1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "ice_devlink.h"
9 #include "ice_eswitch.h"
10 #include "ice_fw_update.h"
11 #include "ice_dcb_lib.h"
12 
13 static int ice_active_port_option = -1;
14 
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 	char buf[128];
18 	struct ice_orom_info pending_orom;
19 	struct ice_nvm_info pending_nvm;
20 	struct ice_netlist_info pending_netlist;
21 	struct ice_hw_dev_caps dev_caps;
22 };
23 
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33 
34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 	u8 dsn[8];
37 
38 	/* Copy the DSN into an array in Big Endian format */
39 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40 
41 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43 
44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 	struct ice_hw *hw = &pf->hw;
47 	int status;
48 
49 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 	if (status)
51 		/* We failed to locate the PBA, so just skip this entry */
52 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 			status);
54 }
55 
56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 	struct ice_hw *hw = &pf->hw;
59 
60 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63 
64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 	struct ice_hw *hw = &pf->hw;
67 
68 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 		 hw->api_min_ver, hw->api_patch);
70 }
71 
72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 	struct ice_hw *hw = &pf->hw;
75 
76 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78 
79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 	struct ice_orom_info *orom = &pf->hw.flash.orom;
82 
83 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 		 orom->major, orom->build, orom->patch);
85 }
86 
87 static void
88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 			  struct ice_info_ctx *ctx)
90 {
91 	struct ice_orom_info *orom = &ctx->pending_orom;
92 
93 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 			 orom->major, orom->build, orom->patch);
96 }
97 
98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101 
102 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104 
105 static void
106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 			 struct ice_info_ctx *ctx)
108 {
109 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110 
111 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 			 nvm->major, nvm->minor);
114 }
115 
116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119 
120 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122 
123 static void
124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127 
128 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131 
132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 	struct ice_hw *hw = &pf->hw;
135 
136 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138 
139 static void
140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143 
144 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147 
148 static void
149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153 
154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157 
158 	/* The netlist version fields are BCD formatted */
159 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 		 netlist->major, netlist->minor,
161 		 netlist->type >> 16, netlist->type & 0xFFFF,
162 		 netlist->rev, netlist->cust_ver);
163 }
164 
165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168 
169 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171 
172 static void
173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 			     struct ice_info_ctx *ctx)
175 {
176 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177 
178 	/* The netlist version fields are BCD formatted */
179 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 			 netlist->major, netlist->minor,
182 			 netlist->type >> 16, netlist->type & 0xFFFF,
183 			 netlist->rev, netlist->cust_ver);
184 }
185 
186 static void
187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 			       struct ice_info_ctx *ctx)
189 {
190 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191 
192 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195 
196 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
197 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
198 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
199 
200 /* The combined() macro inserts both the running entry as well as a stored
201  * entry. The running entry will always report the version from the active
202  * handler. The stored entry will first try the pending handler, and fallback
203  * to the active handler if the pending function does not report a version.
204  * The pending handler should check the status of a pending update for the
205  * relevant flash component. It should only fill in the buffer in the case
206  * where a valid pending version is available. This ensures that the related
207  * stored and running versions remain in sync, and that stored versions are
208  * correctly reported as expected.
209  */
210 #define combined(key, active, pending) \
211 	running(key, active), \
212 	stored(key, pending, active)
213 
214 enum ice_version_type {
215 	ICE_VERSION_FIXED,
216 	ICE_VERSION_RUNNING,
217 	ICE_VERSION_STORED,
218 };
219 
220 static const struct ice_devlink_version {
221 	enum ice_version_type type;
222 	const char *key;
223 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
224 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
225 } ice_devlink_versions[] = {
226 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
227 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
228 	running("fw.mgmt.api", ice_info_fw_api),
229 	running("fw.mgmt.build", ice_info_fw_build),
230 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
231 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
232 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
233 	running("fw.app.name", ice_info_ddp_pkg_name),
234 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
235 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
236 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
237 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
238 };
239 
240 /**
241  * ice_devlink_info_get - .info_get devlink handler
242  * @devlink: devlink instance structure
243  * @req: the devlink info request
244  * @extack: extended netdev ack structure
245  *
246  * Callback for the devlink .info_get operation. Reports information about the
247  * device.
248  *
249  * Return: zero on success or an error code on failure.
250  */
251 static int ice_devlink_info_get(struct devlink *devlink,
252 				struct devlink_info_req *req,
253 				struct netlink_ext_ack *extack)
254 {
255 	struct ice_pf *pf = devlink_priv(devlink);
256 	struct device *dev = ice_pf_to_dev(pf);
257 	struct ice_hw *hw = &pf->hw;
258 	struct ice_info_ctx *ctx;
259 	size_t i;
260 	int err;
261 
262 	err = ice_wait_for_reset(pf, 10 * HZ);
263 	if (err) {
264 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
265 		return err;
266 	}
267 
268 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
269 	if (!ctx)
270 		return -ENOMEM;
271 
272 	/* discover capabilities first */
273 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
274 	if (err) {
275 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
276 			err, ice_aq_str(hw->adminq.sq_last_status));
277 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
278 		goto out_free_ctx;
279 	}
280 
281 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
282 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
283 		if (err) {
284 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
285 				err, ice_aq_str(hw->adminq.sq_last_status));
286 
287 			/* disable display of pending Option ROM */
288 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
289 		}
290 	}
291 
292 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
293 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
294 		if (err) {
295 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
296 				err, ice_aq_str(hw->adminq.sq_last_status));
297 
298 			/* disable display of pending Option ROM */
299 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
300 		}
301 	}
302 
303 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
304 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
305 		if (err) {
306 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
307 				err, ice_aq_str(hw->adminq.sq_last_status));
308 
309 			/* disable display of pending Option ROM */
310 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
311 		}
312 	}
313 
314 	ice_info_get_dsn(pf, ctx);
315 
316 	err = devlink_info_serial_number_put(req, ctx->buf);
317 	if (err) {
318 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
319 		goto out_free_ctx;
320 	}
321 
322 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
323 		enum ice_version_type type = ice_devlink_versions[i].type;
324 		const char *key = ice_devlink_versions[i].key;
325 
326 		memset(ctx->buf, 0, sizeof(ctx->buf));
327 
328 		ice_devlink_versions[i].getter(pf, ctx);
329 
330 		/* If the default getter doesn't report a version, use the
331 		 * fallback function. This is primarily useful in the case of
332 		 * "stored" versions that want to report the same value as the
333 		 * running version in the normal case of no pending update.
