1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 
8 /* To support tunneling entries by PF, the package will append the PF number to
9  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
10  */
11 static const struct ice_tunnel_type_scan tnls[] = {
12 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
13 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
14 	{ TNL_LAST,		"" }
15 };
16 
17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
18 	/* SWITCH */
19 	{
20 		ICE_SID_XLT0_SW,
21 		ICE_SID_XLT_KEY_BUILDER_SW,
22 		ICE_SID_XLT1_SW,
23 		ICE_SID_XLT2_SW,
24 		ICE_SID_PROFID_TCAM_SW,
25 		ICE_SID_PROFID_REDIR_SW,
26 		ICE_SID_FLD_VEC_SW,
27 		ICE_SID_CDID_KEY_BUILDER_SW,
28 		ICE_SID_CDID_REDIR_SW
29 	},
30 
31 	/* ACL */
32 	{
33 		ICE_SID_XLT0_ACL,
34 		ICE_SID_XLT_KEY_BUILDER_ACL,
35 		ICE_SID_XLT1_ACL,
36 		ICE_SID_XLT2_ACL,
37 		ICE_SID_PROFID_TCAM_ACL,
38 		ICE_SID_PROFID_REDIR_ACL,
39 		ICE_SID_FLD_VEC_ACL,
40 		ICE_SID_CDID_KEY_BUILDER_ACL,
41 		ICE_SID_CDID_REDIR_ACL
42 	},
43 
44 	/* FD */
45 	{
46 		ICE_SID_XLT0_FD,
47 		ICE_SID_XLT_KEY_BUILDER_FD,
48 		ICE_SID_XLT1_FD,
49 		ICE_SID_XLT2_FD,
50 		ICE_SID_PROFID_TCAM_FD,
51 		ICE_SID_PROFID_REDIR_FD,
52 		ICE_SID_FLD_VEC_FD,
53 		ICE_SID_CDID_KEY_BUILDER_FD,
54 		ICE_SID_CDID_REDIR_FD
55 	},
56 
57 	/* RSS */
58 	{
59 		ICE_SID_XLT0_RSS,
60 		ICE_SID_XLT_KEY_BUILDER_RSS,
61 		ICE_SID_XLT1_RSS,
62 		ICE_SID_XLT2_RSS,
63 		ICE_SID_PROFID_TCAM_RSS,
64 		ICE_SID_PROFID_REDIR_RSS,
65 		ICE_SID_FLD_VEC_RSS,
66 		ICE_SID_CDID_KEY_BUILDER_RSS,
67 		ICE_SID_CDID_REDIR_RSS
68 	},
69 
70 	/* PE */
71 	{
72 		ICE_SID_XLT0_PE,
73 		ICE_SID_XLT_KEY_BUILDER_PE,
74 		ICE_SID_XLT1_PE,
75 		ICE_SID_XLT2_PE,
76 		ICE_SID_PROFID_TCAM_PE,
77 		ICE_SID_PROFID_REDIR_PE,
78 		ICE_SID_FLD_VEC_PE,
79 		ICE_SID_CDID_KEY_BUILDER_PE,
80 		ICE_SID_CDID_REDIR_PE
81 	}
82 };
83 
84 /**
85  * ice_sect_id - returns section ID
86  * @blk: block type
87  * @sect: section type
88  *
89  * This helper function returns the proper section ID given a block type and a
90  * section type.
91  */
92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
93 {
94 	return ice_sect_lkup[blk][sect];
95 }
96 
97 /**
98  * ice_pkg_val_buf
99  * @buf: pointer to the ice buffer
100  *
101  * This helper function validates a buffer's header.
102  */
103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
104 {
105 	struct ice_buf_hdr *hdr;
106 	u16 section_count;
107 	u16 data_end;
108 
109 	hdr = (struct ice_buf_hdr *)buf->buf;
110 	/* verify data */
111 	section_count = le16_to_cpu(hdr->section_count);
112 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
113 		return NULL;
114 
115 	data_end = le16_to_cpu(hdr->data_end);
116 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
117 		return NULL;
118 
119 	return hdr;
120 }
121 
122 /**
123  * ice_find_buf_table
124  * @ice_seg: pointer to the ice segment
125  *
126  * Returns the address of the buffer table within the ice segment.
127  */
128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
129 {
130 	struct ice_nvm_table *nvms;
131 
132 	nvms = (struct ice_nvm_table *)
133 		(ice_seg->device_table +
134 		 le32_to_cpu(ice_seg->device_table_count));
135 
136 	return (__force struct ice_buf_table *)
137 		(nvms->vers + le32_to_cpu(nvms->table_count));
138 }
139 
140 /**
141  * ice_pkg_enum_buf
142  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
143  * @state: pointer to the enum state
144  *
145  * This function will enumerate all the buffers in the ice segment. The first
146  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
147  * ice_seg is set to NULL which continues the enumeration. When the function
148  * returns a NULL pointer, then the end of the buffers has been reached, or an
149  * unexpected value has been detected (for example an invalid section count or
150  * an invalid buffer end value).
151  */
152 static struct ice_buf_hdr *
153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
154 {
155 	if (ice_seg) {
156 		state->buf_table = ice_find_buf_table(ice_seg);
157 		if (!state->buf_table)
158 			return NULL;
159 
160 		state->buf_idx = 0;
161 		return ice_pkg_val_buf(state->buf_table->buf_array);
162 	}
163 
164 	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
165 		return ice_pkg_val_buf(state->buf_table->buf_array +
166 				       state->buf_idx);
167 	else
168 		return NULL;
169 }
170 
171 /**
172  * ice_pkg_advance_sect
173  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
174  * @state: pointer to the enum state
175  *
176  * This helper function will advance the section within the ice segment,
177  * also advancing the buffer if needed.
178  */
179 static bool
180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
181 {
182 	if (!ice_seg && !state->buf)
183 		return false;
184 
185 	if (!ice_seg && state->buf)
186 		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
187 			return true;
188 
189 	state->buf = ice_pkg_enum_buf(ice_seg, state);
190 	if (!state->buf)
191 		return false;
192 
193 	/* start of new buffer, reset section index */
194 	state->sect_idx = 0;
195 	return true;
196 }
197 
198 /**
199  * ice_pkg_enum_section
200  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
201  * @state: pointer to the enum state
202  * @sect_type: section type to enumerate
203  *
204  * This function will enumerate all the sections of a particular type in the
205  * ice segment. The first call is made with the ice_seg parameter non-NULL;
206  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
207  * When the function returns a NULL pointer, then the end of the matching
208  * sections has been reached.
209  */
210 static void *
211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
212 		     u32 sect_type)
213 {
214 	u16 offset, size;
215 
216 	if (ice_seg)
217 		state->type = sect_type;
218 
219 	if (!ice_pkg_advance_sect(ice_seg, state))
220 		return NULL;
221 
222 	/* scan for next matching section */
223 	while (state->buf->section_entry[state->sect_idx].type !=
224 	       cpu_to_le32(state->type))
225 		if (!ice_pkg_advance_sect(NULL, state))
226 			return NULL;
227 
228 	/* validate section */
229 	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
230 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
231 		return NULL;
232 
233 	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
234 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
235 		return NULL;
236 
237 	/* make sure the section fits in the buffer */
238 	if (offset + size > ICE_PKG_BUF_SIZE)
239 		return NULL;
240 
241 	state->sect_type =
242 		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
243 
244 	/* calc pointer to this section */
245 	state->sect = ((u8 *)state->buf) +
246 		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
247 
248 	return state->sect;
249 }
250 
251 /**
252  * ice_pkg_enum_entry
253  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
254  * @state: pointer to the enum state
255  * @sect_type: section type to enumerate
256  * @offset: pointer to variable that receives the offset in the table (optional)
257  * @handler: function that handles access to the entries into the section type
258  *
259  * This function will enumerate all the entries in particular section type in
260  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
261  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
262  * When the function returns a NULL pointer, then the end of the entries has
263  * been reached.
264  *
265  * Since each section may have a different header and entry size, the handler
266  * function is needed to determine the number and location entries in each
267  * section.
268  *
269  * The offset parameter is optional, but should be used for sections that
270  * contain an offset for each section table. For such cases, the section handler
271  * function must return the appropriate offset + index to give the absolution
272  * offset for each entry. For example, if the base for a section's header
273  * indicates a base offset of 10, and the index for the entry is 2, then
274  * section handler function should set the offset to 10 + 2 = 12.
275  */
276 static void *
277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
278 		   u32 sect_type, u32 *offset,
279 		   void *(*handler)(u32 sect_type, void *section,
280 				    u32 index, u32 *offset))
281 {
282 	void *entry;
283 
284 	if (ice_seg) {
285 		if (!handler)
286 			return NULL;
287 
288 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
289 			return NULL;
290 
291 		state->entry_idx = 0;
292 		state->handler = handler;
293 	} else {
294 		state->entry_idx++;
295 	}
296 
297 	if (!state->handler)
298 		return NULL;
299 
300 	/* get entry */
301 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
302 			       offset);
303 	if (!entry) {
304 		/* end of a section, look for another section of this type */
305 		if (!ice_pkg_enum_section(NULL, state, 0))
306 			return NULL;
307 
308 		state->entry_idx = 0;
309 		entry = state->handler(state->sect_type, state->sect,
310 				       state->entry_idx, offset);
311 	}
312 
313 	return entry;
314 }
315 
316 /**
317  * ice_boost_tcam_handler
318  * @sect_type: section type
319  * @section: pointer to section
320  * @index: index of the boost TCAM entry to be returned
321  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
322  *
323  * This is a callback function that can be passed to ice_pkg_enum_entry.
324  * Handles enumeration of individual boost TCAM entries.
325  */
326 static void *
327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
328 {
329 	struct ice_boost_tcam_section *boost;
330 
331 	if (!section)
332 		return NULL;
333 
334 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
335 		return NULL;
336 
337 	/* cppcheck-suppress nullPointer */
338 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
339 		return NULL;
340 
341 	if (offset)
342 		*offset = 0;
343 
344 	boost = section;
345 	if (index >= le16_to_cpu(boost->count))
346 		return NULL;
347 
348 	return boost->tcam + index;
349 }
350 
351 /**
352  * ice_find_boost_entry
353  * @ice_seg: pointer to the ice segment (non-NULL)
354  * @addr: Boost TCAM address of entry to search for
355  * @entry: returns pointer to the entry
356  *
357  * Finds a particular Boost TCAM entry and returns a pointer to that entry
358  * if it is found. The ice_seg parameter must not be NULL since the first call
359  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
360  */
361 static enum ice_status
362 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
363 		     struct ice_boost_tcam_entry **entry)
364 {
365 	struct ice_boost_tcam_entry *tcam;
366 	struct ice_pkg_enum state;
367 
368 	memset(&state, 0, sizeof(state));
369 
370 	if (!ice_seg)
371 		return ICE_ERR_PARAM;
372 
373 	do {
374 		tcam = ice_pkg_enum_entry(ice_seg, &state,
375 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
376 					  ice_boost_tcam_handler);
377 		if (tcam && le16_to_cpu(tcam->addr) == addr) {
378 			*entry = tcam;
379 			return 0;
380 		}
381 
382 		ice_seg = NULL;
383 	} while (tcam);
384 
385 	*entry = NULL;
386 	return ICE_ERR_CFG;
387 }
388 
389 /**
390  * ice_label_enum_handler
391  * @sect_type: section type
392  * @section: pointer to section
393  * @index: index of the label entry to be returned
394  * @offset: pointer to receive absolute offset, always zero for label sections
395  *
396  * This is a callback function that can be passed to ice_pkg_enum_entry.
397  * Handles enumeration of individual label entries.
398  */
399 static void *
400 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
401 		       u32 *offset)
402 {
403 	struct ice_label_section *labels;
404 
405 	if (!section)
406 		return NULL;
407 
408 	/* cppcheck-suppress nullPointer */
409 	if (index > ICE_MAX_LABELS_IN_BUF)
410 		return NULL;
411 
412 	if (offset)
413 		*offset = 0;
414 
415 	labels = section;
416 	if (index >= le16_to_cpu(labels->count))
417 		return NULL;
418 
419 	return labels->label + index;
420 }
421 
422 /**
423  * ice_enum_labels
424  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
425  * @type: the section type that will contain the label (0 on subsequent calls)
426  * @state: ice_pkg_enum structure that will hold the state of the enumeration
427  * @value: pointer to a value that will return the label's value if found
428  *
429  * Enumerates a list of labels in the package. The caller will call
430  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
431  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
432  * the end of the list has been reached.
433  */
434 static char *
435 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
436 		u16 *value)
437 {
438 	struct ice_label *label;
439 
440 	/* Check for valid label section on first call */
441 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
442 		return NULL;
443 
444 	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
445 				   ice_label_enum_handler);
446 	if (!label)
447 		return NULL;
448 
449 	*value = le16_to_cpu(label->value);
450 	return label->name;
451 }
452 
453 /**
454  * ice_init_pkg_hints
455  * @hw: pointer to the HW structure
456  * @ice_seg: pointer to the segment of the package scan (non-NULL)
457  *
458  * This function will scan the package and save off relevant information
459  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
460  * since the first call to ice_enum_labels requires a pointer to an actual
461  * ice_seg structure.
462  */
463 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
464 {
465 	struct ice_pkg_enum state;
466 	char *label_name;
467 	u16 val;
468 	int i;
469 
470 	memset(&hw->tnl, 0, sizeof(hw->tnl));
471 	memset(&state, 0, sizeof(state));
472 
473 	if (!ice_seg)
474 		return;
475 
476 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
477 				     &val);
478 
479 	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
480 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
481 			size_t len = strlen(tnls[i].label_prefix);
482 
483 			/* Look for matching label start, before continuing */
484 			if (strncmp(label_name, tnls[i].label_prefix, len))
485 				continue;
486 
487 			/* Make sure this label matches our PF. Note that the PF
488 			 * character ('0' - '7') will be located where our
489 			 * prefix string's null terminator is located.
490 			 */
491 			if ((label_name[len] - '0') == hw->pf_id) {
492 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
493 				hw->tnl.tbl[hw->tnl.count].valid = false;
494 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
495 				hw->tnl.tbl[hw->tnl.count].port = 0;
496 				hw->tnl.count++;
497 				break;
498 			}
499 		}
500 
501 		label_name = ice_enum_labels(NULL, 0, &state, &val);
502 	}
503 
504 	/* Cache the appropriate boost TCAM entry pointers */
505 	for (i = 0; i < hw->tnl.count; i++) {
506 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
507 				     &hw->tnl.tbl[i].boost_entry);
508 		if (hw->tnl.tbl[i].boost_entry) {
509 			hw->tnl.tbl[i].valid = true;
510 			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
511 				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
512 		}
513 	}
514 }
515 
516 /* Key creation */
517 
518 #define ICE_DC_KEY	0x1	/* don't care */
519 #define ICE_DC_KEYINV	0x1
520 #define ICE_NM_KEY	0x0	/* never match */
521 #define ICE_NM_KEYINV	0x0
522 #define ICE_0_KEY	0x1	/* match 0 */
523 #define ICE_0_KEYINV	0x0
524 #define ICE_1_KEY	0x0	/* match 1 */
525 #define ICE_1_KEYINV	0x1
526 
527 /**
528  * ice_gen_key_word - generate 16-bits of a key/mask word
529  * @val: the value
530  * @valid: valid bits mask (change only the valid bits)
531  * @dont_care: don't care mask
532  * @nvr_mtch: never match mask
533  * @key: pointer to an array of where the resulting key portion
534  * @key_inv: pointer to an array of where the resulting key invert portion
535  *
536  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
537  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
538  * of key and 8 bits of key invert.
539  *
540  *     '0' =    b01, always match a 0 bit
541  *     '1' =    b10, always match a 1 bit
542  *     '?' =    b11, don't care bit (always matches)
543  *     '~' =    b00, never match bit
544  *
545  * Input:
546  *          val:         b0  1  0  1  0  1
547  *          dont_care:   b0  0  1  1  0  0
548  *          never_mtch:  b0  0  0  0  1  1
549  *          ------------------------------
550  * Result:  key:        b01 10 11 11 00 00
551  */
552 static enum ice_status
553 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
554 		 u8 *key_inv)
555 {
556 	u8 in_key = *key, in_key_inv = *key_inv;
557 	u8 i;
558 
559 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
560 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
561 		return ICE_ERR_CFG;
562 
563 	*key = 0;
564 	*key_inv = 0;
565 
566 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
567 	for (i = 0; i < 8; i++) {
568 		*key >>= 1;
569 		*key_inv >>= 1;
570 
571 		if (!(valid & 0x1)) { /* change only valid bits */
572 			*key |= (in_key & 0x1) << 7;
573 			*key_inv |= (in_key_inv & 0x1) << 7;
574 		} else if (dont_care & 0x1) { /* don't care bit */
575 			*key |= ICE_DC_KEY << 7;
576 			*key_inv |= ICE_DC_KEYINV << 7;
577 		} else if (nvr_mtch & 0x1) { /* never match bit */
578 			*key |= ICE_NM_KEY << 7;
579 			*key_inv |= ICE_NM_KEYINV << 7;
580 		} else if (val & 0x01) { /* exact 1 match */
581 			*key |= ICE_1_KEY << 7;
582 			*key_inv |= ICE_1_KEYINV << 7;
583 		} else { /* exact 0 match */
584 			*key |= ICE_0_KEY << 7;
585 			*key_inv |= ICE_0_KEYINV << 7;
586 		}
587 
588 		dont_care >>= 1;
589 		nvr_mtch >>= 1;
590 		valid >>= 1;
591 		val >>= 1;
592 		in_key >>= 1;
593 		in_key_inv >>= 1;
594 	}
595 
596 	return 0;
597 }
598 
599 /**
600  * ice_bits_max_set - determine if the number of bits set is within a maximum
601  * @mask: pointer to the byte array which is the mask
602  * @size: the number of bytes in the mask
603  * @max: the max number of set bits
604  *
605  * This function determines if there are at most 'max' number of bits set in an
606  * array. Returns true if the number for bits set is <= max or will return false
607  * otherwise.
608  */
609 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
610 {
611 	u16 count = 0;
612 	u16 i;
613 
614 	/* check each byte */
615 	for (i = 0; i < size; i++) {
616 		/* if 0, go to next byte */
617 		if (!mask[i])
618 			continue;
619 
620 		/* We know there is at least one set bit in this byte because of
621 		 * the above check; if we already have found 'max' number of
622 		 * bits set, then we can return failure now.
623 		 */
624 		if (count == max)
625 			return false;
626 
627 		/* count the bits in this byte, checking threshold */
628 		count += hweight8(mask[i]);
629 		if (count > max)
630 			return false;
631 	}
632 
633 	return true;
634 }
635 
636 /**
637  * ice_set_key - generate a variable sized key with multiples of 16-bits
638  * @key: pointer to where the key will be stored
639  * @size: the size of the complete key in bytes (must be even)
640  * @val: array of 8-bit values that makes up the value portion of the key
641  * @upd: array of 8-bit masks that determine what key portion to update
642  * @dc: array of 8-bit masks that make up the don't care mask
643  * @nm: array of 8-bit masks that make up the never match mask
644  * @off: the offset of the first byte in the key to update
645  * @len: the number of bytes in the key update
646  *
647  * This function generates a key from a value, a don't care mask and a never
648  * match mask.
649  * upd, dc, and nm are optional parameters, and can be NULL:
650  *	upd == NULL --> upd mask is all 1's (update all bits)
651  *	dc == NULL --> dc mask is all 0's (no don't care bits)
652  *	nm == NULL --> nm mask is all 0's (no never match bits)
653  */
654 static enum ice_status
655 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
656 	    u16 len)
657 {
658 	u16 half_size;
659 	u16 i;
660 
661 	/* size must be a multiple of 2 bytes. */
662 	if (size % 2)
663 		return ICE_ERR_CFG;
664 
665 	half_size = size / 2;
666 	if (off + len > half_size)
667 		return ICE_ERR_CFG;
668 
669 	/* Make sure at most one bit is set in the never match mask. Having more
670 	 * than one never match mask bit set will cause HW to consume excessive
671 	 * power otherwise; this is a power management efficiency check.
672 	 */
673 #define ICE_NVR_MTCH_BITS_MAX	1
674 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
675 		return ICE_ERR_CFG;
676 
677 	for (i = 0; i < len; i++)
678 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
679 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
680 				     key + off + i, key + half_size + off + i))
681 			return ICE_ERR_CFG;
682 
683 	return 0;
684 }
685 
686 /**
687  * ice_acquire_global_cfg_lock
688  * @hw: pointer to the HW structure
689  * @access: access type (read or write)
690  *
691  * This function will request ownership of the global config lock for reading
692  * or writing of the package. When attempting to obtain write access, the
693  * caller must check for the following two return values:
694  *
695  * ICE_SUCCESS        - Means the caller has acquired the global config lock
696  *                      and can perform writing of the package.
