1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation. */ 3 4 #include <linux/vmalloc.h> 5 6 #include "ice.h" 7 #include "ice_lib.h" 8 #include "ice_devlink.h" 9 #include "ice_eswitch.h" 10 #include "ice_fw_update.h" 11 #include "ice_dcb_lib.h" 12 13 static int ice_active_port_option = -1; 14 15 /* context for devlink info version reporting */ 16 struct ice_info_ctx { 17 char buf[128]; 18 struct ice_orom_info pending_orom; 19 struct ice_nvm_info pending_nvm; 20 struct ice_netlist_info pending_netlist; 21 struct ice_hw_dev_caps dev_caps; 22 }; 23 24 /* The following functions are used to format specific strings for various 25 * devlink info versions. The ctx parameter is used to provide the storage 26 * buffer, as well as any ancillary information calculated when the info 27 * request was made. 28 * 29 * If a version does not exist, for example when attempting to get the 30 * inactive version of flash when there is no pending update, the function 31 * should leave the buffer in the ctx structure empty. 32 */ 33 34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx) 35 { 36 u8 dsn[8]; 37 38 /* Copy the DSN into an array in Big Endian format */ 39 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn); 40 41 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn); 42 } 43 44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx) 45 { 46 struct ice_hw *hw = &pf->hw; 47 int status; 48 49 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf)); 50 if (status) 51 /* We failed to locate the PBA, so just skip this entry */ 52 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n", 53 status); 54 } 55 56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx) 57 { 58 struct ice_hw *hw = &pf->hw; 59 60 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 61 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch); 62 } 63 64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx) 65 { 66 struct ice_hw *hw = &pf->hw; 67 68 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver, 69 hw->api_min_ver, hw->api_patch); 70 } 71 72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 73 { 74 struct ice_hw *hw = &pf->hw; 75 76 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build); 77 } 78 79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 80 { 81 struct ice_orom_info *orom = &pf->hw.flash.orom; 82 83 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 84 orom->major, orom->build, orom->patch); 85 } 86 87 static void 88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf, 89 struct ice_info_ctx *ctx) 90 { 91 struct ice_orom_info *orom = &ctx->pending_orom; 92 93 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) 94 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 95 orom->major, orom->build, orom->patch); 96 } 97 98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 99 { 100 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 101 102 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor); 103 } 104 105 static void 106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf, 107 struct ice_info_ctx *ctx) 108 { 109 struct ice_nvm_info *nvm = &ctx->pending_nvm; 110 111 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 112 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", 113 nvm->major, nvm->minor); 114 } 115 116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 117 { 118 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 119 120 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 121 } 122 123 static void 124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 125 { 126 struct ice_nvm_info *nvm = &ctx->pending_nvm; 127 128 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 129 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 130 } 131 132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx) 133 { 134 struct ice_hw *hw = &pf->hw; 135 136 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name); 137 } 138 139 static void 140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx) 141 { 142 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver; 143 144 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u", 145 pkg->major, pkg->minor, pkg->update, pkg->draft); 146 } 147 148 static void 149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 150 { 151 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id); 152 } 153 154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 155 { 156 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 157 158 /* The netlist version fields are BCD formatted */ 159 