1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 8 /* To support tunneling entries by PF, the package will append the PF number to 9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 10 */ 11 static const struct ice_tunnel_type_scan tnls[] = { 12 { TNL_VXLAN, "TNL_VXLAN_PF" }, 13 { TNL_GENEVE, "TNL_GENEVE_PF" }, 14 { TNL_LAST, "" } 15 }; 16 17 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 18 /* SWITCH */ 19 { 20 ICE_SID_XLT0_SW, 21 ICE_SID_XLT_KEY_BUILDER_SW, 22 ICE_SID_XLT1_SW, 23 ICE_SID_XLT2_SW, 24 ICE_SID_PROFID_TCAM_SW, 25 ICE_SID_PROFID_REDIR_SW, 26 ICE_SID_FLD_VEC_SW, 27 ICE_SID_CDID_KEY_BUILDER_SW, 28 ICE_SID_CDID_REDIR_SW 29 }, 30 31 /* ACL */ 32 { 33 ICE_SID_XLT0_ACL, 34 ICE_SID_XLT_KEY_BUILDER_ACL, 35 ICE_SID_XLT1_ACL, 36 ICE_SID_XLT2_ACL, 37 ICE_SID_PROFID_TCAM_ACL, 38 ICE_SID_PROFID_REDIR_ACL, 39 ICE_SID_FLD_VEC_ACL, 40 ICE_SID_CDID_KEY_BUILDER_ACL, 41 ICE_SID_CDID_REDIR_ACL 42 }, 43 44 /* FD */ 45 { 46 ICE_SID_XLT0_FD, 47 ICE_SID_XLT_KEY_BUILDER_FD, 48 ICE_SID_XLT1_FD, 49 ICE_SID_XLT2_FD, 50 ICE_SID_PROFID_TCAM_FD, 51 ICE_SID_PROFID_REDIR_FD, 52 ICE_SID_FLD_VEC_FD, 53 ICE_SID_CDID_KEY_BUILDER_FD, 54 ICE_SID_CDID_REDIR_FD 55 }, 56 57 /* RSS */ 58 { 59 ICE_SID_XLT0_RSS, 60 ICE_SID_XLT_KEY_BUILDER_RSS, 61 ICE_SID_XLT1_RSS, 62 ICE_SID_XLT2_RSS, 63 ICE_SID_PROFID_TCAM_RSS, 64 ICE_SID_PROFID_REDIR_RSS, 65 ICE_SID_FLD_VEC_RSS, 66 ICE_SID_CDID_KEY_BUILDER_RSS, 67 ICE_SID_CDID_REDIR_RSS 68 }, 69 70 /* PE */ 71 { 72 ICE_SID_XLT0_PE, 73 ICE_SID_XLT_KEY_BUILDER_PE, 74 ICE_SID_XLT1_PE, 75 ICE_SID_XLT2_PE, 76 ICE_SID_PROFID_TCAM_PE, 77 ICE_SID_PROFID_REDIR_PE, 78 ICE_SID_FLD_VEC_PE, 79 ICE_SID_CDID_KEY_BUILDER_PE, 80 ICE_SID_CDID_REDIR_PE 81 } 82 }; 83 84 /** 85 * ice_sect_id - returns section ID 86 * @blk: block type 87 * @sect: section type 88 * 89 * This helper function returns the proper section ID given a block type and a 90 * section type. 91 */ 92 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 93 { 94 return ice_sect_lkup[blk][sect]; 95 } 96 97 /** 98 * ice_pkg_val_buf 99 * @buf: pointer to the ice buffer 100 * 101 * This helper function validates a buffer's header. 102 */ 103 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 104 { 105 struct ice_buf_hdr *hdr; 106 u16 section_count; 107 u16 data_end; 108 109 hdr = (struct ice_buf_hdr *)buf->buf; 110 /* verify data */ 111 section_count = le16_to_cpu(hdr->section_count); 112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 113 return NULL; 114 115 data_end = le16_to_cpu(hdr->data_end); 116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 117 return NULL; 118 119 return hdr; 120 } 121 122 /** 123 * ice_find_buf_table 124 * @ice_seg: pointer to the ice segment 125 * 126 * Returns the address of the buffer table within the ice segment. 127 */ 128 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 129 { 130 struct ice_nvm_table *nvms; 131 132 nvms = (struct ice_nvm_table *) 133 (ice_seg->device_table + 134 le32_to_cpu(ice_seg->device_table_count)); 135 136 return (__force struct ice_buf_table *) 137 (nvms->vers + le32_to_cpu(nvms->table_count)); 138 } 139 140 /** 141 * ice_pkg_enum_buf 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 143 * @state: pointer to the enum state 144 * 145 * This function will enumerate all the buffers in the ice segment. The first 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 147 * ice_seg is set to NULL which continues the enumeration. When the function 148 * returns a NULL pointer, then the end of the buffers has been reached, or an 149 * unexpected value has been detected (for example an invalid section count or 150 * an invalid buffer end value). 151 */ 152 static struct ice_buf_hdr * 153 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 154 { 155 if (ice_seg) { 156 state->buf_table = ice_find_buf_table(ice_seg); 157 if (!state->buf_table) 158 return NULL; 159 160 state->buf_idx = 0; 161 return ice_pkg_val_buf(state->buf_table->buf_array); 162 } 163 164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 165 return ice_pkg_val_buf(state->buf_table->buf_array + 166 state->buf_idx); 167 else 168 return NULL; 169 } 170 171 /** 172 * ice_pkg_advance_sect 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This helper function will advance the section within the ice segment, 177 * also advancing the buffer if needed. 178 */ 179 static bool 180 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 181 { 182 if (!ice_seg && !state->buf) 183 return false; 184 185 if (!ice_seg && state->buf) 186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 187 return true; 188 189 state->buf = ice_pkg_enum_buf(ice_seg, state); 190 if (!state->buf) 191 return false; 192 193 /* start of new buffer, reset section index */ 194 state->sect_idx = 0; 195 return true; 196 } 197 198 /** 199 * ice_pkg_enum_section 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 201 * @state: pointer to the enum state 202 * @sect_type: section type to enumerate 203 * 204 * This function will enumerate all the sections of a particular type in the 205 * ice segment. The first call is made with the ice_seg parameter non-NULL; 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 207 * When the function returns a NULL pointer, then the end of the matching 208 * sections has been reached. 209 */ 210 static void * 211 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 212 u32 sect_type) 213 { 214 u16 offset, size; 215 216 if (ice_seg) 217 state->type = sect_type; 218 219 if (!ice_pkg_advance_sect(ice_seg, state)) 220 return NULL; 221 222 /* scan for next matching section */ 223 while (state->buf->section_entry[state->sect_idx].type != 224 cpu_to_le32(state->type)) 225 if (!ice_pkg_advance_sect(NULL, state)) 226 return NULL; 227 228 /* validate section */ 229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 231 return NULL; 232 233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 235 return NULL; 236 237 /* make sure the section fits in the buffer */ 238 if (offset + size > ICE_PKG_BUF_SIZE) 239 return NULL; 240 241 state->sect_type = 242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 243 244 /* calc pointer to this section */ 245 state->sect = ((u8 *)state->buf) + 246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 247 248 return state->sect; 249 } 250 251 /** 252 * ice_pkg_enum_entry 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 254 * @state: pointer to the enum state 255 * @sect_type: section type to enumerate 256 * @offset: pointer to variable that receives the offset in the table (optional) 257 * @handler: function that handles access to the entries into the section type 258 * 259 * This function will enumerate all the entries in particular section type in 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 262 * When the function returns a NULL pointer, then the end of the entries has 263 * been reached. 264 * 265 * Since each section may have a different header and entry size, the handler 266 * function is needed to determine the number and location entries in each 267 * section. 268 * 269 * The offset parameter is optional, but should be used for sections that 270 * contain an offset for each section table. For such cases, the section handler 271 * function must return the appropriate offset + index to give the absolution 272 * offset for each entry. For example, if the base for a section's header 273 * indicates a base offset of 10, and the index for the entry is 2, then 274 * section handler function should set the offset to 10 + 2 = 12. 275 */ 276 static void * 277 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 278 u32 sect_type, u32 *offset, 279 void *(*handler)(u32 sect_type, void *section, 280 u32 index, u32 *offset)) 281 { 282 void *entry; 283 284 if (ice_seg) { 285 if (!handler) 286 return NULL; 287 288 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 289 return NULL; 290 291 state->entry_idx = 0; 292 state->handler = handler; 293 } else { 294 state->entry_idx++; 295 } 296 297 if (!state->handler) 298 return NULL; 299 300 /* get entry */ 301 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 302 offset); 303 if (!entry) { 304 /* end of a section, look for another section of this type */ 305 if (!ice_pkg_enum_section(NULL, state, 0)) 306 return NULL; 307 308 state->entry_idx = 0; 309 entry = state->handler(state->sect_type, state->sect, 310 state->entry_idx, offset); 311 } 312 313 return entry; 314 } 315 316 /** 317 * ice_boost_tcam_handler 318 * @sect_type: section type 319 * @section: pointer to section 320 * @index: index of the boost TCAM entry to be returned 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 322 * 323 * This is a callback function that can be passed to ice_pkg_enum_entry. 324 * Handles enumeration of individual boost TCAM entries. 325 */ 326 static void * 327 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 328 { 329 struct ice_boost_tcam_section *boost; 330 331 if (!section) 332 return NULL; 333 334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 335 return NULL; 336 337 /* cppcheck-suppress nullPointer */ 338 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 339 return NULL; 340 341 if (offset) 342 *offset = 0; 343 344 boost = section; 345 if (index >= le16_to_cpu(boost->count)) 346 return NULL; 347 348 return boost->tcam + index; 349 } 350 351 /** 352 * ice_find_boost_entry 353 * @ice_seg: pointer to the ice segment (non-NULL) 354 * @addr: Boost TCAM address of entry to search for 355 * @entry: returns pointer to the entry 356 * 357 * Finds a particular Boost TCAM entry and returns a pointer to that entry 358 * if it is found. The ice_seg parameter must not be NULL since the first call 359 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 360 */ 361 static enum ice_status 362 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 363 struct ice_boost_tcam_entry **entry) 364 { 365 struct ice_boost_tcam_entry *tcam; 366 struct ice_pkg_enum state; 367 368 memset(&state, 0, sizeof(state)); 369 370 if (!ice_seg) 371 return ICE_ERR_PARAM; 372 373 do { 374 tcam = ice_pkg_enum_entry(ice_seg, &state, 375 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 376 ice_boost_tcam_handler); 377 if (tcam && le16_to_cpu(tcam->addr) == addr) { 378 *entry = tcam; 379 return 0; 380 } 381 382 ice_seg = NULL; 383 } while (tcam); 384 385 *entry = NULL; 386 return ICE_ERR_CFG; 387 } 388 389 /** 390 * ice_label_enum_handler 391 * @sect_type: section type 392 * @section: pointer to section 393 * @index: index of the label entry to be returned 394 * @offset: pointer to receive absolute offset, always zero for label sections 395 * 396 * This is a callback function that can be passed to ice_pkg_enum_entry. 397 * Handles enumeration of individual label entries. 398 */ 399 static void * 400 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, 401 u32 *offset) 402 { 403 struct ice_label_section *labels; 404 405 if (!section) 406 return NULL; 407 408 /* cppcheck-suppress nullPointer */ 409 if (index > ICE_MAX_LABELS_IN_BUF) 410 return NULL; 411 412 if (offset) 413 *offset = 0; 414 415 labels = section; 416 if (index >= le16_to_cpu(labels->count)) 417 return NULL; 418 419 return labels->label + index; 420 } 421 422 /** 423 * ice_enum_labels 424 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 425 * @type: the section type that will contain the label (0 on subsequent calls) 426 * @state: ice_pkg_enum structure that will hold the state of the enumeration 427 * @value: pointer to a value that will return the label's value if found 428 * 429 * Enumerates a list of labels in the package. The caller will call 430 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 431 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 432 * the end of the list has been reached. 433 */ 434 static char * 435 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 436 u16 *value) 437 { 438 struct ice_label *label; 439 440 /* Check for valid label section on first call */ 441 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 442 return NULL; 443 444 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 445 ice_label_enum_handler); 446 if (!label) 447 return NULL; 448 449 *value = le16_to_cpu(label->value); 450 return label->name; 451 } 452 453 /** 454 * ice_init_pkg_hints 455 * @hw: pointer to the HW structure 456 * @ice_seg: pointer to the segment of the package scan (non-NULL) 457 * 458 * This function will scan the package and save off relevant information 459 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 460 * since the first call to ice_enum_labels requires a pointer to an actual 461 * ice_seg structure. 462 */ 463 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 464 { 465 struct ice_pkg_enum state; 466 char *label_name; 467 u16 val; 468 int i; 469 470 memset(&hw->tnl, 0, sizeof(hw->tnl)); 471 memset(&state, 0, sizeof(state)); 472 473 if (!ice_seg) 474 return; 475 476 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 477 &val); 478 479 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 480 for (i = 0; tnls[i].type != TNL_LAST; i++) { 481 size_t len = strlen(tnls[i].label_prefix); 482 483 /* Look for matching label start, before continuing */ 484 if (strncmp(label_name, tnls[i].label_prefix, len)) 485 continue; 486 487 /* Make sure this label matches our PF. Note that the PF 488 * character ('0' - '7') will be located where our 489 * prefix string's null terminator is located. 490 */ 491 if ((label_name[len] - '0') == hw->pf_id) { 492 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 493 hw->tnl.tbl[hw->tnl.count].valid = false; 494 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 495 hw->tnl.tbl[hw->tnl.count].port = 0; 496 hw->tnl.count++; 497 break; 498 } 499 } 500 501 label_name = ice_enum_labels(NULL, 0, &state, &val); 502 } 503 504 /* Cache the appropriate boost TCAM entry pointers */ 505 for (i = 0; i < hw->tnl.count; i++) { 506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 507 &hw->tnl.tbl[i].boost_entry); 508 if (hw->tnl.tbl[i].boost_entry) { 509 hw->tnl.tbl[i].valid = true; 510 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 511 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 512 } 513 } 514 } 515 516 /* Key creation */ 517 518 #define ICE_DC_KEY 0x1 /* don't care */ 519 #define ICE_DC_KEYINV 0x1 520 #define ICE_NM_KEY 0x0 /* never match */ 521 #define ICE_NM_KEYINV 0x0 522 #define ICE_0_KEY 0x1 /* match 0 */ 523 #define ICE_0_KEYINV 0x0 524 #define ICE_1_KEY 0x0 /* match 1 */ 525 #define ICE_1_KEYINV 0x1 526 527 /** 528 * ice_gen_key_word - generate 16-bits of a key/mask word 529 * @val: the value 530 * @valid: valid bits mask (change only the valid bits) 531 * @dont_care: don't care mask 532 * @nvr_mtch: never match mask 533 * @key: pointer to an array of where the resulting key portion 534 * @key_inv: pointer to an array of where the resulting key invert portion 535 * 536 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 537 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 538 * of key and 8 bits of key invert. 539 * 540 * '0' = b01, always match a 0 bit 541 * '1' = b10, always match a 1 bit 542 * '?' = b11, don't care bit (always matches) 543 * '~' = b00, never match bit 544 * 545 * Input: 546 * val: b0 1 0 1 0 1 547 * dont_care: b0 0 1 1 0 0 548 * never_mtch: b0 0 0 0 1 1 549 * ------------------------------ 550 * Result: key: b01 10 11 11 00 00 551 */ 552 static enum ice_status 553 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 554 u8 *key_inv) 555 { 556 u8 in_key = *key, in_key_inv = *key_inv; 557 u8 i; 558 559 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 560 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 561 return ICE_ERR_CFG; 562 563 *key = 0; 564 *key_inv = 0; 565 566 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 567 for (i = 0; i < 8; i++) { 568 *key >>= 1; 569 *key_inv >>= 1; 570 571 if (!(valid & 0x1)) { /* change only valid bits */ 572 *key |= (in_key & 0x1) << 7; 573 *key_inv |= (in_key_inv & 0x1) << 7; 574 } else if (dont_care & 0x1) { /* don't care bit */ 575 *key |= ICE_DC_KEY << 7; 576 *key_inv |= ICE_DC_KEYINV << 7; 577 } else if (nvr_mtch & 0x1) { /* never match bit */ 578 *key |= ICE_NM_KEY << 7; 579 *key_inv |= ICE_NM_KEYINV << 7; 580 } else if (val & 0x01) { /* exact 1 match */ 581 *key |= ICE_1_KEY << 7; 582 *key_inv |= ICE_1_KEYINV << 7; 583 } else { /* exact 0 match */ 584 *key |= ICE_0_KEY << 7; 585 *key_inv |= ICE_0_KEYINV << 7; 586 } 587 588 dont_care >>= 1; 589 nvr_mtch >>= 1; 590 valid >>= 1; 591 val >>= 1; 592 in_key >>= 1; 593 in_key_inv >>= 1; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ice_bits_max_set - determine if the number of bits set is within a maximum 601 * @mask: pointer to the byte array which is the mask 602 * @size: the number of bytes in the mask 603 * @max: the max number of set bits 604 * 605 * This function determines if there are at most 'max' number of bits set in an 606 * array. Returns true if the number for bits set is <= max or will return false 607 * otherwise. 608 */ 609 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 610 { 611 u16 count = 0; 612 u16 i; 613 614 /* check each byte */ 615 for (i = 0; i < size; i++) { 616 /* if 0, go to next byte */ 617 if (!mask[i]) 618 continue; 619 620 /* We know there is at least one set bit in this byte because of 621 * the above check; if we already have found 'max' number of 622 * bits set, then we can return failure now. 623 */ 624 if (count == max) 625 return false; 626 627 /* count the bits in this byte, checking threshold */ 628 count += hweight8(mask[i]); 629 if (count > max) 630 return false; 631 } 632 633 return true; 634 } 635 636 /** 637 * ice_set_key - generate a variable sized key with multiples of 16-bits 638 * @key: pointer to where the key will be stored 639 * @size: the size of the complete key in bytes (must be even) 640 * @val: array of 8-bit values that makes up the value portion of the key 641 * @upd: array of 8-bit masks that determine what key portion to update 642 * @dc: array of 8-bit masks that make up the don't care mask 643 * @nm: array of 8-bit masks that make up the never match mask 644 * @off: the offset of the first byte in the key to update 645 * @len: the number of bytes in the key update 646 * 647 * This function generates a key from a value, a don't care mask and a never 648 * match mask. 649 * upd, dc, and nm are optional parameters, and can be NULL: 650 * upd == NULL --> upd mask is all 1's (update all bits) 651 * dc == NULL --> dc mask is all 0's (no don't care bits) 652 * nm == NULL --> nm mask is all 0's (no never match bits) 653 */ 654 static enum ice_status 655 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 656 u16 len) 657 { 658 u16 half_size; 659 u16 i; 660 661 /* size must be a multiple of 2 bytes. */ 662 if (size % 2) 663 return ICE_ERR_CFG; 664 665 half_size = size / 2; 666 if (off + len > half_size) 667 return ICE_ERR_CFG; 668 669 /* Make sure at most one bit is set in the never match mask. Having more 670 * than one never match mask bit set will cause HW to consume excessive 671 * power otherwise; this is a power management efficiency check. 672 */ 673 #define ICE_NVR_MTCH_BITS_MAX 1 674 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 675 return ICE_ERR_CFG; 676 677 for (i = 0; i < len; i++) 678 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 679 dc ? dc[i] : 0, nm ? nm[i] : 0, 680 key + off + i, key + half_size + off + i)) 681 return ICE_ERR_CFG; 682 683 return 0; 684 } 685 686 /** 687 * ice_acquire_global_cfg_lock 688 * @hw: pointer to the HW structure 689 * @access: access type (read or write) 690 * 691 * This function will request ownership of the global config lock for reading 692 * or writing of the package. When attempting to obtain write access, the 693 * caller must check for the following two return values: 694 * 695 * ICE_SUCCESS - Means the caller has acquired the global config lock 696 * and can perform writing of the package. 697 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 698 * package or has found that no update was necessary; in 699 * this case, the caller can just skip performing any 700 * update of the package. 701 */ 702 static enum ice_status 703 ice_acquire_global_cfg_lock(struct ice_hw *hw, 704 enum ice_aq_res_access_type access) 705 { 706 enum ice_status status; 707 708 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 709 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 710 711 if (!status) 712 mutex_lock(&ice_global_cfg_lock_sw); 713 else if (status == ICE_ERR_AQ_NO_WORK) 714 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 715 716 return status; 717 } 718 719 /** 720 * ice_release_global_cfg_lock 721 * @hw: pointer to the HW structure 722 * 723 * This function will release the global config lock. 724 */ 725 static void ice_release_global_cfg_lock(struct ice_hw *hw) 726 { 727 mutex_unlock(&ice_global_cfg_lock_sw); 728 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 729 } 730 731 /** 732 * ice_acquire_change_lock 733 * @hw: pointer to the HW structure 734 * @access: access type (read or write) 735 * 736 * This function will request ownership of the change lock. 737 */ 738 enum ice_status 739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 740 { 741 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 742 ICE_CHANGE_LOCK_TIMEOUT); 743 } 744 745 /** 746 * ice_release_change_lock 747 * @hw: pointer to the HW structure 748 * 749 * This function will release the change lock using the proper Admin Command. 