1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 /* cppcheck-suppress nullPointer */ 338 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 339 return NULL; 340 341 if (offset) 342 *offset = 0; 343 344 boost = section; 345 if (index >= le16_to_cpu(boost->count)) 346 return NULL; 347 348 return boost->tcam + index; 349 } 350 351 /** 352 * ice_find_boost_entry 353 * @ice_seg: pointer to the ice segment (non-NULL) 354 * @addr: Boost TCAM address of entry to search for 355 * @entry: returns pointer to the entry 356 * 357 * Finds a particular Boost TCAM entry and returns a pointer to that entry 358 * if it is found. The ice_seg parameter must not be NULL since the first call 359 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 360 */ 361 static enum ice_status 362 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 363 struct ice_boost_tcam_entry **entry) 364 { 365 struct ice_boost_tcam_entry *tcam; 366 struct ice_pkg_enum state; 367 368 memset(&state, 0, sizeof(state)); 369 370 if (!ice_seg) 371 return ICE_ERR_PARAM; 372 373 do { 374 tcam = ice_pkg_enum_entry(ice_seg, &state, 375 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 376 ice_boost_tcam_handler); 377 if (tcam && le16_to_cpu(tcam->addr) == addr) { 378 *entry = tcam; 379 return 0; 380 } 381 382 ice_seg = NULL; 383 } while (tcam); 384 385 *entry = NULL; 386 return ICE_ERR_CFG; 387 } 388 389 /** 390 * ice_label_enum_handler 391 * @sect_type: section type 392 * @section: pointer to section 393 * @index: index of the label entry to be returned 394 * @offset: pointer to receive absolute offset, always zero for label sections 395 * 396 * This is a callback function that can be passed to ice_pkg_enum_entry. 397 * Handles enumeration of individual label entries. 398 */ 399 static void * 400 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 401 u32 *offset) 402 { 403 struct ice_label_section *labels; 404 405 if (!section) 406 return NULL; 407 408 /* cppcheck-suppress nullPointer */ 409 if (index > ICE_MAX_LABELS_IN_BUF) 410 return NULL; 411 412 if (offset) 413 *offset = 0; 414 415 labels = section; 416 if (index >= le16_to_cpu(labels->count)) 417 return NULL; 418 419 return labels->label + index; 420 } 421 422 /** 423 * ice_enum_labels 424 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 425 * @type: the section type that will contain the label (0 on subsequent calls) 426 * @state: ice_pkg_enum structure that will hold the state of the enumeration 427 * @value: pointer to a value that will return the label's value if found 428 * 429 * Enumerates a list of labels in the package. The caller will call 430 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 431 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 432 * the end of the list has been reached. 433 */ 434 static char * 435 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 436 u16 *value) 437 { 438 struct ice_label *label; 439 440 /* Check for valid label section on first call */ 441 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 442 return NULL; 443 444 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 445 ice_label_enum_handler); 446 if (!label) 447 return NULL; 448 449 *value = le16_to_cpu(label->value); 450 return label->name; 451 } 452 453 /** 454 * ice_init_pkg_hints 455 * @hw: pointer to the HW structure 456 * @ice_seg: pointer to the segment of the package scan (non-NULL) 457 * 458 * This function will scan the package and save off relevant information 459 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 460 * since the first call to ice_enum_labels requires a pointer to an actual 461 * ice_seg structure. 462 */ 463 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 464 { 465 struct ice_pkg_enum state; 466 char *label_name; 467 u16 val; 468 int i; 469 470 memset(&hw->tnl, 0, sizeof(hw->tnl)); 471 memset(&state, 0, sizeof(state)); 472 473 if (!ice_seg) 474 return; 475 476 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 477 &val); 478 479 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 480 for (i = 0; tnls[i].type != TNL_LAST; i++) { 481 size_t len = strlen(tnls[i].label_prefix); 482 483 /* Look for matching label start, before continuing */ 484 if (strncmp(label_name, tnls[i].label_prefix, len)) 485 continue; 486 487 /* Make sure this label matches our PF. Note that the PF 488 * character ('0' - '7') will be located where our 489 * prefix string's null terminator is located. 490 */ 491 if ((label_name[len] - '0') == hw->pf_id) { 492 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 493 hw->tnl.tbl[hw->tnl.count].valid = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) { 509 hw->tnl.tbl[i].valid = true; 510 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 511 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 512 } 513 } 514 } 515 516 /* Key creation */ 517 518 #define ICE_DC_KEY 0x1 /* don't care */ 519 #define ICE_DC_KEYINV 0x1 520 #define ICE_NM_KEY 0x0 /* never match */ 521 #define ICE_NM_KEYINV 0x0 522 #define ICE_0_KEY 0x1 /* match 0 */ 523 #define ICE_0_KEYINV 0x0 524 #define ICE_1_KEY 0x0 /* match 1 */ 525 #define ICE_1_KEYINV 0x1 526 527 /** 528 * ice_gen_key_word - generate 16-bits of a key/mask word 529 * @val: the value 530 * @valid: valid bits mask (change only the valid bits) 531 * @dont_care: don't care mask 532 * @nvr_mtch: never match mask 533 * @key: pointer to an array of where the resulting key portion 534 * @key_inv: pointer to an array of where the resulting key invert portion 535 * 536 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 537 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 538 * of key and 8 bits of key invert. 539 * 540 * '0' = b01, always match a 0 bit 541 * '1' = b10, always match a 1 bit 542 * '?' = b11, don't care bit (always matches) 543 * '~' = b00, never match bit 544 * 545 * Input: 546 * val: b0 1 0 1 0 1 547 * dont_care: b0 0 1 1 0 0 548 * never_mtch: b0 0 0 0 1 1 549 * ------------------------------ 550 * Result: key: b01 10 11 11 00 00 551 */ 552 static enum ice_status 553 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 554 u8 *key_inv) 555 { 556 u8 in_key = *key, in_key_inv = *key_inv; 557 u8 i; 558 559 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 560 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 561 return ICE_ERR_CFG; 562 563 *key = 0; 564 *key_inv = 0; 565 566 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 567 for (i = 0; i < 8; i++) { 568 *key >>= 1; 569 *key_inv >>= 1; 570 571 if (!(valid & 0x1)) { /* change only valid bits */ 572 *key |= (in_key & 0x1) << 7; 573 *key_inv |= (in_key_inv & 0x1) << 7; 574 } else if (dont_care & 0x1) { /* don't care bit */ 575 *key |= ICE_DC_KEY << 7; 576 *key_inv |= ICE_DC_KEYINV << 7; 577 } else if (nvr_mtch & 0x1) { /* never match bit */ 578 *key |= ICE_NM_KEY << 7; 579 *key_inv |= ICE_NM_KEYINV << 7; 580 } else if (val & 0x01) { /* exact 1 match */ 581 *key |= ICE_1_KEY << 7; 582 *key_inv |= ICE_1_KEYINV << 7; 583 } else { /* exact 0 match */ 584 *key |= ICE_0_KEY << 7; 585 *key_inv |= ICE_0_KEYINV << 7; 586 } 587 588 dont_care >>= 1; 589 nvr_mtch >>= 1; 590 valid >>= 1; 591 val >>= 1; 592 in_key >>= 1; 593 in_key_inv >>= 1; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ice_bits_max_set - determine if the number of bits set is within a maximum 601 * @mask: pointer to the byte array which is the mask 602 * @size: the number of bytes in the mask 603 * @max: the max number of set bits 604 * 605 * This function determines if there are at most 'max' number of bits set in an 606 * array. Returns true if the number for bits set is <= max or will return false 607 * otherwise. 608 */ 609 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 610 { 611 u16 count = 0; 612 u16 i; 613 614 /* check each byte */ 615 for (i = 0; i < size; i++) { 616 /* if 0, go to next byte */ 617 if (!mask[i]) 618 continue; 619 620 /* We know there is at least one set bit in this byte because of 621 * the above check; if we already have found 'max' number of 622 * bits set, then we can return failure now. 623 */ 624 if (count == max) 625 return false; 626 627 /* count the bits in this byte, checking threshold */ 628 count += hweight8(mask[i]); 629 if (count > max) 630 return false; 631 } 632 633 return true; 634 } 635 636 /** 637 * ice_set_key - generate a variable sized key with multiples of 16-bits 638 * @key: pointer to where the key will be stored 639 * @size: the size of the complete key in bytes (must be even) 640 * @val: array of 8-bit values that makes up the value portion of the key 641 * @upd: array of 8-bit masks that determine what key portion to update 642 * @dc: array of 8-bit masks that make up the don't care mask 643 * @nm: array of 8-bit masks that make up the never match mask 644 * @off: the offset of the first byte in the key to update 645 * @len: the number of bytes in the key update 646 * 647 * This function generates a key from a value, a don't care mask and a never 648 * match mask. 649 * upd, dc, and nm are optional parameters, and can be NULL: 650 * upd == NULL --> upd mask is all 1's (update all bits) 651 * dc == NULL --> dc mask is all 0's (no don't care bits) 652 * nm == NULL --> nm mask is all 0's (no never match bits) 653 */ 654 static enum ice_status 655 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 656 u16 len) 657 { 658 u16 half_size; 659 u16 i; 660 661 /* size must be a multiple of 2 bytes. */ 662 if (size % 2) 663 return ICE_ERR_CFG; 664 665 half_size = size / 2; 666 if (off + len > half_size) 667 return ICE_ERR_CFG; 668 669 /* Make sure at most one bit is set in the never match mask. Having more 670 * than one never match mask bit set will cause HW to consume excessive 671 * power otherwise; this is a power management efficiency check. 672 */ 673 #define ICE_NVR_MTCH_BITS_MAX 1 674 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 675 return ICE_ERR_CFG; 676 677 for (i = 0; i < len; i++) 678 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 679 dc ? dc[i] : 0, nm ? nm[i] : 0, 680 key + off + i, key + half_size + off + i)) 681 return ICE_ERR_CFG; 682 683 return 0; 684 } 685 686 /** 687 * ice_acquire_global_cfg_lock 688 * @hw: pointer to the HW structure 689 * @access: access type (read or write) 690 * 691 * This function will request ownership of the global config lock for reading 692 * or writing of the package. When attempting to obtain write access, the 693 * caller must check for the following two return values: 694 * 695 * ICE_SUCCESS - Means the caller has acquired the global config lock 696 * and can perform writing of the package. 697 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 698 * package or has found that no update was necessary; in 699 * this case, the caller can just skip performing any 700 * update of the package. 701 */ 702 static enum ice_status 703 ice_acquire_global_cfg_lock(struct ice_hw *hw, 704 enum ice_aq_res_access_type access) 705 { 706 enum ice_status status; 707 708 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 709 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 710 711 if (!status) 712 mutex_lock(&ice_global_cfg_lock_sw); 713 else if (status == ICE_ERR_AQ_NO_WORK) 714 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 715 716 return status; 717 } 718 719 /** 720 * ice_release_global_cfg_lock 721 * @hw: pointer to the HW structure 722 * 723 * This function will release the global config lock. 724 */ 725 static void ice_release_global_cfg_lock(struct ice_hw *hw) 726 { 727 mutex_unlock(&ice_global_cfg_lock_sw); 728 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 729 } 730 731 /** 732 * ice_acquire_change_lock 733 * @hw: pointer to the HW structure 734 * @access: access type (read or write) 735 * 736 * This function will request ownership of the change lock. 737 */ 738 static enum ice_status 739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 740 { 741 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 742 ICE_CHANGE_LOCK_TIMEOUT); 743 } 744 745 /** 746 * ice_release_change_lock 747 * @hw: pointer to the HW structure 748 * 749 * This function will release the change lock using the proper Admin Command. 750 */ 751 static void ice_release_change_lock(struct ice_hw *hw) 752 { 753 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 754 } 755 756 /** 757 * ice_aq_download_pkg 758 * @hw: pointer to the hardware structure 759 * @pkg_buf: the package buffer to transfer 760 * @buf_size: the size of the package buffer 761 * @last_buf: last buffer indicator 762 * @error_offset: returns error offset 763 * @error_info: returns error information 764 * @cd: pointer to command details structure or NULL 765 * 766 * Download Package (0x0C40) 767 */ 768 static enum ice_status 769 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 770 u16 buf_size, bool last_buf, u32 *error_offset, 771 u32 *error_info, struct ice_sq_cd *cd) 772 { 773 struct ice_aqc_download_pkg *cmd; 774 struct ice_aq_desc desc; 775 enum ice_status status; 776 777 if (error_offset) 778 *error_offset = 0; 779 if (error_info) 780 *error_info = 0; 781 782 cmd = &desc.params.download_pkg; 783 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 784 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 785 786 if (last_buf) 787 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 788 789 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 790 if (status == ICE_ERR_AQ_ERROR) { 791 /* Read error from buffer only when the FW returned an error */ 792 struct ice_aqc_download_pkg_resp *resp; 793 794 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 795 if (error_offset) 796 *error_offset = le32_to_cpu(resp->error_offset); 797 if (error_info) 798 *error_info = le32_to_cpu(resp->error_info); 799 } 800 801 return status; 802 } 803 804 /** 805 * ice_aq_update_pkg 806 * @hw: pointer to the hardware structure 807 * @pkg_buf: the package cmd buffer 808 * @buf_size: the size of the package cmd buffer 809 * @last_buf: last buffer indicator 810 * @error_offset: returns error offset 811 * @error_info: returns error information 812 * @cd: pointer to command details structure or NULL 813 * 814 * Update Package (0x0C42) 815 */ 816 static enum ice_status 817 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 818 bool last_buf, u32 *error_offset, u32 *error_info, 819 struct ice_sq_cd *cd) 820 { 821 struct ice_aqc_download_pkg *cmd; 822 struct ice_aq_desc desc; 823 enum ice_status status; 824 825 if (error_offset) 826 *error_offset = 0; 827 if (error_info) 828 *error_info = 0; 829 830 cmd = &desc.params.download_pkg; 831 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 832 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 833 834 if (last_buf) 835 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 836 837 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 838 if (status == ICE_ERR_AQ_ERROR) { 839 /* Read error from buffer only when the FW returned an error */ 840 struct ice_aqc_download_pkg_resp *resp; 841 842 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 843 if (error_offset) 844 *error_offset = le32_to_cpu(resp->error_offset); 845 if (error_info) 846 *error_info = le32_to_cpu(resp->error_info); 847 } 848 849 return status; 850 } 851 852 /** 853 * ice_find_seg_in_pkg 854 * @hw: pointer to the hardware structure 855 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 856 * @pkg_hdr: pointer to the package header to be searched 857 * 858 * This function searches a package file for a particular segment type. On 859 * success it returns a pointer to the segment header, otherwise it will 860 * return NULL. 861 */ 862 static struct ice_generic_seg_hdr * 863 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 864 struct ice_pkg_hdr *pkg_hdr) 865 { 866 u32 i; 867 868 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 869 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 870 pkg_hdr->pkg_format_ver.update, 871 pkg_hdr->pkg_format_ver.draft); 872 873 /* Search all package segments for the requested segment type */ 874 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 875 struct ice_generic_seg_hdr *seg; 876 877 seg = (struct ice_generic_seg_hdr *) 878 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 879 880 if (le32_to_cpu(seg->seg_type) == seg_type) 881 return seg; 882 } 883 884 return NULL; 885 } 886 887 /** 888 * ice_update_pkg 889 * @hw: pointer to the hardware structure 890 * @bufs: pointer to an array of buffers 891 * @count: the number of buffers in the array 892 * 893 * Obtains change lock and updates package. 894 */ 895 static enum ice_status 896 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 897 { 898 enum ice_status status; 899 u32 offset, info, i; 900 901 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 902 if (status) 903 return status; 904 905 for (i = 0; i < count; i++) { 906 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 907 bool last = ((i + 1) == count); 908 909 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 910 last, &offset, &info, NULL); 911 912 if (status) { 913 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 914 status, offset, info); 915 break; 916 } 917 } 918 919 ice_release_change_lock(hw); 920 921 return status; 922 } 923 924 /** 925 * ice_dwnld_cfg_bufs 926 * @hw: pointer to the hardware structure 927 * @bufs: pointer to an array of buffers 928 * @count: the number of buffers in the array 929 * 930 * Obtains global config lock and downloads the package configuration buffers 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 932 * found indicates that the rest of the buffers are all metadata buffers. 933 */ 934 static enum ice_status 935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 936 { 937 enum ice_status status; 938 struct ice_buf_hdr *bh; 939 u32 offset, info, i; 940 941 if (!bufs || !count) 942 return ICE_ERR_PARAM; 943 944 /* If the first buffer's first section has its metadata bit set 945 * then there are no buffers to be downloaded, and the operation is 946 * considered a success. 