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 160 netlist->major, netlist->minor, 161 netlist->type >> 16, netlist->type & 0xFFFF, 162 netlist->rev, netlist->cust_ver); 163 } 164 165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 166 { 167 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 168 169 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 170 } 171 172 static void 173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf, 174 struct ice_info_ctx *ctx) 175 { 176 struct ice_netlist_info *netlist = &ctx->pending_netlist; 177 178 /* The netlist version fields are BCD formatted */ 179 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 180 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 181 netlist->major, netlist->minor, 182 netlist->type >> 16, netlist->type & 0xFFFF, 183 netlist->rev, netlist->cust_ver); 184 } 185 186 static void 187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf, 188 struct ice_info_ctx *ctx) 189 { 190 struct ice_netlist_info *netlist = &ctx->pending_netlist; 191 192 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 193 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 194 } 195 196 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL } 197 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL } 198 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback } 199 200 /* The combined() macro inserts both the running entry as well as a stored 201 * entry. The running entry will always report the version from the active 202 * handler. The stored entry will first try the pending handler, and fallback 203 * to the active handler if the pending function does not report a version. 204 * The pending handler should check the status of a pending update for the 205 * relevant flash component. It should only fill in the buffer in the case 206 * where a valid pending version is available. This ensures that the related 207 * stored and running versions remain in sync, and that stored versions are 208 * correctly reported as expected. 209 */ 210 #define combined(key, active, pending) \ 211 running(key, active), \ 212 stored(key, pending, active) 213 214 enum ice_version_type { 215 ICE_VERSION_FIXED, 216 ICE_VERSION_RUNNING, 217 ICE_VERSION_STORED, 218 }; 219 220 static const struct ice_devlink_version { 221 enum ice_version_type type; 222 const char *key; 223 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx); 224 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx); 225 } ice_devlink_versions[] = { 226 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba), 227 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt), 228 running("fw.mgmt.api", ice_info_fw_api), 229 running("fw.mgmt.build", ice_info_fw_build), 230 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver), 231 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver), 232 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack), 233 running("fw.app.name", ice_info_ddp_pkg_name), 234 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version), 235 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id), 236 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver), 237 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build), 238 }; 239 240 /** 241 * ice_devlink_info_get - .info_get devlink handler 242 * @devlink: devlink instance structure 243 * @req: the devlink info request 244 * @extack: extended netdev ack structure 245 * 246 * Callback for the devlink .info_get operation. Reports information about the 247 * device. 248 * 249 * Return: zero on success or an error code on failure. 250 */ 251 static int ice_devlink_info_get(struct devlink *devlink, 252 struct devlink_info_req *req, 253 struct netlink_ext_ack *extack) 254 { 255 struct ice_pf *pf = devlink_priv(devlink); 256 struct device *dev = ice_pf_to_dev(pf); 257 struct ice_hw *hw = &pf->hw; 258 struct ice_info_ctx *ctx; 259 size_t i; 260 int err; 261 262 err = ice_wait_for_reset(pf, 10 * HZ); 263 if (err) { 264 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting"); 265 return err; 266 } 267 268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 269 if (!ctx) 270 return -ENOMEM; 271 272 /* discover capabilities first */ 273 err = ice_discover_dev_caps(hw, &ctx->dev_caps); 274 if (err) { 275 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n", 276 err, ice_aq_str(hw->adminq.sq_last_status)); 277 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities"); 278 goto out_free_ctx; 279 } 280 281 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) { 282 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom); 