750 */ 751 void ice_release_change_lock(struct ice_hw *hw) 752 { 753 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 754 } 755 756 /** 757 * ice_aq_download_pkg 758 * @hw: pointer to the hardware structure 759 * @pkg_buf: the package buffer to transfer 760 * @buf_size: the size of the package buffer 761 * @last_buf: last buffer indicator 762 * @error_offset: returns error offset 763 * @error_info: returns error information 764 * @cd: pointer to command details structure or NULL 765 * 766 * Download Package (0x0C40) 767 */ 768 static enum ice_status 769 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 770 u16 buf_size, bool last_buf, u32 *error_offset, 771 u32 *error_info, struct ice_sq_cd *cd) 772 { 773 struct ice_aqc_download_pkg *cmd; 774 struct ice_aq_desc desc; 775 enum ice_status status; 776 777 if (error_offset) 778 *error_offset = 0; 779 if (error_info) 780 *error_info = 0; 781 782 cmd = &desc.params.download_pkg; 783 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 784 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 785 786 if (last_buf) 787 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 788 789 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 790 if (status == ICE_ERR_AQ_ERROR) { 791 /* Read error from buffer only when the FW returned an error */ 792 struct ice_aqc_download_pkg_resp *resp; 793 794 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 795 if (error_offset) 796 *error_offset = le32_to_cpu(resp->error_offset); 797 if (error_info) 798 *error_info = le32_to_cpu(resp->error_info); 799 } 800 801 return status; 802 } 803 804 /** 805 * ice_aq_update_pkg 806 * @hw: pointer to the hardware structure 807 * @pkg_buf: the package cmd buffer 808 * @buf_size: the size of the package cmd buffer 809 * @last_buf: last buffer indicator 810 * @error_offset: returns error offset 811 * @error_info: returns error information 812 * @cd: pointer to command details structure or NULL 813 * 814 * Update Package (0x0C42) 815 */ 816 static enum ice_status 817 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 818 bool last_buf, u32 *error_offset, u32 *error_info, 819 struct ice_sq_cd *cd) 820 { 821 struct ice_aqc_download_pkg *cmd; 822 struct ice_aq_desc desc; 823 enum ice_status status; 824 825 if (error_offset) 826 *error_offset = 0; 827 if (error_info) 828 *error_info = 0; 829 830 cmd = &desc.params.download_pkg; 831 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 832 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 833 834 if (last_buf) 835 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 836 837 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 838 if (status == ICE_ERR_AQ_ERROR) { 839 /* Read error from buffer only when the FW returned an error */ 840 struct ice_aqc_download_pkg_resp *resp; 841 842 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 843 if (error_offset) 844 *error_offset = le32_to_cpu(resp->error_offset); 845 if (error_info) 846 *error_info = le32_to_cpu(resp->error_info); 847 } 848 849 return status; 850 } 851 852 /** 853 * ice_find_seg_in_pkg 854 * @hw: pointer to the hardware structure 855 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 856 * @pkg_hdr: pointer to the package header to be searched 857 * 858 * This function searches a package file for a particular segment type. On 859 * success it returns a pointer to the segment header, otherwise it will 860 * return NULL. 861 */ 862 static struct ice_generic_seg_hdr * 863 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 864 struct ice_pkg_hdr *pkg_hdr) 865 { 866 u32 i; 867 868 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 869 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 870 pkg_hdr->pkg_format_ver.update, 871 pkg_hdr->pkg_format_ver.draft); 872 873 /* Search all package segments for the requested segment type */ 874 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 875 struct ice_generic_seg_hdr *seg; 876 877 seg = (struct ice_generic_seg_hdr *) 878 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); 879 880 if (le32_to_cpu(seg->seg_type) == seg_type) 881 return seg; 882 } 883 884 return NULL; 885 } 886 887 /** 888 * ice_update_pkg 889 * @hw: pointer to the hardware structure 890 * @bufs: pointer to an array of buffers 891 * @count: the number of buffers in the array 892 * 893 * Obtains change lock and updates package. 894 */ 895 static enum ice_status 896 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 897 { 898 enum ice_status status; 899 u32 offset, info, i; 900 901 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 902 if (status) 903 return status; 904 905 for (i = 0; i < count; i++) { 906 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 907 bool last = ((i + 1) == count); 908 909 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 910 last, &offset, &info, NULL); 911 912 if (status) { 913 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 914 status, offset, info); 915 break; 916 } 917 } 918 919 ice_release_change_lock(hw); 920 921 return status; 922 } 923 924 /** 925 * ice_dwnld_cfg_bufs 926 * @hw: pointer to the hardware structure 927 * @bufs: pointer to an array of buffers 928 * @count: the number of buffers in the array 929 * 930 * Obtains global config lock and downloads the package configuration buffers 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 932 * found indicates that the rest of the buffers are all metadata buffers. 933 */ 934 static enum ice_status 935 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 936 { 937 enum ice_status status; 938 struct ice_buf_hdr *bh; 939 u32 offset, info, i; 940 941 if (!bufs || !count) 942 return ICE_ERR_PARAM; 943 944 /* If the first buffer's first section has its metadata bit set 945 * then there are no buffers to be downloaded, and the operation is 946 * considered a success. 947 */ 948 bh = (struct ice_buf_hdr *)bufs; 949 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 950 return 0; 951 952 /* reset pkg_dwnld_status in case this function is called in the 953 * reset/rebuild flow 954 */ 955 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 956 957 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 958 if (status) { 959 if (status == ICE_ERR_AQ_NO_WORK) 960 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 961 else 962 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 963 return status; 964 } 965 966 for (i = 0; i < count; i++) { 967 bool last = ((i + 1) == count); 968 969 if (!last) { 970 /* check next buffer for metadata flag */ 971 bh = (struct ice_buf_hdr *)(bufs + i + 1); 972 973 /* A set metadata flag in the next buffer will signal 974 * that the current buffer will be the last buffer 975 * downloaded 976 */ 977 if (le16_to_cpu(bh->section_count)) 978 if (le32_to_cpu(bh->section_entry[0].type) & 979 ICE_METADATA_BUF) 980 last = true; 981 } 982 983 bh = (struct ice_buf_hdr *)(bufs + i); 984 985 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 986 &offset, &info, NULL); 987 988 /* Save AQ status from download package */ 989 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 990 if (status) { 991 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 992 status, offset, info); 993 994 break; 995 } 996 997 if (last) 998 break; 999 } 1000 1001 ice_release_global_cfg_lock(hw); 1002 1003 return status; 1004 } 1005 1006 /** 1007 * ice_aq_get_pkg_info_list 1008 * @hw: pointer to the hardware structure 1009 * @pkg_info: the buffer which will receive the information list 1010 * @buf_size: the size of the pkg_info information buffer 1011 * @cd: pointer to command details structure or NULL 1012 * 1013 * Get Package Info List (0x0C43) 1014 */ 1015 static enum ice_status 1016 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1017 struct ice_aqc_get_pkg_info_resp *pkg_info, 1018 u16 buf_size, struct ice_sq_cd *cd) 1019 { 1020 struct ice_aq_desc desc; 1021 1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1023 1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1025 } 1026 1027 /** 1028 * ice_download_pkg 1029 * @hw: pointer to the hardware structure 1030 * @ice_seg: pointer to the segment of the package to be downloaded 1031 * 1032 * Handles the download of a complete package. 1033 */ 1034 static enum ice_status 1035 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1036 { 1037 struct ice_buf_table *ice_buf_tbl; 1038 1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1040 ice_seg->hdr.seg_format_ver.major, 1041 ice_seg->hdr.seg_format_ver.minor, 1042 ice_seg->hdr.seg_format_ver.update, 1043 ice_seg->hdr.seg_format_ver.draft); 1044 1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1046 le32_to_cpu(ice_seg->hdr.seg_type), 1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1048 1049 ice_buf_tbl = ice_find_buf_table(ice_seg); 1050 1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1052 le32_to_cpu(ice_buf_tbl->buf_count)); 1053 1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1055 le32_to_cpu(ice_buf_tbl->buf_count)); 1056 } 1057 1058 /** 1059 * ice_init_pkg_info 1060 * @hw: pointer to the hardware structure 1061 * @pkg_hdr: pointer to the driver's package hdr 1062 * 1063 * Saves off the package details into the HW structure. 1064 */ 1065 static enum ice_status 1066 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1067 { 1068 struct ice_generic_seg_hdr *seg_hdr; 1069 1070 if (!pkg_hdr) 1071 return ICE_ERR_PARAM; 1072 1073 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1074 if (seg_hdr) { 1075 struct ice_meta_sect *meta; 1076 struct ice_pkg_enum state; 1077 1078 memset(&state, 0, sizeof(state)); 1079 1080 /* Get package information from the Metadata Section */ 1081 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1082 ICE_SID_METADATA); 1083 if (!meta) { 1084 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1085 return ICE_ERR_CFG; 1086 } 1087 1088 hw->pkg_ver = meta->ver; 1089 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1090 1091 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1092 meta->ver.major, meta->ver.minor, meta->ver.update, 1093 meta->ver.draft, meta->name); 1094 1095 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1096 memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1097 sizeof(hw->ice_seg_id)); 1098 1099 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1100 seg_hdr->seg_format_ver.major, 1101 seg_hdr->seg_format_ver.minor, 1102 seg_hdr->seg_format_ver.update, 1103 seg_hdr->seg_format_ver.draft, 1104 seg_hdr->seg_id); 1105 } else { 1106 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1107 return ICE_ERR_CFG; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * ice_get_pkg_info 1115 * @hw: pointer to the hardware structure 1116 * 1117 * Store details of the package currently loaded in HW into the HW structure. 1118 */ 1119 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1120 { 1121 struct ice_aqc_get_pkg_info_resp *pkg_info; 1122 enum ice_status status; 1123 u16 size; 1124 u32 i; 1125 1126 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1127 pkg_info = kzalloc(size, GFP_KERNEL); 1128 if (!pkg_info) 1129 return ICE_ERR_NO_MEMORY; 1130 1131 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1132 if (status) 1133 goto init_pkg_free_alloc; 1134 1135 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1136 #define ICE_PKG_FLAG_COUNT 4 1137 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1138 u8 place = 0; 1139 1140 if (pkg_info->pkg_info[i].is_active) { 1141 flags[place++] = 'A'; 1142 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1143 hw->active_track_id = 1144 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1145 memcpy(hw->active_pkg_name, 1146 pkg_info->pkg_info[i].name, 1147 sizeof(pkg_info->pkg_info[i].name)); 1148 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1149 } 1150 if (pkg_info->pkg_info[i].is_active_at_boot) 1151 flags[place++] = 'B'; 1152 if (pkg_info->pkg_info[i].is_modified) 1153 flags[place++] = 'M'; 1154 if (pkg_info->pkg_info[i].is_in_nvm) 1155 flags[place++] = 'N'; 1156 1157 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1158 i, pkg_info->pkg_info[i].ver.major, 1159 pkg_info->pkg_info[i].ver.minor, 1160 pkg_info->pkg_info[i].ver.update, 1161 pkg_info->pkg_info[i].ver.draft, 1162 pkg_info->pkg_info[i].name, flags); 1163 } 1164 1165 init_pkg_free_alloc: 1166 kfree(pkg_info); 1167 1168 return status; 1169 } 1170 1171 /** 1172 * ice_verify_pkg - verify package 1173 * @pkg: pointer to the package buffer 1174 * @len: size of the package buffer 1175 * 1176 * Verifies various attributes of the package file, including length, format 1177 * version, and the requirement of at least one segment. 1178 */ 1179 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1180 { 1181 u32 seg_count; 1182 u32 i; 1183 1184 if (len < struct_size(pkg, seg_offset, 1)) 1185 return ICE_ERR_BUF_TOO_SHORT; 1186 1187 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1188 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1189 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1190 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1191 return ICE_ERR_CFG; 1192 1193 /* pkg must have at least one segment */ 1194 seg_count = le32_to_cpu(pkg->seg_count); 1195 if (seg_count < 1) 1196 return ICE_ERR_CFG; 1197 1198 /* make sure segment array fits in package length */ 1199 if (len < struct_size(pkg, seg_offset, seg_count)) 1200 return ICE_ERR_BUF_TOO_SHORT; 1201 1202 /* all segments must fit within length */ 1203 for (i = 0; i < seg_count; i++) { 1204 u32 off = le32_to_cpu(pkg->seg_offset[i]); 1205 struct ice_generic_seg_hdr *seg; 1206 1207 /* segment header must fit */ 1208 if (len < off + sizeof(*seg)) 1209 return ICE_ERR_BUF_TOO_SHORT; 1210 1211 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1212 1213 /* segment body must fit */ 1214 if (len < off + le32_to_cpu(seg->seg_size)) 1215 return ICE_ERR_BUF_TOO_SHORT; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * ice_free_seg - free package segment pointer 1223 * @hw: pointer to the hardware structure 1224 * 1225 * Frees the package segment pointer in the proper manner, depending on if the 1226 * segment was allocated or just the passed in pointer was stored. 1227 */ 1228 void ice_free_seg(struct ice_hw *hw) 1229 { 1230 if (hw->pkg_copy) { 1231 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 1232 hw->pkg_copy = NULL; 1233 hw->pkg_size = 0; 1234 } 1235 hw->seg = NULL; 1236 } 1237 1238 /** 1239 * ice_init_pkg_regs - initialize additional package registers 1240 * @hw: pointer to the hardware structure 1241 */ 1242 static void ice_init_pkg_regs(struct ice_hw *hw) 1243 { 1244 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1245 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1246 #define ICE_SW_BLK_IDX 0 1247 1248 /* setup Switch block input mask, which is 48-bits in two parts */ 1249 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1250 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1251 } 1252 1253 /** 1254 * ice_chk_pkg_version - check package version for compatibility with driver 1255 * @pkg_ver: pointer to a version structure to check 1256 * 1257 * Check to make sure that the package about to be downloaded is compatible with 1258 * the driver. To be compatible, the major and minor components of the package 1259 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1260 * definitions. 1261 */ 1262 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1263 { 1264 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1265 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1266 return ICE_ERR_NOT_SUPPORTED; 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * ice_chk_pkg_compat 1273 * @hw: pointer to the hardware structure 1274 * @ospkg: pointer to the package hdr 1275 * @seg: pointer to the package segment hdr 1276 * 1277 * This function checks the package version compatibility with driver and NVM 1278 */ 1279 static enum ice_status 1280 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1281 struct ice_seg **seg) 1282 { 1283 struct ice_aqc_get_pkg_info_resp *pkg; 1284 enum ice_status status; 1285 u16 size; 1286 u32 i; 1287 1288 /* Check package version compatibility */ 1289 status = ice_chk_pkg_version(&hw->pkg_ver); 1290 if (status) { 1291 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1292 return status; 1293 } 1294 1295 /* find ICE segment in given package */ 1296 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1297 ospkg); 1298 if (!*seg) { 1299 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1300 return ICE_ERR_CFG; 1301 } 1302 1303 /* Check if FW is compatible with the OS package */ 1304 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1305 pkg = kzalloc(size, GFP_KERNEL); 1306 if (!pkg) 1307 return ICE_ERR_NO_MEMORY; 1308 1309 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1310 if (status) 1311 goto fw_ddp_compat_free_alloc; 1312 1313 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1314 /* loop till we find the NVM package */ 1315 if (!pkg->pkg_info[i].is_in_nvm) 1316 continue; 1317 if ((*seg)->hdr.seg_format_ver.major != 1318 pkg->pkg_info[i].ver.major || 1319 (*seg)->hdr.seg_format_ver.minor > 1320 pkg->pkg_info[i].ver.minor) { 1321 status = ICE_ERR_FW_DDP_MISMATCH; 1322 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1323 } 1324 /* done processing NVM package so break */ 1325 break; 1326 } 1327 fw_ddp_compat_free_alloc: 1328 kfree(pkg); 1329 return status; 1330 } 1331 1332 /** 1333 * ice_sw_fv_handler 1334 * @sect_type: section type 1335 * @section: pointer to section 1336 * @index: index of the field vector entry to be returned 1337 * @offset: ptr to variable that receives the offset in the field vector table 1338 * 1339 * This is a callback function that can be passed to ice_pkg_enum_entry. 1340 * This function treats the given section as of type ice_sw_fv_section and 1341 * enumerates offset field. "offset" is an index into the field vector table. 1342 */ 1343 static void * 1344 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1345 { 1346 struct ice_sw_fv_section *fv_section = section; 1347 1348 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1349 return NULL; 1350 if (index >= le16_to_cpu(fv_section->count)) 1351 return NULL; 1352 if (offset) 1353 /* "index" passed in to this function is relative to a given 1354 * 4k block. To get to the true index into the field vector 1355 * table need to add the relative index to the base_offset 1356 * field of this section 1357 */ 1358 *offset = le16_to_cpu(fv_section->base_offset) + index; 1359 return fv_section->fv + index; 1360 } 1361 1362 /** 1363 * ice_get_prof_index_max - get the max profile index for used profile 1364 * @hw: pointer to the HW struct 1365 * 1366 * Calling this function will get the max profile index for used profile 1367 * and store the index number in struct ice_switch_info *switch_info 1368 * in HW for following use. 1369 */ 1370 static enum ice_status ice_get_prof_index_max(struct ice_hw *hw) 1371 { 1372 u16 prof_index = 0, j, max_prof_index = 0; 1373 struct ice_pkg_enum state; 1374 struct ice_seg *ice_seg; 1375 bool flag = false; 1376 struct ice_fv *fv; 1377 u32 offset; 1378 1379 memset(&state, 0, sizeof(state)); 1380 1381 if (!hw->seg) 1382 return ICE_ERR_PARAM; 1383 1384 ice_seg = hw->seg; 1385 1386 do { 1387 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1388 &offset, ice_sw_fv_handler); 1389 if (!fv) 1390 break; 1391 ice_seg = NULL; 1392 1393 /* in the profile that not be used, the prot_id is set to 0xff 1394 * and the off is set to 0x1ff for all the field vectors. 1395 */ 1396 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1397 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1398 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1399 flag = true; 1400 if (flag && prof_index > max_prof_index) 1401 max_prof_index = prof_index; 1402 1403 prof_index++; 1404 flag = false; 1405 } while (fv); 1406 1407 hw->switch_info->max_used_prof_index = max_prof_index; 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * ice_init_pkg - initialize/download package 1414 * @hw: pointer to the hardware structure 1415 * @buf: pointer to the package buffer 1416 * @len: size of the package buffer 1417 * 1418 * This function initializes a package. The package contains HW tables 1419 * required to do packet processing. First, the function extracts package 1420 * information such as version. Then it finds the ice configuration segment 1421 * within the package; this function then saves a copy of the segment pointer 1422 * within the supplied package buffer. Next, the function will cache any hints 1423 * from the package, followed by downloading the package itself. Note, that if 1424 * a previous PF driver has already downloaded the package successfully, then 1425 * the current driver will not have to download the package again. 