947 */ 948 bh = (struct ice_buf_hdr *)bufs; 949 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 950 return 0; 951 952 /* reset pkg_dwnld_status in case this function is called in the 953 * reset/rebuild flow 954 */ 955 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 956 957 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 958 if (status) { 959 if (status == ICE_ERR_AQ_NO_WORK) 960 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 961 else 962 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 963 return status; 964 } 965 966 for (i = 0; i < count; i++) { 967 bool last = ((i + 1) == count); 968 969 if (!last) { 970 /* check next buffer for metadata flag */ 971 bh = (struct ice_buf_hdr *)(bufs + i + 1); 972 973 /* A set metadata flag in the next buffer will signal 974 * that the current buffer will be the last buffer 975 * downloaded 976 */ 977 if (le16_to_cpu(bh->section_count)) 978 if (le32_to_cpu(bh->section_entry[0].type) & 979 ICE_METADATA_BUF) 980 last = true; 981 } 982 983 bh = (struct ice_buf_hdr *)(bufs + i); 984 985 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 986 &offset, &info, NULL); 987 988 /* Save AQ status from download package */ 989 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 990 if (status) { 991 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_generic_seg_hdr *seg_hdr; 1069 1070 if (!pkg_hdr) 1071 return ICE_ERR_PARAM; 1072 1073 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1074 if (seg_hdr) { 1075 struct ice_meta_sect *meta; 1076 struct ice_pkg_enum state; 1077 1078 memset(&state, 0, sizeof(state)); 1079 1080 /* Get package information from the Metadata Section */ 1081 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1082 ICE_SID_METADATA); 1083 if (!meta) { 1084 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1085 return ICE_ERR_CFG; 1086 } 1087 1088 hw->pkg_ver = meta->ver; 1089 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1090 1091 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1092 meta->ver.major, meta->ver.minor, meta->ver.update, 1093 meta->ver.draft, meta->name); 1094 1095 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1096 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1097 sizeof(hw->ice_seg_id)); 1098 1099 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1100 seg_hdr->seg_format_ver.major, 1101 seg_hdr->seg_format_ver.minor, 1102 seg_hdr->seg_format_ver.update, 1103 seg_hdr->seg_format_ver.draft, 1104 seg_hdr->seg_id); 1105 } else { 1106 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1107 return ICE_ERR_CFG; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * ice_get_pkg_info 1115 * @hw: pointer to the hardware structure 1116 * 1117 * Store details of the package currently loaded in HW into the HW structure. 1118 */ 1119 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1120 { 1121 struct ice_aqc_get_pkg_info_resp *pkg_info; 1122 enum ice_status status; 1123 u16 size; 1124 u32 i; 1125 1126 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1127 pkg_info = kzalloc(size, GFP_KERNEL); 1128 if (!pkg_info) 1129 return ICE_ERR_NO_MEMORY; 1130 1131 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1132 if (status) 1133 goto init_pkg_free_alloc; 1134 1135 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1136 #define ICE_PKG_FLAG_COUNT 4 1137 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1138 u8 place = 0; 1139 1140 if (pkg_info->pkg_info[i].is_active) { 1141 flags[place++] = 'A'; 1142 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1143 hw->active_track_id = 1144 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1145 memcpy(hw->active_pkg_name, 1146 pkg_info->pkg_info[i].name, 1147 sizeof(pkg_info->pkg_info[i].name)); 1148 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1149 } 1150 if (pkg_info->pkg_info[i].is_active_at_boot) 1151 flags[place++] = 'B'; 1152 if (pkg_info->pkg_info[i].is_modified) 1153 flags[place++] = 'M'; 1154 if (pkg_info->pkg_info[i].is_in_nvm) 1155 flags[place++] = 'N'; 1156 1157 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1158 i, pkg_info->pkg_info[i].ver.major, 1159 pkg_info->pkg_info[i].ver.minor, 1160 pkg_info->pkg_info[i].ver.update, 1161 pkg_info->pkg_info[i].ver.draft, 1162 pkg_info->pkg_info[i].name, flags); 1163 } 1164 1165 init_pkg_free_alloc: 1166 kfree(pkg_info); 1167 1168 return status; 1169 } 1170 1171 /** 1172 * ice_verify_pkg - verify package 1173 * @pkg: pointer to the package buffer 1174 * @len: size of the package buffer 1175 * 1176 * Verifies various attributes of the package file, including length, format 1177 * version, and the requirement of at least one segment. 1178 */ 1179 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1180 { 1181 u32 seg_count; 1182 u32 i; 1183 1184 if (len < struct_size(pkg, seg_offset, 1)) 1185 return ICE_ERR_BUF_TOO_SHORT; 1186 1187 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1188 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1189 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1190 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1191 return ICE_ERR_CFG; 1192 1193 /* pkg must have at least one segment */ 1194 seg_count = le32_to_cpu(pkg->seg_count); 1195 if (seg_count < 1) 1196 return ICE_ERR_CFG; 1197 1198 /* make sure segment array fits in package length */ 1199 if (len < struct_size(pkg, seg_offset, seg_count)) 1200 return ICE_ERR_BUF_TOO_SHORT; 1201 1202 /* all segments must fit within length */ 1203 for (i = 0; i < seg_count; i++) { 1204 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1205 struct ice_generic_seg_hdr *seg; 1206 1207 /* segment header must fit */ 1208 if (len < off + sizeof(*seg)) 1209 return ICE_ERR_BUF_TOO_SHORT; 1210 1211 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1212 1213 /* segment body must fit */ 1214 if (len < off + le32_to_cpu(seg->seg_size)) 1215 return ICE_ERR_BUF_TOO_SHORT; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * ice_free_seg - free package segment pointer 1223 * @hw: pointer to the hardware structure 1224 * 1225 * Frees the package segment pointer in the proper manner, depending on if the 1226 * segment was allocated or just the passed in pointer was stored. 1227 */ 1228 void ice_free_seg(struct ice_hw *hw) 1229 { 1230 if (hw->pkg_copy) { 1231 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1232 hw->pkg_copy = NULL; 1233 hw->pkg_size = 0; 1234 } 1235 hw->seg = NULL; 1236 } 1237 1238 /** 1239 * ice_init_pkg_regs - initialize additional package registers 1240 * @hw: pointer to the hardware structure 1241 */ 1242 static void ice_init_pkg_regs(struct ice_hw *hw) 1243 { 1244 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1245 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1246 #define ICE_SW_BLK_IDX 0 1247 1248 /* setup Switch block input mask, which is 48-bits in two parts */ 1249 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1250 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1251 } 1252 1253 /** 1254 * ice_chk_pkg_version - check package version for compatibility with driver 1255 * @pkg_ver: pointer to a version structure to check 1256 * 1257 * Check to make sure that the package about to be downloaded is compatible with 1258 * the driver. To be compatible, the major and minor components of the package 1259 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1260 * definitions. 1261 */ 1262 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1263 { 1264 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1265 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1266 return ICE_ERR_NOT_SUPPORTED; 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * ice_chk_pkg_compat 1273 * @hw: pointer to the hardware structure 1274 * @ospkg: pointer to the package hdr 1275 * @seg: pointer to the package segment hdr 1276 * 1277 * This function checks the package version compatibility with driver and NVM 1278 */ 1279 static enum ice_status 1280 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1281 struct ice_seg **seg) 1282 { 1283 struct ice_aqc_get_pkg_info_resp *pkg; 1284 enum ice_status status; 1285 u16 size; 1286 u32 i; 1287 1288 /* Check package version compatibility */ 1289 status = ice_chk_pkg_version(&hw->pkg_ver); 1290 if (status) { 1291 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1292 return status; 1293 } 1294 1295 /* find ICE segment in given package */ 1296 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1297 ospkg); 1298 if (!*seg) { 1299 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1300 return ICE_ERR_CFG; 1301 } 1302 1303 /* Check if FW is compatible with the OS package */ 1304 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1305 pkg = kzalloc(size, GFP_KERNEL); 1306 if (!pkg) 1307 return ICE_ERR_NO_MEMORY; 1308 1309 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1310 if (status) 1311 goto fw_ddp_compat_free_alloc; 1312 1313 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1314 /* loop till we find the NVM package */ 1315 if (!pkg->pkg_info[i].is_in_nvm) 1316 continue; 1317 if ((*seg)->hdr.seg_format_ver.major != 1318 pkg->pkg_info[i].ver.major || 1319 (*seg)->hdr.seg_format_ver.minor > 1320 pkg->pkg_info[i].ver.minor) { 1321 status = ICE_ERR_FW_DDP_MISMATCH; 1322 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_init_pkg - initialize/download package 1334 * @hw: pointer to the hardware structure 1335 * @buf: pointer to the package buffer 1336 * @len: size of the package buffer 1337 * 1338 * This function initializes a package. The package contains HW tables 1339 * required to do packet processing. First, the function extracts package 1340 * information such as version. Then it finds the ice configuration segment 1341 * within the package; this function then saves a copy of the segment pointer 1342 * within the supplied package buffer. Next, the function will cache any hints 1343 * from the package, followed by downloading the package itself. Note, that if 1344 * a previous PF driver has already downloaded the package successfully, then 1345 * the current driver will not have to download the package again. 1346 * 1347 * The local package contents will be used to query default behavior and to 1348 * update specific sections of the HW's version of the package (e.g. to update 1349 * the parse graph to understand new protocols). 1350 * 1351 * This function stores a pointer to the package buffer memory, and it is 1352 * expected that the supplied buffer will not be freed immediately. If the 1353 * package buffer needs to be freed, such as when read from a file, use 1354 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1355 * case. 1356 */ 1357 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1358 { 1359 struct ice_pkg_hdr *pkg; 1360 enum ice_status status; 1361 struct ice_seg *seg; 1362 1363 if (!buf || !len) 1364 return ICE_ERR_PARAM; 1365 1366 pkg = (struct ice_pkg_hdr *)buf; 1367 status = ice_verify_pkg(pkg, len); 1368 if (status) { 1369 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1370 status); 1371 return status; 1372 } 1373 1374 /* initialize package info */ 1375 status = ice_init_pkg_info(hw, pkg); 1376 if (status) 1377 return status; 1378 1379 /* before downloading the package, check package version for 1380 * compatibility with driver 1381 */ 1382 status = ice_chk_pkg_compat(hw, pkg, &seg); 1383 if (status) 1384 return status; 1385 1386 /* initialize package hints and then download package */ 1387 ice_init_pkg_hints(hw, seg); 1388 status = ice_download_pkg(hw, seg); 1389 if (status == ICE_ERR_AQ_NO_WORK) { 1390 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1391 status = 0; 1392 } 1393 1394 /* Get information on the package currently loaded in HW, then make sure 1395 * the driver is compatible with this version. 1396 */ 1397 if (!status) { 1398 status = ice_get_pkg_info(hw); 1399 if (!status) 1400 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1401 } 1402 1403 if (!status) { 1404 hw->seg = seg; 1405 /* on successful package download update other required 1406 * registers to support the package and fill HW tables 1407 * with package content. 1408 */ 1409 ice_init_pkg_regs(hw); 1410 ice_fill_blk_tbls(hw); 1411 } else { 1412 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1413 status); 1414 } 1415 1416 return status; 1417 } 1418 1419 /** 1420 * ice_copy_and_init_pkg - initialize/download a copy of the package 1421 * @hw: pointer to the hardware structure 1422 * @buf: pointer to the package buffer 1423 * @len: size of the package buffer 1424 * 1425 * This function copies the package buffer, and then calls ice_init_pkg() to 1426 * initialize the copied package contents. 1427 * 1428 * The copying is necessary if the package buffer supplied is constant, or if 1429 * the memory may disappear shortly after calling this function. 1430 * 1431 * If the package buffer resides in the data segment and can be modified, the 1432 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1433 * 1434 * However, if the package buffer needs to be copied first, such as when being 1435 * read from a file, the caller should use ice_copy_and_init_pkg(). 1436 * 1437 * This function will first copy the package buffer, before calling 1438 * ice_init_pkg(). The caller is free to immediately destroy the original 1439 * package buffer, as the new copy will be managed by this function and 1440 * related routines. 1441 */ 1442 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1443 { 1444 enum ice_status status; 1445 u8 *buf_copy; 1446 1447 if (!buf || !len) 1448 return ICE_ERR_PARAM; 1449 1450 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1451 1452 status = ice_init_pkg(hw, buf_copy, len); 1453 if (status) { 1454 /* Free the copy, since we failed to initialize the package */ 1455 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1456 } else { 1457 /* Track the copied pkg so we can free it later */ 1458 hw->pkg_copy = buf_copy; 1459 hw->pkg_size = len; 1460 } 1461 1462 return status; 1463 } 1464 1465 /** 1466 * ice_pkg_buf_alloc 1467 * @hw: pointer to the HW structure 1468 * 1469 * Allocates a package buffer and returns a pointer to the buffer header. 1470 * Note: all package contents must be in Little Endian form. 1471 */ 1472 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1473 { 1474 struct ice_buf_build *bld; 1475 struct ice_buf_hdr *buf; 1476 1477 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1478 if (!bld) 1479 return NULL; 1480 1481 buf = (struct ice_buf_hdr *)bld; 1482 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1483 section_entry)); 1484 return bld; 1485 } 1486 1487 /** 1488 * ice_pkg_buf_free 1489 * @hw: pointer to the HW structure 1490 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1491 * 1492 * Frees a package buffer 1493 */ 1494 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1495 { 1496 devm_kfree(ice_hw_to_dev(hw), bld); 1497 } 1498 1499 /** 1500 * ice_pkg_buf_reserve_section 1501 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1502 * @count: the number of sections to reserve 1503 * 1504 * Reserves one or more section table entries in a package buffer. This routine 1505 * can be called multiple times as long as they are made before calling 1506 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1507 * is called once, the number of sections that can be allocated will not be able 1508 * to be increased; not using all reserved sections is fine, but this will 1509 * result in some wasted space in the buffer. 1510 * Note: all package contents must be in Little Endian form. 1511 */ 1512 static enum ice_status 1513 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1514 { 1515 struct ice_buf_hdr *buf; 1516 u16 section_count; 1517 u16 data_end; 1518 1519 if (!bld) 1520 return ICE_ERR_PARAM; 1521 1522 buf = (struct ice_buf_hdr *)&bld->buf; 1523 1524 /* already an active section, can't increase table size */ 1525 section_count = le16_to_cpu(buf->section_count); 1526 if (section_count > 0) 1527 return ICE_ERR_CFG; 1528 1529 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1530 return ICE_ERR_CFG; 1531 bld->reserved_section_table_entries += count; 1532 1533 data_end = le16_to_cpu(buf->data_end) + 1534 flex_array_size(buf, section_entry, count); 1535 buf->data_end = cpu_to_le16(data_end); 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * ice_pkg_buf_alloc_section 1542 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1543 * @type: the section type value 1544 * @size: the size of the section to reserve (in bytes) 1545 * 1546 * Reserves memory in the buffer for a section's content and updates the 1547 * buffers' status accordingly. This routine returns a pointer to the first 1548 * byte of the section start within the buffer, which is used to fill in the 1549 * section contents. 1550 * Note: all package contents must be in Little Endian form. 1551 */ 1552 static void * 1553 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1554 { 1555 struct ice_buf_hdr *buf; 1556 u16 sect_count; 1557 u16 data_end; 1558 1559 if (!bld || !type || !size) 1560 return NULL; 1561 1562 buf = (struct ice_buf_hdr *)&bld->buf; 1563 1564 /* check for enough space left in buffer */ 1565 data_end = le16_to_cpu(buf->data_end); 1566 1567 /* section start must align on 4 byte boundary */ 1568 data_end = ALIGN(data_end, 4); 1569 1570 if ((data_end + size) > ICE_MAX_S_DATA_END) 1571 return NULL; 1572 1573 /* check for more available section table entries */ 1574 sect_count = le16_to_cpu(buf->section_count); 1575 if (sect_count < bld->reserved_section_table_entries) { 1576 void *section_ptr = ((u8 *)buf) + data_end; 1577 1578 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1579 buf->section_entry[sect_count].size = cpu_to_le16(size); 1580 buf->section_entry[sect_count].type = cpu_to_le32(type); 1581 1582 data_end += size; 1583 buf->data_end = cpu_to_le16(data_end); 1584 1585 buf->section_count = cpu_to_le16(sect_count + 1); 1586 return section_ptr; 1587 } 1588 1589 /* no free section table entries */ 1590 return NULL; 1591 } 1592 1593 /** 1594 * ice_pkg_buf_get_active_sections 1595 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1596 * 1597 * Returns the number of active sections. Before using the package buffer 1598 * in an update package command, the caller should make sure that there is at 1599 * least one active section - otherwise, the buffer is not legal and should 1600 * not be used. 1601 * Note: all package contents must be in Little Endian form. 1602 */ 1603 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1604 { 1605 struct ice_buf_hdr *buf; 1606 1607 if (!bld) 1608 return 0; 1609 1610 buf = (struct ice_buf_hdr *)&bld->buf; 1611 return le16_to_cpu(buf->section_count); 1612 } 1613 1614 /** 1615 * ice_pkg_buf 1616 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1617 * 1618 * Return a pointer to the buffer's header 1619 */ 1620 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1621 { 1622 if (!bld) 1623 return NULL; 1624 1625 return &bld->buf; 1626 } 1627 1628 /** 1629 * ice_get_open_tunnel_port - retrieve an open tunnel port 1630 * @hw: pointer to the HW structure 1631 * @port: returns open port 1632 */ 1633 bool 1634 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port) 1635 { 1636 bool res = false; 1637 u16 i; 1638 1639 mutex_lock(&hw->tnl_lock); 1640 1641 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1642 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) { 1643 *port = hw->tnl.tbl[i].port; 1644 res = true; 1645 break; 1646 } 1647 1648 mutex_unlock(&hw->tnl_lock); 1649 1650 return res; 1651 } 1652 1653 /** 1654 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1655 * @hw: pointer to the HW structure 1656 * @type: type of tunnel 1657 * @idx: linear index 1658 * 1659 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1660 * but really the port table may be sprase, and types are mixed, so convert 1661 * the stack index into the device index. 