xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_flex_pipe.c (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8 
9 /* For supporting double VLAN mode, it is necessary to enable or disable certain
10  * boost tcam entries. The metadata labels names that match the following
11  * prefixes will be saved to allow enabling double VLAN mode.
12  */
13 #define ICE_DVM_PRE	"BOOST_MAC_VLAN_DVM"	/* enable these entries */
14 #define ICE_SVM_PRE	"BOOST_MAC_VLAN_SVM"	/* disable these entries */
15 
16 /* To support tunneling entries by PF, the package will append the PF number to
17  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
18  */
19 #define ICE_TNL_PRE	"TNL_"
20 static const struct ice_tunnel_type_scan tnls[] = {
21 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
22 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
23 	{ TNL_LAST,		"" }
24 };
25 
26 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
27 	/* SWITCH */
28 	{
29 		ICE_SID_XLT0_SW,
30 		ICE_SID_XLT_KEY_BUILDER_SW,
31 		ICE_SID_XLT1_SW,
32 		ICE_SID_XLT2_SW,
33 		ICE_SID_PROFID_TCAM_SW,
34 		ICE_SID_PROFID_REDIR_SW,
35 		ICE_SID_FLD_VEC_SW,
36 		ICE_SID_CDID_KEY_BUILDER_SW,
37 		ICE_SID_CDID_REDIR_SW
38 	},
39 
40 	/* ACL */
41 	{
42 		ICE_SID_XLT0_ACL,
43 		ICE_SID_XLT_KEY_BUILDER_ACL,
44 		ICE_SID_XLT1_ACL,
45 		ICE_SID_XLT2_ACL,
46 		ICE_SID_PROFID_TCAM_ACL,
47 		ICE_SID_PROFID_REDIR_ACL,
48 		ICE_SID_FLD_VEC_ACL,
49 		ICE_SID_CDID_KEY_BUILDER_ACL,
50 		ICE_SID_CDID_REDIR_ACL
51 	},
52 
53 	/* FD */
54 	{
55 		ICE_SID_XLT0_FD,
56 		ICE_SID_XLT_KEY_BUILDER_FD,
57 		ICE_SID_XLT1_FD,
58 		ICE_SID_XLT2_FD,
59 		ICE_SID_PROFID_TCAM_FD,
60 		ICE_SID_PROFID_REDIR_FD,
61 		ICE_SID_FLD_VEC_FD,
62 		ICE_SID_CDID_KEY_BUILDER_FD,
63 		ICE_SID_CDID_REDIR_FD
64 	},
65 
66 	/* RSS */
67 	{
68 		ICE_SID_XLT0_RSS,
69 		ICE_SID_XLT_KEY_BUILDER_RSS,
70 		ICE_SID_XLT1_RSS,
71 		ICE_SID_XLT2_RSS,
72 		ICE_SID_PROFID_TCAM_RSS,
73 		ICE_SID_PROFID_REDIR_RSS,
74 		ICE_SID_FLD_VEC_RSS,
75 		ICE_SID_CDID_KEY_BUILDER_RSS,
76 		ICE_SID_CDID_REDIR_RSS
77 	},
78 
79 	/* PE */
80 	{
81 		ICE_SID_XLT0_PE,
82 		ICE_SID_XLT_KEY_BUILDER_PE,
83 		ICE_SID_XLT1_PE,
84 		ICE_SID_XLT2_PE,
85 		ICE_SID_PROFID_TCAM_PE,
86 		ICE_SID_PROFID_REDIR_PE,
87 		ICE_SID_FLD_VEC_PE,
88 		ICE_SID_CDID_KEY_BUILDER_PE,
89 		ICE_SID_CDID_REDIR_PE
90 	}
91 };
92 
93 /**
94  * ice_sect_id - returns section ID
95  * @blk: block type
96  * @sect: section type
97  *
98  * This helper function returns the proper section ID given a block type and a
99  * section type.
100  */
101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
102 {
103 	return ice_sect_lkup[blk][sect];
104 }
105 
106 /**
107  * ice_pkg_val_buf
108  * @buf: pointer to the ice buffer
109  *
110  * This helper function validates a buffer's header.
111  */
112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
113 {
114 	struct ice_buf_hdr *hdr;
115 	u16 section_count;
116 	u16 data_end;
117 
118 	hdr = (struct ice_buf_hdr *)buf->buf;
119 	/* verify data */
120 	section_count = le16_to_cpu(hdr->section_count);
121 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
122 		return NULL;
123 
124 	data_end = le16_to_cpu(hdr->data_end);
125 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
126 		return NULL;
127 
128 	return hdr;
129 }
130 
131 /**
132  * ice_find_buf_table
133  * @ice_seg: pointer to the ice segment
134  *
135  * Returns the address of the buffer table within the ice segment.
136  */
137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
138 {
139 	struct ice_nvm_table *nvms;
140 
141 	nvms = (struct ice_nvm_table *)
142 		(ice_seg->device_table +
143 		 le32_to_cpu(ice_seg->device_table_count));
144 
145 	return (__force struct ice_buf_table *)
146 		(nvms->vers + le32_to_cpu(nvms->table_count));
147 }
148 
149 /**
150  * ice_pkg_enum_buf
151  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
152  * @state: pointer to the enum state
153  *
154  * This function will enumerate all the buffers in the ice segment. The first
155  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
156  * ice_seg is set to NULL which continues the enumeration. When the function
157  * returns a NULL pointer, then the end of the buffers has been reached, or an
158  * unexpected value has been detected (for example an invalid section count or
159  * an invalid buffer end value).
160  */
161 static struct ice_buf_hdr *
162 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
163 {
164 	if (ice_seg) {
165 		state->buf_table = ice_find_buf_table(ice_seg);
166 		if (!state->buf_table)
167 			return NULL;
168 
169 		state->buf_idx = 0;
170 		return ice_pkg_val_buf(state->buf_table->buf_array);
171 	}
172 
173 	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
174 		return ice_pkg_val_buf(state->buf_table->buf_array +
175 				       state->buf_idx);
176 	else
177 		return NULL;
178 }
179 
180 /**
181  * ice_pkg_advance_sect
182  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
183  * @state: pointer to the enum state
184  *
185  * This helper function will advance the section within the ice segment,
186  * also advancing the buffer if needed.
187  */
188 static bool
189 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
190 {
191 	if (!ice_seg && !state->buf)
192 		return false;
193 
194 	if (!ice_seg && state->buf)
195 		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
196 			return true;
197 
198 	state->buf = ice_pkg_enum_buf(ice_seg, state);
199 	if (!state->buf)
200 		return false;
201 
202 	/* start of new buffer, reset section index */
203 	state->sect_idx = 0;
204 	return true;
205 }
206 
207 /**
208  * ice_pkg_enum_section
209  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
210  * @state: pointer to the enum state
211  * @sect_type: section type to enumerate
212  *
213  * This function will enumerate all the sections of a particular type in the
214  * ice segment. The first call is made with the ice_seg parameter non-NULL;
215  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
216  * When the function returns a NULL pointer, then the end of the matching
217  * sections has been reached.
218  */
219 static void *
220 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
221 		     u32 sect_type)
222 {
223 	u16 offset, size;
224 
225 	if (ice_seg)
226 		state->type = sect_type;
227 
228 	if (!ice_pkg_advance_sect(ice_seg, state))
229 		return NULL;
230 
231 	/* scan for next matching section */
232 	while (state->buf->section_entry[state->sect_idx].type !=
233 	       cpu_to_le32(state->type))
234 		if (!ice_pkg_advance_sect(NULL, state))
235 			return NULL;
236 
237 	/* validate section */
238 	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
239 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
240 		return NULL;
241 
242 	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
243 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
244 		return NULL;
245 
246 	/* make sure the section fits in the buffer */
247 	if (offset + size > ICE_PKG_BUF_SIZE)
248 		return NULL;
249 
250 	state->sect_type =
251 		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
252 
253 	/* calc pointer to this section */
254 	state->sect = ((u8 *)state->buf) +
255 		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
256 
257 	return state->sect;
258 }
259 
260 /**
261  * ice_pkg_enum_entry
262  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
263  * @state: pointer to the enum state
264  * @sect_type: section type to enumerate
265  * @offset: pointer to variable that receives the offset in the table (optional)
266  * @handler: function that handles access to the entries into the section type
267  *
268  * This function will enumerate all the entries in particular section type in
269  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
270  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
271  * When the function returns a NULL pointer, then the end of the entries has
272  * been reached.
273  *
274  * Since each section may have a different header and entry size, the handler
275  * function is needed to determine the number and location entries in each
276  * section.
277  *
278  * The offset parameter is optional, but should be used for sections that
279  * contain an offset for each section table. For such cases, the section handler
280  * function must return the appropriate offset + index to give the absolution
281  * offset for each entry. For example, if the base for a section's header
282  * indicates a base offset of 10, and the index for the entry is 2, then
283  * section handler function should set the offset to 10 + 2 = 12.
284  */
285 static void *
286 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
287 		   u32 sect_type, u32 *offset,
288 		   void *(*handler)(u32 sect_type, void *section,
289 				    u32 index, u32 *offset))
290 {
291 	void *entry;
292 
293 	if (ice_seg) {
294 		if (!handler)
295 			return NULL;
296 
297 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
298 			return NULL;
299 
300 		state->entry_idx = 0;
301 		state->handler = handler;
302 	} else {
303 		state->entry_idx++;
304 	}
305 
306 	if (!state->handler)
307 		return NULL;
308 
309 	/* get entry */
310 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
311 			       offset);
312 	if (!entry) {
313 		/* end of a section, look for another section of this type */
314 		if (!ice_pkg_enum_section(NULL, state, 0))
315 			return NULL;
316 
317 		state->entry_idx = 0;
318 		entry = state->handler(state->sect_type, state->sect,
319 				       state->entry_idx, offset);
320 	}
321 
322 	return entry;
323 }
324 
325 /**
326  * ice_hw_ptype_ena - check if the PTYPE is enabled or not
327  * @hw: pointer to the HW structure
328  * @ptype: the hardware PTYPE
329  */
330 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
331 {
332 	return ptype < ICE_FLOW_PTYPE_MAX &&
333 	       test_bit(ptype, hw->hw_ptype);
334 }
335 
336 /**
337  * ice_marker_ptype_tcam_handler
338  * @sect_type: section type
339  * @section: pointer to section
340  * @index: index of the Marker PType TCAM entry to be returned
341  * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
342  *
343  * This is a callback function that can be passed to ice_pkg_enum_entry.
344  * Handles enumeration of individual Marker PType TCAM entries.
345  */
346 static void *
347 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
348 			      u32 *offset)
349 {
350 	struct ice_marker_ptype_tcam_section *marker_ptype;
351 
352 	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
353 		return NULL;
354 
355 	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
356 		return NULL;
357 
358 	if (offset)
359 		*offset = 0;
360 
361 	marker_ptype = section;
362 	if (index >= le16_to_cpu(marker_ptype->count))
363 		return NULL;
364 
365 	return marker_ptype->tcam + index;
366 }
367 
368 /**
369  * ice_fill_hw_ptype - fill the enabled PTYPE bit information
370  * @hw: pointer to the HW structure
371  */
372 static void ice_fill_hw_ptype(struct ice_hw *hw)
373 {
374 	struct ice_marker_ptype_tcam_entry *tcam;
375 	struct ice_seg *seg = hw->seg;
376 	struct ice_pkg_enum state;
377 
378 	bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
379 	if (!seg)
380 		return;
381 
382 	memset(&state, 0, sizeof(state));
383 
384 	do {
385 		tcam = ice_pkg_enum_entry(seg, &state,
386 					  ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
387 					  ice_marker_ptype_tcam_handler);
388 		if (tcam &&
389 		    le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
390 		    le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
391 			set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
392 
393 		seg = NULL;
394 	} while (tcam);
395 }
396 
397 /**
398  * ice_boost_tcam_handler
399  * @sect_type: section type
400  * @section: pointer to section
401  * @index: index of the boost TCAM entry to be returned
402  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
403  *
404  * This is a callback function that can be passed to ice_pkg_enum_entry.
405  * Handles enumeration of individual boost TCAM entries.
406  */
407 static void *
408 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
409 {
410 	struct ice_boost_tcam_section *boost;
411 
412 	if (!section)
413 		return NULL;
414 
415 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
416 		return NULL;
417 
418 	/* cppcheck-suppress nullPointer */
419 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
420 		return NULL;
421 
422 	if (offset)
423 		*offset = 0;
424 
425 	boost = section;
426 	if (index >= le16_to_cpu(boost->count))
427 		return NULL;
428 
429 	return boost->tcam + index;
430 }
431 
432 /**
433  * ice_find_boost_entry
434  * @ice_seg: pointer to the ice segment (non-NULL)
435  * @addr: Boost TCAM address of entry to search for
436  * @entry: returns pointer to the entry
437  *
438  * Finds a particular Boost TCAM entry and returns a pointer to that entry
439  * if it is found. The ice_seg parameter must not be NULL since the first call
440  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
441  */
442 static int
443 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
444 		     struct ice_boost_tcam_entry **entry)
445 {
446 	struct ice_boost_tcam_entry *tcam;
447 	struct ice_pkg_enum state;
448 
449 	memset(&state, 0, sizeof(state));
450 
451 	if (!ice_seg)
452 		return -EINVAL;
453 
454 	do {
455 		tcam = ice_pkg_enum_entry(ice_seg, &state,
456 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
457 					  ice_boost_tcam_handler);
458 		if (tcam && le16_to_cpu(tcam->addr) == addr) {
459 			*entry = tcam;
460 			return 0;
461 		}
462 
463 		ice_seg = NULL;
464 	} while (tcam);
465 
466 	*entry = NULL;
467 	return -EIO;
468 }
469 
470 /**
471  * ice_label_enum_handler
472  * @sect_type: section type
473  * @section: pointer to section
474  * @index: index of the label entry to be returned
475  * @offset: pointer to receive absolute offset, always zero for label sections
476  *
477  * This is a callback function that can be passed to ice_pkg_enum_entry.
478  * Handles enumeration of individual label entries.
479  */
480 static void *
481 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
482 		       u32 *offset)
483 {
484 	struct ice_label_section *labels;
485 
486 	if (!section)
487 		return NULL;
488 
489 	/* cppcheck-suppress nullPointer */
490 	if (index > ICE_MAX_LABELS_IN_BUF)
491 		return NULL;
492 
493 	if (offset)
494 		*offset = 0;
495 
496 	labels = section;
497 	if (index >= le16_to_cpu(labels->count))
498 		return NULL;
499 
500 	return labels->label + index;
501 }
502 
503 /**
504  * ice_enum_labels
505  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
506  * @type: the section type that will contain the label (0 on subsequent calls)
507  * @state: ice_pkg_enum structure that will hold the state of the enumeration
508  * @value: pointer to a value that will return the label's value if found
509  *
510  * Enumerates a list of labels in the package. The caller will call
511  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
512  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
513  * the end of the list has been reached.
514  */
515 static char *
516 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
517 		u16 *value)
518 {
519 	struct ice_label *label;
520 
521 	/* Check for valid label section on first call */
522 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
523 		return NULL;
524 
525 	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
526 				   ice_label_enum_handler);
527 	if (!label)
528 		return NULL;
529 
530 	*value = le16_to_cpu(label->value);
531 	return label->name;
532 }
533 
534 /**
535  * ice_add_tunnel_hint
536  * @hw: pointer to the HW structure
537  * @label_name: label text
538  * @val: value of the tunnel port boost entry
539  */
540 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
541 {
542 	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
543 		u16 i;
544 
545 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
546 			size_t len = strlen(tnls[i].label_prefix);
547 
548 			/* Look for matching label start, before continuing */
549 			if (strncmp(label_name, tnls[i].label_prefix, len))
550 				continue;
551 
552 			/* Make sure this label matches our PF. Note that the PF
553 			 * character ('0' - '7') will be located where our
554 			 * prefix string's null terminator is located.
555 			 */
556 			if ((label_name[len] - '0') == hw->pf_id) {
557 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
558 				hw->tnl.tbl[hw->tnl.count].valid = false;
559 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
560 				hw->tnl.tbl[hw->tnl.count].port = 0;
561 				hw->tnl.count++;
562 				break;
563 			}
564 		}
565 	}
566 }
567 
568 /**
569  * ice_add_dvm_hint
570  * @hw: pointer to the HW structure
571  * @val: value of the boost entry
572  * @enable: true if entry needs to be enabled, or false if needs to be disabled
573  */
574 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
575 {
576 	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
577 		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
578 		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
579 		hw->dvm_upd.count++;
580 	}
581 }
582 
583 /**
584  * ice_init_pkg_hints
585  * @hw: pointer to the HW structure
586  * @ice_seg: pointer to the segment of the package scan (non-NULL)
587  *
588  * This function will scan the package and save off relevant information
589  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
590  * since the first call to ice_enum_labels requires a pointer to an actual
591  * ice_seg structure.
592  */
593 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
594 {
595 	struct ice_pkg_enum state;
596 	char *label_name;
597 	u16 val;
598 	int i;
599 
600 	memset(&hw->tnl, 0, sizeof(hw->tnl));
601 	memset(&state, 0, sizeof(state));
602 
603 	if (!ice_seg)
604 		return;
605 
606 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
607 				     &val);
608 
609 	while (label_name) {
610 		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
611 			/* check for a tunnel entry */
612 			ice_add_tunnel_hint(hw, label_name, val);
613 
614 		/* check for a dvm mode entry */
615 		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
616 			ice_add_dvm_hint(hw, val, true);
617 
618 		/* check for a svm mode entry */
619 		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
620 			ice_add_dvm_hint(hw, val, false);
621 
622 		label_name = ice_enum_labels(NULL, 0, &state, &val);
623 	}
624 
625 	/* Cache the appropriate boost TCAM entry pointers for tunnels */
626 	for (i = 0; i < hw->tnl.count; i++) {
627 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
628 				     &hw->tnl.tbl[i].boost_entry);
629 		if (hw->tnl.tbl[i].boost_entry) {
630 			hw->tnl.tbl[i].valid = true;
631 			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
632 				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
633 		}
634 	}
635 
636 	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
637 	for (i = 0; i < hw->dvm_upd.count; i++)
638 		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
639 				     &hw->dvm_upd.tbl[i].boost_entry);
640 }
641 
642 /* Key creation */
643 
644 #define ICE_DC_KEY	0x1	/* don't care */
645 #define ICE_DC_KEYINV	0x1
646 #define ICE_NM_KEY	0x0	/* never match */
647 #define ICE_NM_KEYINV	0x0
648 #define ICE_0_KEY	0x1	/* match 0 */
649 #define ICE_0_KEYINV	0x0
650 #define ICE_1_KEY	0x0	/* match 1 */
651 #define ICE_1_KEYINV	0x1
652 
653 /**
654  * ice_gen_key_word - generate 16-bits of a key/mask word
655  * @val: the value
656  * @valid: valid bits mask (change only the valid bits)
657  * @dont_care: don't care mask
658  * @nvr_mtch: never match mask
659  * @key: pointer to an array of where the resulting key portion
660  * @key_inv: pointer to an array of where the resulting key invert portion
661  *
662  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
663  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
664  * of key and 8 bits of key invert.
665  *
666  *     '0' =    b01, always match a 0 bit
667  *     '1' =    b10, always match a 1 bit
668  *     '?' =    b11, don't care bit (always matches)
669  *     '~' =    b00, never match bit
670  *
671  * Input:
672  *          val:         b0  1  0  1  0  1
673  *          dont_care:   b0  0  1  1  0  0
674  *          never_mtch:  b0  0  0  0  1  1
675  *          ------------------------------
676  * Result:  key:        b01 10 11 11 00 00
677  */
678 static int
679 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
680 		 u8 *key_inv)
681 {
682 	u8 in_key = *key, in_key_inv = *key_inv;
683 	u8 i;
684 
685 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
686 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
687 		return -EIO;
688 
689 	*key = 0;
690 	*key_inv = 0;
691 
692 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
693 	for (i = 0; i < 8; i++) {
694 		*key >>= 1;
695 		*key_inv >>= 1;
696 
697 		if (!(valid & 0x1)) { /* change only valid bits */
698 			*key |= (in_key & 0x1) << 7;
699 			*key_inv |= (in_key_inv & 0x1) << 7;
700 		} else if (dont_care & 0x1) { /* don't care bit */
701 			*key |= ICE_DC_KEY << 7;
702 			*key_inv |= ICE_DC_KEYINV << 7;
703 		} else if (nvr_mtch & 0x1) { /* never match bit */
704 			*key |= ICE_NM_KEY << 7;
705 			*key_inv |= ICE_NM_KEYINV << 7;
706 		} else if (val & 0x01) { /* exact 1 match */
707 			*key |= ICE_1_KEY << 7;
708 			*key_inv |= ICE_1_KEYINV << 7;
709 		} else { /* exact 0 match */
710 			*key |= ICE_0_KEY << 7;
711 			*key_inv |= ICE_0_KEYINV << 7;
712 		}
713 
714 		dont_care >>= 1;
715 		nvr_mtch >>= 1;
716 		valid >>= 1;
717 		val >>= 1;
718 		in_key >>= 1;
719 		in_key_inv >>= 1;
720 	}
721 
722 	return 0;
723 }
724 
725 /**
726  * ice_bits_max_set - determine if the number of bits set is within a maximum
727  * @mask: pointer to the byte array which is the mask
728  * @size: the number of bytes in the mask
729  * @max: the max number of set bits
730  *
731  * This function determines if there are at most 'max' number of bits set in an
732  * array. Returns true if the number for bits set is <= max or will return false
733  * otherwise.
734  */
735 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
736 {
737 	u16 count = 0;
738 	u16 i;
739 
740 	/* check each byte */
741 	for (i = 0; i < size; i++) {
742 		/* if 0, go to next byte */
743 		if (!mask[i])
744 			continue;
745 
746 		/* We know there is at least one set bit in this byte because of
747 		 * the above check; if we already have found 'max' number of
748 		 * bits set, then we can return failure now.
749 		 */
750 		if (count == max)
751 			return false;
752 
753 		/* count the bits in this byte, checking threshold */
754 		count += hweight8(mask[i]);
755 		if (count > max)
756 			return false;
757 	}
758 
759 	return true;
760 }
761 
762 /**
763  * ice_set_key - generate a variable sized key with multiples of 16-bits
764  * @key: pointer to where the key will be stored
765  * @size: the size of the complete key in bytes (must be even)
766  * @val: array of 8-bit values that makes up the value portion of the key
767  * @upd: array of 8-bit masks that determine what key portion to update
768  * @dc: array of 8-bit masks that make up the don't care mask
769  * @nm: array of 8-bit masks that make up the never match mask
770  * @off: the offset of the first byte in the key to update
771  * @len: the number of bytes in the key update
772  *
773  * This function generates a key from a value, a don't care mask and a never
774  * match mask.