1426 * 1427 * The local package contents will be used to query default behavior and to 1428 * update specific sections of the HW's version of the package (e.g. to update 1429 * the parse graph to understand new protocols). 1430 * 1431 * This function stores a pointer to the package buffer memory, and it is 1432 * expected that the supplied buffer will not be freed immediately. If the 1433 * package buffer needs to be freed, such as when read from a file, use 1434 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1435 * case. 1436 */ 1437 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1438 { 1439 struct ice_pkg_hdr *pkg; 1440 enum ice_status status; 1441 struct ice_seg *seg; 1442 1443 if (!buf || !len) 1444 return ICE_ERR_PARAM; 1445 1446 pkg = (struct ice_pkg_hdr *)buf; 1447 status = ice_verify_pkg(pkg, len); 1448 if (status) { 1449 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1450 status); 1451 return status; 1452 } 1453 1454 /* initialize package info */ 1455 status = ice_init_pkg_info(hw, pkg); 1456 if (status) 1457 return status; 1458 1459 /* before downloading the package, check package version for 1460 * compatibility with driver 1461 */ 1462 status = ice_chk_pkg_compat(hw, pkg, &seg); 1463 if (status) 1464 return status; 1465 1466 /* initialize package hints and then download package */ 1467 ice_init_pkg_hints(hw, seg); 1468 status = ice_download_pkg(hw, seg); 1469 if (status == ICE_ERR_AQ_NO_WORK) { 1470 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1471 status = 0; 1472 } 1473 1474 /* Get information on the package currently loaded in HW, then make sure 1475 * the driver is compatible with this version. 1476 */ 1477 if (!status) { 1478 status = ice_get_pkg_info(hw); 1479 if (!status) 1480 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1481 } 1482 1483 if (!status) { 1484 hw->seg = seg; 1485 /* on successful package download update other required 1486 * registers to support the package and fill HW tables 1487 * with package content. 1488 */ 1489 ice_init_pkg_regs(hw); 1490 ice_fill_blk_tbls(hw); 1491 ice_get_prof_index_max(hw); 1492 } else { 1493 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1494 status); 1495 } 1496 1497 return status; 1498 } 1499 1500 /** 1501 * ice_copy_and_init_pkg - initialize/download a copy of the package 1502 * @hw: pointer to the hardware structure 1503 * @buf: pointer to the package buffer 1504 * @len: size of the package buffer 1505 * 1506 * This function copies the package buffer, and then calls ice_init_pkg() to 1507 * initialize the copied package contents. 1508 * 1509 * The copying is necessary if the package buffer supplied is constant, or if 1510 * the memory may disappear shortly after calling this function. 1511 * 1512 * If the package buffer resides in the data segment and can be modified, the 1513 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1514 * 1515 * However, if the package buffer needs to be copied first, such as when being 1516 * read from a file, the caller should use ice_copy_and_init_pkg(). 1517 * 1518 * This function will first copy the package buffer, before calling 1519 * ice_init_pkg(). The caller is free to immediately destroy the original 1520 * package buffer, as the new copy will be managed by this function and 1521 * related routines. 1522 */ 1523 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1524 { 1525 enum ice_status status; 1526 u8 *buf_copy; 1527 1528 if (!buf || !len) 1529 return ICE_ERR_PARAM; 1530 1531 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1532 1533 status = ice_init_pkg(hw, buf_copy, len); 1534 if (status) { 1535 /* Free the copy, since we failed to initialize the package */ 1536 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1537 } else { 1538 /* Track the copied pkg so we can free it later */ 1539 hw->pkg_copy = buf_copy; 1540 hw->pkg_size = len; 1541 } 1542 1543 return status; 1544 } 1545 1546 /** 1547 * ice_pkg_buf_alloc 1548 * @hw: pointer to the HW structure 1549 * 1550 * Allocates a package buffer and returns a pointer to the buffer header. 1551 * Note: all package contents must be in Little Endian form. 1552 */ 1553 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1554 { 1555 struct ice_buf_build *bld; 1556 struct ice_buf_hdr *buf; 1557 1558 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 1559 if (!bld) 1560 return NULL; 1561 1562 buf = (struct ice_buf_hdr *)bld; 1563 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, 1564 section_entry)); 1565 return bld; 1566 } 1567 1568 /** 1569 * ice_get_sw_prof_type - determine switch profile type 1570 * @hw: pointer to the HW structure 1571 * @fv: pointer to the switch field vector 1572 */ 1573 static enum ice_prof_type 1574 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1575 { 1576 u16 i; 1577 1578 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1579 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1580 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1581 fv->ew[i].off == ICE_VNI_OFFSET) 1582 return ICE_PROF_TUN_UDP; 1583 1584 /* GRE tunnel will have GRE protocol */ 1585 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1586 return ICE_PROF_TUN_GRE; 1587 } 1588 1589 return ICE_PROF_NON_TUN; 1590 } 1591 1592 /** 1593 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1594 * @hw: pointer to hardware structure 1595 * @req_profs: type of profiles requested 1596 * @bm: pointer to memory for returning the bitmap of field vectors 1597 */ 1598 void 1599 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1600 unsigned long *bm) 1601 { 1602 struct ice_pkg_enum state; 1603 struct ice_seg *ice_seg; 1604 struct ice_fv *fv; 1605 1606 if (req_profs == ICE_PROF_ALL) { 1607 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1608 return; 1609 } 1610 1611 memset(&state, 0, sizeof(state)); 1612 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 1613 ice_seg = hw->seg; 1614 do { 1615 enum ice_prof_type prof_type; 1616 u32 offset; 1617 1618 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1619 &offset, ice_sw_fv_handler); 1620 ice_seg = NULL; 1621 1622 if (fv) { 1623 /* Determine field vector type */ 1624 prof_type = ice_get_sw_prof_type(hw, fv); 1625 1626 if (req_profs & prof_type) 1627 set_bit((u16)offset, bm); 1628 } 1629 } while (fv); 1630 } 1631 1632 /** 1633 * ice_get_sw_fv_list 1634 * @hw: pointer to the HW structure 1635 * @prot_ids: field vector to search for with a given protocol ID 1636 * @ids_cnt: lookup/protocol count 1637 * @bm: bitmap of field vectors to consider 1638 * @fv_list: Head of a list 1639 * 1640 * Finds all the field vector entries from switch block that contain 1641 * a given protocol ID and returns a list of structures of type 1642 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1643 * definition and profile ID information 1644 * NOTE: The caller of the function is responsible for freeing the memory 1645 * allocated for every list entry. 1646 */ 1647 enum ice_status 1648 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1649 unsigned long *bm, struct list_head *fv_list) 1650 { 1651 struct ice_sw_fv_list_entry *fvl; 1652 struct ice_sw_fv_list_entry *tmp; 1653 struct ice_pkg_enum state; 1654 struct ice_seg *ice_seg; 1655 struct ice_fv *fv; 1656 u32 offset; 1657 1658 memset(&state, 0, sizeof(state)); 1659 1660 if (!ids_cnt || !hw->seg) 1661 return ICE_ERR_PARAM; 1662 1663 ice_seg = hw->seg; 1664 do { 1665 u16 i; 1666 1667 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1668 &offset, ice_sw_fv_handler); 1669 if (!fv) 1670 break; 1671 ice_seg = NULL; 1672 1673 /* If field vector is not in the bitmap list, then skip this 1674 * profile. 1675 */ 1676 if (!test_bit((u16)offset, bm)) 1677 continue; 1678 1679 for (i = 0; i < ids_cnt; i++) { 1680 int j; 1681 1682 /* This code assumes that if a switch field vector line 1683 * has a matching protocol, then this line will contain 1684 * the entries necessary to represent every field in 1685 * that protocol header. 1686 */ 1687 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1688 if (fv->ew[j].prot_id == prot_ids[i]) 1689 break; 1690 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1691 break; 1692 if (i + 1 == ids_cnt) { 1693 fvl = devm_kzalloc(ice_hw_to_dev(hw), 1694 sizeof(*fvl), GFP_KERNEL); 1695 if (!fvl) 1696 goto err; 1697 fvl->fv_ptr = fv; 1698 fvl->profile_id = offset; 1699 list_add(&fvl->list_entry, fv_list); 1700 break; 1701 } 1702 } 1703 } while (fv); 1704 if (list_empty(fv_list)) 1705 return ICE_ERR_CFG; 1706 return 0; 1707 1708 err: 1709 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 1710 list_del(&fvl->list_entry); 1711 devm_kfree(ice_hw_to_dev(hw), fvl); 1712 } 1713 1714 return ICE_ERR_NO_MEMORY; 1715 } 1716 1717 /** 1718 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1719 * @hw: pointer to hardware structure 1720 */ 1721 void ice_init_prof_result_bm(struct ice_hw *hw) 1722 { 1723 struct ice_pkg_enum state; 1724 struct ice_seg *ice_seg; 1725 struct ice_fv *fv; 1726 1727 memset(&state, 0, sizeof(state)); 1728 1729 if (!hw->seg) 1730 return; 1731 1732 ice_seg = hw->seg; 1733 do { 1734 u32 off; 1735 u16 i; 1736 1737 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1738 &off, ice_sw_fv_handler); 1739 ice_seg = NULL; 1740 if (!fv) 1741 break; 1742 1743 bitmap_zero(hw->switch_info->prof_res_bm[off], 1744 ICE_MAX_FV_WORDS); 1745 1746 /* Determine empty field vector indices, these can be 1747 * used for recipe results. Skip index 0, since it is 1748 * always used for Switch ID. 1749 */ 1750 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1751 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1752 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1753 set_bit(i, hw->switch_info->prof_res_bm[off]); 1754 } while (fv); 1755 } 1756 1757 /** 1758 * ice_pkg_buf_free 1759 * @hw: pointer to the HW structure 1760 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1761 * 1762 * Frees a package buffer 1763 */ 1764 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1765 { 1766 devm_kfree(ice_hw_to_dev(hw), bld); 1767 } 1768 1769 /** 1770 * ice_pkg_buf_reserve_section 1771 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1772 * @count: the number of sections to reserve 1773 * 1774 * Reserves one or more section table entries in a package buffer. This routine 1775 * can be called multiple times as long as they are made before calling 1776 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1777 * is called once, the number of sections that can be allocated will not be able 1778 * to be increased; not using all reserved sections is fine, but this will 1779 * result in some wasted space in the buffer. 1780 * Note: all package contents must be in Little Endian form. 1781 */ 1782 static enum ice_status 1783 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1784 { 1785 struct ice_buf_hdr *buf; 1786 u16 section_count; 1787 u16 data_end; 1788 1789 if (!bld) 1790 return ICE_ERR_PARAM; 1791 1792 buf = (struct ice_buf_hdr *)&bld->buf; 1793 1794 /* already an active section, can't increase table size */ 1795 section_count = le16_to_cpu(buf->section_count); 1796 if (section_count > 0) 1797 return ICE_ERR_CFG; 1798 1799 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1800 return ICE_ERR_CFG; 1801 bld->reserved_section_table_entries += count; 1802 1803 data_end = le16_to_cpu(buf->data_end) + 1804 flex_array_size(buf, section_entry, count); 1805 buf->data_end = cpu_to_le16(data_end); 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * ice_pkg_buf_alloc_section 1812 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1813 * @type: the section type value 1814 * @size: the size of the section to reserve (in bytes) 1815 * 1816 * Reserves memory in the buffer for a section's content and updates the 1817 * buffers' status accordingly. This routine returns a pointer to the first 1818 * byte of the section start within the buffer, which is used to fill in the 1819 * section contents. 1820 * Note: all package contents must be in Little Endian form. 1821 */ 1822 static void * 1823 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1824 { 1825 struct ice_buf_hdr *buf; 1826 u16 sect_count; 1827 u16 data_end; 1828 1829 if (!bld || !type || !size) 1830 return NULL; 1831 1832 buf = (struct ice_buf_hdr *)&bld->buf; 1833 1834 /* check for enough space left in buffer */ 1835 data_end = le16_to_cpu(buf->data_end); 1836 1837 /* section start must align on 4 byte boundary */ 1838 data_end = ALIGN(data_end, 4); 1839 1840 if ((data_end + size) > ICE_MAX_S_DATA_END) 1841 return NULL; 1842 1843 /* check for more available section table entries */ 1844 sect_count = le16_to_cpu(buf->section_count); 1845 if (sect_count < bld->reserved_section_table_entries) { 1846 void *section_ptr = ((u8 *)buf) + data_end; 1847 1848 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1849 buf->section_entry[sect_count].size = cpu_to_le16(size); 1850 buf->section_entry[sect_count].type = cpu_to_le32(type); 1851 1852 data_end += size; 1853 buf->data_end = cpu_to_le16(data_end); 1854 1855 buf->section_count = cpu_to_le16(sect_count + 1); 1856 return section_ptr; 1857 } 1858 1859 /* no free section table entries */ 1860 return NULL; 1861 } 1862 1863 /** 1864 * ice_pkg_buf_get_active_sections 1865 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1866 * 1867 * Returns the number of active sections. Before using the package buffer 1868 * in an update package command, the caller should make sure that there is at 1869 * least one active section - otherwise, the buffer is not legal and should 1870 * not be used. 1871 * Note: all package contents must be in Little Endian form. 1872 */ 1873 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1874 { 1875 struct ice_buf_hdr *buf; 1876 1877 if (!bld) 1878 return 0; 1879 1880 buf = (struct ice_buf_hdr *)&bld->buf; 1881 return le16_to_cpu(buf->section_count); 1882 } 1883 1884 /** 1885 * ice_pkg_buf 1886 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1887 * 1888 * Return a pointer to the buffer's header 1889 */ 1890 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1891 { 1892 if (!bld) 1893 return NULL; 1894 1895 return &bld->buf; 1896 } 1897 1898 /** 1899 * ice_get_open_tunnel_port - retrieve an open tunnel port 1900 * @hw: pointer to the HW structure 1901 * @port: returns open port 1902 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 1903 */ 1904 bool 1905 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 1906 enum ice_tunnel_type type) 1907 { 1908 bool res = false; 1909 u16 i; 1910 1911 mutex_lock(&hw->tnl_lock); 1912 1913 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1914 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 1915 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 1916 *port = hw->tnl.tbl[i].port; 1917 res = true; 1918 break; 1919 } 1920 1921 mutex_unlock(&hw->tnl_lock); 1922 1923 return res; 1924 } 1925 1926 /** 1927 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 1928 * @hw: pointer to the HW structure 1929 * @type: type of tunnel 1930 * @idx: linear index 1931 * 1932 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 1933 * but really the port table may be sprase, and types are mixed, so convert 1934 * the stack index into the device index. 1935 */ 1936 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 1937 u16 idx) 1938 { 1939 u16 i; 1940 1941 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 1942 if (hw->tnl.tbl[i].valid && 1943 hw->tnl.tbl[i].type == type && 1944 idx-- == 0) 1945 return i; 1946 1947 WARN_ON_ONCE(1); 1948 return 0; 1949 } 1950 1951 /** 1952 * ice_create_tunnel 1953 * @hw: pointer to the HW structure 1954 * @index: device table entry 1955 * @type: type of tunnel 1956 * @port: port of tunnel to create 1957 * 1958 * Create a tunnel by updating the parse graph in the parser. We do that by 1959 * creating a package buffer with the tunnel info and issuing an update package 1960 * command. 1961 */ 1962 static enum ice_status 1963 ice_create_tunnel(struct ice_hw *hw, u16 index, 1964 enum ice_tunnel_type type, u16 port) 1965 { 1966 struct ice_boost_tcam_section *sect_rx, *sect_tx; 1967 enum ice_status status = ICE_ERR_MAX_LIMIT; 1968 struct ice_buf_build *bld; 1969 1970 mutex_lock(&hw->tnl_lock); 1971 1972 bld = ice_pkg_buf_alloc(hw); 1973 if (!bld) { 1974 status = ICE_ERR_NO_MEMORY; 1975 goto ice_create_tunnel_end; 1976 } 1977 1978 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 1979 if (ice_pkg_buf_reserve_section(bld, 2)) 1980 goto ice_create_tunnel_err; 1981 1982 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 1983 struct_size(sect_rx, tcam, 1)); 1984 if (!sect_rx) 1985 goto ice_create_tunnel_err; 1986 sect_rx->count = cpu_to_le16(1); 1987 1988 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 1989 struct_size(sect_tx, tcam, 1)); 1990 if (!sect_tx) 1991 goto ice_create_tunnel_err; 1992 sect_tx->count = cpu_to_le16(1); 1993 1994 /* copy original boost entry to update package buffer */ 1995 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 1996 sizeof(*sect_rx->tcam)); 1997 1998 /* over-write the never-match dest port key bits with the encoded port 1999 * bits 2000 */ 2001 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2002 (u8 *)&port, NULL, NULL, NULL, 2003 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2004 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2005 2006 /* exact copy of entry to Tx section entry */ 2007 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 2008 2009 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2010 if (!status) 2011 hw->tnl.tbl[index].port = port; 2012 2013 ice_create_tunnel_err: 2014 ice_pkg_buf_free(hw, bld); 2015 2016 ice_create_tunnel_end: 2017 mutex_unlock(&hw->tnl_lock); 2018 2019 return status; 2020 } 2021 2022 /** 2023 * ice_destroy_tunnel 2024 * @hw: pointer to the HW structure 2025 * @index: device table entry 2026 * @type: type of tunnel 2027 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2028 * 2029 * Destroys a tunnel or all tunnels by creating an update package buffer 2030 * targeting the specific updates requested and then performing an update 2031 * package. 2032 */ 2033 static enum ice_status 2034 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 2035 u16 port) 2036 { 2037 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2038 enum ice_status status = ICE_ERR_MAX_LIMIT; 2039 struct ice_buf_build *bld; 2040 2041 mutex_lock(&hw->tnl_lock); 2042 2043 if (WARN_ON(!hw->tnl.tbl[index].valid || 2044 hw->tnl.tbl[index].type != type || 2045 hw->tnl.tbl[index].port != port)) { 2046 status = ICE_ERR_OUT_OF_RANGE; 2047 goto ice_destroy_tunnel_end; 2048 } 2049 2050 bld = ice_pkg_buf_alloc(hw); 2051 if (!bld) { 2052 status = ICE_ERR_NO_MEMORY; 2053 goto ice_destroy_tunnel_end; 2054 } 2055 2056 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2057 if (ice_pkg_buf_reserve_section(bld, 2)) 2058 goto ice_destroy_tunnel_err; 2059 2060 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2061 struct_size(sect_rx, tcam, 1)); 2062 if (!sect_rx) 2063 goto ice_destroy_tunnel_err; 2064 sect_rx->count = cpu_to_le16(1); 2065 2066 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2067 struct_size(sect_tx, tcam, 1)); 2068 if (!sect_tx) 2069 goto ice_destroy_tunnel_err; 2070 sect_tx->count = cpu_to_le16(1); 2071 2072 /* copy original boost entry to update package buffer, one copy to Rx 2073 * section, another copy to the Tx section 2074 */ 2075 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2076 sizeof(*sect_rx->tcam)); 2077 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 2078 sizeof(*sect_tx->tcam)); 2079 2080 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2081 if (!status) 2082 hw->tnl.tbl[index].port = 0; 2083 2084 ice_destroy_tunnel_err: 2085 ice_pkg_buf_free(hw, bld); 2086 2087 ice_destroy_tunnel_end: 2088 mutex_unlock(&hw->tnl_lock); 2089 2090 return status; 2091 } 2092 2093 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 2094 unsigned int idx, struct udp_tunnel_info *ti) 2095 { 2096 struct ice_netdev_priv *np = netdev_priv(netdev); 2097 struct ice_vsi *vsi = np->vsi; 2098 struct ice_pf *pf = vsi->back; 2099 enum ice_tunnel_type tnl_type; 2100 enum ice_status status; 2101 u16 index; 2102 2103 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2104 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 2105 2106 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 2107 if (status) { 2108 netdev_err(netdev, "Error adding UDP tunnel - %s\n", 2109 ice_stat_str(status)); 2110 return -EIO; 2111 } 2112 2113 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 2114 return 0; 2115 } 2116 2117 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 2118 unsigned int idx, struct udp_tunnel_info *ti) 2119 { 2120 struct ice_netdev_priv *np = netdev_priv(netdev); 2121 struct ice_vsi *vsi = np->vsi; 2122 struct ice_pf *pf = vsi->back; 2123 enum ice_tunnel_type tnl_type; 2124 enum ice_status status; 2125 2126 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 2127 2128 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 2129 ntohs(ti->port)); 2130 if (status) { 2131 netdev_err(netdev, "Error removing UDP tunnel - %s\n", 2132 ice_stat_str(status)); 2133 return -EIO; 2134 } 2135 2136 return 0; 2137 } 2138 2139 /** 2140 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2141 * @hw: pointer to the hardware structure 2142 * @blk: hardware block 2143 * @prof: profile ID 2144 * @fv_idx: field vector word index 2145 * @prot: variable to receive the protocol ID 2146 * @off: variable to receive the protocol offset 2147 */ 2148 enum ice_status 2149 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2150 u8 *prot, u16 *off) 2151 { 2152 struct ice_fv_word *fv_ext; 2153 2154 if (prof >= hw->blk[blk].es.count) 2155 return ICE_ERR_PARAM; 2156 2157 if (fv_idx >= hw->blk[blk].es.fvw) 2158 return ICE_ERR_PARAM; 2159 2160 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2161 2162 *prot = fv_ext[fv_idx].prot_id; 2163 *off = fv_ext[fv_idx].off; 2164 2165 return 0; 2166 } 2167 2168 /* PTG Management */ 2169 2170 /** 2171 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2172 * @hw: pointer to the hardware structure 2173 * @blk: HW block 2174 * @ptype: the ptype to search for 2175 * @ptg: pointer to variable that receives the PTG 2176 * 2177 * This function will search the PTGs for a particular ptype, returning the 2178 * PTG ID that contains it through the PTG parameter, with the value of 2179 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2180 */ 2181 static enum ice_status 2182 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2183 { 2184 if (ptype >= ICE_XLT1_CNT || !ptg) 2185 return ICE_ERR_PARAM; 2186 2187 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2188 return 0; 2189 } 2190 2191 /** 2192 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2193 * @hw: pointer to the hardware structure 2194 * @blk: HW block 2195 * @ptg: the PTG to allocate 2196 * 2197 * This function allocates a given packet type group ID specified by the PTG 2198 * parameter. 