1662 */ 1663 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1664 u16 idx) 1665 { 1666 u16 i; 1667 1668 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1669 if (hw->tnl.tbl[i].valid && 1670 hw->tnl.tbl[i].type == type && 1671 idx--) 1672 return i; 1673 1674 WARN_ON_ONCE(1); 1675 return 0; 1676 } 1677 1678 /** 1679 * ice_create_tunnel 1680 * @hw: pointer to the HW structure 1681 * @index: device table entry 1682 * @type: type of tunnel 1683 * @port: port of tunnel to create 1684 * 1685 * Create a tunnel by updating the parse graph in the parser. We do that by 1686 * creating a package buffer with the tunnel info and issuing an update package 1687 * command. 1688 */ 1689 static enum ice_status 1690 ice_create_tunnel(struct ice_hw *hw, u16 index, 1691 enum ice_tunnel_type type, u16 port) 1692 { 1693 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1694 enum ice_status status = ICE_ERR_MAX_LIMIT; 1695 struct ice_buf_build *bld; 1696 1697 mutex_lock(&hw->tnl_lock); 1698 1699 bld = ice_pkg_buf_alloc(hw); 1700 if (!bld) { 1701 status = ICE_ERR_NO_MEMORY; 1702 goto ice_create_tunnel_end; 1703 } 1704 1705 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1706 if (ice_pkg_buf_reserve_section(bld, 2)) 1707 goto ice_create_tunnel_err; 1708 1709 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1710 struct_size(sect_rx, tcam, 1)); 1711 if (!sect_rx) 1712 goto ice_create_tunnel_err; 1713 sect_rx->count = cpu_to_le16(1); 1714 1715 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1716 struct_size(sect_tx, tcam, 1)); 1717 if (!sect_tx) 1718 goto ice_create_tunnel_err; 1719 sect_tx->count = cpu_to_le16(1); 1720 1721 /* copy original boost entry to update package buffer */ 1722 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1723 sizeof(*sect_rx->tcam)); 1724 1725 /* over-write the never-match dest port key bits with the encoded port 1726 * bits 1727 */ 1728 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 1729 (u8 *)&port, NULL, NULL, NULL, 1730 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 1731 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 1732 1733 /* exact copy of entry to Tx section entry */ 1734 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 1735 1736 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1737 if (!status) 1738 hw->tnl.tbl[index].port = port; 1739 1740 ice_create_tunnel_err: 1741 ice_pkg_buf_free(hw, bld); 1742 1743 ice_create_tunnel_end: 1744 mutex_unlock(&hw->tnl_lock); 1745 1746 return status; 1747 } 1748 1749 /** 1750 * ice_destroy_tunnel 1751 * @hw: pointer to the HW structure 1752 * @index: device table entry 1753 * @type: type of tunnel 1754 * @port: port of tunnel to destroy (ignored if the all parameter is true) 1755 * 1756 * Destroys a tunnel or all tunnels by creating an update package buffer 1757 * targeting the specific updates requested and then performing an update 1758 * package. 1759 */ 1760 static enum ice_status 1761 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 1762 u16 port) 1763 { 1764 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1765 enum ice_status status = ICE_ERR_MAX_LIMIT; 1766 struct ice_buf_build *bld; 1767 1768 mutex_lock(&hw->tnl_lock); 1769 1770 if (WARN_ON(!hw->tnl.tbl[index].valid || 1771 hw->tnl.tbl[index].type != type || 1772 hw->tnl.tbl[index].port != port)) { 1773 status = ICE_ERR_OUT_OF_RANGE; 1774 goto ice_destroy_tunnel_end; 1775 } 1776 1777 bld = ice_pkg_buf_alloc(hw); 1778 if (!bld) { 1779 status = ICE_ERR_NO_MEMORY; 1780 goto ice_destroy_tunnel_end; 1781 } 1782 1783 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1784 if (ice_pkg_buf_reserve_section(bld, 2)) 1785 goto ice_destroy_tunnel_err; 1786 1787 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1788 struct_size(sect_rx, tcam, 1)); 1789 if (!sect_rx) 1790 goto ice_destroy_tunnel_err; 1791 sect_rx->count = cpu_to_le16(1); 1792 1793 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1794 struct_size(sect_tx, tcam, 1)); 1795 if (!sect_tx) 1796 goto ice_destroy_tunnel_err; 1797 sect_tx->count = cpu_to_le16(1); 1798 1799 /* copy original boost entry to update package buffer, one copy to Rx 1800 * section, another copy to the Tx section 1801 */ 1802 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1803 sizeof(*sect_rx->tcam)); 1804 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 1805 sizeof(*sect_tx->tcam)); 1806 1807 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 1808 if (!status) 1809 hw->tnl.tbl[index].port = 0; 1810 1811 ice_destroy_tunnel_err: 1812 ice_pkg_buf_free(hw, bld); 1813 1814 ice_destroy_tunnel_end: 1815 mutex_unlock(&hw->tnl_lock); 1816 1817 return status; 1818 } 1819 1820 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 1821 unsigned int idx, struct udp_tunnel_info *ti) 1822 { 1823 struct ice_netdev_priv *np = netdev_priv(netdev); 1824 struct ice_vsi *vsi = np->vsi; 1825 struct ice_pf *pf = vsi->back; 1826 enum ice_tunnel_type tnl_type; 1827 enum ice_status status; 1828 u16 index; 1829 1830 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1831 index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type); 1832 1833 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 1834 if (status) { 1835 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 1836 ice_stat_str(status)); 1837 return -EIO; 1838 } 1839 1840 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 1841 return 0; 1842 } 1843 1844 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 1845 unsigned int idx, struct udp_tunnel_info *ti) 1846 { 1847 struct ice_netdev_priv *np = netdev_priv(netdev); 1848 struct ice_vsi *vsi = np->vsi; 1849 struct ice_pf *pf = vsi->back; 1850 enum ice_tunnel_type tnl_type; 1851 enum ice_status status; 1852 1853 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 1854 1855 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 1856 ntohs(ti->port)); 1857 if (status) { 1858 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 1859 ice_stat_str(status)); 1860 return -EIO; 1861 } 1862 1863 return 0; 1864 } 1865 1866 /* PTG Management */ 1867 1868 /** 1869 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 1870 * @hw: pointer to the hardware structure 1871 * @blk: HW block 1872 * @ptype: the ptype to search for 1873 * @ptg: pointer to variable that receives the PTG 1874 * 1875 * This function will search the PTGs for a particular ptype, returning the 1876 * PTG ID that contains it through the PTG parameter, with the value of 1877 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 1878 */ 1879 static enum ice_status 1880 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 1881 { 1882 if (ptype >= ICE_XLT1_CNT || !ptg) 1883 return ICE_ERR_PARAM; 1884 1885 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 1886 return 0; 1887 } 1888 1889 /** 1890 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 1891 * @hw: pointer to the hardware structure 1892 * @blk: HW block 1893 * @ptg: the PTG to allocate 1894 * 1895 * This function allocates a given packet type group ID specified by the PTG 1896 * parameter. 1897 */ 1898 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 1899 { 1900 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 1901 } 1902 1903 /** 1904 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 1905 * @hw: pointer to the hardware structure 1906 * @blk: HW block 1907 * @ptype: the ptype to remove 1908 * @ptg: the PTG to remove the ptype from 1909 * 1910 * This function will remove the ptype from the specific PTG, and move it to 1911 * the default PTG (ICE_DEFAULT_PTG). 1912 */ 1913 static enum ice_status 1914 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1915 { 1916 struct ice_ptg_ptype **ch; 1917 struct ice_ptg_ptype *p; 1918 1919 if (ptype > ICE_XLT1_CNT - 1) 1920 return ICE_ERR_PARAM; 1921 1922 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 1923 return ICE_ERR_DOES_NOT_EXIST; 1924 1925 /* Should not happen if .in_use is set, bad config */ 1926 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 1927 return ICE_ERR_CFG; 1928 1929 /* find the ptype within this PTG, and bypass the link over it */ 1930 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1931 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1932 while (p) { 1933 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 1934 *ch = p->next_ptype; 1935 break; 1936 } 1937 1938 ch = &p->next_ptype; 1939 p = p->next_ptype; 1940 } 1941 1942 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 1943 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 1944 1945 return 0; 1946 } 1947 1948 /** 1949 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 1950 * @hw: pointer to the hardware structure 1951 * @blk: HW block 1952 * @ptype: the ptype to add or move 1953 * @ptg: the PTG to add or move the ptype to 1954 * 1955 * This function will either add or move a ptype to a particular PTG depending 1956 * on if the ptype is already part of another group. Note that using a 1957 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 1958 * default PTG. 1959 */ 1960 static enum ice_status 1961 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 1962 { 1963 enum ice_status status; 1964 u8 original_ptg; 1965 1966 if (ptype > ICE_XLT1_CNT - 1) 1967 return ICE_ERR_PARAM; 1968 1969 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 1970 return ICE_ERR_DOES_NOT_EXIST; 1971 1972 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 1973 if (status) 1974 return status; 1975 1976 /* Is ptype already in the correct PTG? */ 1977 if (original_ptg == ptg) 1978 return 0; 1979 1980 /* Remove from original PTG and move back to the default PTG */ 1981 if (original_ptg != ICE_DEFAULT_PTG) 1982 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 1983 1984 /* Moving to default PTG? Then we're done with this request */ 1985 if (ptg == ICE_DEFAULT_PTG) 1986 return 0; 1987 1988 /* Add ptype to PTG at beginning of list */ 1989 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 1990 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 1991 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 1992 &hw->blk[blk].xlt1.ptypes[ptype]; 1993 1994 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 1995 hw->blk[blk].xlt1.t[ptype] = ptg; 1996 1997 return 0; 1998 } 1999 2000 /* Block / table size info */ 2001 struct ice_blk_size_details { 2002 u16 xlt1; /* # XLT1 entries */ 2003 u16 xlt2; /* # XLT2 entries */ 2004 u16 prof_tcam; /* # profile ID TCAM entries */ 2005 u16 prof_id; /* # profile IDs */ 2006 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2007 u16 prof_redir; /* # profile redirection entries */ 2008 u16 es; /* # extraction sequence entries */ 2009 u16 fvw; /* # field vector words */ 2010 u8 overwrite; /* overwrite existing entries allowed */ 2011 u8 reverse; /* reverse FV order */ 2012 }; 2013 2014 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2015 /** 2016 * Table Definitions 2017 * XLT1 - Number of entries in XLT1 table 2018 * XLT2 - Number of entries in XLT2 table 2019 * TCAM - Number of entries Profile ID TCAM table 2020 * CDID - Control Domain ID of the hardware block 2021 * PRED - Number of entries in the Profile Redirection Table 2022 * FV - Number of entries in the Field Vector 2023 * FVW - Width (in WORDs) of the Field Vector 2024 * OVR - Overwrite existing table entries 2025 * REV - Reverse FV 2026 */ 2027 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2028 /* Overwrite , Reverse FV */ 2029 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2030 false, false }, 2031 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2032 false, false }, 2033 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2034 false, true }, 2035 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2036 true, true }, 2037 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2038 false, false }, 2039 }; 2040 2041 enum ice_sid_all { 2042 ICE_SID_XLT1_OFF = 0, 2043 ICE_SID_XLT2_OFF, 2044 ICE_SID_PR_OFF, 2045 ICE_SID_PR_REDIR_OFF, 2046 ICE_SID_ES_OFF, 2047 ICE_SID_OFF_COUNT, 2048 }; 2049 2050 /* Characteristic handling */ 2051 2052 /** 2053 * ice_match_prop_lst - determine if properties of two lists match 2054 * @list1: first properties list 2055 * @list2: second properties list 2056 * 2057 * Count, cookies and the order must match in order to be considered equivalent. 2058 */ 2059 static bool 2060 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2061 { 2062 struct ice_vsig_prof *tmp1; 2063 struct ice_vsig_prof *tmp2; 2064 u16 chk_count = 0; 2065 u16 count = 0; 2066 2067 /* compare counts */ 2068 list_for_each_entry(tmp1, list1, list) 2069 count++; 2070 list_for_each_entry(tmp2, list2, list) 2071 chk_count++; 2072 /* cppcheck-suppress knownConditionTrueFalse */ 2073 if (!count || count != chk_count) 2074 return false; 2075 2076 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2077 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2078 2079 /* profile cookies must compare, and in the exact same order to take 2080 * into account priority 2081 */ 2082 while (count--) { 2083 if (tmp2->profile_cookie != tmp1->profile_cookie) 2084 return false; 2085 2086 tmp1 = list_next_entry(tmp1, list); 2087 tmp2 = list_next_entry(tmp2, list); 2088 } 2089 2090 return true; 2091 } 2092 2093 /* VSIG Management */ 2094 2095 /** 2096 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2097 * @hw: pointer to the hardware structure 2098 * @blk: HW block 2099 * @vsi: VSI of interest 2100 * @vsig: pointer to receive the VSI group 2101 * 2102 * This function will lookup the VSI entry in the XLT2 list and return 2103 * the VSI group its associated with. 2104 */ 2105 static enum ice_status 2106 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2107 { 2108 if (!vsig || vsi >= ICE_MAX_VSI) 2109 return ICE_ERR_PARAM; 2110 2111 /* As long as there's a default or valid VSIG associated with the input 2112 * VSI, the functions returns a success. Any handling of VSIG will be 2113 * done by the following add, update or remove functions. 2114 */ 2115 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2116 2117 return 0; 2118 } 2119 2120 /** 2121 * ice_vsig_alloc_val - allocate a new VSIG by value 2122 * @hw: pointer to the hardware structure 2123 * @blk: HW block 2124 * @vsig: the VSIG to allocate 2125 * 2126 * This function will allocate a given VSIG specified by the VSIG parameter. 2127 */ 2128 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2129 { 2130 u16 idx = vsig & ICE_VSIG_IDX_M; 2131 2132 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2133 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2134 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2135 } 2136 2137 return ICE_VSIG_VALUE(idx, hw->pf_id); 2138 } 2139 2140 /** 2141 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2142 * @hw: pointer to the hardware structure 2143 * @blk: HW block 2144 * 2145 * This function will iterate through the VSIG list and mark the first 2146 * unused entry for the new VSIG entry as used and return that value. 2147 */ 2148 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2149 { 2150 u16 i; 2151 2152 for (i = 1; i < ICE_MAX_VSIGS; i++) 2153 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2154 return ice_vsig_alloc_val(hw, blk, i); 2155 2156 return ICE_DEFAULT_VSIG; 2157 } 2158 2159 /** 2160 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2161 * @hw: pointer to the hardware structure 2162 * @blk: HW block 2163 * @chs: characteristic list 2164 * @vsig: returns the VSIG with the matching profiles, if found 2165 * 2166 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2167 * a group have the same characteristic set. To check if there exists a VSIG 2168 * which has the same characteristics as the input characteristics; this 2169 * function will iterate through the XLT2 list and return the VSIG that has a 2170 * matching configuration. In order to make sure that priorities are accounted 2171 * for, the list must match exactly, including the order in which the 2172 * characteristics are listed. 2173 */ 2174 static enum ice_status 2175 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2176 struct list_head *chs, u16 *vsig) 2177 { 2178 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2179 u16 i; 2180 2181 for (i = 0; i < xlt2->count; i++) 2182 if (xlt2->vsig_tbl[i].in_use && 2183 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2184 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2185 return 0; 2186 } 2187 2188 return ICE_ERR_DOES_NOT_EXIST; 2189 } 2190 2191 /** 2192 * ice_vsig_free - free VSI group 2193 * @hw: pointer to the hardware structure 2194 * @blk: HW block 2195 * @vsig: VSIG to remove 2196 * 2197 * The function will remove all VSIs associated with the input VSIG and move 2198 * them to the DEFAULT_VSIG and mark the VSIG available. 2199 */ 2200 static enum ice_status 2201 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2202 { 2203 struct ice_vsig_prof *dtmp, *del; 2204 struct ice_vsig_vsi *vsi_cur; 2205 u16 idx; 2206 2207 idx = vsig & ICE_VSIG_IDX_M; 2208 if (idx >= ICE_MAX_VSIGS) 2209 return ICE_ERR_PARAM; 2210 2211 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2212 return ICE_ERR_DOES_NOT_EXIST; 2213 2214 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2215 2216 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2217 /* If the VSIG has at least 1 VSI then iterate through the 2218 * list and remove the VSIs before deleting the group. 