775  * upd, dc, and nm are optional parameters, and can be NULL:
776  *	upd == NULL --> upd mask is all 1's (update all bits)
777  *	dc == NULL --> dc mask is all 0's (no don't care bits)
778  *	nm == NULL --> nm mask is all 0's (no never match bits)
779  */
780 static int
781 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
782 	    u16 len)
783 {
784 	u16 half_size;
785 	u16 i;
786 
787 	/* size must be a multiple of 2 bytes. */
788 	if (size % 2)
789 		return -EIO;
790 
791 	half_size = size / 2;
792 	if (off + len > half_size)
793 		return -EIO;
794 
795 	/* Make sure at most one bit is set in the never match mask. Having more
796 	 * than one never match mask bit set will cause HW to consume excessive
797 	 * power otherwise; this is a power management efficiency check.
798 	 */
799 #define ICE_NVR_MTCH_BITS_MAX	1
800 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
801 		return -EIO;
802 
803 	for (i = 0; i < len; i++)
804 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
805 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
806 				     key + off + i, key + half_size + off + i))
807 			return -EIO;
808 
809 	return 0;
810 }
811 
812 /**
813  * ice_acquire_global_cfg_lock
814  * @hw: pointer to the HW structure
815  * @access: access type (read or write)
816  *
817  * This function will request ownership of the global config lock for reading
818  * or writing of the package. When attempting to obtain write access, the
819  * caller must check for the following two return values:
820  *
821  * 0         -  Means the caller has acquired the global config lock
822  *              and can perform writing of the package.
823  * -EALREADY - Indicates another driver has already written the
824  *             package or has found that no update was necessary; in
825  *             this case, the caller can just skip performing any
826  *             update of the package.
827  */
828 static int
829 ice_acquire_global_cfg_lock(struct ice_hw *hw,
830 			    enum ice_aq_res_access_type access)
831 {
832 	int status;
833 
834 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
835 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
836 
837 	if (!status)
838 		mutex_lock(&ice_global_cfg_lock_sw);
839 	else if (status == -EALREADY)
840 		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
841 
842 	return status;
843 }
844 
845 /**
846  * ice_release_global_cfg_lock
847  * @hw: pointer to the HW structure
848  *
849  * This function will release the global config lock.
850  */
851 static void ice_release_global_cfg_lock(struct ice_hw *hw)
852 {
853 	mutex_unlock(&ice_global_cfg_lock_sw);
854 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
855 }
856 
857 /**
858  * ice_acquire_change_lock
859  * @hw: pointer to the HW structure
860  * @access: access type (read or write)
861  *
862  * This function will request ownership of the change lock.
863  */
864 int
865 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
866 {
867 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
868 			       ICE_CHANGE_LOCK_TIMEOUT);
869 }
870 
871 /**
872  * ice_release_change_lock
873  * @hw: pointer to the HW structure
874  *
875  * This function will release the change lock using the proper Admin Command.
876  */
877 void ice_release_change_lock(struct ice_hw *hw)
878 {
879 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
880 }
881 
882 /**
883  * ice_aq_download_pkg
884  * @hw: pointer to the hardware structure
885  * @pkg_buf: the package buffer to transfer
886  * @buf_size: the size of the package buffer
887  * @last_buf: last buffer indicator
888  * @error_offset: returns error offset
889  * @error_info: returns error information
890  * @cd: pointer to command details structure or NULL
891  *
892  * Download Package (0x0C40)
893  */
894 static int
895 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
896 		    u16 buf_size, bool last_buf, u32 *error_offset,
897 		    u32 *error_info, struct ice_sq_cd *cd)
898 {
899 	struct ice_aqc_download_pkg *cmd;
900 	struct ice_aq_desc desc;
901 	int status;
902 
903 	if (error_offset)
904 		*error_offset = 0;
905 	if (error_info)
906 		*error_info = 0;
907 
908 	cmd = &desc.params.download_pkg;
909 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
910 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
911 
912 	if (last_buf)
913 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
914 
915 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
916 	if (status == -EIO) {
917 		/* Read error from buffer only when the FW returned an error */
918 		struct ice_aqc_download_pkg_resp *resp;
919 
920 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
921 		if (error_offset)
922 			*error_offset = le32_to_cpu(resp->error_offset);
923 		if (error_info)
924 			*error_info = le32_to_cpu(resp->error_info);
925 	}
926 
927 	return status;
928 }
929 
930 /**
931  * ice_aq_upload_section
932  * @hw: pointer to the hardware structure
933  * @pkg_buf: the package buffer which will receive the section
934  * @buf_size: the size of the package buffer
935  * @cd: pointer to command details structure or NULL
936  *
937  * Upload Section (0x0C41)
938  */
939 int
940 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
941 		      u16 buf_size, struct ice_sq_cd *cd)
942 {
943 	struct ice_aq_desc desc;
944 
945 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
946 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
947 
948 	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
949 }
950 
951 /**
952  * ice_aq_update_pkg
953  * @hw: pointer to the hardware structure
954  * @pkg_buf: the package cmd buffer
955  * @buf_size: the size of the package cmd buffer
956  * @last_buf: last buffer indicator
957  * @error_offset: returns error offset
958  * @error_info: returns error information
959  * @cd: pointer to command details structure or NULL
960  *
961  * Update Package (0x0C42)
962  */
963 static int
964 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
965 		  bool last_buf, u32 *error_offset, u32 *error_info,
966 		  struct ice_sq_cd *cd)
967 {
968 	struct ice_aqc_download_pkg *cmd;
969 	struct ice_aq_desc desc;
970 	int status;
971 
972 	if (error_offset)
973 		*error_offset = 0;
974 	if (error_info)
975 		*error_info = 0;
976 
977 	cmd = &desc.params.download_pkg;
978 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
979 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
980 
981 	if (last_buf)
982 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
983 
984 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
985 	if (status == -EIO) {
986 		/* Read error from buffer only when the FW returned an error */
987 		struct ice_aqc_download_pkg_resp *resp;
988 
989 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
990 		if (error_offset)
991 			*error_offset = le32_to_cpu(resp->error_offset);
992 		if (error_info)
993 			*error_info = le32_to_cpu(resp->error_info);
994 	}
995 
996 	return status;
997 }
998 
999 /**
1000  * ice_find_seg_in_pkg
1001  * @hw: pointer to the hardware structure
1002  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1003  * @pkg_hdr: pointer to the package header to be searched
1004  *
1005  * This function searches a package file for a particular segment type. On
1006  * success it returns a pointer to the segment header, otherwise it will
1007  * return NULL.
1008  */
1009 static struct ice_generic_seg_hdr *
1010 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1011 		    struct ice_pkg_hdr *pkg_hdr)
1012 {
1013 	u32 i;
1014 
1015 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1016 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1017 		  pkg_hdr->pkg_format_ver.update,
1018 		  pkg_hdr->pkg_format_ver.draft);
1019 
1020 	/* Search all package segments for the requested segment type */
1021 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1022 		struct ice_generic_seg_hdr *seg;
1023 
1024 		seg = (struct ice_generic_seg_hdr *)
1025 			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
1026 
1027 		if (le32_to_cpu(seg->seg_type) == seg_type)
1028 			return seg;
1029 	}
1030 
1031 	return NULL;
1032 }
1033 
1034 /**
1035  * ice_update_pkg_no_lock
1036  * @hw: pointer to the hardware structure
1037  * @bufs: pointer to an array of buffers
1038  * @count: the number of buffers in the array
1039  */
1040 static int
1041 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1042 {
1043 	int status = 0;
1044 	u32 i;
1045 
1046 	for (i = 0; i < count; i++) {
1047 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1048 		bool last = ((i + 1) == count);
1049 		u32 offset, info;
1050 
1051 		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1052 					   last, &offset, &info, NULL);
1053 
1054 		if (status) {
1055 			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
1056 				  status, offset, info);
1057 			break;
1058 		}
1059 	}
1060 
1061 	return status;
1062 }
1063 
1064 /**
1065  * ice_update_pkg
1066  * @hw: pointer to the hardware structure
1067  * @bufs: pointer to an array of buffers
1068  * @count: the number of buffers in the array
1069  *
1070  * Obtains change lock and updates package.
1071  */
1072 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1073 {
1074 	int status;
1075 
1076 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1077 	if (status)
1078 		return status;
1079 
1080 	status = ice_update_pkg_no_lock(hw, bufs, count);
1081 
1082 	ice_release_change_lock(hw);
1083 
1084 	return status;
1085 }
1086 
1087 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1088 {
1089 	switch (aq_err) {
1090 	case ICE_AQ_RC_ENOSEC:
1091 	case ICE_AQ_RC_EBADSIG:
1092 		return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1093 	case ICE_AQ_RC_ESVN:
1094 		return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1095 	case ICE_AQ_RC_EBADMAN:
1096 	case ICE_AQ_RC_EBADBUF:
1097 		return ICE_DDP_PKG_LOAD_ERROR;
1098 	default:
1099 		return ICE_DDP_PKG_ERR;
1100 	}
1101 }
1102 
1103 /**
1104  * ice_dwnld_cfg_bufs
1105  * @hw: pointer to the hardware structure
1106  * @bufs: pointer to an array of buffers
1107  * @count: the number of buffers in the array
1108  *
1109  * Obtains global config lock and downloads the package configuration buffers
1110  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111  * found indicates that the rest of the buffers are all metadata buffers.
1112  */
1113 static enum ice_ddp_state
1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115 {
1116 	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1117 	struct ice_buf_hdr *bh;
1118 	enum ice_aq_err err;
1119 	u32 offset, info, i;
1120 	int status;
1121 
1122 	if (!bufs || !count)
1123 		return ICE_DDP_PKG_ERR;
1124 
1125 	/* If the first buffer's first section has its metadata bit set
1126 	 * then there are no buffers to be downloaded, and the operation is
1127 	 * considered a success.
1128 	 */
1129 	bh = (struct ice_buf_hdr *)bufs;
1130 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1131 		return ICE_DDP_PKG_SUCCESS;
1132 
1133 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1134 	if (status) {
1135 		if (status == -EALREADY)
1136 			return ICE_DDP_PKG_ALREADY_LOADED;
1137 		return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1138 	}
1139 
1140 	for (i = 0; i < count; i++) {
1141 		bool last = ((i + 1) == count);
1142 
1143 		if (!last) {
1144 			/* check next buffer for metadata flag */
1145 			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1146 
1147 			/* A set metadata flag in the next buffer will signal
1148 			 * that the current buffer will be the last buffer
1149 			 * downloaded
1150 			 */
1151 			if (le16_to_cpu(bh->section_count))
1152 				if (le32_to_cpu(bh->section_entry[0].type) &
1153 				    ICE_METADATA_BUF)
1154 					last = true;
1155 		}
1156 
1157 		bh = (struct ice_buf_hdr *)(bufs + i);
1158 
1159 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1160 					     &offset, &info, NULL);
1161 
1162 		/* Save AQ status from download package */
1163 		if (status) {
1164 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1165 				  status, offset, info);
1166 			err = hw->adminq.sq_last_status;
1167 			state = ice_map_aq_err_to_ddp_state(err);
1168 			break;
1169 		}
1170 
1171 		if (last)
1172 			break;
1173 	}
1174 
1175 	if (!status) {
1176 		status = ice_set_vlan_mode(hw);
1177 		if (status)
1178 			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1179 				  status);
1180 	}
1181 
1182 	ice_release_global_cfg_lock(hw);
1183 
1184 	return state;
1185 }
1186 
1187 /**
1188  * ice_aq_get_pkg_info_list
1189  * @hw: pointer to the hardware structure
1190  * @pkg_info: the buffer which will receive the information list
1191  * @buf_size: the size of the pkg_info information buffer
1192  * @cd: pointer to command details structure or NULL
1193  *
1194  * Get Package Info List (0x0C43)
1195  */
1196 static int
1197 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1198 			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1199 			 u16 buf_size, struct ice_sq_cd *cd)
1200 {
1201 	struct ice_aq_desc desc;
1202 
1203 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1204 
1205 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1206 }
1207 
1208 /**
1209  * ice_download_pkg
1210  * @hw: pointer to the hardware structure
1211  * @ice_seg: pointer to the segment of the package to be downloaded
1212  *
1213  * Handles the download of a complete package.
1214  */
1215 static enum ice_ddp_state
1216 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1217 {
1218 	struct ice_buf_table *ice_buf_tbl;
1219 	int status;
1220 
1221 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1222 		  ice_seg->hdr.seg_format_ver.major,
1223 		  ice_seg->hdr.seg_format_ver.minor,
1224 		  ice_seg->hdr.seg_format_ver.update,
1225 		  ice_seg->hdr.seg_format_ver.draft);
1226 
1227 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1228 		  le32_to_cpu(ice_seg->hdr.seg_type),
1229 		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1230 
1231 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1232 
1233 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1234 		  le32_to_cpu(ice_buf_tbl->buf_count));
1235 
1236 	status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1237 				    le32_to_cpu(ice_buf_tbl->buf_count));
1238 
1239 	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1240 
1241 	return status;
1242 }
1243 
1244 /**
1245  * ice_init_pkg_info
1246  * @hw: pointer to the hardware structure
1247  * @pkg_hdr: pointer to the driver's package hdr
1248  *
1249  * Saves off the package details into the HW structure.
1250  */
1251 static enum ice_ddp_state
1252 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1253 {
1254 	struct ice_generic_seg_hdr *seg_hdr;
1255 
1256 	if (!pkg_hdr)
1257 		return ICE_DDP_PKG_ERR;
1258 
1259 	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1260 	if (seg_hdr) {
1261 		struct ice_meta_sect *meta;
1262 		struct ice_pkg_enum state;
1263 
1264 		memset(&state, 0, sizeof(state));
1265 
1266 		/* Get package information from the Metadata Section */
1267 		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1268 					    ICE_SID_METADATA);
1269 		if (!meta) {
1270 			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1271 			return ICE_DDP_PKG_INVALID_FILE;
1272 		}
1273 
1274 		hw->pkg_ver = meta->ver;
1275 		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1276 
1277 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1278 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1279 			  meta->ver.draft, meta->name);
1280 
1281 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1282 		memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1283 		       sizeof(hw->ice_seg_id));
1284 
1285 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1286 			  seg_hdr->seg_format_ver.major,
1287 			  seg_hdr->seg_format_ver.minor,
1288 			  seg_hdr->seg_format_ver.update,
1289 			  seg_hdr->seg_format_ver.draft,
1290 			  seg_hdr->seg_id);
1291 	} else {
1292 		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1293 		return ICE_DDP_PKG_INVALID_FILE;
1294 	}
1295 
1296 	return ICE_DDP_PKG_SUCCESS;
1297 }
1298 
1299 /**
1300  * ice_get_pkg_info
1301  * @hw: pointer to the hardware structure
1302  *
1303  * Store details of the package currently loaded in HW into the HW structure.
1304  */
1305 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1306 {
1307 	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1308 	struct ice_aqc_get_pkg_info_resp *pkg_info;
1309 	u16 size;
1310 	u32 i;
1311 
1312 	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1313 	pkg_info = kzalloc(size, GFP_KERNEL);
1314 	if (!pkg_info)
1315 		return ICE_DDP_PKG_ERR;
1316 
1317 	if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
1318 		state = ICE_DDP_PKG_ERR;
1319 		goto init_pkg_free_alloc;
1320 	}
1321 
1322 	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1323 #define ICE_PKG_FLAG_COUNT	4
1324 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1325 		u8 place = 0;
1326 
1327 		if (pkg_info->pkg_info[i].is_active) {
1328 			flags[place++] = 'A';
1329 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1330 			hw->active_track_id =
1331 				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1332 			memcpy(hw->active_pkg_name,
1333 			       pkg_info->pkg_info[i].name,
1334 			       sizeof(pkg_info->pkg_info[i].name));
1335 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1336 		}
1337 		if (pkg_info->pkg_info[i].is_active_at_boot)
1338 			flags[place++] = 'B';
1339 		if (pkg_info->pkg_info[i].is_modified)
1340 			flags[place++] = 'M';
1341 		if (pkg_info->pkg_info[i].is_in_nvm)
1342 			flags[place++] = 'N';
1343 
1344 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1345 			  i, pkg_info->pkg_info[i].ver.major,
1346 			  pkg_info->pkg_info[i].ver.minor,
1347 			  pkg_info->pkg_info[i].ver.update,
1348 			  pkg_info->pkg_info[i].ver.draft,
1349 			  pkg_info->pkg_info[i].name, flags);
1350 	}
1351 
1352 init_pkg_free_alloc:
1353 	kfree(pkg_info);
1354 
1355 	return state;
1356 }
1357 
1358 /**
1359  * ice_verify_pkg - verify package
1360  * @pkg: pointer to the package buffer
1361  * @len: size of the package buffer
1362  *
1363  * Verifies various attributes of the package file, including length, format
1364  * version, and the requirement of at least one segment.
1365  */
1366 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1367 {
1368 	u32 seg_count;
1369 	u32 i;
1370 
1371 	if (len < struct_size(pkg, seg_offset, 1))
1372 		return ICE_DDP_PKG_INVALID_FILE;
1373 
1374 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1375 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1376 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1377 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1378 		return ICE_DDP_PKG_INVALID_FILE;
1379 
1380 	/* pkg must have at least one segment */
1381 	seg_count = le32_to_cpu(pkg->seg_count);
1382 	if (seg_count < 1)
1383 		return ICE_DDP_PKG_INVALID_FILE;
1384 
1385 	/* make sure segment array fits in package length */
1386 	if (len < struct_size(pkg, seg_offset, seg_count))
1387 		return ICE_DDP_PKG_INVALID_FILE;
1388 
1389 	/* all segments must fit within length */
1390 	for (i = 0; i < seg_count; i++) {
1391 		u32 off = le32_to_cpu(pkg->seg_offset[i]);
1392 		struct ice_generic_seg_hdr *seg;
1393 
1394 		/* segment header must fit */
1395 		if (len < off + sizeof(*seg))
1396 			return ICE_DDP_PKG_INVALID_FILE;
1397 
1398 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1399 
1400 		/* segment body must fit */
1401 		if (len < off + le32_to_cpu(seg->seg_size))
1402 			return ICE_DDP_PKG_INVALID_FILE;
1403 	}
1404 
1405 	return ICE_DDP_PKG_SUCCESS;
1406 }
1407 
1408 /**
1409  * ice_free_seg - free package segment pointer
1410  * @hw: pointer to the hardware structure
1411  *
1412  * Frees the package segment pointer in the proper manner, depending on if the
1413  * segment was allocated or just the passed in pointer was stored.
1414  */
1415 void ice_free_seg(struct ice_hw *hw)
1416 {
1417 	if (hw->pkg_copy) {
1418 		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1419 		hw->pkg_copy = NULL;
1420 		hw->pkg_size = 0;
1421 	}
1422 	hw->seg = NULL;
1423 }
1424 
1425 /**
1426  * ice_init_pkg_regs - initialize additional package registers
1427  * @hw: pointer to the hardware structure
1428  */
1429 static void ice_init_pkg_regs(struct ice_hw *hw)
1430 {
1431 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1432 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1433 #define ICE_SW_BLK_IDX	0
1434 
1435 	/* setup Switch block input mask, which is 48-bits in two parts */
1436 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1437 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1438 }
1439 
1440 /**
1441  * ice_chk_pkg_version - check package version for compatibility with driver
1442  * @pkg_ver: pointer to a version structure to check
1443  *
1444  * Check to make sure that the package about to be downloaded is compatible with
1445  * the driver. To be compatible, the major and minor components of the package
1446  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1447  * definitions.
1448  */
1449 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1450 {
1451 	if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
1452 	    (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1453 	     pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
1454 		return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
1455 	else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
1456 		 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1457 		  pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
1458 		return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
1459 
1460 	return ICE_DDP_PKG_SUCCESS;
1461 }
1462 
1463 /**
1464  * ice_chk_pkg_compat
1465  * @hw: pointer to the hardware structure
1466  * @ospkg: pointer to the package hdr
1467  * @seg: pointer to the package segment hdr
1468  *
1469  * This function checks the package version compatibility with driver and NVM
1470  */
1471 static enum ice_ddp_state
1472 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1473 		   struct ice_seg **seg)
1474 {
1475 	struct ice_aqc_get_pkg_info_resp *pkg;
1476 	enum ice_ddp_state state;
1477 	u16 size;
1478 	u32 i;
1479 
1480 	/* Check package version compatibility */
1481 	state = ice_chk_pkg_version(&hw->pkg_ver);
1482 	if (state) {
1483 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1484 		return state;
1485 	}
1486 
1487 	/* find ICE segment in given package */
1488 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1489 						     ospkg);
1490 	if (!*seg) {
1491 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1492 		return ICE_DDP_PKG_INVALID_FILE;
1493 	}
1494 
1495 	/* Check if FW is compatible with the OS package */
1496 	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1497 	pkg = kzalloc(size, GFP_KERNEL);
1498 	if (!pkg)
1499 		return ICE_DDP_PKG_ERR;
1500 
1501 	if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
1502 		state = ICE_DDP_PKG_LOAD_ERROR;
1503 		goto fw_ddp_compat_free_alloc;
1504 	}
1505 
1506 	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1507 		/* loop till we find the NVM package */
1508 		if (!pkg->pkg_info[i].is_in_nvm)
1509 			continue;
1510 		if ((*seg)->hdr.seg_format_ver.major !=
1511 			pkg->pkg_info[i].ver.major ||
1512 		    (*seg)->hdr.seg_format_ver.minor >
1513 			pkg->pkg_info[i].ver.minor) {
1514 			state = ICE_DDP_PKG_FW_MISMATCH;
1515 			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1516 		}
1517 		/* done processing NVM package so break */
1518 		break;
1519 	}
1520 fw_ddp_compat_free_alloc:
1521 	kfree(pkg);
1522 	return state;
1523 }
1524 
1525 /**
1526  * ice_sw_fv_handler
1527  * @sect_type: section type
1528  * @section: pointer to section
1529  * @index: index of the field vector entry to be returned
1530  * @offset: ptr to variable that receives the offset in the field vector table
1531  *
1532  * This is a callback function that can be passed to ice_pkg_enum_entry.
1533  * This function treats the given section as of type ice_sw_fv_section and
1534  * enumerates offset field. "offset" is an index into the field vector table.
1535  */
1536 static void *
1537 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1538 {
1539 	struct ice_sw_fv_section *fv_section = section;
1540 
1541 	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1542 		return NULL;
1543 	if (index >= le16_to_cpu(fv_section->count))
1544 		return NULL;
1545 	if (offset)
1546 		/* "index" passed in to this function is relative to a given
1547 		 * 4k block. To get to the true index into the field vector
1548 		 * table need to add the relative index to the base_offset
1549 		 * field of this section
1550 		 */
1551 		*offset = le16_to_cpu(fv_section->base_offset) + index;
1552 	return fv_section->fv + index;
1553 }
1554 
1555 /**
1556  * ice_get_prof_index_max - get the max profile index for used profile
1557  * @hw: pointer to the HW struct
1558  *
1559  * Calling this function will get the max profile index for used profile
1560  * and store the index number in struct ice_switch_info *switch_info
1561  * in HW for following use.