283 if (err) { 284 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n", 285 err, ice_aq_str(hw->adminq.sq_last_status)); 286 287 /* disable display of pending Option ROM */ 288 ctx->dev_caps.common_cap.nvm_update_pending_orom = false; 289 } 290 } 291 292 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) { 293 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm); 294 if (err) { 295 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n", 296 err, ice_aq_str(hw->adminq.sq_last_status)); 297 298 /* disable display of pending Option ROM */ 299 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false; 300 } 301 } 302 303 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) { 304 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist); 305 if (err) { 306 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n", 307 err, ice_aq_str(hw->adminq.sq_last_status)); 308 309 /* disable display of pending Option ROM */ 310 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false; 311 } 312 } 313 314 ice_info_get_dsn(pf, ctx); 315 316 err = devlink_info_serial_number_put(req, ctx->buf); 317 if (err) { 318 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number"); 319 goto out_free_ctx; 320 } 321 322 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) { 323 enum ice_version_type type = ice_devlink_versions[i].type; 324 const char *key = ice_devlink_versions[i].key; 325 326 memset(ctx->buf, 0, sizeof(ctx->buf)); 327 328 ice_devlink_versions[i].getter(pf, ctx); 329 330 /* If the default getter doesn't report a version, use the 331 * fallback function. This is primarily useful in the case of 332 * "stored" versions that want to report the same value as the 333 * running version in the normal case of no pending update. 334 */ 335 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback) 336 ice_devlink_versions[i].fallback(pf, ctx); 337 338 /* Do not report missing versions */ 339 if (ctx->buf[0] == '\0') 340 continue; 341 342 switch (type) { 343 case ICE_VERSION_FIXED: 344 err = devlink_info_version_fixed_put(req, key, ctx->buf); 345 if (err) { 346 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version"); 347 goto out_free_ctx; 348 } 349 break; 350 case ICE_VERSION_RUNNING: 351 err = devlink_info_version_running_put(req, key, ctx->buf); 352 if (err) { 353 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version"); 354 goto out_free_ctx; 355 } 356 break; 357 case ICE_VERSION_STORED: 358 err = devlink_info_version_stored_put(req, key, ctx->buf); 359 if (err) { 360 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version"); 361 goto out_free_ctx; 362 } 363 break; 364 } 365 } 366 367 out_free_ctx: 368 kfree(ctx); 369 return err; 370 } 371 372 /** 373 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware 374 * @devlink: pointer to the devlink instance to reload 375 * @netns_change: if true, the network namespace is changing 376 * @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE 377 * @limit: limits on what reload should do, such as not resetting 378 * @extack: netlink extended ACK structure 379 * 380 * Allow user to activate new Embedded Management Processor firmware by 381 * issuing device specific EMP reset. Called in response to 382 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE. 383 * 384 * Note that teardown and rebuild of the driver state happens automatically as 385 * part of an interrupt and watchdog task. This is because all physical 386 * functions on the device must be able to reset when an EMP reset occurs from 387 * any source. 388 */ 389 static int 390 ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change, 391 enum devlink_reload_action action, 392 enum devlink_reload_limit limit, 393 struct netlink_ext_ack *extack) 394 { 395 struct ice_pf *pf = devlink_priv(devlink); 396 struct device *dev = ice_pf_to_dev(pf); 397 struct ice_hw *hw = &pf->hw; 398 u8 pending; 399 int err; 400 401 err = ice_get_pending_updates(pf, &pending, extack); 402 if (err) 403 return err; 404 405 /* pending is a bitmask of which flash banks have a pending update, 406 * including the main NVM bank, the Option ROM bank, and the netlist 407 * bank. If any of these bits are set, then there is a pending update 408 * waiting to be activated. 