334 		 */
335 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
336 			ice_devlink_versions[i].fallback(pf, ctx);
337 
338 		/* Do not report missing versions */
339 		if (ctx->buf[0] == '\0')
340 			continue;
341 
342 		switch (type) {
343 		case ICE_VERSION_FIXED:
344 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
345 			if (err) {
346 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
347 				goto out_free_ctx;
348 			}
349 			break;
350 		case ICE_VERSION_RUNNING:
351 			err = devlink_info_version_running_put(req, key, ctx->buf);
352 			if (err) {
353 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
354 				goto out_free_ctx;
355 			}
356 			break;
357 		case ICE_VERSION_STORED:
358 			err = devlink_info_version_stored_put(req, key, ctx->buf);
359 			if (err) {
360 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
361 				goto out_free_ctx;
362 			}
363 			break;
364 		}
365 	}
366 
367 out_free_ctx:
368 	kfree(ctx);
369 	return err;
370 }
371 
372 /**
373  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
374  * @devlink: pointer to the devlink instance to reload
375  * @netns_change: if true, the network namespace is changing
376  * @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE
377  * @limit: limits on what reload should do, such as not resetting
378  * @extack: netlink extended ACK structure
379  *
380  * Allow user to activate new Embedded Management Processor firmware by
381  * issuing device specific EMP reset. Called in response to
382  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
383  *
384  * Note that teardown and rebuild of the driver state happens automatically as
385  * part of an interrupt and watchdog task. This is because all physical
386  * functions on the device must be able to reset when an EMP reset occurs from
387  * any source.
388  */
389 static int
390 ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change,
391 			      enum devlink_reload_action action,
392 			      enum devlink_reload_limit limit,
393 			      struct netlink_ext_ack *extack)
394 {
395 	struct ice_pf *pf = devlink_priv(devlink);
396 	struct device *dev = ice_pf_to_dev(pf);
397 	struct ice_hw *hw = &pf->hw;
398 	u8 pending;
399 	int err;
400 
401 	err = ice_get_pending_updates(pf, &pending, extack);
402 	if (err)
403 		return err;
404 
405 	/* pending is a bitmask of which flash banks have a pending update,
406 	 * including the main NVM bank, the Option ROM bank, and the netlist
407 	 * bank. If any of these bits are set, then there is a pending update
408 	 * waiting to be activated.
409 	 */
410 	if (!pending) {
411 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
412 		return -ECANCELED;
413 	}
414 
415 	if (pf->fw_emp_reset_disabled) {
416 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
417 		return -ECANCELED;
418 	}
419 
420 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
421 
422 	err = ice_aq_nvm_update_empr(hw);
423 	if (err) {
424 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
425 			err, ice_aq_str(hw->adminq.sq_last_status));
426 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
427 		return err;
428 	}
429 
430 	return 0;
431 }
432 
433 /**
434  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
435  * @devlink: pointer to the devlink instance reloading
436  * @action: the action requested
437  * @limit: limits imposed by userspace, such as not resetting
438  * @actions_performed: on return, indicate what actions actually performed
439  * @extack: netlink extended ACK structure
440  *
441  * Wait for driver to finish rebuilding after EMP reset is completed. This
442  * includes time to wait for both the actual device reset as well as the time
443  * for the driver's rebuild to complete.
444  */
445 static int
446 ice_devlink_reload_empr_finish(struct devlink *devlink,
447 			       enum devlink_reload_action action,
448 			       enum devlink_reload_limit limit,
449 			       u32 *actions_performed,
450 			       struct netlink_ext_ack *extack)
451 {
452 	struct ice_pf *pf = devlink_priv(devlink);
453 	int err;
454 
455 	*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
456 
457 	err = ice_wait_for_reset(pf, 60 * HZ);
458 	if (err) {
459 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
460 		return err;
461 	}
462 
463 	return 0;
464 }
465 
466 /**
467  * ice_devlink_port_opt_speed_str - convert speed to a string
468  * @speed: speed value
469  */
470 static const char *ice_devlink_port_opt_speed_str(u8 speed)
471 {
472 	switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
473 	case ICE_AQC_PORT_OPT_MAX_LANE_100M:
474 		return "0.1";
475 	case ICE_AQC_PORT_OPT_MAX_LANE_1G:
476 		return "1";
477 	case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
478 		return "2.5";
479 	case ICE_AQC_PORT_OPT_MAX_LANE_5G:
480 		return "5";
481 	case ICE_AQC_PORT_OPT_MAX_LANE_10G:
482 		return "10";
483 	case ICE_AQC_PORT_OPT_MAX_LANE_25G:
484 		return "25";
485 	case ICE_AQC_PORT_OPT_MAX_LANE_50G:
486 		return "50";
487 	case ICE_AQC_PORT_OPT_MAX_LANE_100G:
488 		return "100";
489 	}
490 
491 	return "-";
492 }
493 
494 #define ICE_PORT_OPT_DESC_LEN	50
495 /**
496  * ice_devlink_port_options_print - Print available port split options
497  * @pf: the PF to print split port options
498  *
499  * Prints a table with available port split options and max port speeds
500  */
501 static void ice_devlink_port_options_print(struct ice_pf *pf)
502 {
503 	u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
504 	struct ice_aqc_get_port_options_elem *options, *opt;
505 	struct device *dev = ice_pf_to_dev(pf);
506 	bool active_valid, pending_valid;
507 	char desc[ICE_PORT_OPT_DESC_LEN];
508 	const char *str;
509 	int status;
510 
511 	options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
512 			  sizeof(*options), GFP_KERNEL);
513 	if (!options)
514 		return;
515 
516 	for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
517 		opt = options + i * ICE_AQC_PORT_OPT_MAX;
518 		options_count = ICE_AQC_PORT_OPT_MAX;
519 		active_valid = 0;
520 
521 		status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
522 						 i, true, &active_idx,
523 						 &active_valid, &pending_idx,
524 						 &pending_valid);
525 		if (status) {
526 			dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
527 				i, status);
528 			goto err;
529 		}
530 	}
531 
532 	dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
533 	dev_dbg(dev, "Status  Split      Quad 0          Quad 1\n");
534 	dev_dbg(dev, "        count  L0  L1  L2  L3  L4  L5  L6  L7\n");
535 
536 	for (i = 0; i < options_count; i++) {
537 		cnt = 0;
538 
539 		if (i == ice_active_port_option)
540 			str = "Active";
541 		else if ((i == pending_idx) && pending_valid)
542 			str = "Pending";
543 		else
544 			str = "";
545 
546 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
547 				"%-8s", str);
548 
549 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
550 				"%-6u", options[i].pmd);
551 
552 		for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
553 			speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
554 			str = ice_devlink_port_opt_speed_str(speed);
555 			cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
556 					"%3s ", str);
557 		}
558 
559 		dev_dbg(dev, "%s\n", desc);
560 	}
561 
562 err:
563 	kfree(options);
564 }
565 
566 /**
567  * ice_devlink_aq_set_port_option - Send set port option admin queue command
568  * @pf: the PF to print split port options
569  * @option_idx: selected port option
570  * @extack: extended netdev ack structure
571  *
572  * Sends set port option admin queue command with selected port option and
573  * calls NVM write activate.