697  * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
698  *                      package or has found that no update was necessary; in
699  *                      this case, the caller can just skip performing any
700  *                      update of the package.
701  */
702 static enum ice_status
703 ice_acquire_global_cfg_lock(struct ice_hw *hw,
704 			    enum ice_aq_res_access_type access)
705 {
706 	enum ice_status status;
707 
708 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
709 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
710 
711 	if (!status)
712 		mutex_lock(&ice_global_cfg_lock_sw);
713 	else if (status == ICE_ERR_AQ_NO_WORK)
714 		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
715 
716 	return status;
717 }
718 
719 /**
720  * ice_release_global_cfg_lock
721  * @hw: pointer to the HW structure
722  *
723  * This function will release the global config lock.
724  */
725 static void ice_release_global_cfg_lock(struct ice_hw *hw)
726 {
727 	mutex_unlock(&ice_global_cfg_lock_sw);
728 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
729 }
730 
731 /**
732  * ice_acquire_change_lock
733  * @hw: pointer to the HW structure
734  * @access: access type (read or write)
735  *
736  * This function will request ownership of the change lock.
737  */
738 static enum ice_status
739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
740 {
741 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
742 			       ICE_CHANGE_LOCK_TIMEOUT);
743 }
744 
745 /**
746  * ice_release_change_lock
747  * @hw: pointer to the HW structure
748  *
749  * This function will release the change lock using the proper Admin Command.
750  */
751 static void ice_release_change_lock(struct ice_hw *hw)
752 {
753 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
754 }
755 
756 /**
757  * ice_aq_download_pkg
758  * @hw: pointer to the hardware structure
759  * @pkg_buf: the package buffer to transfer
760  * @buf_size: the size of the package buffer
761  * @last_buf: last buffer indicator
762  * @error_offset: returns error offset
763  * @error_info: returns error information
764  * @cd: pointer to command details structure or NULL
765  *
766  * Download Package (0x0C40)
767  */
768 static enum ice_status
769 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
770 		    u16 buf_size, bool last_buf, u32 *error_offset,
771 		    u32 *error_info, struct ice_sq_cd *cd)
772 {
773 	struct ice_aqc_download_pkg *cmd;
774 	struct ice_aq_desc desc;
775 	enum ice_status status;
776 
777 	if (error_offset)
778 		*error_offset = 0;
779 	if (error_info)
780 		*error_info = 0;
781 
782 	cmd = &desc.params.download_pkg;
783 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
784 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
785 
786 	if (last_buf)
787 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
788 
789 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
790 	if (status == ICE_ERR_AQ_ERROR) {
791 		/* Read error from buffer only when the FW returned an error */
792 		struct ice_aqc_download_pkg_resp *resp;
793 
794 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
795 		if (error_offset)
796 			*error_offset = le32_to_cpu(resp->error_offset);
797 		if (error_info)
798 			*error_info = le32_to_cpu(resp->error_info);
799 	}
800 
801 	return status;
802 }
803 
804 /**
805  * ice_aq_update_pkg
806  * @hw: pointer to the hardware structure
807  * @pkg_buf: the package cmd buffer
808  * @buf_size: the size of the package cmd buffer
809  * @last_buf: last buffer indicator
810  * @error_offset: returns error offset
811  * @error_info: returns error information
812  * @cd: pointer to command details structure or NULL
813  *
814  * Update Package (0x0C42)
815  */
816 static enum ice_status
817 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
818 		  bool last_buf, u32 *error_offset, u32 *error_info,
819 		  struct ice_sq_cd *cd)
820 {
821 	struct ice_aqc_download_pkg *cmd;
822 	struct ice_aq_desc desc;
823 	enum ice_status status;
824 
825 	if (error_offset)
826 		*error_offset = 0;
827 	if (error_info)
828 		*error_info = 0;
829 
830 	cmd = &desc.params.download_pkg;
831 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
832 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
833 
834 	if (last_buf)
835 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
836 
837 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
838 	if (status == ICE_ERR_AQ_ERROR) {
839 		/* Read error from buffer only when the FW returned an error */
840 		struct ice_aqc_download_pkg_resp *resp;
841 
842 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
843 		if (error_offset)
844 			*error_offset = le32_to_cpu(resp->error_offset);
845 		if (error_info)
846 			*error_info = le32_to_cpu(resp->error_info);
847 	}
848 
849 	return status;
850 }
851 
852 /**
853  * ice_find_seg_in_pkg
854  * @hw: pointer to the hardware structure
855  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
856  * @pkg_hdr: pointer to the package header to be searched
857  *
858  * This function searches a package file for a particular segment type. On
859  * success it returns a pointer to the segment header, otherwise it will
860  * return NULL.
861  */
862 static struct ice_generic_seg_hdr *
863 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
864 		    struct ice_pkg_hdr *pkg_hdr)
865 {
866 	u32 i;
867 
868 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
869 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
870 		  pkg_hdr->pkg_format_ver.update,
871 		  pkg_hdr->pkg_format_ver.draft);
872 
873 	/* Search all package segments for the requested segment type */
874 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
875 		struct ice_generic_seg_hdr *seg;
876 
877 		seg = (struct ice_generic_seg_hdr *)
878 			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
879 
880 		if (le32_to_cpu(seg->seg_type) == seg_type)
881 			return seg;
882 	}
883 
884 	return NULL;
885 }
886 
887 /**
888  * ice_update_pkg
889  * @hw: pointer to the hardware structure
890  * @bufs: pointer to an array of buffers
891  * @count: the number of buffers in the array
892  *
893  * Obtains change lock and updates package.
894  */
895 static enum ice_status
896 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
897 {
898 	enum ice_status status;
899 	u32 offset, info, i;
900 
901 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
902 	if (status)
903 		return status;
904 
905 	for (i = 0; i < count; i++) {
906 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
907 		bool last = ((i + 1) == count);
908 
909 		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
910 					   last, &offset, &info, NULL);
911 
912 		if (status) {
913 			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
914 				  status, offset, info);
915 			break;
916 		}
917 	}
918 
919 	ice_release_change_lock(hw);
920 
921 	return status;
922 }
923 
924 /**
925  * ice_dwnld_cfg_bufs
926  * @hw: pointer to the hardware structure
927  * @bufs: pointer to an array of buffers
928  * @count: the number of buffers in the array
929  *
930  * Obtains global config lock and downloads the package configuration buffers
931  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
932  * found indicates that the rest of the buffers are all metadata buffers.
933  */
934 static enum ice_status
935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
936 {
937 	enum ice_status status;
938 	struct ice_buf_hdr *bh;
939 	u32 offset, info, i;
940 
941 	if (!bufs || !count)
942 		return ICE_ERR_PARAM;
943 
944 	/* If the first buffer's first section has its metadata bit set
945 	 * then there are no buffers to be downloaded, and the operation is
946 	 * considered a success.
947 	 */
948 	bh = (struct ice_buf_hdr *)bufs;
949 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
950 		return 0;
951 
952 	/* reset pkg_dwnld_status in case this function is called in the
953 	 * reset/rebuild flow
954 	 */
955 	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
956 
957 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
958 	if (status) {
959 		if (status == ICE_ERR_AQ_NO_WORK)
960 			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
961 		else
962 			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
963 		return status;
964 	}
965 
966 	for (i = 0; i < count; i++) {
967 		bool last = ((i + 1) == count);
968 
969 		if (!last) {
970 			/* check next buffer for metadata flag */
971 			bh = (struct ice_buf_hdr *)(bufs + i + 1);
972 
973 			/* A set metadata flag in the next buffer will signal
974 			 * that the current buffer will be the last buffer
975 			 * downloaded
976 			 */
977 			if (le16_to_cpu(bh->section_count))
978 				if (le32_to_cpu(bh->section_entry[0].type) &
979 				    ICE_METADATA_BUF)
980 					last = true;
981 		}
982 
983 		bh = (struct ice_buf_hdr *)(bufs + i);
984 
985 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
986 					     &offset, &info, NULL);
987 
988 		/* Save AQ status from download package */
989 		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
990 		if (status) {
991 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
992 				  status, offset, info);
993 
994 			break;
995 		}
996 
997 		if (last)
998 			break;
999 	}
1000 
1001 	ice_release_global_cfg_lock(hw);
1002 
1003 	return status;
1004 }
1005 
1006 /**
1007  * ice_aq_get_pkg_info_list
1008  * @hw: pointer to the hardware structure
1009  * @pkg_info: the buffer which will receive the information list
1010  * @buf_size: the size of the pkg_info information buffer
1011  * @cd: pointer to command details structure or NULL
1012  *
1013  * Get Package Info List (0x0C43)
1014  */
1015 static enum ice_status
1016 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1017 			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1018 			 u16 buf_size, struct ice_sq_cd *cd)
1019 {
1020 	struct ice_aq_desc desc;
1021 
1022 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1023 
1024 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1025 }
1026 
1027 /**
1028  * ice_download_pkg
1029  * @hw: pointer to the hardware structure
1030  * @ice_seg: pointer to the segment of the package to be downloaded
1031  *
1032  * Handles the download of a complete package.
1033  */
1034 static enum ice_status
1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1036 {
1037 	struct ice_buf_table *ice_buf_tbl;
1038 
1039 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1040 		  ice_seg->hdr.seg_format_ver.major,
1041 		  ice_seg->hdr.seg_format_ver.minor,
1042 		  ice_seg->hdr.seg_format_ver.update,
1043 		  ice_seg->hdr.seg_format_ver.draft);
1044 
1045 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1046 		  le32_to_cpu(ice_seg->hdr.seg_type),
1047 		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1048 
1049 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1050 
1051 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1052 		  le32_to_cpu(ice_buf_tbl->buf_count));
1053 
1054 	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1055 				  le32_to_cpu(ice_buf_tbl->buf_count));
1056 }
1057 
1058 /**
1059  * ice_init_pkg_info
1060  * @hw: pointer to the hardware structure
1061  * @pkg_hdr: pointer to the driver's package hdr
1062  *
1063  * Saves off the package details into the HW structure.
1064  */
1065 static enum ice_status
1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1067 {
1068 	struct ice_generic_seg_hdr *seg_hdr;
1069 
1070 	if (!pkg_hdr)
1071 		return ICE_ERR_PARAM;
1072 
1073 	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1074 	if (seg_hdr) {
1075 		struct ice_meta_sect *meta;
1076 		struct ice_pkg_enum state;
1077 
1078 		memset(&state, 0, sizeof(state));
1079 
1080 		/* Get package information from the Metadata Section */
1081 		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1082 					    ICE_SID_METADATA);
1083 		if (!meta) {
1084 			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1085 			return ICE_ERR_CFG;
1086 		}
1087 
1088 		hw->pkg_ver = meta->ver;
1089 		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1090 
1091 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1092 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1093 			  meta->ver.draft, meta->name);
1094 
1095 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1096 		memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1097 		       sizeof(hw->ice_seg_id));
1098 
1099 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1100 			  seg_hdr->seg_format_ver.major,
1101 			  seg_hdr->seg_format_ver.minor,
1102 			  seg_hdr->seg_format_ver.update,
1103 			  seg_hdr->seg_format_ver.draft,
1104 			  seg_hdr->seg_id);
1105 	} else {
1106 		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1107 		return ICE_ERR_CFG;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 /**
1114  * ice_get_pkg_info
1115  * @hw: pointer to the hardware structure
1116  *
1117  * Store details of the package currently loaded in HW into the HW structure.
1118  */
1119 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1120 {
1121 	struct ice_aqc_get_pkg_info_resp *pkg_info;
1122 	enum ice_status status;
1123 	u16 size;
1124 	u32 i;
1125 
1126 	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1127 	pkg_info = kzalloc(size, GFP_KERNEL);
1128 	if (!pkg_info)
1129 		return ICE_ERR_NO_MEMORY;
1130 
1131 	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1132 	if (status)
1133 		goto init_pkg_free_alloc;
1134 
1135 	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1136 #define ICE_PKG_FLAG_COUNT	4
1137 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1138 		u8 place = 0;
1139 
1140 		if (pkg_info->pkg_info[i].is_active) {
1141 			flags[place++] = 'A';
1142 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1143 			hw->active_track_id =
1144 				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1145 			memcpy(hw->active_pkg_name,
1146 			       pkg_info->pkg_info[i].name,
1147 			       sizeof(pkg_info->pkg_info[i].name));
1148 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1149 		}
1150 		if (pkg_info->pkg_info[i].is_active_at_boot)
1151 			flags[place++] = 'B';
1152 		if (pkg_info->pkg_info[i].is_modified)
1153 			flags[place++] = 'M';
1154 		if (pkg_info->pkg_info[i].is_in_nvm)
1155 			flags[place++] = 'N';
1156 
1157 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1158 			  i, pkg_info->pkg_info[i].ver.major,
1159 			  pkg_info->pkg_info[i].ver.minor,
1160 			  pkg_info->pkg_info[i].ver.update,
1161 			  pkg_info->pkg_info[i].ver.draft,
1162 			  pkg_info->pkg_info[i].name, flags);
1163 	}
1164 
1165 init_pkg_free_alloc:
1166 	kfree(pkg_info);
1167 
1168 	return status;
1169 }
1170 
1171 /**
1172  * ice_verify_pkg - verify package
1173  * @pkg: pointer to the package buffer
1174  * @len: size of the package buffer
1175  *
1176  * Verifies various attributes of the package file, including length, format
1177  * version, and the requirement of at least one segment.
1178  */
1179 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1180 {
1181 	u32 seg_count;
1182 	u32 i;
1183 
1184 	if (len < struct_size(pkg, seg_offset, 1))
1185 		return ICE_ERR_BUF_TOO_SHORT;
1186 
1187 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1188 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1189 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1190 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1191 		return ICE_ERR_CFG;
1192 
1193 	/* pkg must have at least one segment */
1194 	seg_count = le32_to_cpu(pkg->seg_count);
1195 	if (seg_count < 1)
1196 		return ICE_ERR_CFG;
1197 
1198 	/* make sure segment array fits in package length */
1199 	if (len < struct_size(pkg, seg_offset, seg_count))
1200 		return ICE_ERR_BUF_TOO_SHORT;
1201 
1202 	/* all segments must fit within length */
1203 	for (i = 0; i < seg_count; i++) {
1204 		u32 off = le32_to_cpu(pkg->seg_offset[i]);
1205 		struct ice_generic_seg_hdr *seg;
1206 
1207 		/* segment header must fit */
1208 		if (len < off + sizeof(*seg))
1209 			return ICE_ERR_BUF_TOO_SHORT;
1210 
1211 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1212 
1213 		/* segment body must fit */
1214 		if (len < off + le32_to_cpu(seg->seg_size))
1215 			return ICE_ERR_BUF_TOO_SHORT;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * ice_free_seg - free package segment pointer
1223  * @hw: pointer to the hardware structure
1224  *
1225  * Frees the package segment pointer in the proper manner, depending on if the
1226  * segment was allocated or just the passed in pointer was stored.
1227  */
1228 void ice_free_seg(struct ice_hw *hw)
1229 {
1230 	if (hw->pkg_copy) {
1231 		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1232 		hw->pkg_copy = NULL;
1233 		hw->pkg_size = 0;
1234 	}
1235 	hw->seg = NULL;
1236 }
1237 
1238 /**
1239  * ice_init_pkg_regs - initialize additional package registers
1240  * @hw: pointer to the hardware structure
1241  */
1242 static void ice_init_pkg_regs(struct ice_hw *hw)
1243 {
1244 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1245 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1246 #define ICE_SW_BLK_IDX	0
1247 
1248 	/* setup Switch block input mask, which is 48-bits in two parts */
1249 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1250 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1251 }
1252 
1253 /**
1254  * ice_chk_pkg_version - check package version for compatibility with driver
1255  * @pkg_ver: pointer to a version structure to check
1256  *
1257  * Check to make sure that the package about to be downloaded is compatible with
1258  * the driver. To be compatible, the major and minor components of the package
1259  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1260  * definitions.
1261  */
1262 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1263 {
1264 	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1265 	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1266 		return ICE_ERR_NOT_SUPPORTED;
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  * ice_chk_pkg_compat
1273  * @hw: pointer to the hardware structure
1274  * @ospkg: pointer to the package hdr
1275  * @seg: pointer to the package segment hdr
1276  *
1277  * This function checks the package version compatibility with driver and NVM
1278  */
1279 static enum ice_status
1280 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1281 		   struct ice_seg **seg)
1282 {
1283 	struct ice_aqc_get_pkg_info_resp *pkg;
1284 	enum ice_status status;
1285 	u16 size;
1286 	u32 i;
1287 
1288 	/* Check package version compatibility */
1289 	status = ice_chk_pkg_version(&hw->pkg_ver);
1290 	if (status) {
1291 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1292 		return status;
1293 	}
1294 
1295 	/* find ICE segment in given package */
1296 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1297 						     ospkg);
1298 	if (!*seg) {
1299 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1300 		return ICE_ERR_CFG;
1301 	}
1302 
1303 	/* Check if FW is compatible with the OS package */
1304 	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1305 	pkg = kzalloc(size, GFP_KERNEL);
1306 	if (!pkg)
1307 		return ICE_ERR_NO_MEMORY;
1308 
1309 	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1310 	if (status)
1311 		goto fw_ddp_compat_free_alloc;
1312 
1313 	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1314 		/* loop till we find the NVM package */
1315 		if (!pkg->pkg_info[i].is_in_nvm)
1316 			continue;
1317 		if ((*seg)->hdr.seg_format_ver.major !=
1318 			pkg->pkg_info[i].ver.major ||
1319 		    (*seg)->hdr.seg_format_ver.minor >
1320 			pkg->pkg_info[i].ver.minor) {
1321 			status = ICE_ERR_FW_DDP_MISMATCH;
1322 			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1323 		}
1324 		/* done processing NVM package so break */
1325 		break;
1326 	}
1327 fw_ddp_compat_free_alloc:
1328 	kfree(pkg);
1329 	return status;
1330 }
1331 
1332 /**
1333  * ice_init_pkg - initialize/download package
1334  * @hw: pointer to the hardware structure
1335  * @buf: pointer to the package buffer
1336  * @len: size of the package buffer
1337  *
1338  * This function initializes a package. The package contains HW tables
1339  * required to do packet processing. First, the function extracts package
1340  * information such as version. Then it finds the ice configuration segment
1341  * within the package; this function then saves a copy of the segment pointer
1342  * within the supplied package buffer. Next, the function will cache any hints
1343  * from the package, followed by downloading the package itself. Note, that if
1344  * a previous PF driver has already downloaded the package successfully, then
1345  * the current driver will not have to download the package again.
1346  *
1347  * The local package contents will be used to query default behavior and to
1348  * update specific sections of the HW's version of the package (e.g. to update
1349  * the parse graph to understand new protocols).
1350  *
1351  * This function stores a pointer to the package buffer memory, and it is
1352  * expected that the supplied buffer will not be freed immediately. If the
1353  * package buffer needs to be freed, such as when read from a file, use
1354  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1355  * case.
1356  */
1357 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1358 {
1359 	struct ice_pkg_hdr *pkg;
1360 	enum ice_status status;
1361 	struct ice_seg *seg;
1362 
1363 	if (!buf || !len)
1364 		return ICE_ERR_PARAM;
1365 
1366 	pkg = (struct ice_pkg_hdr *)buf;
1367 	status = ice_verify_pkg(pkg, len);
1368 	if (status) {
1369 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1370 			  status);
1371 		return status;
1372 	}
1373 
1374 	/* initialize package info */
1375 	status = ice_init_pkg_info(hw, pkg);
1376 	if (status)
1377 		return status;
1378 
1379 	/* before downloading the package, check package version for
1380 	 * compatibility with driver
1381 	 */
1382 	status = ice_chk_pkg_compat(hw, pkg, &seg);
1383 	if (status)
1384 		return status;
1385 
1386 	/* initialize package hints and then download package */
1387 	ice_init_pkg_hints(hw, seg);
1388 	status = ice_download_pkg(hw, seg);
1389 	if (status == ICE_ERR_AQ_NO_WORK) {
1390 		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1391 		status = 0;
1392 	}
1393 
1394 	/* Get information on the package currently loaded in HW, then make sure
1395 	 * the driver is compatible with this version.
1396 	 */
1397 	if (!status) {
1398 		status = ice_get_pkg_info(hw);
1399 		if (!status)
1400 			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1401 	}
1402 
1403 	if (!status) {
1404 		hw->seg = seg;
1405 		/* on successful package download update other required
1406 		 * registers to support the package and fill HW tables
1407 		 * with package content.