409 */ 410 if (!pending) { 411 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update"); 412 return -ECANCELED; 413 } 414 415 if (pf->fw_emp_reset_disabled) { 416 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed"); 417 return -ECANCELED; 418 } 419 420 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n"); 421 422 err = ice_aq_nvm_update_empr(hw); 423 if (err) { 424 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n", 425 err, ice_aq_str(hw->adminq.sq_last_status)); 426 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware"); 427 return err; 428 } 429 430 return 0; 431 } 432 433 /** 434 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish 435 * @devlink: pointer to the devlink instance reloading 436 * @action: the action requested 437 * @limit: limits imposed by userspace, such as not resetting 438 * @actions_performed: on return, indicate what actions actually performed 439 * @extack: netlink extended ACK structure 440 * 441 * Wait for driver to finish rebuilding after EMP reset is completed. This 442 * includes time to wait for both the actual device reset as well as the time 443 * for the driver's rebuild to complete. 444 */ 445 static int 446 ice_devlink_reload_empr_finish(struct devlink *devlink, 447 enum devlink_reload_action action, 448 enum devlink_reload_limit limit, 449 u32 *actions_performed, 450 struct netlink_ext_ack *extack) 451 { 452 struct ice_pf *pf = devlink_priv(devlink); 453 int err; 454 455 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE); 456 457 err = ice_wait_for_reset(pf, 60 * HZ); 458 if (err) { 459 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute"); 460 return err; 461 } 462 463 return 0; 464 } 465 466 /** 467 * ice_devlink_port_opt_speed_str - convert speed to a string 468 * @speed: speed value 469 */ 470 static const char *ice_devlink_port_opt_speed_str(u8 speed) 471 { 472 switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) { 473 case ICE_AQC_PORT_OPT_MAX_LANE_100M: 474 return "0.1"; 475 case ICE_AQC_PORT_OPT_MAX_LANE_1G: 476 return "1"; 477 case ICE_AQC_PORT_OPT_MAX_LANE_2500M: 478 return "2.5"; 479 case ICE_AQC_PORT_OPT_MAX_LANE_5G: 480 return "5"; 481 case ICE_AQC_PORT_OPT_MAX_LANE_10G: 482 return "10"; 483 case ICE_AQC_PORT_OPT_MAX_LANE_25G: 484 return "25"; 485 case ICE_AQC_PORT_OPT_MAX_LANE_50G: 486 return "50"; 487 case ICE_AQC_PORT_OPT_MAX_LANE_100G: 488 return "100"; 489 } 490 491 return "-"; 492 } 493 494 #define ICE_PORT_OPT_DESC_LEN 50 495 /** 496 * ice_devlink_port_options_print - Print available port split options 497 * @pf: the PF to print split port options 498 * 499 * Prints a table with available port split options and max port speeds 500 */ 501 static void ice_devlink_port_options_print(struct ice_pf *pf) 502 { 503 u8 i, j, options_count, cnt, speed, pending_idx, active_idx; 504 struct ice_aqc_get_port_options_elem *options, *opt; 505 struct device *dev = ice_pf_to_dev(pf); 506 bool active_valid, pending_valid; 507 char desc[ICE_PORT_OPT_DESC_LEN]; 508 const char *str; 509 int status; 510 511 options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV, 512 sizeof(*options), GFP_KERNEL); 513 if (!options) 514 return; 515 516 for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) { 517 opt = options + i * ICE_AQC_PORT_OPT_MAX; 518 options_count = ICE_AQC_PORT_OPT_MAX; 519 active_valid = 0; 520 521 status = ice_aq_get_port_options(&pf->hw, opt, &options_count, 522 i, true, &active_idx, 523 &active_valid, &pending_idx, 524 &pending_valid); 525 if (status) { 526 dev_dbg(dev, "Couldn't read port option for port %d, err %d\n", 527 i, status); 528 goto err; 529 } 530 } 531 532 dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n"); 533 dev_dbg(dev, "Status Split Quad 0 Quad 1\n"); 534 dev_dbg(dev, " count L0 L1 L2 L3 L4 L5 L6 L7\n"); 535 536 for (i = 0; i < options_count; i++) { 537 cnt = 0; 538 539 if (i == ice_active_port_option) 540 str = "Active"; 541 else if ((i == pending_idx) && pending_valid) 542 str = "Pending"; 543 else 544 str = ""; 545 546 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 547 "%-8s", str); 548 549 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 550 "%-6u", options[i].pmd); 551 552 for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) { 553 speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed; 554 str = ice_devlink_port_opt_speed_str(speed); 555 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 556 "%3s ", str); 557 } 558 559 dev_dbg(dev, "%s\n", desc); 560 } 561 562 err: 563 kfree(options); 564 } 565 566 /** 567 * ice_devlink_aq_set_port_option - Send set port option admin queue command 568 * @pf: the PF to print split port options 569 * @option_idx: selected port option 570 * @extack: extended netdev ack structure 571 * 572 * Sends set port option admin queue command with selected port option and 573 * calls NVM write activate. 