574  */
575 static int
576 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
577 			       struct netlink_ext_ack *extack)
578 {
579 	struct device *dev = ice_pf_to_dev(pf);
580 	int status;
581 
582 	status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
583 	if (status) {
584 		dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
585 			status, pf->hw.adminq.sq_last_status);
586 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
587 		return -EIO;
588 	}
589 
590 	status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
591 	if (status) {
592 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
593 			status, pf->hw.adminq.sq_last_status);
594 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
595 		return -EIO;
596 	}
597 
598 	status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
599 	if (status) {
600 		dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
601 			status, pf->hw.adminq.sq_last_status);
602 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
603 		ice_release_nvm(&pf->hw);
604 		return -EIO;
605 	}
606 
607 	ice_release_nvm(&pf->hw);
608 
609 	NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
610 	return 0;
611 }
612 
613 /**
614  * ice_devlink_port_split - .port_split devlink handler
615  * @devlink: devlink instance structure
616  * @port: devlink port structure
617  * @count: number of ports to split to
618  * @extack: extended netdev ack structure
619  *
620  * Callback for the devlink .port_split operation.
621  *
622  * Unfortunately, the devlink expression of available options is limited
623  * to just a number, so search for an FW port option which supports
624  * the specified number. As there could be multiple FW port options with
625  * the same port split count, allow switching between them. When the same
626  * port split count request is issued again, switch to the next FW port
627  * option with the same port split count.
628  *
629  * Return: zero on success or an error code on failure.
630  */
631 static int
632 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
633 		       unsigned int count, struct netlink_ext_ack *extack)
634 {
635 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
636 	u8 i, j, active_idx, pending_idx, new_option;
637 	struct ice_pf *pf = devlink_priv(devlink);
638 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
639 	struct device *dev = ice_pf_to_dev(pf);
640 	bool active_valid, pending_valid;
641 	int status;
642 
643 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
644 					 0, true, &active_idx, &active_valid,
645 					 &pending_idx, &pending_valid);
646 	if (status) {
647 		dev_dbg(dev, "Couldn't read port split options, err = %d\n",
648 			status);
649 		NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
650 		return -EIO;
651 	}
652 
653 	new_option = ICE_AQC_PORT_OPT_MAX;
654 	active_idx = pending_valid ? pending_idx : active_idx;
655 	for (i = 1; i <= option_count; i++) {
656 		/* In order to allow switching between FW port options with
657 		 * the same port split count, search for a new option starting
658 		 * from the active/pending option (with array wrap around).
659 		 */
660 		j = (active_idx + i) % option_count;
661 
662 		if (count == options[j].pmd) {
663 			new_option = j;
664 			break;
665 		}
666 	}
667 
668 	if (new_option == active_idx) {
669 		dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
670 			count);
671 		NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
672 		ice_devlink_port_options_print(pf);
673 		return -EINVAL;
674 	}
675 
676 	if (new_option == ICE_AQC_PORT_OPT_MAX) {
677 		dev_dbg(dev, "request to split: count: %u not found\n", count);
678 		NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
679 		ice_devlink_port_options_print(pf);
680 		return -EINVAL;
681 	}
682 
683 	status = ice_devlink_aq_set_port_option(pf, new_option, extack);
684 	if (status)
685 		return status;
686 
687 	ice_devlink_port_options_print(pf);
688 
689 	return 0;
690 }
691 
692 /**
693  * ice_devlink_port_unsplit - .port_unsplit devlink handler
694  * @devlink: devlink instance structure
695  * @port: devlink port structure
696  * @extack: extended netdev ack structure
697  *
698  * Callback for the devlink .port_unsplit operation.
699  * Calls ice_devlink_port_split with split count set to 1.
700  * There could be no FW option available with split count 1.
701  *
702  * Return: zero on success or an error code on failure.
703  */
704 static int
705 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
706 			 struct netlink_ext_ack *extack)
707 {
708 	return ice_devlink_port_split(devlink, port, 1, extack);
709 }
710 
711 /**
712  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
713  * @pf: pf struct
714  *
715  * This function tears down tree exported during VF's creation.
716  */
717 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
718 {
719 	struct devlink *devlink;
720 	struct ice_vf *vf;
721 	unsigned int bkt;
722 
723 	devlink = priv_to_devlink(pf);
724 
725 	devl_lock(devlink);
726 	mutex_lock(&pf->vfs.table_lock);
727 	ice_for_each_vf(pf, bkt, vf) {
728 		if (vf->devlink_port.devlink_rate)
729 			devl_rate_leaf_destroy(&vf->devlink_port);
730 	}
731 	mutex_unlock(&pf->vfs.table_lock);
732 
733 	devl_rate_nodes_destroy(devlink);
734 	devl_unlock(devlink);
735 }
736 
737 /**
738  * ice_enable_custom_tx - try to enable custom Tx feature
739  * @pf: pf struct
740  *
741  * This function tries to enable custom Tx feature,
742  * it's not possible to enable it, if DCB or ADQ is active.
743  */
744 static bool ice_enable_custom_tx(struct ice_pf *pf)
745 {
746 	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
747 	struct device *dev = ice_pf_to_dev(pf);
748 
749 	if (pi->is_custom_tx_enabled)
750 		/* already enabled, return true */
751 		return true;
752 
753 	if (ice_is_adq_active(pf)) {
754 		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
755 		return false;
756 	}
757 
758 	if (ice_is_dcb_active(pf)) {
759 		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
760 		return false;
761 	}
762 
763 	pi->is_custom_tx_enabled = true;
764 
765 	return true;
766 }
767 
768 /**
769  * ice_traverse_tx_tree - traverse Tx scheduler tree
770  * @devlink: devlink struct
771  * @node: current node, used for recursion
772  * @tc_node: tc_node struct, that is treated as a root
773  * @pf: pf struct
774  *
775  * This function traverses Tx scheduler tree and exports
776  * entire structure to the devlink-rate.