2219 */ 2220 if (vsi_cur) { 2221 /* remove all vsis associated with this VSIG XLT2 entry */ 2222 do { 2223 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2224 2225 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2226 vsi_cur->changed = 1; 2227 vsi_cur->next_vsi = NULL; 2228 vsi_cur = tmp; 2229 } while (vsi_cur); 2230 2231 /* NULL terminate head of VSI list */ 2232 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2233 } 2234 2235 /* free characteristic list */ 2236 list_for_each_entry_safe(del, dtmp, 2237 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2238 list) { 2239 list_del(&del->list); 2240 devm_kfree(ice_hw_to_dev(hw), del); 2241 } 2242 2243 /* if VSIG characteristic list was cleared for reset 2244 * re-initialize the list head 2245 */ 2246 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2247 2248 return 0; 2249 } 2250 2251 /** 2252 * ice_vsig_remove_vsi - remove VSI from VSIG 2253 * @hw: pointer to the hardware structure 2254 * @blk: HW block 2255 * @vsi: VSI to remove 2256 * @vsig: VSI group to remove from 2257 * 2258 * The function will remove the input VSI from its VSI group and move it 2259 * to the DEFAULT_VSIG. 2260 */ 2261 static enum ice_status 2262 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2263 { 2264 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2265 u16 idx; 2266 2267 idx = vsig & ICE_VSIG_IDX_M; 2268 2269 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2270 return ICE_ERR_PARAM; 2271 2272 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2273 return ICE_ERR_DOES_NOT_EXIST; 2274 2275 /* entry already in default VSIG, don't have to remove */ 2276 if (idx == ICE_DEFAULT_VSIG) 2277 return 0; 2278 2279 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2280 if (!(*vsi_head)) 2281 return ICE_ERR_CFG; 2282 2283 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2284 vsi_cur = (*vsi_head); 2285 2286 /* iterate the VSI list, skip over the entry to be removed */ 2287 while (vsi_cur) { 2288 if (vsi_tgt == vsi_cur) { 2289 (*vsi_head) = vsi_cur->next_vsi; 2290 break; 2291 } 2292 vsi_head = &vsi_cur->next_vsi; 2293 vsi_cur = vsi_cur->next_vsi; 2294 } 2295 2296 /* verify if VSI was removed from group list */ 2297 if (!vsi_cur) 2298 return ICE_ERR_DOES_NOT_EXIST; 2299 2300 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2301 vsi_cur->changed = 1; 2302 vsi_cur->next_vsi = NULL; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2309 * @hw: pointer to the hardware structure 2310 * @blk: HW block 2311 * @vsi: VSI to move 2312 * @vsig: destination VSI group 2313 * 2314 * This function will move or add the input VSI to the target VSIG. 2315 * The function will find the original VSIG the VSI belongs to and 2316 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2317 * then move entry to the new VSIG. 2318 */ 2319 static enum ice_status 2320 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2321 { 2322 struct ice_vsig_vsi *tmp; 2323 enum ice_status status; 2324 u16 orig_vsig, idx; 2325 2326 idx = vsig & ICE_VSIG_IDX_M; 2327 2328 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2329 return ICE_ERR_PARAM; 2330 2331 /* if VSIG not in use and VSIG is not default type this VSIG 2332 * doesn't exist. 2333 */ 2334 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2335 vsig != ICE_DEFAULT_VSIG) 2336 return ICE_ERR_DOES_NOT_EXIST; 2337 2338 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2339 if (status) 2340 return status; 2341 2342 /* no update required if vsigs match */ 2343 if (orig_vsig == vsig) 2344 return 0; 2345 2346 if (orig_vsig != ICE_DEFAULT_VSIG) { 2347 /* remove entry from orig_vsig and add to default VSIG */ 2348 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2349 if (status) 2350 return status; 2351 } 2352 2353 if (idx == ICE_DEFAULT_VSIG) 2354 return 0; 2355 2356 /* Create VSI entry and add VSIG and prop_mask values */ 2357 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2358 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2359 2360 /* Add new entry to the head of the VSIG list */ 2361 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2362 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2363 &hw->blk[blk].xlt2.vsis[vsi]; 2364 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2365 hw->blk[blk].xlt2.t[vsi] = vsig; 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * ice_prof_has_mask_idx - determine if profile index masking is identical 2372 * @hw: pointer to the hardware structure 2373 * @blk: HW block 2374 * @prof: profile to check 2375 * @idx: profile index to check 2376 * @mask: mask to match 2377 */ 2378 static bool 2379 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2380 u16 mask) 2381 { 2382 bool expect_no_mask = false; 2383 bool found = false; 2384 bool match = false; 2385 u16 i; 2386 2387 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2388 if (mask == 0 || mask == 0xffff) 2389 expect_no_mask = true; 2390 2391 /* Scan the enabled masks on this profile, for the specified idx */ 2392 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2393 hw->blk[blk].masks.count; i++) 2394 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2395 if (hw->blk[blk].masks.masks[i].in_use && 2396 hw->blk[blk].masks.masks[i].idx == idx) { 2397 found = true; 2398 if (hw->blk[blk].masks.masks[i].mask == mask) 2399 match = true; 2400 break; 2401 } 2402 2403 if (expect_no_mask) { 2404 if (found) 2405 return false; 2406 } else { 2407 if (!match) 2408 return false; 2409 } 2410 2411 return true; 2412 } 2413 2414 /** 2415 * ice_prof_has_mask - determine if profile masking is identical 2416 * @hw: pointer to the hardware structure 2417 * @blk: HW block 2418 * @prof: profile to check 2419 * @masks: masks to match 2420 */ 2421 static bool 2422 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2423 { 2424 u16 i; 2425 2426 /* es->mask_ena[prof] will have the mask */ 2427 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2428 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2429 return false; 2430 2431 return true; 2432 } 2433 2434 /** 2435 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2436 * @hw: pointer to the hardware structure 2437 * @blk: HW block 2438 * @fv: field vector to search for 2439 * @masks: masks for FV 2440 * @prof_id: receives the profile ID 2441 */ 2442 static enum ice_status 2443 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2444 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2445 { 2446 struct ice_es *es = &hw->blk[blk].es; 2447 u8 i; 2448 2449 /* For FD, we don't want to re-use a existed profile with the same 2450 * field vector and mask. This will cause rule interference. 2451 */ 2452 if (blk == ICE_BLK_FD) 2453 return ICE_ERR_DOES_NOT_EXIST; 2454 2455 for (i = 0; i < (u8)es->count; i++) { 2456 u16 off = i * es->fvw; 2457 2458 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2459 continue; 2460 2461 /* check if masks settings are the same for this profile */ 2462 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2463 continue; 2464 2465 *prof_id = i; 2466 return 0; 2467 } 2468 2469 return ICE_ERR_DOES_NOT_EXIST; 2470 } 2471 2472 /** 2473 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2474 * @blk: the block type 2475 * @rsrc_type: pointer to variable to receive the resource type 2476 */ 2477 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2478 { 2479 switch (blk) { 2480 case ICE_BLK_FD: 2481 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2482 break; 2483 case ICE_BLK_RSS: 2484 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2485 break; 2486 default: 2487 return false; 2488 } 2489 return true; 2490 } 2491 2492 /** 2493 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2494 * @blk: the block type 2495 * @rsrc_type: pointer to variable to receive the resource type 2496 */ 2497 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2498 { 2499 switch (blk) { 2500 case ICE_BLK_FD: 2501 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2502 break; 2503 case ICE_BLK_RSS: 2504 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2505 break; 2506 default: 2507 return false; 2508 } 2509 return true; 2510 } 2511 2512 /** 2513 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2514 * @hw: pointer to the HW struct 2515 * @blk: the block to allocate the TCAM for 2516 * @btm: true to allocate from bottom of table, false to allocate from top 2517 * @tcam_idx: pointer to variable to receive the TCAM entry 2518 * 2519 * This function allocates a new entry in a Profile ID TCAM for a specific 2520 * block. 2521 */ 2522 static enum ice_status 2523 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2524 u16 *tcam_idx) 2525 { 2526 u16 res_type; 2527 2528 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2529 return ICE_ERR_PARAM; 2530 2531 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2532 } 2533 2534 /** 2535 * ice_free_tcam_ent - free hardware TCAM entry 2536 * @hw: pointer to the HW struct 2537 * @blk: the block from which to free the TCAM entry 2538 * @tcam_idx: the TCAM entry to free 2539 * 2540 * This function frees an entry in a Profile ID TCAM for a specific block. 2541 */ 2542 static enum ice_status 2543 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2544 { 2545 u16 res_type; 2546 2547 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2548 return ICE_ERR_PARAM; 2549 2550 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2551 } 2552 2553 /** 2554 * ice_alloc_prof_id - allocate profile ID 2555 * @hw: pointer to the HW struct 2556 * @blk: the block to allocate the profile ID for 2557 * @prof_id: pointer to variable to receive the profile ID 2558 * 2559 * This function allocates a new profile ID, which also corresponds to a Field 2560 * Vector (Extraction Sequence) entry. 2561 */ 2562 static enum ice_status 2563 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2564 { 2565 enum ice_status status; 2566 u16 res_type; 2567 u16 get_prof; 2568 2569 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2570 return ICE_ERR_PARAM; 2571 2572 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2573 if (!status) 2574 *prof_id = (u8)get_prof; 2575 2576 return status; 2577 } 2578 2579 /** 2580 * ice_free_prof_id - free profile ID 2581 * @hw: pointer to the HW struct 2582 * @blk: the block from which to free the profile ID 2583 * @prof_id: the profile ID to free 2584 * 2585 * This function frees a profile ID, which also corresponds to a Field Vector. 2586 */ 2587 static enum ice_status 2588 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2589 { 2590 u16 tmp_prof_id = (u16)prof_id; 2591 u16 res_type; 2592 2593 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2594 return ICE_ERR_PARAM; 2595 2596 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2597 } 2598 2599 /** 2600 * ice_prof_inc_ref - increment reference count for profile 2601 * @hw: pointer to the HW struct 2602 * @blk: the block from which to free the profile ID 2603 * @prof_id: the profile ID for which to increment the reference count 2604 */ 2605 static enum ice_status 2606 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2607 { 2608 if (prof_id > hw->blk[blk].es.count) 2609 return ICE_ERR_PARAM; 2610 2611 hw->blk[blk].es.ref_count[prof_id]++; 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * ice_write_prof_mask_reg - write profile mask register 2618 * @hw: pointer to the HW struct 2619 * @blk: hardware block 2620 * @mask_idx: mask index 2621 * @idx: index of the FV which will use the mask 2622 * @mask: the 16-bit mask 2623 */ 2624 static void 2625 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 2626 u16 idx, u16 mask) 2627 { 2628 u32 offset; 2629 u32 val; 2630 2631 switch (blk) { 2632 case ICE_BLK_RSS: 2633 offset = GLQF_HMASK(mask_idx); 2634 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 2635 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 2636 break; 2637 case ICE_BLK_FD: 2638 offset = GLQF_FDMASK(mask_idx); 2639 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 2640 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 2641 break; 2642 default: 2643 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2644 blk); 2645 return; 2646 } 2647 2648 wr32(hw, offset, val); 2649 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 2650 blk, idx, offset, val); 2651 } 2652 2653 /** 2654 * ice_write_prof_mask_enable_res - write profile mask enable register 2655 * @hw: pointer to the HW struct 2656 * @blk: hardware block 2657 * @prof_id: profile ID 2658 * @enable_mask: enable mask 2659 */ 2660 static void 2661 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 2662 u16 prof_id, u32 enable_mask) 2663 { 2664 u32 offset; 2665 2666 switch (blk) { 2667 case ICE_BLK_RSS: 2668 offset = GLQF_HMASK_SEL(prof_id); 2669 break; 2670 case ICE_BLK_FD: 2671 offset = GLQF_FDMASK_SEL(prof_id); 2672 break; 2673 default: 2674 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2675 blk); 2676 return; 2677 } 2678 2679 wr32(hw, offset, enable_mask); 2680 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 2681 blk, prof_id, offset, enable_mask); 2682 } 2683 2684 /** 2685 * ice_init_prof_masks - initial prof masks 2686 * @hw: pointer to the HW struct 2687 * @blk: hardware block 2688 */ 2689 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 2690 { 2691 u16 per_pf; 2692 u16 i; 2693 2694 mutex_init(&hw->blk[blk].masks.lock); 2695 2696 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 2697 2698 hw->blk[blk].masks.count = per_pf; 2699 hw->blk[blk].masks.first = hw->pf_id * per_pf; 2700 2701 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 2702 2703 for (i = hw->blk[blk].masks.first; 2704 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 2705 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 2706 } 2707 2708 /** 2709 * ice_init_all_prof_masks - initialize all prof masks 2710 * @hw: pointer to the HW struct 2711 */ 2712 static void ice_init_all_prof_masks(struct ice_hw *hw) 2713 { 2714 ice_init_prof_masks(hw, ICE_BLK_RSS); 2715 ice_init_prof_masks(hw, ICE_BLK_FD); 2716 } 2717 2718 /** 2719 * ice_alloc_prof_mask - allocate profile mask 2720 * @hw: pointer to the HW struct 2721 * @blk: hardware block 2722 * @idx: index of FV which will use the mask 2723 * @mask: the 16-bit mask 2724 * @mask_idx: variable to receive the mask index 2725 */ 2726 static enum ice_status 2727 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 2728 u16 *mask_idx) 2729 { 2730 bool found_unused = false, found_copy = false; 2731 enum ice_status status = ICE_ERR_MAX_LIMIT; 2732 u16 unused_idx = 0, copy_idx = 0; 2733 u16 i; 2734 2735 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2736 return ICE_ERR_PARAM; 2737 2738 mutex_lock(&hw->blk[blk].masks.lock); 2739 2740 for (i = hw->blk[blk].masks.first; 2741 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 2742 if (hw->blk[blk].masks.masks[i].in_use) { 2743 /* if mask is in use and it exactly duplicates the 2744 * desired mask and index, then in can be reused 2745 */ 2746 if (hw->blk[blk].masks.masks[i].mask == mask && 2747 hw->blk[blk].masks.masks[i].idx == idx) { 2748 found_copy = true; 2749 copy_idx = i; 2750 break; 2751 } 2752 } else { 2753 /* save off unused index, but keep searching in case 2754 * there is an exact match later on 2755 */ 2756 if (!found_unused) { 2757 found_unused = true; 2758 unused_idx = i; 2759 } 2760 } 2761 2762 if (found_copy) 2763 i = copy_idx; 2764 else if (found_unused) 2765 i = unused_idx; 2766 else 2767 goto err_ice_alloc_prof_mask; 2768 2769 /* update mask for a new entry */ 2770 if (found_unused) { 2771 hw->blk[blk].masks.masks[i].in_use = true; 2772 hw->blk[blk].masks.masks[i].mask = mask; 2773 hw->blk[blk].masks.masks[i].idx = idx; 2774 hw->blk[blk].masks.masks[i].ref = 0; 2775 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 2776 } 2777 2778 hw->blk[blk].masks.masks[i].ref++; 2779 *mask_idx = i; 2780 status = 0; 2781 2782 err_ice_alloc_prof_mask: 2783 mutex_unlock(&hw->blk[blk].masks.lock); 2784 2785 return status; 2786 } 2787 2788 /** 2789 * ice_free_prof_mask - free profile mask 2790 * @hw: pointer to the HW struct 2791 * @blk: hardware block 2792 * @mask_idx: index of mask 2793 */ 2794 static enum ice_status 2795 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 2796 { 2797 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2798 return ICE_ERR_PARAM; 2799 2800 if (!