574 */ 575 static int 576 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx, 577 struct netlink_ext_ack *extack) 578 { 579 struct device *dev = ice_pf_to_dev(pf); 580 int status; 581 582 status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx); 583 if (status) { 584 dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n", 585 status, pf->hw.adminq.sq_last_status); 586 NL_SET_ERR_MSG_MOD(extack, "Port split request failed"); 587 return -EIO; 588 } 589 590 status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE); 591 if (status) { 592 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 593 status, pf->hw.adminq.sq_last_status); 594 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 595 return -EIO; 596 } 597 598 status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL); 599 if (status) { 600 dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n", 601 status, pf->hw.adminq.sq_last_status); 602 NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data"); 603 ice_release_nvm(&pf->hw); 604 return -EIO; 605 } 606 607 ice_release_nvm(&pf->hw); 608 609 NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split"); 610 return 0; 611 } 612 613 /** 614 * ice_devlink_port_split - .port_split devlink handler 615 * @devlink: devlink instance structure 616 * @port: devlink port structure 617 * @count: number of ports to split to 618 * @extack: extended netdev ack structure 619 * 620 * Callback for the devlink .port_split operation. 621 * 622 * Unfortunately, the devlink expression of available options is limited 623 * to just a number, so search for an FW port option which supports 624 * the specified number. As there could be multiple FW port options with 625 * the same port split count, allow switching between them. When the same 626 * port split count request is issued again, switch to the next FW port 627 * option with the same port split count. 628 * 629 * Return: zero on success or an error code on failure. 630 */ 631 static int 632 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port, 633 unsigned int count, struct netlink_ext_ack *extack) 634 { 635 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX]; 636 u8 i, j, active_idx, pending_idx, new_option; 637 struct ice_pf *pf = devlink_priv(devlink); 638 u8 option_count = ICE_AQC_PORT_OPT_MAX; 639 struct device *dev = ice_pf_to_dev(pf); 640 bool active_valid, pending_valid; 641 int status; 642 643 status = ice_aq_get_port_options(&pf->hw, options, &option_count, 644 0, true, &active_idx, &active_valid, 645 &pending_idx, &pending_valid); 646 if (status) { 647 dev_dbg(dev, "Couldn't read port split options, err = %d\n", 648 status); 649 NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options"); 650 return -EIO; 651 } 652 653 new_option = ICE_AQC_PORT_OPT_MAX; 654 active_idx = pending_valid ? pending_idx : active_idx; 655 for (i = 1; i <= option_count; i++) { 656 /* In order to allow switching between FW port options with 657 * the same port split count, search for a new option starting 658 * from the active/pending option (with array wrap around). 659 */ 660 j = (active_idx + i) % option_count; 661 662 if (count == options[j].pmd) { 663 new_option = j; 664 break; 665 } 666 } 667 668 if (new_option == active_idx) { 669 dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n", 670 count); 671 NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set"); 672 ice_devlink_port_options_print(pf); 673 return -EINVAL; 674 } 675 676 if (new_option == ICE_AQC_PORT_OPT_MAX) { 677 dev_dbg(dev, "request to split: count: %u not found\n", count); 678 NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config"); 679 ice_devlink_port_options_print(pf); 680 return -EINVAL; 681 } 682 683 status = ice_devlink_aq_set_port_option(pf, new_option, extack); 684 if (status) 685 return status; 686 687 ice_devlink_port_options_print(pf); 688 689 return 0; 690 } 691 692 /** 693 * ice_devlink_port_unsplit - .port_unsplit devlink handler 694 * @devlink: devlink instance structure 695 * @port: devlink port structure 696 * @extack: extended netdev ack structure 697 * 698 * Callback for the devlink .port_unsplit operation. 699 * Calls ice_devlink_port_split with split count set to 1. 700 * There could be no FW option available with split count 1. 701 * 702 * Return: zero on success or an error code on failure. 703 */ 704 static int 705 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port, 706 struct netlink_ext_ack *extack) 707 { 708 return ice_devlink_port_split(devlink, port, 1, extack); 709 } 710 711 /** 712 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree 713 * @pf: pf struct 714 * 715 * This function tears down tree exported during VF's creation. 