1408 		 */
1409 		ice_init_pkg_regs(hw);
1410 		ice_fill_blk_tbls(hw);
1411 	} else {
1412 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1413 			  status);
1414 	}
1415 
1416 	return status;
1417 }
1418 
1419 /**
1420  * ice_copy_and_init_pkg - initialize/download a copy of the package
1421  * @hw: pointer to the hardware structure
1422  * @buf: pointer to the package buffer
1423  * @len: size of the package buffer
1424  *
1425  * This function copies the package buffer, and then calls ice_init_pkg() to
1426  * initialize the copied package contents.
1427  *
1428  * The copying is necessary if the package buffer supplied is constant, or if
1429  * the memory may disappear shortly after calling this function.
1430  *
1431  * If the package buffer resides in the data segment and can be modified, the
1432  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1433  *
1434  * However, if the package buffer needs to be copied first, such as when being
1435  * read from a file, the caller should use ice_copy_and_init_pkg().
1436  *
1437  * This function will first copy the package buffer, before calling
1438  * ice_init_pkg(). The caller is free to immediately destroy the original
1439  * package buffer, as the new copy will be managed by this function and
1440  * related routines.
1441  */
1442 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1443 {
1444 	enum ice_status status;
1445 	u8 *buf_copy;
1446 
1447 	if (!buf || !len)
1448 		return ICE_ERR_PARAM;
1449 
1450 	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1451 
1452 	status = ice_init_pkg(hw, buf_copy, len);
1453 	if (status) {
1454 		/* Free the copy, since we failed to initialize the package */
1455 		devm_kfree(ice_hw_to_dev(hw), buf_copy);
1456 	} else {
1457 		/* Track the copied pkg so we can free it later */
1458 		hw->pkg_copy = buf_copy;
1459 		hw->pkg_size = len;
1460 	}
1461 
1462 	return status;
1463 }
1464 
1465 /**
1466  * ice_pkg_buf_alloc
1467  * @hw: pointer to the HW structure
1468  *
1469  * Allocates a package buffer and returns a pointer to the buffer header.
1470  * Note: all package contents must be in Little Endian form.
1471  */
1472 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1473 {
1474 	struct ice_buf_build *bld;
1475 	struct ice_buf_hdr *buf;
1476 
1477 	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1478 	if (!bld)
1479 		return NULL;
1480 
1481 	buf = (struct ice_buf_hdr *)bld;
1482 	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1483 					     section_entry));
1484 	return bld;
1485 }
1486 
1487 /**
1488  * ice_pkg_buf_free
1489  * @hw: pointer to the HW structure
1490  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1491  *
1492  * Frees a package buffer
1493  */
1494 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1495 {
1496 	devm_kfree(ice_hw_to_dev(hw), bld);
1497 }
1498 
1499 /**
1500  * ice_pkg_buf_reserve_section
1501  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1502  * @count: the number of sections to reserve
1503  *
1504  * Reserves one or more section table entries in a package buffer. This routine
1505  * can be called multiple times as long as they are made before calling
1506  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1507  * is called once, the number of sections that can be allocated will not be able
1508  * to be increased; not using all reserved sections is fine, but this will
1509  * result in some wasted space in the buffer.
1510  * Note: all package contents must be in Little Endian form.
1511  */
1512 static enum ice_status
1513 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1514 {
1515 	struct ice_buf_hdr *buf;
1516 	u16 section_count;
1517 	u16 data_end;
1518 
1519 	if (!bld)
1520 		return ICE_ERR_PARAM;
1521 
1522 	buf = (struct ice_buf_hdr *)&bld->buf;
1523 
1524 	/* already an active section, can't increase table size */
1525 	section_count = le16_to_cpu(buf->section_count);
1526 	if (section_count > 0)
1527 		return ICE_ERR_CFG;
1528 
1529 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1530 		return ICE_ERR_CFG;
1531 	bld->reserved_section_table_entries += count;
1532 
1533 	data_end = le16_to_cpu(buf->data_end) +
1534 		flex_array_size(buf, section_entry, count);
1535 	buf->data_end = cpu_to_le16(data_end);
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * ice_pkg_buf_alloc_section
1542  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1543  * @type: the section type value
1544  * @size: the size of the section to reserve (in bytes)
1545  *
1546  * Reserves memory in the buffer for a section's content and updates the
1547  * buffers' status accordingly. This routine returns a pointer to the first
1548  * byte of the section start within the buffer, which is used to fill in the
1549  * section contents.
1550  * Note: all package contents must be in Little Endian form.
1551  */
1552 static void *
1553 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1554 {
1555 	struct ice_buf_hdr *buf;
1556 	u16 sect_count;
1557 	u16 data_end;
1558 
1559 	if (!bld || !type || !size)
1560 		return NULL;
1561 
1562 	buf = (struct ice_buf_hdr *)&bld->buf;
1563 
1564 	/* check for enough space left in buffer */
1565 	data_end = le16_to_cpu(buf->data_end);
1566 
1567 	/* section start must align on 4 byte boundary */
1568 	data_end = ALIGN(data_end, 4);
1569 
1570 	if ((data_end + size) > ICE_MAX_S_DATA_END)
1571 		return NULL;
1572 
1573 	/* check for more available section table entries */
1574 	sect_count = le16_to_cpu(buf->section_count);
1575 	if (sect_count < bld->reserved_section_table_entries) {
1576 		void *section_ptr = ((u8 *)buf) + data_end;
1577 
1578 		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1579 		buf->section_entry[sect_count].size = cpu_to_le16(size);
1580 		buf->section_entry[sect_count].type = cpu_to_le32(type);
1581 
1582 		data_end += size;
1583 		buf->data_end = cpu_to_le16(data_end);
1584 
1585 		buf->section_count = cpu_to_le16(sect_count + 1);
1586 		return section_ptr;
1587 	}
1588 
1589 	/* no free section table entries */
1590 	return NULL;
1591 }
1592 
1593 /**
1594  * ice_pkg_buf_get_active_sections
1595  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1596  *
1597  * Returns the number of active sections. Before using the package buffer
1598  * in an update package command, the caller should make sure that there is at
1599  * least one active section - otherwise, the buffer is not legal and should
1600  * not be used.
1601  * Note: all package contents must be in Little Endian form.
1602  */
1603 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1604 {
1605 	struct ice_buf_hdr *buf;
1606 
1607 	if (!bld)
1608 		return 0;
1609 
1610 	buf = (struct ice_buf_hdr *)&bld->buf;
1611 	return le16_to_cpu(buf->section_count);
1612 }
1613 
1614 /**
1615  * ice_pkg_buf
1616  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1617  *
1618  * Return a pointer to the buffer's header
1619  */
1620 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1621 {
1622 	if (!bld)
1623 		return NULL;
1624 
1625 	return &bld->buf;
1626 }
1627 
1628 /**
1629  * ice_get_open_tunnel_port - retrieve an open tunnel port
1630  * @hw: pointer to the HW structure
1631  * @port: returns open port
1632  */
1633 bool
1634 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port)
1635 {
1636 	bool res = false;
1637 	u16 i;
1638 
1639 	mutex_lock(&hw->tnl_lock);
1640 
1641 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1642 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) {
1643 			*port = hw->tnl.tbl[i].port;
1644 			res = true;
1645 			break;
1646 		}
1647 
1648 	mutex_unlock(&hw->tnl_lock);
1649 
1650 	return res;
1651 }
1652 
1653 /**
1654  * ice_tunnel_idx_to_entry - convert linear index to the sparse one
1655  * @hw: pointer to the HW structure
1656  * @type: type of tunnel
1657  * @idx: linear index
1658  *
1659  * Stack assumes we have 2 linear tables with indexes [0, count_valid),
1660  * but really the port table may be sprase, and types are mixed, so convert
1661  * the stack index into the device index.
1662  */
1663 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1664 				   u16 idx)
1665 {
1666 	u16 i;
1667 
1668 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1669 		if (hw->tnl.tbl[i].valid &&
1670 		    hw->tnl.tbl[i].type == type &&
1671 		    idx--)
1672 			return i;
1673 
1674 	WARN_ON_ONCE(1);
1675 	return 0;
1676 }
1677 
1678 /**
1679  * ice_create_tunnel
1680  * @hw: pointer to the HW structure
1681  * @index: device table entry
1682  * @type: type of tunnel
1683  * @port: port of tunnel to create
1684  *
1685  * Create a tunnel by updating the parse graph in the parser. We do that by
1686  * creating a package buffer with the tunnel info and issuing an update package
1687  * command.
1688  */
1689 static enum ice_status
1690 ice_create_tunnel(struct ice_hw *hw, u16 index,
1691 		  enum ice_tunnel_type type, u16 port)
1692 {
1693 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1694 	enum ice_status status = ICE_ERR_MAX_LIMIT;
1695 	struct ice_buf_build *bld;
1696 
1697 	mutex_lock(&hw->tnl_lock);
1698 
1699 	bld = ice_pkg_buf_alloc(hw);
1700 	if (!bld) {
1701 		status = ICE_ERR_NO_MEMORY;
1702 		goto ice_create_tunnel_end;
1703 	}
1704 
1705 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1706 	if (ice_pkg_buf_reserve_section(bld, 2))
1707 		goto ice_create_tunnel_err;
1708 
1709 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1710 					    struct_size(sect_rx, tcam, 1));
1711 	if (!sect_rx)
1712 		goto ice_create_tunnel_err;
1713 	sect_rx->count = cpu_to_le16(1);
1714 
1715 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1716 					    struct_size(sect_tx, tcam, 1));
1717 	if (!sect_tx)
1718 		goto ice_create_tunnel_err;
1719 	sect_tx->count = cpu_to_le16(1);
1720 
1721 	/* copy original boost entry to update package buffer */
1722 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1723 	       sizeof(*sect_rx->tcam));
1724 
1725 	/* over-write the never-match dest port key bits with the encoded port
1726 	 * bits
1727 	 */
1728 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
1729 		    (u8 *)&port, NULL, NULL, NULL,
1730 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
1731 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
1732 
1733 	/* exact copy of entry to Tx section entry */
1734 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
1735 
1736 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1737 	if (!status)
1738 		hw->tnl.tbl[index].port = port;
1739 
1740 ice_create_tunnel_err:
1741 	ice_pkg_buf_free(hw, bld);
1742 
1743 ice_create_tunnel_end:
1744 	mutex_unlock(&hw->tnl_lock);
1745 
1746 	return status;
1747 }
1748 
1749 /**
1750  * ice_destroy_tunnel
1751  * @hw: pointer to the HW structure
1752  * @index: device table entry
1753  * @type: type of tunnel
1754  * @port: port of tunnel to destroy (ignored if the all parameter is true)
1755  *
1756  * Destroys a tunnel or all tunnels by creating an update package buffer
1757  * targeting the specific updates requested and then performing an update
1758  * package.
1759  */
1760 static enum ice_status
1761 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
1762 		   u16 port)
1763 {
1764 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1765 	enum ice_status status = ICE_ERR_MAX_LIMIT;
1766 	struct ice_buf_build *bld;
1767 
1768 	mutex_lock(&hw->tnl_lock);
1769 
1770 	if (WARN_ON(!hw->tnl.tbl[index].valid ||
1771 		    hw->tnl.tbl[index].type != type ||
1772 		    hw->tnl.tbl[index].port != port)) {
1773 		status = ICE_ERR_OUT_OF_RANGE;
1774 		goto ice_destroy_tunnel_end;
1775 	}
1776 
1777 	bld = ice_pkg_buf_alloc(hw);
1778 	if (!bld) {
1779 		status = ICE_ERR_NO_MEMORY;
1780 		goto ice_destroy_tunnel_end;
1781 	}
1782 
1783 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1784 	if (ice_pkg_buf_reserve_section(bld, 2))
1785 		goto ice_destroy_tunnel_err;
1786 
1787 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1788 					    struct_size(sect_rx, tcam, 1));
1789 	if (!sect_rx)
1790 		goto ice_destroy_tunnel_err;
1791 	sect_rx->count = cpu_to_le16(1);
1792 
1793 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1794 					    struct_size(sect_tx, tcam, 1));
1795 	if (!sect_tx)
1796 		goto ice_destroy_tunnel_err;
1797 	sect_tx->count = cpu_to_le16(1);
1798 
1799 	/* copy original boost entry to update package buffer, one copy to Rx
1800 	 * section, another copy to the Tx section
1801 	 */
1802 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1803 	       sizeof(*sect_rx->tcam));
1804 	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
1805 	       sizeof(*sect_tx->tcam));
1806 
1807 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1808 	if (!status)
1809 		hw->tnl.tbl[index].port = 0;
1810 
1811 ice_destroy_tunnel_err:
1812 	ice_pkg_buf_free(hw, bld);
1813 
1814 ice_destroy_tunnel_end:
1815 	mutex_unlock(&hw->tnl_lock);
1816 
1817 	return status;
1818 }
1819 
1820 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
1821 			    unsigned int idx, struct udp_tunnel_info *ti)
1822 {
1823 	struct ice_netdev_priv *np = netdev_priv(netdev);
1824 	struct ice_vsi *vsi = np->vsi;
1825 	struct ice_pf *pf = vsi->back;
1826 	enum ice_tunnel_type tnl_type;
1827 	enum ice_status status;
1828 	u16 index;
1829 
1830 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1831 	index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type);
1832 
1833 	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
1834 	if (status) {
1835 		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
1836 			   ice_stat_str(status));
1837 		return -EIO;
1838 	}
1839 
1840 	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
1841 	return 0;
1842 }
1843 
1844 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
1845 			      unsigned int idx, struct udp_tunnel_info *ti)
1846 {
1847 	struct ice_netdev_priv *np = netdev_priv(netdev);
1848 	struct ice_vsi *vsi = np->vsi;
1849 	struct ice_pf *pf = vsi->back;
1850 	enum ice_tunnel_type tnl_type;
1851 	enum ice_status status;
1852 
1853 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1854 
1855 	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
1856 				    ntohs(ti->port));
1857 	if (status) {
1858 		netdev_err(netdev, "Error removing UDP tunnel - %s\n",
1859 			   ice_stat_str(status));
1860 		return -EIO;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 /* PTG Management */
1867 
1868 /**
1869  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1870  * @hw: pointer to the hardware structure
1871  * @blk: HW block
1872  * @ptype: the ptype to search for
1873  * @ptg: pointer to variable that receives the PTG
1874  *
1875  * This function will search the PTGs for a particular ptype, returning the
1876  * PTG ID that contains it through the PTG parameter, with the value of
1877  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1878  */
1879 static enum ice_status
1880 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1881 {
1882 	if (ptype >= ICE_XLT1_CNT || !ptg)
1883 		return ICE_ERR_PARAM;
1884 
1885 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1886 	return 0;
1887 }
1888 
1889 /**
1890  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1891  * @hw: pointer to the hardware structure
1892  * @blk: HW block
1893  * @ptg: the PTG to allocate
1894  *
1895  * This function allocates a given packet type group ID specified by the PTG
1896  * parameter.
1897  */
1898 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1899 {
1900 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1901 }
1902 
1903 /**
1904  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1905  * @hw: pointer to the hardware structure
1906  * @blk: HW block
1907  * @ptype: the ptype to remove
1908  * @ptg: the PTG to remove the ptype from
1909  *
1910  * This function will remove the ptype from the specific PTG, and move it to
1911  * the default PTG (ICE_DEFAULT_PTG).
1912  */
1913 static enum ice_status
1914 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1915 {
1916 	struct ice_ptg_ptype **ch;
1917 	struct ice_ptg_ptype *p;
1918 
1919 	if (ptype > ICE_XLT1_CNT - 1)
1920 		return ICE_ERR_PARAM;
1921 
1922 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1923 		return ICE_ERR_DOES_NOT_EXIST;
1924 
1925 	/* Should not happen if .in_use is set, bad config */
1926 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1927 		return ICE_ERR_CFG;
1928 
1929 	/* find the ptype within this PTG, and bypass the link over it */
1930 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1931 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1932 	while (p) {
1933 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1934 			*ch = p->next_ptype;
1935 			break;
1936 		}
1937 
1938 		ch = &p->next_ptype;
1939 		p = p->next_ptype;
1940 	}
1941 
1942 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1943 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1950  * @hw: pointer to the hardware structure
1951  * @blk: HW block
1952  * @ptype: the ptype to add or move
1953  * @ptg: the PTG to add or move the ptype to
1954  *
1955  * This function will either add or move a ptype to a particular PTG depending
1956  * on if the ptype is already part of another group. Note that using a
1957  * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1958  * default PTG.
1959  */
1960 static enum ice_status
1961 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1962 {
1963 	enum ice_status status;
1964 	u8 original_ptg;
1965 
1966 	if (ptype > ICE_XLT1_CNT - 1)
1967 		return ICE_ERR_PARAM;
1968 
1969 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
1970 		return ICE_ERR_DOES_NOT_EXIST;
1971 
1972 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
1973 	if (status)
1974 		return status;
1975 
1976 	/* Is ptype already in the correct PTG? */
1977 	if (original_ptg == ptg)
1978 		return 0;
1979 
1980 	/* Remove from original PTG and move back to the default PTG */
1981 	if (original_ptg != ICE_DEFAULT_PTG)
1982 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
1983 
1984 	/* Moving to default PTG? Then we're done with this request */
1985 	if (ptg == ICE_DEFAULT_PTG)
1986 		return 0;
1987 
1988 	/* Add ptype to PTG at beginning of list */
1989 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
1990 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1991 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
1992 		&hw->blk[blk].xlt1.ptypes[ptype];
1993 
1994 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
1995 	hw->blk[blk].xlt1.t[ptype] = ptg;
1996 
1997 	return 0;
1998 }
1999 
2000 /* Block / table size info */
2001 struct ice_blk_size_details {
2002 	u16 xlt1;			/* # XLT1 entries */
2003 	u16 xlt2;			/* # XLT2 entries */
2004 	u16 prof_tcam;			/* # profile ID TCAM entries */
2005 	u16 prof_id;			/* # profile IDs */
2006 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2007 	u16 prof_redir;			/* # profile redirection entries */
2008 	u16 es;				/* # extraction sequence entries */
2009 	u16 fvw;			/* # field vector words */
2010 	u8 overwrite;			/* overwrite existing entries allowed */
2011 	u8 reverse;			/* reverse FV order */
2012 };
2013 
2014 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2015 	/**
2016 	 * Table Definitions
2017 	 * XLT1 - Number of entries in XLT1 table
2018 	 * XLT2 - Number of entries in XLT2 table
2019 	 * TCAM - Number of entries Profile ID TCAM table
2020 	 * CDID - Control Domain ID of the hardware block
2021 	 * PRED - Number of entries in the Profile Redirection Table
2022 	 * FV   - Number of entries in the Field Vector
2023 	 * FVW  - Width (in WORDs) of the Field Vector
2024 	 * OVR  - Overwrite existing table entries
2025 	 * REV  - Reverse FV
2026 	 */
2027 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2028 	/*          Overwrite   , Reverse FV */
2029 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2030 		    false, false },
2031 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2032 		    false, false },
2033 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2034 		    false, true  },
2035 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2036 		    true,  true  },
2037 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2038 		    false, false },
2039 };
2040 
2041 enum ice_sid_all {
2042 	ICE_SID_XLT1_OFF = 0,
2043 	ICE_SID_XLT2_OFF,
2044 	ICE_SID_PR_OFF,
2045 	ICE_SID_PR_REDIR_OFF,
2046 	ICE_SID_ES_OFF,
2047 	ICE_SID_OFF_COUNT,
2048 };
2049 
2050 /* Characteristic handling */
2051 
2052 /**
2053  * ice_match_prop_lst - determine if properties of two lists match
2054  * @list1: first properties list
2055  * @list2: second properties list
2056  *
2057  * Count, cookies and the order must match in order to be considered equivalent.
2058  */
2059 static bool
2060 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2061 {
2062 	struct ice_vsig_prof *tmp1;
2063 	struct ice_vsig_prof *tmp2;
2064 	u16 chk_count = 0;
2065 	u16 count = 0;
2066 
2067 	/* compare counts */
2068 	list_for_each_entry(tmp1, list1, list)
2069 		count++;
2070 	list_for_each_entry(tmp2, list2, list)
2071 		chk_count++;
2072 	/* cppcheck-suppress knownConditionTrueFalse */
2073 	if (!count || count != chk_count)
2074 		return false;
2075 
2076 	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2077 	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2078 
2079 	/* profile cookies must compare, and in the exact same order to take
2080 	 * into account priority
2081 	 */
2082 	while (count--) {
2083 		if (tmp2->profile_cookie != tmp1->profile_cookie)
2084 			return false;
2085 
2086 		tmp1 = list_next_entry(tmp1, list);
2087 		tmp2 = list_next_entry(tmp2, list);
2088 	}
2089 
2090 	return true;
2091 }
2092 
2093 /* VSIG Management */
2094 
2095 /**
2096  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2097  * @hw: pointer to the hardware structure
2098  * @blk: HW block
2099  * @vsi: VSI of interest
2100  * @vsig: pointer to receive the VSI group
2101  *
2102  * This function will lookup the VSI entry in the XLT2 list and return
2103  * the VSI group its associated with.