(mask_idx >= hw->blk[blk].masks.first && 2801 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 2802 return ICE_ERR_DOES_NOT_EXIST; 2803 2804 mutex_lock(&hw->blk[blk].masks.lock); 2805 2806 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 2807 goto exit_ice_free_prof_mask; 2808 2809 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 2810 hw->blk[blk].masks.masks[mask_idx].ref--; 2811 goto exit_ice_free_prof_mask; 2812 } 2813 2814 /* remove mask */ 2815 hw->blk[blk].masks.masks[mask_idx].in_use = false; 2816 hw->blk[blk].masks.masks[mask_idx].mask = 0; 2817 hw->blk[blk].masks.masks[mask_idx].idx = 0; 2818 2819 /* update mask as unused entry */ 2820 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 2821 mask_idx); 2822 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 2823 2824 exit_ice_free_prof_mask: 2825 mutex_unlock(&hw->blk[blk].masks.lock); 2826 2827 return 0; 2828 } 2829 2830 /** 2831 * ice_free_prof_masks - free all profile masks for a profile 2832 * @hw: pointer to the HW struct 2833 * @blk: hardware block 2834 * @prof_id: profile ID 2835 */ 2836 static enum ice_status 2837 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 2838 { 2839 u32 mask_bm; 2840 u16 i; 2841 2842 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2843 return ICE_ERR_PARAM; 2844 2845 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 2846 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 2847 if (mask_bm & BIT(i)) 2848 ice_free_prof_mask(hw, blk, i); 2849 2850 return 0; 2851 } 2852 2853 /** 2854 * ice_shutdown_prof_masks - releases lock for masking 2855 * @hw: pointer to the HW struct 2856 * @blk: hardware block 2857 * 2858 * This should be called before unloading the driver 2859 */ 2860 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 2861 { 2862 u16 i; 2863 2864 mutex_lock(&hw->blk[blk].masks.lock); 2865 2866 for (i = hw->blk[blk].masks.first; 2867 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 2868 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 2869 2870 hw->blk[blk].masks.masks[i].in_use = false; 2871 hw->blk[blk].masks.masks[i].idx = 0; 2872 hw->blk[blk].masks.masks[i].mask = 0; 2873 } 2874 2875 mutex_unlock(&hw->blk[blk].masks.lock); 2876 mutex_destroy(&hw->blk[blk].masks.lock); 2877 } 2878 2879 /** 2880 * ice_shutdown_all_prof_masks - releases all locks for masking 2881 * @hw: pointer to the HW struct 2882 * 2883 * This should be called before unloading the driver 2884 */ 2885 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 2886 { 2887 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 2888 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 2889 } 2890 2891 /** 2892 * ice_update_prof_masking - set registers according to masking 2893 * @hw: pointer to the HW struct 2894 * @blk: hardware block 2895 * @prof_id: profile ID 2896 * @masks: masks 2897 */ 2898 static enum ice_status 2899 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 2900 u16 *masks) 2901 { 2902 bool err = false; 2903 u32 ena_mask = 0; 2904 u16 idx; 2905 u16 i; 2906 2907 /* Only support FD and RSS masking, otherwise nothing to be done */ 2908 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 2909 return 0; 2910 2911 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2912 if (masks[i] && masks[i] != 0xFFFF) { 2913 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 2914 ena_mask |= BIT(idx); 2915 } else { 2916 /* not enough bitmaps */ 2917 err = true; 2918 break; 2919 } 2920 } 2921 2922 if (err) { 2923 /* free any bitmaps we have allocated */ 2924 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 2925 if (ena_mask & BIT(i)) 2926 ice_free_prof_mask(hw, blk, i); 2927 2928 return ICE_ERR_OUT_OF_RANGE; 2929 } 2930 2931 /* enable the masks for this profile */ 2932 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 2933 2934 /* store enabled masks with profile so that they can be freed later */ 2935 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 2936 2937 return 0; 2938 } 2939 2940 /** 2941 * ice_write_es - write an extraction sequence to hardware 2942 * @hw: pointer to the HW struct 2943 * @blk: the block in which to write the extraction sequence 2944 * @prof_id: the profile ID to write 2945 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 2946 */ 2947 static void 2948 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 2949 struct ice_fv_word *fv) 2950 { 2951 u16 off; 2952 2953 off = prof_id * hw->blk[blk].es.fvw; 2954 if (!fv) { 2955 memset(&hw->blk[blk].es.t[off], 0, 2956 hw->blk[blk].es.fvw * sizeof(*fv)); 2957 hw->blk[blk].es.written[prof_id] = false; 2958 } else { 2959 memcpy(&hw->blk[blk].es.t[off], fv, 2960 hw->blk[blk].es.fvw * sizeof(*fv)); 2961 } 2962 } 2963 2964 /** 2965 * ice_prof_dec_ref - decrement reference count for profile 2966 * @hw: pointer to the HW struct 2967 * @blk: the block from which to free the profile ID 2968 * @prof_id: the profile ID for which to decrement the reference count 2969 */ 2970 static enum ice_status 2971 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2972 { 2973 if (prof_id > hw->blk[blk].es.count) 2974 return ICE_ERR_PARAM; 2975 2976 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 2977 if (!--hw->blk[blk].es.ref_count[prof_id]) { 2978 ice_write_es(hw, blk, prof_id, NULL); 2979 ice_free_prof_masks(hw, blk, prof_id); 2980 return ice_free_prof_id(hw, blk, prof_id); 2981 } 2982 } 2983 2984 return 0; 2985 } 2986 2987 /* Block / table section IDs */ 2988 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 2989 /* SWITCH */ 2990 { ICE_SID_XLT1_SW, 2991 ICE_SID_XLT2_SW, 2992 ICE_SID_PROFID_TCAM_SW, 2993 ICE_SID_PROFID_REDIR_SW, 2994 ICE_SID_FLD_VEC_SW 2995 }, 2996 2997 /* ACL */ 2998 { ICE_SID_XLT1_ACL, 2999 ICE_SID_XLT2_ACL, 3000 ICE_SID_PROFID_TCAM_ACL, 3001 ICE_SID_PROFID_REDIR_ACL, 3002 ICE_SID_FLD_VEC_ACL 3003 }, 3004 3005 /* FD */ 3006 { ICE_SID_XLT1_FD, 3007 ICE_SID_XLT2_FD, 3008 ICE_SID_PROFID_TCAM_FD, 3009 ICE_SID_PROFID_REDIR_FD, 3010 ICE_SID_FLD_VEC_FD 3011 }, 3012 3013 /* RSS */ 3014 { ICE_SID_XLT1_RSS, 3015 ICE_SID_XLT2_RSS, 3016 ICE_SID_PROFID_TCAM_RSS, 3017 ICE_SID_PROFID_REDIR_RSS, 3018 ICE_SID_FLD_VEC_RSS 3019 }, 3020 3021 /* PE */ 3022 { ICE_SID_XLT1_PE, 3023 ICE_SID_XLT2_PE, 3024 ICE_SID_PROFID_TCAM_PE, 3025 ICE_SID_PROFID_REDIR_PE, 3026 ICE_SID_FLD_VEC_PE 3027 } 3028 }; 3029 3030 /** 3031 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3032 * @hw: pointer to the hardware structure 3033 * @blk: the HW block to initialize 3034 */ 3035 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3036 { 3037 u16 pt; 3038 3039 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3040 u8 ptg; 3041 3042 ptg = hw->blk[blk].xlt1.t[pt]; 3043 if (ptg != ICE_DEFAULT_PTG) { 3044 ice_ptg_alloc_val(hw, blk, ptg); 3045 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3046 } 3047 } 3048 } 3049 3050 /** 3051 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3052 * @hw: pointer to the hardware structure 3053 * @blk: the HW block to initialize 3054 */ 3055 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3056 { 3057 u16 vsi; 3058 3059 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3060 u16 vsig; 3061 3062 vsig = hw->blk[blk].xlt2.t[vsi]; 3063 if (vsig) { 3064 ice_vsig_alloc_val(hw, blk, vsig); 3065 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3066 /* no changes at this time, since this has been 3067 * initialized from the original package 3068 */ 3069 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3070 } 3071 } 3072 } 3073 3074 /** 3075 * ice_init_sw_db - init software database from HW tables 3076 * @hw: pointer to the hardware structure 3077 */ 3078 static void ice_init_sw_db(struct ice_hw *hw) 3079 { 3080 u16 i; 3081 3082 for (i = 0; i < ICE_BLK_COUNT; i++) { 3083 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3084 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3085 } 3086 } 3087 3088 /** 3089 * ice_fill_tbl - Reads content of a single table type into database 3090 * @hw: pointer to the hardware structure 3091 * @block_id: Block ID of the table to copy 3092 * @sid: Section ID of the table to copy 3093 * 3094 * Will attempt to read the entire content of a given table of a single block 3095 * into the driver database. We assume that the buffer will always 3096 * be as large or larger than the data contained in the package. If 3097 * this condition is not met, there is most likely an error in the package 3098 * contents. 3099 */ 3100 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3101 { 3102 u32 dst_len, sect_len, offset = 0; 3103 struct ice_prof_redir_section *pr; 3104 struct ice_prof_id_section *pid; 3105 struct ice_xlt1_section *xlt1; 3106 struct ice_xlt2_section *xlt2; 3107 struct ice_sw_fv_section *es; 3108 struct ice_pkg_enum state; 3109 u8 *src, *dst; 3110 void *sect; 3111 3112 /* if the HW segment pointer is null then the first iteration of 3113 * ice_pkg_enum_section() will fail. In this case the HW tables will 3114 * not be filled and return success. 3115 */ 3116 if (!hw->seg) { 3117 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3118 return; 3119 } 3120 3121 memset(&state, 0, sizeof(state)); 3122 3123 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3124 3125 while (sect) { 3126 switch (sid) { 3127 case ICE_SID_XLT1_SW: 3128 case ICE_SID_XLT1_FD: 3129 case ICE_SID_XLT1_RSS: 3130 case ICE_SID_XLT1_ACL: 3131 case ICE_SID_XLT1_PE: 3132 xlt1 = sect; 3133 src = xlt1->value; 3134 sect_len = le16_to_cpu(xlt1->count) * 3135 sizeof(*hw->blk[block_id].xlt1.t); 3136 dst = hw->blk[block_id].xlt1.t; 3137 dst_len = hw->blk[block_id].xlt1.count * 3138 sizeof(*hw->blk[block_id].xlt1.t); 3139 break; 3140 case ICE_SID_XLT2_SW: 3141 case ICE_SID_XLT2_FD: 3142 case ICE_SID_XLT2_RSS: 3143 case ICE_SID_XLT2_ACL: 3144 case ICE_SID_XLT2_PE: 3145 xlt2 = sect; 3146 src = (__force u8 *)xlt2->value; 3147 sect_len = le16_to_cpu(xlt2->count) * 3148 sizeof(*hw->blk[block_id].xlt2.t); 3149 dst = (u8 *)hw->blk[block_id].xlt2.t; 3150 dst_len = hw->blk[block_id].xlt2.count * 3151 sizeof(*hw->blk[block_id].xlt2.t); 3152 break; 3153 case ICE_SID_PROFID_TCAM_SW: 3154 case ICE_SID_PROFID_TCAM_FD: 3155 case ICE_SID_PROFID_TCAM_RSS: 3156 case ICE_SID_PROFID_TCAM_ACL: 3157 case ICE_SID_PROFID_TCAM_PE: 3158 pid = sect; 3159 src = (u8 *)pid->entry; 3160 sect_len = le16_to_cpu(pid->count) * 3161 sizeof(*hw->blk[block_id].prof.t); 3162 dst = (u8 *)hw->blk[block_id].prof.t; 3163 dst_len = hw->blk[block_id].prof.count * 3164 sizeof(*hw->blk[block_id].prof.t); 3165 break; 3166 case ICE_SID_PROFID_REDIR_SW: 3167 case ICE_SID_PROFID_REDIR_FD: 3168 case ICE_SID_PROFID_REDIR_RSS: 3169 case ICE_SID_PROFID_REDIR_ACL: 3170 case ICE_SID_PROFID_REDIR_PE: 3171 pr = sect; 3172 src = pr->redir_value; 3173 sect_len = le16_to_cpu(pr->count) * 3174 sizeof(*hw->blk[block_id].prof_redir.t); 3175 dst = hw->blk[block_id].prof_redir.t; 3176 dst_len = hw->blk[block_id].prof_redir.count * 3177 sizeof(*hw->blk[block_id].prof_redir.t); 3178 break; 3179 case ICE_SID_FLD_VEC_SW: 3180 case ICE_SID_FLD_VEC_FD: 3181 case ICE_SID_FLD_VEC_RSS: 3182 case ICE_SID_FLD_VEC_ACL: 3183 case ICE_SID_FLD_VEC_PE: 3184 es = sect; 3185 src = (u8 *)es->fv; 3186 sect_len = (u32)(le16_to_cpu(es->count) * 3187 hw->blk[block_id].es.fvw) * 3188 sizeof(*hw->blk[block_id].es.t); 3189 dst = (u8 *)hw->blk[block_id].es.t; 3190 dst_len = (u32)(hw->blk[block_id].es.count * 3191 hw->blk[block_id].es.fvw) * 3192 sizeof(*hw->blk[block_id].es.t); 3193 break; 3194 default: 3195 return; 3196 } 3197 3198 /* if the section offset exceeds destination length, terminate 3199 * table fill. 3200 */ 3201 if (offset > dst_len) 3202 return; 3203 3204 /* if the sum of section size and offset exceed destination size 3205 * then we are out of bounds of the HW table size for that PF. 3206 * Changing section length to fill the remaining table space 3207 * of that PF. 3208 */ 3209 if ((offset + sect_len) > dst_len) 3210 sect_len = dst_len - offset; 3211 3212 memcpy(dst + offset, src, sect_len); 3213 offset += sect_len; 3214 sect = ice_pkg_enum_section(NULL, &state, sid); 3215 } 3216 } 3217 3218 /** 3219 * ice_fill_blk_tbls - Read package context for tables 3220 * @hw: pointer to the hardware structure 3221 * 3222 * Reads the current package contents and populates the driver 3223 * database with the data iteratively for all advanced feature 3224 * blocks. Assume that the HW tables have been allocated. 3225 */ 3226 void ice_fill_blk_tbls(struct ice_hw *hw) 3227 { 3228 u8 i; 3229 3230 for (i = 0; i < ICE_BLK_COUNT; i++) { 3231 enum ice_block blk_id = (enum ice_block)i; 3232 3233 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3234 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3235 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3236 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3237 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3238 } 3239 3240 ice_init_sw_db(hw); 3241 } 3242 3243 /** 3244 * ice_free_prof_map - free profile map 3245 * @hw: pointer to the hardware structure 3246 * @blk_idx: HW block index 3247 */ 3248 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3249 { 3250 struct ice_es *es = &hw->blk[blk_idx].es; 3251 struct ice_prof_map *del, *tmp; 3252 3253 mutex_lock(&es->prof_map_lock); 3254 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3255 list_del(&del->list); 3256 devm_kfree(ice_hw_to_dev(hw), del); 3257 } 3258 INIT_LIST_HEAD(&es->prof_map); 3259 mutex_unlock(&es->prof_map_lock); 3260 } 3261 3262 /** 3263 * ice_free_flow_profs - free flow profile entries 3264 * @hw: pointer to the hardware structure 3265 * @blk_idx: HW block index 3266 */ 3267 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3268 { 3269 struct ice_flow_prof *p, *tmp; 3270 3271 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3272 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3273 struct ice_flow_entry *e, *t; 3274 3275 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3276 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3277 ICE_FLOW_ENTRY_HNDL(e)); 3278 3279 list_del(&p->l_entry); 3280 3281 mutex_destroy(&p->entries_lock); 3282 devm_kfree(ice_hw_to_dev(hw), p); 3283 } 3284 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3285 3286 /* if driver is in reset and tables are being cleared 3287 * re-initialize the flow profile list heads 3288 */ 3289 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3290 } 3291 3292 /** 3293 * ice_free_vsig_tbl - free complete VSIG table entries 3294 * @hw: pointer to the hardware structure 3295 * @blk: the HW block on which to free the VSIG table entries 3296 */ 3297 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3298 { 3299 u16 i; 3300 3301 if (!hw->blk[blk].xlt2.vsig_tbl) 3302 return; 3303 3304 for (i = 1; i < ICE_MAX_VSIGS; i++) 3305 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3306 ice_vsig_free(hw, blk, i); 3307 } 3308 3309 /** 3310 * ice_free_hw_tbls - free hardware table memory 3311 * @hw: pointer to the hardware structure 3312 */ 3313 void ice_free_hw_tbls(struct ice_hw *hw) 3314 { 3315 struct ice_rss_cfg *r, *rt; 3316 u8 i; 3317 3318 for (i = 0; i < ICE_BLK_COUNT; i++) { 3319 if (hw->blk[i].is_list_init) { 3320 struct ice_es *es = &hw->blk[i].es; 3321 3322 ice_free_prof_map(hw, i); 3323 mutex_destroy(&es->prof_map_lock); 3324 3325 ice_free_flow_profs(hw, i); 3326 mutex_destroy(&hw->fl_profs_locks[i]); 3327 3328 hw->blk[i].is_list_init = false; 3329 } 3330 ice_free_vsig_tbl(hw, (enum ice_block)i); 3331 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3332 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3333 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3334 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3335 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3336 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3337 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3338 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3339 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3340 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3341 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3342 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3343 } 3344 3345 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3346 list_del(&r->l_entry); 3347 devm_kfree(ice_hw_to_dev(hw), r); 3348 } 3349 mutex_destroy(&hw->rss_locks); 3350 ice_shutdown_all_prof_masks(hw); 3351 memset(hw->blk, 0, sizeof(hw->blk)); 3352 } 3353 3354 /** 3355 * ice_init_flow_profs - init flow profile locks and list heads 3356 * @hw: pointer to the hardware structure 3357 * @blk_idx: HW block index 3358 */ 3359 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3360 { 3361 mutex_init(&hw->fl_profs_locks[blk_idx]); 3362 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3363 } 3364 3365 /** 3366 * ice_clear_hw_tbls - clear HW tables and flow profiles 3367 * @hw: pointer to the hardware structure 3368 */ 3369 void ice_clear_hw_tbls(struct ice_hw *hw) 3370 { 3371 u8 i; 3372 3373 for (i = 0; i < ICE_BLK_COUNT; i++) { 3374 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3375 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3376 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3377 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3378 struct ice_es *es = &hw->blk[i].es; 3379 3380 if (hw->blk[i].is_list_init) { 3381 ice_free_prof_map(hw, i); 3382 ice_free_flow_profs(hw, i); 3383 } 3384 3385 ice_free_vsig_tbl(hw, (enum ice_block)i); 3386 3387 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3388 memset(xlt1->ptg_tbl, 0, 3389 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3390 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3391 3392 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3393 memset(xlt2->vsig_tbl, 0, 3394 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3395 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3396 3397 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3398 memset(prof_redir->t, 0, 3399 prof_redir->count * sizeof(*prof_redir->t)); 3400 3401 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3402 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3403 memset(es->written, 0, es->count * sizeof(*es->written)); 3404 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3405 } 3406 } 3407 3408 /** 3409 * ice_init_hw_tbls - init hardware table memory 3410 * @hw: pointer to the hardware structure 3411 */ 3412 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3413 { 3414 u8 i; 3415 3416 mutex_init(&hw->rss_locks); 3417 INIT_LIST_HEAD(&hw->rss_list_head); 3418 ice_init_all_prof_masks(hw); 3419 for (i = 0; i < ICE_BLK_COUNT; i++) { 3420 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3421 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3422 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3423 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3424 struct ice_es *es = &hw->blk[i].es; 3425 u16 j; 3426 3427 if (hw->blk[i].is_list_init) 3428 continue; 3429 3430 ice_init_flow_profs(hw, i); 3431 mutex_init(&es->prof_map_lock); 3432 INIT_LIST_HEAD(&es->prof_map); 3433 hw->blk[i].is_list_init = true; 3434 3435 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3436 es->reverse = blk_sizes[i].reverse; 3437 3438 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3439 xlt1->count = blk_sizes[i].xlt1; 3440 3441 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3442 sizeof(*xlt1->ptypes), GFP_KERNEL); 3443 3444 if (!xlt1->ptypes) 3445 goto err; 3446 3447 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3448 sizeof(*xlt1->ptg_tbl), 3449 GFP_KERNEL); 3450 3451 if (!xlt1->ptg_tbl) 3452 goto err; 3453 3454 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3455 sizeof(*xlt1->t), GFP_KERNEL); 3456 if (!xlt1->t) 3457 goto err; 3458 3459 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3460 xlt2->count = blk_sizes[i].xlt2; 3461 3462 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3463 sizeof(*xlt2->vsis), GFP_KERNEL); 3464 3465 if (!xlt2->vsis) 3466 goto err; 3467 3468 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3469 sizeof(*xlt2->vsig_tbl), 3470 GFP_KERNEL); 3471 if (!xlt2->vsig_tbl) 3472 goto err; 3473 3474 for (j = 0; j < xlt2->count; j++) 3475 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3476 3477 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3478 sizeof(*xlt2->t), GFP_KERNEL); 3479 if (!xlt2->t) 3480 goto err; 3481 3482 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3483 prof->count = blk_sizes[i].prof_tcam; 3484 prof->max_prof_id = blk_sizes[i].prof_id; 3485 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3486 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3487 sizeof(*prof->t), GFP_KERNEL); 3488 3489 if (!prof->t) 3490 goto err; 3491 3492 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3493 prof_redir->count = blk_sizes[i].prof_redir; 3494 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3495 prof_redir->count, 3496 sizeof(*prof_redir->t), 3497 