716 */ 717 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf) 718 { 719 struct devlink *devlink; 720 struct ice_vf *vf; 721 unsigned int bkt; 722 723 devlink = priv_to_devlink(pf); 724 725 devl_lock(devlink); 726 mutex_lock(&pf->vfs.table_lock); 727 ice_for_each_vf(pf, bkt, vf) { 728 if (vf->devlink_port.devlink_rate) 729 devl_rate_leaf_destroy(&vf->devlink_port); 730 } 731 mutex_unlock(&pf->vfs.table_lock); 732 733 devl_rate_nodes_destroy(devlink); 734 devl_unlock(devlink); 735 } 736 737 /** 738 * ice_enable_custom_tx - try to enable custom Tx feature 739 * @pf: pf struct 740 * 741 * This function tries to enable custom Tx feature, 742 * it's not possible to enable it, if DCB or ADQ is active. 743 */ 744 static bool ice_enable_custom_tx(struct ice_pf *pf) 745 { 746 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info; 747 struct device *dev = ice_pf_to_dev(pf); 748 749 if (pi->is_custom_tx_enabled) 750 /* already enabled, return true */ 751 return true; 752 753 if (ice_is_adq_active(pf)) { 754 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n"); 755 return false; 756 } 757 758 if (ice_is_dcb_active(pf)) { 759 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n"); 760 return false; 761 } 762 763 pi->is_custom_tx_enabled = true; 764 765 return true; 766 } 767 768 /** 769 * ice_traverse_tx_tree - traverse Tx scheduler tree 770 * @devlink: devlink struct 771 * @node: current node, used for recursion 772 * @tc_node: tc_node struct, that is treated as a root 773 * @pf: pf struct 774 * 775 * This function traverses Tx scheduler tree and exports 776 * entire structure to the devlink-rate. 777 */ 778 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node, 779 struct ice_sched_node *tc_node, struct ice_pf *pf) 780 { 781 struct devlink_rate *rate_node = NULL; 782 struct ice_vf *vf; 783 int i; 784 785 if (node->parent == tc_node) { 786 /* create root node */ 787 rate_node = devl_rate_node_create(devlink, node, node->name, NULL); 788 } else if (node->vsi_handle && 789 pf->vsi[node->vsi_handle]->vf) { 790 vf = pf->vsi[node->vsi_handle]->vf; 791 if (!vf->devlink_port.devlink_rate) 792 /* leaf nodes doesn't have children 793 * so we don't set rate_node 794 */ 795 devl_rate_leaf_create(&vf->devlink_port, node, 796 node->parent->rate_node); 797 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF && 798 node->parent->rate_node) { 799 rate_node = devl_rate_node_create(devlink, node, node->name, 800 node->parent->rate_node); 801 } 802 803 if (rate_node && !IS_ERR(rate_node)) 804 node->rate_node = rate_node; 805 806 for (i = 0; i < node->num_children; i++) 807 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf); 808 } 809 810 /** 811 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate 812 * @devlink: devlink struct 813 * @vsi: main vsi struct 814 * 815 * This function finds a root node, then calls ice_traverse_tx tree, which 816 * traverses the tree and exports it's contents to devlink rate. 817 */ 818 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi) 819 { 820 struct ice_port_info *pi = vsi->port_info; 821 struct ice_sched_node *tc_node; 822 struct ice_pf *pf = vsi->back; 823 int i; 824 825 tc_node = pi->root->children[0]; 826 mutex_lock(&pi->sched_lock); 827 devl_lock(devlink); 828 for (i = 0; i < tc_node->num_children; i++) 829 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf); 830 devl_unlock(devlink); 831 mutex_unlock(&pi->sched_lock); 832 833 return 0; 834 } 835 836 /** 837 * ice_set_object_tx_share - sets node scheduling parameter 838 * @pi: devlink struct instance 839 * @node: node struct instance 840 * @bw: bandwidth in bytes per second 841 * @extack: extended netdev ack structure 842 * 843 * This function sets ICE_MIN_BW scheduling BW limit. 844 */ 845 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node, 846 u64 bw, struct netlink_ext_ack *extack) 847 { 848 int status; 849 850 mutex_lock(&pi->sched_lock); 851 /* converts bytes per second to kilo bits per second */ 852 node->tx_share = div_u64(bw, 125); 853 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share); 854 mutex_unlock(&pi->sched_lock); 855 856 if (status) 857 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share"); 858 859 return status; 860 } 861 862 /** 863 * ice_set_object_tx_max - sets node scheduling parameter 864 * @pi: devlink struct instance 865 * @node: node struct instance 866 * @bw: bandwidth in bytes per second 867 * @extack: extended netdev ack structure 868 * 869 * This function sets ICE_MAX_BW scheduling BW limit. 