1562  */
1563 static int ice_get_prof_index_max(struct ice_hw *hw)
1564 {
1565 	u16 prof_index = 0, j, max_prof_index = 0;
1566 	struct ice_pkg_enum state;
1567 	struct ice_seg *ice_seg;
1568 	bool flag = false;
1569 	struct ice_fv *fv;
1570 	u32 offset;
1571 
1572 	memset(&state, 0, sizeof(state));
1573 
1574 	if (!hw->seg)
1575 		return -EINVAL;
1576 
1577 	ice_seg = hw->seg;
1578 
1579 	do {
1580 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1581 					&offset, ice_sw_fv_handler);
1582 		if (!fv)
1583 			break;
1584 		ice_seg = NULL;
1585 
1586 		/* in the profile that not be used, the prot_id is set to 0xff
1587 		 * and the off is set to 0x1ff for all the field vectors.
1588 		 */
1589 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1590 			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1591 			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1592 				flag = true;
1593 		if (flag && prof_index > max_prof_index)
1594 			max_prof_index = prof_index;
1595 
1596 		prof_index++;
1597 		flag = false;
1598 	} while (fv);
1599 
1600 	hw->switch_info->max_used_prof_index = max_prof_index;
1601 
1602 	return 0;
1603 }
1604 
1605 /**
1606  * ice_get_ddp_pkg_state - get DDP pkg state after download
1607  * @hw: pointer to the HW struct
1608  * @already_loaded: indicates if pkg was already loaded onto the device
1609  */
1610 static enum ice_ddp_state
1611 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
1612 {
1613 	if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
1614 	    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
1615 	    hw->pkg_ver.update == hw->active_pkg_ver.update &&
1616 	    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
1617 	    !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
1618 		if (already_loaded)
1619 			return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
1620 		else
1621 			return ICE_DDP_PKG_SUCCESS;
1622 	} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
1623 		   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
1624 		return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
1625 	} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
1626 		   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
1627 		return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
1628 	} else {
1629 		return ICE_DDP_PKG_ERR;
1630 	}
1631 }
1632 
1633 /**
1634  * ice_init_pkg - initialize/download package
1635  * @hw: pointer to the hardware structure
1636  * @buf: pointer to the package buffer
1637  * @len: size of the package buffer
1638  *
1639  * This function initializes a package. The package contains HW tables
1640  * required to do packet processing. First, the function extracts package
1641  * information such as version. Then it finds the ice configuration segment
1642  * within the package; this function then saves a copy of the segment pointer
1643  * within the supplied package buffer. Next, the function will cache any hints
1644  * from the package, followed by downloading the package itself. Note, that if
1645  * a previous PF driver has already downloaded the package successfully, then
1646  * the current driver will not have to download the package again.
1647  *
1648  * The local package contents will be used to query default behavior and to
1649  * update specific sections of the HW's version of the package (e.g. to update
1650  * the parse graph to understand new protocols).
1651  *
1652  * This function stores a pointer to the package buffer memory, and it is
1653  * expected that the supplied buffer will not be freed immediately. If the
1654  * package buffer needs to be freed, such as when read from a file, use
1655  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1656  * case.
1657  */
1658 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1659 {
1660 	bool already_loaded = false;
1661 	enum ice_ddp_state state;
1662 	struct ice_pkg_hdr *pkg;
1663 	struct ice_seg *seg;
1664 
1665 	if (!buf || !len)
1666 		return ICE_DDP_PKG_ERR;
1667 
1668 	pkg = (struct ice_pkg_hdr *)buf;
1669 	state = ice_verify_pkg(pkg, len);
1670 	if (state) {
1671 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1672 			  state);
1673 		return state;
1674 	}
1675 
1676 	/* initialize package info */
1677 	state = ice_init_pkg_info(hw, pkg);
1678 	if (state)
1679 		return state;
1680 
1681 	/* before downloading the package, check package version for
1682 	 * compatibility with driver
1683 	 */
1684 	state = ice_chk_pkg_compat(hw, pkg, &seg);
1685 	if (state)
1686 		return state;
1687 
1688 	/* initialize package hints and then download package */
1689 	ice_init_pkg_hints(hw, seg);
1690 	state = ice_download_pkg(hw, seg);
1691 	if (state == ICE_DDP_PKG_ALREADY_LOADED) {
1692 		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1693 		already_loaded = true;
1694 	}
1695 
1696 	/* Get information on the package currently loaded in HW, then make sure
1697 	 * the driver is compatible with this version.
1698 	 */
1699 	if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
1700 		state = ice_get_pkg_info(hw);
1701 		if (!state)
1702 			state = ice_get_ddp_pkg_state(hw, already_loaded);
1703 	}
1704 
1705 	if (ice_is_init_pkg_successful(state)) {
1706 		hw->seg = seg;
1707 		/* on successful package download update other required
1708 		 * registers to support the package and fill HW tables
1709 		 * with package content.
1710 		 */
1711 		ice_init_pkg_regs(hw);
1712 		ice_fill_blk_tbls(hw);
1713 		ice_fill_hw_ptype(hw);
1714 		ice_get_prof_index_max(hw);
1715 	} else {
1716 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1717 			  state);
1718 	}
1719 
1720 	return state;
1721 }
1722 
1723 /**
1724  * ice_copy_and_init_pkg - initialize/download a copy of the package
1725  * @hw: pointer to the hardware structure
1726  * @buf: pointer to the package buffer
1727  * @len: size of the package buffer
1728  *
1729  * This function copies the package buffer, and then calls ice_init_pkg() to
1730  * initialize the copied package contents.
1731  *
1732  * The copying is necessary if the package buffer supplied is constant, or if
1733  * the memory may disappear shortly after calling this function.
1734  *
1735  * If the package buffer resides in the data segment and can be modified, the
1736  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1737  *
1738  * However, if the package buffer needs to be copied first, such as when being
1739  * read from a file, the caller should use ice_copy_and_init_pkg().
1740  *
1741  * This function will first copy the package buffer, before calling
1742  * ice_init_pkg(). The caller is free to immediately destroy the original
1743  * package buffer, as the new copy will be managed by this function and
1744  * related routines.
1745  */
1746 enum ice_ddp_state
1747 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1748 {
1749 	enum ice_ddp_state state;
1750 	u8 *buf_copy;
1751 
1752 	if (!buf || !len)
1753 		return ICE_DDP_PKG_ERR;
1754 
1755 	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1756 
1757 	state = ice_init_pkg(hw, buf_copy, len);
1758 	if (!ice_is_init_pkg_successful(state)) {
1759 		/* Free the copy, since we failed to initialize the package */
1760 		devm_kfree(ice_hw_to_dev(hw), buf_copy);
1761 	} else {
1762 		/* Track the copied pkg so we can free it later */
1763 		hw->pkg_copy = buf_copy;
1764 		hw->pkg_size = len;
1765 	}
1766 
1767 	return state;
1768 }
1769 
1770 /**
1771  * ice_is_init_pkg_successful - check if DDP init was successful
1772  * @state: state of the DDP pkg after download
1773  */
1774 bool ice_is_init_pkg_successful(enum ice_ddp_state state)
1775 {
1776 	switch (state) {
1777 	case ICE_DDP_PKG_SUCCESS:
1778 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
1779 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
1780 		return true;
1781 	default:
1782 		return false;
1783 	}
1784 }
1785 
1786 /**
1787  * ice_pkg_buf_alloc
1788  * @hw: pointer to the HW structure
1789  *
1790  * Allocates a package buffer and returns a pointer to the buffer header.
1791  * Note: all package contents must be in Little Endian form.
1792  */
1793 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1794 {
1795 	struct ice_buf_build *bld;
1796 	struct ice_buf_hdr *buf;
1797 
1798 	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1799 	if (!bld)
1800 		return NULL;
1801 
1802 	buf = (struct ice_buf_hdr *)bld;
1803 	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1804 					     section_entry));
1805 	return bld;
1806 }
1807 
1808 static bool ice_is_gtp_u_profile(u16 prof_idx)
1809 {
1810 	return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
1811 		prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
1812 	       prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
1813 }
1814 
1815 static bool ice_is_gtp_c_profile(u16 prof_idx)
1816 {
1817 	switch (prof_idx) {
1818 	case ICE_PROFID_IPV4_GTPC_TEID:
1819 	case ICE_PROFID_IPV4_GTPC_NO_TEID:
1820 	case ICE_PROFID_IPV6_GTPC_TEID:
1821 	case ICE_PROFID_IPV6_GTPC_NO_TEID:
1822 		return true;
1823 	default:
1824 		return false;
1825 	}
1826 }
1827 
1828 /**
1829  * ice_get_sw_prof_type - determine switch profile type
1830  * @hw: pointer to the HW structure
1831  * @fv: pointer to the switch field vector
1832  * @prof_idx: profile index to check
1833  */
1834 static enum ice_prof_type
1835 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
1836 {
1837 	u16 i;
1838 
1839 	if (ice_is_gtp_c_profile(prof_idx))
1840 		return ICE_PROF_TUN_GTPC;
1841 
1842 	if (ice_is_gtp_u_profile(prof_idx))
1843 		return ICE_PROF_TUN_GTPU;
1844 
1845 	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1846 		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1847 		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1848 		    fv->ew[i].off == ICE_VNI_OFFSET)
1849 			return ICE_PROF_TUN_UDP;
1850 
1851 		/* GRE tunnel will have GRE protocol */
1852 		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1853 			return ICE_PROF_TUN_GRE;
1854 	}
1855 
1856 	return ICE_PROF_NON_TUN;
1857 }
1858 
1859 /**
1860  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1861  * @hw: pointer to hardware structure
1862  * @req_profs: type of profiles requested
1863  * @bm: pointer to memory for returning the bitmap of field vectors
1864  */
1865 void
1866 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1867 		     unsigned long *bm)
1868 {
1869 	struct ice_pkg_enum state;
1870 	struct ice_seg *ice_seg;
1871 	struct ice_fv *fv;
1872 
1873 	if (req_profs == ICE_PROF_ALL) {
1874 		bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1875 		return;
1876 	}
1877 
1878 	memset(&state, 0, sizeof(state));
1879 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
1880 	ice_seg = hw->seg;
1881 	do {
1882 		enum ice_prof_type prof_type;
1883 		u32 offset;
1884 
1885 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1886 					&offset, ice_sw_fv_handler);
1887 		ice_seg = NULL;
1888 
1889 		if (fv) {
1890 			/* Determine field vector type */
1891 			prof_type = ice_get_sw_prof_type(hw, fv, offset);
1892 
1893 			if (req_profs & prof_type)
1894 				set_bit((u16)offset, bm);
1895 		}
1896 	} while (fv);
1897 }
1898 
1899 /**
1900  * ice_get_sw_fv_list
1901  * @hw: pointer to the HW structure
1902  * @lkups: list of protocol types
1903  * @bm: bitmap of field vectors to consider
1904  * @fv_list: Head of a list
1905  *
1906  * Finds all the field vector entries from switch block that contain
1907  * a given protocol ID and offset and returns a list of structures of type
1908  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1909  * definition and profile ID information
1910  * NOTE: The caller of the function is responsible for freeing the memory
1911  * allocated for every list entry.
1912  */
1913 int
1914 ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
1915 		   unsigned long *bm, struct list_head *fv_list)
1916 {
1917 	struct ice_sw_fv_list_entry *fvl;
1918 	struct ice_sw_fv_list_entry *tmp;
1919 	struct ice_pkg_enum state;
1920 	struct ice_seg *ice_seg;
1921 	struct ice_fv *fv;
1922 	u32 offset;
1923 
1924 	memset(&state, 0, sizeof(state));
1925 
1926 	if (!lkups->n_val_words || !hw->seg)
1927 		return -EINVAL;
1928 
1929 	ice_seg = hw->seg;
1930 	do {
1931 		u16 i;
1932 
1933 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1934 					&offset, ice_sw_fv_handler);
1935 		if (!fv)
1936 			break;
1937 		ice_seg = NULL;
1938 
1939 		/* If field vector is not in the bitmap list, then skip this
1940 		 * profile.
1941 		 */
1942 		if (!test_bit((u16)offset, bm))
1943 			continue;
1944 
1945 		for (i = 0; i < lkups->n_val_words; i++) {
1946 			int j;
1947 
1948 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1949 				if (fv->ew[j].prot_id ==
1950 				    lkups->fv_words[i].prot_id &&
1951 				    fv->ew[j].off == lkups->fv_words[i].off)
1952 					break;
1953 			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1954 				break;
1955 			if (i + 1 == lkups->n_val_words) {
1956 				fvl = devm_kzalloc(ice_hw_to_dev(hw),
1957 						   sizeof(*fvl), GFP_KERNEL);
1958 				if (!fvl)
1959 					goto err;
1960 				fvl->fv_ptr = fv;
1961 				fvl->profile_id = offset;
1962 				list_add(&fvl->list_entry, fv_list);
1963 				break;
1964 			}
1965 		}
1966 	} while (fv);
1967 	if (list_empty(fv_list)) {
1968 		dev_warn(ice_hw_to_dev(hw), "Required profiles not found in currently loaded DDP package");
1969 		return -EIO;
1970 	}
1971 
1972 	return 0;
1973 
1974 err:
1975 	list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
1976 		list_del(&fvl->list_entry);
1977 		devm_kfree(ice_hw_to_dev(hw), fvl);
1978 	}
1979 
1980 	return -ENOMEM;
1981 }
1982 
1983 /**
1984  * ice_init_prof_result_bm - Initialize the profile result index bitmap
1985  * @hw: pointer to hardware structure
1986  */
1987 void ice_init_prof_result_bm(struct ice_hw *hw)
1988 {
1989 	struct ice_pkg_enum state;
1990 	struct ice_seg *ice_seg;
1991 	struct ice_fv *fv;
1992 
1993 	memset(&state, 0, sizeof(state));
1994 
1995 	if (!hw->seg)
1996 		return;
1997 
1998 	ice_seg = hw->seg;
1999 	do {
2000 		u32 off;
2001 		u16 i;
2002 
2003 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
2004 					&off, ice_sw_fv_handler);
2005 		ice_seg = NULL;
2006 		if (!fv)
2007 			break;
2008 
2009 		bitmap_zero(hw->switch_info->prof_res_bm[off],
2010 			    ICE_MAX_FV_WORDS);
2011 
2012 		/* Determine empty field vector indices, these can be
2013 		 * used for recipe results. Skip index 0, since it is
2014 		 * always used for Switch ID.
2015 		 */
2016 		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
2017 			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
2018 			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
2019 				set_bit(i, hw->switch_info->prof_res_bm[off]);
2020 	} while (fv);
2021 }
2022 
2023 /**
2024  * ice_pkg_buf_free
2025  * @hw: pointer to the HW structure
2026  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2027  *
2028  * Frees a package buffer
2029  */
2030 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
2031 {
2032 	devm_kfree(ice_hw_to_dev(hw), bld);
2033 }
2034 
2035 /**
2036  * ice_pkg_buf_reserve_section
2037  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2038  * @count: the number of sections to reserve
2039  *
2040  * Reserves one or more section table entries in a package buffer. This routine
2041  * can be called multiple times as long as they are made before calling
2042  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2043  * is called once, the number of sections that can be allocated will not be able
2044  * to be increased; not using all reserved sections is fine, but this will
2045  * result in some wasted space in the buffer.
2046  * Note: all package contents must be in Little Endian form.
2047  */
2048 static int
2049 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2050 {
2051 	struct ice_buf_hdr *buf;
2052 	u16 section_count;
2053 	u16 data_end;
2054 
2055 	if (!bld)
2056 		return -EINVAL;
2057 
2058 	buf = (struct ice_buf_hdr *)&bld->buf;
2059 
2060 	/* already an active section, can't increase table size */
2061 	section_count = le16_to_cpu(buf->section_count);
2062 	if (section_count > 0)
2063 		return -EIO;
2064 
2065 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2066 		return -EIO;
2067 	bld->reserved_section_table_entries += count;
2068 
2069 	data_end = le16_to_cpu(buf->data_end) +
2070 		flex_array_size(buf, section_entry, count);
2071 	buf->data_end = cpu_to_le16(data_end);
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  * ice_pkg_buf_alloc_section
2078  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2079  * @type: the section type value
2080  * @size: the size of the section to reserve (in bytes)
2081  *
2082  * Reserves memory in the buffer for a section's content and updates the
2083  * buffers' status accordingly. This routine returns a pointer to the first
2084  * byte of the section start within the buffer, which is used to fill in the
2085  * section contents.
2086  * Note: all package contents must be in Little Endian form.
2087  */
2088 static void *
2089 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2090 {
2091 	struct ice_buf_hdr *buf;
2092 	u16 sect_count;
2093 	u16 data_end;
2094 
2095 	if (!bld || !type || !size)
2096 		return NULL;
2097 
2098 	buf = (struct ice_buf_hdr *)&bld->buf;
2099 
2100 	/* check for enough space left in buffer */
2101 	data_end = le16_to_cpu(buf->data_end);
2102 
2103 	/* section start must align on 4 byte boundary */
2104 	data_end = ALIGN(data_end, 4);
2105 
2106 	if ((data_end + size) > ICE_MAX_S_DATA_END)
2107 		return NULL;
2108 
2109 	/* check for more available section table entries */
2110 	sect_count = le16_to_cpu(buf->section_count);
2111 	if (sect_count < bld->reserved_section_table_entries) {
2112 		void *section_ptr = ((u8 *)buf) + data_end;
2113 
2114 		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
2115 		buf->section_entry[sect_count].size = cpu_to_le16(size);
2116 		buf->section_entry[sect_count].type = cpu_to_le32(type);
2117 
2118 		data_end += size;
2119 		buf->data_end = cpu_to_le16(data_end);
2120 
2121 		buf->section_count = cpu_to_le16(sect_count + 1);
2122 		return section_ptr;
2123 	}
2124 
2125 	/* no free section table entries */
2126 	return NULL;
2127 }
2128 
2129 /**
2130  * ice_pkg_buf_alloc_single_section
2131  * @hw: pointer to the HW structure
2132  * @type: the section type value
2133  * @size: the size of the section to reserve (in bytes)
2134  * @section: returns pointer to the section
2135  *
2136  * Allocates a package buffer with a single section.
2137  * Note: all package contents must be in Little Endian form.
2138  */
2139 struct ice_buf_build *
2140 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2141 				 void **section)
2142 {
2143 	struct ice_buf_build *buf;
2144 
2145 	if (!section)
2146 		return NULL;
2147 
2148 	buf = ice_pkg_buf_alloc(hw);
2149 	if (!buf)
2150 		return NULL;
2151 
2152 	if (ice_pkg_buf_reserve_section(buf, 1))
2153 		goto ice_pkg_buf_alloc_single_section_err;
2154 
2155 	*section = ice_pkg_buf_alloc_section(buf, type, size);
2156 	if (!*section)
2157 		goto ice_pkg_buf_alloc_single_section_err;
2158 
2159 	return buf;
2160 
2161 ice_pkg_buf_alloc_single_section_err:
2162 	ice_pkg_buf_free(hw, buf);
2163 	return NULL;
2164 }
2165 
2166 /**
2167  * ice_pkg_buf_get_active_sections
2168  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2169  *
2170  * Returns the number of active sections. Before using the package buffer
2171  * in an update package command, the caller should make sure that there is at
2172  * least one active section - otherwise, the buffer is not legal and should
2173  * not be used.
2174  * Note: all package contents must be in Little Endian form.
2175  */
2176 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2177 {
2178 	struct ice_buf_hdr *buf;
2179 
2180 	if (!bld)
2181 		return 0;
2182 
2183 	buf = (struct ice_buf_hdr *)&bld->buf;
2184 	return le16_to_cpu(buf->section_count);
2185 }
2186 
2187 /**
2188  * ice_pkg_buf
2189  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2190  *
2191  * Return a pointer to the buffer's header
2192  */
2193 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2194 {
2195 	if (!bld)
2196 		return NULL;
2197 
2198 	return &bld->buf;
2199 }
2200 
2201 /**
2202  * ice_get_open_tunnel_port - retrieve an open tunnel port
2203  * @hw: pointer to the HW structure
2204  * @port: returns open port
2205  * @type: type of tunnel, can be TNL_LAST if it doesn't matter
2206  */
2207 bool
2208 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
2209 			 enum ice_tunnel_type type)
2210 {
2211 	bool res = false;
2212 	u16 i;
2213 
2214 	mutex_lock(&hw->tnl_lock);
2215 
2216 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2217 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
2218 		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
2219 			*port = hw->tnl.tbl[i].port;
2220 			res = true;
2221 			break;
2222 		}
2223 
2224 	mutex_unlock(&hw->tnl_lock);
2225 
2226 	return res;
2227 }
2228 
2229 /**
2230  * ice_upd_dvm_boost_entry
2231  * @hw: pointer to the HW structure
2232  * @entry: pointer to double vlan boost entry info
2233  */
2234 static int
2235 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2236 {
2237 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2238 	int status = -ENOSPC;
2239 	struct ice_buf_build *bld;
2240 	u8 val, dc, nm;
2241 
2242 	bld = ice_pkg_buf_alloc(hw);
2243 	if (!bld)
2244 		return -ENOMEM;
2245 
2246 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2247 	if (ice_pkg_buf_reserve_section(bld, 2))
2248 		goto ice_upd_dvm_boost_entry_err;
2249 
2250 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2251 					    struct_size(sect_rx, tcam, 1));
2252 	if (!sect_rx)
2253 		goto ice_upd_dvm_boost_entry_err;
2254 	sect_rx->count = cpu_to_le16(1);
2255 
2256 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2257 					    struct_size(sect_tx, tcam, 1));
2258 	if (!sect_tx)
2259 		goto ice_upd_dvm_boost_entry_err;
2260 	sect_tx->count = cpu_to_le16(1);
2261 
2262 	/* copy original boost entry to update package buffer */
2263 	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
2264 
2265 	/* re-write the don't care and never match bits accordingly */
2266 	if (entry->enable) {
2267 		/* all bits are don't care */
2268 		val = 0x00;
2269 		dc = 0xFF;
2270 		nm = 0x00;
2271 	} else {
2272 		/* disable, one never match bit, the rest are don't care */
2273 		val = 0x00;
2274 		dc = 0xF7;
2275 		nm = 0x08;
2276 	}
2277 
2278 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2279 		    &val, NULL, &dc, &nm, 0, sizeof(u8));
2280 
2281 	/* exact copy of entry to Tx section entry */
2282 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2283 
2284 	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2285 
2286 ice_upd_dvm_boost_entry_err:
2287 	ice_pkg_buf_free(hw, bld);
2288 
2289 	return status;
2290 }
2291 
2292 /**
2293  * ice_set_dvm_boost_entries
2294  * @hw: pointer to the HW structure
2295  *
2296  * Enable double vlan by updating the appropriate boost tcam entries.
