5319 return ICE_ERR_NO_MEMORY; 5320 5321 new_vsig = ice_vsig_alloc(hw, blk); 5322 if (!new_vsig) { 5323 status = ICE_ERR_HW_TABLE; 5324 goto err_ice_create_prof_id_vsig; 5325 } 5326 5327 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5328 if (status) 5329 goto err_ice_create_prof_id_vsig; 5330 5331 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5332 if (status) 5333 goto err_ice_create_prof_id_vsig; 5334 5335 p->type = ICE_VSIG_ADD; 5336 p->vsi = vsi; 5337 p->orig_vsig = ICE_DEFAULT_VSIG; 5338 p->vsig = new_vsig; 5339 5340 list_add(&p->list_entry, chg); 5341 5342 return 0; 5343 5344 err_ice_create_prof_id_vsig: 5345 /* let caller clean up the change list */ 5346 devm_kfree(ice_hw_to_dev(hw), p); 5347 return status; 5348 } 5349 5350 /** 5351 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5352 * @hw: pointer to the HW struct 5353 * @blk: hardware block 5354 * @vsi: the initial VSI that will be in VSIG 5355 * @lst: the list of profile that will be added to the VSIG 5356 * @new_vsig: return of new VSIG 5357 * @chg: the change list 5358 */ 5359 static enum ice_status 5360 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5361 struct list_head *lst, u16 *new_vsig, 5362 struct list_head *chg) 5363 { 5364 struct ice_vsig_prof *t; 5365 enum ice_status status; 5366 u16 vsig; 5367 5368 vsig = ice_vsig_alloc(hw, blk); 5369 if (!vsig) 5370 return ICE_ERR_HW_TABLE; 5371 5372 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5373 if (status) 5374 return status; 5375 5376 list_for_each_entry(t, lst, list) { 5377 /* Reverse the order here since we are copying the list */ 5378 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5379 true, chg); 5380 if (status) 5381 return status; 5382 } 5383 5384 *new_vsig = vsig; 5385 5386 return 0; 5387 } 5388 5389 /** 5390 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5391 * @hw: pointer to the HW struct 5392 * @blk: hardware block 5393 * @hdl: the profile handle of the profile to search for 5394 * @vsig: returns the VSIG with the matching profile 5395 */ 5396 static bool 5397 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5398 { 5399 struct ice_vsig_prof *t; 5400 enum ice_status status; 5401 struct list_head lst; 5402 5403 INIT_LIST_HEAD(&lst); 5404 5405 t = kzalloc(sizeof(*t), GFP_KERNEL); 5406 if (!t) 5407 return false; 5408 5409 t->profile_cookie = hdl; 5410 list_add(&t->list, &lst); 5411 5412 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5413 5414 list_del(&t->list); 5415 kfree(t); 5416 5417 return !status; 5418 } 5419 5420 /** 5421 * ice_add_prof_id_flow - add profile flow 5422 * @hw: pointer to the HW struct 5423 * @blk: hardware block 5424 * @vsi: the VSI to enable with the profile specified by ID 5425 * @hdl: profile handle 5426 * 5427 * Calling this function will update the hardware tables to enable the 5428 * profile indicated by the ID parameter for the VSIs specified in the VSI 5429 * array. Once successfully called, the flow will be enabled. 5430 */ 5431 enum ice_status 5432 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5433 { 5434 struct ice_vsig_prof *tmp1, *del1; 5435 struct ice_chs_chg *tmp, *del; 5436 struct list_head union_lst; 5437 enum ice_status status; 5438 struct list_head chg; 5439 u16 vsig; 5440 5441 INIT_LIST_HEAD(&union_lst); 5442 INIT_LIST_HEAD(&chg); 5443 5444 /* Get profile */ 5445 status = ice_get_prof(hw, blk, hdl, &chg); 5446 if (status) 5447 return status; 5448 5449 /* determine if VSI is already part of a VSIG */ 5450 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5451 if (!status && vsig) { 5452 bool only_vsi; 5453 u16 or_vsig; 5454 u16 ref; 5455 5456 /* found in VSIG */ 5457 or_vsig = vsig; 5458 5459 /* make sure that there is no overlap/conflict between the new 5460 * characteristics and the existing