GFP_KERNEL); 3498 3499 if (!prof_redir->t) 3500 goto err; 3501 3502 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3503 es->count = blk_sizes[i].es; 3504 es->fvw = blk_sizes[i].fvw; 3505 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3506 (u32)(es->count * es->fvw), 3507 sizeof(*es->t), GFP_KERNEL); 3508 if (!es->t) 3509 goto err; 3510 3511 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3512 sizeof(*es->ref_count), 3513 GFP_KERNEL); 3514 if (!es->ref_count) 3515 goto err; 3516 3517 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3518 sizeof(*es->written), GFP_KERNEL); 3519 if (!es->written) 3520 goto err; 3521 3522 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3523 sizeof(*es->mask_ena), GFP_KERNEL); 3524 if (!es->mask_ena) 3525 goto err; 3526 } 3527 return 0; 3528 3529 err: 3530 ice_free_hw_tbls(hw); 3531 return ICE_ERR_NO_MEMORY; 3532 } 3533 3534 /** 3535 * ice_prof_gen_key - generate profile ID key 3536 * @hw: pointer to the HW struct 3537 * @blk: the block in which to write profile ID to 3538 * @ptg: packet type group (PTG) portion of key 3539 * @vsig: VSIG portion of key 3540 * @cdid: CDID portion of key 3541 * @flags: flag portion of key 3542 * @vl_msk: valid mask 3543 * @dc_msk: don't care mask 3544 * @nm_msk: never match mask 3545 * @key: output of profile ID key 3546 */ 3547 static enum ice_status 3548 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3549 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3550 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3551 u8 key[ICE_TCAM_KEY_SZ]) 3552 { 3553 struct ice_prof_id_key inkey; 3554 3555 inkey.xlt1 = ptg; 3556 inkey.xlt2_cdid = cpu_to_le16(vsig); 3557 inkey.flags = cpu_to_le16(flags); 3558 3559 switch (hw->blk[blk].prof.cdid_bits) { 3560 case 0: 3561 break; 3562 case 2: 3563 #define ICE_CD_2_M 0xC000U 3564 #define ICE_CD_2_S 14 3565 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3566 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3567 break; 3568 case 4: 3569 #define ICE_CD_4_M 0xF000U 3570 #define ICE_CD_4_S 12 3571 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3572 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3573 break; 3574 case 8: 3575 #define ICE_CD_8_M 0xFF00U 3576 #define ICE_CD_8_S 16 3577 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3578 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3579 break; 3580 default: 3581 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3582 break; 3583 } 3584 3585 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3586 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3587 } 3588 3589 /** 3590 * ice_tcam_write_entry - write TCAM entry 3591 * @hw: pointer to the HW struct 3592 * @blk: the block in which to write profile ID to 3593 * @idx: the entry index to write to 3594 * @prof_id: profile ID 3595 * @ptg: packet type group (PTG) portion of key 3596 * @vsig: VSIG portion of key 3597 * @cdid: CDID portion of key 3598 * @flags: flag portion of key 3599 * @vl_msk: valid mask 3600 * @dc_msk: don't care mask 3601 * @nm_msk: never match mask 3602 */ 3603 static enum ice_status 3604 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3605 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3606 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3607 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3608 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3609 { 3610 struct ice_prof_tcam_entry; 3611 enum ice_status status; 3612 3613 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3614 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3615 if (!status) { 3616 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3617 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3618 } 3619 3620 return status; 3621 } 3622 3623 /** 3624 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3625 * @hw: pointer to the hardware structure 3626 * @blk: HW block 3627 * @vsig: VSIG to query 3628 * @refs: pointer to variable to receive the reference count 3629 */ 3630 static enum ice_status 3631 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3632 { 3633 u16 idx = vsig & ICE_VSIG_IDX_M; 3634 struct ice_vsig_vsi *ptr; 3635 3636 *refs = 0; 3637 3638 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3639 return ICE_ERR_DOES_NOT_EXIST; 3640 3641 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3642 while (ptr) { 3643 (*refs)++; 3644 ptr = ptr->next_vsi; 3645 } 3646 3647 return 0; 3648 } 3649 3650 /** 3651 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3652 * @hw: pointer to the hardware structure 3653 * @blk: HW block 3654 * @vsig: VSIG to check against 3655 * @hdl: profile handle 3656 */ 3657 static bool 3658 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3659 { 3660 u16 idx = vsig & ICE_VSIG_IDX_M; 3661 struct ice_vsig_prof *ent; 3662 3663 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3664 list) 3665 if (ent->profile_cookie == hdl) 3666 return true; 3667 3668 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 3669 vsig); 3670 return false; 3671 } 3672 3673 /** 3674 * ice_prof_bld_es - build profile ID extraction sequence changes 3675 * @hw: pointer to the HW struct 3676 * @blk: hardware block 3677 * @bld: the update package buffer build to add to 3678 * @chgs: the list of changes to make in hardware 3679 */ 3680 static enum ice_status 3681 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3682 struct ice_buf_build *bld, struct list_head *chgs) 3683 { 3684 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3685 struct ice_chs_chg *tmp; 3686 3687 list_for_each_entry(tmp, chgs, list_entry) 3688 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3689 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3690 struct ice_pkg_es *p; 3691 u32 id; 3692 3693 id = ice_sect_id(blk, ICE_VEC_TBL); 3694 p = ice_pkg_buf_alloc_section(bld, id, 3695 struct_size(p, es, 1) + 3696 vec_size - 3697 sizeof(p->es[0])); 3698 3699 if (!p) 3700 return ICE_ERR_MAX_LIMIT; 3701 3702 p->count = cpu_to_le16(1); 3703 p->offset = cpu_to_le16(tmp->prof_id); 3704 3705 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 3706 } 3707 3708 return 0; 3709 } 3710 3711 /** 3712 * ice_prof_bld_tcam - build profile ID TCAM changes 3713 * @hw: pointer to the HW struct 3714 * @blk: hardware block 3715 * @bld: the update package buffer build to add to 3716 * @chgs: the list of changes to make in hardware 3717 */ 3718 static enum ice_status 3719 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 3720 struct ice_buf_build *bld, struct list_head *chgs) 3721 { 3722 struct ice_chs_chg *tmp; 3723 3724 list_for_each_entry(tmp, chgs, list_entry) 3725 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 3726 struct ice_prof_id_section *p; 3727 u32 id; 3728 3729 id = ice_sect_id(blk, ICE_PROF_TCAM); 3730 p = ice_pkg_buf_alloc_section(bld, id, 3731 struct_size(p, entry, 1)); 3732 3733 if (!p) 3734 return ICE_ERR_MAX_LIMIT; 3735 3736 p->count = cpu_to_le16(1); 3737 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 3738 p->entry[0].prof_id = tmp->prof_id; 3739 3740 memcpy(p->entry[0].key, 3741 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 3742 sizeof(hw->blk[blk].prof.t->key)); 3743 } 3744 3745 return 0; 3746 } 3747 3748 /** 3749 * ice_prof_bld_xlt1 - build XLT1 changes 3750 * @blk: hardware block 3751 * @bld: the update package buffer build to add to 3752 * @chgs: the list of changes to make in hardware 3753 */ 3754 static enum ice_status 3755 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 3756 struct list_head *chgs) 3757 { 3758 struct ice_chs_chg *tmp; 3759 3760 list_for_each_entry(tmp, chgs, list_entry) 3761 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 3762 struct ice_xlt1_section *p; 3763 u32 id; 3764 3765 id = ice_sect_id(blk, ICE_XLT1); 3766 p = ice_pkg_buf_alloc_section(bld, id, 3767 struct_size(p, value, 1)); 3768 3769 if (!p) 3770 return ICE_ERR_MAX_LIMIT; 3771 3772 p->count = cpu_to_le16(1); 3773 p->offset = cpu_to_le16(tmp->ptype); 3774 p->value[0] = tmp->ptg; 3775 } 3776 3777 return 0; 3778 } 3779 3780 /** 3781 * ice_prof_bld_xlt2 - build XLT2 changes 3782 * @blk: hardware block 3783 * @bld: the update package buffer build to add to 3784 * @chgs: the list of changes to make in hardware 3785 */ 3786 static enum ice_status 3787 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 3788 struct list_head *chgs) 3789 { 3790 struct ice_chs_chg *tmp; 3791 3792 list_for_each_entry(tmp, chgs, list_entry) { 3793 struct ice_xlt2_section *p; 3794 u32 id; 3795 3796 switch (tmp->type) { 3797 case ICE_VSIG_ADD: 3798 case ICE_VSI_MOVE: 3799 case ICE_VSIG_REM: 3800 id = ice_sect_id(blk, ICE_XLT2); 3801 p = ice_pkg_buf_alloc_section(bld, id, 3802 struct_size(p, value, 1)); 3803 3804 if (!p) 3805 return ICE_ERR_MAX_LIMIT; 3806 3807 p->count = cpu_to_le16(1); 3808 p->offset = cpu_to_le16(tmp->vsi); 3809 p->value[0] = cpu_to_le16(tmp->vsig); 3810 break; 3811 default: 3812 break; 3813 } 3814 } 3815 3816 return 0; 3817 } 3818 3819 /** 3820 * ice_upd_prof_hw - update hardware using the change list 3821 * @hw: pointer to the HW struct 3822 * @blk: hardware block 3823 * @chgs: the list of changes to make in hardware 3824 */ 3825 static enum ice_status 3826 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 3827 struct list_head *chgs) 3828 { 3829 struct ice_buf_build *b; 3830 struct ice_chs_chg *tmp; 3831 enum ice_status status; 3832 u16 pkg_sects; 3833 u16 xlt1 = 0; 3834 u16 xlt2 = 0; 3835 u16 tcam = 0; 3836 u16 es = 0; 3837 u16 sects; 3838 3839 /* count number of sections we need */ 3840 list_for_each_entry(tmp, chgs, list_entry) { 3841 switch (tmp->type) { 3842 case ICE_PTG_ES_ADD: 3843 if (tmp->add_ptg) 3844 xlt1++; 3845 if (tmp->add_prof) 3846 es++; 3847 break; 3848 case ICE_TCAM_ADD: 3849 tcam++; 3850 break; 3851 case ICE_VSIG_ADD: 3852 case ICE_VSI_MOVE: 3853 case ICE_VSIG_REM: 3854 xlt2++; 3855 break; 3856 default: 3857 break; 3858 } 3859 } 3860 sects = xlt1 + xlt2 + tcam + es; 3861 3862 if (!sects) 3863 return 0; 3864 3865 /* Build update package buffer */ 3866 b = ice_pkg_buf_alloc(hw); 3867 if (!b) 3868 return ICE_ERR_NO_MEMORY; 3869 3870 status = ice_pkg_buf_reserve_section(b, sects); 3871 if (status) 3872 goto error_tmp; 3873 3874 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 3875 if (es) { 3876 status = ice_prof_bld_es(hw, blk, b, chgs); 3877 if (status) 3878 goto error_tmp; 3879 } 3880 3881 if (tcam) { 3882 status = ice_prof_bld_tcam(hw, blk, b, chgs); 3883 if (status) 3884 goto error_tmp; 3885 } 3886 3887 if (xlt1) { 3888 status = ice_prof_bld_xlt1(blk, b, chgs); 3889 if (status) 3890 goto error_tmp; 3891 } 3892 3893 if (xlt2) { 3894 status = ice_prof_bld_xlt2(blk, b, chgs); 3895 if (status) 3896 goto error_tmp; 3897 } 3898 3899 /* After package buffer build check if the section count in buffer is 3900 * non-zero and matches the number of sections detected for package 3901 * update. 3902 */ 3903 pkg_sects = ice_pkg_buf_get_active_sections(b); 3904 if (!pkg_sects || pkg_sects != sects) { 3905 status = ICE_ERR_INVAL_SIZE; 3906 goto error_tmp; 3907 } 3908 3909 /* update package */ 3910 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 3911 if (status == ICE_ERR_AQ_ERROR) 3912 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 3913 3914 error_tmp: 3915 ice_pkg_buf_free(hw, b); 3916 return status; 3917 } 3918 3919 /** 3920 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 3921 * @hw: pointer to the HW struct 3922 * @prof_id: profile ID 3923 * @mask_sel: mask select 3924 * 3925 * This function enable any of the masks selected by the mask select parameter 3926 * for the profile specified. 3927 */ 3928 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 3929 { 3930 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 3931 3932 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 3933 GLQF_FDMASK_SEL(prof_id), mask_sel); 3934 } 3935 3936 struct ice_fd_src_dst_pair { 3937 u8 prot_id; 3938 u8 count; 3939 u16 off; 3940 }; 3941 3942 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 3943 /* These are defined in pairs */ 3944 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 3945 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 3946 3947 { ICE_PROT_IPV4_IL, 2, 12 }, 3948 { ICE_PROT_IPV4_IL, 2, 16 }, 3949 3950 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 3951 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 3952 3953 { ICE_PROT_IPV6_IL, 8, 8 }, 3954 { ICE_PROT_IPV6_IL, 8, 24 }, 3955 3956 { ICE_PROT_TCP_IL, 1, 0 }, 3957 { ICE_PROT_TCP_IL, 1, 2 }, 3958 3959 { ICE_PROT_UDP_OF, 1, 0 }, 3960 { ICE_PROT_UDP_OF, 1, 2 }, 3961 3962 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 3963 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 3964 3965 { ICE_PROT_SCTP_IL, 1, 0 }, 3966 { ICE_PROT_SCTP_IL, 1, 2 } 3967 }; 3968 3969 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 3970 3971 /** 3972 * ice_update_fd_swap - set register appropriately for a FD FV extraction 3973 * @hw: pointer to the HW struct 3974 * @prof_id: profile ID 3975 * @es: extraction sequence (length of array is determined by the block) 3976 */ 3977 static enum ice_status 3978 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 3979 { 3980 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3981 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 3982 #define ICE_FD_FV_NOT_FOUND (-2) 3983 s8 first_free = ICE_FD_FV_NOT_FOUND; 3984 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 3985 s8 orig_free, si; 3986 u32 mask_sel = 0; 3987 u8 i, j, k; 3988 3989 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 3990 3991 /* This code assumes that the Flow Director field vectors are assigned 3992 * from the end of the FV indexes working towards the zero index, that 3993 * only complete fields will be included and will be consecutive, and 3994 * that there are no gaps between valid indexes. 3995 */ 3996 3997 /* Determine swap fields present */ 3998 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 3999 /* Find the first free entry, assuming right to left population. 4000 * This is where we can start adding additional pairs if needed. 4001 */ 4002 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4003 ICE_PROT_INVALID) 4004 first_free = i - 1; 4005 4006 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4007 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4008 es[i].off == ice_fd_pairs[j].off) { 4009 set_bit(j, pair_list); 4010 pair_start[j] = i; 4011 } 4012 } 4013 4014 orig_free = first_free; 4015 4016 /* determine missing swap fields that need to be added */ 4017 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4018 u8 bit1 = test_bit(i + 1, pair_list); 4019 u8 bit0 = test_bit(i, pair_list); 4020 4021 if (bit0 ^ bit1) { 4022 u8 index; 4023 4024 /* add the appropriate 'paired' entry */ 4025 if (!bit0) 4026 index = i; 4027 else 4028 index = i + 1; 4029 4030 /* check for room */ 4031 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4032 return ICE_ERR_MAX_LIMIT; 4033 4034 /* place in extraction sequence */ 4035 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4036 es[first_free - k].prot_id = 4037 ice_fd_pairs[index].prot_id; 4038 es[first_free - k].off = 4039 ice_fd_pairs[index].off + (k * 2); 4040 4041 if (k > first_free) 4042 return ICE_ERR_OUT_OF_RANGE; 4043 4044 /* keep track of non-relevant fields */ 4045 mask_sel |= BIT(first_free - k); 4046 } 4047 4048 pair_start[index] = first_free; 4049 first_free -= ice_fd_pairs[index].count; 4050 } 4051 } 4052 4053 /* fill in the swap array */ 4054 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4055 while (si >= 0) { 4056 u8 indexes_used = 1; 4057 4058 /* assume flat at this index */ 4059 #define ICE_SWAP_VALID 0x80 4060 used[si] = si | ICE_SWAP_VALID; 4061 4062 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4063 si -= indexes_used; 4064 continue; 4065 } 4066 4067 /* check for a swap location */ 4068 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4069 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4070 es[si].off == ice_fd_pairs[j].off) { 4071 u8 idx; 4072 4073 /* determine the appropriate matching field */ 4074 idx = j + ((j % 2) ? -1 : 1); 4075 4076 indexes_used = ice_fd_pairs[idx].count; 4077 for (k = 0; k < indexes_used; k++) { 4078 used[si - k] = (pair_start[idx] - k) | 4079 ICE_SWAP_VALID; 4080 } 4081 4082 break; 4083 } 4084 4085 si -= indexes_used; 4086 } 4087 4088 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4089 * register 4090 */ 4091 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4092 u32 raw_swap = 0; 4093 u32 raw_in = 0; 4094 4095 for (k = 0; k < 4; k++) { 4096 u8 idx; 4097 4098 idx = (j * 4) + k; 4099 if (used[idx] && !