2297  */
2298 int ice_set_dvm_boost_entries(struct ice_hw *hw)
2299 {
2300 	int status;
2301 	u16 i;
2302 
2303 	for (i = 0; i < hw->dvm_upd.count; i++) {
2304 		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2305 		if (status)
2306 			return status;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 /**
2313  * ice_tunnel_idx_to_entry - convert linear index to the sparse one
2314  * @hw: pointer to the HW structure
2315  * @type: type of tunnel
2316  * @idx: linear index
2317  *
2318  * Stack assumes we have 2 linear tables with indexes [0, count_valid),
2319  * but really the port table may be sprase, and types are mixed, so convert
2320  * the stack index into the device index.
2321  */
2322 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2323 				   u16 idx)
2324 {
2325 	u16 i;
2326 
2327 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2328 		if (hw->tnl.tbl[i].valid &&
2329 		    hw->tnl.tbl[i].type == type &&
2330 		    idx-- == 0)
2331 			return i;
2332 
2333 	WARN_ON_ONCE(1);
2334 	return 0;
2335 }
2336 
2337 /**
2338  * ice_create_tunnel
2339  * @hw: pointer to the HW structure
2340  * @index: device table entry
2341  * @type: type of tunnel
2342  * @port: port of tunnel to create
2343  *
2344  * Create a tunnel by updating the parse graph in the parser. We do that by
2345  * creating a package buffer with the tunnel info and issuing an update package
2346  * command.
2347  */
2348 static int
2349 ice_create_tunnel(struct ice_hw *hw, u16 index,
2350 		  enum ice_tunnel_type type, u16 port)
2351 {
2352 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2353 	struct ice_buf_build *bld;
2354 	int status = -ENOSPC;
2355 
2356 	mutex_lock(&hw->tnl_lock);
2357 
2358 	bld = ice_pkg_buf_alloc(hw);
2359 	if (!bld) {
2360 		status = -ENOMEM;
2361 		goto ice_create_tunnel_end;
2362 	}
2363 
2364 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2365 	if (ice_pkg_buf_reserve_section(bld, 2))
2366 		goto ice_create_tunnel_err;
2367 
2368 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2369 					    struct_size(sect_rx, tcam, 1));
2370 	if (!sect_rx)
2371 		goto ice_create_tunnel_err;
2372 	sect_rx->count = cpu_to_le16(1);
2373 
2374 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2375 					    struct_size(sect_tx, tcam, 1));
2376 	if (!sect_tx)
2377 		goto ice_create_tunnel_err;
2378 	sect_tx->count = cpu_to_le16(1);
2379 
2380 	/* copy original boost entry to update package buffer */
2381 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2382 	       sizeof(*sect_rx->tcam));
2383 
2384 	/* over-write the never-match dest port key bits with the encoded port
2385 	 * bits
2386 	 */
2387 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2388 		    (u8 *)&port, NULL, NULL, NULL,
2389 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2390 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2391 
2392 	/* exact copy of entry to Tx section entry */
2393 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2394 
2395 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2396 	if (!status)
2397 		hw->tnl.tbl[index].port = port;
2398 
2399 ice_create_tunnel_err:
2400 	ice_pkg_buf_free(hw, bld);
2401 
2402 ice_create_tunnel_end:
2403 	mutex_unlock(&hw->tnl_lock);
2404 
2405 	return status;
2406 }
2407 
2408 /**
2409  * ice_destroy_tunnel
2410  * @hw: pointer to the HW structure
2411  * @index: device table entry
2412  * @type: type of tunnel
2413  * @port: port of tunnel to destroy (ignored if the all parameter is true)
2414  *
2415  * Destroys a tunnel or all tunnels by creating an update package buffer
2416  * targeting the specific updates requested and then performing an update
2417  * package.
2418  */
2419 static int
2420 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
2421 		   u16 port)
2422 {
2423 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2424 	struct ice_buf_build *bld;
2425 	int status = -ENOSPC;
2426 
2427 	mutex_lock(&hw->tnl_lock);
2428 
2429 	if (WARN_ON(!hw->tnl.tbl[index].valid ||
2430 		    hw->tnl.tbl[index].type != type ||
2431 		    hw->tnl.tbl[index].port != port)) {
2432 		status = -EIO;
2433 		goto ice_destroy_tunnel_end;
2434 	}
2435 
2436 	bld = ice_pkg_buf_alloc(hw);
2437 	if (!bld) {
2438 		status = -ENOMEM;
2439 		goto ice_destroy_tunnel_end;
2440 	}
2441 
2442 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2443 	if (ice_pkg_buf_reserve_section(bld, 2))
2444 		goto ice_destroy_tunnel_err;
2445 
2446 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2447 					    struct_size(sect_rx, tcam, 1));
2448 	if (!sect_rx)
2449 		goto ice_destroy_tunnel_err;
2450 	sect_rx->count = cpu_to_le16(1);
2451 
2452 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2453 					    struct_size(sect_tx, tcam, 1));
2454 	if (!sect_tx)
2455 		goto ice_destroy_tunnel_err;
2456 	sect_tx->count = cpu_to_le16(1);
2457 
2458 	/* copy original boost entry to update package buffer, one copy to Rx
2459 	 * section, another copy to the Tx section
2460 	 */
2461 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2462 	       sizeof(*sect_rx->tcam));
2463 	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
2464 	       sizeof(*sect_tx->tcam));
2465 
2466 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2467 	if (!status)
2468 		hw->tnl.tbl[index].port = 0;
2469 
2470 ice_destroy_tunnel_err:
2471 	ice_pkg_buf_free(hw, bld);
2472 
2473 ice_destroy_tunnel_end:
2474 	mutex_unlock(&hw->tnl_lock);
2475 
2476 	return status;
2477 }
2478 
2479 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
2480 			    unsigned int idx, struct udp_tunnel_info *ti)
2481 {
2482 	struct ice_netdev_priv *np = netdev_priv(netdev);
2483 	struct ice_vsi *vsi = np->vsi;
2484 	struct ice_pf *pf = vsi->back;
2485 	enum ice_tunnel_type tnl_type;
2486 	int status;
2487 	u16 index;
2488 
2489 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2490 	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
2491 
2492 	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
2493 	if (status) {
2494 		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
2495 			   status);
2496 		return -EIO;
2497 	}
2498 
2499 	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
2500 	return 0;
2501 }
2502 
2503 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
2504 			      unsigned int idx, struct udp_tunnel_info *ti)
2505 {
2506 	struct ice_netdev_priv *np = netdev_priv(netdev);
2507 	struct ice_vsi *vsi = np->vsi;
2508 	struct ice_pf *pf = vsi->back;
2509 	enum ice_tunnel_type tnl_type;
2510 	int status;
2511 
2512 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2513 
2514 	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
2515 				    ntohs(ti->port));
2516 	if (status) {
2517 		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
2518 			   status);
2519 		return -EIO;
2520 	}
2521 
2522 	return 0;
2523 }
2524 
2525 /**
2526  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2527  * @hw: pointer to the hardware structure
2528  * @blk: hardware block
2529  * @prof: profile ID
2530  * @fv_idx: field vector word index
2531  * @prot: variable to receive the protocol ID
2532  * @off: variable to receive the protocol offset
2533  */
2534 int
2535 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2536 		  u8 *prot, u16 *off)
2537 {
2538 	struct ice_fv_word *fv_ext;
2539 
2540 	if (prof >= hw->blk[blk].es.count)
2541 		return -EINVAL;
2542 
2543 	if (fv_idx >= hw->blk[blk].es.fvw)
2544 		return -EINVAL;
2545 
2546 	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2547 
2548 	*prot = fv_ext[fv_idx].prot_id;
2549 	*off = fv_ext[fv_idx].off;
2550 
2551 	return 0;
2552 }
2553 
2554 /* PTG Management */
2555 
2556 /**
2557  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2558  * @hw: pointer to the hardware structure
2559  * @blk: HW block
2560  * @ptype: the ptype to search for
2561  * @ptg: pointer to variable that receives the PTG
2562  *
2563  * This function will search the PTGs for a particular ptype, returning the
2564  * PTG ID that contains it through the PTG parameter, with the value of
2565  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2566  */
2567 static int
2568 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2569 {
2570 	if (ptype >= ICE_XLT1_CNT || !ptg)
2571 		return -EINVAL;
2572 
2573 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2574 	return 0;
2575 }
2576 
2577 /**
2578  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2579  * @hw: pointer to the hardware structure
2580  * @blk: HW block
2581  * @ptg: the PTG to allocate
2582  *
2583  * This function allocates a given packet type group ID specified by the PTG
2584  * parameter.
2585  */
2586 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587 {
2588 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2589 }
2590 
2591 /**
2592  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2593  * @hw: pointer to the hardware structure
2594  * @blk: HW block
2595  * @ptype: the ptype to remove
2596  * @ptg: the PTG to remove the ptype from
2597  *
2598  * This function will remove the ptype from the specific PTG, and move it to
2599  * the default PTG (ICE_DEFAULT_PTG).
2600  */
2601 static int
2602 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2603 {
2604 	struct ice_ptg_ptype **ch;
2605 	struct ice_ptg_ptype *p;
2606 
2607 	if (ptype > ICE_XLT1_CNT - 1)
2608 		return -EINVAL;
2609 
2610 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2611 		return -ENOENT;
2612 
2613 	/* Should not happen if .in_use is set, bad config */
2614 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2615 		return -EIO;
2616 
2617 	/* find the ptype within this PTG, and bypass the link over it */
2618 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2619 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2620 	while (p) {
2621 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2622 			*ch = p->next_ptype;
2623 			break;
2624 		}
2625 
2626 		ch = &p->next_ptype;
2627 		p = p->next_ptype;
2628 	}
2629 
2630 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2631 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2632 
2633 	return 0;
2634 }
2635 
2636 /**
2637  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2638  * @hw: pointer to the hardware structure
2639  * @blk: HW block
2640  * @ptype: the ptype to add or move
2641  * @ptg: the PTG to add or move the ptype to
2642  *
2643  * This function will either add or move a ptype to a particular PTG depending
2644  * on if the ptype is already part of another group. Note that using a
2645  * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2646  * default PTG.
2647  */
2648 static int
2649 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2650 {
2651 	u8 original_ptg;
2652 	int status;
2653 
2654 	if (ptype > ICE_XLT1_CNT - 1)
2655 		return -EINVAL;
2656 
2657 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2658 		return -ENOENT;
2659 
2660 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2661 	if (status)
2662 		return status;
2663 
2664 	/* Is ptype already in the correct PTG? */
2665 	if (original_ptg == ptg)
2666 		return 0;
2667 
2668 	/* Remove from original PTG and move back to the default PTG */
2669 	if (original_ptg != ICE_DEFAULT_PTG)
2670 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2671 
2672 	/* Moving to default PTG? Then we're done with this request */
2673 	if (ptg == ICE_DEFAULT_PTG)
2674 		return 0;
2675 
2676 	/* Add ptype to PTG at beginning of list */
2677 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2678 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2679 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2680 		&hw->blk[blk].xlt1.ptypes[ptype];
2681 
2682 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2683 	hw->blk[blk].xlt1.t[ptype] = ptg;
2684 
2685 	return 0;
2686 }
2687 
2688 /* Block / table size info */
2689 struct ice_blk_size_details {
2690 	u16 xlt1;			/* # XLT1 entries */
2691 	u16 xlt2;			/* # XLT2 entries */
2692 	u16 prof_tcam;			/* # profile ID TCAM entries */
2693 	u16 prof_id;			/* # profile IDs */
2694 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2695 	u16 prof_redir;			/* # profile redirection entries */
2696 	u16 es;				/* # extraction sequence entries */
2697 	u16 fvw;			/* # field vector words */
2698 	u8 overwrite;			/* overwrite existing entries allowed */
2699 	u8 reverse;			/* reverse FV order */
2700 };
2701 
2702 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2703 	/**
2704 	 * Table Definitions
2705 	 * XLT1 - Number of entries in XLT1 table
2706 	 * XLT2 - Number of entries in XLT2 table
2707 	 * TCAM - Number of entries Profile ID TCAM table
2708 	 * CDID - Control Domain ID of the hardware block
2709 	 * PRED - Number of entries in the Profile Redirection Table
2710 	 * FV   - Number of entries in the Field Vector
2711 	 * FVW  - Width (in WORDs) of the Field Vector
2712 	 * OVR  - Overwrite existing table entries
2713 	 * REV  - Reverse FV
2714 	 */
2715 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2716 	/*          Overwrite   , Reverse FV */
2717 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2718 		    false, false },
2719 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2720 		    false, false },
2721 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2722 		    false, true  },
2723 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2724 		    true,  true  },
2725 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2726 		    false, false },
2727 };
2728 
2729 enum ice_sid_all {
2730 	ICE_SID_XLT1_OFF = 0,
2731 	ICE_SID_XLT2_OFF,
2732 	ICE_SID_PR_OFF,
2733 	ICE_SID_PR_REDIR_OFF,
2734 	ICE_SID_ES_OFF,
2735 	ICE_SID_OFF_COUNT,
2736 };
2737 
2738 /* Characteristic handling */
2739 
2740 /**
2741  * ice_match_prop_lst - determine if properties of two lists match
2742  * @list1: first properties list
2743  * @list2: second properties list
2744  *
2745  * Count, cookies and the order must match in order to be considered equivalent.
2746  */
2747 static bool
2748 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2749 {
2750 	struct ice_vsig_prof *tmp1;
2751 	struct ice_vsig_prof *tmp2;
2752 	u16 chk_count = 0;
2753 	u16 count = 0;
2754 
2755 	/* compare counts */
2756 	list_for_each_entry(tmp1, list1, list)
2757 		count++;
2758 	list_for_each_entry(tmp2, list2, list)
2759 		chk_count++;
2760 	/* cppcheck-suppress knownConditionTrueFalse */
2761 	if (!count || count != chk_count)
2762 		return false;
2763 
2764 	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2765 	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2766 
2767 	/* profile cookies must compare, and in the exact same order to take
2768 	 * into account priority
2769 	 */
2770 	while (count--) {
2771 		if (tmp2->profile_cookie != tmp1->profile_cookie)
2772 			return false;
2773 
2774 		tmp1 = list_next_entry(tmp1, list);
2775 		tmp2 = list_next_entry(tmp2, list);
2776 	}
2777 
2778 	return true;
2779 }
2780 
2781 /* VSIG Management */
2782 
2783 /**
2784  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2785  * @hw: pointer to the hardware structure
2786  * @blk: HW block
2787  * @vsi: VSI of interest
2788  * @vsig: pointer to receive the VSI group
2789  *
2790  * This function will lookup the VSI entry in the XLT2 list and return
2791  * the VSI group its associated with.
2792  */
2793 static int
2794 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2795 {
2796 	if (!vsig || vsi >= ICE_MAX_VSI)
2797 		return -EINVAL;
2798 
2799 	/* As long as there's a default or valid VSIG associated with the input
2800 	 * VSI, the functions returns a success. Any handling of VSIG will be
2801 	 * done by the following add, update or remove functions.
2802 	 */
2803 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2804 
2805 	return 0;
2806 }
2807 
2808 /**
2809  * ice_vsig_alloc_val - allocate a new VSIG by value
2810  * @hw: pointer to the hardware structure
2811  * @blk: HW block
2812  * @vsig: the VSIG to allocate
2813  *
2814  * This function will allocate a given VSIG specified by the VSIG parameter.
2815  */
2816 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2817 {
2818 	u16 idx = vsig & ICE_VSIG_IDX_M;
2819 
2820 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2821 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2822 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2823 	}
2824 
2825 	return ICE_VSIG_VALUE(idx, hw->pf_id);
2826 }
2827 
2828 /**
2829  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2830  * @hw: pointer to the hardware structure
2831  * @blk: HW block
2832  *
2833  * This function will iterate through the VSIG list and mark the first
2834  * unused entry for the new VSIG entry as used and return that value.
2835  */
2836 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2837 {
2838 	u16 i;
2839 
2840 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2841 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2842 			return ice_vsig_alloc_val(hw, blk, i);
2843 
2844 	return ICE_DEFAULT_VSIG;
2845 }
2846 
2847 /**
2848  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2849  * @hw: pointer to the hardware structure
2850  * @blk: HW block
2851  * @chs: characteristic list
2852  * @vsig: returns the VSIG with the matching profiles, if found
2853  *
2854  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2855  * a group have the same characteristic set. To check if there exists a VSIG
2856  * which has the same characteristics as the input characteristics; this
2857  * function will iterate through the XLT2 list and return the VSIG that has a
2858  * matching configuration. In order to make sure that priorities are accounted
2859  * for, the list must match exactly, including the order in which the
2860  * characteristics are listed.
2861  */
2862 static int
2863 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2864 			struct list_head *chs, u16 *vsig)
2865 {
2866 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2867 	u16 i;
2868 
2869 	for (i = 0; i < xlt2->count; i++)
2870 		if (xlt2->vsig_tbl[i].in_use &&
2871 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2872 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2873 			return 0;
2874 		}
2875 
2876 	return -ENOENT;
2877 }
2878 
2879 /**
2880  * ice_vsig_free - free VSI group
2881  * @hw: pointer to the hardware structure
2882  * @blk: HW block
2883  * @vsig: VSIG to remove
2884  *
2885  * The function will remove all VSIs associated with the input VSIG and move
2886  * them to the DEFAULT_VSIG and mark the VSIG available.
2887  */
2888 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2889 {
2890 	struct ice_vsig_prof *dtmp, *del;
2891 	struct ice_vsig_vsi *vsi_cur;
2892 	u16 idx;
2893 
2894 	idx = vsig & ICE_VSIG_IDX_M;
2895 	if (idx >= ICE_MAX_VSIGS)
2896 		return -EINVAL;
2897 
2898 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2899 		return -ENOENT;
2900 
2901 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2902 
2903 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2904 	/* If the VSIG has at least 1 VSI then iterate through the
2905 	 * list and remove the VSIs before deleting the group.
2906 	 */
2907 	if (vsi_cur) {
2908 		/* remove all vsis associated with this VSIG XLT2 entry */
2909 		do {
2910 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2911 
2912 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2913 			vsi_cur->changed = 1;
2914 			vsi_cur->next_vsi = NULL;
2915 			vsi_cur = tmp;
2916 		} while (vsi_cur);
2917 
2918 		/* NULL terminate head of VSI list */
2919 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2920 	}
2921 
2922 	/* free characteristic list */
2923 	list_for_each_entry_safe(del, dtmp,
2924 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2925 				 list) {
2926 		list_del(&del->list);
2927 		devm_kfree(ice_hw_to_dev(hw), del);
2928 	}
2929 
2930 	/* if VSIG characteristic list was cleared for reset
2931 	 * re-initialize the list head
2932 	 */
2933 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2934 
2935 	return 0;
2936 }
2937 
2938 /**
2939  * ice_vsig_remove_vsi - remove VSI from VSIG
2940  * @hw: pointer to the hardware structure
2941  * @blk: HW block
2942  * @vsi: VSI to remove
2943  * @vsig: VSI group to remove from
2944  *
2945  * The function will remove the input VSI from its VSI group and move it
2946  * to the DEFAULT_VSIG.
2947  */
2948 static int
2949 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2950 {
2951 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2952 	u16 idx;
2953 
2954 	idx = vsig & ICE_VSIG_IDX_M;
2955 
2956 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2957 		return -EINVAL;
2958 
2959 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2960 		return -ENOENT;
2961 
2962 	/* entry already in default VSIG, don't have to remove */
2963 	if (idx == ICE_DEFAULT_VSIG)
2964 		return 0;
2965 
2966 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2967 	if (!(*vsi_head))
2968 		return -EIO;
2969 
2970 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2971 	vsi_cur = (*vsi_head);
2972 
2973 	/* iterate the VSI list, skip over the entry to be removed */
2974 	while (vsi_cur) {
2975 		if (vsi_tgt == vsi_cur) {
2976 			(*vsi_head) = vsi_cur->next_vsi;
2977 			break;
2978 		}
2979 		vsi_head = &vsi_cur->next_vsi;
2980 		vsi_cur = vsi_cur->next_vsi;
2981 	}
2982 
2983 	/* verify if VSI was removed from group list */
2984 	if (!vsi_cur)
2985 		return -ENOENT;
2986 
2987 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
2988 	vsi_cur->changed = 1;
2989 	vsi_cur->next_vsi = NULL;
2990 
2991 	return 0;
2992 }
2993 
2994 /**
2995  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2996  * @hw: pointer to the hardware structure
2997  * @blk: HW block
2998  * @vsi: VSI to move
2999  * @vsig: destination VSI group
3000  *
3001  * This function will move or add the input VSI to the target VSIG.
3002  * The function will find the original VSIG the VSI belongs to and
3003  * move the entry to the DEFAULT_VSIG, update the original VSIG and
3004  * then move entry to the new VSIG.
3005  */
3006 static int
3007 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3008 {
3009 	struct ice_vsig_vsi *tmp;
3010 	u16 orig_vsig, idx;
3011 	int status;
3012 
3013 	idx = vsig & ICE_VSIG_IDX_M;
3014 
3015 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3016 		return -EINVAL;
3017 
3018 	/* if VSIG not in use and VSIG is not default type this VSIG
3019 	 * doesn't exist.
3020 	 */
3021 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3022 	    vsig != ICE_DEFAULT_VSIG)
3023 		return -ENOENT;
3024 
3025 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3026 	if (status)
3027 		return status;
3028 
3029 	/* no update required if vsigs match */
3030 	if (orig_vsig == vsig)
3031 		return 0;
3032 
3033 	if (orig_vsig != ICE_DEFAULT_VSIG) {
3034 		/* remove entry from orig_vsig and add to default VSIG */
3035 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3036 		if (status)
3037 			return status;
3038 	}
3039 
3040 	if (idx == ICE_DEFAULT_VSIG)
3041 		return 0;
3042 
3043 	/* Create VSI entry and add VSIG and prop_mask values */
3044 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3045 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3046 
3047 	/* Add new entry to the head of the VSIG list */
3048 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3049 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3050 		&hw->blk[blk].xlt2.vsis[vsi];
3051 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3052 	hw->blk[blk].xlt2.t[vsi] = vsig;
3053 
3054 	return 0;
3055 }
3056 
3057 /**
3058  * ice_prof_has_mask_idx - determine if profile index masking is identical
3059  * @hw: pointer to the hardware structure
3060  * @blk: HW block
3061  * @prof: profile to check
3062  * @idx: profile index to check
3063  * @mask: mask to match
3064  */
3065 static bool
3066 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3067 		      u16 mask)
3068 {
3069 	bool expect_no_mask = false;
3070 	bool found = false;
3071 	bool match = false;
3072 	u16 i;
3073 
3074 	/* If mask is 0x0000 or 0xffff, then there is no masking */
3075 	if (mask == 0 || mask == 0xffff)
3076 		expect_no_mask = true;
3077 
3078 	/* Scan the enabled masks on this profile, for the specified idx */
3079 	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3080 	     hw->blk[blk].masks.count; i++)
3081 		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3082 			if (hw->blk[blk].masks.masks[i].in_use &&
3083 			    hw->blk[blk].masks.masks[i].idx == idx) {
3084 				found = true;
3085 				if (hw->blk[blk].masks.masks[i].mask == mask)
3086 					match = true;
3087 				break;
3088 			}
3089 
3090 	if (expect_no_mask) {
3091 		if (found)
3092 			return false;
3093 	} else {
3094 		if (!match)
3095 			return false;
3096 	}
3097 
3098 	return true;
3099 }
3100 
3101 /**
3102  * ice_prof_has_mask - determine if profile masking is identical
3103  * @hw: pointer to the hardware structure
3104  * @blk: HW block
3105  * @prof: profile to check
3106  * @masks: masks to match
3107  */
3108 static bool
3109 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3110 {
3111 	u16 i;
3112 
3113 	/* es->mask_ena[prof] will have the mask */
3114 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3115 		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3116 			return false;
3117 
3118 	return true;
3119 }
3120 
3121 /**
3122  * ice_find_prof_id_with_mask - find profile ID for a given field vector
3123  * @hw: pointer to the hardware structure
3124  * @blk: HW block
3125  * @fv: field vector to search for
3126  * @masks: masks for FV
3127  * @prof_id: receives the profile ID
3128  */
3129 static int
3130 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3131 			   struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3132 {
3133 	struct ice_es *es = &hw->blk[blk].es;
3134 	u8 i;
3135 
3136 	/* For FD, we don't want to re-use a existed profile with the same
3137 	 * field vector and mask. This will cause rule interference.