2199 */ 2200 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2201 { 2202 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2203 } 2204 2205 /** 2206 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2207 * @hw: pointer to the hardware structure 2208 * @blk: HW block 2209 * @ptype: the ptype to remove 2210 * @ptg: the PTG to remove the ptype from 2211 * 2212 * This function will remove the ptype from the specific PTG, and move it to 2213 * the default PTG (ICE_DEFAULT_PTG). 2214 */ 2215 static enum ice_status 2216 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2217 { 2218 struct ice_ptg_ptype **ch; 2219 struct ice_ptg_ptype *p; 2220 2221 if (ptype > ICE_XLT1_CNT - 1) 2222 return ICE_ERR_PARAM; 2223 2224 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2225 return ICE_ERR_DOES_NOT_EXIST; 2226 2227 /* Should not happen if .in_use is set, bad config */ 2228 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2229 return ICE_ERR_CFG; 2230 2231 /* find the ptype within this PTG, and bypass the link over it */ 2232 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2233 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2234 while (p) { 2235 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2236 *ch = p->next_ptype; 2237 break; 2238 } 2239 2240 ch = &p->next_ptype; 2241 p = p->next_ptype; 2242 } 2243 2244 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2245 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2246 2247 return 0; 2248 } 2249 2250 /** 2251 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2252 * @hw: pointer to the hardware structure 2253 * @blk: HW block 2254 * @ptype: the ptype to add or move 2255 * @ptg: the PTG to add or move the ptype to 2256 * 2257 * This function will either add or move a ptype to a particular PTG depending 2258 * on if the ptype is already part of another group. Note that using a 2259 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2260 * default PTG. 2261 */ 2262 static enum ice_status 2263 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2264 { 2265 enum ice_status status; 2266 u8 original_ptg; 2267 2268 if (ptype > ICE_XLT1_CNT - 1) 2269 return ICE_ERR_PARAM; 2270 2271 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2272 return ICE_ERR_DOES_NOT_EXIST; 2273 2274 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2275 if (status) 2276 return status; 2277 2278 /* Is ptype already in the correct PTG? */ 2279 if (original_ptg == ptg) 2280 return 0; 2281 2282 /* Remove from original PTG and move back to the default PTG */ 2283 if (original_ptg != ICE_DEFAULT_PTG) 2284 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2285 2286 /* Moving to default PTG? Then we're done with this request */ 2287 if (ptg == ICE_DEFAULT_PTG) 2288 return 0; 2289 2290 /* Add ptype to PTG at beginning of list */ 2291 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2292 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2293 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2294 &hw->blk[blk].xlt1.ptypes[ptype]; 2295 2296 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2297 hw->blk[blk].xlt1.t[ptype] = ptg; 2298 2299 return 0; 2300 } 2301 2302 /* Block / table size info */ 2303 struct ice_blk_size_details { 2304 u16 xlt1; /* # XLT1 entries */ 2305 u16 xlt2; /* # XLT2 entries */ 2306 u16 prof_tcam; /* # profile ID TCAM entries */ 2307 u16 prof_id; /* # profile IDs */ 2308 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2309 u16 prof_redir; /* # profile redirection entries */ 2310 u16 es; /* # extraction sequence entries */ 2311 u16 fvw; /* # field vector words */ 2312 u8 overwrite; /* overwrite existing entries allowed */ 2313 u8 reverse; /* reverse FV order */ 2314 }; 2315 2316 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2317 /** 2318 * Table Definitions 2319 * XLT1 - Number of entries in XLT1 table 2320 * XLT2 - Number of entries in XLT2 table 2321 * TCAM - Number of entries Profile ID TCAM table 2322 * CDID - Control Domain ID of the hardware block 2323 * PRED - Number of entries in the Profile Redirection Table 2324 * FV - Number of entries in the Field Vector 2325 * FVW - Width (in WORDs) of the Field Vector 2326 * OVR - Overwrite existing table entries 2327 * REV - Reverse FV 2328 */ 2329 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2330 /* Overwrite , Reverse FV */ 2331 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2332 false, false }, 2333 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2334 false, false }, 2335 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2336 false, true }, 2337 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2338 true, true }, 2339 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2340 false, false }, 2341 }; 2342 2343 enum ice_sid_all { 2344 ICE_SID_XLT1_OFF = 0, 2345 ICE_SID_XLT2_OFF, 2346 ICE_SID_PR_OFF, 2347 ICE_SID_PR_REDIR_OFF, 2348 ICE_SID_ES_OFF, 2349 ICE_SID_OFF_COUNT, 2350 }; 2351 2352 /* Characteristic handling */ 2353 2354 /** 2355 * ice_match_prop_lst - determine if properties of two lists match 2356 * @list1: first properties list 2357 * @list2: second properties list 2358 * 2359 * Count, cookies and the order must match in order to be considered equivalent. 2360 */ 2361 static bool 2362 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 2363 { 2364 struct ice_vsig_prof *tmp1; 2365 struct ice_vsig_prof *tmp2; 2366 u16 chk_count = 0; 2367 u16 count = 0; 2368 2369 /* compare counts */ 2370 list_for_each_entry(tmp1, list1, list) 2371 count++; 2372 list_for_each_entry(tmp2, list2, list) 2373 chk_count++; 2374 /* cppcheck-suppress knownConditionTrueFalse */ 2375 if (!count || count != chk_count) 2376 return false; 2377 2378 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 2379 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 2380 2381 /* profile cookies must compare, and in the exact same order to take 2382 * into account priority 2383 */ 2384 while (count--) { 2385 if (tmp2->profile_cookie != tmp1->profile_cookie) 2386 return false; 2387 2388 tmp1 = list_next_entry(tmp1, list); 2389 tmp2 = list_next_entry(tmp2, list); 2390 } 2391 2392 return true; 2393 } 2394 2395 /* VSIG Management */ 2396 2397 /** 2398 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2399 * @hw: pointer to the hardware structure 2400 * @blk: HW block 2401 * @vsi: VSI of interest 2402 * @vsig: pointer to receive the VSI group 2403 * 2404 * This function will lookup the VSI entry in the XLT2 list and return 2405 * the VSI group its associated with. 2406 */ 2407 static enum ice_status 2408 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2409 { 2410 if (!vsig || vsi >= ICE_MAX_VSI) 2411 return ICE_ERR_PARAM; 2412 2413 /* As long as there's a default or valid VSIG associated with the input 2414 * VSI, the functions returns a success. Any handling of VSIG will be 2415 * done by the following add, update or remove functions. 2416 */ 2417 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2418 2419 return 0; 2420 } 2421 2422 /** 2423 * ice_vsig_alloc_val - allocate a new VSIG by value 2424 * @hw: pointer to the hardware structure 2425 * @blk: HW block 2426 * @vsig: the VSIG to allocate 2427 * 2428 * This function will allocate a given VSIG specified by the VSIG parameter. 2429 */ 2430 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2431 { 2432 u16 idx = vsig & ICE_VSIG_IDX_M; 2433 2434 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2435 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2436 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2437 } 2438 2439 return ICE_VSIG_VALUE(idx, hw->pf_id); 2440 } 2441 2442 /** 2443 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2444 * @hw: pointer to the hardware structure 2445 * @blk: HW block 2446 * 2447 * This function will iterate through the VSIG list and mark the first 2448 * unused entry for the new VSIG entry as used and return that value. 2449 */ 2450 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2451 { 2452 u16 i; 2453 2454 for (i = 1; i < ICE_MAX_VSIGS; i++) 2455 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2456 return ice_vsig_alloc_val(hw, blk, i); 2457 2458 return ICE_DEFAULT_VSIG; 2459 } 2460 2461 /** 2462 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2463 * @hw: pointer to the hardware structure 2464 * @blk: HW block 2465 * @chs: characteristic list 2466 * @vsig: returns the VSIG with the matching profiles, if found 2467 * 2468 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2469 * a group have the same characteristic set. To check if there exists a VSIG 2470 * which has the same characteristics as the input characteristics; this 2471 * function will iterate through the XLT2 list and return the VSIG that has a 2472 * matching configuration. In order to make sure that priorities are accounted 2473 * for, the list must match exactly, including the order in which the 2474 * characteristics are listed. 2475 */ 2476 static enum ice_status 2477 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2478 struct list_head *chs, u16 *vsig) 2479 { 2480 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2481 u16 i; 2482 2483 for (i = 0; i < xlt2->count; i++) 2484 if (xlt2->vsig_tbl[i].in_use && 2485 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2486 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2487 return 0; 2488 } 2489 2490 return ICE_ERR_DOES_NOT_EXIST; 2491 } 2492 2493 /** 2494 * ice_vsig_free - free VSI group 2495 * @hw: pointer to the hardware structure 2496 * @blk: HW block 2497 * @vsig: VSIG to remove 2498 * 2499 * The function will remove all VSIs associated with the input VSIG and move 2500 * them to the DEFAULT_VSIG and mark the VSIG available. 2501 */ 2502 static enum ice_status 2503 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2504 { 2505 struct ice_vsig_prof *dtmp, *del; 2506 struct ice_vsig_vsi *vsi_cur; 2507 u16 idx; 2508 2509 idx = vsig & ICE_VSIG_IDX_M; 2510 if (idx >= ICE_MAX_VSIGS) 2511 return ICE_ERR_PARAM; 2512 2513 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2514 return ICE_ERR_DOES_NOT_EXIST; 2515 2516 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 2517 2518 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2519 /* If the VSIG has at least 1 VSI then iterate through the 2520 * list and remove the VSIs before deleting the group. 2521 */ 2522 if (vsi_cur) { 2523 /* remove all vsis associated with this VSIG XLT2 entry */ 2524 do { 2525 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 2526 2527 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2528 vsi_cur->changed = 1; 2529 vsi_cur->next_vsi = NULL; 2530 vsi_cur = tmp; 2531 } while (vsi_cur); 2532 2533 /* NULL terminate head of VSI list */ 2534 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 2535 } 2536 2537 /* free characteristic list */ 2538 list_for_each_entry_safe(del, dtmp, 2539 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2540 list) { 2541 list_del(&del->list); 2542 devm_kfree(ice_hw_to_dev(hw), del); 2543 } 2544 2545 /* if VSIG characteristic list was cleared for reset 2546 * re-initialize the list head 2547 */ 2548 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2549 2550 return 0; 2551 } 2552 2553 /** 2554 * ice_vsig_remove_vsi - remove VSI from VSIG 2555 * @hw: pointer to the hardware structure 2556 * @blk: HW block 2557 * @vsi: VSI to remove 2558 * @vsig: VSI group to remove from 2559 * 2560 * The function will remove the input VSI from its VSI group and move it 2561 * to the DEFAULT_VSIG. 2562 */ 2563 static enum ice_status 2564 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2565 { 2566 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 2567 u16 idx; 2568 2569 idx = vsig & ICE_VSIG_IDX_M; 2570 2571 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2572 return ICE_ERR_PARAM; 2573 2574 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2575 return ICE_ERR_DOES_NOT_EXIST; 2576 2577 /* entry already in default VSIG, don't have to remove */ 2578 if (idx == ICE_DEFAULT_VSIG) 2579 return 0; 2580 2581 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2582 if (!(*vsi_head)) 2583 return ICE_ERR_CFG; 2584 2585 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 2586 vsi_cur = (*vsi_head); 2587 2588 /* iterate the VSI list, skip over the entry to be removed */ 2589 while (vsi_cur) { 2590 if (vsi_tgt == vsi_cur) { 2591 (*vsi_head) = vsi_cur->next_vsi; 2592 break; 2593 } 2594 vsi_head = &vsi_cur->next_vsi; 2595 vsi_cur = vsi_cur->next_vsi; 2596 } 2597 2598 /* verify if VSI was removed from group list */ 2599 if (!vsi_cur) 2600 return ICE_ERR_DOES_NOT_EXIST; 2601 2602 vsi_cur->vsig = ICE_DEFAULT_VSIG; 2603 vsi_cur->changed = 1; 2604 vsi_cur->next_vsi = NULL; 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 2611 * @hw: pointer to the hardware structure 2612 * @blk: HW block 2613 * @vsi: VSI to move 2614 * @vsig: destination VSI group 2615 * 2616 * This function will move or add the input VSI to the target VSIG. 2617 * The function will find the original VSIG the VSI belongs to and 2618 * move the entry to the DEFAULT_VSIG, update the original VSIG and 2619 * then move entry to the new VSIG. 2620 */ 2621 static enum ice_status 2622 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 2623 { 2624 struct ice_vsig_vsi *tmp; 2625 enum ice_status status; 2626 u16 orig_vsig, idx; 2627 2628 idx = vsig & ICE_VSIG_IDX_M; 2629 2630 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 2631 return ICE_ERR_PARAM; 2632 2633 /* if VSIG not in use and VSIG is not default type this VSIG 2634 * doesn't exist. 2635 */ 2636 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 2637 vsig != ICE_DEFAULT_VSIG) 2638 return ICE_ERR_DOES_NOT_EXIST; 2639 2640 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 2641 if (status) 2642 return status; 2643 2644 /* no update required if vsigs match */ 2645 if (orig_vsig == vsig) 2646 return 0; 2647 2648 if (orig_vsig != ICE_DEFAULT_VSIG) { 2649 /* remove entry from orig_vsig and add to default VSIG */ 2650 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 2651 if (status) 2652 return status; 2653 } 2654 2655 if (idx == ICE_DEFAULT_VSIG) 2656 return 0; 2657 2658 /* Create VSI entry and add VSIG and prop_mask values */ 2659 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 2660 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 2661 2662 /* Add new entry to the head of the VSIG list */ 2663 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2664 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 2665 &hw->blk[blk].xlt2.vsis[vsi]; 2666 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 2667 hw->blk[blk].xlt2.t[vsi] = vsig; 2668 2669 return 0; 2670 } 2671 2672 /** 2673 * ice_prof_has_mask_idx - determine if profile index masking is identical 2674 * @hw: pointer to the hardware structure 2675 * @blk: HW block 2676 * @prof: profile to check 2677 * @idx: profile index to check 2678 * @mask: mask to match 2679 */ 2680 static bool 2681 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 2682 u16 mask) 2683 { 2684 bool expect_no_mask = false; 2685 bool found = false; 2686 bool match = false; 2687 u16 i; 2688 2689 /* If mask is 0x0000 or 0xffff, then there is no masking */ 2690 if (mask == 0 || mask == 0xffff) 2691 expect_no_mask = true; 2692 2693 /* Scan the enabled masks on this profile, for the specified idx */ 2694 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 2695 hw->blk[blk].masks.count; i++) 2696 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 2697 if (hw->blk[blk].masks.masks[i].in_use && 2698 hw->blk[blk].masks.masks[i].idx == idx) { 2699 found = true; 2700 if (hw->blk[blk].masks.masks[i].mask == mask) 2701 match = true; 2702 break; 2703 } 2704 2705 if (expect_no_mask) { 2706 if (found) 2707 return false; 2708 } else { 2709 if (!match) 2710 return false; 2711 } 2712 2713 return true; 2714 } 2715 2716 /** 2717 * ice_prof_has_mask - determine if profile masking is identical 2718 * @hw: pointer to the hardware structure 2719 * @blk: HW block 2720 * @prof: profile to check 2721 * @masks: masks to match 2722 */ 2723 static bool 2724 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 2725 { 2726 u16 i; 2727 2728 /* es->mask_ena[prof] will have the mask */ 2729 for (i = 0; i < hw->blk[blk].es.fvw; i++) 2730 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 2731 return false; 2732 2733 return true; 2734 } 2735 2736 /** 2737 * ice_find_prof_id_with_mask - find profile ID for a given field vector 2738 * @hw: pointer to the hardware structure 2739 * @blk: HW block 2740 * @fv: field vector to search for 2741 * @masks: masks for FV 2742 * @prof_id: receives the profile ID 2743 */ 2744 static enum ice_status 2745 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 2746 struct ice_fv_word *fv, u16 *masks, u8 *prof_id) 2747 { 2748 struct ice_es *es = &hw->blk[blk].es; 2749 u8 i; 2750 2751 /* For FD, we don't want to re-use a existed profile with the same 2752 * field vector and mask. This will cause rule interference. 2753 */ 2754 if (blk == ICE_BLK_FD) 2755 return ICE_ERR_DOES_NOT_EXIST; 2756 2757 for (i = 0; i < (u8)es->count; i++) { 2758 u16 off = i * es->fvw; 2759 2760 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 2761 continue; 2762 2763 /* check if masks settings are the same for this profile */ 2764 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 2765 continue; 2766 2767 *prof_id = i; 2768 return 0; 2769 } 2770 2771 return ICE_ERR_DOES_NOT_EXIST; 2772 } 2773 2774 /** 2775 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 2776 * @blk: the block type 2777 * @rsrc_type: pointer to variable to receive the resource type 2778 */ 2779 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2780 { 2781 switch (blk) { 2782 case ICE_BLK_FD: 2783 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 2784 break; 2785 case ICE_BLK_RSS: 2786 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 2787 break; 2788 default: 2789 return false; 2790 } 2791 return true; 2792 } 2793 2794 /** 2795 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 2796 * @blk: the block type 2797 * @rsrc_type: pointer to variable to receive the resource type 2798 */ 2799 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 2800 { 2801 switch (blk) { 2802 case ICE_BLK_FD: 2803 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 2804 break; 2805 case ICE_BLK_RSS: 2806 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 2807 break; 2808 default: 2809 return false; 2810 } 2811 return true; 2812 } 2813 2814 /** 2815 * ice_alloc_tcam_ent - allocate hardware TCAM entry 2816 * @hw: pointer to the HW struct 2817 * @blk: the block to allocate the TCAM for 2818 * @btm: true to allocate from bottom of table, false to allocate from top 2819 * @tcam_idx: pointer to variable to receive the TCAM entry 2820 * 2821 * This function allocates a new entry in a Profile ID TCAM for a specific 2822 * block. 