777  */
778 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
779 				 struct ice_sched_node *tc_node, struct ice_pf *pf)
780 {
781 	struct devlink_rate *rate_node = NULL;
782 	struct ice_vf *vf;
783 	int i;
784 
785 	if (node->parent == tc_node) {
786 		/* create root node */
787 		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
788 	} else if (node->vsi_handle &&
789 		   pf->vsi[node->vsi_handle]->vf) {
790 		vf = pf->vsi[node->vsi_handle]->vf;
791 		if (!vf->devlink_port.devlink_rate)
792 			/* leaf nodes doesn't have children
793 			 * so we don't set rate_node
794 			 */
795 			devl_rate_leaf_create(&vf->devlink_port, node,
796 					      node->parent->rate_node);
797 	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
798 		   node->parent->rate_node) {
799 		rate_node = devl_rate_node_create(devlink, node, node->name,
800 						  node->parent->rate_node);
801 	}
802 
803 	if (rate_node && !IS_ERR(rate_node))
804 		node->rate_node = rate_node;
805 
806 	for (i = 0; i < node->num_children; i++)
807 		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
808 }
809 
810 /**
811  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
812  * @devlink: devlink struct
813  * @vsi: main vsi struct
814  *
815  * This function finds a root node, then calls ice_traverse_tx tree, which
816  * traverses the tree and exports it's contents to devlink rate.
817  */
818 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
819 {
820 	struct ice_port_info *pi = vsi->port_info;
821 	struct ice_sched_node *tc_node;
822 	struct ice_pf *pf = vsi->back;
823 	int i;
824 
825 	tc_node = pi->root->children[0];
826 	mutex_lock(&pi->sched_lock);
827 	devl_lock(devlink);
828 	for (i = 0; i < tc_node->num_children; i++)
829 		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
830 	devl_unlock(devlink);
831 	mutex_unlock(&pi->sched_lock);
832 
833 	return 0;
834 }
835 
836 /**
837  * ice_set_object_tx_share - sets node scheduling parameter
838  * @pi: devlink struct instance
839  * @node: node struct instance
840  * @bw: bandwidth in bytes per second
841  * @extack: extended netdev ack structure
842  *
843  * This function sets ICE_MIN_BW scheduling BW limit.
844  */
845 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
846 				   u64 bw, struct netlink_ext_ack *extack)
847 {
848 	int status;
849 
850 	mutex_lock(&pi->sched_lock);
851 	/* converts bytes per second to kilo bits per second */
852 	node->tx_share = div_u64(bw, 125);
853 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
854 	mutex_unlock(&pi->sched_lock);
855 
856 	if (status)
857 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
858 
859 	return status;
860 }
861 
862 /**
863  * ice_set_object_tx_max - sets node scheduling parameter
864  * @pi: devlink struct instance
865  * @node: node struct instance
866  * @bw: bandwidth in bytes per second
867  * @extack: extended netdev ack structure
868  *
869  * This function sets ICE_MAX_BW scheduling BW limit.
870  */
871 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
872 				 u64 bw, struct netlink_ext_ack *extack)
873 {
874 	int status;
875 
876 	mutex_lock(&pi->sched_lock);
877 	/* converts bytes per second value to kilo bits per second */
878 	node->tx_max = div_u64(bw, 125);
879 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
880 	mutex_unlock(&pi->sched_lock);
881 
882 	if (status)
883 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
884 
885 	return status;
886 }
887 
888 /**
889  * ice_set_object_tx_priority - sets node scheduling parameter
890  * @pi: devlink struct instance
891  * @node: node struct instance
892  * @priority: value representing priority for strict priority arbitration
893  * @extack: extended netdev ack structure
894  *
895  * This function sets priority of node among siblings.
896  */
897 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
898 				      u32 priority, struct netlink_ext_ack *extack)
899 {
900 	int status;
901 
902 	if (node->tx_priority >= 8) {
903 		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
904 		return -EINVAL;
905 	}
906 
907 	mutex_lock(&pi->sched_lock);
908 	node->tx_priority = priority;
909 	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
910 	mutex_unlock(&pi->sched_lock);
911 
912 	if (status)
913 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
914 
915 	return status;
916 }
917 
918 /**
919  * ice_set_object_tx_weight - sets node scheduling parameter
920  * @pi: devlink struct instance
921  * @node: node struct instance
922  * @weight: value represeting relative weight for WFQ arbitration
923  * @extack: extended netdev ack structure
924  *
925  * This function sets node weight for WFQ algorithm.