3138 	 */
3139 	if (blk == ICE_BLK_FD)
3140 		return -ENOENT;
3141 
3142 	for (i = 0; i < (u8)es->count; i++) {
3143 		u16 off = i * es->fvw;
3144 
3145 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3146 			continue;
3147 
3148 		/* check if masks settings are the same for this profile */
3149 		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3150 			continue;
3151 
3152 		*prof_id = i;
3153 		return 0;
3154 	}
3155 
3156 	return -ENOENT;
3157 }
3158 
3159 /**
3160  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3161  * @blk: the block type
3162  * @rsrc_type: pointer to variable to receive the resource type
3163  */
3164 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3165 {
3166 	switch (blk) {
3167 	case ICE_BLK_FD:
3168 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3169 		break;
3170 	case ICE_BLK_RSS:
3171 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3172 		break;
3173 	default:
3174 		return false;
3175 	}
3176 	return true;
3177 }
3178 
3179 /**
3180  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3181  * @blk: the block type
3182  * @rsrc_type: pointer to variable to receive the resource type
3183  */
3184 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3185 {
3186 	switch (blk) {
3187 	case ICE_BLK_FD:
3188 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3189 		break;
3190 	case ICE_BLK_RSS:
3191 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3192 		break;
3193 	default:
3194 		return false;
3195 	}
3196 	return true;
3197 }
3198 
3199 /**
3200  * ice_alloc_tcam_ent - allocate hardware TCAM entry
3201  * @hw: pointer to the HW struct
3202  * @blk: the block to allocate the TCAM for
3203  * @btm: true to allocate from bottom of table, false to allocate from top
3204  * @tcam_idx: pointer to variable to receive the TCAM entry
3205  *
3206  * This function allocates a new entry in a Profile ID TCAM for a specific
3207  * block.
3208  */
3209 static int
3210 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3211 		   u16 *tcam_idx)
3212 {
3213 	u16 res_type;
3214 
3215 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3216 		return -EINVAL;
3217 
3218 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3219 }
3220 
3221 /**
3222  * ice_free_tcam_ent - free hardware TCAM entry
3223  * @hw: pointer to the HW struct
3224  * @blk: the block from which to free the TCAM entry
3225  * @tcam_idx: the TCAM entry to free
3226  *
3227  * This function frees an entry in a Profile ID TCAM for a specific block.
3228  */
3229 static int
3230 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3231 {
3232 	u16 res_type;
3233 
3234 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3235 		return -EINVAL;
3236 
3237 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3238 }
3239 
3240 /**
3241  * ice_alloc_prof_id - allocate profile ID
3242  * @hw: pointer to the HW struct
3243  * @blk: the block to allocate the profile ID for
3244  * @prof_id: pointer to variable to receive the profile ID
3245  *
3246  * This function allocates a new profile ID, which also corresponds to a Field
3247  * Vector (Extraction Sequence) entry.
3248  */
3249 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3250 {
3251 	u16 res_type;
3252 	u16 get_prof;
3253 	int status;
3254 
3255 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3256 		return -EINVAL;
3257 
3258 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3259 	if (!status)
3260 		*prof_id = (u8)get_prof;
3261 
3262 	return status;
3263 }
3264 
3265 /**
3266  * ice_free_prof_id - free profile ID
3267  * @hw: pointer to the HW struct
3268  * @blk: the block from which to free the profile ID
3269  * @prof_id: the profile ID to free
3270  *
3271  * This function frees a profile ID, which also corresponds to a Field Vector.
3272  */
3273 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3274 {
3275 	u16 tmp_prof_id = (u16)prof_id;
3276 	u16 res_type;
3277 
3278 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3279 		return -EINVAL;
3280 
3281 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3282 }
3283 
3284 /**
3285  * ice_prof_inc_ref - increment reference count for profile
3286  * @hw: pointer to the HW struct
3287  * @blk: the block from which to free the profile ID
3288  * @prof_id: the profile ID for which to increment the reference count
3289  */
3290 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3291 {
3292 	if (prof_id > hw->blk[blk].es.count)
3293 		return -EINVAL;
3294 
3295 	hw->blk[blk].es.ref_count[prof_id]++;
3296 
3297 	return 0;
3298 }
3299 
3300 /**
3301  * ice_write_prof_mask_reg - write profile mask register
3302  * @hw: pointer to the HW struct
3303  * @blk: hardware block
3304  * @mask_idx: mask index
3305  * @idx: index of the FV which will use the mask
3306  * @mask: the 16-bit mask
3307  */
3308 static void
3309 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3310 			u16 idx, u16 mask)
3311 {
3312 	u32 offset;
3313 	u32 val;
3314 
3315 	switch (blk) {
3316 	case ICE_BLK_RSS:
3317 		offset = GLQF_HMASK(mask_idx);
3318 		val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
3319 		val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3320 		break;
3321 	case ICE_BLK_FD:
3322 		offset = GLQF_FDMASK(mask_idx);
3323 		val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
3324 		val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
3325 		break;
3326 	default:
3327 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3328 			  blk);
3329 		return;
3330 	}
3331 
3332 	wr32(hw, offset, val);
3333 	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3334 		  blk, idx, offset, val);
3335 }
3336 
3337 /**
3338  * ice_write_prof_mask_enable_res - write profile mask enable register
3339  * @hw: pointer to the HW struct
3340  * @blk: hardware block
3341  * @prof_id: profile ID
3342  * @enable_mask: enable mask
3343  */
3344 static void
3345 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3346 			       u16 prof_id, u32 enable_mask)
3347 {
3348 	u32 offset;
3349 
3350 	switch (blk) {
3351 	case ICE_BLK_RSS:
3352 		offset = GLQF_HMASK_SEL(prof_id);
3353 		break;
3354 	case ICE_BLK_FD:
3355 		offset = GLQF_FDMASK_SEL(prof_id);
3356 		break;
3357 	default:
3358 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3359 			  blk);
3360 		return;
3361 	}
3362 
3363 	wr32(hw, offset, enable_mask);
3364 	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3365 		  blk, prof_id, offset, enable_mask);
3366 }
3367 
3368 /**
3369  * ice_init_prof_masks - initial prof masks
3370  * @hw: pointer to the HW struct
3371  * @blk: hardware block
3372  */
3373 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3374 {
3375 	u16 per_pf;
3376 	u16 i;
3377 
3378 	mutex_init(&hw->blk[blk].masks.lock);
3379 
3380 	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3381 
3382 	hw->blk[blk].masks.count = per_pf;
3383 	hw->blk[blk].masks.first = hw->pf_id * per_pf;
3384 
3385 	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
3386 
3387 	for (i = hw->blk[blk].masks.first;
3388 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3389 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3390 }
3391 
3392 /**
3393  * ice_init_all_prof_masks - initialize all prof masks
3394  * @hw: pointer to the HW struct
3395  */
3396 static void ice_init_all_prof_masks(struct ice_hw *hw)
3397 {
3398 	ice_init_prof_masks(hw, ICE_BLK_RSS);
3399 	ice_init_prof_masks(hw, ICE_BLK_FD);
3400 }
3401 
3402 /**
3403  * ice_alloc_prof_mask - allocate profile mask
3404  * @hw: pointer to the HW struct
3405  * @blk: hardware block
3406  * @idx: index of FV which will use the mask
3407  * @mask: the 16-bit mask
3408  * @mask_idx: variable to receive the mask index
3409  */
3410 static int
3411 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3412 		    u16 *mask_idx)
3413 {
3414 	bool found_unused = false, found_copy = false;
3415 	u16 unused_idx = 0, copy_idx = 0;
3416 	int status = -ENOSPC;
3417 	u16 i;
3418 
3419 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3420 		return -EINVAL;
3421 
3422 	mutex_lock(&hw->blk[blk].masks.lock);
3423 
3424 	for (i = hw->blk[blk].masks.first;
3425 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3426 		if (hw->blk[blk].masks.masks[i].in_use) {
3427 			/* if mask is in use and it exactly duplicates the
3428 			 * desired mask and index, then in can be reused
3429 			 */
3430 			if (hw->blk[blk].masks.masks[i].mask == mask &&
3431 			    hw->blk[blk].masks.masks[i].idx == idx) {
3432 				found_copy = true;
3433 				copy_idx = i;
3434 				break;
3435 			}
3436 		} else {
3437 			/* save off unused index, but keep searching in case
3438 			 * there is an exact match later on
3439 			 */
3440 			if (!found_unused) {
3441 				found_unused = true;
3442 				unused_idx = i;
3443 			}
3444 		}
3445 
3446 	if (found_copy)
3447 		i = copy_idx;
3448 	else if (found_unused)
3449 		i = unused_idx;
3450 	else
3451 		goto err_ice_alloc_prof_mask;
3452 
3453 	/* update mask for a new entry */
3454 	if (found_unused) {
3455 		hw->blk[blk].masks.masks[i].in_use = true;
3456 		hw->blk[blk].masks.masks[i].mask = mask;
3457 		hw->blk[blk].masks.masks[i].idx = idx;
3458 		hw->blk[blk].masks.masks[i].ref = 0;
3459 		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3460 	}
3461 
3462 	hw->blk[blk].masks.masks[i].ref++;
3463 	*mask_idx = i;
3464 	status = 0;
3465 
3466 err_ice_alloc_prof_mask:
3467 	mutex_unlock(&hw->blk[blk].masks.lock);
3468 
3469 	return status;
3470 }
3471 
3472 /**
3473  * ice_free_prof_mask - free profile mask
3474  * @hw: pointer to the HW struct
3475  * @blk: hardware block
3476  * @mask_idx: index of mask
3477  */
3478 static int
3479 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3480 {
3481 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3482 		return -EINVAL;
3483 
3484 	if (!(mask_idx >= hw->blk[blk].masks.first &&
3485 	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3486 		return -ENOENT;
3487 
3488 	mutex_lock(&hw->blk[blk].masks.lock);
3489 
3490 	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3491 		goto exit_ice_free_prof_mask;
3492 
3493 	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3494 		hw->blk[blk].masks.masks[mask_idx].ref--;
3495 		goto exit_ice_free_prof_mask;
3496 	}
3497 
3498 	/* remove mask */
3499 	hw->blk[blk].masks.masks[mask_idx].in_use = false;
3500 	hw->blk[blk].masks.masks[mask_idx].mask = 0;
3501 	hw->blk[blk].masks.masks[mask_idx].idx = 0;
3502 
3503 	/* update mask as unused entry */
3504 	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3505 		  mask_idx);
3506 	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3507 
3508 exit_ice_free_prof_mask:
3509 	mutex_unlock(&hw->blk[blk].masks.lock);
3510 
3511 	return 0;
3512 }
3513 
3514 /**
3515  * ice_free_prof_masks - free all profile masks for a profile
3516  * @hw: pointer to the HW struct
3517  * @blk: hardware block
3518  * @prof_id: profile ID
3519  */
3520 static int
3521 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3522 {
3523 	u32 mask_bm;
3524 	u16 i;
3525 
3526 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3527 		return -EINVAL;
3528 
3529 	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3530 	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3531 		if (mask_bm & BIT(i))
3532 			ice_free_prof_mask(hw, blk, i);
3533 
3534 	return 0;
3535 }
3536 
3537 /**
3538  * ice_shutdown_prof_masks - releases lock for masking
3539  * @hw: pointer to the HW struct
3540  * @blk: hardware block
3541  *
3542  * This should be called before unloading the driver
3543  */
3544 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3545 {
3546 	u16 i;
3547 
3548 	mutex_lock(&hw->blk[blk].masks.lock);
3549 
3550 	for (i = hw->blk[blk].masks.first;
3551 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3552 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3553 
3554 		hw->blk[blk].masks.masks[i].in_use = false;
3555 		hw->blk[blk].masks.masks[i].idx = 0;
3556 		hw->blk[blk].masks.masks[i].mask = 0;
3557 	}
3558 
3559 	mutex_unlock(&hw->blk[blk].masks.lock);
3560 	mutex_destroy(&hw->blk[blk].masks.lock);
3561 }
3562 
3563 /**
3564  * ice_shutdown_all_prof_masks - releases all locks for masking
3565  * @hw: pointer to the HW struct
3566  *
3567  * This should be called before unloading the driver
3568  */
3569 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3570 {
3571 	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3572 	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3573 }
3574 
3575 /**
3576  * ice_update_prof_masking - set registers according to masking
3577  * @hw: pointer to the HW struct
3578  * @blk: hardware block
3579  * @prof_id: profile ID
3580  * @masks: masks
3581  */
3582 static int
3583 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3584 			u16 *masks)
3585 {
3586 	bool err = false;
3587 	u32 ena_mask = 0;
3588 	u16 idx;
3589 	u16 i;
3590 
3591 	/* Only support FD and RSS masking, otherwise nothing to be done */
3592 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3593 		return 0;
3594 
3595 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3596 		if (masks[i] && masks[i] != 0xFFFF) {
3597 			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3598 				ena_mask |= BIT(idx);
3599 			} else {
3600 				/* not enough bitmaps */
3601 				err = true;
3602 				break;
3603 			}
3604 		}
3605 
3606 	if (err) {
3607 		/* free any bitmaps we have allocated */
3608 		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3609 			if (ena_mask & BIT(i))
3610 				ice_free_prof_mask(hw, blk, i);
3611 
3612 		return -EIO;
3613 	}
3614 
3615 	/* enable the masks for this profile */
3616 	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3617 
3618 	/* store enabled masks with profile so that they can be freed later */
3619 	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3620 
3621 	return 0;
3622 }
3623 
3624 /**
3625  * ice_write_es - write an extraction sequence to hardware
3626  * @hw: pointer to the HW struct
3627  * @blk: the block in which to write the extraction sequence
3628  * @prof_id: the profile ID to write
3629  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3630  */
3631 static void
3632 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3633 	     struct ice_fv_word *fv)
3634 {
3635 	u16 off;
3636 
3637 	off = prof_id * hw->blk[blk].es.fvw;
3638 	if (!fv) {
3639 		memset(&hw->blk[blk].es.t[off], 0,
3640 		       hw->blk[blk].es.fvw * sizeof(*fv));
3641 		hw->blk[blk].es.written[prof_id] = false;
3642 	} else {
3643 		memcpy(&hw->blk[blk].es.t[off], fv,
3644 		       hw->blk[blk].es.fvw * sizeof(*fv));
3645 	}
3646 }
3647 
3648 /**
3649  * ice_prof_dec_ref - decrement reference count for profile
3650  * @hw: pointer to the HW struct
3651  * @blk: the block from which to free the profile ID
3652  * @prof_id: the profile ID for which to decrement the reference count
3653  */
3654 static int
3655 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3656 {
3657 	if (prof_id > hw->blk[blk].es.count)
3658 		return -EINVAL;
3659 
3660 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3661 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3662 			ice_write_es(hw, blk, prof_id, NULL);
3663 			ice_free_prof_masks(hw, blk, prof_id);
3664 			return ice_free_prof_id(hw, blk, prof_id);
3665 		}
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 /* Block / table section IDs */
3672 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3673 	/* SWITCH */
3674 	{	ICE_SID_XLT1_SW,
3675 		ICE_SID_XLT2_SW,
3676 		ICE_SID_PROFID_TCAM_SW,
3677 		ICE_SID_PROFID_REDIR_SW,
3678 		ICE_SID_FLD_VEC_SW
3679 	},
3680 
3681 	/* ACL */
3682 	{	ICE_SID_XLT1_ACL,
3683 		ICE_SID_XLT2_ACL,
3684 		ICE_SID_PROFID_TCAM_ACL,
3685 		ICE_SID_PROFID_REDIR_ACL,
3686 		ICE_SID_FLD_VEC_ACL
3687 	},
3688 
3689 	/* FD */
3690 	{	ICE_SID_XLT1_FD,
3691 		ICE_SID_XLT2_FD,
3692 		ICE_SID_PROFID_TCAM_FD,
3693 		ICE_SID_PROFID_REDIR_FD,
3694 		ICE_SID_FLD_VEC_FD
3695 	},
3696 
3697 	/* RSS */
3698 	{	ICE_SID_XLT1_RSS,
3699 		ICE_SID_XLT2_RSS,
3700 		ICE_SID_PROFID_TCAM_RSS,
3701 		ICE_SID_PROFID_REDIR_RSS,
3702 		ICE_SID_FLD_VEC_RSS
3703 	},
3704 
3705 	/* PE */
3706 	{	ICE_SID_XLT1_PE,
3707 		ICE_SID_XLT2_PE,
3708 		ICE_SID_PROFID_TCAM_PE,
3709 		ICE_SID_PROFID_REDIR_PE,
3710 		ICE_SID_FLD_VEC_PE
3711 	}
3712 };
3713 
3714 /**
3715  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3716  * @hw: pointer to the hardware structure
3717  * @blk: the HW block to initialize
3718  */
3719 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3720 {
3721 	u16 pt;
3722 
3723 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3724 		u8 ptg;
3725 
3726 		ptg = hw->blk[blk].xlt1.t[pt];
3727 		if (ptg != ICE_DEFAULT_PTG) {
3728 			ice_ptg_alloc_val(hw, blk, ptg);
3729 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3730 		}
3731 	}
3732 }
3733 
3734 /**
3735  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3736  * @hw: pointer to the hardware structure
3737  * @blk: the HW block to initialize
3738  */
3739 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3740 {
3741 	u16 vsi;
3742 
3743 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3744 		u16 vsig;
3745 
3746 		vsig = hw->blk[blk].xlt2.t[vsi];
3747 		if (vsig) {
3748 			ice_vsig_alloc_val(hw, blk, vsig);
3749 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3750 			/* no changes at this time, since this has been
3751 			 * initialized from the original package
3752 			 */
3753 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3754 		}
3755 	}
3756 }
3757 
3758 /**
3759  * ice_init_sw_db - init software database from HW tables
3760  * @hw: pointer to the hardware structure
3761  */
3762 static void ice_init_sw_db(struct ice_hw *hw)
3763 {
3764 	u16 i;
3765 
3766 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3767 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3768 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3769 	}
3770 }
3771 
3772 /**
3773  * ice_fill_tbl - Reads content of a single table type into database
3774  * @hw: pointer to the hardware structure
3775  * @block_id: Block ID of the table to copy
3776  * @sid: Section ID of the table to copy
3777  *
3778  * Will attempt to read the entire content of a given table of a single block
3779  * into the driver database. We assume that the buffer will always
3780  * be as large or larger than the data contained in the package. If
3781  * this condition is not met, there is most likely an error in the package
3782  * contents.
3783  */
3784 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3785 {
3786 	u32 dst_len, sect_len, offset = 0;
3787 	struct ice_prof_redir_section *pr;
3788 	struct ice_prof_id_section *pid;
3789 	struct ice_xlt1_section *xlt1;
3790 	struct ice_xlt2_section *xlt2;
3791 	struct ice_sw_fv_section *es;
3792 	struct ice_pkg_enum state;
3793 	u8 *src, *dst;
3794 	void *sect;
3795 
3796 	/* if the HW segment pointer is null then the first iteration of
3797 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3798 	 * not be filled and return success.
3799 	 */
3800 	if (!hw->seg) {
3801 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3802 		return;
3803 	}
3804 
3805 	memset(&state, 0, sizeof(state));
3806 
3807 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3808 
3809 	while (sect) {
3810 		switch (sid) {
3811 		case ICE_SID_XLT1_SW:
3812 		case ICE_SID_XLT1_FD:
3813 		case ICE_SID_XLT1_RSS:
3814 		case ICE_SID_XLT1_ACL:
3815 		case ICE_SID_XLT1_PE:
3816 			xlt1 = sect;
3817 			src = xlt1->value;
3818 			sect_len = le16_to_cpu(xlt1->count) *
3819 				sizeof(*hw->blk[block_id].xlt1.t);
3820 			dst = hw->blk[block_id].xlt1.t;
3821 			dst_len = hw->blk[block_id].xlt1.count *
3822 				sizeof(*hw->blk[block_id].xlt1.t);
3823 			break;
3824 		case ICE_SID_XLT2_SW:
3825 		case ICE_SID_XLT2_FD:
3826 		case ICE_SID_XLT2_RSS:
3827 		case ICE_SID_XLT2_ACL:
3828 		case ICE_SID_XLT2_PE:
3829 			xlt2 = sect;
3830 			src = (__force u8 *)xlt2->value;
3831 			sect_len = le16_to_cpu(xlt2->count) *
3832 				sizeof(*hw->blk[block_id].xlt2.t);
3833 			dst = (u8 *)hw->blk[block_id].xlt2.t;
3834 			dst_len = hw->blk[block_id].xlt2.count *
3835 				sizeof(*hw->blk[block_id].xlt2.t);
3836 			break;
3837 		case ICE_SID_PROFID_TCAM_SW:
3838 		case ICE_SID_PROFID_TCAM_FD:
3839 		case ICE_SID_PROFID_TCAM_RSS:
3840 		case ICE_SID_PROFID_TCAM_ACL:
3841 		case ICE_SID_PROFID_TCAM_PE:
3842 			pid = sect;
3843 			src = (u8 *)pid->entry;
3844 			sect_len = le16_to_cpu(pid->count) *
3845 				sizeof(*hw->blk[block_id].prof.t);
3846 			dst = (u8 *)hw->blk[block_id].prof.t;
3847 			dst_len = hw->blk[block_id].prof.count *
3848 				sizeof(*hw->blk[block_id].prof.t);
3849 			break;
3850 		case ICE_SID_PROFID_REDIR_SW:
3851 		case ICE_SID_PROFID_REDIR_FD:
3852 		case ICE_SID_PROFID_REDIR_RSS:
3853 		case ICE_SID_PROFID_REDIR_ACL:
3854 		case ICE_SID_PROFID_REDIR_PE:
3855 			pr = sect;
3856 			src = pr->redir_value;
3857 			sect_len = le16_to_cpu(pr->count) *
3858 				sizeof(*hw->blk[block_id].prof_redir.t);
3859 			dst = hw->blk[block_id].prof_redir.t;
3860 			dst_len = hw->blk[block_id].prof_redir.count *
3861 				sizeof(*hw->blk[block_id].prof_redir.t);
3862 			break;
3863 		case ICE_SID_FLD_VEC_SW:
3864 		case ICE_SID_FLD_VEC_FD:
3865 		case ICE_SID_FLD_VEC_RSS:
3866 		case ICE_SID_FLD_VEC_ACL:
3867 		case ICE_SID_FLD_VEC_PE:
3868 			es = sect;
3869 			src = (u8 *)es->fv;
3870 			sect_len = (u32)(le16_to_cpu(es->count) *
3871 					 hw->blk[block_id].es.fvw) *
3872 				sizeof(*hw->blk[block_id].es.t);
3873 			dst = (u8 *)hw->blk[block_id].es.t;
3874 			dst_len = (u32)(hw->blk[block_id].es.count *
3875 					hw->blk[block_id].es.fvw) *
3876 				sizeof(*hw->blk[block_id].es.t);
3877 			break;
3878 		default:
3879 			return;
3880 		}
3881 
3882 		/* if the section offset exceeds destination length, terminate
3883 		 * table fill.