2823 */ 2824 static enum ice_status 2825 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 2826 u16 *tcam_idx) 2827 { 2828 u16 res_type; 2829 2830 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2831 return ICE_ERR_PARAM; 2832 2833 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 2834 } 2835 2836 /** 2837 * ice_free_tcam_ent - free hardware TCAM entry 2838 * @hw: pointer to the HW struct 2839 * @blk: the block from which to free the TCAM entry 2840 * @tcam_idx: the TCAM entry to free 2841 * 2842 * This function frees an entry in a Profile ID TCAM for a specific block. 2843 */ 2844 static enum ice_status 2845 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 2846 { 2847 u16 res_type; 2848 2849 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 2850 return ICE_ERR_PARAM; 2851 2852 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 2853 } 2854 2855 /** 2856 * ice_alloc_prof_id - allocate profile ID 2857 * @hw: pointer to the HW struct 2858 * @blk: the block to allocate the profile ID for 2859 * @prof_id: pointer to variable to receive the profile ID 2860 * 2861 * This function allocates a new profile ID, which also corresponds to a Field 2862 * Vector (Extraction Sequence) entry. 2863 */ 2864 static enum ice_status 2865 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 2866 { 2867 enum ice_status status; 2868 u16 res_type; 2869 u16 get_prof; 2870 2871 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2872 return ICE_ERR_PARAM; 2873 2874 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 2875 if (!status) 2876 *prof_id = (u8)get_prof; 2877 2878 return status; 2879 } 2880 2881 /** 2882 * ice_free_prof_id - free profile ID 2883 * @hw: pointer to the HW struct 2884 * @blk: the block from which to free the profile ID 2885 * @prof_id: the profile ID to free 2886 * 2887 * This function frees a profile ID, which also corresponds to a Field Vector. 2888 */ 2889 static enum ice_status 2890 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2891 { 2892 u16 tmp_prof_id = (u16)prof_id; 2893 u16 res_type; 2894 2895 if (!ice_prof_id_rsrc_type(blk, &res_type)) 2896 return ICE_ERR_PARAM; 2897 2898 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 2899 } 2900 2901 /** 2902 * ice_prof_inc_ref - increment reference count for profile 2903 * @hw: pointer to the HW struct 2904 * @blk: the block from which to free the profile ID 2905 * @prof_id: the profile ID for which to increment the reference count 2906 */ 2907 static enum ice_status 2908 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 2909 { 2910 if (prof_id > hw->blk[blk].es.count) 2911 return ICE_ERR_PARAM; 2912 2913 hw->blk[blk].es.ref_count[prof_id]++; 2914 2915 return 0; 2916 } 2917 2918 /** 2919 * ice_write_prof_mask_reg - write profile mask register 2920 * @hw: pointer to the HW struct 2921 * @blk: hardware block 2922 * @mask_idx: mask index 2923 * @idx: index of the FV which will use the mask 2924 * @mask: the 16-bit mask 2925 */ 2926 static void 2927 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 2928 u16 idx, u16 mask) 2929 { 2930 u32 offset; 2931 u32 val; 2932 2933 switch (blk) { 2934 case ICE_BLK_RSS: 2935 offset = GLQF_HMASK(mask_idx); 2936 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; 2937 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; 2938 break; 2939 case ICE_BLK_FD: 2940 offset = GLQF_FDMASK(mask_idx); 2941 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; 2942 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; 2943 break; 2944 default: 2945 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2946 blk); 2947 return; 2948 } 2949 2950 wr32(hw, offset, val); 2951 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 2952 blk, idx, offset, val); 2953 } 2954 2955 /** 2956 * ice_write_prof_mask_enable_res - write profile mask enable register 2957 * @hw: pointer to the HW struct 2958 * @blk: hardware block 2959 * @prof_id: profile ID 2960 * @enable_mask: enable mask 2961 */ 2962 static void 2963 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 2964 u16 prof_id, u32 enable_mask) 2965 { 2966 u32 offset; 2967 2968 switch (blk) { 2969 case ICE_BLK_RSS: 2970 offset = GLQF_HMASK_SEL(prof_id); 2971 break; 2972 case ICE_BLK_FD: 2973 offset = GLQF_FDMASK_SEL(prof_id); 2974 break; 2975 default: 2976 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 2977 blk); 2978 return; 2979 } 2980 2981 wr32(hw, offset, enable_mask); 2982 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 2983 blk, prof_id, offset, enable_mask); 2984 } 2985 2986 /** 2987 * ice_init_prof_masks - initial prof masks 2988 * @hw: pointer to the HW struct 2989 * @blk: hardware block 2990 */ 2991 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 2992 { 2993 u16 per_pf; 2994 u16 i; 2995 2996 mutex_init(&hw->blk[blk].masks.lock); 2997 2998 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 2999 3000 hw->blk[blk].masks.count = per_pf; 3001 hw->blk[blk].masks.first = hw->pf_id * per_pf; 3002 3003 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 3004 3005 for (i = hw->blk[blk].masks.first; 3006 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3007 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3008 } 3009 3010 /** 3011 * ice_init_all_prof_masks - initialize all prof masks 3012 * @hw: pointer to the HW struct 3013 */ 3014 static void ice_init_all_prof_masks(struct ice_hw *hw) 3015 { 3016 ice_init_prof_masks(hw, ICE_BLK_RSS); 3017 ice_init_prof_masks(hw, ICE_BLK_FD); 3018 } 3019 3020 /** 3021 * ice_alloc_prof_mask - allocate profile mask 3022 * @hw: pointer to the HW struct 3023 * @blk: hardware block 3024 * @idx: index of FV which will use the mask 3025 * @mask: the 16-bit mask 3026 * @mask_idx: variable to receive the mask index 3027 */ 3028 static enum ice_status 3029 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 3030 u16 *mask_idx) 3031 { 3032 bool found_unused = false, found_copy = false; 3033 enum ice_status status = ICE_ERR_MAX_LIMIT; 3034 u16 unused_idx = 0, copy_idx = 0; 3035 u16 i; 3036 3037 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3038 return ICE_ERR_PARAM; 3039 3040 mutex_lock(&hw->blk[blk].masks.lock); 3041 3042 for (i = hw->blk[blk].masks.first; 3043 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 3044 if (hw->blk[blk].masks.masks[i].in_use) { 3045 /* if mask is in use and it exactly duplicates the 3046 * desired mask and index, then in can be reused 3047 */ 3048 if (hw->blk[blk].masks.masks[i].mask == mask && 3049 hw->blk[blk].masks.masks[i].idx == idx) { 3050 found_copy = true; 3051 copy_idx = i; 3052 break; 3053 } 3054 } else { 3055 /* save off unused index, but keep searching in case 3056 * there is an exact match later on 3057 */ 3058 if (!found_unused) { 3059 found_unused = true; 3060 unused_idx = i; 3061 } 3062 } 3063 3064 if (found_copy) 3065 i = copy_idx; 3066 else if (found_unused) 3067 i = unused_idx; 3068 else 3069 goto err_ice_alloc_prof_mask; 3070 3071 /* update mask for a new entry */ 3072 if (found_unused) { 3073 hw->blk[blk].masks.masks[i].in_use = true; 3074 hw->blk[blk].masks.masks[i].mask = mask; 3075 hw->blk[blk].masks.masks[i].idx = idx; 3076 hw->blk[blk].masks.masks[i].ref = 0; 3077 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 3078 } 3079 3080 hw->blk[blk].masks.masks[i].ref++; 3081 *mask_idx = i; 3082 status = 0; 3083 3084 err_ice_alloc_prof_mask: 3085 mutex_unlock(&hw->blk[blk].masks.lock); 3086 3087 return status; 3088 } 3089 3090 /** 3091 * ice_free_prof_mask - free profile mask 3092 * @hw: pointer to the HW struct 3093 * @blk: hardware block 3094 * @mask_idx: index of mask 3095 */ 3096 static enum ice_status 3097 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 3098 { 3099 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3100 return ICE_ERR_PARAM; 3101 3102 if (!(mask_idx >= hw->blk[blk].masks.first && 3103 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 3104 return ICE_ERR_DOES_NOT_EXIST; 3105 3106 mutex_lock(&hw->blk[blk].masks.lock); 3107 3108 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 3109 goto exit_ice_free_prof_mask; 3110 3111 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 3112 hw->blk[blk].masks.masks[mask_idx].ref--; 3113 goto exit_ice_free_prof_mask; 3114 } 3115 3116 /* remove mask */ 3117 hw->blk[blk].masks.masks[mask_idx].in_use = false; 3118 hw->blk[blk].masks.masks[mask_idx].mask = 0; 3119 hw->blk[blk].masks.masks[mask_idx].idx = 0; 3120 3121 /* update mask as unused entry */ 3122 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 3123 mask_idx); 3124 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 3125 3126 exit_ice_free_prof_mask: 3127 mutex_unlock(&hw->blk[blk].masks.lock); 3128 3129 return 0; 3130 } 3131 3132 /** 3133 * ice_free_prof_masks - free all profile masks for a profile 3134 * @hw: pointer to the HW struct 3135 * @blk: hardware block 3136 * @prof_id: profile ID 3137 */ 3138 static enum ice_status 3139 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 3140 { 3141 u32 mask_bm; 3142 u16 i; 3143 3144 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3145 return ICE_ERR_PARAM; 3146 3147 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 3148 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 3149 if (mask_bm & BIT(i)) 3150 ice_free_prof_mask(hw, blk, i); 3151 3152 return 0; 3153 } 3154 3155 /** 3156 * ice_shutdown_prof_masks - releases lock for masking 3157 * @hw: pointer to the HW struct 3158 * @blk: hardware block 3159 * 3160 * This should be called before unloading the driver 3161 */ 3162 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 3163 { 3164 u16 i; 3165 3166 mutex_lock(&hw->blk[blk].masks.lock); 3167 3168 for (i = hw->blk[blk].masks.first; 3169 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 3170 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 3171 3172 hw->blk[blk].masks.masks[i].in_use = false; 3173 hw->blk[blk].masks.masks[i].idx = 0; 3174 hw->blk[blk].masks.masks[i].mask = 0; 3175 } 3176 3177 mutex_unlock(&hw->blk[blk].masks.lock); 3178 mutex_destroy(&hw->blk[blk].masks.lock); 3179 } 3180 3181 /** 3182 * ice_shutdown_all_prof_masks - releases all locks for masking 3183 * @hw: pointer to the HW struct 3184 * 3185 * This should be called before unloading the driver 3186 */ 3187 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 3188 { 3189 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 3190 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 3191 } 3192 3193 /** 3194 * ice_update_prof_masking - set registers according to masking 3195 * @hw: pointer to the HW struct 3196 * @blk: hardware block 3197 * @prof_id: profile ID 3198 * @masks: masks 3199 */ 3200 static enum ice_status 3201 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 3202 u16 *masks) 3203 { 3204 bool err = false; 3205 u32 ena_mask = 0; 3206 u16 idx; 3207 u16 i; 3208 3209 /* Only support FD and RSS masking, otherwise nothing to be done */ 3210 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 3211 return 0; 3212 3213 for (i = 0; i < hw->blk[blk].es.fvw; i++) 3214 if (masks[i] && masks[i] != 0xFFFF) { 3215 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 3216 ena_mask |= BIT(idx); 3217 } else { 3218 /* not enough bitmaps */ 3219 err = true; 3220 break; 3221 } 3222 } 3223 3224 if (err) { 3225 /* free any bitmaps we have allocated */ 3226 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 3227 if (ena_mask & BIT(i)) 3228 ice_free_prof_mask(hw, blk, i); 3229 3230 return ICE_ERR_OUT_OF_RANGE; 3231 } 3232 3233 /* enable the masks for this profile */ 3234 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 3235 3236 /* store enabled masks with profile so that they can be freed later */ 3237 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 3238 3239 return 0; 3240 } 3241 3242 /** 3243 * ice_write_es - write an extraction sequence to hardware 3244 * @hw: pointer to the HW struct 3245 * @blk: the block in which to write the extraction sequence 3246 * @prof_id: the profile ID to write 3247 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3248 */ 3249 static void 3250 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3251 struct ice_fv_word *fv) 3252 { 3253 u16 off; 3254 3255 off = prof_id * hw->blk[blk].es.fvw; 3256 if (!fv) { 3257 memset(&hw->blk[blk].es.t[off], 0, 3258 hw->blk[blk].es.fvw * sizeof(*fv)); 3259 hw->blk[blk].es.written[prof_id] = false; 3260 } else { 3261 memcpy(&hw->blk[blk].es.t[off], fv, 3262 hw->blk[blk].es.fvw * sizeof(*fv)); 3263 } 3264 } 3265 3266 /** 3267 * ice_prof_dec_ref - decrement reference count for profile 3268 * @hw: pointer to the HW struct 3269 * @blk: the block from which to free the profile ID 3270 * @prof_id: the profile ID for which to decrement the reference count 3271 */ 3272 static enum ice_status 3273 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3274 { 3275 if (prof_id > hw->blk[blk].es.count) 3276 return ICE_ERR_PARAM; 3277 3278 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3279 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3280 ice_write_es(hw, blk, prof_id, NULL); 3281 ice_free_prof_masks(hw, blk, prof_id); 3282 return ice_free_prof_id(hw, blk, prof_id); 3283 } 3284 } 3285 3286 return 0; 3287 } 3288 3289 /* Block / table section IDs */ 3290 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3291 /* SWITCH */ 3292 { ICE_SID_XLT1_SW, 3293 ICE_SID_XLT2_SW, 3294 ICE_SID_PROFID_TCAM_SW, 3295 ICE_SID_PROFID_REDIR_SW, 3296 ICE_SID_FLD_VEC_SW 3297 }, 3298 3299 /* ACL */ 3300 { ICE_SID_XLT1_ACL, 3301 ICE_SID_XLT2_ACL, 3302 ICE_SID_PROFID_TCAM_ACL, 3303 ICE_SID_PROFID_REDIR_ACL, 3304 ICE_SID_FLD_VEC_ACL 3305 }, 3306 3307 /* FD */ 3308 { ICE_SID_XLT1_FD, 3309 ICE_SID_XLT2_FD, 3310 ICE_SID_PROFID_TCAM_FD, 3311 ICE_SID_PROFID_REDIR_FD, 3312 ICE_SID_FLD_VEC_FD 3313 }, 3314 3315 /* RSS */ 3316 { ICE_SID_XLT1_RSS, 3317 ICE_SID_XLT2_RSS, 3318 ICE_SID_PROFID_TCAM_RSS, 3319 ICE_SID_PROFID_REDIR_RSS, 3320 ICE_SID_FLD_VEC_RSS 3321 }, 3322 3323 /* PE */ 3324 { ICE_SID_XLT1_PE, 3325 ICE_SID_XLT2_PE, 3326 ICE_SID_PROFID_TCAM_PE, 3327 ICE_SID_PROFID_REDIR_PE, 3328 ICE_SID_FLD_VEC_PE 3329 } 3330 }; 3331 3332 /** 3333 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3334 * @hw: pointer to the hardware structure 3335 * @blk: the HW block to initialize 3336 */ 3337 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3338 { 3339 u16 pt; 3340 3341 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3342 u8 ptg; 3343 3344 ptg = hw->blk[blk].xlt1.t[pt]; 3345 if (ptg != ICE_DEFAULT_PTG) { 3346 ice_ptg_alloc_val(hw, blk, ptg); 3347 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3348 } 3349 } 3350 } 3351 3352 /** 3353 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3354 * @hw: pointer to the hardware structure 3355 * @blk: the HW block to initialize 3356 */ 3357 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3358 { 3359 u16 vsi; 3360 3361 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3362 u16 vsig; 3363 3364 vsig = hw->blk[blk].xlt2.t[vsi]; 3365 if (vsig) { 3366 ice_vsig_alloc_val(hw, blk, vsig); 3367 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3368 /* no changes at this time, since this has been 3369 * initialized from the original package 3370 */ 3371 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3372 } 3373 } 3374 } 3375 3376 /** 3377 * ice_init_sw_db - init software database from HW tables 3378 * @hw: pointer to the hardware structure 3379 */ 3380 static void ice_init_sw_db(struct ice_hw *hw) 3381 { 3382 u16 i; 3383 3384 for (i = 0; i < ICE_BLK_COUNT; i++) { 3385 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3386 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3387 } 3388 } 3389 3390 /** 3391 * ice_fill_tbl - Reads content of a single table type into database 3392 * @hw: pointer to the hardware structure 3393 * @block_id: Block ID of the table to copy 3394 * @sid: Section ID of the table to copy 3395 * 3396 * Will attempt to read the entire content of a given table of a single block 3397 * into the driver database. We assume that the buffer will always 3398 * be as large or larger than the data contained in the package. If 3399 * this condition is not met, there is most likely an error in the package 3400 * contents. 3401 */ 3402 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3403 { 3404 u32 dst_len, sect_len, offset = 0; 3405 struct ice_prof_redir_section *pr; 3406 struct ice_prof_id_section *pid; 3407 struct ice_xlt1_section *xlt1; 3408 struct ice_xlt2_section *xlt2; 3409 struct ice_sw_fv_section *es; 3410 struct ice_pkg_enum state; 3411 u8 *src, *dst; 3412 void *sect; 3413 3414 /* if the HW segment pointer is null then the first iteration of 3415 * ice_pkg_enum_section() will fail. In this case the HW tables will 3416 * not be filled and return success. 3417 */ 3418 if (!hw->seg) { 3419 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3420 return; 3421 } 3422 3423 memset(&state, 0, sizeof(state)); 3424 3425 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3426 3427 while (sect) { 3428 switch (sid) { 3429 case ICE_SID_XLT1_SW: 3430 case ICE_SID_XLT1_FD: 3431 case ICE_SID_XLT1_RSS: 3432 case ICE_SID_XLT1_ACL: 3433 case ICE_SID_XLT1_PE: 3434 xlt1 = sect; 3435 src = xlt1->value; 3436 sect_len = le16_to_cpu(xlt1->count) * 3437 sizeof(*hw->blk[block_id].xlt1.t); 3438 dst = hw->blk[block_id].xlt1.t; 3439 dst_len = hw->blk[block_id].xlt1.count * 3440 sizeof(*hw->blk[block_id].xlt1.t); 3441 break; 3442 case ICE_SID_XLT2_SW: 3443 case ICE_SID_XLT2_FD: 3444 case ICE_SID_XLT2_RSS: 3445 case ICE_SID_XLT2_ACL: 3446 case ICE_SID_XLT2_PE: 3447 xlt2 = sect; 3448 src = (__force u8 *)xlt2->value; 3449 sect_len = le16_to_cpu(xlt2->count) * 3450 sizeof(*hw->blk[block_id].xlt2.t); 3451 dst = (u8 *)hw->blk[block_id].xlt2.t; 3452 dst_len = hw->blk[block_id].xlt2.count * 3453 sizeof(*hw->blk[block_id].xlt2.t); 3454 break; 3455 case ICE_SID_PROFID_TCAM_SW: 3456 case ICE_SID_PROFID_TCAM_FD: 3457 case ICE_SID_PROFID_TCAM_RSS: 3458 case ICE_SID_PROFID_TCAM_ACL: 3459 case ICE_SID_PROFID_TCAM_PE: 3460 pid = sect; 3461 src = (u8 *)pid->entry; 3462 sect_len = le16_to_cpu(pid->count) * 3463 sizeof(*hw->blk[block_id].prof.t); 3464 dst = (u8 *)hw->blk[block_id].prof.t; 3465 dst_len = hw->blk[block_id].prof.count * 3466 sizeof(*hw->blk[block_id].prof.t); 3467 break; 3468 case ICE_SID_PROFID_REDIR_SW: 3469 case ICE_SID_PROFID_REDIR_FD: 3470 case ICE_SID_PROFID_REDIR_RSS: 3471 case ICE_SID_PROFID_REDIR_ACL: 3472 case ICE_SID_PROFID_REDIR_PE: 3473 pr = sect; 3474 src = pr->redir_value; 3475 sect_len = le16_to_cpu(pr->count) * 3476 sizeof(*hw->blk[block_id].prof_redir.t); 3477 dst = hw->blk[block_id].prof_redir.t; 3478 dst_len = hw->blk[block_id].prof_redir.count * 3479 sizeof(*hw->blk[block_id].prof_redir.t); 3480 break; 3481 case ICE_SID_FLD_VEC_SW: 3482 case ICE_SID_FLD_VEC_FD: 3483 case ICE_SID_FLD_VEC_RSS: 3484 case ICE_SID_FLD_VEC_ACL: 3485 case ICE_SID_FLD_VEC_PE: 3486 es = sect; 3487 src = (u8 *)es->fv; 3488 sect_len = (u32)(le16_to_cpu(es->count) * 3489 hw->blk[block_id].es.fvw) * 3490 sizeof(*hw->blk[block_id].es.t); 3491 dst = (u8 *)hw->blk[block_id].es.t; 3492 dst_len = (u32)(hw->blk[block_id].es.count * 3493 hw->blk[block_id].es.fvw) * 3494 sizeof(*hw->blk[block_id].es.t); 3495 break; 3496 default: 3497 return; 3498 } 3499 3500 /* if the section offset exceeds destination length, terminate 3501 * table fill. 3502 */ 3503 if (offset > dst_len) 3504 return; 3505 3506 /* if the sum of section size and offset exceed destination size 3507 * then we are out of bounds of the HW table size for that PF. 3508 * Changing section length to fill the remaining table space 3509 * of that PF. 3510 */ 3511 if ((offset + sect_len) > dst_len) 3512 sect_len = dst_len - offset; 3513 3514 memcpy(dst + offset, src, sect_len); 3515 offset += sect_len; 3516 sect = ice_pkg_enum_section(NULL, &state, sid); 3517 } 3518 } 3519 3520 /** 3521 * ice_fill_blk_tbls - Read package context for tables 3522 * @hw: pointer to the hardware structure 3523 * 3524 * Reads the current package contents and populates the driver 3525 * database with the data iteratively for all advanced feature 3526 * blocks. Assume that the HW tables have been allocated. 