926  */
927 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
928 				    u32 weight, struct netlink_ext_ack *extack)
929 {
930 	int status;
931 
932 	if (node->tx_weight > 200 || node->tx_weight < 1) {
933 		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
934 		return -EINVAL;
935 	}
936 
937 	mutex_lock(&pi->sched_lock);
938 	node->tx_weight = weight;
939 	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
940 	mutex_unlock(&pi->sched_lock);
941 
942 	if (status)
943 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
944 
945 	return status;
946 }
947 
948 /**
949  * ice_get_pi_from_dev_rate - get port info from devlink_rate
950  * @rate_node: devlink struct instance
951  *
952  * This function returns corresponding port_info struct of devlink_rate
953  */
954 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
955 {
956 	struct ice_pf *pf = devlink_priv(rate_node->devlink);
957 
958 	return ice_get_main_vsi(pf)->port_info;
959 }
960 
961 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
962 				     struct netlink_ext_ack *extack)
963 {
964 	struct ice_sched_node *node;
965 	struct ice_port_info *pi;
966 
967 	pi = ice_get_pi_from_dev_rate(rate_node);
968 
969 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
970 		return -EBUSY;
971 
972 	/* preallocate memory for ice_sched_node */
973 	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
974 	*priv = node;
975 
976 	return 0;
977 }
978 
979 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
980 				     struct netlink_ext_ack *extack)
981 {
982 	struct ice_sched_node *node, *tc_node;
983 	struct ice_port_info *pi;
984 
985 	pi = ice_get_pi_from_dev_rate(rate_node);
986 	tc_node = pi->root->children[0];
987 	node = priv;
988 
989 	if (!rate_node->parent || !node || tc_node == node || !extack)
990 		return 0;
991 
992 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
993 		return -EBUSY;
994 
995 	/* can't allow to delete a node with children */
996 	if (node->num_children)
997 		return -EINVAL;
998 
999 	mutex_lock(&pi->sched_lock);
1000 	ice_free_sched_node(pi, node);
1001 	mutex_unlock(&pi->sched_lock);
1002 
1003 	return 0;
1004 }
1005 
1006 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1007 					    u64 tx_max, struct netlink_ext_ack *extack)
1008 {
1009 	struct ice_sched_node *node = priv;
1010 
1011 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1012 		return -EBUSY;
1013 
1014 	if (!node)
1015 		return 0;
1016 
1017 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1018 				     node, tx_max, extack);
1019 }
1020 
1021 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1022 					      u64 tx_share, struct netlink_ext_ack *extack)
1023 {
1024 	struct ice_sched_node *node = priv;
1025 
1026 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1027 		return -EBUSY;
1028 
1029 	if (!node)
1030 		return 0;
1031 
1032 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1033 				       tx_share, extack);
1034 }
1035 
1036 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1037 						 u32 tx_priority, struct netlink_ext_ack *extack)
1038 {
1039 	struct ice_sched_node *node = priv;
1040 
1041 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1042 		return -EBUSY;
1043 
1044 	if (!node)
1045 		return 0;
1046 
1047 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1048 					  tx_priority, extack);
1049 }
1050 
1051 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1052 					       u32 tx_weight, struct netlink_ext_ack *extack)
1053 {
1054 	struct ice_sched_node *node = priv;
1055 
1056 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1057 		return -EBUSY;
1058 
1059 	if (!node)
1060 		return 0;
1061 
1062 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1063 					tx_weight, extack);
1064 }
1065 
1066 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1067 					    u64 tx_max, struct netlink_ext_ack *extack)
1068 {
1069 	struct ice_sched_node *node = priv;
1070 
1071 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1072 		return -EBUSY;
1073 
1074 	if (!node)
1075 		return 0;
1076 
1077 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1078 				     node, tx_max, extack);
1079 }
1080 
1081 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1082 					      u64 tx_share, struct netlink_ext_ack *extack)
1083 {
1084 	struct ice_sched_node *node = priv;
1085 
1086 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1087 		return -EBUSY;
1088 
1089 	if (!node)
1090 		return 0;
1091 
1092 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1093 				       node, tx_share, extack);
1094 }
1095 
1096 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1097 						 u32 tx_priority, struct netlink_ext_ack *extack)
1098 {
1099 	struct ice_sched_node *node = priv;
1100 
1101 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1102 		return -EBUSY;
1103 
1104 	if (!node)
1105 		return 0;
1106 
1107 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1108 					  node, tx_priority, extack);
1109 }
1110 
1111 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1112 					       u32 tx_weight, struct netlink_ext_ack *extack)
1113 {
1114 	struct ice_sched_node *node = priv;
1115 
1116 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1117 		return -EBUSY;
1118 
1119 	if (!node)
1120 		return 0;
1121 
1122 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1123 					node, tx_weight, extack);
1124 }
1125 
1126 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1127 				  struct devlink_rate *parent,
1128 				  void *priv, void *parent_priv,
1129 				  struct netlink_ext_ack *extack)
1130 {
1131 	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1132 	struct ice_sched_node *tc_node, *node, *parent_node;
1133 	u16 num_nodes_added;
1134 	u32 first_node_teid;
1135 	u32 node_teid;
1136 	int status;
1137 
1138 	tc_node = pi->root->children[0];
1139 	node = priv;
1140 
1141 	if (!extack)
1142 		return 0;
1143 
1144 	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1145 		return -EBUSY;
1146 
1147 	if (!parent) {
1148 		if (!node || tc_node == node || node->num_children)
1149 			return -EINVAL;
1150 
1151 		mutex_lock(&pi->sched_lock);
1152 		ice_free_sched_node(pi, node);
1153 		mutex_unlock(&pi->sched_lock);
1154 
1155 		return 0;
1156 	}
1157 
1158 	parent_node = parent_priv;
1159 
1160 	/* if the node doesn't exist, create it */
1161 	if (!node->parent) {
1162 		mutex_lock(&pi->sched_lock);
1163 		status = ice_sched_add_elems(pi, tc_node, parent_node,
1164 					     parent_node->tx_sched_layer + 1,
1165 					     1, &num_nodes_added, &first_node_teid,
1166 					     &node);
1167 		mutex_unlock(&pi->sched_lock);
1168 
1169 		if (status) {
1170 			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1171 			return status;
1172 		}
1173 
1174 		if (devlink_rate->tx_share)
1175 			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1176 		if (devlink_rate->tx_max)
1177 			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1178 		if (devlink_rate->tx_priority)
1179 			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1180 		if (devlink_rate->tx_weight)
1181 			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1182 	} else {
1183 		node_teid = le32_to_cpu(node->info.node_teid);
1184 		mutex_lock(&pi->sched_lock);
1185 		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1186 		mutex_unlock(&pi->sched_lock);
1187 
1188 		if (status)
1189 			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1190 	}
1191 
1192 	return status;
1193 }
1194 
1195 static const struct devlink_ops ice_devlink_ops = {
1196 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1197 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1198 	/* The ice driver currently does not support driver reinit */
1199 	.reload_down = ice_devlink_reload_empr_start,
1200 	.reload_up = ice_devlink_reload_empr_finish,
1201 	.port_split = ice_devlink_port_split,
1202 	.port_unsplit = ice_devlink_port_unsplit,
1203 	.eswitch_mode_get = ice_eswitch_mode_get,
1204 	.eswitch_mode_set = ice_eswitch_mode_set,
1205 	.info_get = ice_devlink_info_get,
1206 	.flash_update = ice_devlink_flash_update,
1207 
1208 	.rate_node_new = ice_devlink_rate_node_new,