ones; we don't support that 5461 * scenario 5462 */ 5463 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5464 status = ICE_ERR_ALREADY_EXISTS; 5465 goto err_ice_add_prof_id_flow; 5466 } 5467 5468 /* last VSI in the VSIG? */ 5469 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5470 if (status) 5471 goto err_ice_add_prof_id_flow; 5472 only_vsi = (ref == 1); 5473 5474 /* create a union of the current profiles and the one being 5475 * added 5476 */ 5477 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5478 if (status) 5479 goto err_ice_add_prof_id_flow; 5480 5481 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5482 if (status) 5483 goto err_ice_add_prof_id_flow; 5484 5485 /* search for an existing VSIG with an exact charc match */ 5486 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5487 if (!status) { 5488 /* move VSI to the VSIG that matches */ 5489 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5490 if (status) 5491 goto err_ice_add_prof_id_flow; 5492 5493 /* VSI has been moved out of or_vsig. If the or_vsig had 5494 * only that VSI it is now empty and can be removed. 5495 */ 5496 if (only_vsi) { 5497 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5498 if (status) 5499 goto err_ice_add_prof_id_flow; 5500 } 5501 } else if (only_vsi) { 5502 /* If the original VSIG only contains one VSI, then it 5503 * will be the requesting VSI. In this case the VSI is 5504 * not sharing entries and we can simply add the new 5505 * profile to the VSIG. 5506 */ 5507 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5508 &chg); 5509 if (status) 5510 goto err_ice_add_prof_id_flow; 5511 5512 /* Adjust priorities */ 5513 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5514 if (status) 5515 goto err_ice_add_prof_id_flow; 5516 } else { 5517 /* No match, so we need a new VSIG */ 5518 status = ice_create_vsig_from_lst(hw, blk, vsi, 5519 &union_lst, &vsig, 5520 &chg); 5521 if (status) 5522 goto err_ice_add_prof_id_flow; 5523 5524 /* Adjust priorities */ 5525 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5526 if (status) 5527 goto err_ice_add_prof_id_flow; 5528 } 5529 } else { 5530 /* need to find or add a VSIG */ 5531 /* search for an existing VSIG with an exact charc match */ 5532 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5533 /* found an exact match */ 5534 /* add or move VSI to the VSIG that matches */ 5535 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5536 if (status) 5537 goto err_ice_add_prof_id_flow; 5538 } else { 5539 /* we did not find an exact match */ 5540 /* we need to add a VSIG */ 5541 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5542 &chg); 5543 if (status) 5544 goto err_ice_add_prof_id_flow; 5545 } 5546 } 5547 5548 /* update hardware */ 5549 if (!status) 5550 status = ice_upd_prof_hw(hw, blk, &chg); 5551 5552 err_ice_add_prof_id_flow: 5553 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5554 list_del(&del->list_entry); 5555 devm_kfree(ice_hw_to_dev(hw), del); 5556 } 5557 5558 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5559 list_del(&del1->list); 5560 devm_kfree(ice_hw_to_dev(hw), del1); 5561 } 5562 5563 return status; 5564 } 5565 5566 /** 5567 * ice_rem_prof_from_list - remove a profile from list 5568 * @hw: pointer to the HW struct 5569 * @lst: list to remove the profile from 5570 * @hdl: the profile handle indicating the profile to remove 5571 */ 5572 static enum ice_status 5573 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5574 { 5575 struct ice_vsig_prof *ent, *tmp; 5576 5577 list_for_each_entry_safe(ent, tmp, lst, list) 5578 if (ent->profile_cookie == hdl) { 5579 list_del(&ent->list); 5580 devm_kfree(ice_hw_to_dev(hw), ent); 5581 return 0; 5582 } 5583 5584 return ICE_ERR_DOES_NOT_EXIST; 5585 } 5586 5587 /** 5588 * ice_rem_prof_id_flow - remove flow 5589 * @hw: pointer to the HW struct 5590 * @blk: hardware block 5591 * @vsi: the VSI from which to remove the profile specified by ID 5592 * @hdl: profile tracking handle 5593 * 5594 * Calling this function will update the hardware tables to remove the 5595 * profile indicated by the ID parameter for the VSIs specified in the VSI 5596 * array. Once successfully called, the flow will be disabled. 