3527 */ 3528 void ice_fill_blk_tbls(struct ice_hw *hw) 3529 { 3530 u8 i; 3531 3532 for (i = 0; i < ICE_BLK_COUNT; i++) { 3533 enum ice_block blk_id = (enum ice_block)i; 3534 3535 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3536 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3537 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3538 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3539 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3540 } 3541 3542 ice_init_sw_db(hw); 3543 } 3544 3545 /** 3546 * ice_free_prof_map - free profile map 3547 * @hw: pointer to the hardware structure 3548 * @blk_idx: HW block index 3549 */ 3550 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3551 { 3552 struct ice_es *es = &hw->blk[blk_idx].es; 3553 struct ice_prof_map *del, *tmp; 3554 3555 mutex_lock(&es->prof_map_lock); 3556 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 3557 list_del(&del->list); 3558 devm_kfree(ice_hw_to_dev(hw), del); 3559 } 3560 INIT_LIST_HEAD(&es->prof_map); 3561 mutex_unlock(&es->prof_map_lock); 3562 } 3563 3564 /** 3565 * ice_free_flow_profs - free flow profile entries 3566 * @hw: pointer to the hardware structure 3567 * @blk_idx: HW block index 3568 */ 3569 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3570 { 3571 struct ice_flow_prof *p, *tmp; 3572 3573 mutex_lock(&hw->fl_profs_locks[blk_idx]); 3574 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 3575 struct ice_flow_entry *e, *t; 3576 3577 list_for_each_entry_safe(e, t, &p->entries, l_entry) 3578 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 3579 ICE_FLOW_ENTRY_HNDL(e)); 3580 3581 list_del(&p->l_entry); 3582 3583 mutex_destroy(&p->entries_lock); 3584 devm_kfree(ice_hw_to_dev(hw), p); 3585 } 3586 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 3587 3588 /* if driver is in reset and tables are being cleared 3589 * re-initialize the flow profile list heads 3590 */ 3591 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3592 } 3593 3594 /** 3595 * ice_free_vsig_tbl - free complete VSIG table entries 3596 * @hw: pointer to the hardware structure 3597 * @blk: the HW block on which to free the VSIG table entries 3598 */ 3599 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3600 { 3601 u16 i; 3602 3603 if (!hw->blk[blk].xlt2.vsig_tbl) 3604 return; 3605 3606 for (i = 1; i < ICE_MAX_VSIGS; i++) 3607 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3608 ice_vsig_free(hw, blk, i); 3609 } 3610 3611 /** 3612 * ice_free_hw_tbls - free hardware table memory 3613 * @hw: pointer to the hardware structure 3614 */ 3615 void ice_free_hw_tbls(struct ice_hw *hw) 3616 { 3617 struct ice_rss_cfg *r, *rt; 3618 u8 i; 3619 3620 for (i = 0; i < ICE_BLK_COUNT; i++) { 3621 if (hw->blk[i].is_list_init) { 3622 struct ice_es *es = &hw->blk[i].es; 3623 3624 ice_free_prof_map(hw, i); 3625 mutex_destroy(&es->prof_map_lock); 3626 3627 ice_free_flow_profs(hw, i); 3628 mutex_destroy(&hw->fl_profs_locks[i]); 3629 3630 hw->blk[i].is_list_init = false; 3631 } 3632 ice_free_vsig_tbl(hw, (enum ice_block)i); 3633 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 3634 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 3635 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 3636 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 3637 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 3638 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 3639 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 3640 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 3641 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 3642 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 3643 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 3644 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 3645 } 3646 3647 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 3648 list_del(&r->l_entry); 3649 devm_kfree(ice_hw_to_dev(hw), r); 3650 } 3651 mutex_destroy(&hw->rss_locks); 3652 ice_shutdown_all_prof_masks(hw); 3653 memset(hw->blk, 0, sizeof(hw->blk)); 3654 } 3655 3656 /** 3657 * ice_init_flow_profs - init flow profile locks and list heads 3658 * @hw: pointer to the hardware structure 3659 * @blk_idx: HW block index 3660 */ 3661 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3662 { 3663 mutex_init(&hw->fl_profs_locks[blk_idx]); 3664 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3665 } 3666 3667 /** 3668 * ice_clear_hw_tbls - clear HW tables and flow profiles 3669 * @hw: pointer to the hardware structure 3670 */ 3671 void ice_clear_hw_tbls(struct ice_hw *hw) 3672 { 3673 u8 i; 3674 3675 for (i = 0; i < ICE_BLK_COUNT; i++) { 3676 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3677 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3678 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3679 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3680 struct ice_es *es = &hw->blk[i].es; 3681 3682 if (hw->blk[i].is_list_init) { 3683 ice_free_prof_map(hw, i); 3684 ice_free_flow_profs(hw, i); 3685 } 3686 3687 ice_free_vsig_tbl(hw, (enum ice_block)i); 3688 3689 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 3690 memset(xlt1->ptg_tbl, 0, 3691 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 3692 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 3693 3694 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 3695 memset(xlt2->vsig_tbl, 0, 3696 xlt2->count * sizeof(*xlt2->vsig_tbl)); 3697 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 3698 3699 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 3700 memset(prof_redir->t, 0, 3701 prof_redir->count * sizeof(*prof_redir->t)); 3702 3703 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 3704 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 3705 memset(es->written, 0, es->count * sizeof(*es->written)); 3706 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 3707 } 3708 } 3709 3710 /** 3711 * ice_init_hw_tbls - init hardware table memory 3712 * @hw: pointer to the hardware structure 3713 */ 3714 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3715 { 3716 u8 i; 3717 3718 mutex_init(&hw->rss_locks); 3719 INIT_LIST_HEAD(&hw->rss_list_head); 3720 ice_init_all_prof_masks(hw); 3721 for (i = 0; i < ICE_BLK_COUNT; i++) { 3722 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3723 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3724 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3725 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3726 struct ice_es *es = &hw->blk[i].es; 3727 u16 j; 3728 3729 if (hw->blk[i].is_list_init) 3730 continue; 3731 3732 ice_init_flow_profs(hw, i); 3733 mutex_init(&es->prof_map_lock); 3734 INIT_LIST_HEAD(&es->prof_map); 3735 hw->blk[i].is_list_init = true; 3736 3737 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3738 es->reverse = blk_sizes[i].reverse; 3739 3740 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3741 xlt1->count = blk_sizes[i].xlt1; 3742 3743 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3744 sizeof(*xlt1->ptypes), GFP_KERNEL); 3745 3746 if (!xlt1->ptypes) 3747 goto err; 3748 3749 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 3750 sizeof(*xlt1->ptg_tbl), 3751 GFP_KERNEL); 3752 3753 if (!xlt1->ptg_tbl) 3754 goto err; 3755 3756 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 3757 sizeof(*xlt1->t), GFP_KERNEL); 3758 if (!xlt1->t) 3759 goto err; 3760 3761 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3762 xlt2->count = blk_sizes[i].xlt2; 3763 3764 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3765 sizeof(*xlt2->vsis), GFP_KERNEL); 3766 3767 if (!xlt2->vsis) 3768 goto err; 3769 3770 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3771 sizeof(*xlt2->vsig_tbl), 3772 GFP_KERNEL); 3773 if (!xlt2->vsig_tbl) 3774 goto err; 3775 3776 for (j = 0; j < xlt2->count; j++) 3777 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3778 3779 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 3780 sizeof(*xlt2->t), GFP_KERNEL); 3781 if (!xlt2->t) 3782 goto err; 3783 3784 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3785 prof->count = blk_sizes[i].prof_tcam; 3786 prof->max_prof_id = blk_sizes[i].prof_id; 3787 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3788 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 3789 sizeof(*prof->t), GFP_KERNEL); 3790 3791 if (!prof->t) 3792 goto err; 3793 3794 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3795 prof_redir->count = blk_sizes[i].prof_redir; 3796 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 3797 prof_redir->count, 3798 sizeof(*prof_redir->t), 3799 GFP_KERNEL); 3800 3801 if (!prof_redir->t) 3802 goto err; 3803 3804 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3805 es->count = blk_sizes[i].es; 3806 es->fvw = blk_sizes[i].fvw; 3807 es->t = devm_kcalloc(ice_hw_to_dev(hw), 3808 (u32)(es->count * es->fvw), 3809 sizeof(*es->t), GFP_KERNEL); 3810 if (!es->t) 3811 goto err; 3812 3813 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3814 sizeof(*es->ref_count), 3815 GFP_KERNEL); 3816 if (!es->ref_count) 3817 goto err; 3818 3819 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3820 sizeof(*es->written), GFP_KERNEL); 3821 if (!es->written) 3822 goto err; 3823 3824 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 3825 sizeof(*es->mask_ena), GFP_KERNEL); 3826 if (!es->mask_ena) 3827 goto err; 3828 } 3829 return 0; 3830 3831 err: 3832 ice_free_hw_tbls(hw); 3833 return ICE_ERR_NO_MEMORY; 3834 } 3835 3836 /** 3837 * ice_prof_gen_key - generate profile ID key 3838 * @hw: pointer to the HW struct 3839 * @blk: the block in which to write profile ID to 3840 * @ptg: packet type group (PTG) portion of key 3841 * @vsig: VSIG portion of key 3842 * @cdid: CDID portion of key 3843 * @flags: flag portion of key 3844 * @vl_msk: valid mask 3845 * @dc_msk: don't care mask 3846 * @nm_msk: never match mask 3847 * @key: output of profile ID key 3848 */ 3849 static enum ice_status 3850 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3851 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3852 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3853 u8 key[ICE_TCAM_KEY_SZ]) 3854 { 3855 struct ice_prof_id_key inkey; 3856 3857 inkey.xlt1 = ptg; 3858 inkey.xlt2_cdid = cpu_to_le16(vsig); 3859 inkey.flags = cpu_to_le16(flags); 3860 3861 switch (hw->blk[blk].prof.cdid_bits) { 3862 case 0: 3863 break; 3864 case 2: 3865 #define ICE_CD_2_M 0xC000U 3866 #define ICE_CD_2_S 14 3867 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 3868 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 3869 break; 3870 case 4: 3871 #define ICE_CD_4_M 0xF000U 3872 #define ICE_CD_4_S 12 3873 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 3874 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 3875 break; 3876 case 8: 3877 #define ICE_CD_8_M 0xFF00U 3878 #define ICE_CD_8_S 16 3879 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 3880 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 3881 break; 3882 default: 3883 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3884 break; 3885 } 3886 3887 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3888 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3889 } 3890 3891 /** 3892 * ice_tcam_write_entry - write TCAM entry 3893 * @hw: pointer to the HW struct 3894 * @blk: the block in which to write profile ID to 3895 * @idx: the entry index to write to 3896 * @prof_id: profile ID 3897 * @ptg: packet type group (PTG) portion of key 3898 * @vsig: VSIG portion of key 3899 * @cdid: CDID portion of key 3900 * @flags: flag portion of key 3901 * @vl_msk: valid mask 3902 * @dc_msk: don't care mask 3903 * @nm_msk: never match mask 3904 */ 3905 static enum ice_status 3906 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 3907 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 3908 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3909 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 3910 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 3911 { 3912 struct ice_prof_tcam_entry; 3913 enum ice_status status; 3914 3915 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 3916 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 3917 if (!status) { 3918 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 3919 hw->blk[blk].prof.t[idx].prof_id = prof_id; 3920 } 3921 3922 return status; 3923 } 3924 3925 /** 3926 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 3927 * @hw: pointer to the hardware structure 3928 * @blk: HW block 3929 * @vsig: VSIG to query 3930 * @refs: pointer to variable to receive the reference count 3931 */ 3932 static enum ice_status 3933 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 3934 { 3935 u16 idx = vsig & ICE_VSIG_IDX_M; 3936 struct ice_vsig_vsi *ptr; 3937 3938 *refs = 0; 3939 3940 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3941 return ICE_ERR_DOES_NOT_EXIST; 3942 3943 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3944 while (ptr) { 3945 (*refs)++; 3946 ptr = ptr->next_vsi; 3947 } 3948 3949 return 0; 3950 } 3951 3952 /** 3953 * ice_has_prof_vsig - check to see if VSIG has a specific profile 3954 * @hw: pointer to the hardware structure 3955 * @blk: HW block 3956 * @vsig: VSIG to check against 3957 * @hdl: profile handle 3958 */ 3959 static bool 3960 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 3961 { 3962 u16 idx = vsig & ICE_VSIG_IDX_M; 3963 struct ice_vsig_prof *ent; 3964 3965 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3966 list) 3967 if (ent->profile_cookie == hdl) 3968 return true; 3969 3970 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 3971 vsig); 3972 return false; 3973 } 3974 3975 /** 3976 * ice_prof_bld_es - build profile ID extraction sequence changes 3977 * @hw: pointer to the HW struct 3978 * @blk: hardware block 3979 * @bld: the update package buffer build to add to 3980 * @chgs: the list of changes to make in hardware 3981 */ 3982 static enum ice_status 3983 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 3984 struct ice_buf_build *bld, struct list_head *chgs) 3985 { 3986 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 3987 struct ice_chs_chg *tmp; 3988 3989 list_for_each_entry(tmp, chgs, list_entry) 3990 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 3991 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 3992 struct ice_pkg_es *p; 3993 u32 id; 3994 3995 id = ice_sect_id(blk, ICE_VEC_TBL); 3996 p = ice_pkg_buf_alloc_section(bld, id, 3997 struct_size(p, es, 1) + 3998 vec_size - 3999 sizeof(p->es[0])); 4000 4001 if (!p) 4002 return ICE_ERR_MAX_LIMIT; 4003 4004 p->count = cpu_to_le16(1); 4005 p->offset = cpu_to_le16(tmp->prof_id); 4006 4007 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 4008 } 4009 4010 return 0; 4011 } 4012 4013 /** 4014 * ice_prof_bld_tcam - build profile ID TCAM changes 4015 * @hw: pointer to the HW struct 4016 * @blk: hardware block 4017 * @bld: the update package buffer build to add to 4018 * @chgs: the list of changes to make in hardware 4019 */ 4020 static enum ice_status 4021 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4022 struct ice_buf_build *bld, struct list_head *chgs) 4023 { 4024 struct ice_chs_chg *tmp; 4025 4026 list_for_each_entry(tmp, chgs, list_entry) 4027 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4028 struct ice_prof_id_section *p; 4029 u32 id; 4030 4031 id = ice_sect_id(blk, ICE_PROF_TCAM); 4032 p = ice_pkg_buf_alloc_section(bld, id, 4033 struct_size(p, entry, 1)); 4034 4035 if (!p) 4036 return ICE_ERR_MAX_LIMIT; 4037 4038 p->count = cpu_to_le16(1); 4039 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 4040 p->entry[0].prof_id = tmp->prof_id; 4041 4042 memcpy(p->entry[0].key, 4043 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4044 sizeof(hw->blk[blk].prof.t->key)); 4045 } 4046 4047 return 0; 4048 } 4049 4050 /** 4051 * ice_prof_bld_xlt1 - build XLT1 changes 4052 * @blk: hardware block 4053 * @bld: the update package buffer build to add to 4054 * @chgs: the list of changes to make in hardware 4055 */ 4056 static enum ice_status 4057 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4058 struct list_head *chgs) 4059 { 4060 struct ice_chs_chg *tmp; 4061 4062 list_for_each_entry(tmp, chgs, list_entry) 4063 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4064 struct ice_xlt1_section *p; 4065 u32 id; 4066 4067 id = ice_sect_id(blk, ICE_XLT1); 4068 p = ice_pkg_buf_alloc_section(bld, id, 4069 struct_size(p, value, 1)); 4070 4071 if (!p) 4072 return ICE_ERR_MAX_LIMIT; 4073 4074 p->count = cpu_to_le16(1); 4075 p->offset = cpu_to_le16(tmp->ptype); 4076 p->value[0] = tmp->ptg; 4077 } 4078 4079 return 0; 4080 } 4081 4082 /** 4083 * ice_prof_bld_xlt2 - build XLT2 changes 4084 * @blk: hardware block 4085 * @bld: the update package buffer build to add to 4086 * @chgs: the list of changes to make in hardware 4087 */ 4088 static enum ice_status 4089 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4090 struct list_head *chgs) 4091 { 4092 struct ice_chs_chg *tmp; 4093 4094 list_for_each_entry(tmp, chgs, list_entry) { 4095 struct ice_xlt2_section *p; 4096 u32 id; 4097 4098 switch (tmp->type) { 4099 case ICE_VSIG_ADD: 4100 case ICE_VSI_MOVE: 4101 case ICE_VSIG_REM: 4102 id = ice_sect_id(blk, ICE_XLT2); 4103 p = ice_pkg_buf_alloc_section(bld, id, 4104 struct_size(p, value, 1)); 4105 4106 if (!p) 4107 return ICE_ERR_MAX_LIMIT; 4108 4109 p->count = cpu_to_le16(1); 4110 p->offset = cpu_to_le16(tmp->vsi); 4111 p->value[0] = cpu_to_le16(tmp->vsig); 4112 break; 4113 default: 4114 break; 4115 } 4116 } 4117 4118 return 0; 4119 } 4120 4121 /** 4122 * ice_upd_prof_hw - update hardware using the change list 4123 * @hw: pointer to the HW struct 4124 * @blk: hardware block 4125 * @chgs: the list of changes to make in hardware 4126 */ 4127 static enum ice_status 4128 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4129 struct list_head *chgs) 4130 { 4131 struct ice_buf_build *b; 4132 struct ice_chs_chg *tmp; 4133 enum ice_status status; 4134 u16 pkg_sects; 4135 u16 xlt1 = 0; 4136 u16 xlt2 = 0; 4137 u16 tcam = 0; 4138 u16 es = 0; 4139 u16 sects; 4140 4141 /* count number of sections we need */ 4142 list_for_each_entry(tmp, chgs, list_entry) { 4143 switch (tmp->type) { 4144 case ICE_PTG_ES_ADD: 4145 if (tmp->add_ptg) 4146 xlt1++; 4147 if (tmp->add_prof) 4148 es++; 4149 break; 4150 case ICE_TCAM_ADD: 4151 tcam++; 4152 break; 4153 case ICE_VSIG_ADD: 4154 case ICE_VSI_MOVE: 4155 case ICE_VSIG_REM: 4156 xlt2++; 4157 break; 4158 default: 4159 break; 4160 } 4161 } 4162 sects = xlt1 + xlt2 + tcam + es; 4163 4164 if (!sects) 4165 return 0; 4166 4167 /* Build update package buffer */ 4168 b = ice_pkg_buf_alloc(hw); 4169 if (!b) 4170 return ICE_ERR_NO_MEMORY; 4171 4172 status = ice_pkg_buf_reserve_section(b, sects); 4173 if (status) 4174 goto error_tmp; 4175 4176 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4177 if (es) { 4178 status = ice_prof_bld_es(hw, blk, b, chgs); 4179 if (status) 4180 goto error_tmp; 4181 } 4182 4183 if (tcam) { 4184 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4185 if (status) 4186 goto error_tmp; 4187 } 4188 4189 if (xlt1) { 4190 status = ice_prof_bld_xlt1(blk, b, chgs); 4191 if (status) 4192 goto error_tmp; 4193 } 4194 4195 if (xlt2) { 4196 status = ice_prof_bld_xlt2(blk, b, chgs); 4197 if (status) 4198 goto error_tmp; 4199 } 4200 4201 /* After package buffer build check if the section count in buffer is 4202 * non-zero and matches the number of sections detected for package 4203 * update. 4204 */ 4205 pkg_sects = ice_pkg_buf_get_active_sections(b); 4206 if (!pkg_sects || pkg_sects != sects) { 4207 status = ICE_ERR_INVAL_SIZE; 4208 goto error_tmp; 4209 } 4210 4211 /* update package */ 4212 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4213 if (status == ICE_ERR_AQ_ERROR) 4214 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4215 4216 error_tmp: 4217 ice_pkg_buf_free(hw, b); 4218 return status; 4219 } 4220 4221 /** 4222 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 4223 * @hw: pointer to the HW struct 4224 * @prof_id: profile ID 4225 * @mask_sel: mask select 4226 * 4227 * This function enable any of the masks selected by the mask select parameter 4228 * for the profile specified. 4229 */ 4230 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 4231 { 4232 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 4233 4234 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 4235 GLQF_FDMASK_SEL(prof_id), mask_sel); 4236 } 4237 4238 struct ice_fd_src_dst_pair { 4239 u8 prot_id; 4240 u8 count; 4241 u16 off; 4242 }; 4243 4244 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 4245 /* These are defined in pairs */ 4246 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 4247 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 4248 4249 { ICE_PROT_IPV4_IL, 2, 12 }, 4250 { ICE_PROT_IPV4_IL, 2, 16 }, 4251 4252 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 4253 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 4254 4255 { ICE_PROT_IPV6_IL, 8, 8 }, 4256 { ICE_PROT_IPV6_IL, 8, 24 }, 4257 4258 { ICE_PROT_TCP_IL, 1, 0 }, 4259 { ICE_PROT_TCP_IL, 1, 2 }, 4260 4261 { ICE_PROT_UDP_OF, 1, 0 }, 4262 { ICE_PROT_UDP_OF, 1, 2 }, 4263 4264 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 4265 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 4266 4267 { ICE_PROT_SCTP_IL, 1, 0 }, 4268 { ICE_PROT_SCTP_IL, 1, 2 } 4269 }; 4270 4271 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 4272 4273 /** 4274 * ice_update_fd_swap - set register appropriately for a FD FV extraction 4275 * @hw: pointer to the HW struct 4276 * @prof_id: profile ID 4277 * @es: extraction sequence (length of array is determined by the block) 4278 */ 4279 static enum ice_status 4280 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 4281 { 4282 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4283 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 4284 #define ICE_FD_FV_NOT_FOUND (-2) 4285 s8 first_free = ICE_FD_FV_NOT_FOUND; 4286 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 4287 s8 orig_free, si; 4288 u32 mask_sel = 0; 4289 u8 i, j, k; 4290 4291 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 4292 4293 /* This code assumes that the Flow Director field vectors are assigned 4294 * from the end of the FV indexes working towards the zero index, that 4295 * only complete fields will be included and will be consecutive, and 4296 * that there are no gaps between valid indexes. 