1209 	.rate_node_del = ice_devlink_rate_node_del,
1210 
1211 	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1212 	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1213 	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1214 	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1215 
1216 	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1217 	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1218 	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1219 	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1220 
1221 	.rate_leaf_parent_set = ice_devlink_set_parent,
1222 	.rate_node_parent_set = ice_devlink_set_parent,
1223 };
1224 
1225 static int
1226 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1227 			    struct devlink_param_gset_ctx *ctx)
1228 {
1229 	struct ice_pf *pf = devlink_priv(devlink);
1230 
1231 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1232 
1233 	return 0;
1234 }
1235 
1236 static int
1237 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1238 			    struct devlink_param_gset_ctx *ctx)
1239 {
1240 	struct ice_pf *pf = devlink_priv(devlink);
1241 	bool roce_ena = ctx->val.vbool;
1242 	int ret;
1243 
1244 	if (!roce_ena) {
1245 		ice_unplug_aux_dev(pf);
1246 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1247 		return 0;
1248 	}
1249 
1250 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1251 	ret = ice_plug_aux_dev(pf);
1252 	if (ret)
1253 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1254 
1255 	return ret;
1256 }
1257 
1258 static int
1259 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1260 				 union devlink_param_value val,
1261 				 struct netlink_ext_ack *extack)
1262 {
1263 	struct ice_pf *pf = devlink_priv(devlink);
1264 
1265 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1266 		return -EOPNOTSUPP;
1267 
1268 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1269 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1270 		return -EOPNOTSUPP;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1278 			  struct devlink_param_gset_ctx *ctx)
1279 {
1280 	struct ice_pf *pf = devlink_priv(devlink);
1281 
1282 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1283 
1284 	return 0;
1285 }
1286 
1287 static int
1288 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1289 			  struct devlink_param_gset_ctx *ctx)
1290 {
1291 	struct ice_pf *pf = devlink_priv(devlink);
1292 	bool iw_ena = ctx->val.vbool;
1293 	int ret;
1294 
1295 	if (!iw_ena) {
1296 		ice_unplug_aux_dev(pf);
1297 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1298 		return 0;
1299 	}
1300 
1301 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1302 	ret = ice_plug_aux_dev(pf);
1303 	if (ret)
1304 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1305 
1306 	return ret;
1307 }
1308 
1309 static int
1310 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1311 			       union devlink_param_value val,
1312 			       struct netlink_ext_ack *extack)
1313 {
1314 	struct ice_pf *pf = devlink_priv(devlink);
1315 
1316 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1317 		return -EOPNOTSUPP;
1318 
1319 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1320 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1321 		return -EOPNOTSUPP;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static const struct devlink_param ice_devlink_params[] = {
1328 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1329 			      ice_devlink_enable_roce_get,
1330 			      ice_devlink_enable_roce_set,
1331 			      ice_devlink_enable_roce_validate),
1332 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1333 			      ice_devlink_enable_iw_get,
1334 			      ice_devlink_enable_iw_set,
1335 			      ice_devlink_enable_iw_validate),
1336 
1337 };
1338 
1339 static void ice_devlink_free(void *devlink_ptr)
1340 {
1341 	devlink_free((struct devlink *)devlink_ptr);
1342 }
1343 
1344 /**
1345  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1346  * @dev: the device to allocate for
1347  *
1348  * Allocate a devlink instance for this device and return the private area as
1349  * the PF structure. The devlink memory is kept track of through devres by
1350  * adding an action to remove it when unwinding.
1351  */
1352 struct ice_pf *ice_allocate_pf(struct device *dev)
1353 {
1354 	struct devlink *devlink;
1355 
1356 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1357 	if (!devlink)
1358 		return NULL;
1359 
1360 	/* Add an action to teardown the devlink when unwinding the driver */
1361 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1362 		return NULL;
1363 
1364 	return devlink_priv(devlink);
1365 }
1366 
1367 /**
1368  * ice_devlink_register - Register devlink interface for this PF
1369  * @pf: the PF to register the devlink for.
1370  *
1371  * Register the devlink instance associated with this physical function.
1372  *
1373  * Return: zero on success or an error code on failure.
1374  */
1375 void ice_devlink_register(struct ice_pf *pf)
1376 {
1377 	struct devlink *devlink = priv_to_devlink(pf);
1378 
1379 	devlink_set_features(devlink, DEVLINK_F_RELOAD);
1380 	devlink_register(devlink);
1381 }
1382 
1383 /**
1384  * ice_devlink_unregister - Unregister devlink resources for this PF.
1385  * @pf: the PF structure to cleanup
1386  *
1387  * Releases resources used by devlink and cleans up associated memory.
1388  */
1389 void ice_devlink_unregister(struct ice_pf *pf)
1390 {
1391 	devlink_unregister(priv_to_devlink(pf));
1392 }
1393 
1394 /**
1395  * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
1396  * @pf: the PF to create a devlink port for
1397  * @ppid: struct with switch id information
1398  */
1399 static void
1400 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
1401 {
1402 	struct pci_dev *pdev = pf->pdev;
1403 	u64 id;
1404 
1405 	id = pci_get_dsn(pdev);
1406 
1407 	ppid->id_len = sizeof(id);
1408 	put_unaligned_be64(id, &ppid->id);
1409 }
1410 
1411 int ice_devlink_register_params(struct ice_pf *pf)
1412 {
1413 	struct devlink *devlink = priv_to_devlink(pf);
1414 	union devlink_param_value value;
1415 	int err;
1416 
1417 	err = devlink_params_register(devlink, ice_devlink_params,
1418 				      ARRAY_SIZE(ice_devlink_params));
1419 	if (err)
1420 		return err;
1421 
1422 	value.vbool = false;
1423 	devlink_param_driverinit_value_set(devlink,
1424 					   DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP,
1425 					   value);
1426 
1427 	value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false;
1428 	devlink_param_driverinit_value_set(devlink,
1429 					   DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE,
1430 					   value);
1431 
1432 	return 0;
1433 }
1434 
1435 void ice_devlink_unregister_params(struct ice_pf *pf)
1436 {
1437 	devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
1438 				  ARRAY_SIZE(ice_devlink_params));
1439 }
1440 
1441 /**
1442  * ice_devlink_set_port_split_options - Set port split options
1443  * @pf: the PF to set port split options
1444  * @attrs: devlink attributes
1445  *
1446  * Sets devlink port split options based on available FW port options
1447  */
1448 static void
1449 ice_devlink_set_port_split_options(struct ice_pf *pf,
1450 				   struct devlink_port_attrs *attrs)
1451 {
1452 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
1453 	u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
1454 	bool active_valid, pending_valid;
1455 	int status;
1456 
1457 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
1458 					 0, true, &active_idx, &active_valid,
1459 					 &pending_idx, &pending_valid);
1460 	if (status) {
1461 		dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
1462 			status);
1463 		return;
1464 	}
1465 
1466 	/* find the biggest available port split count */
1467 	for (i = 0; i < option_count; i++)
1468 		attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
1469 
1470 	attrs->splittable = attrs->lanes ? 1 : 0;
1471 	ice_active_port_option = active_idx;
1472 }
1473 
1474 /**
1475  * ice_devlink_create_pf_port - Create a devlink port for this PF
1476  * @pf: the PF to create a devlink port for
1477  *
1478  * Create and register a devlink_port for this PF.