2104  */
2105 static enum ice_status
2106 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2107 {
2108 	if (!vsig || vsi >= ICE_MAX_VSI)
2109 		return ICE_ERR_PARAM;
2110 
2111 	/* As long as there's a default or valid VSIG associated with the input
2112 	 * VSI, the functions returns a success. Any handling of VSIG will be
2113 	 * done by the following add, update or remove functions.
2114 	 */
2115 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2116 
2117 	return 0;
2118 }
2119 
2120 /**
2121  * ice_vsig_alloc_val - allocate a new VSIG by value
2122  * @hw: pointer to the hardware structure
2123  * @blk: HW block
2124  * @vsig: the VSIG to allocate
2125  *
2126  * This function will allocate a given VSIG specified by the VSIG parameter.
2127  */
2128 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2129 {
2130 	u16 idx = vsig & ICE_VSIG_IDX_M;
2131 
2132 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2133 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2134 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2135 	}
2136 
2137 	return ICE_VSIG_VALUE(idx, hw->pf_id);
2138 }
2139 
2140 /**
2141  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2142  * @hw: pointer to the hardware structure
2143  * @blk: HW block
2144  *
2145  * This function will iterate through the VSIG list and mark the first
2146  * unused entry for the new VSIG entry as used and return that value.
2147  */
2148 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2149 {
2150 	u16 i;
2151 
2152 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2153 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2154 			return ice_vsig_alloc_val(hw, blk, i);
2155 
2156 	return ICE_DEFAULT_VSIG;
2157 }
2158 
2159 /**
2160  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2161  * @hw: pointer to the hardware structure
2162  * @blk: HW block
2163  * @chs: characteristic list
2164  * @vsig: returns the VSIG with the matching profiles, if found
2165  *
2166  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2167  * a group have the same characteristic set. To check if there exists a VSIG
2168  * which has the same characteristics as the input characteristics; this
2169  * function will iterate through the XLT2 list and return the VSIG that has a
2170  * matching configuration. In order to make sure that priorities are accounted
2171  * for, the list must match exactly, including the order in which the
2172  * characteristics are listed.
2173  */
2174 static enum ice_status
2175 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2176 			struct list_head *chs, u16 *vsig)
2177 {
2178 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2179 	u16 i;
2180 
2181 	for (i = 0; i < xlt2->count; i++)
2182 		if (xlt2->vsig_tbl[i].in_use &&
2183 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2184 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2185 			return 0;
2186 		}
2187 
2188 	return ICE_ERR_DOES_NOT_EXIST;
2189 }
2190 
2191 /**
2192  * ice_vsig_free - free VSI group
2193  * @hw: pointer to the hardware structure
2194  * @blk: HW block
2195  * @vsig: VSIG to remove
2196  *
2197  * The function will remove all VSIs associated with the input VSIG and move
2198  * them to the DEFAULT_VSIG and mark the VSIG available.
2199  */
2200 static enum ice_status
2201 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2202 {
2203 	struct ice_vsig_prof *dtmp, *del;
2204 	struct ice_vsig_vsi *vsi_cur;
2205 	u16 idx;
2206 
2207 	idx = vsig & ICE_VSIG_IDX_M;
2208 	if (idx >= ICE_MAX_VSIGS)
2209 		return ICE_ERR_PARAM;
2210 
2211 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2212 		return ICE_ERR_DOES_NOT_EXIST;
2213 
2214 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2215 
2216 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2217 	/* If the VSIG has at least 1 VSI then iterate through the
2218 	 * list and remove the VSIs before deleting the group.
2219 	 */
2220 	if (vsi_cur) {
2221 		/* remove all vsis associated with this VSIG XLT2 entry */
2222 		do {
2223 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2224 
2225 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2226 			vsi_cur->changed = 1;
2227 			vsi_cur->next_vsi = NULL;
2228 			vsi_cur = tmp;
2229 		} while (vsi_cur);
2230 
2231 		/* NULL terminate head of VSI list */
2232 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2233 	}
2234 
2235 	/* free characteristic list */
2236 	list_for_each_entry_safe(del, dtmp,
2237 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2238 				 list) {
2239 		list_del(&del->list);
2240 		devm_kfree(ice_hw_to_dev(hw), del);
2241 	}
2242 
2243 	/* if VSIG characteristic list was cleared for reset
2244 	 * re-initialize the list head
2245 	 */
2246 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2247 
2248 	return 0;
2249 }
2250 
2251 /**
2252  * ice_vsig_remove_vsi - remove VSI from VSIG
2253  * @hw: pointer to the hardware structure
2254  * @blk: HW block
2255  * @vsi: VSI to remove
2256  * @vsig: VSI group to remove from
2257  *
2258  * The function will remove the input VSI from its VSI group and move it
2259  * to the DEFAULT_VSIG.
2260  */
2261 static enum ice_status
2262 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2263 {
2264 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2265 	u16 idx;
2266 
2267 	idx = vsig & ICE_VSIG_IDX_M;
2268 
2269 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2270 		return ICE_ERR_PARAM;
2271 
2272 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2273 		return ICE_ERR_DOES_NOT_EXIST;
2274 
2275 	/* entry already in default VSIG, don't have to remove */
2276 	if (idx == ICE_DEFAULT_VSIG)
2277 		return 0;
2278 
2279 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2280 	if (!(*vsi_head))
2281 		return ICE_ERR_CFG;
2282 
2283 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2284 	vsi_cur = (*vsi_head);
2285 
2286 	/* iterate the VSI list, skip over the entry to be removed */
2287 	while (vsi_cur) {
2288 		if (vsi_tgt == vsi_cur) {
2289 			(*vsi_head) = vsi_cur->next_vsi;
2290 			break;
2291 		}
2292 		vsi_head = &vsi_cur->next_vsi;
2293 		vsi_cur = vsi_cur->next_vsi;
2294 	}
2295 
2296 	/* verify if VSI was removed from group list */
2297 	if (!vsi_cur)
2298 		return ICE_ERR_DOES_NOT_EXIST;
2299 
2300 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
2301 	vsi_cur->changed = 1;
2302 	vsi_cur->next_vsi = NULL;
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2309  * @hw: pointer to the hardware structure
2310  * @blk: HW block
2311  * @vsi: VSI to move
2312  * @vsig: destination VSI group
2313  *
2314  * This function will move or add the input VSI to the target VSIG.
2315  * The function will find the original VSIG the VSI belongs to and
2316  * move the entry to the DEFAULT_VSIG, update the original VSIG and
2317  * then move entry to the new VSIG.
2318  */
2319 static enum ice_status
2320 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2321 {
2322 	struct ice_vsig_vsi *tmp;
2323 	enum ice_status status;
2324 	u16 orig_vsig, idx;
2325 
2326 	idx = vsig & ICE_VSIG_IDX_M;
2327 
2328 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2329 		return ICE_ERR_PARAM;
2330 
2331 	/* if VSIG not in use and VSIG is not default type this VSIG
2332 	 * doesn't exist.
2333 	 */
2334 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2335 	    vsig != ICE_DEFAULT_VSIG)
2336 		return ICE_ERR_DOES_NOT_EXIST;
2337 
2338 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2339 	if (status)
2340 		return status;
2341 
2342 	/* no update required if vsigs match */
2343 	if (orig_vsig == vsig)
2344 		return 0;
2345 
2346 	if (orig_vsig != ICE_DEFAULT_VSIG) {
2347 		/* remove entry from orig_vsig and add to default VSIG */
2348 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2349 		if (status)
2350 			return status;
2351 	}
2352 
2353 	if (idx == ICE_DEFAULT_VSIG)
2354 		return 0;
2355 
2356 	/* Create VSI entry and add VSIG and prop_mask values */
2357 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2358 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2359 
2360 	/* Add new entry to the head of the VSIG list */
2361 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2362 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2363 		&hw->blk[blk].xlt2.vsis[vsi];
2364 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2365 	hw->blk[blk].xlt2.t[vsi] = vsig;
2366 
2367 	return 0;
2368 }
2369 
2370 /**
2371  * ice_prof_has_mask_idx - determine if profile index masking is identical
2372  * @hw: pointer to the hardware structure
2373  * @blk: HW block
2374  * @prof: profile to check
2375  * @idx: profile index to check
2376  * @mask: mask to match
2377  */
2378 static bool
2379 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
2380 		      u16 mask)
2381 {
2382 	bool expect_no_mask = false;
2383 	bool found = false;
2384 	bool match = false;
2385 	u16 i;
2386 
2387 	/* If mask is 0x0000 or 0xffff, then there is no masking */
2388 	if (mask == 0 || mask == 0xffff)
2389 		expect_no_mask = true;
2390 
2391 	/* Scan the enabled masks on this profile, for the specified idx */
2392 	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
2393 	     hw->blk[blk].masks.count; i++)
2394 		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
2395 			if (hw->blk[blk].masks.masks[i].in_use &&
2396 			    hw->blk[blk].masks.masks[i].idx == idx) {
2397 				found = true;
2398 				if (hw->blk[blk].masks.masks[i].mask == mask)
2399 					match = true;
2400 				break;
2401 			}
2402 
2403 	if (expect_no_mask) {
2404 		if (found)
2405 			return false;
2406 	} else {
2407 		if (!match)
2408 			return false;
2409 	}
2410 
2411 	return true;
2412 }
2413 
2414 /**
2415  * ice_prof_has_mask - determine if profile masking is identical
2416  * @hw: pointer to the hardware structure
2417  * @blk: HW block
2418  * @prof: profile to check
2419  * @masks: masks to match
2420  */
2421 static bool
2422 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
2423 {
2424 	u16 i;
2425 
2426 	/* es->mask_ena[prof] will have the mask */
2427 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
2428 		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
2429 			return false;
2430 
2431 	return true;
2432 }
2433 
2434 /**
2435  * ice_find_prof_id_with_mask - find profile ID for a given field vector
2436  * @hw: pointer to the hardware structure
2437  * @blk: HW block
2438  * @fv: field vector to search for
2439  * @masks: masks for FV
2440  * @prof_id: receives the profile ID
2441  */
2442 static enum ice_status
2443 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
2444 			   struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
2445 {
2446 	struct ice_es *es = &hw->blk[blk].es;
2447 	u8 i;
2448 
2449 	/* For FD, we don't want to re-use a existed profile with the same
2450 	 * field vector and mask. This will cause rule interference.
2451 	 */
2452 	if (blk == ICE_BLK_FD)
2453 		return ICE_ERR_DOES_NOT_EXIST;
2454 
2455 	for (i = 0; i < (u8)es->count; i++) {
2456 		u16 off = i * es->fvw;
2457 
2458 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2459 			continue;
2460 
2461 		/* check if masks settings are the same for this profile */
2462 		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
2463 			continue;
2464 
2465 		*prof_id = i;
2466 		return 0;
2467 	}
2468 
2469 	return ICE_ERR_DOES_NOT_EXIST;
2470 }
2471 
2472 /**
2473  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2474  * @blk: the block type
2475  * @rsrc_type: pointer to variable to receive the resource type
2476  */
2477 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2478 {
2479 	switch (blk) {
2480 	case ICE_BLK_FD:
2481 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2482 		break;
2483 	case ICE_BLK_RSS:
2484 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2485 		break;
2486 	default:
2487 		return false;
2488 	}
2489 	return true;
2490 }
2491 
2492 /**
2493  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2494  * @blk: the block type
2495  * @rsrc_type: pointer to variable to receive the resource type
2496  */
2497 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2498 {
2499 	switch (blk) {
2500 	case ICE_BLK_FD:
2501 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2502 		break;
2503 	case ICE_BLK_RSS:
2504 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2505 		break;
2506 	default:
2507 		return false;
2508 	}
2509 	return true;
2510 }
2511 
2512 /**
2513  * ice_alloc_tcam_ent - allocate hardware TCAM entry
2514  * @hw: pointer to the HW struct
2515  * @blk: the block to allocate the TCAM for
2516  * @btm: true to allocate from bottom of table, false to allocate from top
2517  * @tcam_idx: pointer to variable to receive the TCAM entry
2518  *
2519  * This function allocates a new entry in a Profile ID TCAM for a specific
2520  * block.
2521  */
2522 static enum ice_status
2523 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
2524 		   u16 *tcam_idx)
2525 {
2526 	u16 res_type;
2527 
2528 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2529 		return ICE_ERR_PARAM;
2530 
2531 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
2532 }
2533 
2534 /**
2535  * ice_free_tcam_ent - free hardware TCAM entry
2536  * @hw: pointer to the HW struct
2537  * @blk: the block from which to free the TCAM entry
2538  * @tcam_idx: the TCAM entry to free
2539  *
2540  * This function frees an entry in a Profile ID TCAM for a specific block.
2541  */
2542 static enum ice_status
2543 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2544 {
2545 	u16 res_type;
2546 
2547 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2548 		return ICE_ERR_PARAM;
2549 
2550 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2551 }
2552 
2553 /**
2554  * ice_alloc_prof_id - allocate profile ID
2555  * @hw: pointer to the HW struct
2556  * @blk: the block to allocate the profile ID for
2557  * @prof_id: pointer to variable to receive the profile ID
2558  *
2559  * This function allocates a new profile ID, which also corresponds to a Field
2560  * Vector (Extraction Sequence) entry.
2561  */
2562 static enum ice_status
2563 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2564 {
2565 	enum ice_status status;
2566 	u16 res_type;
2567 	u16 get_prof;
2568 
2569 	if (!ice_prof_id_rsrc_type(blk, &res_type))
2570 		return ICE_ERR_PARAM;
2571 
2572 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2573 	if (!status)
2574 		*prof_id = (u8)get_prof;
2575 
2576 	return status;
2577 }
2578 
2579 /**
2580  * ice_free_prof_id - free profile ID
2581  * @hw: pointer to the HW struct
2582  * @blk: the block from which to free the profile ID
2583  * @prof_id: the profile ID to free
2584  *
2585  * This function frees a profile ID, which also corresponds to a Field Vector.
2586  */
2587 static enum ice_status
2588 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2589 {
2590 	u16 tmp_prof_id = (u16)prof_id;
2591 	u16 res_type;
2592 
2593 	if (!ice_prof_id_rsrc_type(blk, &res_type))
2594 		return ICE_ERR_PARAM;
2595 
2596 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2597 }
2598 
2599 /**
2600  * ice_prof_inc_ref - increment reference count for profile
2601  * @hw: pointer to the HW struct
2602  * @blk: the block from which to free the profile ID
2603  * @prof_id: the profile ID for which to increment the reference count
2604  */
2605 static enum ice_status
2606 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2607 {
2608 	if (prof_id > hw->blk[blk].es.count)
2609 		return ICE_ERR_PARAM;
2610 
2611 	hw->blk[blk].es.ref_count[prof_id]++;
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  * ice_write_prof_mask_reg - write profile mask register
2618  * @hw: pointer to the HW struct
2619  * @blk: hardware block
2620  * @mask_idx: mask index
2621  * @idx: index of the FV which will use the mask
2622  * @mask: the 16-bit mask
2623  */
2624 static void
2625 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
2626 			u16 idx, u16 mask)
2627 {
2628 	u32 offset;
2629 	u32 val;
2630 
2631 	switch (blk) {
2632 	case ICE_BLK_RSS:
2633 		offset = GLQF_HMASK(mask_idx);
2634 		val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
2635 		val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
2636 		break;
2637 	case ICE_BLK_FD:
2638 		offset = GLQF_FDMASK(mask_idx);
2639 		val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
2640 		val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
2641 		break;
2642 	default:
2643 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
2644 			  blk);
2645 		return;
2646 	}
2647 
2648 	wr32(hw, offset, val);
2649 	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
2650 		  blk, idx, offset, val);
2651 }
2652 
2653 /**
2654  * ice_write_prof_mask_enable_res - write profile mask enable register
2655  * @hw: pointer to the HW struct
2656  * @blk: hardware block
2657  * @prof_id: profile ID
2658  * @enable_mask: enable mask
2659  */
2660 static void
2661 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
2662 			       u16 prof_id, u32 enable_mask)
2663 {
2664 	u32 offset;
2665 
2666 	switch (blk) {
2667 	case ICE_BLK_RSS:
2668 		offset = GLQF_HMASK_SEL(prof_id);
2669 		break;
2670 	case ICE_BLK_FD:
2671 		offset = GLQF_FDMASK_SEL(prof_id);
2672 		break;
2673 	default:
2674 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
2675 			  blk);
2676 		return;
2677 	}
2678 
2679 	wr32(hw, offset, enable_mask);
2680 	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
2681 		  blk, prof_id, offset, enable_mask);
2682 }
2683 
2684 /**
2685  * ice_init_prof_masks - initial prof masks
2686  * @hw: pointer to the HW struct
2687  * @blk: hardware block
2688  */
2689 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
2690 {
2691 	u16 per_pf;
2692 	u16 i;
2693 
2694 	mutex_init(&hw->blk[blk].masks.lock);
2695 
2696 	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
2697 
2698 	hw->blk[blk].masks.count = per_pf;
2699 	hw->blk[blk].masks.first = hw->pf_id * per_pf;
2700 
2701 	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
2702 
2703 	for (i = hw->blk[blk].masks.first;
2704 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
2705 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
2706 }
2707 
2708 /**
2709  * ice_init_all_prof_masks - initialize all prof masks
2710  * @hw: pointer to the HW struct
2711  */
2712 static void ice_init_all_prof_masks(struct ice_hw *hw)
2713 {
2714 	ice_init_prof_masks(hw, ICE_BLK_RSS);
2715 	ice_init_prof_masks(hw, ICE_BLK_FD);
2716 }
2717 
2718 /**
2719  * ice_alloc_prof_mask - allocate profile mask
2720  * @hw: pointer to the HW struct
2721  * @blk: hardware block
2722  * @idx: index of FV which will use the mask
2723  * @mask: the 16-bit mask
2724  * @mask_idx: variable to receive the mask index
2725  */
2726 static enum ice_status
2727 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
2728 		    u16 *mask_idx)
2729 {
2730 	bool found_unused = false, found_copy = false;
2731 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2732 	u16 unused_idx = 0, copy_idx = 0;
2733 	u16 i;
2734 
2735 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2736 		return ICE_ERR_PARAM;
2737 
2738 	mutex_lock(&hw->blk[blk].masks.lock);
2739 
2740 	for (i = hw->blk[blk].masks.first;
2741 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
2742 		if (hw->blk[blk].masks.masks[i].in_use) {
2743 			/* if mask is in use and it exactly duplicates the
2744 			 * desired mask and index, then in can be reused
2745 			 */
2746 			if (hw->blk[blk].masks.masks[i].mask == mask &&
2747 			    hw->blk[blk].masks.masks[i].idx == idx) {
2748 				found_copy = true;
2749 				copy_idx = i;
2750 				break;
2751 			}
2752 		} else {
2753 			/* save off unused index, but keep searching in case
2754 			 * there is an exact match later on
2755 			 */
2756 			if (!found_unused) {
2757 				found_unused = true;
2758 				unused_idx = i;
2759 			}
2760 		}
2761 
2762 	if (found_copy)
2763 		i = copy_idx;
2764 	else if (found_unused)
2765 		i = unused_idx;
2766 	else
2767 		goto err_ice_alloc_prof_mask;
2768 
2769 	/* update mask for a new entry */
2770 	if (found_unused) {
2771 		hw->blk[blk].masks.masks[i].in_use = true;
2772 		hw->blk[blk].masks.masks[i].mask = mask;
2773 		hw->blk[blk].masks.masks[i].idx = idx;
2774 		hw->blk[blk].masks.masks[i].ref = 0;
2775 		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
2776 	}
2777 
2778 	hw->blk[blk].masks.masks[i].ref++;
2779 	*mask_idx = i;
2780 	status = 0;
2781 
2782 err_ice_alloc_prof_mask:
2783 	mutex_unlock(&hw->blk[blk].masks.lock);
2784 
2785 	return status;
2786 }
2787 
2788 /**
2789  * ice_free_prof_mask - free profile mask
2790  * @hw: pointer to the HW struct
2791  * @blk: hardware block
2792  * @mask_idx: index of mask
2793  */
2794 static enum ice_status
2795 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
2796 {
2797 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2798 		return ICE_ERR_PARAM;
2799 
2800 	if (!(mask_idx >= hw->blk[blk].masks.first &&
2801 	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
2802 		return ICE_ERR_DOES_NOT_EXIST;
2803 
2804 	mutex_lock(&hw->blk[blk].masks.lock);
2805 
2806 	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
2807 		goto exit_ice_free_prof_mask;
2808 
2809 	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