4297 */ 4298 4299 /* Determine swap fields present */ 4300 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 4301 /* Find the first free entry, assuming right to left population. 4302 * This is where we can start adding additional pairs if needed. 4303 */ 4304 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 4305 ICE_PROT_INVALID) 4306 first_free = i - 1; 4307 4308 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4309 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 4310 es[i].off == ice_fd_pairs[j].off) { 4311 set_bit(j, pair_list); 4312 pair_start[j] = i; 4313 } 4314 } 4315 4316 orig_free = first_free; 4317 4318 /* determine missing swap fields that need to be added */ 4319 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 4320 u8 bit1 = test_bit(i + 1, pair_list); 4321 u8 bit0 = test_bit(i, pair_list); 4322 4323 if (bit0 ^ bit1) { 4324 u8 index; 4325 4326 /* add the appropriate 'paired' entry */ 4327 if (!bit0) 4328 index = i; 4329 else 4330 index = i + 1; 4331 4332 /* check for room */ 4333 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 4334 return ICE_ERR_MAX_LIMIT; 4335 4336 /* place in extraction sequence */ 4337 for (k = 0; k < ice_fd_pairs[index].count; k++) { 4338 es[first_free - k].prot_id = 4339 ice_fd_pairs[index].prot_id; 4340 es[first_free - k].off = 4341 ice_fd_pairs[index].off + (k * 2); 4342 4343 if (k > first_free) 4344 return ICE_ERR_OUT_OF_RANGE; 4345 4346 /* keep track of non-relevant fields */ 4347 mask_sel |= BIT(first_free - k); 4348 } 4349 4350 pair_start[index] = first_free; 4351 first_free -= ice_fd_pairs[index].count; 4352 } 4353 } 4354 4355 /* fill in the swap array */ 4356 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 4357 while (si >= 0) { 4358 u8 indexes_used = 1; 4359 4360 /* assume flat at this index */ 4361 #define ICE_SWAP_VALID 0x80 4362 used[si] = si | ICE_SWAP_VALID; 4363 4364 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 4365 si -= indexes_used; 4366 continue; 4367 } 4368 4369 /* check for a swap location */ 4370 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 4371 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 4372 es[si].off == ice_fd_pairs[j].off) { 4373 u8 idx; 4374 4375 /* determine the appropriate matching field */ 4376 idx = j + ((j % 2) ? -1 : 1); 4377 4378 indexes_used = ice_fd_pairs[idx].count; 4379 for (k = 0; k < indexes_used; k++) { 4380 used[si - k] = (pair_start[idx] - k) | 4381 ICE_SWAP_VALID; 4382 } 4383 4384 break; 4385 } 4386 4387 si -= indexes_used; 4388 } 4389 4390 /* for each set of 4 swap and 4 inset indexes, write the appropriate 4391 * register 4392 */ 4393 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 4394 u32 raw_swap = 0; 4395 u32 raw_in = 0; 4396 4397 for (k = 0; k < 4; k++) { 4398 u8 idx; 4399 4400 idx = (j * 4) + k; 4401 if (used[idx] && !(mask_sel & BIT(idx))) { 4402 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 4403 #define ICE_INSET_DFLT 0x9f 4404 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 4405 } 4406 } 4407 4408 /* write the appropriate swap register set */ 4409 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 4410 4411 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 4412 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 4413 4414 /* write the appropriate inset register set */ 4415 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 4416 4417 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 4418 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 4419 } 4420 4421 /* initially clear the mask select for this profile */ 4422 ice_update_fd_mask(hw, prof_id, 0); 4423 4424 return 0; 4425 } 4426 4427 /* The entries here needs to match the order of enum ice_ptype_attrib */ 4428 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 4429 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 4430 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 4431 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 4432 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 4433 }; 4434 4435 /** 4436 * ice_get_ptype_attrib_info - get PTYPE attribute information 4437 * @type: attribute type 4438 * @info: pointer to variable to the attribute information 4439 */ 4440 static void 4441 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 4442 struct ice_ptype_attrib_info *info) 4443 { 4444 *info = ice_ptype_attributes[type]; 4445 } 4446 4447 /** 4448 * ice_add_prof_attrib - add any PTG with attributes to profile 4449 * @prof: pointer to the profile to which PTG entries will be added 4450 * @ptg: PTG to be added 4451 * @ptype: PTYPE that needs to be looked up 4452 * @attr: array of attributes that will be considered 4453 * @attr_cnt: number of elements in the attribute array 4454 */ 4455 static enum ice_status 4456 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 4457 const struct ice_ptype_attributes *attr, u16 attr_cnt) 4458 { 4459 bool found = false; 4460 u16 i; 4461 4462 for (i = 0; i < attr_cnt; i++) 4463 if (attr[i].ptype == ptype) { 4464 found = true; 4465 4466 prof->ptg[prof->ptg_cnt] = ptg; 4467 ice_get_ptype_attrib_info(attr[i].attrib, 4468 &prof->attr[prof->ptg_cnt]); 4469 4470 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4471 return ICE_ERR_MAX_LIMIT; 4472 } 4473 4474 if (!found) 4475 return ICE_ERR_DOES_NOT_EXIST; 4476 4477 return 0; 4478 } 4479 4480 /** 4481 * ice_add_prof - add profile 4482 * @hw: pointer to the HW struct 4483 * @blk: hardware block 4484 * @id: profile tracking ID 4485 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4486 * @attr: array of attributes 4487 * @attr_cnt: number of elements in attr array 4488 * @es: extraction sequence (length of array is determined by the block) 4489 * @masks: mask for extraction sequence 4490 * 4491 * This function registers a profile, which matches a set of PTYPES with a 4492 * particular extraction sequence. While the hardware profile is allocated 4493 * it will not be written until the first call to ice_add_flow that specifies 4494 * the ID value used here. 4495 */ 4496 enum ice_status 4497 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4498 const struct ice_ptype_attributes *attr, u16 attr_cnt, 4499 struct ice_fv_word *es, u16 *masks) 4500 { 4501 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4502 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 4503 struct ice_prof_map *prof; 4504 enum ice_status status; 4505 u8 byte = 0; 4506 u8 prof_id; 4507 4508 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 4509 4510 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4511 4512 /* search for existing profile */ 4513 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); 4514 if (status) { 4515 /* allocate profile ID */ 4516 status = ice_alloc_prof_id(hw, blk, &prof_id); 4517 if (status) 4518 goto err_ice_add_prof; 4519 if (blk == ICE_BLK_FD) { 4520 /* For Flow Director block, the extraction sequence may 4521 * need to be altered in the case where there are paired 4522 * fields that have no match. This is necessary because 4523 * for Flow Director, src and dest fields need to paired 4524 * for filter programming and these values are swapped 4525 * during Tx. 4526 */ 4527 status = ice_update_fd_swap(hw, prof_id, es); 4528 if (status) 4529 goto err_ice_add_prof; 4530 } 4531 status = ice_update_prof_masking(hw, blk, prof_id, masks); 4532 if (status) 4533 goto err_ice_add_prof; 4534 4535 /* and write new es */ 4536 ice_write_es(hw, blk, prof_id, es); 4537 } 4538 4539 ice_prof_inc_ref(hw, blk, prof_id); 4540 4541 /* add profile info */ 4542 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 4543 if (!prof) { 4544 status = ICE_ERR_NO_MEMORY; 4545 goto err_ice_add_prof; 4546 } 4547 4548 prof->profile_cookie = id; 4549 prof->prof_id = prof_id; 4550 prof->ptg_cnt = 0; 4551 prof->context = 0; 4552 4553 /* build list of ptgs */ 4554 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4555 u8 bit; 4556 4557 if (!ptypes[byte]) { 4558 bytes--; 4559 byte++; 4560 continue; 4561 } 4562 4563 /* Examine 8 bits per byte */ 4564 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 4565 BITS_PER_BYTE) { 4566 u16 ptype; 4567 u8 ptg; 4568 4569 ptype = byte * BITS_PER_BYTE + bit; 4570 4571 /* The package should place all ptypes in a non-zero 4572 * PTG, so the following call should never fail. 4573 */ 4574 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4575 continue; 4576 4577 /* If PTG is already added, skip and continue */ 4578 if (test_bit(ptg, ptgs_used)) 4579 continue; 4580 4581 set_bit(ptg, ptgs_used); 4582 /* Check to see there are any attributes for 4583 * this PTYPE, and add them if found. 4584 */ 4585 status = ice_add_prof_attrib(prof, ptg, ptype, 4586 attr, attr_cnt); 4587 if (status == ICE_ERR_MAX_LIMIT) 4588 break; 4589 if (status) { 4590 /* This is simple a PTYPE/PTG with no 4591 * attribute 4592 */ 4593 prof->ptg[prof->ptg_cnt] = ptg; 4594 prof->attr[prof->ptg_cnt].flags = 0; 4595 prof->attr[prof->ptg_cnt].mask = 0; 4596 4597 if (++prof->ptg_cnt >= 4598 ICE_MAX_PTG_PER_PROFILE) 4599 break; 4600 } 4601 } 4602 4603 bytes--; 4604 byte++; 4605 } 4606 4607 list_add(&prof->list, &hw->blk[blk].es.prof_map); 4608 status = 0; 4609 4610 err_ice_add_prof: 4611 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4612 return status; 4613 } 4614 4615 /** 4616 * ice_search_prof_id - Search for a profile tracking ID 4617 * @hw: pointer to the HW struct 4618 * @blk: hardware block 4619 * @id: profile tracking ID 4620 * 4621 * This will search for a profile tracking ID which was previously added. 4622 * The profile map lock should be held before calling this function. 4623 */ 4624 static struct ice_prof_map * 4625 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4626 { 4627 struct ice_prof_map *entry = NULL; 4628 struct ice_prof_map *map; 4629 4630 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 4631 if (map->profile_cookie == id) { 4632 entry = map; 4633 break; 4634 } 4635 4636 return entry; 4637 } 4638 4639 /** 4640 * ice_vsig_prof_id_count - count profiles in a VSIG 4641 * @hw: pointer to the HW struct 4642 * @blk: hardware block 4643 * @vsig: VSIG to remove the profile from 4644 */ 4645 static u16 4646 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4647 { 4648 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4649 struct ice_vsig_prof *p; 4650 4651 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4652 list) 4653 count++; 4654 4655 return count; 4656 } 4657 4658 /** 4659 * ice_rel_tcam_idx - release a TCAM index 4660 * @hw: pointer to the HW struct 4661 * @blk: hardware block 4662 * @idx: the index to release 4663 */ 4664 static enum ice_status 4665 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4666 { 4667 /* Masks to invoke a never match entry */ 4668 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4669 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4670 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4671 enum ice_status status; 4672 4673 /* write the TCAM entry */ 4674 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4675 dc_msk, nm_msk); 4676 if (status) 4677 return status; 4678 4679 /* release the TCAM entry */ 4680 status = ice_free_tcam_ent(hw, blk, idx); 4681 4682 return status; 4683 } 4684 4685 /** 4686 * ice_rem_prof_id - remove one profile from a VSIG 4687 * @hw: pointer to the HW struct 4688 * @blk: hardware block 4689 * @prof: pointer to profile structure to remove 4690 */ 4691 static enum ice_status 4692 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4693 struct ice_vsig_prof *prof) 4694 { 4695 enum ice_status status; 4696 u16 i; 4697 4698 for (i = 0; i < prof->tcam_count; i++) 4699 if (prof->tcam[i].in_use) { 4700 prof->tcam[i].in_use = false; 4701 status = ice_rel_tcam_idx(hw, blk, 4702 prof->tcam[i].tcam_idx); 4703 if (status) 4704 return ICE_ERR_HW_TABLE; 4705 } 4706 4707 return 0; 4708 } 4709 4710 /** 4711 * ice_rem_vsig - remove VSIG 4712 * @hw: pointer to the HW struct 4713 * @blk: hardware block 4714 * @vsig: the VSIG to remove 4715 * @chg: the change list 4716 */ 4717 static enum ice_status 4718 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4719 struct list_head *chg) 4720 { 4721 u16 idx = vsig & ICE_VSIG_IDX_M; 4722 struct ice_vsig_vsi *vsi_cur; 4723 struct ice_vsig_prof *d, *t; 4724 enum ice_status status; 4725 4726 /* remove TCAM entries */ 4727 list_for_each_entry_safe(d, t, 4728 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4729 list) { 4730 status = ice_rem_prof_id(hw, blk, d); 4731 if (status) 4732 return status; 4733 4734 list_del(&d->list); 4735 devm_kfree(ice_hw_to_dev(hw), d); 4736 } 4737 4738 /* Move all VSIS associated with this VSIG to the default VSIG */ 4739 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4740 /* If the VSIG has at least 1 VSI then iterate through the list 4741 * and remove the VSIs before deleting the group. 4742 */ 4743 if (vsi_cur) 4744 do { 4745 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4746 struct ice_chs_chg *p; 4747 4748 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4749 GFP_KERNEL); 4750 if (!p) 4751 return ICE_ERR_NO_MEMORY; 4752 4753 p->type = ICE_VSIG_REM; 4754 p->orig_vsig = vsig; 4755 p->vsig = ICE_DEFAULT_VSIG; 4756 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4757 4758 list_add(&p->list_entry, chg); 4759 4760 vsi_cur = tmp; 4761 } while (vsi_cur); 4762 4763 return ice_vsig_free(hw, blk, vsig); 4764 } 4765 4766 /** 4767 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4768 * @hw: pointer to the HW struct 4769 * @blk: hardware block 4770 * @vsig: VSIG to remove the profile from 4771 * @hdl: profile handle indicating which profile to remove 4772 * @chg: list to receive a record of changes 4773 */ 4774 static enum ice_status 4775 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4776 struct list_head *chg) 4777 { 4778 u16 idx = vsig & ICE_VSIG_IDX_M; 4779 struct ice_vsig_prof *p, *t; 4780 enum ice_status status; 4781 4782 list_for_each_entry_safe(p, t, 4783 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4784 list) 4785 if (p->profile_cookie == hdl) { 4786 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4787 /* this is the last profile, remove the VSIG */ 4788 return ice_rem_vsig(hw, blk, vsig, chg); 4789 4790 status = ice_rem_prof_id(hw, blk, p); 4791 if (!status) { 4792 list_del(&p->list); 4793 devm_kfree(ice_hw_to_dev(hw), p); 4794 } 4795 return status; 4796 } 4797 4798 return ICE_ERR_DOES_NOT_EXIST; 4799 } 4800 4801 /** 4802 * ice_rem_flow_all - remove all flows with a particular profile 4803 * @hw: pointer to the HW struct 4804 * @blk: hardware block 4805 * @id: profile tracking ID 4806 */ 4807 static enum ice_status 4808 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4809 { 4810 struct ice_chs_chg *del, *tmp; 4811 enum ice_status status; 4812 struct list_head chg; 4813 u16 i; 4814 4815 INIT_LIST_HEAD(&chg); 4816 4817 for (i = 1; i < ICE_MAX_VSIGS; i++) 4818 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4819 if (ice_has_prof_vsig(hw, blk, i, id)) { 4820 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4821 &chg); 4822 if (status) 4823 goto err_ice_rem_flow_all; 4824 } 4825 } 4826 4827 status = ice_upd_prof_hw(hw, blk, &chg); 4828 4829 err_ice_rem_flow_all: 4830 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4831 list_del(&del->list_entry); 4832 devm_kfree(ice_hw_to_dev(hw), del); 4833 } 4834 4835 return status; 4836 } 4837 4838 /** 4839 * ice_rem_prof - remove profile 4840 * @hw: pointer to the HW struct 4841 * @blk: hardware block 4842 * @id: profile tracking ID 4843 * 4844 * This will remove the profile specified by the ID parameter, which was 4845 * previously created through ice_add_prof. If any existing entries 4846 * are associated with this profile, they will be removed as well. 4847 */ 4848 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4849 { 4850 struct ice_prof_map *pmap; 4851 enum ice_status status; 4852 4853 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4854 4855 pmap = ice_search_prof_id(hw, blk, id); 4856 if (!pmap) { 4857 status = ICE_ERR_DOES_NOT_EXIST; 4858 goto err_ice_rem_prof; 4859 } 4860 4861 /* remove all flows with this profile */ 4862 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4863 if (status) 4864 goto err_ice_rem_prof; 4865 4866 /* dereference profile, and possibly remove */ 4867 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4868 4869 list_del(&pmap->list); 4870 devm_kfree(ice_hw_to_dev(hw), pmap); 4871 4872 err_ice_rem_prof: 4873 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4874 return status; 4875 } 4876 4877 /** 4878 * ice_get_prof - get profile 4879 * @hw: pointer to the HW struct 4880 * @blk: hardware block 4881 * @hdl: profile handle 4882 * @chg: change list 4883 */ 4884 static enum ice_status 4885 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4886 struct list_head *chg) 4887 { 4888 enum ice_status status = 0; 4889 struct ice_prof_map *map; 4890 struct ice_chs_chg *p; 4891 u16 i; 4892 4893 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4894 /* Get the details on the profile specified by the handle ID */ 4895 map = ice_search_prof_id(hw, blk, hdl); 4896 if (!map) { 4897 status = ICE_ERR_DOES_NOT_EXIST; 4898 goto err_ice_get_prof; 4899 } 4900 4901 for (i = 0; i < map->ptg_cnt; i++) 4902 if (!hw->blk[blk].es.written[map->prof_id]) { 4903 /* add ES to change list */ 4904 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 4905 GFP_KERNEL); 4906 if (!p) { 4907 status = ICE_ERR_NO_MEMORY; 4908 goto err_ice_get_prof; 4909 } 4910 4911 p->type = ICE_PTG_ES_ADD; 4912 p->ptype = 0; 4913 p->ptg = map->ptg[i]; 4914 p->add_ptg = 0; 4915 4916 p->add_prof = 1; 4917 p->prof_id = map->prof_id; 4918 4919 hw->blk[blk].es.written[map->prof_id] = true; 4920 4921 list_add(&p->list_entry, chg); 4922 } 4923 4924 err_ice_get_prof: 4925 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 4926 /* let caller clean up the change list */ 4927 return status; 4928 } 4929 4930 /** 4931 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4932 * @hw: pointer to the HW struct 4933 * @blk: hardware block 4934 * @vsig: VSIG from which to copy the list 4935 * @lst: output list 4936 * 4937 * This routine makes a copy of the list of profiles in the specified VSIG. 4938 */ 4939 static enum ice_status 4940 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4941 struct list_head *lst) 4942 { 4943 struct ice_vsig_prof *ent1, *ent2; 4944 u16 idx = vsig & ICE_VSIG_IDX_M; 4945 4946 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4947 list) { 4948 struct ice_vsig_prof *p; 4949 4950 /* copy to the input list */ 4951 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 4952 GFP_KERNEL); 4953 if (!p) 4954 goto err_ice_get_profs_vsig; 4955 4956 list_add_tail(&p->list, lst); 4957 } 4958 4959 return 0; 4960 4961 err_ice_get_profs_vsig: 4962 list_for_each_entry_safe(ent1, ent2, lst, list) { 4963 list_del(&ent1->list); 4964 devm_kfree(ice_hw_to_dev(hw), ent1); 4965 } 4966 4967 return ICE_ERR_NO_MEMORY; 4968 } 4969 4970 /** 4971 * ice_add_prof_to_lst - add profile entry to a list 4972 * @hw: pointer to the HW struct 4973 * @blk: hardware block 4974 * @lst: the list to be added to 4975 * @hdl: profile handle of entry to add 4976 */ 4977 static enum ice_status 4978 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4979 struct list_head *lst, u64 hdl) 4980 { 4981 enum ice_status status = 0; 4982 struct ice_prof_map *map; 4983 struct ice_vsig_prof *p; 4984 u16 i; 4985 4986 mutex_lock(&hw->blk[blk].es.prof_map_lock); 4987 map = ice_search_prof_id(hw, blk, hdl); 4988 if (!map) { 4989 status = ICE_ERR_DOES_NOT_EXIST; 4990 goto err_ice_add_prof_to_lst; 4991 } 4992 4993 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 4994 if (!p) { 4995 status = ICE_ERR_NO_MEMORY; 4996 goto err_ice_add_prof_to_lst; 4997 } 4998 4999 p->profile_cookie = map->profile_cookie; 5000 p->prof_id = map->prof_id; 5001 p->tcam_count = map->ptg_cnt; 5002 5003 for (i = 0; i < map->ptg_cnt; i++) { 5004 p->tcam[i].prof_id = map->prof_id; 5005 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 5006 p->tcam[i].ptg = map->ptg[i]; 5007 } 5008 5009 list_add(&p->list, lst); 5010 5011 err_ice_add_prof_to_lst: 5012 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5013 return status; 5014 } 5015 5016 /** 5017 * ice_move_vsi - move VSI to another VSIG 5018 * @hw: pointer to the HW struct 5019 * @blk: hardware block 5020 * @vsi: the VSI to move 5021 * @vsig: the VSIG to move the VSI to 5022 * @chg: the change list 5023 */ 5024 static enum ice_status 5025 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 5026 struct list_head *chg) 5027 { 5028 enum ice_status status; 5029 struct ice_chs_chg *p; 5030 u16 orig_vsig; 