1479  *
1480  * Return: zero on success or an error code on failure.
1481  */
1482 int ice_devlink_create_pf_port(struct ice_pf *pf)
1483 {
1484 	struct devlink_port_attrs attrs = {};
1485 	struct devlink_port *devlink_port;
1486 	struct devlink *devlink;
1487 	struct ice_vsi *vsi;
1488 	struct device *dev;
1489 	int err;
1490 
1491 	dev = ice_pf_to_dev(pf);
1492 
1493 	devlink_port = &pf->devlink_port;
1494 
1495 	vsi = ice_get_main_vsi(pf);
1496 	if (!vsi)
1497 		return -EIO;
1498 
1499 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1500 	attrs.phys.port_number = pf->hw.bus.func;
1501 
1502 	/* As FW supports only port split options for whole device,
1503 	 * set port split options only for first PF.
1504 	 */
1505 	if (pf->hw.pf_id == 0)
1506 		ice_devlink_set_port_split_options(pf, &attrs);
1507 
1508 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1509 
1510 	devlink_port_attrs_set(devlink_port, &attrs);
1511 	devlink = priv_to_devlink(pf);
1512 
1513 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1514 	if (err) {
1515 		dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1516 			pf->hw.pf_id, err);
1517 		return err;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /**
1524  * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1525  * @pf: the PF to cleanup
1526  *
1527  * Unregisters the devlink_port structure associated with this PF.
1528  */
1529 void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1530 {
1531 	devlink_port_unregister(&pf->devlink_port);
1532 }
1533 
1534 /**
1535  * ice_devlink_create_vf_port - Create a devlink port for this VF
1536  * @vf: the VF to create a port for
1537  *
1538  * Create and register a devlink_port for this VF.
1539  *
1540  * Return: zero on success or an error code on failure.
1541  */
1542 int ice_devlink_create_vf_port(struct ice_vf *vf)
1543 {
1544 	struct devlink_port_attrs attrs = {};
1545 	struct devlink_port *devlink_port;
1546 	struct devlink *devlink;
1547 	struct ice_vsi *vsi;
1548 	struct device *dev;
1549 	struct ice_pf *pf;
1550 	int err;
1551 
1552 	pf = vf->pf;
1553 	dev = ice_pf_to_dev(pf);
1554 	devlink_port = &vf->devlink_port;
1555 
1556 	vsi = ice_get_vf_vsi(vf);
1557 	if (!vsi)
1558 		return -EINVAL;
1559 
1560 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1561 	attrs.pci_vf.pf = pf->hw.bus.func;
1562 	attrs.pci_vf.vf = vf->vf_id;
1563 
1564 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1565 
1566 	devlink_port_attrs_set(devlink_port, &attrs);
1567 	devlink = priv_to_devlink(pf);
1568 
1569 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1570 	if (err) {
1571 		dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1572 			vf->vf_id, err);
1573 		return err;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 /**
1580  * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1581  * @vf: the VF to cleanup
1582  *
1583  * Unregisters the devlink_port structure associated with this VF.
1584  */
1585 void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1586 {
1587 	devl_rate_leaf_destroy(&vf->devlink_port);
1588 	devlink_port_unregister(&vf->devlink_port);
1589 }
1590 
1591 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1592 
1593 static const struct devlink_region_ops ice_nvm_region_ops;
1594 static const struct devlink_region_ops ice_sram_region_ops;
1595 
1596 /**
1597  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1598  * @devlink: the devlink instance
1599  * @ops: the devlink region to snapshot
1600  * @extack: extended ACK response structure
1601  * @data: on exit points to snapshot data buffer
1602  *
1603  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1604  * the nvm-flash or shadow-ram region.
1605  *
1606  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1607  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1608  * interface.
1609  *
1610  * @returns zero on success, and updates the data pointer. Returns a non-zero
1611  * error code on failure.
1612  */
1613 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1614 				    const struct devlink_region_ops *ops,
1615 				    struct netlink_ext_ack *extack, u8 **data)
1616 {
1617 	struct ice_pf *pf = devlink_priv(devlink);
1618 	struct device *dev = ice_pf_to_dev(pf);
1619 	struct ice_hw *hw = &pf->hw;
1620 	bool read_shadow_ram;
1621 	u8 *nvm_data, *tmp, i;
1622 	u32 nvm_size, left;
1623 	s8 num_blks;
1624 	int status;
1625 
1626 	if (ops == &ice_nvm_region_ops) {
1627 		read_shadow_ram = false;
1628 		nvm_size = hw->flash.flash_size;
1629 	} else if (ops == &ice_sram_region_ops) {
1630 		read_shadow_ram = true;
1631 		nvm_size = hw->flash.sr_words * 2u;
1632 	} else {
1633 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1634 		return -EOPNOTSUPP;
1635 	}
1636 
1637 	nvm_data = vzalloc(nvm_size);
1638 	if (!nvm_data)
1639 		return -ENOMEM;
1640 
1641 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1642 	tmp = nvm_data;
1643 	left = nvm_size;
1644 
1645 	/* Some systems take longer to read the NVM than others which causes the
1646 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1647 	 * this by breaking the reads of the NVM into smaller chunks that will
1648 	 * probably not take as long. This has some overhead since we are
1649 	 * increasing the number of AQ commands, but it should always work
1650 	 */
1651 	for (i = 0; i < num_blks; i++) {
1652 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1653 
1654 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1655 		if (status) {
1656 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1657 				status, hw->adminq.sq_last_status);
1658 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1659 			vfree(nvm_data);
1660 			return -EIO;
1661 		}
1662 
1663 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1664 					   &read_sz, tmp, read_shadow_ram);
1665 		if (status) {
1666 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1667 				read_sz, status, hw->adminq.sq_last_status);
1668 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1669 			ice_release_nvm(hw);
1670 			vfree(nvm_data);
1671 			return -EIO;
1672 		}
1673 		ice_release_nvm(hw);
1674 
1675 		tmp += read_sz;
1676 		left -= read_sz;
1677 	}
1678 
1679 	*data = nvm_data;
1680 
1681 	return 0;
1682 }
1683 
1684 /**
1685  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1686  * @devlink: the devlink instance
1687  * @ops: the devlink region to snapshot
1688  * @extack: extended ACK response structure
1689  * @offset: the offset to start at
1690  * @size: the amount to read
1691  * @data: the data buffer to read into
1692  *
1693  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1694  * read a section of the NVM contents.