3884 		 */
3885 		if (offset > dst_len)
3886 			return;
3887 
3888 		/* if the sum of section size and offset exceed destination size
3889 		 * then we are out of bounds of the HW table size for that PF.
3890 		 * Changing section length to fill the remaining table space
3891 		 * of that PF.
3892 		 */
3893 		if ((offset + sect_len) > dst_len)
3894 			sect_len = dst_len - offset;
3895 
3896 		memcpy(dst + offset, src, sect_len);
3897 		offset += sect_len;
3898 		sect = ice_pkg_enum_section(NULL, &state, sid);
3899 	}
3900 }
3901 
3902 /**
3903  * ice_fill_blk_tbls - Read package context for tables
3904  * @hw: pointer to the hardware structure
3905  *
3906  * Reads the current package contents and populates the driver
3907  * database with the data iteratively for all advanced feature
3908  * blocks. Assume that the HW tables have been allocated.
3909  */
3910 void ice_fill_blk_tbls(struct ice_hw *hw)
3911 {
3912 	u8 i;
3913 
3914 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3915 		enum ice_block blk_id = (enum ice_block)i;
3916 
3917 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3918 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3919 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3920 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3921 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3922 	}
3923 
3924 	ice_init_sw_db(hw);
3925 }
3926 
3927 /**
3928  * ice_free_prof_map - free profile map
3929  * @hw: pointer to the hardware structure
3930  * @blk_idx: HW block index
3931  */
3932 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3933 {
3934 	struct ice_es *es = &hw->blk[blk_idx].es;
3935 	struct ice_prof_map *del, *tmp;
3936 
3937 	mutex_lock(&es->prof_map_lock);
3938 	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3939 		list_del(&del->list);
3940 		devm_kfree(ice_hw_to_dev(hw), del);
3941 	}
3942 	INIT_LIST_HEAD(&es->prof_map);
3943 	mutex_unlock(&es->prof_map_lock);
3944 }
3945 
3946 /**
3947  * ice_free_flow_profs - free flow profile entries
3948  * @hw: pointer to the hardware structure
3949  * @blk_idx: HW block index
3950  */
3951 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3952 {
3953 	struct ice_flow_prof *p, *tmp;
3954 
3955 	mutex_lock(&hw->fl_profs_locks[blk_idx]);
3956 	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3957 		struct ice_flow_entry *e, *t;
3958 
3959 		list_for_each_entry_safe(e, t, &p->entries, l_entry)
3960 			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3961 					   ICE_FLOW_ENTRY_HNDL(e));
3962 
3963 		list_del(&p->l_entry);
3964 
3965 		mutex_destroy(&p->entries_lock);
3966 		devm_kfree(ice_hw_to_dev(hw), p);
3967 	}
3968 	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3969 
3970 	/* if driver is in reset and tables are being cleared
3971 	 * re-initialize the flow profile list heads
3972 	 */
3973 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3974 }
3975 
3976 /**
3977  * ice_free_vsig_tbl - free complete VSIG table entries
3978  * @hw: pointer to the hardware structure
3979  * @blk: the HW block on which to free the VSIG table entries
3980  */
3981 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3982 {
3983 	u16 i;
3984 
3985 	if (!hw->blk[blk].xlt2.vsig_tbl)
3986 		return;
3987 
3988 	for (i = 1; i < ICE_MAX_VSIGS; i++)
3989 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3990 			ice_vsig_free(hw, blk, i);
3991 }
3992 
3993 /**
3994  * ice_free_hw_tbls - free hardware table memory
3995  * @hw: pointer to the hardware structure
3996  */
3997 void ice_free_hw_tbls(struct ice_hw *hw)
3998 {
3999 	struct ice_rss_cfg *r, *rt;
4000 	u8 i;
4001 
4002 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4003 		if (hw->blk[i].is_list_init) {
4004 			struct ice_es *es = &hw->blk[i].es;
4005 
4006 			ice_free_prof_map(hw, i);
4007 			mutex_destroy(&es->prof_map_lock);
4008 
4009 			ice_free_flow_profs(hw, i);
4010 			mutex_destroy(&hw->fl_profs_locks[i]);
4011 
4012 			hw->blk[i].is_list_init = false;
4013 		}
4014 		ice_free_vsig_tbl(hw, (enum ice_block)i);
4015 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
4016 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
4017 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
4018 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
4019 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
4020 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
4021 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
4022 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
4023 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
4024 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
4025 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
4026 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
4027 	}
4028 
4029 	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
4030 		list_del(&r->l_entry);
4031 		devm_kfree(ice_hw_to_dev(hw), r);
4032 	}
4033 	mutex_destroy(&hw->rss_locks);
4034 	ice_shutdown_all_prof_masks(hw);
4035 	memset(hw->blk, 0, sizeof(hw->blk));
4036 }
4037 
4038 /**
4039  * ice_init_flow_profs - init flow profile locks and list heads
4040  * @hw: pointer to the hardware structure
4041  * @blk_idx: HW block index
4042  */
4043 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4044 {
4045 	mutex_init(&hw->fl_profs_locks[blk_idx]);
4046 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4047 }
4048 
4049 /**
4050  * ice_clear_hw_tbls - clear HW tables and flow profiles
4051  * @hw: pointer to the hardware structure
4052  */
4053 void ice_clear_hw_tbls(struct ice_hw *hw)
4054 {
4055 	u8 i;
4056 
4057 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4058 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4059 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4060 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4061 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4062 		struct ice_es *es = &hw->blk[i].es;
4063 
4064 		if (hw->blk[i].is_list_init) {
4065 			ice_free_prof_map(hw, i);
4066 			ice_free_flow_profs(hw, i);
4067 		}
4068 
4069 		ice_free_vsig_tbl(hw, (enum ice_block)i);
4070 
4071 		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
4072 		memset(xlt1->ptg_tbl, 0,
4073 		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
4074 		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
4075 
4076 		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
4077 		memset(xlt2->vsig_tbl, 0,
4078 		       xlt2->count * sizeof(*xlt2->vsig_tbl));
4079 		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
4080 
4081 		memset(prof->t, 0, prof->count * sizeof(*prof->t));
4082 		memset(prof_redir->t, 0,
4083 		       prof_redir->count * sizeof(*prof_redir->t));
4084 
4085 		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
4086 		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
4087 		memset(es->written, 0, es->count * sizeof(*es->written));
4088 		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
4089 	}
4090 }
4091 
4092 /**
4093  * ice_init_hw_tbls - init hardware table memory
4094  * @hw: pointer to the hardware structure
4095  */
4096 int ice_init_hw_tbls(struct ice_hw *hw)
4097 {
4098 	u8 i;
4099 
4100 	mutex_init(&hw->rss_locks);
4101 	INIT_LIST_HEAD(&hw->rss_list_head);
4102 	ice_init_all_prof_masks(hw);
4103 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4104 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4105 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4106 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4107 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4108 		struct ice_es *es = &hw->blk[i].es;
4109 		u16 j;
4110 
4111 		if (hw->blk[i].is_list_init)
4112 			continue;
4113 
4114 		ice_init_flow_profs(hw, i);
4115 		mutex_init(&es->prof_map_lock);
4116 		INIT_LIST_HEAD(&es->prof_map);
4117 		hw->blk[i].is_list_init = true;
4118 
4119 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
4120 		es->reverse = blk_sizes[i].reverse;
4121 
4122 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4123 		xlt1->count = blk_sizes[i].xlt1;
4124 
4125 		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4126 					    sizeof(*xlt1->ptypes), GFP_KERNEL);
4127 
4128 		if (!xlt1->ptypes)
4129 			goto err;
4130 
4131 		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
4132 					     sizeof(*xlt1->ptg_tbl),
4133 					     GFP_KERNEL);
4134 
4135 		if (!xlt1->ptg_tbl)
4136 			goto err;
4137 
4138 		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4139 				       sizeof(*xlt1->t), GFP_KERNEL);
4140 		if (!xlt1->t)
4141 			goto err;
4142 
4143 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4144 		xlt2->count = blk_sizes[i].xlt2;
4145 
4146 		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4147 					  sizeof(*xlt2->vsis), GFP_KERNEL);
4148 
4149 		if (!xlt2->vsis)
4150 			goto err;
4151 
4152 		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4153 					      sizeof(*xlt2->vsig_tbl),
4154 					      GFP_KERNEL);
4155 		if (!xlt2->vsig_tbl)
4156 			goto err;
4157 
4158 		for (j = 0; j < xlt2->count; j++)
4159 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4160 
4161 		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4162 				       sizeof(*xlt2->t), GFP_KERNEL);
4163 		if (!xlt2->t)
4164 			goto err;
4165 
4166 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4167 		prof->count = blk_sizes[i].prof_tcam;
4168 		prof->max_prof_id = blk_sizes[i].prof_id;
4169 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4170 		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
4171 				       sizeof(*prof->t), GFP_KERNEL);
4172 
4173 		if (!prof->t)
4174 			goto err;
4175 
4176 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4177 		prof_redir->count = blk_sizes[i].prof_redir;
4178 		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
4179 					     prof_redir->count,
4180 					     sizeof(*prof_redir->t),
4181 					     GFP_KERNEL);
4182 
4183 		if (!prof_redir->t)
4184 			goto err;
4185 
4186 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4187 		es->count = blk_sizes[i].es;
4188 		es->fvw = blk_sizes[i].fvw;
4189 		es->t = devm_kcalloc(ice_hw_to_dev(hw),
4190 				     (u32)(es->count * es->fvw),
4191 				     sizeof(*es->t), GFP_KERNEL);
4192 		if (!es->t)
4193 			goto err;
4194 
4195 		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4196 					     sizeof(*es->ref_count),
4197 					     GFP_KERNEL);
4198 		if (!es->ref_count)
4199 			goto err;
4200 
4201 		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4202 					   sizeof(*es->written), GFP_KERNEL);
4203 		if (!es->written)
4204 			goto err;
4205 
4206 		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4207 					    sizeof(*es->mask_ena), GFP_KERNEL);
4208 		if (!es->mask_ena)
4209 			goto err;
4210 	}
4211 	return 0;
4212 
4213 err:
4214 	ice_free_hw_tbls(hw);
4215 	return -ENOMEM;
4216 }
4217 
4218 /**
4219  * ice_prof_gen_key - generate profile ID key
4220  * @hw: pointer to the HW struct
4221  * @blk: the block in which to write profile ID to
4222  * @ptg: packet type group (PTG) portion of key
4223  * @vsig: VSIG portion of key
4224  * @cdid: CDID portion of key
4225  * @flags: flag portion of key
4226  * @vl_msk: valid mask
4227  * @dc_msk: don't care mask
4228  * @nm_msk: never match mask
4229  * @key: output of profile ID key
4230  */
4231 static int
4232 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4233 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4234 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4235 		 u8 key[ICE_TCAM_KEY_SZ])
4236 {
4237 	struct ice_prof_id_key inkey;
4238 
4239 	inkey.xlt1 = ptg;
4240 	inkey.xlt2_cdid = cpu_to_le16(vsig);
4241 	inkey.flags = cpu_to_le16(flags);
4242 
4243 	switch (hw->blk[blk].prof.cdid_bits) {
4244 	case 0:
4245 		break;
4246 	case 2:
4247 #define ICE_CD_2_M 0xC000U
4248 #define ICE_CD_2_S 14
4249 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
4250 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
4251 		break;
4252 	case 4:
4253 #define ICE_CD_4_M 0xF000U
4254 #define ICE_CD_4_S 12
4255 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
4256 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
4257 		break;
4258 	case 8:
4259 #define ICE_CD_8_M 0xFF00U
4260 #define ICE_CD_8_S 16
4261 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
4262 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
4263 		break;
4264 	default:
4265 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4266 		break;
4267 	}
4268 
4269 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4270 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4271 }
4272 
4273 /**
4274  * ice_tcam_write_entry - write TCAM entry
4275  * @hw: pointer to the HW struct
4276  * @blk: the block in which to write profile ID to
4277  * @idx: the entry index to write to
4278  * @prof_id: profile ID
4279  * @ptg: packet type group (PTG) portion of key
4280  * @vsig: VSIG portion of key
4281  * @cdid: CDID portion of key
4282  * @flags: flag portion of key
4283  * @vl_msk: valid mask
4284  * @dc_msk: don't care mask
4285  * @nm_msk: never match mask
4286  */
4287 static int
4288 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4289 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4290 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4291 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4292 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4293 {
4294 	struct ice_prof_tcam_entry;
4295 	int status;
4296 
4297 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4298 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4299 	if (!status) {
4300 		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
4301 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
4302 	}
4303 
4304 	return status;
4305 }
4306 
4307 /**
4308  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4309  * @hw: pointer to the hardware structure
4310  * @blk: HW block
4311  * @vsig: VSIG to query
4312  * @refs: pointer to variable to receive the reference count
4313  */
4314 static int
4315 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4316 {
4317 	u16 idx = vsig & ICE_VSIG_IDX_M;
4318 	struct ice_vsig_vsi *ptr;
4319 
4320 	*refs = 0;
4321 
4322 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4323 		return -ENOENT;
4324 
4325 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4326 	while (ptr) {
4327 		(*refs)++;
4328 		ptr = ptr->next_vsi;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 /**
4335  * ice_has_prof_vsig - check to see if VSIG has a specific profile
4336  * @hw: pointer to the hardware structure
4337  * @blk: HW block
4338  * @vsig: VSIG to check against
4339  * @hdl: profile handle
4340  */
4341 static bool
4342 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4343 {
4344 	u16 idx = vsig & ICE_VSIG_IDX_M;
4345 	struct ice_vsig_prof *ent;
4346 
4347 	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4348 			    list)
4349 		if (ent->profile_cookie == hdl)
4350 			return true;
4351 
4352 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4353 		  vsig);
4354 	return false;
4355 }
4356 
4357 /**
4358  * ice_prof_bld_es - build profile ID extraction sequence changes
4359  * @hw: pointer to the HW struct
4360  * @blk: hardware block
4361  * @bld: the update package buffer build to add to
4362  * @chgs: the list of changes to make in hardware
4363  */
4364 static int
4365 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4366 		struct ice_buf_build *bld, struct list_head *chgs)
4367 {
4368 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4369 	struct ice_chs_chg *tmp;
4370 
4371 	list_for_each_entry(tmp, chgs, list_entry)
4372 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4373 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4374 			struct ice_pkg_es *p;
4375 			u32 id;
4376 
4377 			id = ice_sect_id(blk, ICE_VEC_TBL);
4378 			p = ice_pkg_buf_alloc_section(bld, id,
4379 						      struct_size(p, es, 1) +
4380 						      vec_size -
4381 						      sizeof(p->es[0]));
4382 
4383 			if (!p)
4384 				return -ENOSPC;
4385 
4386 			p->count = cpu_to_le16(1);
4387 			p->offset = cpu_to_le16(tmp->prof_id);
4388 
4389 			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
4390 		}
4391 
4392 	return 0;
4393 }
4394 
4395 /**
4396  * ice_prof_bld_tcam - build profile ID TCAM changes
4397  * @hw: pointer to the HW struct
4398  * @blk: hardware block
4399  * @bld: the update package buffer build to add to
4400  * @chgs: the list of changes to make in hardware
4401  */
4402 static int
4403 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4404 		  struct ice_buf_build *bld, struct list_head *chgs)
4405 {
4406 	struct ice_chs_chg *tmp;
4407 
4408 	list_for_each_entry(tmp, chgs, list_entry)
4409 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4410 			struct ice_prof_id_section *p;
4411 			u32 id;
4412 
4413 			id = ice_sect_id(blk, ICE_PROF_TCAM);
4414 			p = ice_pkg_buf_alloc_section(bld, id,
4415 						      struct_size(p, entry, 1));
4416 
4417 			if (!p)
4418 				return -ENOSPC;
4419 
4420 			p->count = cpu_to_le16(1);
4421 			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
4422 			p->entry[0].prof_id = tmp->prof_id;
4423 
4424 			memcpy(p->entry[0].key,
4425 			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4426 			       sizeof(hw->blk[blk].prof.t->key));
4427 		}
4428 
4429 	return 0;
4430 }
4431 
4432 /**
4433  * ice_prof_bld_xlt1 - build XLT1 changes
4434  * @blk: hardware block
4435  * @bld: the update package buffer build to add to
4436  * @chgs: the list of changes to make in hardware
4437  */
4438 static int
4439 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4440 		  struct list_head *chgs)
4441 {
4442 	struct ice_chs_chg *tmp;
4443 
4444 	list_for_each_entry(tmp, chgs, list_entry)
4445 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4446 			struct ice_xlt1_section *p;
4447 			u32 id;
4448 
4449 			id = ice_sect_id(blk, ICE_XLT1);
4450 			p = ice_pkg_buf_alloc_section(bld, id,
4451 						      struct_size(p, value, 1));
4452 
4453 			if (!p)
4454 				return -ENOSPC;
4455 
4456 			p->count = cpu_to_le16(1);
4457 			p->offset = cpu_to_le16(tmp->ptype);
4458 			p->value[0] = tmp->ptg;
4459 		}
4460 
4461 	return 0;
4462 }
4463 
4464 /**
4465  * ice_prof_bld_xlt2 - build XLT2 changes
4466  * @blk: hardware block
4467  * @bld: the update package buffer build to add to
4468  * @chgs: the list of changes to make in hardware
4469  */
4470 static int
4471 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4472 		  struct list_head *chgs)
4473 {
4474 	struct ice_chs_chg *tmp;
4475 
4476 	list_for_each_entry(tmp, chgs, list_entry) {
4477 		struct ice_xlt2_section *p;
4478 		u32 id;
4479 
4480 		switch (tmp->type) {
4481 		case ICE_VSIG_ADD:
4482 		case ICE_VSI_MOVE:
4483 		case ICE_VSIG_REM:
4484 			id = ice_sect_id(blk, ICE_XLT2);
4485 			p = ice_pkg_buf_alloc_section(bld, id,
4486 						      struct_size(p, value, 1));
4487 
4488 			if (!p)
4489 				return -ENOSPC;
4490 
4491 			p->count = cpu_to_le16(1);
4492 			p->offset = cpu_to_le16(tmp->vsi);
4493 			p->value[0] = cpu_to_le16(tmp->vsig);
4494 			break;
4495 		default:
4496 			break;
4497 		}
4498 	}
4499 
4500 	return 0;
4501 }
4502 
4503 /**
4504  * ice_upd_prof_hw - update hardware using the change list
4505  * @hw: pointer to the HW struct
4506  * @blk: hardware block
4507  * @chgs: the list of changes to make in hardware
4508  */
4509 static int
4510 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4511 		struct list_head *chgs)
4512 {
4513 	struct ice_buf_build *b;
4514 	struct ice_chs_chg *tmp;
4515 	u16 pkg_sects;
4516 	u16 xlt1 = 0;
4517 	u16 xlt2 = 0;
4518 	u16 tcam = 0;
4519 	u16 es = 0;
4520 	int status;
4521 	u16 sects;
4522 
4523 	/* count number of sections we need */
4524 	list_for_each_entry(tmp, chgs, list_entry) {
4525 		switch (tmp->type) {
4526 		case ICE_PTG_ES_ADD:
4527 			if (tmp->add_ptg)
4528 				xlt1++;
4529 			if (tmp->add_prof)
4530 				es++;
4531 			break;
4532 		case ICE_TCAM_ADD:
4533 			tcam++;
4534 			break;
4535 		case ICE_VSIG_ADD:
4536 		case ICE_VSI_MOVE:
4537 		case ICE_VSIG_REM:
4538 			xlt2++;
4539 			break;
4540 		default:
4541 			break;
4542 		}
4543 	}
4544 	sects = xlt1 + xlt2 + tcam + es;
4545 
4546 	if (!sects)
4547 		return 0;
4548 
4549 	/* Build update package buffer */
4550 	b = ice_pkg_buf_alloc(hw);
4551 	if (!b)
4552 		return -ENOMEM;
4553 
4554 	status = ice_pkg_buf_reserve_section(b, sects);
4555 	if (status)
4556 		goto error_tmp;
4557 
4558 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4559 	if (es) {
4560 		status = ice_prof_bld_es(hw, blk, b, chgs);
4561 		if (status)
4562 			goto error_tmp;
4563 	}
4564 
4565 	if (tcam) {
4566 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4567 		if (status)
4568 			goto error_tmp;
4569 	}
4570 
4571 	if (xlt1) {
4572 		status = ice_prof_bld_xlt1(blk, b, chgs);
4573 		if (status)
4574 			goto error_tmp;
4575 	}
4576 
4577 	if (xlt2) {
4578 		status = ice_prof_bld_xlt2(blk, b, chgs);
4579 		if (status)
4580 			goto error_tmp;
4581 	}
4582 
4583 	/* After package buffer build check if the section count in buffer is
4584 	 * non-zero and matches the number of sections detected for package
4585 	 * update.
4586 	 */
4587 	pkg_sects = ice_pkg_buf_get_active_sections(b);
4588 	if (!pkg_sects || pkg_sects != sects) {
4589 		status = -EINVAL;
4590 		goto error_tmp;
4591 	}
4592 
4593 	/* update package */
4594 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4595 	if (status == -EIO)
4596 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4597 
4598 error_tmp:
4599 	ice_pkg_buf_free(hw, b);
4600 	return status;
4601 }
4602 
4603 /**
4604  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4605  * @hw: pointer to the HW struct
4606  * @prof_id: profile ID
4607  * @mask_sel: mask select
4608  *
4609  * This function enable any of the masks selected by the mask select parameter
4610  * for the profile specified.