(mask_sel & BIT(idx))) { 4100 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4101 #define ICE_INSET_DFLT 0x9f 4102 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4103 } 4104 } 4105 4106 /* write the appropriate swap register set */ 4107 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4108 4109 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4110 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4111 4112 /* write the appropriate inset register set */ 4113 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4114 4115 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4116 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4117 } 4118 4119 /* initially clear the mask select for this profile */ 4120 ice_update_fd_mask(hw, prof_id, 0); 4121 4122 return 0; 4123 } 4124 4125 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4126 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4127 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4128 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4129 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4130 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4131 }; 4132 4133 /** 4134 * ice_get_ptype_attrib_info - get PTYPE attribute information 4135 * @type: attribute type 4136 * @info: pointer to variable to the attribute information 4137 */ 4138 static void 4139 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4140 struct ice_ptype_attrib_info *info) 4141 { 4142 *info = ice_ptype_attributes[type]; 4143 } 4144 4145 /** 4146 * ice_add_prof_attrib - add any PTG with attributes to profile 4147 * @prof: pointer to the profile to which PTG entries will be added 4148 * @ptg: PTG to be added 4149 * @ptype: PTYPE that needs to be looked up 4150 * @attr: array of attributes that will be considered 4151 * @attr_cnt: number of elements in the attribute array 4152 */ 4153 static enum ice_status 4154 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4155 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4156 { 4157 bool found = false; 4158 u16 i; 4159 4160 for (i = 0; i < attr_cnt; i++) 4161 if (attr[i].ptype == ptype) { 4162 found = true; 4163 4164 prof->ptg[prof->ptg_cnt] = ptg; 4165 ice_get_ptype_attrib_info(attr[i].attrib, 4166 &prof->attr[prof->ptg_cnt]); 4167 4168 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4169 return ICE_ERR_MAX_LIMIT; 4170 } 4171 4172 if (!found) 4173 return ICE_ERR_DOES_NOT_EXIST; 4174 4175 return 0; 4176 } 4177 4178 /** 4179 * ice_add_prof - add profile 4180 * @hw: pointer to the HW struct 4181 * @blk: hardware block 4182 * @id: profile tracking ID 4183 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4184 * @attr: array of attributes 4185 * @attr_cnt: number of elements in attr array 4186 * @es: extraction sequence (length of array is determined by the block) 4187 * @masks: mask for extraction sequence 4188 * 4189 * This function registers a profile, which matches a set of PTYPES with a 4190 * particular extraction sequence. While the hardware profile is allocated 4191 * it will not be written until the first call to ice_add_flow that specifies 4192 * the ID value used here. 4193 */ 4194 enum ice_status 4195 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4196 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4197 struct ice_fv_word *es, u16 *masks) 4198 { 4199 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4200 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4201 struct ice_prof_map *prof; 4202 enum ice_status status; 4203 u8 byte = 0; 4204 u8 prof_id; 4205 4206 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4207 4208 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4209 4210 /* search for existing profile */ 4211 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4212 if (status) { 4213 /* allocate profile ID */ 4214 status = ice_alloc_prof_id(hw, blk, &prof_id); 4215 if (status) 4216 goto err_ice_add_prof; 4217 if (blk == ICE_BLK_FD) { 4218 /* For Flow Director block, the extraction sequence may 4219 * need to be altered in the case where there are paired 4220 * fields that have no match. This is necessary because 4221 * for Flow Director, src and dest fields need to paired 4222 * for filter programming and these values are swapped 4223 * during Tx. 4224 */ 4225 status = ice_update_fd_swap(hw, prof_id, es); 4226 if (status) 4227 goto err_ice_add_prof; 4228 } 4229 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4230 if (status) 4231 goto err_ice_add_prof; 4232 4233 /* and write new es */ 4234 ice_write_es(hw, blk, prof_id, es); 4235 } 4236 4237 ice_prof_inc_ref(hw, blk, prof_id); 4238 4239 /* add profile info */ 4240 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4241 if (!prof) { 4242 status = ICE_ERR_NO_MEMORY; 4243 goto err_ice_add_prof; 4244 } 4245 4246 prof->profile_cookie = id; 4247 prof->prof_id = prof_id; 4248 prof->ptg_cnt = 0; 4249 prof->context = 0; 4250 4251 /* build list of ptgs */ 4252 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4253 u8 bit; 4254 4255 if (!ptypes[byte]) { 4256 bytes--; 4257 byte++; 4258 continue; 4259 } 4260 4261 /* Examine 8 bits per byte */ 4262 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4263 BITS_PER_BYTE) { 4264 u16 ptype; 4265 u8 ptg; 4266 4267 ptype = byte * BITS_PER_BYTE + bit; 4268 4269 /* The package should place all ptypes in a non-zero 4270 * PTG, so the following call should never fail. 4271 */ 4272 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4273 continue; 4274 4275 /* If PTG is already added, skip and continue */ 4276 if (test_bit(ptg, ptgs_used)) 4277 continue; 4278 4279 set_bit(ptg, ptgs_used); 4280 /* Check to see there are any attributes for 4281 * this PTYPE, and add them if found. 4282 */ 4283 status = ice_add_prof_attrib(prof, ptg, ptype, 4284 attr, attr_cnt); 4285 if (status == ICE_ERR_MAX_LIMIT) 4286 break; 4287 if (status) { 4288 /* This is simple a PTYPE/PTG with no 4289 * attribute 4290 */ 4291 prof->ptg[prof->ptg_cnt] = ptg; 4292 prof->attr[prof->ptg_cnt].flags = 0; 4293 prof->attr[prof->ptg_cnt].mask = 0; 4294 4295 if (++prof->ptg_cnt >= 4296 ICE_MAX_PTG_PER_PROFILE) 4297 break; 4298 } 4299 } 4300 4301 bytes--; 4302 byte++; 4303 } 4304 4305 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4306 status = 0; 4307 4308 err_ice_add_prof: 4309 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4310 return status; 4311 } 4312 4313 /** 4314 * ice_search_prof_id - Search for a profile tracking ID 4315 * @hw: pointer to the HW struct 4316 * @blk: hardware block 4317 * @id: profile tracking ID 4318 * 4319 * This will search for a profile tracking ID which was previously added. 4320 * The profile map lock should be held before calling this function. 4321 */ 4322 static struct ice_prof_map * 4323 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4324 { 4325 struct ice_prof_map *entry = NULL; 4326 struct ice_prof_map *map; 4327 4328 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4329 if (map->profile_cookie == id) { 4330 entry = map; 4331 break; 4332 } 4333 4334 return entry; 4335 } 4336 4337 /** 4338 * ice_vsig_prof_id_count - count profiles in a VSIG 4339 * @hw: pointer to the HW struct 4340 * @blk: hardware block 4341 * @vsig: VSIG to remove the profile from 4342 */ 4343 static u16 4344 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4345 { 4346 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4347 struct ice_vsig_prof *p; 4348 4349 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4350 list) 4351 count++; 4352 4353 return count; 4354 } 4355 4356 /** 4357 * ice_rel_tcam_idx - release a TCAM index 4358 * @hw: pointer to the HW struct 4359 * @blk: hardware block 4360 * @idx: the index to release 4361 */ 4362 static enum ice_status 4363 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4364 { 4365 /* Masks to invoke a never match entry */ 4366 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4367 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4368 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4369 enum ice_status status; 4370 4371 /* write the TCAM entry */ 4372 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4373 dc_msk, nm_msk); 4374 if (status) 4375 return status; 4376 4377 /* release the TCAM entry */ 4378 status = ice_free_tcam_ent(hw, blk, idx); 4379 4380 return status; 4381 } 4382 4383 /** 4384 * ice_rem_prof_id - remove one profile from a VSIG 4385 * @hw: pointer to the HW struct 4386 * @blk: hardware block 4387 * @prof: pointer to profile structure to remove 4388 */ 4389 static enum ice_status 4390 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4391 struct ice_vsig_prof *prof) 4392 { 4393 enum ice_status status; 4394 u16 i; 4395 4396 for (i = 0; i < prof->tcam_count; i++) 4397 if (prof->tcam[i].in_use) { 4398 prof->tcam[i].in_use = false; 4399 status = ice_rel_tcam_idx(hw, blk, 4400 prof->tcam[i].tcam_idx); 4401 if (status) 4402 return ICE_ERR_HW_TABLE; 4403 } 4404 4405 return 0; 4406 } 4407 4408 /** 4409 * ice_rem_vsig - remove VSIG 4410 * @hw: pointer to the HW struct 4411 * @blk: hardware block 4412 * @vsig: the VSIG to remove 4413 * @chg: the change list 4414 */ 4415 static enum ice_status 4416 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4417 struct list_head *chg) 4418 { 4419 u16 idx = vsig & ICE_VSIG_IDX_M; 4420 struct ice_vsig_vsi *vsi_cur; 4421 struct ice_vsig_prof *d, *t; 4422 enum ice_status status; 4423 4424 /* remove TCAM entries */ 4425 list_for_each_entry_safe(d, t, 4426 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4427 list) { 4428 status = ice_rem_prof_id(hw, blk, d); 4429 if (status) 4430 return status; 4431 4432 list_del(&d->list); 4433 devm_kfree(ice_hw_to_dev(hw), d); 4434 } 4435 4436 /* Move all VSIS associated with this VSIG to the default VSIG */ 4437 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4438 /* If the VSIG has at least 1 VSI then iterate through the list 4439 * and remove the VSIs before deleting the group. 4440 */ 4441 if (vsi_cur) 4442 do { 4443 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4444 struct ice_chs_chg *p; 4445 4446 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4447 GFP_KERNEL); 4448 if (!p) 4449 return ICE_ERR_NO_MEMORY; 4450 4451 p->type = ICE_VSIG_REM; 4452 p->orig_vsig = vsig; 4453 p->vsig = ICE_DEFAULT_VSIG; 4454 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4455 4456 list_add(&p->list_entry, chg); 4457 4458 vsi_cur = tmp; 4459 } while (vsi_cur); 4460 4461 return ice_vsig_free(hw, blk, vsig); 4462 } 4463 4464 /** 4465 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4466 * @hw: pointer to the HW struct 4467 * @blk: hardware block 4468 * @vsig: VSIG to remove the profile from 4469 * @hdl: profile handle indicating which profile to remove 4470 * @chg: list to receive a record of changes 4471 */ 4472 static enum ice_status 4473 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4474 struct list_head *chg) 4475 { 4476 u16 idx = vsig & ICE_VSIG_IDX_M; 4477 struct ice_vsig_prof *p, *t; 4478 enum ice_status status; 4479 4480 list_for_each_entry_safe(p, t, 4481 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4482 list) 4483 if (p->profile_cookie == hdl) { 4484 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4485 /* this is the last profile, remove the VSIG */ 4486 return ice_rem_vsig(hw, blk, vsig, chg); 4487 4488 status = ice_rem_prof_id(hw, blk, p); 4489 if (!status) { 4490 list_del(&p->list); 4491 devm_kfree(ice_hw_to_dev(hw), p); 4492 } 4493 return status; 4494 } 4495 4496 return ICE_ERR_DOES_NOT_EXIST; 4497 } 4498 4499 /** 4500 * ice_rem_flow_all - remove all flows with a particular profile 4501 * @hw: pointer to the HW struct 4502 * @blk: hardware block 4503 * @id: profile tracking ID 4504 */ 4505 static enum ice_status 4506 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4507 { 4508 struct ice_chs_chg *del, *tmp; 4509 enum ice_status status; 4510 struct list_head chg; 4511 u16 i; 4512 4513 INIT_LIST_HEAD(&chg); 4514 4515 for (i = 1; i < ICE_MAX_VSIGS; i++) 4516 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4517 if (ice_has_prof_vsig(hw, blk, i, id)) { 4518 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4519 &chg); 4520 if (status) 4521 goto err_ice_rem_flow_all; 4522 } 4523 } 4524 4525 status = ice_upd_prof_hw(hw, blk, &chg); 4526 4527 err_ice_rem_flow_all: 4528 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4529 list_del(&del->list_entry); 4530 devm_kfree(ice_hw_to_dev(hw), del); 4531 } 4532 4533 return status; 4534 } 4535 4536 /** 4537 * ice_rem_prof - remove profile 4538 * @hw: pointer to the HW struct 4539 * @blk: hardware block 4540 * @id: profile tracking ID 4541 * 4542 * This will remove the profile specified by the ID parameter, which was 4543 * previously created through ice_add_prof. If any existing entries 4544 * are associated with this profile, they will be removed as well. 4545 */ 4546 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4547 { 4548 struct ice_prof_map *pmap; 4549 enum ice_status status; 4550 4551 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4552 4553 pmap = ice_search_prof_id(hw, blk, id); 4554 if (!pmap) { 4555 status = ICE_ERR_DOES_NOT_EXIST; 4556 goto err_ice_rem_prof; 4557 } 4558 4559 /* remove all flows with this profile */ 4560 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4561 if (status) 4562 goto err_ice_rem_prof; 4563 4564 /* dereference profile, and possibly remove */ 4565 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4566 4567 list_del(&pmap->list); 4568 devm_kfree(ice_hw_to_dev(hw), pmap); 4569 4570 err_ice_rem_prof: 4571 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4572 return status; 4573 } 4574 4575 /** 4576 * ice_get_prof - get profile 4577 * @hw: pointer to the HW struct 4578 * @blk: hardware block 4579 * @hdl: profile handle 4580 * @chg: change list 4581 */ 4582 static enum ice_status 4583 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4584 struct list_head *chg) 4585 { 4586 enum ice_status status = 0; 4587 struct ice_prof_map *map; 4588 struct ice_chs_chg *p; 4589 u16 i; 4590 4591 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4592 /* Get the details on the profile specified by the handle ID */ 4593 map = ice_search_prof_id(hw, blk, hdl); 4594 if (!map) { 4595 status = ICE_ERR_DOES_NOT_EXIST; 4596 goto err_ice_get_prof; 4597 } 4598 4599 for (i = 0; i < map->ptg_cnt; i++) 4600 if (!hw->blk[blk].es.written[map->prof_id]) { 4601 /* add ES to change list */ 4602 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4603 GFP_KERNEL); 4604 if (!p) { 4605 status = ICE_ERR_NO_MEMORY; 4606 goto err_ice_get_prof; 4607 } 4608 4609 p->type = ICE_PTG_ES_ADD; 4610 p->ptype = 0; 4611 p->ptg = map->ptg[i]; 4612 p->add_ptg = 0; 4613 4614 p->add_prof = 1; 4615 p->prof_id = map->prof_id; 4616 4617 hw->blk[blk].es.written[map->prof_id] = true; 4618 4619 list_add(&p->list_entry, chg); 4620 } 4621 4622 err_ice_get_prof: 4623 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4624 /* let caller clean up the change list */ 4625 return status; 4626 } 4627 4628 /** 4629 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4630 * @hw: pointer to the HW struct 4631 * @blk: hardware block 4632 * @vsig: VSIG from which to copy the list 4633 * @lst: output list 4634 * 4635 * This routine makes a copy of the list of profiles in the specified VSIG. 4636 */ 4637 static enum ice_status 4638 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4639 struct list_head *lst) 4640 { 4641 struct ice_vsig_prof *ent1, *ent2; 4642 u16 idx = vsig & ICE_VSIG_IDX_M; 4643 4644 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4645 list) { 4646 struct ice_vsig_prof *p; 4647 4648 /* copy to the input list */ 4649 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4650 GFP_KERNEL); 4651 if (!p) 4652 goto err_ice_get_profs_vsig; 4653 4654 list_add_tail(&p->list, lst); 4655 } 4656 4657 return 0; 4658 4659 err_ice_get_profs_vsig: 4660 list_for_each_entry_safe(ent1, ent2, lst, list) { 4661 list_del(&ent1->list); 4662 devm_kfree(ice_hw_to_dev(hw), ent1); 4663 } 4664 4665 return ICE_ERR_NO_MEMORY; 4666 } 4667 4668 /** 4669 * ice_add_prof_to_lst - add profile entry to a list 4670 * @hw: pointer to the HW struct 4671 * @blk: hardware block 4672 * @lst: the list to be added to 4673 * @hdl: profile handle of entry to add 4674 */ 4675 static enum ice_status 4676 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4677 struct list_head *lst, u64 hdl) 4678 { 4679 enum ice_status status = 0; 4680 struct ice_prof_map *map; 4681 struct ice_vsig_prof *p; 4682 u16 i; 4683 4684 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4685 map = ice_search_prof_id(hw, blk, hdl); 4686 if (!map) { 4687 status = ICE_ERR_DOES_NOT_EXIST; 4688 goto err_ice_add_prof_to_lst; 4689 } 4690 4691 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4692 if (!p) { 4693 status = ICE_ERR_NO_MEMORY; 4694 goto err_ice_add_prof_to_lst; 4695 } 4696 4697 p->profile_cookie = map->profile_cookie; 4698 p->prof_id = map->prof_id; 4699 p->tcam_count = map->ptg_cnt; 4700 4701 for (i = 0; i < map->ptg_cnt; i++) { 4702 p->tcam[i].prof_id = map->prof_id; 4703 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4704 p->tcam[i].ptg = map->ptg[i]; 4705 } 4706 4707 list_add(&p->list, lst); 4708 4709 err_ice_add_prof_to_lst: 4710 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4711 return status; 4712 } 4713 4714 /** 4715 * ice_move_vsi - move VSI to another VSIG 4716 * @hw: pointer to the HW struct 4717 * @blk: hardware block 4718 * @vsi: the VSI to move 4719 * @vsig: the VSIG to move the VSI to 4720 * @chg: the change list 4721 */ 4722 static enum ice_status 4723 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4724 struct list_head *chg) 4725 { 4726 enum ice_status status; 4727 struct ice_chs_chg *p; 4728 u16 orig_vsig; 4729 4730 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4731 if (!p) 4732 return ICE_ERR_NO_MEMORY; 4733 4734 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4735 if (!status) 4736 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4737 4738 if (status) { 4739 devm_kfree(ice_hw_to_dev(hw), p); 4740 return status; 4741 } 4742 4743 p->type = ICE_VSI_MOVE; 4744 p->vsi = vsi; 4745 p->orig_vsig = orig_vsig; 4746 p->vsig = vsig; 4747 4748 list_add(&p->list_entry, chg); 4749 4750 return 0; 4751 } 4752 4753 /** 4754 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4755 * @hw: pointer to the HW struct 4756 * @idx: the index of the TCAM entry to remove 4757 * @chg: the list of change structures to search 4758 */ 4759 static void 4760 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 4761 { 4762 struct ice_chs_chg *pos, *tmp; 4763 4764 list_for_each_entry_safe(tmp, pos, chg, list_entry) 4765 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4766 list_del(&tmp->list_entry); 4767 devm_kfree(ice_hw_to_dev(hw), tmp); 4768 } 4769 } 4770 4771 /** 4772 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4773 * @hw: pointer to the HW struct 4774 * @blk: hardware block 4775 * @enable: true to enable, false to disable 4776 * @vsig: the VSIG of the TCAM entry 4777 * @tcam: pointer the TCAM info structure of the TCAM to disable 4778 * @chg: the change list 4779 * 4780 * This function appends an enable or disable TCAM entry in the change log 4781 */ 4782 static enum ice_status 4783 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4784 u16 vsig, struct ice_tcam_inf *tcam, 4785 struct list_head *chg) 4786 { 4787 enum ice_status status; 4788 struct ice_chs_chg *p; 4789 4790 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4791 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4792 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4793 4794 /* if disabling, free the TCAM */ 4795 if (!enable) { 4796 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4797 4798 /* if we have already created a change for this TCAM entry, then 4799 * we need to remove that entry, in order to prevent writing to 4800 * a TCAM entry we no longer will have ownership of. 4801 */ 4802 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4803 tcam->tcam_idx = 0; 4804 tcam->in_use = 0; 4805 return status; 4806 } 4807 4808 /* for re-enabling, reallocate a TCAM */ 4809 /* for entries with empty attribute masks, allocate entry from 4810 * the bottom of the TCAM table; otherwise, allocate from the 4811 * top of the table in order to give it higher priority 4812 */ 4813 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 4814 &tcam->tcam_idx); 4815 if (status) 4816 return status; 4817 4818 /* add TCAM to change list */ 4819 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4820 if (!p) 4821 return ICE_ERR_NO_MEMORY; 4822 4823 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4824 tcam->ptg, vsig, 0, tcam->attr.flags, 4825 vl_msk, dc_msk, nm_msk); 4826 if (status) 4827 goto err_ice_prof_tcam_ena_dis; 4828 4829 tcam->in_use = 1; 4830 4831 p->type = ICE_TCAM_ADD; 4832 p->add_tcam_idx = true; 4833 p->prof_id = tcam->prof_id; 4834 p->ptg = tcam->ptg; 4835 p->vsig = 0; 4836 p->tcam_idx = tcam->tcam_idx; 4837 4838 /* log change */ 4839 list_add(&p->list_entry, chg); 4840 4841 return 0; 4842 4843 err_ice_prof_tcam_ena_dis: 4844 devm_kfree(ice_hw_to_dev(hw), p); 4845 return status; 4846 } 4847 4848 /** 4849 * ice_adj_prof_priorities - adjust profile based on priorities 4850 * @hw: pointer to the HW struct 4851 * @blk: hardware block 4852 * @vsig: the VSIG for which to adjust profile priorities 4853 * @chg: the change list 4854 */ 4855 static enum ice_status 4856 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4857 struct list_head *chg) 4858 { 4859 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4860 struct ice_vsig_prof *t; 4861 enum ice_status status; 4862 u16 idx; 4863 4864 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4865 idx = vsig & ICE_VSIG_IDX_M; 4866 4867 /* Priority is based on the order in which the profiles are added. The 4868 * newest added profile has highest priority and the oldest added 4869 * profile has the lowest priority. Since the profile property list for 4870 * a VSIG is sorted from newest to oldest, this code traverses the list 4871 * in order and enables the first of each PTG that it finds (that is not 4872 * already enabled); it also disables any duplicate PTGs that it finds 4873 * in the older profiles (that are currently enabled). 