5031 5032 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5033 if (!p) 5034 return ICE_ERR_NO_MEMORY; 5035 5036 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 5037 if (!status) 5038 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 5039 5040 if (status) { 5041 devm_kfree(ice_hw_to_dev(hw), p); 5042 return status; 5043 } 5044 5045 p->type = ICE_VSI_MOVE; 5046 p->vsi = vsi; 5047 p->orig_vsig = orig_vsig; 5048 p->vsig = vsig; 5049 5050 list_add(&p->list_entry, chg); 5051 5052 return 0; 5053 } 5054 5055 /** 5056 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 5057 * @hw: pointer to the HW struct 5058 * @idx: the index of the TCAM entry to remove 5059 * @chg: the list of change structures to search 5060 */ 5061 static void 5062 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 5063 { 5064 struct ice_chs_chg *pos, *tmp; 5065 5066 list_for_each_entry_safe(tmp, pos, chg, list_entry) 5067 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 5068 list_del(&tmp->list_entry); 5069 devm_kfree(ice_hw_to_dev(hw), tmp); 5070 } 5071 } 5072 5073 /** 5074 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 5075 * @hw: pointer to the HW struct 5076 * @blk: hardware block 5077 * @enable: true to enable, false to disable 5078 * @vsig: the VSIG of the TCAM entry 5079 * @tcam: pointer the TCAM info structure of the TCAM to disable 5080 * @chg: the change list 5081 * 5082 * This function appends an enable or disable TCAM entry in the change log 5083 */ 5084 static enum ice_status 5085 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 5086 u16 vsig, struct ice_tcam_inf *tcam, 5087 struct list_head *chg) 5088 { 5089 enum ice_status status; 5090 struct ice_chs_chg *p; 5091 5092 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5093 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5094 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5095 5096 /* if disabling, free the TCAM */ 5097 if (!enable) { 5098 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 5099 5100 /* if we have already created a change for this TCAM entry, then 5101 * we need to remove that entry, in order to prevent writing to 5102 * a TCAM entry we no longer will have ownership of. 5103 */ 5104 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 5105 tcam->tcam_idx = 0; 5106 tcam->in_use = 0; 5107 return status; 5108 } 5109 5110 /* for re-enabling, reallocate a TCAM */ 5111 /* for entries with empty attribute masks, allocate entry from 5112 * the bottom of the TCAM table; otherwise, allocate from the 5113 * top of the table in order to give it higher priority 5114 */ 5115 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 5116 &tcam->tcam_idx); 5117 if (status) 5118 return status; 5119 5120 /* add TCAM to change list */ 5121 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5122 if (!p) 5123 return ICE_ERR_NO_MEMORY; 5124 5125 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 5126 tcam->ptg, vsig, 0, tcam->attr.flags, 5127 vl_msk, dc_msk, nm_msk); 5128 if (status) 5129 goto err_ice_prof_tcam_ena_dis; 5130 5131 tcam->in_use = 1; 5132 5133 p->type = ICE_TCAM_ADD; 5134 p->add_tcam_idx = true; 5135 p->prof_id = tcam->prof_id; 5136 p->ptg = tcam->ptg; 5137 p->vsig = 0; 5138 p->tcam_idx = tcam->tcam_idx; 5139 5140 /* log change */ 5141 list_add(&p->list_entry, chg); 5142 5143 return 0; 5144 5145 err_ice_prof_tcam_ena_dis: 5146 devm_kfree(ice_hw_to_dev(hw), p); 5147 return status; 5148 } 5149 5150 /** 5151 * ice_adj_prof_priorities - adjust profile based on priorities 5152 * @hw: pointer to the HW struct 5153 * @blk: hardware block 5154 * @vsig: the VSIG for which to adjust profile priorities 5155 * @chg: the change list 5156 */ 5157 static enum ice_status 5158 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5159 struct list_head *chg) 5160 { 5161 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 5162 struct ice_vsig_prof *t; 5163 enum ice_status status; 5164 u16 idx; 5165 5166 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 5167 idx = vsig & ICE_VSIG_IDX_M; 5168 5169 /* Priority is based on the order in which the profiles are added. The 5170 * newest added profile has highest priority and the oldest added 5171 * profile has the lowest priority. Since the profile property list for 5172 * a VSIG is sorted from newest to oldest, this code traverses the list 5173 * in order and enables the first of each PTG that it finds (that is not 5174 * already enabled); it also disables any duplicate PTGs that it finds 5175 * in the older profiles (that are currently enabled). 5176 */ 5177 5178 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5179 list) { 5180 u16 i; 5181 5182 for (i = 0; i < t->tcam_count; i++) { 5183 /* Scan the priorities from newest to oldest. 5184 * Make sure that the newest profiles take priority. 5185 */ 5186 if (test_bit(t->tcam[i].ptg, ptgs_used) && 5187 t->tcam[i].in_use) { 5188 /* need to mark this PTG as never match, as it 5189 * was already in use and therefore duplicate 5190 * (and lower priority) 5191 */ 5192 status = ice_prof_tcam_ena_dis(hw, blk, false, 5193 vsig, 5194 &t->tcam[i], 5195 chg); 5196 if (status) 5197 return status; 5198 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 5199 !t->tcam[i].in_use) { 5200 /* need to enable this PTG, as it in not in use 5201 * and not enabled (highest priority) 5202 */ 5203 status = ice_prof_tcam_ena_dis(hw, blk, true, 5204 vsig, 5205 &t->tcam[i], 5206 chg); 5207 if (status) 5208 return status; 5209 } 5210 5211 /* keep track of used ptgs */ 5212 set_bit(t->tcam[i].ptg, ptgs_used); 5213 } 5214 } 5215 5216 return 0; 5217 } 5218 5219 /** 5220 * ice_add_prof_id_vsig - add profile to VSIG 5221 * @hw: pointer to the HW struct 5222 * @blk: hardware block 5223 * @vsig: the VSIG to which this profile is to be added 5224 * @hdl: the profile handle indicating the profile to add 5225 * @rev: true to add entries to the end of the list 5226 * @chg: the change list 5227 */ 5228 static enum ice_status 5229 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5230 bool rev, struct list_head *chg) 5231 { 5232 /* Masks that ignore flags */ 5233 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5234 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5235 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5236 enum ice_status status = 0; 5237 struct ice_prof_map *map; 5238 struct ice_vsig_prof *t; 5239 struct ice_chs_chg *p; 5240 u16 vsig_idx, i; 5241 5242 /* Error, if this VSIG already has this profile */ 5243 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5244 return ICE_ERR_ALREADY_EXISTS; 5245 5246 /* new VSIG profile structure */ 5247 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 5248 if (!t) 5249 return ICE_ERR_NO_MEMORY; 5250 5251 mutex_lock(&hw->blk[blk].es.prof_map_lock); 5252 /* Get the details on the profile specified by the handle ID */ 5253 map = ice_search_prof_id(hw, blk, hdl); 5254 if (!map) { 5255 status = ICE_ERR_DOES_NOT_EXIST; 5256 goto err_ice_add_prof_id_vsig; 5257 } 5258 5259 t->profile_cookie = map->profile_cookie; 5260 t->prof_id = map->prof_id; 5261 t->tcam_count = map->ptg_cnt; 5262 5263 /* create TCAM entries */ 5264 for (i = 0; i < map->ptg_cnt; i++) { 5265 u16 tcam_idx; 5266 5267 /* add TCAM to change list */ 5268 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5269 if (!p) { 5270 status = ICE_ERR_NO_MEMORY; 5271 goto err_ice_add_prof_id_vsig; 5272 } 5273 5274 /* allocate the TCAM entry index */ 5275 /* for entries with empty attribute masks, allocate entry from 5276 * the bottom of the TCAM table; otherwise, allocate from the 5277 * top of the table in order to give it higher priority 5278 */ 5279 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 5280 &tcam_idx); 5281 if (status) { 5282 devm_kfree(ice_hw_to_dev(hw), p); 5283 goto err_ice_add_prof_id_vsig; 5284 } 5285 5286 t->tcam[i].ptg = map->ptg[i]; 5287 t->tcam[i].prof_id = map->prof_id; 5288 t->tcam[i].tcam_idx = tcam_idx; 5289 t->tcam[i].attr = map->attr[i]; 5290 t->tcam[i].in_use = true; 5291 5292 p->type = ICE_TCAM_ADD; 5293 p->add_tcam_idx = true; 5294 p->prof_id = t->tcam[i].prof_id; 5295 p->ptg = t->tcam[i].ptg; 5296 p->vsig = vsig; 5297 p->tcam_idx = t->tcam[i].tcam_idx; 5298 5299 /* write the TCAM entry */ 5300 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5301 t->tcam[i].prof_id, 5302 t->tcam[i].ptg, vsig, 0, 0, 5303 vl_msk, dc_msk, nm_msk); 5304 if (status) { 5305 devm_kfree(ice_hw_to_dev(hw), p); 5306 goto err_ice_add_prof_id_vsig; 5307 } 5308 5309 /* log change */ 5310 list_add(&p->list_entry, chg); 5311 } 5312 5313 /* add profile to VSIG */ 5314 vsig_idx = vsig & ICE_VSIG_IDX_M; 5315 if (rev) 5316 list_add_tail(&t->list, 5317 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5318 else 5319 list_add(&t->list, 5320 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5321 5322 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5323 return status; 5324 5325 err_ice_add_prof_id_vsig: 5326 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 5327 /* let caller clean up the change list */ 5328 devm_kfree(ice_hw_to_dev(hw), t); 5329 return status; 5330 } 5331 5332 /** 5333 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5334 * @hw: pointer to the HW struct 5335 * @blk: hardware block 5336 * @vsi: the initial VSI that will be in VSIG 5337 * @hdl: the profile handle of the profile that will be added to the VSIG 5338 * @chg: the change list 5339 */ 5340 static enum ice_status 5341 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5342 struct list_head *chg) 5343 { 5344 enum ice_status status; 5345 struct ice_chs_chg *p; 5346 u16 new_vsig; 5347 5348 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 5349 if (!p) 5350 return ICE_ERR_NO_MEMORY; 5351 5352 new_vsig = ice_vsig_alloc(hw, blk); 5353 if (!new_vsig) { 5354 status = ICE_ERR_HW_TABLE; 5355 goto err_ice_create_prof_id_vsig; 5356 } 5357 5358 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5359 if (status) 5360 goto err_ice_create_prof_id_vsig; 5361 5362 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5363 if (status) 5364 goto err_ice_create_prof_id_vsig; 5365 5366 p->type = ICE_VSIG_ADD; 5367 p->vsi = vsi; 5368 p->orig_vsig = ICE_DEFAULT_VSIG; 5369 p->vsig = new_vsig; 5370 5371 list_add(&p->list_entry, chg); 5372 5373 return 0; 5374 5375 err_ice_create_prof_id_vsig: 5376 /* let caller clean up the change list */ 5377 devm_kfree(ice_hw_to_dev(hw), p); 5378 return status; 5379 } 5380 5381 /** 5382 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5383 * @hw: pointer to the HW struct 5384 * @blk: hardware block 5385 * @vsi: the initial VSI that will be in VSIG 5386 * @lst: the list of profile that will be added to the VSIG 5387 * @new_vsig: return of new VSIG 5388 * @chg: the change list 5389 */ 5390 static enum ice_status 5391 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5392 struct list_head *lst, u16 *new_vsig, 5393 struct list_head *chg) 5394 { 5395 struct ice_vsig_prof *t; 5396 enum ice_status status; 5397 u16 vsig; 5398 5399 vsig = ice_vsig_alloc(hw, blk); 5400 if (!vsig) 5401 return ICE_ERR_HW_TABLE; 5402 5403 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5404 if (status) 5405 return status; 5406 5407 list_for_each_entry(t, lst, list) { 5408 /* Reverse the order here since we are copying the list */ 5409 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5410 true, chg); 5411 if (status) 5412 return status; 5413 } 5414 5415 *new_vsig = vsig; 5416 5417 return 0; 5418 } 5419 5420 /** 5421 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5422 * @hw: pointer to the HW struct 5423 * @blk: hardware block 5424 * @hdl: the profile handle of the profile to search for 5425 * @vsig: returns the VSIG with the matching profile 5426 */ 5427 static bool 5428 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5429 { 5430 struct ice_vsig_prof *t; 5431 enum ice_status status; 5432 struct list_head lst; 5433 5434 INIT_LIST_HEAD(&lst); 5435 5436 t = kzalloc(sizeof(*t), GFP_KERNEL); 5437 if (!t) 5438 return false; 5439 5440 t->profile_cookie = hdl; 5441 list_add(&t->list, &lst); 5442 5443 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5444 5445 list_del(&t->list); 5446 kfree(t); 5447 5448 return !status; 5449 } 5450 5451 /** 5452 * ice_add_prof_id_flow - add profile flow 5453 * @hw: pointer to the HW struct 5454 * @blk: hardware block 5455 * @vsi: the VSI to enable with the profile specified by ID 5456 * @hdl: profile handle 5457 * 5458 * Calling this function will update the hardware tables to enable the 5459 * profile indicated by the ID parameter for the VSIs specified in the VSI 5460 * array. Once successfully called, the flow will be enabled. 5461 */ 5462 enum ice_status 5463 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5464 { 5465 struct ice_vsig_prof *tmp1, *del1; 5466 struct ice_chs_chg *tmp, *del; 5467 struct list_head union_lst; 5468 enum ice_status status; 5469 struct list_head chg; 5470 u16 vsig; 5471 5472 INIT_LIST_HEAD(&union_lst); 5473 INIT_LIST_HEAD(&chg); 5474 5475 /* Get profile */ 5476 status = ice_get_prof(hw, blk, hdl, &chg); 5477 if (status) 5478 return status; 5479 5480 /* determine if VSI is already part of a VSIG */ 5481 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5482 if (!status && vsig) { 5483 bool only_vsi; 5484 u16 or_vsig; 5485 u16 ref; 5486 5487 /* found in VSIG */ 5488 or_vsig = vsig; 5489 5490 /* make sure that there is no overlap/conflict between the new 5491 * characteristics and the existing ones; we don't support that 5492 * scenario 5493 */ 5494 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5495 status = ICE_ERR_ALREADY_EXISTS; 5496 goto err_ice_add_prof_id_flow; 5497 } 5498 5499 /* last VSI in the VSIG? */ 5500 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5501 if (status) 5502 goto err_ice_add_prof_id_flow; 5503 only_vsi = (ref == 1); 5504 5505 /* create a union of the current profiles and the one being 5506 * added 5507 */ 5508 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5509 if (status) 5510 goto err_ice_add_prof_id_flow; 5511 5512 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5513 if (status) 5514 goto err_ice_add_prof_id_flow; 5515 5516 /* search for an existing VSIG with an exact charc match */ 5517 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5518 if (!status) { 5519 /* move VSI to the VSIG that matches */ 5520 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5521 if (status) 5522 goto err_ice_add_prof_id_flow; 5523 5524 /* VSI has been moved out of or_vsig. If the or_vsig had 5525 * only that VSI it is now empty and can be removed. 5526 */ 5527 if (only_vsi) { 5528 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5529 if (status) 5530 goto err_ice_add_prof_id_flow; 5531 } 5532 } else if (only_vsi) { 5533 /* If the original VSIG only contains one VSI, then it 5534 * will be the requesting VSI. In this case the VSI is 5535 * not sharing entries and we can simply add the new 5536 * profile to the VSIG. 5537 */ 5538 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5539 &chg); 5540 if (status) 5541 goto err_ice_add_prof_id_flow; 5542 5543 /* Adjust priorities */ 5544 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5545 if (status) 5546 goto err_ice_add_prof_id_flow; 5547 } else { 5548 /* No match, so we need a new VSIG */ 5549 status = ice_create_vsig_from_lst(hw, blk, vsi, 5550 &union_lst, &vsig, 5551 &chg); 5552 if (status) 5553 goto err_ice_add_prof_id_flow; 5554 5555 /* Adjust priorities */ 5556 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5557 if (status) 5558 goto err_ice_add_prof_id_flow; 5559 } 5560 } else { 5561 /* need to find or add a VSIG */ 5562 /* search for an existing VSIG with an exact charc match */ 5563 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5564 /* found an exact match */ 5565 /* add or move VSI to the VSIG that matches */ 5566 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5567 if (status) 5568 goto err_ice_add_prof_id_flow; 5569 } else { 5570 /* we did not find an exact match */ 5571 /* we need to add a VSIG */ 5572 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5573 &chg); 5574 if (status) 5575 goto err_ice_add_prof_id_flow; 5576 } 5577 } 5578 5579 /* update hardware */ 5580 if (!status) 5581 status = ice_upd_prof_hw(hw, blk, &chg); 5582 5583 err_ice_add_prof_id_flow: 5584 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5585 list_del(&del->list_entry); 5586 devm_kfree(ice_hw_to_dev(hw), del); 5587 } 5588 5589 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 5590 list_del(&del1->list); 5591 devm_kfree(ice_hw_to_dev(hw), del1); 5592 } 5593 5594 return status; 5595 } 5596 5597 /** 5598 * ice_rem_prof_from_list - remove a profile from list 5599 * @hw: pointer to the HW struct 5600 * @lst: list to remove the profile from 5601 * @hdl: the profile handle indicating the profile to remove 5602 */ 5603 static enum ice_status 5604 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 5605 { 5606 struct ice_vsig_prof *ent, *tmp; 5607 5608 list_for_each_entry_safe(ent, tmp, lst, list) 5609 if (ent->profile_cookie == hdl) { 5610 list_del(&ent->list); 5611 devm_kfree(ice_hw_to_dev(hw), ent); 5612 return 0; 5613 } 5614 5615 return ICE_ERR_DOES_NOT_EXIST; 5616 } 5617 5618 /** 5619 * ice_rem_prof_id_flow - remove flow 5620 * @hw: pointer to the HW struct 5621 * @blk: hardware block 5622 * @vsi: the VSI from which to remove the profile specified by ID 5623 * @hdl: profile tracking handle 5624 * 5625 * Calling this function will update the hardware tables to remove the 5626 * profile indicated by the ID parameter for the VSIs specified in the VSI 5627 * array. Once successfully called, the flow will be disabled. 5628 */ 5629 enum ice_status 5630 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5631 { 5632 struct ice_vsig_prof *tmp1, *del1; 5633 struct ice_chs_chg *tmp, *del; 5634 struct list_head chg, copy; 5635 enum ice_status status; 5636 u16 vsig; 5637 5638 INIT_LIST_HEAD(©); 5639 INIT_LIST_HEAD(&chg); 5640 5641 /* determine if VSI is already part of a VSIG */ 5642 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5643 if (!status && vsig) { 5644 bool last_profile; 5645 bool only_vsi; 5646 u16 ref; 5647 5648 /* found in VSIG */ 5649 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5650 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5651 if (status) 5652 goto err_ice_rem_prof_id_flow; 5653 only_vsi = (ref == 1); 5654 5655 if (only_vsi) { 5656 /* If the original VSIG only contains one reference, 5657 * which will be the requesting VSI, then the VSI is not 5658 * sharing entries and we can simply remove the specific 5659 * characteristics from the VSIG. 5660 */ 5661 5662 if (last_profile) { 5663 /* If there are no profiles left for this VSIG, 5664 * then simply remove the VSIG. 5665 */ 5666 status = ice_rem_vsig(hw, blk, vsig, &chg); 5667 if (status) 5668 goto err_ice_rem_prof_id_flow; 5669 } else { 5670 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5671 hdl, &chg); 5672 if (status) 5673 goto err_ice_rem_prof_id_flow; 5674 5675 /* Adjust priorities */ 5676 status = ice_adj_prof_priorities(hw, blk, vsig, 5677 &chg); 5678 if (status) 5679 goto err_ice_rem_prof_id_flow; 5680 } 5681 5682 } else { 5683 /* Make a copy of the VSIG's list of Profiles */ 5684 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5685 if (status) 5686 goto err_ice_rem_prof_id_flow; 5687 5688 /* Remove specified profile entry from the list */ 5689 status = ice_rem_prof_from_list(hw, ©, hdl); 5690 if (status) 5691 goto err_ice_rem_prof_id_flow; 5692 5693 if (list_empty(©)) { 5694 status = ice_move_vsi(hw, blk, vsi, 5695 ICE_DEFAULT_VSIG, &chg); 5696 if (status) 5697 goto err_ice_rem_prof_id_flow; 5698 5699 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5700 &vsig)) { 5701 /* found an exact match */ 5702 /* add or move VSI to the VSIG that matches */ 5703 /* Search for a VSIG with a matching profile 5704 * list 5705 */ 5706 5707 /* Found match, move VSI to the matching VSIG */ 5708 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5709 if (status) 5710 goto err_ice_rem_prof_id_flow; 5711 } else { 5712 /* since no existing VSIG supports this 5713 * characteristic pattern, we need to create a 5714 * new VSIG and TCAM entries 5715 */ 5716 status = ice_create_vsig_from_lst(hw, blk, vsi, 5717 ©, &vsig, 5718 &chg); 5719 if (status) 5720 goto err_ice_rem_prof_id_flow; 5721 5722 /* Adjust priorities */ 5723 status = ice_adj_prof_priorities(hw, blk, vsig, 5724 &chg); 5725 if (status) 5726 goto err_ice_rem_prof_id_flow; 5727 } 5728 } 5729 } else { 5730 status = ICE_ERR_DOES_NOT_EXIST; 5731 } 5732 5733 /* update hardware tables */ 5734 if (!status) 5735 status = ice_upd_prof_hw(hw, blk, &chg); 5736 5737 err_ice_rem_prof_id_flow: 5738 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 5739 list_del(&del->list_entry); 5740 devm_kfree(ice_hw_to_dev(hw), del); 5741 } 5742 5743 list_for_each_entry_safe(del1, tmp1, ©, list) { 5744 list_del(&del1->list); 5745 devm_kfree(ice_hw_to_dev(hw), del1); 5746 } 5747 5748 return status; 5749 } 5750