1695  *
1696  * It reads from either the nvm-flash or shadow-ram region contents.
1697  *
1698  * @returns zero on success, and updates the data pointer. Returns a non-zero
1699  * error code on failure.
1700  */
1701 static int ice_devlink_nvm_read(struct devlink *devlink,
1702 				const struct devlink_region_ops *ops,
1703 				struct netlink_ext_ack *extack,
1704 				u64 offset, u32 size, u8 *data)
1705 {
1706 	struct ice_pf *pf = devlink_priv(devlink);
1707 	struct device *dev = ice_pf_to_dev(pf);
1708 	struct ice_hw *hw = &pf->hw;
1709 	bool read_shadow_ram;
1710 	u64 nvm_size;
1711 	int status;
1712 
1713 	if (ops == &ice_nvm_region_ops) {
1714 		read_shadow_ram = false;
1715 		nvm_size = hw->flash.flash_size;
1716 	} else if (ops == &ice_sram_region_ops) {
1717 		read_shadow_ram = true;
1718 		nvm_size = hw->flash.sr_words * 2u;
1719 	} else {
1720 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1721 		return -EOPNOTSUPP;
1722 	}
1723 
1724 	if (offset + size >= nvm_size) {
1725 		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1726 		return -ERANGE;
1727 	}
1728 
1729 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1730 	if (status) {
1731 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1732 			status, hw->adminq.sq_last_status);
1733 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1734 		return -EIO;
1735 	}
1736 
1737 	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1738 				   read_shadow_ram);
1739 	if (status) {
1740 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1741 			size, status, hw->adminq.sq_last_status);
1742 		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1743 		ice_release_nvm(hw);
1744 		return -EIO;
1745 	}
1746 	ice_release_nvm(hw);
1747 
1748 	return 0;
1749 }
1750 
1751 /**
1752  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1753  * @devlink: the devlink instance
1754  * @ops: the devlink region being snapshotted
1755  * @extack: extended ACK response structure
1756  * @data: on exit points to snapshot data buffer
1757  *
1758  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1759  * the device-caps devlink region. It captures a snapshot of the device
1760  * capabilities reported by firmware.
1761  *
1762  * @returns zero on success, and updates the data pointer. Returns a non-zero
1763  * error code on failure.
1764  */
1765 static int
1766 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1767 			     const struct devlink_region_ops *ops,
1768 			     struct netlink_ext_ack *extack, u8 **data)
1769 {
1770 	struct ice_pf *pf = devlink_priv(devlink);
1771 	struct device *dev = ice_pf_to_dev(pf);
1772 	struct ice_hw *hw = &pf->hw;
1773 	void *devcaps;
1774 	int status;
1775 
1776 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1777 	if (!devcaps)
1778 		return -ENOMEM;
1779 
1780 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1781 				  ice_aqc_opc_list_dev_caps, NULL);
1782 	if (status) {
1783 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1784 			status, hw->adminq.sq_last_status);
1785 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1786 		vfree(devcaps);
1787 		return status;
1788 	}
1789 
1790 	*data = (u8 *)devcaps;
1791 
1792 	return 0;
1793 }
1794 
1795 static const struct devlink_region_ops ice_nvm_region_ops = {
1796 	.name = "nvm-flash",
1797 	.destructor = vfree,
1798 	.snapshot = ice_devlink_nvm_snapshot,
1799 	.read = ice_devlink_nvm_read,
1800 };
1801 
1802 static const struct devlink_region_ops ice_sram_region_ops = {
1803 	.name = "shadow-ram",
1804 	.destructor = vfree,
1805 	.snapshot = ice_devlink_nvm_snapshot,
1806 	.read = ice_devlink_nvm_read,
1807 };
1808 
1809 static const struct devlink_region_ops ice_devcaps_region_ops = {
1810 	.name = "device-caps",
1811 	.destructor = vfree,
1812 	.snapshot = ice_devlink_devcaps_snapshot,
1813 };
1814 
1815 /**
1816  * ice_devlink_init_regions - Initialize devlink regions
1817  * @pf: the PF device structure
1818  *
1819  * Create devlink regions used to enable access to dump the contents of the
1820  * flash memory on the device.
1821  */
1822 void ice_devlink_init_regions(struct ice_pf *pf)
1823 {
1824 	struct devlink *devlink = priv_to_devlink(pf);
1825 	struct device *dev = ice_pf_to_dev(pf);
1826 	u64 nvm_size, sram_size;
1827 
1828 	nvm_size = pf->hw.flash.flash_size;
1829 	pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
1830 					       nvm_size);
1831 	if (IS_ERR(pf->nvm_region)) {
1832 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1833 			PTR_ERR(pf->nvm_region));
1834 		pf->nvm_region = NULL;
1835 	}
1836 
1837 	sram_size = pf->hw.flash.sr_words * 2u;
1838 	pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1839 						1, sram_size);
1840 	if (IS_ERR(pf->sram_region)) {
1841 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1842 			PTR_ERR(pf->sram_region));
1843 		pf->sram_region = NULL;
1844 	}
1845 
1846 	pf->devcaps_region = devlink_region_create(devlink,
1847 						   &ice_devcaps_region_ops, 10,
1848 						   ICE_AQ_MAX_BUF_LEN);
1849 	if (IS_ERR(pf->devcaps_region)) {
1850 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1851 			PTR_ERR(pf->devcaps_region));
1852 		pf->devcaps_region = NULL;
1853 	}
1854 }
1855 
1856 /**
1857  * ice_devlink_destroy_regions - Destroy devlink regions
1858  * @pf: the PF device structure
1859  *
1860  * Remove previously created regions for this PF.
1861  */
1862 void ice_devlink_destroy_regions(struct ice_pf *pf)
1863 {
1864 	if (pf->nvm_region)
1865 		devlink_region_destroy(pf->nvm_region);
1866 
1867 	if (pf->sram_region)
1868 		devlink_region_destroy(pf->sram_region);
1869 
1870 	if (pf->devcaps_region)
1871 		devlink_region_destroy(pf->devcaps_region);
1872 }
1873