2810 		hw->blk[blk].masks.masks[mask_idx].ref--;
2811 		goto exit_ice_free_prof_mask;
2812 	}
2813 
2814 	/* remove mask */
2815 	hw->blk[blk].masks.masks[mask_idx].in_use = false;
2816 	hw->blk[blk].masks.masks[mask_idx].mask = 0;
2817 	hw->blk[blk].masks.masks[mask_idx].idx = 0;
2818 
2819 	/* update mask as unused entry */
2820 	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
2821 		  mask_idx);
2822 	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
2823 
2824 exit_ice_free_prof_mask:
2825 	mutex_unlock(&hw->blk[blk].masks.lock);
2826 
2827 	return 0;
2828 }
2829 
2830 /**
2831  * ice_free_prof_masks - free all profile masks for a profile
2832  * @hw: pointer to the HW struct
2833  * @blk: hardware block
2834  * @prof_id: profile ID
2835  */
2836 static enum ice_status
2837 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
2838 {
2839 	u32 mask_bm;
2840 	u16 i;
2841 
2842 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2843 		return ICE_ERR_PARAM;
2844 
2845 	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
2846 	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
2847 		if (mask_bm & BIT(i))
2848 			ice_free_prof_mask(hw, blk, i);
2849 
2850 	return 0;
2851 }
2852 
2853 /**
2854  * ice_shutdown_prof_masks - releases lock for masking
2855  * @hw: pointer to the HW struct
2856  * @blk: hardware block
2857  *
2858  * This should be called before unloading the driver
2859  */
2860 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
2861 {
2862 	u16 i;
2863 
2864 	mutex_lock(&hw->blk[blk].masks.lock);
2865 
2866 	for (i = hw->blk[blk].masks.first;
2867 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
2868 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
2869 
2870 		hw->blk[blk].masks.masks[i].in_use = false;
2871 		hw->blk[blk].masks.masks[i].idx = 0;
2872 		hw->blk[blk].masks.masks[i].mask = 0;
2873 	}
2874 
2875 	mutex_unlock(&hw->blk[blk].masks.lock);
2876 	mutex_destroy(&hw->blk[blk].masks.lock);
2877 }
2878 
2879 /**
2880  * ice_shutdown_all_prof_masks - releases all locks for masking
2881  * @hw: pointer to the HW struct
2882  *
2883  * This should be called before unloading the driver
2884  */
2885 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
2886 {
2887 	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
2888 	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
2889 }
2890 
2891 /**
2892  * ice_update_prof_masking - set registers according to masking
2893  * @hw: pointer to the HW struct
2894  * @blk: hardware block
2895  * @prof_id: profile ID
2896  * @masks: masks
2897  */
2898 static enum ice_status
2899 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
2900 			u16 *masks)
2901 {
2902 	bool err = false;
2903 	u32 ena_mask = 0;
2904 	u16 idx;
2905 	u16 i;
2906 
2907 	/* Only support FD and RSS masking, otherwise nothing to be done */
2908 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2909 		return 0;
2910 
2911 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
2912 		if (masks[i] && masks[i] != 0xFFFF) {
2913 			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
2914 				ena_mask |= BIT(idx);
2915 			} else {
2916 				/* not enough bitmaps */
2917 				err = true;
2918 				break;
2919 			}
2920 		}
2921 
2922 	if (err) {
2923 		/* free any bitmaps we have allocated */
2924 		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
2925 			if (ena_mask & BIT(i))
2926 				ice_free_prof_mask(hw, blk, i);
2927 
2928 		return ICE_ERR_OUT_OF_RANGE;
2929 	}
2930 
2931 	/* enable the masks for this profile */
2932 	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
2933 
2934 	/* store enabled masks with profile so that they can be freed later */
2935 	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
2936 
2937 	return 0;
2938 }
2939 
2940 /**
2941  * ice_write_es - write an extraction sequence to hardware
2942  * @hw: pointer to the HW struct
2943  * @blk: the block in which to write the extraction sequence
2944  * @prof_id: the profile ID to write
2945  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2946  */
2947 static void
2948 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2949 	     struct ice_fv_word *fv)
2950 {
2951 	u16 off;
2952 
2953 	off = prof_id * hw->blk[blk].es.fvw;
2954 	if (!fv) {
2955 		memset(&hw->blk[blk].es.t[off], 0,
2956 		       hw->blk[blk].es.fvw * sizeof(*fv));
2957 		hw->blk[blk].es.written[prof_id] = false;
2958 	} else {
2959 		memcpy(&hw->blk[blk].es.t[off], fv,
2960 		       hw->blk[blk].es.fvw * sizeof(*fv));
2961 	}
2962 }
2963 
2964 /**
2965  * ice_prof_dec_ref - decrement reference count for profile
2966  * @hw: pointer to the HW struct
2967  * @blk: the block from which to free the profile ID
2968  * @prof_id: the profile ID for which to decrement the reference count
2969  */
2970 static enum ice_status
2971 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2972 {
2973 	if (prof_id > hw->blk[blk].es.count)
2974 		return ICE_ERR_PARAM;
2975 
2976 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2977 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
2978 			ice_write_es(hw, blk, prof_id, NULL);
2979 			ice_free_prof_masks(hw, blk, prof_id);
2980 			return ice_free_prof_id(hw, blk, prof_id);
2981 		}
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 /* Block / table section IDs */
2988 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2989 	/* SWITCH */
2990 	{	ICE_SID_XLT1_SW,
2991 		ICE_SID_XLT2_SW,
2992 		ICE_SID_PROFID_TCAM_SW,
2993 		ICE_SID_PROFID_REDIR_SW,
2994 		ICE_SID_FLD_VEC_SW
2995 	},
2996 
2997 	/* ACL */
2998 	{	ICE_SID_XLT1_ACL,
2999 		ICE_SID_XLT2_ACL,
3000 		ICE_SID_PROFID_TCAM_ACL,
3001 		ICE_SID_PROFID_REDIR_ACL,
3002 		ICE_SID_FLD_VEC_ACL
3003 	},
3004 
3005 	/* FD */
3006 	{	ICE_SID_XLT1_FD,
3007 		ICE_SID_XLT2_FD,
3008 		ICE_SID_PROFID_TCAM_FD,
3009 		ICE_SID_PROFID_REDIR_FD,
3010 		ICE_SID_FLD_VEC_FD
3011 	},
3012 
3013 	/* RSS */
3014 	{	ICE_SID_XLT1_RSS,
3015 		ICE_SID_XLT2_RSS,
3016 		ICE_SID_PROFID_TCAM_RSS,
3017 		ICE_SID_PROFID_REDIR_RSS,
3018 		ICE_SID_FLD_VEC_RSS
3019 	},
3020 
3021 	/* PE */
3022 	{	ICE_SID_XLT1_PE,
3023 		ICE_SID_XLT2_PE,
3024 		ICE_SID_PROFID_TCAM_PE,
3025 		ICE_SID_PROFID_REDIR_PE,
3026 		ICE_SID_FLD_VEC_PE
3027 	}
3028 };
3029 
3030 /**
3031  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3032  * @hw: pointer to the hardware structure
3033  * @blk: the HW block to initialize
3034  */
3035 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3036 {
3037 	u16 pt;
3038 
3039 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3040 		u8 ptg;
3041 
3042 		ptg = hw->blk[blk].xlt1.t[pt];
3043 		if (ptg != ICE_DEFAULT_PTG) {
3044 			ice_ptg_alloc_val(hw, blk, ptg);
3045 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3046 		}
3047 	}
3048 }
3049 
3050 /**
3051  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3052  * @hw: pointer to the hardware structure
3053  * @blk: the HW block to initialize
3054  */
3055 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3056 {
3057 	u16 vsi;
3058 
3059 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3060 		u16 vsig;
3061 
3062 		vsig = hw->blk[blk].xlt2.t[vsi];
3063 		if (vsig) {
3064 			ice_vsig_alloc_val(hw, blk, vsig);
3065 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3066 			/* no changes at this time, since this has been
3067 			 * initialized from the original package
3068 			 */
3069 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3070 		}
3071 	}
3072 }
3073 
3074 /**
3075  * ice_init_sw_db - init software database from HW tables
3076  * @hw: pointer to the hardware structure
3077  */
3078 static void ice_init_sw_db(struct ice_hw *hw)
3079 {
3080 	u16 i;
3081 
3082 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3083 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3084 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3085 	}
3086 }
3087 
3088 /**
3089  * ice_fill_tbl - Reads content of a single table type into database
3090  * @hw: pointer to the hardware structure
3091  * @block_id: Block ID of the table to copy
3092  * @sid: Section ID of the table to copy
3093  *
3094  * Will attempt to read the entire content of a given table of a single block
3095  * into the driver database. We assume that the buffer will always
3096  * be as large or larger than the data contained in the package. If
3097  * this condition is not met, there is most likely an error in the package
3098  * contents.
3099  */
3100 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3101 {
3102 	u32 dst_len, sect_len, offset = 0;
3103 	struct ice_prof_redir_section *pr;
3104 	struct ice_prof_id_section *pid;
3105 	struct ice_xlt1_section *xlt1;
3106 	struct ice_xlt2_section *xlt2;
3107 	struct ice_sw_fv_section *es;
3108 	struct ice_pkg_enum state;
3109 	u8 *src, *dst;
3110 	void *sect;
3111 
3112 	/* if the HW segment pointer is null then the first iteration of
3113 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3114 	 * not be filled and return success.
3115 	 */
3116 	if (!hw->seg) {
3117 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3118 		return;
3119 	}
3120 
3121 	memset(&state, 0, sizeof(state));
3122 
3123 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3124 
3125 	while (sect) {
3126 		switch (sid) {
3127 		case ICE_SID_XLT1_SW:
3128 		case ICE_SID_XLT1_FD:
3129 		case ICE_SID_XLT1_RSS:
3130 		case ICE_SID_XLT1_ACL:
3131 		case ICE_SID_XLT1_PE:
3132 			xlt1 = sect;
3133 			src = xlt1->value;
3134 			sect_len = le16_to_cpu(xlt1->count) *
3135 				sizeof(*hw->blk[block_id].xlt1.t);
3136 			dst = hw->blk[block_id].xlt1.t;
3137 			dst_len = hw->blk[block_id].xlt1.count *
3138 				sizeof(*hw->blk[block_id].xlt1.t);
3139 			break;
3140 		case ICE_SID_XLT2_SW:
3141 		case ICE_SID_XLT2_FD:
3142 		case ICE_SID_XLT2_RSS:
3143 		case ICE_SID_XLT2_ACL:
3144 		case ICE_SID_XLT2_PE:
3145 			xlt2 = sect;
3146 			src = (__force u8 *)xlt2->value;
3147 			sect_len = le16_to_cpu(xlt2->count) *
3148 				sizeof(*hw->blk[block_id].xlt2.t);
3149 			dst = (u8 *)hw->blk[block_id].xlt2.t;
3150 			dst_len = hw->blk[block_id].xlt2.count *
3151 				sizeof(*hw->blk[block_id].xlt2.t);
3152 			break;
3153 		case ICE_SID_PROFID_TCAM_SW:
3154 		case ICE_SID_PROFID_TCAM_FD:
3155 		case ICE_SID_PROFID_TCAM_RSS:
3156 		case ICE_SID_PROFID_TCAM_ACL:
3157 		case ICE_SID_PROFID_TCAM_PE:
3158 			pid = sect;
3159 			src = (u8 *)pid->entry;
3160 			sect_len = le16_to_cpu(pid->count) *
3161 				sizeof(*hw->blk[block_id].prof.t);
3162 			dst = (u8 *)hw->blk[block_id].prof.t;
3163 			dst_len = hw->blk[block_id].prof.count *
3164 				sizeof(*hw->blk[block_id].prof.t);
3165 			break;
3166 		case ICE_SID_PROFID_REDIR_SW:
3167 		case ICE_SID_PROFID_REDIR_FD:
3168 		case ICE_SID_PROFID_REDIR_RSS:
3169 		case ICE_SID_PROFID_REDIR_ACL:
3170 		case ICE_SID_PROFID_REDIR_PE:
3171 			pr = sect;
3172 			src = pr->redir_value;
3173 			sect_len = le16_to_cpu(pr->count) *
3174 				sizeof(*hw->blk[block_id].prof_redir.t);
3175 			dst = hw->blk[block_id].prof_redir.t;
3176 			dst_len = hw->blk[block_id].prof_redir.count *
3177 				sizeof(*hw->blk[block_id].prof_redir.t);
3178 			break;
3179 		case ICE_SID_FLD_VEC_SW:
3180 		case ICE_SID_FLD_VEC_FD:
3181 		case ICE_SID_FLD_VEC_RSS:
3182 		case ICE_SID_FLD_VEC_ACL:
3183 		case ICE_SID_FLD_VEC_PE:
3184 			es = sect;
3185 			src = (u8 *)es->fv;
3186 			sect_len = (u32)(le16_to_cpu(es->count) *
3187 					 hw->blk[block_id].es.fvw) *
3188 				sizeof(*hw->blk[block_id].es.t);
3189 			dst = (u8 *)hw->blk[block_id].es.t;
3190 			dst_len = (u32)(hw->blk[block_id].es.count *
3191 					hw->blk[block_id].es.fvw) *
3192 				sizeof(*hw->blk[block_id].es.t);
3193 			break;
3194 		default:
3195 			return;
3196 		}
3197 
3198 		/* if the section offset exceeds destination length, terminate
3199 		 * table fill.
3200 		 */
3201 		if (offset > dst_len)
3202 			return;
3203 
3204 		/* if the sum of section size and offset exceed destination size
3205 		 * then we are out of bounds of the HW table size for that PF.
3206 		 * Changing section length to fill the remaining table space
3207 		 * of that PF.
3208 		 */
3209 		if ((offset + sect_len) > dst_len)
3210 			sect_len = dst_len - offset;
3211 
3212 		memcpy(dst + offset, src, sect_len);
3213 		offset += sect_len;
3214 		sect = ice_pkg_enum_section(NULL, &state, sid);
3215 	}
3216 }
3217 
3218 /**
3219  * ice_fill_blk_tbls - Read package context for tables
3220  * @hw: pointer to the hardware structure
3221  *
3222  * Reads the current package contents and populates the driver
3223  * database with the data iteratively for all advanced feature
3224  * blocks. Assume that the HW tables have been allocated.
3225  */
3226 void ice_fill_blk_tbls(struct ice_hw *hw)
3227 {
3228 	u8 i;
3229 
3230 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3231 		enum ice_block blk_id = (enum ice_block)i;
3232 
3233 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3234 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3235 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3236 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3237 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3238 	}
3239 
3240 	ice_init_sw_db(hw);
3241 }
3242 
3243 /**
3244  * ice_free_prof_map - free profile map
3245  * @hw: pointer to the hardware structure
3246  * @blk_idx: HW block index
3247  */
3248 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3249 {
3250 	struct ice_es *es = &hw->blk[blk_idx].es;
3251 	struct ice_prof_map *del, *tmp;
3252 
3253 	mutex_lock(&es->prof_map_lock);
3254 	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3255 		list_del(&del->list);
3256 		devm_kfree(ice_hw_to_dev(hw), del);
3257 	}
3258 	INIT_LIST_HEAD(&es->prof_map);
3259 	mutex_unlock(&es->prof_map_lock);
3260 }
3261 
3262 /**
3263  * ice_free_flow_profs - free flow profile entries
3264  * @hw: pointer to the hardware structure
3265  * @blk_idx: HW block index
3266  */
3267 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3268 {
3269 	struct ice_flow_prof *p, *tmp;
3270 
3271 	mutex_lock(&hw->fl_profs_locks[blk_idx]);
3272 	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3273 		struct ice_flow_entry *e, *t;
3274 
3275 		list_for_each_entry_safe(e, t, &p->entries, l_entry)
3276 			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3277 					   ICE_FLOW_ENTRY_HNDL(e));
3278 
3279 		list_del(&p->l_entry);
3280 
3281 		mutex_destroy(&p->entries_lock);
3282 		devm_kfree(ice_hw_to_dev(hw), p);
3283 	}
3284 	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3285 
3286 	/* if driver is in reset and tables are being cleared
3287 	 * re-initialize the flow profile list heads
3288 	 */
3289 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3290 }
3291 
3292 /**
3293  * ice_free_vsig_tbl - free complete VSIG table entries
3294  * @hw: pointer to the hardware structure
3295  * @blk: the HW block on which to free the VSIG table entries
3296  */
3297 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3298 {
3299 	u16 i;
3300 
3301 	if (!hw->blk[blk].xlt2.vsig_tbl)
3302 		return;
3303 
3304 	for (i = 1; i < ICE_MAX_VSIGS; i++)
3305 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3306 			ice_vsig_free(hw, blk, i);
3307 }
3308 
3309 /**
3310  * ice_free_hw_tbls - free hardware table memory
3311  * @hw: pointer to the hardware structure
3312  */
3313 void ice_free_hw_tbls(struct ice_hw *hw)
3314 {
3315 	struct ice_rss_cfg *r, *rt;
3316 	u8 i;
3317 
3318 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3319 		if (hw->blk[i].is_list_init) {
3320 			struct ice_es *es = &hw->blk[i].es;
3321 
3322 			ice_free_prof_map(hw, i);
3323 			mutex_destroy(&es->prof_map_lock);
3324 
3325 			ice_free_flow_profs(hw, i);
3326 			mutex_destroy(&hw->fl_profs_locks[i]);
3327 
3328 			hw->blk[i].is_list_init = false;
3329 		}
3330 		ice_free_vsig_tbl(hw, (enum ice_block)i);
3331 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
3332 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
3333 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
3334 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
3335 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
3336 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
3337 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
3338 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
3339 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
3340 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
3341 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
3342 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
3343 	}
3344 
3345 	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
3346 		list_del(&r->l_entry);
3347 		devm_kfree(ice_hw_to_dev(hw), r);
3348 	}
3349 	mutex_destroy(&hw->rss_locks);
3350 	ice_shutdown_all_prof_masks(hw);
3351 	memset(hw->blk, 0, sizeof(hw->blk));
3352 }
3353 
3354 /**
3355  * ice_init_flow_profs - init flow profile locks and list heads
3356  * @hw: pointer to the hardware structure
3357  * @blk_idx: HW block index
3358  */
3359 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3360 {
3361 	mutex_init(&hw->fl_profs_locks[blk_idx]);
3362 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3363 }
3364 
3365 /**
3366  * ice_clear_hw_tbls - clear HW tables and flow profiles
3367  * @hw: pointer to the hardware structure
3368  */
3369 void ice_clear_hw_tbls(struct ice_hw *hw)
3370 {
3371 	u8 i;
3372 
3373 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3374 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3375 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3376 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3377 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3378 		struct ice_es *es = &hw->blk[i].es;
3379 
3380 		if (hw->blk[i].is_list_init) {
3381 			ice_free_prof_map(hw, i);
3382 			ice_free_flow_profs(hw, i);
3383 		}
3384 
3385 		ice_free_vsig_tbl(hw, (enum ice_block)i);
3386 
3387 		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
3388 		memset(xlt1->ptg_tbl, 0,
3389 		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
3390 		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
3391 
3392 		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
3393 		memset(xlt2->vsig_tbl, 0,
3394 		       xlt2->count * sizeof(*xlt2->vsig_tbl));
3395 		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
3396 
3397 		memset(prof->t, 0, prof->count * sizeof(*prof->t));
3398 		memset(prof_redir->t, 0,
3399 		       prof_redir->count * sizeof(*prof_redir->t));
3400 
3401 		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
3402 		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
3403 		memset(es->written, 0, es->count * sizeof(*es->written));
3404 		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
3405 	}
3406 }
3407 
3408 /**
3409  * ice_init_hw_tbls - init hardware table memory
3410  * @hw: pointer to the hardware structure
3411  */
3412 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3413 {
3414 	u8 i;
3415 
3416 	mutex_init(&hw->rss_locks);
3417 	INIT_LIST_HEAD(&hw->rss_list_head);
3418 	ice_init_all_prof_masks(hw);
3419 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3420 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3421 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3422 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3423 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3424 		struct ice_es *es = &hw->blk[i].es;
3425 		u16 j;
3426 
3427 		if (hw->blk[i].is_list_init)
3428 			continue;
3429 
3430 		ice_init_flow_profs(hw, i);
3431 		mutex_init(&es->prof_map_lock);
3432 		INIT_LIST_HEAD(&es->prof_map);
3433 		hw->blk[i].is_list_init = true;
3434 
3435 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3436 		es->reverse = blk_sizes[i].reverse;
3437 
3438 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3439 		xlt1->count = blk_sizes[i].xlt1;
3440 
3441 		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3442 					    sizeof(*xlt1->ptypes), GFP_KERNEL);
3443 
3444 		if (!xlt1->ptypes)
3445 			goto err;
3446 
3447 		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
3448 					     sizeof(*xlt1->ptg_tbl),
3449 					     GFP_KERNEL);
3450 
3451 		if (!xlt1->ptg_tbl)
3452 			goto err;
3453 
3454 		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3455 				       sizeof(*xlt1->t), GFP_KERNEL);
3456 		if (!xlt1->t)
3457 			goto err;
3458 
3459 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3460 		xlt2->count = blk_sizes[i].xlt2;
3461 
3462 		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3463 					  sizeof(*xlt2->vsis), GFP_KERNEL);
3464 
3465 		if (!xlt2->vsis)
3466 			goto err;
3467 
3468 		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3469 					      sizeof(*xlt2->vsig_tbl),
3470 					      GFP_KERNEL);
3471 		if (!xlt2->vsig_tbl)
3472 			goto err;
3473 
3474 		for (j = 0; j < xlt2->count; j++)
3475 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3476 
3477 		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3478 				       sizeof(*xlt2->t), GFP_KERNEL);
3479 		if (!xlt2->t)
3480 			goto err;
3481 
3482 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3483 		prof->count = blk_sizes[i].prof_tcam;
3484 		prof->max_prof_id = blk_sizes[i].prof_id;
3485 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3486 		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