870 */ 871 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node, 872 u64 bw, struct netlink_ext_ack *extack) 873 { 874 int status; 875 876 mutex_lock(&pi->sched_lock); 877 /* converts bytes per second value to kilo bits per second */ 878 node->tx_max = div_u64(bw, 125); 879 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max); 880 mutex_unlock(&pi->sched_lock); 881 882 if (status) 883 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max"); 884 885 return status; 886 } 887 888 /** 889 * ice_set_object_tx_priority - sets node scheduling parameter 890 * @pi: devlink struct instance 891 * @node: node struct instance 892 * @priority: value representing priority for strict priority arbitration 893 * @extack: extended netdev ack structure 894 * 895 * This function sets priority of node among siblings. 896 */ 897 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node, 898 u32 priority, struct netlink_ext_ack *extack) 899 { 900 int status; 901 902 if (node->tx_priority >= 8) { 903 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8"); 904 return -EINVAL; 905 } 906 907 mutex_lock(&pi->sched_lock); 908 node->tx_priority = priority; 909 status = ice_sched_set_node_priority(pi, node, node->tx_priority); 910 mutex_unlock(&pi->sched_lock); 911 912 if (status) 913 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority"); 914 915 return status; 916 } 917 918 /** 919 * ice_set_object_tx_weight - sets node scheduling parameter 920 * @pi: devlink struct instance 921 * @node: node struct instance 922 * @weight: value represeting relative weight for WFQ arbitration 923 * @extack: extended netdev ack structure 924 * 925 * This function sets node weight for WFQ algorithm. 926 */ 927 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node, 928 u32 weight, struct netlink_ext_ack *extack) 929 { 930 int status; 931 932 if (node->tx_weight > 200 || node->tx_weight < 1) { 933 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200"); 934 return -EINVAL; 935 } 936 937 mutex_lock(&pi->sched_lock); 938 node->tx_weight = weight; 939 status = ice_sched_set_node_weight(pi, node, node->tx_weight); 940 mutex_unlock(&pi->sched_lock); 941 942 if (status) 943 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight"); 944 945 return status; 946 } 947 948 /** 949 * ice_get_pi_from_dev_rate - get port info from devlink_rate 950 * @rate_node: devlink struct instance 951 * 952 * This function returns corresponding port_info struct of devlink_rate 953 */ 954 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node) 955 { 956 struct ice_pf *pf = devlink_priv(rate_node->devlink); 957 958 return ice_get_main_vsi(pf)->port_info; 959 } 960 961 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv, 962 struct netlink_ext_ack *extack) 963 { 964 struct ice_sched_node *node; 965 struct ice_port_info *pi; 966 967 pi = ice_get_pi_from_dev_rate(rate_node); 968 969 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 970 return -EBUSY; 971 972 /* preallocate memory for ice_sched_node */ 973 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL); 974 *priv = node; 975 976 return 0; 977 } 978 979 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv, 980 struct netlink_ext_ack *extack) 981 { 982 struct ice_sched_node *node, *tc_node; 983 struct ice_port_info *pi; 984 985 pi = ice_get_pi_from_dev_rate(rate_node); 986 tc_node = pi->root->children[0]; 987 node = priv; 988 989 if (!rate_node->parent || !node || tc_node == node || !extack) 990 return 0; 991 992 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 993 return -EBUSY; 994 995 /* can't allow to delete a node with children */ 996 if (node->num_children) 997 return -EINVAL; 998 999 mutex_lock(&pi->sched_lock); 1000 ice_free_sched_node(pi, node); 1001 mutex_unlock(&pi->sched_lock); 1002 1003 return 0; 1004 } 1005 1006 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv, 1007 u64 tx_max, struct netlink_ext_ack *extack) 1008 { 1009 struct ice_sched_node *node = priv; 1010 1011 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1012 return -EBUSY; 1013 1014 if (!node) 1015 return 0; 1016 1017 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf), 1018 node, tx_max, extack); 1019 } 1020 1021 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv, 1022 u64 tx_share, struct netlink_ext_ack *extack) 1023 { 1024 struct ice_sched_node *node = priv; 1025 1026 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1027 