4874 */ 4875 4876 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4877 list) { 4878 u16 i; 4879 4880 for (i = 0; i < t->tcam_count; i++) { 4881 /* Scan the priorities from newest to oldest. 4882 * Make sure that the newest profiles take priority. 4883 */ 4884 if (test_bit(t->tcam[i].ptg, ptgs_used) && 4885 t->tcam[i].in_use) { 4886 /* need to mark this PTG as never match, as it 4887 * was already in use and therefore duplicate 4888 * (and lower priority) 4889 */ 4890 status = ice_prof_tcam_ena_dis(hw, blk, false, 4891 vsig, 4892 &t->tcam[i], 4893 chg); 4894 if (status) 4895 return status; 4896 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 4897 !t->tcam[i].in_use) { 4898 /* need to enable this PTG, as it in not in use 4899 * and not enabled (highest priority) 4900 */ 4901 status = ice_prof_tcam_ena_dis(hw, blk, true, 4902 vsig, 4903 &t->tcam[i], 4904 chg); 4905 if (status) 4906 return status; 4907 } 4908 4909 /* keep track of used ptgs */ 4910 set_bit(t->tcam[i].ptg, ptgs_used); 4911 } 4912 } 4913 4914 return 0; 4915 } 4916 4917 /** 4918 * ice_add_prof_id_vsig - add profile to VSIG 4919 * @hw: pointer to the HW struct 4920 * @blk: hardware block 4921 * @vsig: the VSIG to which this profile is to be added 4922 * @hdl: the profile handle indicating the profile to add 4923 * @rev: true to add entries to the end of the list 4924 * @chg: the change list 4925 */ 4926 static enum ice_status 4927 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4928 bool rev, struct list_head *chg) 4929 { 4930 /* Masks that ignore flags */ 4931 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4932 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4933 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4934 enum ice_status status = 0; 4935 struct ice_prof_map *map; 4936 struct ice_vsig_prof *t; 4937 struct ice_chs_chg *p; 4938 u16 vsig_idx, i; 4939 4940 /* Error, if this VSIG already has this profile */ 4941 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 4942 return ICE_ERR_ALREADY_EXISTS; 4943 4944 /* new VSIG profile structure */ 4945 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 4946 if (!t) 4947 return ICE_ERR_NO_MEMORY; 4948 4949 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4950 /* Get the details on the profile specified by the handle ID */ 4951 map = ice_search_prof_id(hw, blk, hdl); 4952 if (!map) { 4953 status = ICE_ERR_DOES_NOT_EXIST; 4954 goto err_ice_add_prof_id_vsig; 4955 } 4956 4957 t->profile_cookie = map->profile_cookie; 4958 t->prof_id = map->prof_id; 4959 t->tcam_count = map->ptg_cnt; 4960 4961 /* create TCAM entries */ 4962 for (i = 0; i < map->ptg_cnt; i++) { 4963 u16 tcam_idx; 4964 4965 /* add TCAM to change list */ 4966 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4967 if (!p) { 4968 status = ICE_ERR_NO_MEMORY; 4969 goto err_ice_add_prof_id_vsig; 4970 } 4971 4972 /* allocate the TCAM entry index */ 4973 /* for entries with empty attribute masks, allocate entry from 4974 * the bottom of the TCAM table; otherwise, allocate from the 4975 * top of the table in order to give it higher priority 4976 */ 4977 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 4978 &tcam_idx); 4979 if (status) { 4980 devm_kfree(ice_hw_to_dev(hw), p); 4981 goto err_ice_add_prof_id_vsig; 4982 } 4983 4984 t->tcam[i].ptg = map->ptg[i]; 4985 t->tcam[i].prof_id = map->prof_id; 4986 t->tcam[i].tcam_idx = tcam_idx; 4987 t->tcam[i].attr = map->attr[i]; 4988 t->tcam[i].in_use = true; 4989 4990 p->type = ICE_TCAM_ADD; 4991 p->add_tcam_idx = true; 4992 p->prof_id = t->tcam[i].prof_id; 4993 p->ptg = t->tcam[i].ptg; 4994 p->vsig = vsig; 4995 p->tcam_idx = t->tcam[i].tcam_idx; 4996 4997 /* write the TCAM entry */ 4998 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 4999 t->tcam[i].prof_id, 5000 t->tcam[i].ptg, vsig, 0, 0, 5001 vl_msk, dc_msk, nm_msk); 5002 if (status) { 5003 devm_kfree(ice_hw_to_dev(hw), p); 5004 goto err_ice_add_prof_id_vsig; 5005 } 5006 5007 /* log change */ 5008 list_add(&p->list_entry, chg); 5009 } 5010 5011 /* add profile to VSIG */ 5012 vsig_idx = vsig & ICE_VSIG_IDX_M; 5013 if (rev) 5014 list_add_tail(&t->list, 5015 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5016 else 5017 list_add(&t->list, 5018 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5019 5020 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5021 return status; 5022 5023 err_ice_add_prof_id_vsig: 5024 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5025 /* let caller clean up the change list */ 5026 devm_kfree(ice_hw_to_dev(hw), t); 5027 return status; 5028 } 5029 5030 /** 5031 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5032 * @hw: pointer to the HW struct 5033 * @blk: hardware block 5034 * @vsi: the initial VSI that will be in VSIG 5035 * @hdl: the profile handle of the profile that will be added to the VSIG 5036 * @chg: the change list 5037 */ 5038 static enum ice_status 5039 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5040 struct list_head *chg) 5041 { 5042 enum ice_status status; 5043 struct ice_chs_chg *p; 5044 u16 new_vsig; 5045 5046 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5047 if (!p) 5048 return ICE_ERR_NO_MEMORY; 5049 5050 new_vsig = ice_vsig_alloc(hw, blk); 5051 if (!new_vsig) { 5052 status = ICE_ERR_HW_TABLE; 5053 goto err_ice_create_prof_id_vsig; 5054 } 5055 5056 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5057 if (status) 5058 goto err_ice_create_prof_id_vsig; 5059 5060 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5061 if (status) 5062 goto err_ice_create_prof_id_vsig; 5063 5064 p->type = ICE_VSIG_ADD; 5065 p->vsi = vsi; 5066 p->orig_vsig = ICE_DEFAULT_VSIG; 5067 p->vsig = new_vsig; 5068 5069 list_add(&p->list_entry, chg); 5070 5071 return 0; 5072 5073 err_ice_create_prof_id_vsig: 5074 /* let caller clean up the change list */ 5075 devm_kfree(ice_hw_to_dev(hw), p); 5076 return status; 5077 } 5078 5079 /** 5080 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5081 * @hw: pointer to the HW struct 5082 * @blk: hardware block 5083 * @vsi: the initial VSI that will be in VSIG 5084 * @lst: the list of profile that will be added to the VSIG 5085 * @new_vsig: return of new VSIG 5086 * @chg: the change list 5087 */ 5088 static enum ice_status 5089 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5090 struct list_head *lst, u16 *new_vsig, 5091 struct list_head *chg) 5092 { 5093 struct ice_vsig_prof *t; 5094 enum ice_status status; 5095 u16 vsig; 5096 5097 vsig = ice_vsig_alloc(hw, blk); 5098 if (!vsig) 5099 return ICE_ERR_HW_TABLE; 5100 5101 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5102 if (status) 5103 return status; 5104 5105 list_for_each_entry(t, lst, list) { 5106 /* Reverse the order here since we are copying the list */ 5107 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5108 true, chg); 5109 if (status) 5110 return status; 5111 } 5112 5113 *new_vsig = vsig; 5114 5115 return 0; 5116 } 5117 5118 /** 5119 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5120 * @hw: pointer to the HW struct 5121 * @blk: hardware block 5122 * @hdl: the profile handle of the profile to search for 5123 * @vsig: returns the VSIG with the matching profile 5124 */ 5125 static bool 5126 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5127 { 5128 struct ice_vsig_prof *t; 5129 enum ice_status status; 5130 struct list_head lst; 5131 5132 INIT_LIST_HEAD(&lst); 5133 5134 t = kzalloc(sizeof(*t), GFP_KERNEL); 5135 if (!t) 5136 return false; 5137 5138 t->profile_cookie = hdl; 5139 list_add(&t->list, &lst); 5140 5141 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5142 5143 list_del(&t->list); 5144 kfree(t); 5145 5146 return !status; 5147 } 5148 5149 /** 5150 * ice_add_prof_id_flow - add profile flow 5151 * @hw: pointer to the HW struct 5152 * @blk: hardware block 5153 * @vsi: the VSI to enable with the profile specified by ID 5154 * @hdl: profile handle 5155 * 5156 * Calling this function will update the hardware tables to enable the 5157 * profile indicated by the ID parameter for the VSIs specified in the VSI 5158 * array. Once successfully called, the flow will be enabled. 5159 */ 5160 enum ice_status 5161 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5162 { 5163 struct ice_vsig_prof *tmp1, *del1; 5164 struct ice_chs_chg *tmp, *del; 5165 struct list_head union_lst; 5166 enum ice_status status; 5167 struct list_head chg; 5168 u16 vsig; 5169 5170 INIT_LIST_HEAD(&union_lst); 5171 INIT_LIST_HEAD(&chg); 5172 5173 /* Get profile */ 5174 status = ice_get_prof(hw, blk, hdl, &chg); 5175 if (status) 5176 return status; 5177 5178 /* determine if VSI is already part of a VSIG */ 5179 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5180 if (!status && vsig) { 5181 bool only_vsi; 5182 u16 or_vsig; 5183 u16 ref; 5184 5185 /* found in VSIG */ 5186 or_vsig = vsig; 5187 5188 /* make sure that there is no overlap/conflict between the new 5189 * characteristics and the existing ones; we don't support that 5190 * scenario 5191 */ 5192 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5193 status = ICE_ERR_ALREADY_EXISTS; 5194 goto err_ice_add_prof_id_flow; 5195 } 5196 5197 /* last VSI in the VSIG? */ 5198 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5199 if (status) 5200 goto err_ice_add_prof_id_flow; 5201 only_vsi = (ref == 1); 5202 5203 /* create a union of the current profiles and the one being 5204 * added 5205 */ 5206 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5207 if (status) 5208 goto err_ice_add_prof_id_flow; 5209 5210 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5211 if (status) 5212 goto err_ice_add_prof_id_flow; 5213 5214 /* search for an existing VSIG with an exact charc match */ 5215 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5216 if (!status) { 5217 /* move VSI to the VSIG that matches */ 5218 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5219 if (status) 5220 goto err_ice_add_prof_id_flow; 5221 5222 /* VSI has been moved out of or_vsig. If the or_vsig had 5223 * only that VSI it is now empty and can be removed. 5224 */ 5225 if (only_vsi) { 5226 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5227 if (status) 5228 goto err_ice_add_prof_id_flow; 5229 } 5230 } else if (only_vsi) { 5231 /* If the original VSIG only contains one VSI, then it 5232 * will be the requesting VSI. In this case the VSI is 5233 * not sharing entries and we can simply add the new 5234 * profile to the VSIG. 5235 */ 5236 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5237 &chg); 5238 if (status) 5239 goto err_ice_add_prof_id_flow; 5240 5241 /* Adjust priorities */ 5242 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5243 if (status) 5244 goto err_ice_add_prof_id_flow; 5245 } else { 5246 /* No match, so we need a new VSIG */ 5247 status = ice_create_vsig_from_lst(hw, blk, vsi, 5248 &union_lst, &vsig, 5249 &chg); 5250 if (status) 5251 goto err_ice_add_prof_id_flow; 5252 5253 /* Adjust priorities */ 5254 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5255 if (status) 5256 goto err_ice_add_prof_id_flow; 5257 } 5258 } else { 5259 /* need to find or add a VSIG */ 5260 /* search for an existing VSIG with an exact charc match */ 5261 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5262 /* found an exact match */ 5263 /* add or move VSI to the VSIG that matches */ 5264 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5265 if (status) 5266 goto err_ice_add_prof_id_flow; 5267 } else { 5268 /* we did not find an exact match */ 5269 /* we need to add a VSIG */ 5270 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5271 &chg); 5272 if (status) 5273 goto err_ice_add_prof_id_flow; 5274 } 5275 } 5276 5277 /* update hardware */ 5278 if (!status) 5279 status = ice_upd_prof_hw(hw, blk, &chg); 5280 5281 err_ice_add_prof_id_flow: 5282 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5283 list_del(&del->list_entry); 5284 devm_kfree(ice_hw_to_dev(hw), del); 5285 } 5286 5287 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5288 list_del(&del1->list); 5289 devm_kfree(ice_hw_to_dev(hw), del1); 5290 } 5291 5292 return status; 5293 } 5294 5295 /** 5296 * ice_rem_prof_from_list - remove a profile from list 5297 * @hw: pointer to the HW struct 5298 * @lst: list to remove the profile from 5299 * @hdl: the profile handle indicating the profile to remove 5300 */ 5301 static enum ice_status 5302 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5303 { 5304 struct ice_vsig_prof *ent, *tmp; 5305 5306 list_for_each_entry_safe(ent, tmp, lst, list) 5307 if (ent->profile_cookie == hdl) { 5308 list_del(&ent->list); 5309 devm_kfree(ice_hw_to_dev(hw), ent); 5310 return 0; 5311 } 5312 5313 return ICE_ERR_DOES_NOT_EXIST; 5314 } 5315 5316 /** 5317 * ice_rem_prof_id_flow - remove flow 5318 * @hw: pointer to the HW struct 5319 * @blk: hardware block 5320 * @vsi: the VSI from which to remove the profile specified by ID 5321 * @hdl: profile tracking handle 5322 * 5323 * Calling this function will update the hardware tables to remove the 5324 * profile indicated by the ID parameter for the VSIs specified in the VSI 5325 * array. Once successfully called, the flow will be disabled. 5326 */ 5327 enum ice_status 5328 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5329 { 5330 struct ice_vsig_prof *tmp1, *del1; 5331 struct ice_chs_chg *tmp, *del; 5332 struct list_head chg, copy; 5333 enum ice_status status; 5334 u16 vsig; 5335 5336 INIT_LIST_HEAD(©); 5337 INIT_LIST_HEAD(&chg); 5338 5339 /* determine if VSI is already part of a VSIG */ 5340 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5341 if (!status && vsig) { 5342 bool last_profile; 5343 bool only_vsi; 5344 u16 ref; 5345 5346 /* found in VSIG */ 5347 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5348 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5349 if (status) 5350 goto err_ice_rem_prof_id_flow; 5351 only_vsi = (ref == 1); 5352 5353 if (only_vsi) { 5354 /* If the original VSIG only contains one reference, 5355 * which will be the requesting VSI, then the VSI is not 5356 * sharing entries and we can simply remove the specific 5357 * characteristics from the VSIG. 5358 */ 5359 5360 if (last_profile) { 5361 /* If there are no profiles left for this VSIG, 5362 * then simply remove the VSIG. 5363 */ 5364 status = ice_rem_vsig(hw, blk, vsig, &chg); 5365 if (status) 5366 goto err_ice_rem_prof_id_flow; 5367 } else { 5368 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5369 hdl, &chg); 5370 if (status) 5371 goto err_ice_rem_prof_id_flow; 5372 5373 /* Adjust priorities */ 5374 status = ice_adj_prof_priorities(hw, blk, vsig, 5375 &chg); 5376 if (status) 5377 goto err_ice_rem_prof_id_flow; 5378 } 5379 5380 } else { 5381 /* Make a copy of the VSIG's list of Profiles */ 5382 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5383 if (status) 5384 goto err_ice_rem_prof_id_flow; 5385 5386 /* Remove specified profile entry from the list */ 5387 status = ice_rem_prof_from_list(hw, ©, hdl); 5388 if (status) 5389 goto err_ice_rem_prof_id_flow; 5390 5391 if (list_empty(©)) { 5392 status = ice_move_vsi(hw, blk, vsi, 5393 ICE_DEFAULT_VSIG, &chg); 5394 if (status) 5395 goto err_ice_rem_prof_id_flow; 5396 5397 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5398 &vsig)) { 5399 /* found an exact match */ 5400 /* add or move VSI to the VSIG that matches */ 5401 /* Search for a VSIG with a matching profile 5402 * list 5403 */ 5404 5405 /* Found match, move VSI to the matching VSIG */ 5406 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5407 if (status) 5408 goto err_ice_rem_prof_id_flow; 5409 } else { 5410 /* since no existing VSIG supports this 5411 * characteristic pattern, we need to create a 5412 * new VSIG and TCAM entries 5413 */ 5414 status = ice_create_vsig_from_lst(hw, blk, vsi, 5415 ©, &vsig, 5416 &chg); 5417 if (status) 5418 goto err_ice_rem_prof_id_flow; 5419 5420 /* Adjust priorities */ 5421 status = ice_adj_prof_priorities(hw, blk, vsig, 5422 &chg); 5423 if (status) 5424 goto err_ice_rem_prof_id_flow; 5425 } 5426 } 5427 } else { 5428 status = ICE_ERR_DOES_NOT_EXIST; 5429 } 5430 5431 /* update hardware tables */ 5432 if (!status) 5433 status = ice_upd_prof_hw(hw, blk, &chg); 5434 5435 err_ice_rem_prof_id_flow: 5436 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5437 list_del(&del->list_entry); 5438 devm_kfree(ice_hw_to_dev(hw), del); 5439 } 5440 5441 list_for_each_entry_safe(del1, tmp1, ©, list) { 5442 list_del(&del1->list); 5443 devm_kfree(ice_hw_to_dev(hw), del1); 5444 } 5445 5446 return status; 5447 } 5448