4611  */
4612 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4613 {
4614 	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4615 
4616 	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4617 		  GLQF_FDMASK_SEL(prof_id), mask_sel);
4618 }
4619 
4620 struct ice_fd_src_dst_pair {
4621 	u8 prot_id;
4622 	u8 count;
4623 	u16 off;
4624 };
4625 
4626 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4627 	/* These are defined in pairs */
4628 	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4629 	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4630 
4631 	{ ICE_PROT_IPV4_IL, 2, 12 },
4632 	{ ICE_PROT_IPV4_IL, 2, 16 },
4633 
4634 	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4635 	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4636 
4637 	{ ICE_PROT_IPV6_IL, 8, 8 },
4638 	{ ICE_PROT_IPV6_IL, 8, 24 },
4639 
4640 	{ ICE_PROT_TCP_IL, 1, 0 },
4641 	{ ICE_PROT_TCP_IL, 1, 2 },
4642 
4643 	{ ICE_PROT_UDP_OF, 1, 0 },
4644 	{ ICE_PROT_UDP_OF, 1, 2 },
4645 
4646 	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
4647 	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
4648 
4649 	{ ICE_PROT_SCTP_IL, 1, 0 },
4650 	{ ICE_PROT_SCTP_IL, 1, 2 }
4651 };
4652 
4653 #define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
4654 
4655 /**
4656  * ice_update_fd_swap - set register appropriately for a FD FV extraction
4657  * @hw: pointer to the HW struct
4658  * @prof_id: profile ID
4659  * @es: extraction sequence (length of array is determined by the block)
4660  */
4661 static int
4662 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4663 {
4664 	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4665 	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4666 #define ICE_FD_FV_NOT_FOUND (-2)
4667 	s8 first_free = ICE_FD_FV_NOT_FOUND;
4668 	u8 used[ICE_MAX_FV_WORDS] = { 0 };
4669 	s8 orig_free, si;
4670 	u32 mask_sel = 0;
4671 	u8 i, j, k;
4672 
4673 	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4674 
4675 	/* This code assumes that the Flow Director field vectors are assigned
4676 	 * from the end of the FV indexes working towards the zero index, that
4677 	 * only complete fields will be included and will be consecutive, and
4678 	 * that there are no gaps between valid indexes.
4679 	 */
4680 
4681 	/* Determine swap fields present */
4682 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4683 		/* Find the first free entry, assuming right to left population.
4684 		 * This is where we can start adding additional pairs if needed.
4685 		 */
4686 		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4687 		    ICE_PROT_INVALID)
4688 			first_free = i - 1;
4689 
4690 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4691 			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4692 			    es[i].off == ice_fd_pairs[j].off) {
4693 				__set_bit(j, pair_list);
4694 				pair_start[j] = i;
4695 			}
4696 	}
4697 
4698 	orig_free = first_free;
4699 
4700 	/* determine missing swap fields that need to be added */
4701 	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4702 		u8 bit1 = test_bit(i + 1, pair_list);
4703 		u8 bit0 = test_bit(i, pair_list);
4704 
4705 		if (bit0 ^ bit1) {
4706 			u8 index;
4707 
4708 			/* add the appropriate 'paired' entry */
4709 			if (!bit0)
4710 				index = i;
4711 			else
4712 				index = i + 1;
4713 
4714 			/* check for room */
4715 			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4716 				return -ENOSPC;
4717 
4718 			/* place in extraction sequence */
4719 			for (k = 0; k < ice_fd_pairs[index].count; k++) {
4720 				es[first_free - k].prot_id =
4721 					ice_fd_pairs[index].prot_id;
4722 				es[first_free - k].off =
4723 					ice_fd_pairs[index].off + (k * 2);
4724 
4725 				if (k > first_free)
4726 					return -EIO;
4727 
4728 				/* keep track of non-relevant fields */
4729 				mask_sel |= BIT(first_free - k);
4730 			}
4731 
4732 			pair_start[index] = first_free;
4733 			first_free -= ice_fd_pairs[index].count;
4734 		}
4735 	}
4736 
4737 	/* fill in the swap array */
4738 	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4739 	while (si >= 0) {
4740 		u8 indexes_used = 1;
4741 
4742 		/* assume flat at this index */
4743 #define ICE_SWAP_VALID	0x80
4744 		used[si] = si | ICE_SWAP_VALID;
4745 
4746 		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4747 			si -= indexes_used;
4748 			continue;
4749 		}
4750 
4751 		/* check for a swap location */
4752 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4753 			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4754 			    es[si].off == ice_fd_pairs[j].off) {
4755 				u8 idx;
4756 
4757 				/* determine the appropriate matching field */
4758 				idx = j + ((j % 2) ? -1 : 1);
4759 
4760 				indexes_used = ice_fd_pairs[idx].count;
4761 				for (k = 0; k < indexes_used; k++) {
4762 					used[si - k] = (pair_start[idx] - k) |
4763 						ICE_SWAP_VALID;
4764 				}
4765 
4766 				break;
4767 			}
4768 
4769 		si -= indexes_used;
4770 	}
4771 
4772 	/* for each set of 4 swap and 4 inset indexes, write the appropriate
4773 	 * register
4774 	 */
4775 	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4776 		u32 raw_swap = 0;
4777 		u32 raw_in = 0;
4778 
4779 		for (k = 0; k < 4; k++) {
4780 			u8 idx;
4781 
4782 			idx = (j * 4) + k;
4783 			if (used[idx] && !(mask_sel & BIT(idx))) {
4784 				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4785 #define ICE_INSET_DFLT 0x9f
4786 				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4787 			}
4788 		}
4789 
4790 		/* write the appropriate swap register set */
4791 		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4792 
4793 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4794 			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4795 
4796 		/* write the appropriate inset register set */
4797 		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4798 
4799 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4800 			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4801 	}
4802 
4803 	/* initially clear the mask select for this profile */
4804 	ice_update_fd_mask(hw, prof_id, 0);
4805 
4806 	return 0;
4807 }
4808 
4809 /* The entries here needs to match the order of enum ice_ptype_attrib */
4810 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4811 	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
4812 	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
4813 	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
4814 	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
4815 };
4816 
4817 /**
4818  * ice_get_ptype_attrib_info - get PTYPE attribute information
4819  * @type: attribute type
4820  * @info: pointer to variable to the attribute information
4821  */
4822 static void
4823 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4824 			  struct ice_ptype_attrib_info *info)
4825 {
4826 	*info = ice_ptype_attributes[type];
4827 }
4828 
4829 /**
4830  * ice_add_prof_attrib - add any PTG with attributes to profile
4831  * @prof: pointer to the profile to which PTG entries will be added
4832  * @ptg: PTG to be added
4833  * @ptype: PTYPE that needs to be looked up
4834  * @attr: array of attributes that will be considered
4835  * @attr_cnt: number of elements in the attribute array
4836  */
4837 static int
4838 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4839 		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
4840 {
4841 	bool found = false;
4842 	u16 i;
4843 
4844 	for (i = 0; i < attr_cnt; i++)
4845 		if (attr[i].ptype == ptype) {
4846 			found = true;
4847 
4848 			prof->ptg[prof->ptg_cnt] = ptg;
4849 			ice_get_ptype_attrib_info(attr[i].attrib,
4850 						  &prof->attr[prof->ptg_cnt]);
4851 
4852 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4853 				return -ENOSPC;
4854 		}
4855 
4856 	if (!found)
4857 		return -ENOENT;
4858 
4859 	return 0;
4860 }
4861 
4862 /**
4863  * ice_add_prof - add profile
4864  * @hw: pointer to the HW struct
4865  * @blk: hardware block
4866  * @id: profile tracking ID
4867  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4868  * @attr: array of attributes
4869  * @attr_cnt: number of elements in attr array
4870  * @es: extraction sequence (length of array is determined by the block)
4871  * @masks: mask for extraction sequence
4872  *
4873  * This function registers a profile, which matches a set of PTYPES with a
4874  * particular extraction sequence. While the hardware profile is allocated
4875  * it will not be written until the first call to ice_add_flow that specifies
4876  * the ID value used here.
4877  */
4878 int
4879 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4880 	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
4881 	     struct ice_fv_word *es, u16 *masks)
4882 {
4883 	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4884 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4885 	struct ice_prof_map *prof;
4886 	u8 byte = 0;
4887 	u8 prof_id;
4888 	int status;
4889 
4890 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4891 
4892 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4893 
4894 	/* search for existing profile */
4895 	status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4896 	if (status) {
4897 		/* allocate profile ID */
4898 		status = ice_alloc_prof_id(hw, blk, &prof_id);
4899 		if (status)
4900 			goto err_ice_add_prof;
4901 		if (blk == ICE_BLK_FD) {
4902 			/* For Flow Director block, the extraction sequence may
4903 			 * need to be altered in the case where there are paired
4904 			 * fields that have no match. This is necessary because
4905 			 * for Flow Director, src and dest fields need to paired
4906 			 * for filter programming and these values are swapped
4907 			 * during Tx.
4908 			 */
4909 			status = ice_update_fd_swap(hw, prof_id, es);
4910 			if (status)
4911 				goto err_ice_add_prof;
4912 		}
4913 		status = ice_update_prof_masking(hw, blk, prof_id, masks);
4914 		if (status)
4915 			goto err_ice_add_prof;
4916 
4917 		/* and write new es */
4918 		ice_write_es(hw, blk, prof_id, es);
4919 	}
4920 
4921 	ice_prof_inc_ref(hw, blk, prof_id);
4922 
4923 	/* add profile info */
4924 	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4925 	if (!prof) {
4926 		status = -ENOMEM;
4927 		goto err_ice_add_prof;
4928 	}
4929 
4930 	prof->profile_cookie = id;
4931 	prof->prof_id = prof_id;
4932 	prof->ptg_cnt = 0;
4933 	prof->context = 0;
4934 
4935 	/* build list of ptgs */
4936 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4937 		u8 bit;
4938 
4939 		if (!ptypes[byte]) {
4940 			bytes--;
4941 			byte++;
4942 			continue;
4943 		}
4944 
4945 		/* Examine 8 bits per byte */
4946 		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4947 				 BITS_PER_BYTE) {
4948 			u16 ptype;
4949 			u8 ptg;
4950 
4951 			ptype = byte * BITS_PER_BYTE + bit;
4952 
4953 			/* The package should place all ptypes in a non-zero
4954 			 * PTG, so the following call should never fail.
4955 			 */
4956 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4957 				continue;
4958 
4959 			/* If PTG is already added, skip and continue */
4960 			if (test_bit(ptg, ptgs_used))
4961 				continue;
4962 
4963 			__set_bit(ptg, ptgs_used);
4964 			/* Check to see there are any attributes for
4965 			 * this PTYPE, and add them if found.
4966 			 */
4967 			status = ice_add_prof_attrib(prof, ptg, ptype,
4968 						     attr, attr_cnt);
4969 			if (status == -ENOSPC)
4970 				break;
4971 			if (status) {
4972 				/* This is simple a PTYPE/PTG with no
4973 				 * attribute
4974 				 */
4975 				prof->ptg[prof->ptg_cnt] = ptg;
4976 				prof->attr[prof->ptg_cnt].flags = 0;
4977 				prof->attr[prof->ptg_cnt].mask = 0;
4978 
4979 				if (++prof->ptg_cnt >=
4980 				    ICE_MAX_PTG_PER_PROFILE)
4981 					break;
4982 			}
4983 		}
4984 
4985 		bytes--;
4986 		byte++;
4987 	}
4988 
4989 	list_add(&prof->list, &hw->blk[blk].es.prof_map);
4990 	status = 0;
4991 
4992 err_ice_add_prof:
4993 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4994 	return status;
4995 }
4996 
4997 /**
4998  * ice_search_prof_id - Search for a profile tracking ID
4999  * @hw: pointer to the HW struct
5000  * @blk: hardware block
5001  * @id: profile tracking ID
5002  *
5003  * This will search for a profile tracking ID which was previously added.
5004  * The profile map lock should be held before calling this function.
5005  */
5006 static struct ice_prof_map *
5007 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5008 {
5009 	struct ice_prof_map *entry = NULL;
5010 	struct ice_prof_map *map;
5011 
5012 	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
5013 		if (map->profile_cookie == id) {
5014 			entry = map;
5015 			break;
5016 		}
5017 
5018 	return entry;
5019 }
5020 
5021 /**
5022  * ice_vsig_prof_id_count - count profiles in a VSIG
5023  * @hw: pointer to the HW struct
5024  * @blk: hardware block
5025  * @vsig: VSIG to remove the profile from
5026  */
5027 static u16
5028 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5029 {
5030 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5031 	struct ice_vsig_prof *p;
5032 
5033 	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5034 			    list)
5035 		count++;
5036 
5037 	return count;
5038 }
5039 
5040 /**
5041  * ice_rel_tcam_idx - release a TCAM index
5042  * @hw: pointer to the HW struct
5043  * @blk: hardware block
5044  * @idx: the index to release
5045  */
5046 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
5047 {
5048 	/* Masks to invoke a never match entry */
5049 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5051 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5052 	int status;
5053 
5054 	/* write the TCAM entry */
5055 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5056 				      dc_msk, nm_msk);
5057 	if (status)
5058 		return status;
5059 
5060 	/* release the TCAM entry */
5061 	status = ice_free_tcam_ent(hw, blk, idx);
5062 
5063 	return status;
5064 }
5065 
5066 /**
5067  * ice_rem_prof_id - remove one profile from a VSIG
5068  * @hw: pointer to the HW struct
5069  * @blk: hardware block
5070  * @prof: pointer to profile structure to remove
5071  */
5072 static int
5073 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5074 		struct ice_vsig_prof *prof)
5075 {
5076 	int status;
5077 	u16 i;
5078 
5079 	for (i = 0; i < prof->tcam_count; i++)
5080 		if (prof->tcam[i].in_use) {
5081 			prof->tcam[i].in_use = false;
5082 			status = ice_rel_tcam_idx(hw, blk,
5083 						  prof->tcam[i].tcam_idx);
5084 			if (status)
5085 				return -EIO;
5086 		}
5087 
5088 	return 0;
5089 }
5090 
5091 /**
5092  * ice_rem_vsig - remove VSIG
5093  * @hw: pointer to the HW struct
5094  * @blk: hardware block
5095  * @vsig: the VSIG to remove
5096  * @chg: the change list
5097  */
5098 static int
5099 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5100 	     struct list_head *chg)
5101 {
5102 	u16 idx = vsig & ICE_VSIG_IDX_M;
5103 	struct ice_vsig_vsi *vsi_cur;
5104 	struct ice_vsig_prof *d, *t;
5105 	int status;
5106 
5107 	/* remove TCAM entries */
5108 	list_for_each_entry_safe(d, t,
5109 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5110 				 list) {
5111 		status = ice_rem_prof_id(hw, blk, d);
5112 		if (status)
5113 			return status;
5114 
5115 		list_del(&d->list);
5116 		devm_kfree(ice_hw_to_dev(hw), d);
5117 	}
5118 
5119 	/* Move all VSIS associated with this VSIG to the default VSIG */
5120 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5121 	/* If the VSIG has at least 1 VSI then iterate through the list
5122 	 * and remove the VSIs before deleting the group.
5123 	 */
5124 	if (vsi_cur)
5125 		do {
5126 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5127 			struct ice_chs_chg *p;
5128 
5129 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5130 					 GFP_KERNEL);
5131 			if (!p)
5132 				return -ENOMEM;
5133 
5134 			p->type = ICE_VSIG_REM;
5135 			p->orig_vsig = vsig;
5136 			p->vsig = ICE_DEFAULT_VSIG;
5137 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5138 
5139 			list_add(&p->list_entry, chg);
5140 
5141 			vsi_cur = tmp;
5142 		} while (vsi_cur);
5143 
5144 	return ice_vsig_free(hw, blk, vsig);
5145 }
5146 
5147 /**
5148  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5149  * @hw: pointer to the HW struct
5150  * @blk: hardware block
5151  * @vsig: VSIG to remove the profile from
5152  * @hdl: profile handle indicating which profile to remove
5153  * @chg: list to receive a record of changes
5154  */
5155 static int
5156 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5157 		     struct list_head *chg)
5158 {
5159 	u16 idx = vsig & ICE_VSIG_IDX_M;
5160 	struct ice_vsig_prof *p, *t;
5161 	int status;
5162 
5163 	list_for_each_entry_safe(p, t,
5164 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5165 				 list)
5166 		if (p->profile_cookie == hdl) {
5167 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5168 				/* this is the last profile, remove the VSIG */
5169 				return ice_rem_vsig(hw, blk, vsig, chg);
5170 
5171 			status = ice_rem_prof_id(hw, blk, p);
5172 			if (!status) {
5173 				list_del(&p->list);
5174 				devm_kfree(ice_hw_to_dev(hw), p);
5175 			}
5176 			return status;
5177 		}
5178 
5179 	return -ENOENT;
5180 }
5181 
5182 /**
5183  * ice_rem_flow_all - remove all flows with a particular profile
5184  * @hw: pointer to the HW struct
5185  * @blk: hardware block
5186  * @id: profile tracking ID
5187  */
5188 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
5189 {
5190 	struct ice_chs_chg *del, *tmp;
5191 	struct list_head chg;
5192 	int status;
5193 	u16 i;
5194 
5195 	INIT_LIST_HEAD(&chg);
5196 
5197 	for (i = 1; i < ICE_MAX_VSIGS; i++)
5198 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5199 			if (ice_has_prof_vsig(hw, blk, i, id)) {
5200 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
5201 							      &chg);
5202 				if (status)
5203 					goto err_ice_rem_flow_all;
5204 			}
5205 		}
5206 
5207 	status = ice_upd_prof_hw(hw, blk, &chg);
5208 
5209 err_ice_rem_flow_all:
5210 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5211 		list_del(&del->list_entry);
5212 		devm_kfree(ice_hw_to_dev(hw), del);
5213 	}
5214 
5215 	return status;
5216 }
5217 
5218 /**
5219  * ice_rem_prof - remove profile
5220  * @hw: pointer to the HW struct
5221  * @blk: hardware block
5222  * @id: profile tracking ID
5223  *
5224  * This will remove the profile specified by the ID parameter, which was
5225  * previously created through ice_add_prof. If any existing entries
5226  * are associated with this profile, they will be removed as well.
5227  */
5228 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5229 {
5230 	struct ice_prof_map *pmap;
5231 	int status;
5232 
5233 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5234 
5235 	pmap = ice_search_prof_id(hw, blk, id);
5236 	if (!pmap) {
5237 		status = -ENOENT;
5238 		goto err_ice_rem_prof;
5239 	}
5240 
5241 	/* remove all flows with this profile */
5242 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5243 	if (status)
5244 		goto err_ice_rem_prof;
5245 
5246 	/* dereference profile, and possibly remove */
5247 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
5248 
5249 	list_del(&pmap->list);
5250 	devm_kfree(ice_hw_to_dev(hw), pmap);
5251 
5252 err_ice_rem_prof:
5253 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5254 	return status;
5255 }
5256 
5257 /**
5258  * ice_get_prof - get profile
5259  * @hw: pointer to the HW struct
5260  * @blk: hardware block
5261  * @hdl: profile handle
5262  * @chg: change list
5263  */
5264 static int
5265 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5266 	     struct list_head *chg)
5267 {
5268 	struct ice_prof_map *map;
5269 	struct ice_chs_chg *p;
5270 	int status = 0;
5271 	u16 i;
5272 
5273 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5274 	/* Get the details on the profile specified by the handle ID */
5275 	map = ice_search_prof_id(hw, blk, hdl);
5276 	if (!map) {
5277 		status = -ENOENT;
5278 		goto err_ice_get_prof;
5279 	}
5280 
5281 	for (i = 0; i < map->ptg_cnt; i++)
5282 		if (!hw->blk[blk].es.written[map->prof_id]) {
5283 			/* add ES to change list */
5284 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5285 					 GFP_KERNEL);
5286 			if (!p) {
5287 				status = -ENOMEM;
5288 				goto err_ice_get_prof;
5289 			}
5290 
5291 			p->type = ICE_PTG_ES_ADD;
5292 			p->ptype = 0;
5293 			p->ptg = map->ptg[i];
5294 			p->add_ptg = 0;
5295 
5296 			p->add_prof = 1;
5297 			p->prof_id = map->prof_id;
5298 
5299 			hw->blk[blk].es.written[map->prof_id] = true;
5300 
5301 			list_add(&p->list_entry, chg);
5302 		}
5303 
5304 err_ice_get_prof:
5305 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5306 	/* let caller clean up the change list */
5307 	return status;
5308 }
5309 
5310 /**
5311  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5312  * @hw: pointer to the HW struct
5313  * @blk: hardware block
5314  * @vsig: VSIG from which to copy the list
5315  * @lst: output list
5316  *
5317  * This routine makes a copy of the list of profiles in the specified VSIG.
5318  */
5319 static int
5320 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5321 		   struct list_head *lst)
5322 {
5323 	struct ice_vsig_prof *ent1, *ent2;
5324 	u16 idx = vsig & ICE_VSIG_IDX_M;
5325 
5326 	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5327 			    list) {
5328 		struct ice_vsig_prof *p;
5329 
5330 		/* copy to the input list */
5331 		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
5332 				 GFP_KERNEL);
5333 		if (!p)
5334 			goto err_ice_get_profs_vsig;
5335 
5336 		list_add_tail(&p->list, lst);
5337 	}
5338 
5339 	return 0;
5340 
5341 err_ice_get_profs_vsig:
5342 	list_for_each_entry_safe(ent1, ent2, lst, list) {
5343 		list_del(&ent1->list);
5344 		devm_kfree(ice_hw_to_dev(hw), ent1);
5345 	}
5346 
5347 	return -ENOMEM;
5348 }
5349 
5350 /**
5351  * ice_add_prof_to_lst - add profile entry to a list
5352  * @hw: pointer to the HW struct
5353  * @blk: hardware block
5354  * @lst: the list to be added to
5355  * @hdl: profile handle of entry to add
5356  */
5357 static int
5358 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5359 		    struct list_head *lst, u64 hdl)
5360 {
5361 	struct ice_prof_map *map;
5362 	struct ice_vsig_prof *p;
5363 	int status = 0;
5364 	u16 i;
5365 
5366 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5367 	map = ice_search_prof_id(hw, blk, hdl);
5368 	if (!map) {
5369 		status = -ENOENT;
5370 		goto err_ice_add_prof_to_lst;
5371 	}
5372 
5373 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5374 	if (!p) {
5375 		status = -ENOMEM;
5376 		goto err_ice_add_prof_to_lst;
5377 	}
5378 
5379 	p->profile_cookie = map->profile_cookie;
5380 	p->prof_id = map->prof_id;
5381 	p->tcam_count = map->ptg_cnt;
5382 
5383 	for (i = 0; i < map->ptg_cnt; i++) {
5384 		p->tcam[i].prof_id = map->prof_id;
5385 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5386 		p->tcam[i].ptg = map->ptg[i];
5387 	}
5388 
5389 	list_add(&p->list, lst);
5390 
5391 err_ice_add_prof_to_lst:
5392 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5393 	return status;
5394 }
5395 
5396 /**
5397  * ice_move_vsi - move VSI to another VSIG
5398  * @hw: pointer to the HW struct
5399  * @blk: hardware block
5400  * @vsi: the VSI to move
5401  * @vsig: the VSIG to move the VSI to
5402  * @chg: the change list
5403  */
5404 static int
5405 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5406 	     struct list_head *chg)
5407 {
5408 	struct ice_chs_chg *p;
5409 	u16 orig_vsig;
5410 	int status;
5411 
5412 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5413 	if (!p)
5414 		return -ENOMEM;
5415 
5416 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5417 	if (!status)
5418 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5419 
5420 	if (status) {
5421 		devm_kfree(ice_hw_to_dev(hw), p);
5422 		return status;
5423 	}
5424 
5425 	p->type = ICE_VSI_MOVE;
5426 	p->vsi = vsi;
5427 	p->orig_vsig = orig_vsig;
5428 	p->vsig = vsig;
5429 
5430 	list_add(&p->list_entry, chg);
5431 
5432 	return 0;
5433 }
5434 
5435 /**
5436  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5437  * @hw: pointer to the HW struct
5438  * @idx: the index of the TCAM entry to remove
5439  * @chg: the list of change structures to search
5440  */
5441 static void
5442 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
5443 {
5444 	struct ice_chs_chg *pos, *tmp;
5445 
5446 	list_for_each_entry_safe(tmp, pos, chg, list_entry)
5447 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5448 			list_del(&tmp->list_entry);
5449 			devm_kfree(ice_hw_to_dev(hw), tmp);
5450 		}
5451 }
5452 
5453 /**
5454  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5455  * @hw: pointer to the HW struct
5456  * @blk: hardware block
5457  * @enable: true to enable, false to disable
5458  * @vsig: the VSIG of the TCAM entry
5459  * @tcam: pointer the TCAM info structure of the TCAM to disable
5460  * @chg: the change list
5461  *
5462  * This function appends an enable or disable TCAM entry in the change log
5463  */
5464 static int
5465 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5466 		      u16 vsig, struct ice_tcam_inf *tcam,
5467 		      struct list_head *chg)
5468 {
5469 	struct ice_chs_chg *p;
5470 	int status;
5471 
5472 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5473 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5474 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5475 
5476 	/* if disabling, free the TCAM */
5477 	if (!enable) {
5478 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5479 
5480 		/* if we have already created a change for this TCAM entry, then
5481 		 * we need to remove that entry, in order to prevent writing to
5482 		 * a TCAM entry we no longer will have ownership of.