5597 */ 5598 enum ice_status 5599 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5600 { 5601 struct ice_vsig_prof *tmp1, *del1; 5602 struct ice_chs_chg *tmp, *del; 5603 struct list_head chg, copy; 5604 enum ice_status status; 5605 u16 vsig; 5606 5607 INIT_LIST_HEAD(©); 5608 INIT_LIST_HEAD(&chg); 5609 5610 /* determine if VSI is already part of a VSIG */ 5611 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5612 if (!status && vsig) { 5613 bool last_profile; 5614 bool only_vsi; 5615 u16 ref; 5616 5617 /* found in VSIG */ 5618 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5619 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5620 if (status) 5621 goto err_ice_rem_prof_id_flow; 5622 only_vsi = (ref == 1); 5623 5624 if (only_vsi) { 5625 /* If the original VSIG only contains one reference, 5626 * which will be the requesting VSI, then the VSI is not 5627 * sharing entries and we can simply remove the specific 5628 * characteristics from the VSIG. 5629 */ 5630 5631 if (last_profile) { 5632 /* If there are no profiles left for this VSIG, 5633 * then simply remove the VSIG. 5634 */ 5635 status = ice_rem_vsig(hw, blk, vsig, &chg); 5636 if (status) 5637 goto err_ice_rem_prof_id_flow; 5638 } else { 5639 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5640 hdl, &chg); 5641 if (status) 5642 goto err_ice_rem_prof_id_flow; 5643 5644 /* Adjust priorities */ 5645 status = ice_adj_prof_priorities(hw, blk, vsig, 5646 &chg); 5647 if (status) 5648 goto err_ice_rem_prof_id_flow; 5649 } 5650 5651 } else { 5652 /* Make a copy of the VSIG's list of Profiles */ 5653 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5654 if (status) 5655 goto err_ice_rem_prof_id_flow; 5656 5657 /* Remove specified profile entry from the list */ 5658 status = ice_rem_prof_from_list(hw, ©, hdl); 5659 if (status) 5660 goto err_ice_rem_prof_id_flow; 5661 5662 if (list_empty(©)) { 5663 status = ice_move_vsi(hw, blk, vsi, 5664 ICE_DEFAULT_VSIG, &chg); 5665 if (status) 5666 goto err_ice_rem_prof_id_flow; 5667 5668 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5669 &vsig)) { 5670 /* found an exact match */ 5671 /* add or move VSI to the VSIG that matches */ 5672 /* Search for a VSIG with a matching profile 5673 * list 5674 */ 5675 5676 /* Found match, move VSI to the matching VSIG */ 5677 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5678 if (status) 5679 goto err_ice_rem_prof_id_flow; 5680 } else { 5681 /* since no existing VSIG supports this 5682 * characteristic pattern, we need to create a 5683 * new VSIG and TCAM entries 5684 */ 5685 status = ice_create_vsig_from_lst(hw, blk, vsi, 5686 ©, &vsig, 5687 &chg); 5688 if (status) 5689 goto err_ice_rem_prof_id_flow; 5690 5691 /* Adjust priorities */ 5692 status = ice_adj_prof_priorities(hw, blk, vsig, 5693 &chg); 5694 if (status) 5695 goto err_ice_rem_prof_id_flow; 5696 } 5697 } 5698 } else { 5699 status = ICE_ERR_DOES_NOT_EXIST; 5700 } 5701 5702 /* update hardware tables */ 5703 if (!status) 5704 status = ice_upd_prof_hw(hw, blk, &chg); 5705 5706 err_ice_rem_prof_id_flow: 5707 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5708 list_del(&del->list_entry); 5709 devm_kfree(ice_hw_to_dev(hw), del); 5710 } 5711 5712 list_for_each_entry_safe(del1, tmp1, ©, list) { 5713 list_del(&del1->list); 5714 devm_kfree(ice_hw_to_dev(hw), del1); 5715 } 5716 5717 return status; 5718 } 5719