3487 				       sizeof(*prof->t), GFP_KERNEL);
3488 
3489 		if (!prof->t)
3490 			goto err;
3491 
3492 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3493 		prof_redir->count = blk_sizes[i].prof_redir;
3494 		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
3495 					     prof_redir->count,
3496 					     sizeof(*prof_redir->t),
3497 					     GFP_KERNEL);
3498 
3499 		if (!prof_redir->t)
3500 			goto err;
3501 
3502 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3503 		es->count = blk_sizes[i].es;
3504 		es->fvw = blk_sizes[i].fvw;
3505 		es->t = devm_kcalloc(ice_hw_to_dev(hw),
3506 				     (u32)(es->count * es->fvw),
3507 				     sizeof(*es->t), GFP_KERNEL);
3508 		if (!es->t)
3509 			goto err;
3510 
3511 		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3512 					     sizeof(*es->ref_count),
3513 					     GFP_KERNEL);
3514 		if (!es->ref_count)
3515 			goto err;
3516 
3517 		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3518 					   sizeof(*es->written), GFP_KERNEL);
3519 		if (!es->written)
3520 			goto err;
3521 
3522 		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3523 					    sizeof(*es->mask_ena), GFP_KERNEL);
3524 		if (!es->mask_ena)
3525 			goto err;
3526 	}
3527 	return 0;
3528 
3529 err:
3530 	ice_free_hw_tbls(hw);
3531 	return ICE_ERR_NO_MEMORY;
3532 }
3533 
3534 /**
3535  * ice_prof_gen_key - generate profile ID key
3536  * @hw: pointer to the HW struct
3537  * @blk: the block in which to write profile ID to
3538  * @ptg: packet type group (PTG) portion of key
3539  * @vsig: VSIG portion of key
3540  * @cdid: CDID portion of key
3541  * @flags: flag portion of key
3542  * @vl_msk: valid mask
3543  * @dc_msk: don't care mask
3544  * @nm_msk: never match mask
3545  * @key: output of profile ID key
3546  */
3547 static enum ice_status
3548 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3549 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3550 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3551 		 u8 key[ICE_TCAM_KEY_SZ])
3552 {
3553 	struct ice_prof_id_key inkey;
3554 
3555 	inkey.xlt1 = ptg;
3556 	inkey.xlt2_cdid = cpu_to_le16(vsig);
3557 	inkey.flags = cpu_to_le16(flags);
3558 
3559 	switch (hw->blk[blk].prof.cdid_bits) {
3560 	case 0:
3561 		break;
3562 	case 2:
3563 #define ICE_CD_2_M 0xC000U
3564 #define ICE_CD_2_S 14
3565 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
3566 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
3567 		break;
3568 	case 4:
3569 #define ICE_CD_4_M 0xF000U
3570 #define ICE_CD_4_S 12
3571 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
3572 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
3573 		break;
3574 	case 8:
3575 #define ICE_CD_8_M 0xFF00U
3576 #define ICE_CD_8_S 16
3577 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
3578 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
3579 		break;
3580 	default:
3581 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3582 		break;
3583 	}
3584 
3585 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3586 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3587 }
3588 
3589 /**
3590  * ice_tcam_write_entry - write TCAM entry
3591  * @hw: pointer to the HW struct
3592  * @blk: the block in which to write profile ID to
3593  * @idx: the entry index to write to
3594  * @prof_id: profile ID
3595  * @ptg: packet type group (PTG) portion of key
3596  * @vsig: VSIG portion of key
3597  * @cdid: CDID portion of key
3598  * @flags: flag portion of key
3599  * @vl_msk: valid mask
3600  * @dc_msk: don't care mask
3601  * @nm_msk: never match mask
3602  */
3603 static enum ice_status
3604 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3605 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3606 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3607 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3608 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3609 {
3610 	struct ice_prof_tcam_entry;
3611 	enum ice_status status;
3612 
3613 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3614 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3615 	if (!status) {
3616 		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
3617 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3618 	}
3619 
3620 	return status;
3621 }
3622 
3623 /**
3624  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3625  * @hw: pointer to the hardware structure
3626  * @blk: HW block
3627  * @vsig: VSIG to query
3628  * @refs: pointer to variable to receive the reference count
3629  */
3630 static enum ice_status
3631 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3632 {
3633 	u16 idx = vsig & ICE_VSIG_IDX_M;
3634 	struct ice_vsig_vsi *ptr;
3635 
3636 	*refs = 0;
3637 
3638 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3639 		return ICE_ERR_DOES_NOT_EXIST;
3640 
3641 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3642 	while (ptr) {
3643 		(*refs)++;
3644 		ptr = ptr->next_vsi;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 /**
3651  * ice_has_prof_vsig - check to see if VSIG has a specific profile
3652  * @hw: pointer to the hardware structure
3653  * @blk: HW block
3654  * @vsig: VSIG to check against
3655  * @hdl: profile handle
3656  */
3657 static bool
3658 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3659 {
3660 	u16 idx = vsig & ICE_VSIG_IDX_M;
3661 	struct ice_vsig_prof *ent;
3662 
3663 	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3664 			    list)
3665 		if (ent->profile_cookie == hdl)
3666 			return true;
3667 
3668 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
3669 		  vsig);
3670 	return false;
3671 }
3672 
3673 /**
3674  * ice_prof_bld_es - build profile ID extraction sequence changes
3675  * @hw: pointer to the HW struct
3676  * @blk: hardware block
3677  * @bld: the update package buffer build to add to
3678  * @chgs: the list of changes to make in hardware
3679  */
3680 static enum ice_status
3681 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3682 		struct ice_buf_build *bld, struct list_head *chgs)
3683 {
3684 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3685 	struct ice_chs_chg *tmp;
3686 
3687 	list_for_each_entry(tmp, chgs, list_entry)
3688 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3689 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3690 			struct ice_pkg_es *p;
3691 			u32 id;
3692 
3693 			id = ice_sect_id(blk, ICE_VEC_TBL);
3694 			p = ice_pkg_buf_alloc_section(bld, id,
3695 						      struct_size(p, es, 1) +
3696 						      vec_size -
3697 						      sizeof(p->es[0]));
3698 
3699 			if (!p)
3700 				return ICE_ERR_MAX_LIMIT;
3701 
3702 			p->count = cpu_to_le16(1);
3703 			p->offset = cpu_to_le16(tmp->prof_id);
3704 
3705 			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
3706 		}
3707 
3708 	return 0;
3709 }
3710 
3711 /**
3712  * ice_prof_bld_tcam - build profile ID TCAM changes
3713  * @hw: pointer to the HW struct
3714  * @blk: hardware block
3715  * @bld: the update package buffer build to add to
3716  * @chgs: the list of changes to make in hardware
3717  */
3718 static enum ice_status
3719 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3720 		  struct ice_buf_build *bld, struct list_head *chgs)
3721 {
3722 	struct ice_chs_chg *tmp;
3723 
3724 	list_for_each_entry(tmp, chgs, list_entry)
3725 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3726 			struct ice_prof_id_section *p;
3727 			u32 id;
3728 
3729 			id = ice_sect_id(blk, ICE_PROF_TCAM);
3730 			p = ice_pkg_buf_alloc_section(bld, id,
3731 						      struct_size(p, entry, 1));
3732 
3733 			if (!p)
3734 				return ICE_ERR_MAX_LIMIT;
3735 
3736 			p->count = cpu_to_le16(1);
3737 			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
3738 			p->entry[0].prof_id = tmp->prof_id;
3739 
3740 			memcpy(p->entry[0].key,
3741 			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3742 			       sizeof(hw->blk[blk].prof.t->key));
3743 		}
3744 
3745 	return 0;
3746 }
3747 
3748 /**
3749  * ice_prof_bld_xlt1 - build XLT1 changes
3750  * @blk: hardware block
3751  * @bld: the update package buffer build to add to
3752  * @chgs: the list of changes to make in hardware
3753  */
3754 static enum ice_status
3755 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3756 		  struct list_head *chgs)
3757 {
3758 	struct ice_chs_chg *tmp;
3759 
3760 	list_for_each_entry(tmp, chgs, list_entry)
3761 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3762 			struct ice_xlt1_section *p;
3763 			u32 id;
3764 
3765 			id = ice_sect_id(blk, ICE_XLT1);
3766 			p = ice_pkg_buf_alloc_section(bld, id,
3767 						      struct_size(p, value, 1));
3768 
3769 			if (!p)
3770 				return ICE_ERR_MAX_LIMIT;
3771 
3772 			p->count = cpu_to_le16(1);
3773 			p->offset = cpu_to_le16(tmp->ptype);
3774 			p->value[0] = tmp->ptg;
3775 		}
3776 
3777 	return 0;
3778 }
3779 
3780 /**
3781  * ice_prof_bld_xlt2 - build XLT2 changes
3782  * @blk: hardware block
3783  * @bld: the update package buffer build to add to
3784  * @chgs: the list of changes to make in hardware
3785  */
3786 static enum ice_status
3787 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3788 		  struct list_head *chgs)
3789 {
3790 	struct ice_chs_chg *tmp;
3791 
3792 	list_for_each_entry(tmp, chgs, list_entry) {
3793 		struct ice_xlt2_section *p;
3794 		u32 id;
3795 
3796 		switch (tmp->type) {
3797 		case ICE_VSIG_ADD:
3798 		case ICE_VSI_MOVE:
3799 		case ICE_VSIG_REM:
3800 			id = ice_sect_id(blk, ICE_XLT2);
3801 			p = ice_pkg_buf_alloc_section(bld, id,
3802 						      struct_size(p, value, 1));
3803 
3804 			if (!p)
3805 				return ICE_ERR_MAX_LIMIT;
3806 
3807 			p->count = cpu_to_le16(1);
3808 			p->offset = cpu_to_le16(tmp->vsi);
3809 			p->value[0] = cpu_to_le16(tmp->vsig);
3810 			break;
3811 		default:
3812 			break;
3813 		}
3814 	}
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  * ice_upd_prof_hw - update hardware using the change list
3821  * @hw: pointer to the HW struct
3822  * @blk: hardware block
3823  * @chgs: the list of changes to make in hardware
3824  */
3825 static enum ice_status
3826 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3827 		struct list_head *chgs)
3828 {
3829 	struct ice_buf_build *b;
3830 	struct ice_chs_chg *tmp;
3831 	enum ice_status status;
3832 	u16 pkg_sects;
3833 	u16 xlt1 = 0;
3834 	u16 xlt2 = 0;
3835 	u16 tcam = 0;
3836 	u16 es = 0;
3837 	u16 sects;
3838 
3839 	/* count number of sections we need */
3840 	list_for_each_entry(tmp, chgs, list_entry) {
3841 		switch (tmp->type) {
3842 		case ICE_PTG_ES_ADD:
3843 			if (tmp->add_ptg)
3844 				xlt1++;
3845 			if (tmp->add_prof)
3846 				es++;
3847 			break;
3848 		case ICE_TCAM_ADD:
3849 			tcam++;
3850 			break;
3851 		case ICE_VSIG_ADD:
3852 		case ICE_VSI_MOVE:
3853 		case ICE_VSIG_REM:
3854 			xlt2++;
3855 			break;
3856 		default:
3857 			break;
3858 		}
3859 	}
3860 	sects = xlt1 + xlt2 + tcam + es;
3861 
3862 	if (!sects)
3863 		return 0;
3864 
3865 	/* Build update package buffer */
3866 	b = ice_pkg_buf_alloc(hw);
3867 	if (!b)
3868 		return ICE_ERR_NO_MEMORY;
3869 
3870 	status = ice_pkg_buf_reserve_section(b, sects);
3871 	if (status)
3872 		goto error_tmp;
3873 
3874 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
3875 	if (es) {
3876 		status = ice_prof_bld_es(hw, blk, b, chgs);
3877 		if (status)
3878 			goto error_tmp;
3879 	}
3880 
3881 	if (tcam) {
3882 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
3883 		if (status)
3884 			goto error_tmp;
3885 	}
3886 
3887 	if (xlt1) {
3888 		status = ice_prof_bld_xlt1(blk, b, chgs);
3889 		if (status)
3890 			goto error_tmp;
3891 	}
3892 
3893 	if (xlt2) {
3894 		status = ice_prof_bld_xlt2(blk, b, chgs);
3895 		if (status)
3896 			goto error_tmp;
3897 	}
3898 
3899 	/* After package buffer build check if the section count in buffer is
3900 	 * non-zero and matches the number of sections detected for package
3901 	 * update.
3902 	 */
3903 	pkg_sects = ice_pkg_buf_get_active_sections(b);
3904 	if (!pkg_sects || pkg_sects != sects) {
3905 		status = ICE_ERR_INVAL_SIZE;
3906 		goto error_tmp;
3907 	}
3908 
3909 	/* update package */
3910 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3911 	if (status == ICE_ERR_AQ_ERROR)
3912 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
3913 
3914 error_tmp:
3915 	ice_pkg_buf_free(hw, b);
3916 	return status;
3917 }
3918 
3919 /**
3920  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3921  * @hw: pointer to the HW struct
3922  * @prof_id: profile ID
3923  * @mask_sel: mask select
3924  *
3925  * This function enable any of the masks selected by the mask select parameter
3926  * for the profile specified.
3927  */
3928 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3929 {
3930 	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3931 
3932 	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3933 		  GLQF_FDMASK_SEL(prof_id), mask_sel);
3934 }
3935 
3936 struct ice_fd_src_dst_pair {
3937 	u8 prot_id;
3938 	u8 count;
3939 	u16 off;
3940 };
3941 
3942 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3943 	/* These are defined in pairs */
3944 	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3945 	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3946 
3947 	{ ICE_PROT_IPV4_IL, 2, 12 },
3948 	{ ICE_PROT_IPV4_IL, 2, 16 },
3949 
3950 	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3951 	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3952 
3953 	{ ICE_PROT_IPV6_IL, 8, 8 },
3954 	{ ICE_PROT_IPV6_IL, 8, 24 },
3955 
3956 	{ ICE_PROT_TCP_IL, 1, 0 },
3957 	{ ICE_PROT_TCP_IL, 1, 2 },
3958 
3959 	{ ICE_PROT_UDP_OF, 1, 0 },
3960 	{ ICE_PROT_UDP_OF, 1, 2 },
3961 
3962 	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
3963 	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
3964 
3965 	{ ICE_PROT_SCTP_IL, 1, 0 },
3966 	{ ICE_PROT_SCTP_IL, 1, 2 }
3967 };
3968 
3969 #define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
3970 
3971 /**
3972  * ice_update_fd_swap - set register appropriately for a FD FV extraction
3973  * @hw: pointer to the HW struct
3974  * @prof_id: profile ID
3975  * @es: extraction sequence (length of array is determined by the block)
3976  */
3977 static enum ice_status
3978 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3979 {
3980 	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3981 	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3982 #define ICE_FD_FV_NOT_FOUND (-2)
3983 	s8 first_free = ICE_FD_FV_NOT_FOUND;
3984 	u8 used[ICE_MAX_FV_WORDS] = { 0 };
3985 	s8 orig_free, si;
3986 	u32 mask_sel = 0;
3987 	u8 i, j, k;
3988 
3989 	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3990 
3991 	/* This code assumes that the Flow Director field vectors are assigned
3992 	 * from the end of the FV indexes working towards the zero index, that
3993 	 * only complete fields will be included and will be consecutive, and
3994 	 * that there are no gaps between valid indexes.
3995 	 */
3996 
3997 	/* Determine swap fields present */
3998 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3999 		/* Find the first free entry, assuming right to left population.
4000 		 * This is where we can start adding additional pairs if needed.
4001 		 */
4002 		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4003 		    ICE_PROT_INVALID)
4004 			first_free = i - 1;
4005 
4006 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4007 			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4008 			    es[i].off == ice_fd_pairs[j].off) {
4009 				set_bit(j, pair_list);
4010 				pair_start[j] = i;
4011 			}
4012 	}
4013 
4014 	orig_free = first_free;
4015 
4016 	/* determine missing swap fields that need to be added */
4017 	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4018 		u8 bit1 = test_bit(i + 1, pair_list);
4019 		u8 bit0 = test_bit(i, pair_list);
4020 
4021 		if (bit0 ^ bit1) {
4022 			u8 index;
4023 
4024 			/* add the appropriate 'paired' entry */
4025 			if (!bit0)
4026 				index = i;
4027 			else
4028 				index = i + 1;
4029 
4030 			/* check for room */
4031 			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4032 				return ICE_ERR_MAX_LIMIT;
4033 
4034 			/* place in extraction sequence */
4035 			for (k = 0; k < ice_fd_pairs[index].count; k++) {
4036 				es[first_free - k].prot_id =
4037 					ice_fd_pairs[index].prot_id;
4038 				es[first_free - k].off =
4039 					ice_fd_pairs[index].off + (k * 2);
4040 
4041 				if (k > first_free)
4042 					return ICE_ERR_OUT_OF_RANGE;
4043 
4044 				/* keep track of non-relevant fields */
4045 				mask_sel |= BIT(first_free - k);
4046 			}
4047 
4048 			pair_start[index] = first_free;
4049 			first_free -= ice_fd_pairs[index].count;
4050 		}
4051 	}
4052 
4053 	/* fill in the swap array */
4054 	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4055 	while (si >= 0) {
4056 		u8 indexes_used = 1;
4057 
4058 		/* assume flat at this index */
4059 #define ICE_SWAP_VALID	0x80
4060 		used[si] = si | ICE_SWAP_VALID;
4061 
4062 		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4063 			si -= indexes_used;
4064 			continue;
4065 		}
4066 
4067 		/* check for a swap location */
4068 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4069 			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4070 			    es[si].off == ice_fd_pairs[j].off) {
4071 				u8 idx;
4072 
4073 				/* determine the appropriate matching field */
4074 				idx = j + ((j % 2) ? -1 : 1);
4075 
4076 				indexes_used = ice_fd_pairs[idx].count;
4077 				for (k = 0; k < indexes_used; k++) {
4078 					used[si - k] = (pair_start[idx] - k) |
4079 						ICE_SWAP_VALID;
4080 				}
4081 
4082 				break;
4083 			}
4084 
4085 		si -= indexes_used;
4086 	}
4087 
4088 	/* for each set of 4 swap and 4 inset indexes, write the appropriate
4089 	 * register
4090 	 */
4091 	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4092 		u32 raw_swap = 0;
4093 		u32 raw_in = 0;
4094 
4095 		for (k = 0; k < 4; k++) {
4096 			u8 idx;
4097 
4098 			idx = (j * 4) + k;
4099 			if (used[idx] && !(mask_sel & BIT(idx))) {
4100 				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4101 #define ICE_INSET_DFLT 0x9f
4102 				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4103 			}
4104 		}
4105 
4106 		/* write the appropriate swap register set */
4107 		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4108 
4109 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4110 			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4111 
4112 		/* write the appropriate inset register set */
4113 		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4114 
4115 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4116 			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4117 	}
4118 
4119 	/* initially clear the mask select for this profile */
4120 	ice_update_fd_mask(hw, prof_id, 0);
4121 
4122 	return 0;
4123 }
4124 
4125 /* The entries here needs to match the order of enum ice_ptype_attrib */
4126 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4127 	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
4128 	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
4129 	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
4130 	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
4131 };
4132 
4133 /**
4134  * ice_get_ptype_attrib_info - get PTYPE attribute information
4135  * @type: attribute type
4136  * @info: pointer to variable to the attribute information
4137  */
4138 static void
4139 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4140 			  struct ice_ptype_attrib_info *info)
4141 {
4142 	*info = ice_ptype_attributes[type];
4143 }
4144 
4145 /**
4146  * ice_add_prof_attrib - add any PTG with attributes to profile
4147  * @prof: pointer to the profile to which PTG entries will be added
4148  * @ptg: PTG to be added
4149  * @ptype: PTYPE that needs to be looked up
4150  * @attr: array of attributes that will be considered
4151  * @attr_cnt: number of elements in the attribute array
4152  */
4153 static enum ice_status
4154 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4155 		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
4156 {
4157 	bool found = false;
4158 	u16 i;
4159 
4160 	for (i = 0; i < attr_cnt; i++)
4161 		if (attr[i].ptype == ptype) {
4162 			found = true;
4163 
4164 			prof->ptg[prof->ptg_cnt] = ptg;
4165 			ice_get_ptype_attrib_info(attr[i].attrib,
4166 						  &prof->attr[prof->ptg_cnt]);
4167 
4168 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4169 				return ICE_ERR_MAX_LIMIT;
4170 		}
4171 
4172 	if (!found)
4173 		return ICE_ERR_DOES_NOT_EXIST;
4174 
4175 	return 0;
4176 }
4177 
4178 /**
4179  * ice_add_prof - add profile
4180  * @hw: pointer to the HW struct
4181  * @blk: hardware block
4182  * @id: profile tracking ID
4183  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4184  * @attr: array of attributes
4185  * @attr_cnt: number of elements in attr array
4186  * @es: extraction sequence (length of array is determined by the block)
4187  * @masks: mask for extraction sequence
4188  *
4189  * This function registers a profile, which matches a set of PTYPES with a
4190  * particular extraction sequence. While the hardware profile is allocated
4191  * it will not be written until the first call to ice_add_flow that specifies
4192  * the ID value used here.