5483 		 */
5484 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5485 		tcam->tcam_idx = 0;
5486 		tcam->in_use = 0;
5487 		return status;
5488 	}
5489 
5490 	/* for re-enabling, reallocate a TCAM */
5491 	/* for entries with empty attribute masks, allocate entry from
5492 	 * the bottom of the TCAM table; otherwise, allocate from the
5493 	 * top of the table in order to give it higher priority
5494 	 */
5495 	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5496 				    &tcam->tcam_idx);
5497 	if (status)
5498 		return status;
5499 
5500 	/* add TCAM to change list */
5501 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5502 	if (!p)
5503 		return -ENOMEM;
5504 
5505 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5506 				      tcam->ptg, vsig, 0, tcam->attr.flags,
5507 				      vl_msk, dc_msk, nm_msk);
5508 	if (status)
5509 		goto err_ice_prof_tcam_ena_dis;
5510 
5511 	tcam->in_use = 1;
5512 
5513 	p->type = ICE_TCAM_ADD;
5514 	p->add_tcam_idx = true;
5515 	p->prof_id = tcam->prof_id;
5516 	p->ptg = tcam->ptg;
5517 	p->vsig = 0;
5518 	p->tcam_idx = tcam->tcam_idx;
5519 
5520 	/* log change */
5521 	list_add(&p->list_entry, chg);
5522 
5523 	return 0;
5524 
5525 err_ice_prof_tcam_ena_dis:
5526 	devm_kfree(ice_hw_to_dev(hw), p);
5527 	return status;
5528 }
5529 
5530 /**
5531  * ice_adj_prof_priorities - adjust profile based on priorities
5532  * @hw: pointer to the HW struct
5533  * @blk: hardware block
5534  * @vsig: the VSIG for which to adjust profile priorities
5535  * @chg: the change list
5536  */
5537 static int
5538 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5539 			struct list_head *chg)
5540 {
5541 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
5542 	struct ice_vsig_prof *t;
5543 	int status;
5544 	u16 idx;
5545 
5546 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
5547 	idx = vsig & ICE_VSIG_IDX_M;
5548 
5549 	/* Priority is based on the order in which the profiles are added. The
5550 	 * newest added profile has highest priority and the oldest added
5551 	 * profile has the lowest priority. Since the profile property list for
5552 	 * a VSIG is sorted from newest to oldest, this code traverses the list
5553 	 * in order and enables the first of each PTG that it finds (that is not
5554 	 * already enabled); it also disables any duplicate PTGs that it finds
5555 	 * in the older profiles (that are currently enabled).
5556 	 */
5557 
5558 	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5559 			    list) {
5560 		u16 i;
5561 
5562 		for (i = 0; i < t->tcam_count; i++) {
5563 			/* Scan the priorities from newest to oldest.
5564 			 * Make sure that the newest profiles take priority.
5565 			 */
5566 			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
5567 			    t->tcam[i].in_use) {
5568 				/* need to mark this PTG as never match, as it
5569 				 * was already in use and therefore duplicate
5570 				 * (and lower priority)
5571 				 */
5572 				status = ice_prof_tcam_ena_dis(hw, blk, false,
5573 							       vsig,
5574 							       &t->tcam[i],
5575 							       chg);
5576 				if (status)
5577 					return status;
5578 			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
5579 				   !t->tcam[i].in_use) {
5580 				/* need to enable this PTG, as it in not in use
5581 				 * and not enabled (highest priority)
5582 				 */
5583 				status = ice_prof_tcam_ena_dis(hw, blk, true,
5584 							       vsig,
5585 							       &t->tcam[i],
5586 							       chg);
5587 				if (status)
5588 					return status;
5589 			}
5590 
5591 			/* keep track of used ptgs */
5592 			__set_bit(t->tcam[i].ptg, ptgs_used);
5593 		}
5594 	}
5595 
5596 	return 0;
5597 }
5598 
5599 /**
5600  * ice_add_prof_id_vsig - add profile to VSIG
5601  * @hw: pointer to the HW struct
5602  * @blk: hardware block
5603  * @vsig: the VSIG to which this profile is to be added
5604  * @hdl: the profile handle indicating the profile to add
5605  * @rev: true to add entries to the end of the list
5606  * @chg: the change list
5607  */
5608 static int
5609 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5610 		     bool rev, struct list_head *chg)
5611 {
5612 	/* Masks that ignore flags */
5613 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5614 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5615 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5616 	struct ice_prof_map *map;
5617 	struct ice_vsig_prof *t;
5618 	struct ice_chs_chg *p;
5619 	u16 vsig_idx, i;
5620 	int status = 0;
5621 
5622 	/* Error, if this VSIG already has this profile */
5623 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5624 		return -EEXIST;
5625 
5626 	/* new VSIG profile structure */
5627 	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
5628 	if (!t)
5629 		return -ENOMEM;
5630 
5631 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5632 	/* Get the details on the profile specified by the handle ID */
5633 	map = ice_search_prof_id(hw, blk, hdl);
5634 	if (!map) {
5635 		status = -ENOENT;
5636 		goto err_ice_add_prof_id_vsig;
5637 	}
5638 
5639 	t->profile_cookie = map->profile_cookie;
5640 	t->prof_id = map->prof_id;
5641 	t->tcam_count = map->ptg_cnt;
5642 
5643 	/* create TCAM entries */
5644 	for (i = 0; i < map->ptg_cnt; i++) {
5645 		u16 tcam_idx;
5646 
5647 		/* add TCAM to change list */
5648 		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5649 		if (!p) {
5650 			status = -ENOMEM;
5651 			goto err_ice_add_prof_id_vsig;
5652 		}
5653 
5654 		/* allocate the TCAM entry index */
5655 		/* for entries with empty attribute masks, allocate entry from
5656 		 * the bottom of the TCAM table; otherwise, allocate from the
5657 		 * top of the table in order to give it higher priority
5658 		 */
5659 		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5660 					    &tcam_idx);
5661 		if (status) {
5662 			devm_kfree(ice_hw_to_dev(hw), p);
5663 			goto err_ice_add_prof_id_vsig;
5664 		}
5665 
5666 		t->tcam[i].ptg = map->ptg[i];
5667 		t->tcam[i].prof_id = map->prof_id;
5668 		t->tcam[i].tcam_idx = tcam_idx;
5669 		t->tcam[i].attr = map->attr[i];
5670 		t->tcam[i].in_use = true;
5671 
5672 		p->type = ICE_TCAM_ADD;
5673 		p->add_tcam_idx = true;
5674 		p->prof_id = t->tcam[i].prof_id;
5675 		p->ptg = t->tcam[i].ptg;
5676 		p->vsig = vsig;
5677 		p->tcam_idx = t->tcam[i].tcam_idx;
5678 
5679 		/* write the TCAM entry */
5680 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5681 					      t->tcam[i].prof_id,
5682 					      t->tcam[i].ptg, vsig, 0, 0,
5683 					      vl_msk, dc_msk, nm_msk);
5684 		if (status) {
5685 			devm_kfree(ice_hw_to_dev(hw), p);
5686 			goto err_ice_add_prof_id_vsig;
5687 		}
5688 
5689 		/* log change */
5690 		list_add(&p->list_entry, chg);
5691 	}
5692 
5693 	/* add profile to VSIG */
5694 	vsig_idx = vsig & ICE_VSIG_IDX_M;
5695 	if (rev)
5696 		list_add_tail(&t->list,
5697 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5698 	else
5699 		list_add(&t->list,
5700 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5701 
5702 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5703 	return status;
5704 
5705 err_ice_add_prof_id_vsig:
5706 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5707 	/* let caller clean up the change list */
5708 	devm_kfree(ice_hw_to_dev(hw), t);
5709 	return status;
5710 }
5711 
5712 /**
5713  * ice_create_prof_id_vsig - add a new VSIG with a single profile
5714  * @hw: pointer to the HW struct
5715  * @blk: hardware block
5716  * @vsi: the initial VSI that will be in VSIG
5717  * @hdl: the profile handle of the profile that will be added to the VSIG
5718  * @chg: the change list
5719  */
5720 static int
5721 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5722 			struct list_head *chg)
5723 {
5724 	struct ice_chs_chg *p;
5725 	u16 new_vsig;
5726 	int status;
5727 
5728 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5729 	if (!p)
5730 		return -ENOMEM;
5731 
5732 	new_vsig = ice_vsig_alloc(hw, blk);
5733 	if (!new_vsig) {
5734 		status = -EIO;
5735 		goto err_ice_create_prof_id_vsig;
5736 	}
5737 
5738 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5739 	if (status)
5740 		goto err_ice_create_prof_id_vsig;
5741 
5742 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5743 	if (status)
5744 		goto err_ice_create_prof_id_vsig;
5745 
5746 	p->type = ICE_VSIG_ADD;
5747 	p->vsi = vsi;
5748 	p->orig_vsig = ICE_DEFAULT_VSIG;
5749 	p->vsig = new_vsig;
5750 
5751 	list_add(&p->list_entry, chg);
5752 
5753 	return 0;
5754 
5755 err_ice_create_prof_id_vsig:
5756 	/* let caller clean up the change list */
5757 	devm_kfree(ice_hw_to_dev(hw), p);
5758 	return status;
5759 }
5760 
5761 /**
5762  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5763  * @hw: pointer to the HW struct
5764  * @blk: hardware block
5765  * @vsi: the initial VSI that will be in VSIG
5766  * @lst: the list of profile that will be added to the VSIG
5767  * @new_vsig: return of new VSIG
5768  * @chg: the change list
5769  */
5770 static int
5771 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5772 			 struct list_head *lst, u16 *new_vsig,
5773 			 struct list_head *chg)
5774 {
5775 	struct ice_vsig_prof *t;
5776 	int status;
5777 	u16 vsig;
5778 
5779 	vsig = ice_vsig_alloc(hw, blk);
5780 	if (!vsig)
5781 		return -EIO;
5782 
5783 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5784 	if (status)
5785 		return status;
5786 
5787 	list_for_each_entry(t, lst, list) {
5788 		/* Reverse the order here since we are copying the list */
5789 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5790 					      true, chg);
5791 		if (status)
5792 			return status;
5793 	}
5794 
5795 	*new_vsig = vsig;
5796 
5797 	return 0;
5798 }
5799 
5800 /**
5801  * ice_find_prof_vsig - find a VSIG with a specific profile handle
5802  * @hw: pointer to the HW struct
5803  * @blk: hardware block
5804  * @hdl: the profile handle of the profile to search for
5805  * @vsig: returns the VSIG with the matching profile
5806  */
5807 static bool
5808 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5809 {
5810 	struct ice_vsig_prof *t;
5811 	struct list_head lst;
5812 	int status;
5813 
5814 	INIT_LIST_HEAD(&lst);
5815 
5816 	t = kzalloc(sizeof(*t), GFP_KERNEL);
5817 	if (!t)
5818 		return false;
5819 
5820 	t->profile_cookie = hdl;
5821 	list_add(&t->list, &lst);
5822 
5823 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5824 
5825 	list_del(&t->list);
5826 	kfree(t);
5827 
5828 	return !status;
5829 }
5830 
5831 /**
5832  * ice_add_prof_id_flow - add profile flow
5833  * @hw: pointer to the HW struct
5834  * @blk: hardware block
5835  * @vsi: the VSI to enable with the profile specified by ID
5836  * @hdl: profile handle
5837  *
5838  * Calling this function will update the hardware tables to enable the
5839  * profile indicated by the ID parameter for the VSIs specified in the VSI
5840  * array. Once successfully called, the flow will be enabled.
5841  */
5842 int
5843 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5844 {
5845 	struct ice_vsig_prof *tmp1, *del1;
5846 	struct ice_chs_chg *tmp, *del;
5847 	struct list_head union_lst;
5848 	struct list_head chg;
5849 	int status;
5850 	u16 vsig;
5851 
5852 	INIT_LIST_HEAD(&union_lst);
5853 	INIT_LIST_HEAD(&chg);
5854 
5855 	/* Get profile */
5856 	status = ice_get_prof(hw, blk, hdl, &chg);
5857 	if (status)
5858 		return status;
5859 
5860 	/* determine if VSI is already part of a VSIG */
5861 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5862 	if (!status && vsig) {
5863 		bool only_vsi;
5864 		u16 or_vsig;
5865 		u16 ref;
5866 
5867 		/* found in VSIG */
5868 		or_vsig = vsig;
5869 
5870 		/* make sure that there is no overlap/conflict between the new
5871 		 * characteristics and the existing ones; we don't support that
5872 		 * scenario
5873 		 */
5874 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5875 			status = -EEXIST;
5876 			goto err_ice_add_prof_id_flow;
5877 		}
5878 
5879 		/* last VSI in the VSIG? */
5880 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5881 		if (status)
5882 			goto err_ice_add_prof_id_flow;
5883 		only_vsi = (ref == 1);
5884 
5885 		/* create a union of the current profiles and the one being
5886 		 * added
5887 		 */
5888 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5889 		if (status)
5890 			goto err_ice_add_prof_id_flow;
5891 
5892 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5893 		if (status)
5894 			goto err_ice_add_prof_id_flow;
5895 
5896 		/* search for an existing VSIG with an exact charc match */
5897 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5898 		if (!status) {
5899 			/* move VSI to the VSIG that matches */
5900 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5901 			if (status)
5902 				goto err_ice_add_prof_id_flow;
5903 
5904 			/* VSI has been moved out of or_vsig. If the or_vsig had
5905 			 * only that VSI it is now empty and can be removed.
5906 			 */
5907 			if (only_vsi) {
5908 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5909 				if (status)
5910 					goto err_ice_add_prof_id_flow;
5911 			}
5912 		} else if (only_vsi) {
5913 			/* If the original VSIG only contains one VSI, then it
5914 			 * will be the requesting VSI. In this case the VSI is
5915 			 * not sharing entries and we can simply add the new
5916 			 * profile to the VSIG.
5917 			 */
5918 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5919 						      &chg);
5920 			if (status)
5921 				goto err_ice_add_prof_id_flow;
5922 
5923 			/* Adjust priorities */
5924 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5925 			if (status)
5926 				goto err_ice_add_prof_id_flow;
5927 		} else {
5928 			/* No match, so we need a new VSIG */
5929 			status = ice_create_vsig_from_lst(hw, blk, vsi,
5930 							  &union_lst, &vsig,
5931 							  &chg);
5932 			if (status)
5933 				goto err_ice_add_prof_id_flow;
5934 
5935 			/* Adjust priorities */
5936 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5937 			if (status)
5938 				goto err_ice_add_prof_id_flow;
5939 		}
5940 	} else {
5941 		/* need to find or add a VSIG */
5942 		/* search for an existing VSIG with an exact charc match */
5943 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5944 			/* found an exact match */
5945 			/* add or move VSI to the VSIG that matches */
5946 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5947 			if (status)
5948 				goto err_ice_add_prof_id_flow;
5949 		} else {
5950 			/* we did not find an exact match */
5951 			/* we need to add a VSIG */
5952 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5953 							 &chg);
5954 			if (status)
5955 				goto err_ice_add_prof_id_flow;
5956 		}
5957 	}
5958 
5959 	/* update hardware */
5960 	if (!status)
5961 		status = ice_upd_prof_hw(hw, blk, &chg);
5962 
5963 err_ice_add_prof_id_flow:
5964 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5965 		list_del(&del->list_entry);
5966 		devm_kfree(ice_hw_to_dev(hw), del);
5967 	}
5968 
5969 	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5970 		list_del(&del1->list);
5971 		devm_kfree(ice_hw_to_dev(hw), del1);
5972 	}
5973 
5974 	return status;
5975 }
5976 
5977 /**
5978  * ice_rem_prof_from_list - remove a profile from list
5979  * @hw: pointer to the HW struct
5980  * @lst: list to remove the profile from
5981  * @hdl: the profile handle indicating the profile to remove
5982  */
5983 static int
5984 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5985 {
5986 	struct ice_vsig_prof *ent, *tmp;
5987 
5988 	list_for_each_entry_safe(ent, tmp, lst, list)
5989 		if (ent->profile_cookie == hdl) {
5990 			list_del(&ent->list);
5991 			devm_kfree(ice_hw_to_dev(hw), ent);
5992 			return 0;
5993 		}
5994 
5995 	return -ENOENT;
5996 }
5997 
5998 /**
5999  * ice_rem_prof_id_flow - remove flow
6000  * @hw: pointer to the HW struct
6001  * @blk: hardware block
6002  * @vsi: the VSI from which to remove the profile specified by ID
6003  * @hdl: profile tracking handle
6004  *
6005  * Calling this function will update the hardware tables to remove the
6006  * profile indicated by the ID parameter for the VSIs specified in the VSI
6007  * array. Once successfully called, the flow will be disabled.
6008  */
6009 int
6010 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6011 {
6012 	struct ice_vsig_prof *tmp1, *del1;
6013 	struct ice_chs_chg *tmp, *del;
6014 	struct list_head chg, copy;
6015 	int status;
6016 	u16 vsig;
6017 
6018 	INIT_LIST_HEAD(&copy);
6019 	INIT_LIST_HEAD(&chg);
6020 
6021 	/* determine if VSI is already part of a VSIG */
6022 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6023 	if (!status && vsig) {
6024 		bool last_profile;
6025 		bool only_vsi;
6026 		u16 ref;
6027 
6028 		/* found in VSIG */
6029 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6030 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6031 		if (status)
6032 			goto err_ice_rem_prof_id_flow;
6033 		only_vsi = (ref == 1);
6034 
6035 		if (only_vsi) {
6036 			/* If the original VSIG only contains one reference,
6037 			 * which will be the requesting VSI, then the VSI is not
6038 			 * sharing entries and we can simply remove the specific
6039 			 * characteristics from the VSIG.
6040 			 */
6041 
6042 			if (last_profile) {
6043 				/* If there are no profiles left for this VSIG,
6044 				 * then simply remove the VSIG.
6045 				 */
6046 				status = ice_rem_vsig(hw, blk, vsig, &chg);
6047 				if (status)
6048 					goto err_ice_rem_prof_id_flow;
6049 			} else {
6050 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
6051 							      hdl, &chg);
6052 				if (status)
6053 					goto err_ice_rem_prof_id_flow;
6054 
6055 				/* Adjust priorities */
6056 				status = ice_adj_prof_priorities(hw, blk, vsig,
6057 								 &chg);
6058 				if (status)
6059 					goto err_ice_rem_prof_id_flow;
6060 			}
6061 
6062 		} else {
6063 			/* Make a copy of the VSIG's list of Profiles */
6064 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
6065 			if (status)
6066 				goto err_ice_rem_prof_id_flow;
6067 
6068 			/* Remove specified profile entry from the list */
6069 			status = ice_rem_prof_from_list(hw, &copy, hdl);
6070 			if (status)
6071 				goto err_ice_rem_prof_id_flow;
6072 
6073 			if (list_empty(&copy)) {
6074 				status = ice_move_vsi(hw, blk, vsi,
6075 						      ICE_DEFAULT_VSIG, &chg);
6076 				if (status)
6077 					goto err_ice_rem_prof_id_flow;
6078 
6079 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
6080 							    &vsig)) {
6081 				/* found an exact match */
6082 				/* add or move VSI to the VSIG that matches */
6083 				/* Search for a VSIG with a matching profile
6084 				 * list
6085 				 */
6086 
6087 				/* Found match, move VSI to the matching VSIG */
6088 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6089 				if (status)
6090 					goto err_ice_rem_prof_id_flow;
6091 			} else {
6092 				/* since no existing VSIG supports this
6093 				 * characteristic pattern, we need to create a
6094 				 * new VSIG and TCAM entries
6095 				 */
6096 				status = ice_create_vsig_from_lst(hw, blk, vsi,
6097 								  &copy, &vsig,
6098 								  &chg);
6099 				if (status)
6100 					goto err_ice_rem_prof_id_flow;
6101 
6102 				/* Adjust priorities */
6103 				status = ice_adj_prof_priorities(hw, blk, vsig,
6104 								 &chg);
6105 				if (status)
6106 					goto err_ice_rem_prof_id_flow;
6107 			}
6108 		}
6109 	} else {
6110 		status = -ENOENT;
6111 	}
6112 
6113 	/* update hardware tables */
6114 	if (!status)
6115 		status = ice_upd_prof_hw(hw, blk, &chg);
6116 
6117 err_ice_rem_prof_id_flow:
6118 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
6119 		list_del(&del->list_entry);
6120 		devm_kfree(ice_hw_to_dev(hw), del);
6121 	}
6122 
6123 	list_for_each_entry_safe(del1, tmp1, &copy, list) {
6124 		list_del(&del1->list);
6125 		devm_kfree(ice_hw_to_dev(hw), del1);
6126 	}
6127 
6128 	return status;
6129 }
6130