4193  */
4194 enum ice_status
4195 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4196 	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
4197 	     struct ice_fv_word *es, u16 *masks)
4198 {
4199 	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4200 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4201 	struct ice_prof_map *prof;
4202 	enum ice_status status;
4203 	u8 byte = 0;
4204 	u8 prof_id;
4205 
4206 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4207 
4208 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4209 
4210 	/* search for existing profile */
4211 	status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4212 	if (status) {
4213 		/* allocate profile ID */
4214 		status = ice_alloc_prof_id(hw, blk, &prof_id);
4215 		if (status)
4216 			goto err_ice_add_prof;
4217 		if (blk == ICE_BLK_FD) {
4218 			/* For Flow Director block, the extraction sequence may
4219 			 * need to be altered in the case where there are paired
4220 			 * fields that have no match. This is necessary because
4221 			 * for Flow Director, src and dest fields need to paired
4222 			 * for filter programming and these values are swapped
4223 			 * during Tx.
4224 			 */
4225 			status = ice_update_fd_swap(hw, prof_id, es);
4226 			if (status)
4227 				goto err_ice_add_prof;
4228 		}
4229 		status = ice_update_prof_masking(hw, blk, prof_id, masks);
4230 		if (status)
4231 			goto err_ice_add_prof;
4232 
4233 		/* and write new es */
4234 		ice_write_es(hw, blk, prof_id, es);
4235 	}
4236 
4237 	ice_prof_inc_ref(hw, blk, prof_id);
4238 
4239 	/* add profile info */
4240 	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4241 	if (!prof) {
4242 		status = ICE_ERR_NO_MEMORY;
4243 		goto err_ice_add_prof;
4244 	}
4245 
4246 	prof->profile_cookie = id;
4247 	prof->prof_id = prof_id;
4248 	prof->ptg_cnt = 0;
4249 	prof->context = 0;
4250 
4251 	/* build list of ptgs */
4252 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4253 		u8 bit;
4254 
4255 		if (!ptypes[byte]) {
4256 			bytes--;
4257 			byte++;
4258 			continue;
4259 		}
4260 
4261 		/* Examine 8 bits per byte */
4262 		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4263 				 BITS_PER_BYTE) {
4264 			u16 ptype;
4265 			u8 ptg;
4266 
4267 			ptype = byte * BITS_PER_BYTE + bit;
4268 
4269 			/* The package should place all ptypes in a non-zero
4270 			 * PTG, so the following call should never fail.
4271 			 */
4272 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4273 				continue;
4274 
4275 			/* If PTG is already added, skip and continue */
4276 			if (test_bit(ptg, ptgs_used))
4277 				continue;
4278 
4279 			set_bit(ptg, ptgs_used);
4280 			/* Check to see there are any attributes for
4281 			 * this PTYPE, and add them if found.
4282 			 */
4283 			status = ice_add_prof_attrib(prof, ptg, ptype,
4284 						     attr, attr_cnt);
4285 			if (status == ICE_ERR_MAX_LIMIT)
4286 				break;
4287 			if (status) {
4288 				/* This is simple a PTYPE/PTG with no
4289 				 * attribute
4290 				 */
4291 				prof->ptg[prof->ptg_cnt] = ptg;
4292 				prof->attr[prof->ptg_cnt].flags = 0;
4293 				prof->attr[prof->ptg_cnt].mask = 0;
4294 
4295 				if (++prof->ptg_cnt >=
4296 				    ICE_MAX_PTG_PER_PROFILE)
4297 					break;
4298 			}
4299 		}
4300 
4301 		bytes--;
4302 		byte++;
4303 	}
4304 
4305 	list_add(&prof->list, &hw->blk[blk].es.prof_map);
4306 	status = 0;
4307 
4308 err_ice_add_prof:
4309 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4310 	return status;
4311 }
4312 
4313 /**
4314  * ice_search_prof_id - Search for a profile tracking ID
4315  * @hw: pointer to the HW struct
4316  * @blk: hardware block
4317  * @id: profile tracking ID
4318  *
4319  * This will search for a profile tracking ID which was previously added.
4320  * The profile map lock should be held before calling this function.
4321  */
4322 static struct ice_prof_map *
4323 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4324 {
4325 	struct ice_prof_map *entry = NULL;
4326 	struct ice_prof_map *map;
4327 
4328 	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
4329 		if (map->profile_cookie == id) {
4330 			entry = map;
4331 			break;
4332 		}
4333 
4334 	return entry;
4335 }
4336 
4337 /**
4338  * ice_vsig_prof_id_count - count profiles in a VSIG
4339  * @hw: pointer to the HW struct
4340  * @blk: hardware block
4341  * @vsig: VSIG to remove the profile from
4342  */
4343 static u16
4344 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4345 {
4346 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4347 	struct ice_vsig_prof *p;
4348 
4349 	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4350 			    list)
4351 		count++;
4352 
4353 	return count;
4354 }
4355 
4356 /**
4357  * ice_rel_tcam_idx - release a TCAM index
4358  * @hw: pointer to the HW struct
4359  * @blk: hardware block
4360  * @idx: the index to release
4361  */
4362 static enum ice_status
4363 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4364 {
4365 	/* Masks to invoke a never match entry */
4366 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4367 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4368 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4369 	enum ice_status status;
4370 
4371 	/* write the TCAM entry */
4372 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4373 				      dc_msk, nm_msk);
4374 	if (status)
4375 		return status;
4376 
4377 	/* release the TCAM entry */
4378 	status = ice_free_tcam_ent(hw, blk, idx);
4379 
4380 	return status;
4381 }
4382 
4383 /**
4384  * ice_rem_prof_id - remove one profile from a VSIG
4385  * @hw: pointer to the HW struct
4386  * @blk: hardware block
4387  * @prof: pointer to profile structure to remove
4388  */
4389 static enum ice_status
4390 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4391 		struct ice_vsig_prof *prof)
4392 {
4393 	enum ice_status status;
4394 	u16 i;
4395 
4396 	for (i = 0; i < prof->tcam_count; i++)
4397 		if (prof->tcam[i].in_use) {
4398 			prof->tcam[i].in_use = false;
4399 			status = ice_rel_tcam_idx(hw, blk,
4400 						  prof->tcam[i].tcam_idx);
4401 			if (status)
4402 				return ICE_ERR_HW_TABLE;
4403 		}
4404 
4405 	return 0;
4406 }
4407 
4408 /**
4409  * ice_rem_vsig - remove VSIG
4410  * @hw: pointer to the HW struct
4411  * @blk: hardware block
4412  * @vsig: the VSIG to remove
4413  * @chg: the change list
4414  */
4415 static enum ice_status
4416 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4417 	     struct list_head *chg)
4418 {
4419 	u16 idx = vsig & ICE_VSIG_IDX_M;
4420 	struct ice_vsig_vsi *vsi_cur;
4421 	struct ice_vsig_prof *d, *t;
4422 	enum ice_status status;
4423 
4424 	/* remove TCAM entries */
4425 	list_for_each_entry_safe(d, t,
4426 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4427 				 list) {
4428 		status = ice_rem_prof_id(hw, blk, d);
4429 		if (status)
4430 			return status;
4431 
4432 		list_del(&d->list);
4433 		devm_kfree(ice_hw_to_dev(hw), d);
4434 	}
4435 
4436 	/* Move all VSIS associated with this VSIG to the default VSIG */
4437 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4438 	/* If the VSIG has at least 1 VSI then iterate through the list
4439 	 * and remove the VSIs before deleting the group.
4440 	 */
4441 	if (vsi_cur)
4442 		do {
4443 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4444 			struct ice_chs_chg *p;
4445 
4446 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4447 					 GFP_KERNEL);
4448 			if (!p)
4449 				return ICE_ERR_NO_MEMORY;
4450 
4451 			p->type = ICE_VSIG_REM;
4452 			p->orig_vsig = vsig;
4453 			p->vsig = ICE_DEFAULT_VSIG;
4454 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4455 
4456 			list_add(&p->list_entry, chg);
4457 
4458 			vsi_cur = tmp;
4459 		} while (vsi_cur);
4460 
4461 	return ice_vsig_free(hw, blk, vsig);
4462 }
4463 
4464 /**
4465  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4466  * @hw: pointer to the HW struct
4467  * @blk: hardware block
4468  * @vsig: VSIG to remove the profile from
4469  * @hdl: profile handle indicating which profile to remove
4470  * @chg: list to receive a record of changes
4471  */
4472 static enum ice_status
4473 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4474 		     struct list_head *chg)
4475 {
4476 	u16 idx = vsig & ICE_VSIG_IDX_M;
4477 	struct ice_vsig_prof *p, *t;
4478 	enum ice_status status;
4479 
4480 	list_for_each_entry_safe(p, t,
4481 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4482 				 list)
4483 		if (p->profile_cookie == hdl) {
4484 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4485 				/* this is the last profile, remove the VSIG */
4486 				return ice_rem_vsig(hw, blk, vsig, chg);
4487 
4488 			status = ice_rem_prof_id(hw, blk, p);
4489 			if (!status) {
4490 				list_del(&p->list);
4491 				devm_kfree(ice_hw_to_dev(hw), p);
4492 			}
4493 			return status;
4494 		}
4495 
4496 	return ICE_ERR_DOES_NOT_EXIST;
4497 }
4498 
4499 /**
4500  * ice_rem_flow_all - remove all flows with a particular profile
4501  * @hw: pointer to the HW struct
4502  * @blk: hardware block
4503  * @id: profile tracking ID
4504  */
4505 static enum ice_status
4506 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4507 {
4508 	struct ice_chs_chg *del, *tmp;
4509 	enum ice_status status;
4510 	struct list_head chg;
4511 	u16 i;
4512 
4513 	INIT_LIST_HEAD(&chg);
4514 
4515 	for (i = 1; i < ICE_MAX_VSIGS; i++)
4516 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4517 			if (ice_has_prof_vsig(hw, blk, i, id)) {
4518 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4519 							      &chg);
4520 				if (status)
4521 					goto err_ice_rem_flow_all;
4522 			}
4523 		}
4524 
4525 	status = ice_upd_prof_hw(hw, blk, &chg);
4526 
4527 err_ice_rem_flow_all:
4528 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4529 		list_del(&del->list_entry);
4530 		devm_kfree(ice_hw_to_dev(hw), del);
4531 	}
4532 
4533 	return status;
4534 }
4535 
4536 /**
4537  * ice_rem_prof - remove profile
4538  * @hw: pointer to the HW struct
4539  * @blk: hardware block
4540  * @id: profile tracking ID
4541  *
4542  * This will remove the profile specified by the ID parameter, which was
4543  * previously created through ice_add_prof. If any existing entries
4544  * are associated with this profile, they will be removed as well.
4545  */
4546 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4547 {
4548 	struct ice_prof_map *pmap;
4549 	enum ice_status status;
4550 
4551 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4552 
4553 	pmap = ice_search_prof_id(hw, blk, id);
4554 	if (!pmap) {
4555 		status = ICE_ERR_DOES_NOT_EXIST;
4556 		goto err_ice_rem_prof;
4557 	}
4558 
4559 	/* remove all flows with this profile */
4560 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4561 	if (status)
4562 		goto err_ice_rem_prof;
4563 
4564 	/* dereference profile, and possibly remove */
4565 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4566 
4567 	list_del(&pmap->list);
4568 	devm_kfree(ice_hw_to_dev(hw), pmap);
4569 
4570 err_ice_rem_prof:
4571 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4572 	return status;
4573 }
4574 
4575 /**
4576  * ice_get_prof - get profile
4577  * @hw: pointer to the HW struct
4578  * @blk: hardware block
4579  * @hdl: profile handle
4580  * @chg: change list
4581  */
4582 static enum ice_status
4583 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4584 	     struct list_head *chg)
4585 {
4586 	enum ice_status status = 0;
4587 	struct ice_prof_map *map;
4588 	struct ice_chs_chg *p;
4589 	u16 i;
4590 
4591 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4592 	/* Get the details on the profile specified by the handle ID */
4593 	map = ice_search_prof_id(hw, blk, hdl);
4594 	if (!map) {
4595 		status = ICE_ERR_DOES_NOT_EXIST;
4596 		goto err_ice_get_prof;
4597 	}
4598 
4599 	for (i = 0; i < map->ptg_cnt; i++)
4600 		if (!hw->blk[blk].es.written[map->prof_id]) {
4601 			/* add ES to change list */
4602 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4603 					 GFP_KERNEL);
4604 			if (!p) {
4605 				status = ICE_ERR_NO_MEMORY;
4606 				goto err_ice_get_prof;
4607 			}
4608 
4609 			p->type = ICE_PTG_ES_ADD;
4610 			p->ptype = 0;
4611 			p->ptg = map->ptg[i];
4612 			p->add_ptg = 0;
4613 
4614 			p->add_prof = 1;
4615 			p->prof_id = map->prof_id;
4616 
4617 			hw->blk[blk].es.written[map->prof_id] = true;
4618 
4619 			list_add(&p->list_entry, chg);
4620 		}
4621 
4622 err_ice_get_prof:
4623 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4624 	/* let caller clean up the change list */
4625 	return status;
4626 }
4627 
4628 /**
4629  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4630  * @hw: pointer to the HW struct
4631  * @blk: hardware block
4632  * @vsig: VSIG from which to copy the list
4633  * @lst: output list
4634  *
4635  * This routine makes a copy of the list of profiles in the specified VSIG.
4636  */
4637 static enum ice_status
4638 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4639 		   struct list_head *lst)
4640 {
4641 	struct ice_vsig_prof *ent1, *ent2;
4642 	u16 idx = vsig & ICE_VSIG_IDX_M;
4643 
4644 	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4645 			    list) {
4646 		struct ice_vsig_prof *p;
4647 
4648 		/* copy to the input list */
4649 		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
4650 				 GFP_KERNEL);
4651 		if (!p)
4652 			goto err_ice_get_profs_vsig;
4653 
4654 		list_add_tail(&p->list, lst);
4655 	}
4656 
4657 	return 0;
4658 
4659 err_ice_get_profs_vsig:
4660 	list_for_each_entry_safe(ent1, ent2, lst, list) {
4661 		list_del(&ent1->list);
4662 		devm_kfree(ice_hw_to_dev(hw), ent1);
4663 	}
4664 
4665 	return ICE_ERR_NO_MEMORY;
4666 }
4667 
4668 /**
4669  * ice_add_prof_to_lst - add profile entry to a list
4670  * @hw: pointer to the HW struct
4671  * @blk: hardware block
4672  * @lst: the list to be added to
4673  * @hdl: profile handle of entry to add
4674  */
4675 static enum ice_status
4676 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4677 		    struct list_head *lst, u64 hdl)
4678 {
4679 	enum ice_status status = 0;
4680 	struct ice_prof_map *map;
4681 	struct ice_vsig_prof *p;
4682 	u16 i;
4683 
4684 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4685 	map = ice_search_prof_id(hw, blk, hdl);
4686 	if (!map) {
4687 		status = ICE_ERR_DOES_NOT_EXIST;
4688 		goto err_ice_add_prof_to_lst;
4689 	}
4690 
4691 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4692 	if (!p) {
4693 		status = ICE_ERR_NO_MEMORY;
4694 		goto err_ice_add_prof_to_lst;
4695 	}
4696 
4697 	p->profile_cookie = map->profile_cookie;
4698 	p->prof_id = map->prof_id;
4699 	p->tcam_count = map->ptg_cnt;
4700 
4701 	for (i = 0; i < map->ptg_cnt; i++) {
4702 		p->tcam[i].prof_id = map->prof_id;
4703 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4704 		p->tcam[i].ptg = map->ptg[i];
4705 	}
4706 
4707 	list_add(&p->list, lst);
4708 
4709 err_ice_add_prof_to_lst:
4710 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4711 	return status;
4712 }
4713 
4714 /**
4715  * ice_move_vsi - move VSI to another VSIG
4716  * @hw: pointer to the HW struct
4717  * @blk: hardware block
4718  * @vsi: the VSI to move
4719  * @vsig: the VSIG to move the VSI to
4720  * @chg: the change list
4721  */
4722 static enum ice_status
4723 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4724 	     struct list_head *chg)
4725 {
4726 	enum ice_status status;
4727 	struct ice_chs_chg *p;
4728 	u16 orig_vsig;
4729 
4730 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4731 	if (!p)
4732 		return ICE_ERR_NO_MEMORY;
4733 
4734 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4735 	if (!status)
4736 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4737 
4738 	if (status) {
4739 		devm_kfree(ice_hw_to_dev(hw), p);
4740 		return status;
4741 	}
4742 
4743 	p->type = ICE_VSI_MOVE;
4744 	p->vsi = vsi;
4745 	p->orig_vsig = orig_vsig;
4746 	p->vsig = vsig;
4747 
4748 	list_add(&p->list_entry, chg);
4749 
4750 	return 0;
4751 }
4752 
4753 /**
4754  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4755  * @hw: pointer to the HW struct
4756  * @idx: the index of the TCAM entry to remove
4757  * @chg: the list of change structures to search
4758  */
4759 static void
4760 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
4761 {
4762 	struct ice_chs_chg *pos, *tmp;
4763 
4764 	list_for_each_entry_safe(tmp, pos, chg, list_entry)
4765 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4766 			list_del(&tmp->list_entry);
4767 			devm_kfree(ice_hw_to_dev(hw), tmp);
4768 		}
4769 }
4770 
4771 /**
4772  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4773  * @hw: pointer to the HW struct
4774  * @blk: hardware block
4775  * @enable: true to enable, false to disable
4776  * @vsig: the VSIG of the TCAM entry
4777  * @tcam: pointer the TCAM info structure of the TCAM to disable
4778  * @chg: the change list
4779  *
4780  * This function appends an enable or disable TCAM entry in the change log
4781  */
4782 static enum ice_status
4783 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4784 		      u16 vsig, struct ice_tcam_inf *tcam,
4785 		      struct list_head *chg)
4786 {
4787 	enum ice_status status;
4788 	struct ice_chs_chg *p;
4789 
4790 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4791 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4792 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4793 
4794 	/* if disabling, free the TCAM */
4795 	if (!enable) {
4796 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4797 
4798 		/* if we have already created a change for this TCAM entry, then
4799 		 * we need to remove that entry, in order to prevent writing to
4800 		 * a TCAM entry we no longer will have ownership of.
4801 		 */
4802 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4803 		tcam->tcam_idx = 0;
4804 		tcam->in_use = 0;
4805 		return status;
4806 	}
4807 
4808 	/* for re-enabling, reallocate a TCAM */
4809 	/* for entries with empty attribute masks, allocate entry from
4810 	 * the bottom of the TCAM table; otherwise, allocate from the
4811 	 * top of the table in order to give it higher priority
4812 	 */
4813 	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
4814 				    &tcam->tcam_idx);
4815 	if (status)
4816 		return status;
4817 
4818 	/* add TCAM to change list */
4819 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4820 	if (!p)
4821 		return ICE_ERR_NO_MEMORY;
4822 
4823 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4824 				      tcam->ptg, vsig, 0, tcam->attr.flags,
4825 				      vl_msk, dc_msk, nm_msk);
4826 	if (status)
4827 		goto err_ice_prof_tcam_ena_dis;
4828 
4829 	tcam->in_use = 1;
4830 
4831 	p->type = ICE_TCAM_ADD;
4832 	p->add_tcam_idx = true;
4833 	p->prof_id = tcam->prof_id;
4834 	p->ptg = tcam->ptg;
4835 	p->vsig = 0;
4836 	p->tcam_idx = tcam->tcam_idx;
4837 
4838 	/* log change */
4839 	list_add(&p->list_entry, chg);
4840 
4841 	return 0;
4842 
4843 err_ice_prof_tcam_ena_dis:
4844 	devm_kfree(ice_hw_to_dev(hw), p);
4845 	return status;
4846 }
4847 
4848 /**
4849  * ice_adj_prof_priorities - adjust profile based on priorities
4850  * @hw: pointer to the HW struct
4851  * @blk: hardware block
4852  * @vsig: the VSIG for which to adjust profile priorities
4853  * @chg: the change list
4854  */
4855 static enum ice_status
4856 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4857 			struct list_head *chg)
4858 {
4859 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4860 	struct ice_vsig_prof *t;
4861 	enum ice_status status;
4862 	u16 idx;
4863 
4864 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4865 	idx = vsig & ICE_VSIG_IDX_M;
4866 
4867 	/* Priority is based on the order in which the profiles are added. The
4868 	 * newest added profile has highest priority and the oldest added
4869 	 * profile has the lowest priority. Since the profile property list for
4870 	 * a VSIG is sorted from newest to oldest, this code traverses the list
4871 	 * in order and enables the first of each PTG that it finds (that is not
4872 	 * already enabled); it also disables any duplicate PTGs that it finds
4873 	 * in the older profiles (that are currently enabled).
4874 	 */
4875 
4876 	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4877 			    list) {
4878 		u16 i;
4879 
4880 		for (i = 0; i < t->tcam_count; i++) {
4881 			/* Scan the priorities from newest to oldest.
4882 			 * Make sure that the newest profiles take priority.
4883 			 */
4884 			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
4885 			    t->tcam[i].in_use) {
4886 				/* need to mark this PTG as never match, as it
4887 				 * was already in use and therefore duplicate
4888 				 * (and lower priority)
4889 				 */
4890 				status = ice_prof_tcam_ena_dis(hw, blk, false,
4891 							       vsig,
4892 							       &t->tcam[i],
4893 							       chg);
4894 				if (status)
4895 					return status;
4896 			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
4897 				   !t->tcam[i].in_use) {
4898 				/* need to enable this PTG, as it in not in use
4899 				 * and not enabled (highest priority)
4900 				 */
4901 				status = ice_prof_tcam_ena_dis(hw, blk, true,
4902 							       vsig,
4903 							       &t->tcam[i],
4904 							       chg);
4905 				if (status)
4906 					return status;
4907 			}
4908 
4909 			/* keep track of used ptgs */
4910 			set_bit(t->tcam[i].ptg, ptgs_used);
4911 		}
4912 	}
4913 
4914 	return 0;
4915 }
4916 
4917 /**
4918  * ice_add_prof_id_vsig - add profile to VSIG
4919  * @hw: pointer to the HW struct
4920  * @blk: hardware block
4921  * @vsig: the VSIG to which this profile is to be added
4922  * @hdl: the profile handle indicating the profile to add
4923  * @rev: true to add entries to the end of the list
4924  * @chg: the change list
4925  */
4926 static enum ice_status
4927 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4928 		     bool rev, struct list_head *chg)
4929 {
4930 	/* Masks that ignore flags */
4931 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4932 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4933 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4934 	enum ice_status status = 0;
4935 	struct ice_prof_map *map;
4936 	struct ice_vsig_prof *t;
4937 	struct ice_chs_chg *p;
4938 	u16 vsig_idx, i;
4939 
4940 	/* Error, if this VSIG already has this profile */
4941 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
4942 		return ICE_ERR_ALREADY_EXISTS;
4943 
4944 	/* new VSIG profile structure */
4945 	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
4946 	if (!t)
4947 		return ICE_ERR_NO_MEMORY;
4948 
4949 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4950 	/* Get the details on the profile specified by the handle ID */
4951 	map = ice_search_prof_id(hw, blk, hdl);
4952 	if (!map) {
4953 		status = ICE_ERR_DOES_NOT_EXIST;
4954 		goto err_ice_add_prof_id_vsig;
4955 	}
4956 
4957 	t->profile_cookie = map->profile_cookie;
4958 	t->prof_id = map->prof_id;
4959 	t->tcam_count = map->ptg_cnt;
4960 
4961 	/* create TCAM entries */
4962 	for (i = 0; i < map->ptg_cnt; i++) {
4963 		u16 tcam_idx;
4964 
4965 		/* add TCAM to change list */
4966 		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4967 		if (!p) {
4968 			status = ICE_ERR_NO_MEMORY;
4969 			goto err_ice_add_prof_id_vsig;
4970 		}
4971 
4972 		/* allocate the TCAM entry index */
4973 		/* for entries with empty attribute masks, allocate entry from
4974 		 * the bottom of the TCAM table; otherwise, allocate from the
4975 		 * top of the table in order to give it higher priority
4976 		 */
4977 		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
4978 					    &tcam_idx);
4979 		if (status) {
4980 			devm_kfree(ice_hw_to_dev(hw), p);
4981 			goto err_ice_add_prof_id_vsig;
4982 		}
4983 
4984 		t->tcam[i].ptg = map->ptg[i];
4985 		t->tcam[i].prof_id = map->prof_id;
4986 		t->tcam[i].tcam_idx = tcam_idx;
4987 		t->tcam[i].attr = map->attr[i];
4988 		t->tcam[i].in_use = true;
4989 
4990 		p->type = ICE_TCAM_ADD;
4991 		p->add_tcam_idx = true;
4992 		p->prof_id = t->tcam[i].prof_id;
4993 		p->ptg = t->tcam[i].ptg;
4994 		p->vsig = vsig;
4995 		p->tcam_idx = t->tcam[i].tcam_idx;
4996 
4997 		/* write the TCAM entry */
4998 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
4999 					      t->tcam[i].prof_id,
5000 					      t->tcam[i].ptg, vsig, 0, 0,
5001 					      vl_msk, dc_msk, nm_msk);
5002 		if (status) {
5003 			devm_kfree(ice_hw_to_dev(hw), p);
5004 			goto err_ice_add_prof_id_vsig;
5005 		}
5006 
5007 		/* log change */
5008 		list_add(&p->list_entry, chg);
5009 	}
5010 
5011 	/* add profile to VSIG */
5012 	vsig_idx = vsig & ICE_VSIG_IDX_M;
5013 	if (rev)
5014 		list_add_tail(&t->list,
5015 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5016 	else
5017 		list_add(&t->list,
5018 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5019 
5020 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5021 	return status;
5022 
5023 err_ice_add_prof_id_vsig:
5024 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5025 	/* let caller clean up the change list */
5026 	devm_kfree(ice_hw_to_dev(hw), t);
5027 	return status;
5028 }
5029 
5030 /**
5031  * ice_create_prof_id_vsig - add a new VSIG with a single profile
5032  * @hw: pointer to the HW struct
5033  * @blk: hardware block
5034  * @vsi: the initial VSI that will be in VSIG
5035  * @hdl: the profile handle of the profile that will be added to the VSIG
5036  * @chg: the change list
5037  */
5038 static enum ice_status
5039 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5040 			struct list_head *chg)
5041 {
5042 	enum ice_status status;
5043 	struct ice_chs_chg *p;
5044 	u16 new_vsig;
5045 
5046 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5047 	if (!p)
5048 		return ICE_ERR_NO_MEMORY;
5049 
5050 	new_vsig = ice_vsig_alloc(hw, blk);
5051 	if (!new_vsig) {
5052 		status = ICE_ERR_HW_TABLE;
5053 		goto err_ice_create_prof_id_vsig;
5054 	}
5055 
5056 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5057 	if (status)
5058 		goto err_ice_create_prof_id_vsig;
5059 
5060 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5061 	if (status)
5062 		goto err_ice_create_prof_id_vsig;
5063 
5064 	p->type = ICE_VSIG_ADD;
5065 	p->vsi = vsi;
5066 	p->orig_vsig = ICE_DEFAULT_VSIG;
5067 	p->vsig = new_vsig;
5068 
5069 	list_add(&p->list_entry, chg);
5070 
5071 	return 0;
5072 
5073 err_ice_create_prof_id_vsig:
5074 	/* let caller clean up the change list */
5075 	devm_kfree(ice_hw_to_dev(hw), p);
5076 	return status;
5077 }
5078 
5079 /**
5080  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5081  * @hw: pointer to the HW struct
5082  * @blk: hardware block
5083  * @vsi: the initial VSI that will be in VSIG
5084  * @lst: the list of profile that will be added to the VSIG
5085  * @new_vsig: return of new VSIG
5086  * @chg: the change list
5087  */
5088 static enum ice_status
5089 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5090 			 struct list_head *lst, u16 *new_vsig,
5091 			 struct list_head *chg)
5092 {
5093 	struct ice_vsig_prof *t;
5094 	enum ice_status status;
5095 	u16 vsig;
5096 
5097 	vsig = ice_vsig_alloc(hw, blk);
5098 	if (!vsig)
5099 		return ICE_ERR_HW_TABLE;
5100 
5101 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5102 	if (status)
5103 		return status;
5104 
5105 	list_for_each_entry(t, lst, list) {
5106 		/* Reverse the order here since we are copying the list */
5107 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5108 					      true, chg);
5109 		if (status)
5110 			return status;
5111 	}
5112 
5113 	*new_vsig = vsig;
5114 
5115 	return 0;
5116 }
5117 
5118 /**
5119  * ice_find_prof_vsig - find a VSIG with a specific profile handle
5120  * @hw: pointer to the HW struct
5121  * @blk: hardware block
5122  * @hdl: the profile handle of the profile to search for
5123  * @vsig: returns the VSIG with the matching profile
5124  */
5125 static bool
5126 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5127 {
5128 	struct ice_vsig_prof *t;
5129 	enum ice_status status;
5130 	struct list_head lst;
5131 
5132 	INIT_LIST_HEAD(&lst);
5133 
5134 	t = kzalloc(sizeof(*t), GFP_KERNEL);
5135 	if (!t)
5136 		return false;
5137 
5138 	t->profile_cookie = hdl;
5139 	list_add(&t->list, &lst);
5140 
5141 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5142 
5143 	list_del(&t->list);
5144 	kfree(t);
5145 
5146 	return !status;
5147 }
5148 
5149 /**
5150  * ice_add_prof_id_flow - add profile flow
5151  * @hw: pointer to the HW struct
5152  * @blk: hardware block
5153  * @vsi: the VSI to enable with the profile specified by ID
5154  * @hdl: profile handle
5155  *
5156  * Calling this function will update the hardware tables to enable the
5157  * profile indicated by the ID parameter for the VSIs specified in the VSI
5158  * array. Once successfully called, the flow will be enabled.
5159  */
5160 enum ice_status
5161 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5162 {
5163 	struct ice_vsig_prof *tmp1, *del1;
5164 	struct ice_chs_chg *tmp, *del;
5165 	struct list_head union_lst;
5166 	enum ice_status status;
5167 	struct list_head chg;
5168 	u16 vsig;
5169 
5170 	INIT_LIST_HEAD(&union_lst);
5171 	INIT_LIST_HEAD(&chg);
5172 
5173 	/* Get profile */
5174 	status = ice_get_prof(hw, blk, hdl, &chg);
5175 	if (status)
5176 		return status;
5177 
5178 	/* determine if VSI is already part of a VSIG */
5179 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5180 	if (!status && vsig) {
5181 		bool only_vsi;
5182 		u16 or_vsig;
5183 		u16 ref;
5184 
5185 		/* found in VSIG */
5186 		or_vsig = vsig;
5187 
5188 		/* make sure that there is no overlap/conflict between the new
5189 		 * characteristics and the existing ones; we don't support that
5190 		 * scenario
5191 		 */
5192 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5193 			status = ICE_ERR_ALREADY_EXISTS;
5194 			goto err_ice_add_prof_id_flow;
5195 		}
5196 
5197 		/* last VSI in the VSIG? */
5198 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5199 		if (status)
5200 			goto err_ice_add_prof_id_flow;
5201 		only_vsi = (ref == 1);
5202 
5203 		/* create a union of the current profiles and the one being
5204 		 * added
5205 		 */
5206 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5207 		if (status)
5208 			goto err_ice_add_prof_id_flow;
5209 
5210 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5211 		if (status)
5212 			goto err_ice_add_prof_id_flow;
5213 
5214 		/* search for an existing VSIG with an exact charc match */
5215 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5216 		if (!status) {
5217 			/* move VSI to the VSIG that matches */
5218 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5219 			if (status)
5220 				goto err_ice_add_prof_id_flow;
5221 
5222 			/* VSI has been moved out of or_vsig. If the or_vsig had
5223 			 * only that VSI it is now empty and can be removed.
5224 			 */
5225 			if (only_vsi) {
5226 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5227 				if (status)
5228 					goto err_ice_add_prof_id_flow;
5229 			}
5230 		} else if (only_vsi) {
5231 			/* If the original VSIG only contains one VSI, then it
5232 			 * will be the requesting VSI. In this case the VSI is
5233 			 * not sharing entries and we can simply add the new
5234 			 * profile to the VSIG.
5235 			 */
5236 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5237 						      &chg);
5238 			if (status)
5239 				goto err_ice_add_prof_id_flow;
5240 
5241 			/* Adjust priorities */
5242 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5243 			if (status)
5244 				goto err_ice_add_prof_id_flow;
5245 		} else {
5246 			/* No match, so we need a new VSIG */
5247 			status = ice_create_vsig_from_lst(hw, blk, vsi,
5248 							  &union_lst, &vsig,
5249 							  &chg);
5250 			if (status)
5251 				goto err_ice_add_prof_id_flow;
5252 
5253 			/* Adjust priorities */
5254 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5255 			if (status)
5256 				goto err_ice_add_prof_id_flow;
5257 		}
5258 	} else {
5259 		/* need to find or add a VSIG */
5260 		/* search for an existing VSIG with an exact charc match */
5261 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5262 			/* found an exact match */
5263 			/* add or move VSI to the VSIG that matches */
5264 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5265 			if (status)
5266 				goto err_ice_add_prof_id_flow;
5267 		} else {
5268 			/* we did not find an exact match */
5269 			/* we need to add a VSIG */
5270 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5271 							 &chg);
5272 			if (status)
5273 				goto err_ice_add_prof_id_flow;
5274 		}
5275 	}
5276 
5277 	/* update hardware */
5278 	if (!status)
5279 		status = ice_upd_prof_hw(hw, blk, &chg);
5280 
5281 err_ice_add_prof_id_flow:
5282 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5283 		list_del(&del->list_entry);
5284 		devm_kfree(ice_hw_to_dev(hw), del);
5285 	}
5286 
5287 	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5288 		list_del(&del1->list);
5289 		devm_kfree(ice_hw_to_dev(hw), del1);
5290 	}
5291 
5292 	return status;
5293 }
5294 
5295 /**
5296  * ice_rem_prof_from_list - remove a profile from list
5297  * @hw: pointer to the HW struct
5298  * @lst: list to remove the profile from
5299  * @hdl: the profile handle indicating the profile to remove
5300  */
5301 static enum ice_status
5302 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5303 {
5304 	struct ice_vsig_prof *ent, *tmp;
5305 
5306 	list_for_each_entry_safe(ent, tmp, lst, list)
5307 		if (ent->profile_cookie == hdl) {
5308 			list_del(&ent->list);
5309 			devm_kfree(ice_hw_to_dev(hw), ent);
5310 			return 0;
5311 		}
5312 
5313 	return ICE_ERR_DOES_NOT_EXIST;
5314 }
5315 
5316 /**
5317  * ice_rem_prof_id_flow - remove flow
5318  * @hw: pointer to the HW struct
5319  * @blk: hardware block
5320  * @vsi: the VSI from which to remove the profile specified by ID
5321  * @hdl: profile tracking handle
5322  *
5323  * Calling this function will update the hardware tables to remove the
5324  * profile indicated by the ID parameter for the VSIs specified in the VSI
5325  * array. Once successfully called, the flow will be disabled.
5326  */
5327 enum ice_status
5328 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5329 {
5330 	struct ice_vsig_prof *tmp1, *del1;
5331 	struct ice_chs_chg *tmp, *del;
5332 	struct list_head chg, copy;
5333 	enum ice_status status;
5334 	u16 vsig;
5335 
5336 	INIT_LIST_HEAD(&copy);
5337 	INIT_LIST_HEAD(&chg);
5338 
5339 	/* determine if VSI is already part of a VSIG */
5340 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5341 	if (!status && vsig) {
5342 		bool last_profile;
5343 		bool only_vsi;
5344 		u16 ref;
5345 
5346 		/* found in VSIG */
5347 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5348 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5349 		if (status)
5350 			goto err_ice_rem_prof_id_flow;
5351 		only_vsi = (ref == 1);
5352 
5353 		if (only_vsi) {
5354 			/* If the original VSIG only contains one reference,
5355 			 * which will be the requesting VSI, then the VSI is not
5356 			 * sharing entries and we can simply remove the specific
5357 			 * characteristics from the VSIG.
5358 			 */
5359 
5360 			if (last_profile) {
5361 				/* If there are no profiles left for this VSIG,
5362 				 * then simply remove the VSIG.
5363 				 */
5364 				status = ice_rem_vsig(hw, blk, vsig, &chg);
5365 				if (status)
5366 					goto err_ice_rem_prof_id_flow;
5367 			} else {
5368 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
5369 							      hdl, &chg);
5370 				if (status)
5371 					goto err_ice_rem_prof_id_flow;
5372 
5373 				/* Adjust priorities */
5374 				status = ice_adj_prof_priorities(hw, blk, vsig,
5375 								 &chg);
5376 				if (status)
5377 					goto err_ice_rem_prof_id_flow;
5378 			}
5379 
5380 		} else {
5381 			/* Make a copy of the VSIG's list of Profiles */
5382 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
5383 			if (status)
5384 				goto err_ice_rem_prof_id_flow;
5385 
5386 			/* Remove specified profile entry from the list */
5387 			status = ice_rem_prof_from_list(hw, &copy, hdl);
5388 			if (status)
5389 				goto err_ice_rem_prof_id_flow;
5390 
5391 			if (list_empty(&copy)) {
5392 				status = ice_move_vsi(hw, blk, vsi,
5393 						      ICE_DEFAULT_VSIG, &chg);
5394 				if (status)
5395 					goto err_ice_rem_prof_id_flow;
5396 
5397 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
5398 							    &vsig)) {
5399 				/* found an exact match */
5400 				/* add or move VSI to the VSIG that matches */
5401 				/* Search for a VSIG with a matching profile
5402 				 * list
5403 				 */
5404 
5405 				/* Found match, move VSI to the matching VSIG */
5406 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5407 				if (status)
5408 					goto err_ice_rem_prof_id_flow;
5409 			} else {
5410 				/* since no existing VSIG supports this
5411 				 * characteristic pattern, we need to create a
5412 				 * new VSIG and TCAM entries
5413 				 */
5414 				status = ice_create_vsig_from_lst(hw, blk, vsi,
5415 								  &copy, &vsig,
5416 								  &chg);
5417 				if (status)
5418 					goto err_ice_rem_prof_id_flow;
5419 
5420 				/* Adjust priorities */
5421 				status = ice_adj_prof_priorities(hw, blk, vsig,
5422 								 &chg);
5423 				if (status)
5424 					goto err_ice_rem_prof_id_flow;
5425 			}
5426 		}
5427 	} else {
5428 		status = ICE_ERR_DOES_NOT_EXIST;
5429 	}
5430 
5431 	/* update hardware tables */
5432 	if (!status)
5433 		status = ice_upd_prof_hw(hw, blk, &chg);
5434 
5435 err_ice_rem_prof_id_flow:
5436 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5437 		list_del(&del->list_entry);
5438 		devm_kfree(ice_hw_to_dev(hw), del);
5439 	}
5440 
5441 	list_for_each_entry_safe(del1, tmp1, &copy, list) {
5442 		list_del(&del1->list);
5443 		devm_kfree(ice_hw_to_dev(hw), del1);
5444 	}
5445 
5446 	return status;
5447 }
5448