return -EBUSY; 1028 1029 if (!node) 1030 return 0; 1031 1032 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node, 1033 tx_share, extack); 1034 } 1035 1036 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv, 1037 u32 tx_priority, struct netlink_ext_ack *extack) 1038 { 1039 struct ice_sched_node *node = priv; 1040 1041 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1042 return -EBUSY; 1043 1044 if (!node) 1045 return 0; 1046 1047 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node, 1048 tx_priority, extack); 1049 } 1050 1051 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv, 1052 u32 tx_weight, struct netlink_ext_ack *extack) 1053 { 1054 struct ice_sched_node *node = priv; 1055 1056 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink))) 1057 return -EBUSY; 1058 1059 if (!node) 1060 return 0; 1061 1062 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node, 1063 tx_weight, extack); 1064 } 1065 1066 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv, 1067 u64 tx_max, struct netlink_ext_ack *extack) 1068 { 1069 struct ice_sched_node *node = priv; 1070 1071 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1072 return -EBUSY; 1073 1074 if (!node) 1075 return 0; 1076 1077 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node), 1078 node, tx_max, extack); 1079 } 1080 1081 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv, 1082 u64 tx_share, struct netlink_ext_ack *extack) 1083 { 1084 struct ice_sched_node *node = priv; 1085 1086 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1087 return -EBUSY; 1088 1089 if (!node) 1090 return 0; 1091 1092 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node), 1093 node, tx_share, extack); 1094 } 1095 1096 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv, 1097 u32 tx_priority, struct netlink_ext_ack *extack) 1098 { 1099 struct ice_sched_node *node = priv; 1100 1101 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1102 return -EBUSY; 1103 1104 if (!node) 1105 return 0; 1106 1107 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node), 1108 node, tx_priority, extack); 1109 } 1110 1111 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv, 1112 u32 tx_weight, struct netlink_ext_ack *extack) 1113 { 1114 struct ice_sched_node *node = priv; 1115 1116 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink))) 1117 return -EBUSY; 1118 1119 if (!node) 1120 return 0; 1121 1122 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node), 1123 node, tx_weight, extack); 1124 } 1125 1126 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate, 1127 struct devlink_rate *parent, 1128 void *priv, void *parent_priv, 1129 struct netlink_ext_ack *extack) 1130 { 1131 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate); 1132 struct ice_sched_node *tc_node, *node, *parent_node; 1133 u16 num_nodes_added; 1134 u32 first_node_teid; 1135 u32 node_teid; 1136 int status; 1137 1138 tc_node = pi->root->children[0]; 1139 node = priv; 1140 1141 if (!extack) 1142 return 0; 1143 1144 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink))) 1145 return -EBUSY; 1146 1147 if (!parent) { 1148 if (!node || tc_node == node || node->num_children) 1149 return -EINVAL; 1150 1151 mutex_lock(&pi->sched_lock); 1152 ice_free_sched_node(pi, node); 1153 mutex_unlock(&pi->sched_lock); 1154 1155 return 0; 1156 } 1157 1158 parent_node = parent_priv; 1159 1160 /* if the node doesn't exist, create it */ 1161 if (!node->parent) { 1162 mutex_lock(&pi->sched_lock); 1163 status = ice_sched_add_elems(pi, tc_node, parent_node, 1164 parent_node->tx_sched_layer + 1, 1165 1, &num_nodes_added, &first_node_teid, 1166 &node); 1167 mutex_unlock(&pi->sched_lock); 1168 1169 if (status) { 1170 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node"); 1171 return status; 1172 } 1173 1174 if (devlink_rate->tx_share) 1175 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack); 1176 if (devlink_rate->tx_max) 1177 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack); 1178 if (devlink_rate->tx_priority) 1179 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack); 1180 if (devlink_rate->tx_weight) 1181 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack); 1182 } else { 1183 node_teid = le32_to_cpu(node->info.node_teid); 1184 mutex_lock(&pi->sched_lock); 1185 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid); 1186 mutex_unlock(&pi->sched_lock); 1187 1188 if (status) 1189 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent"); 1190 } 1191 1192 return status; 1193 } 1194 1195 static const struct devlink_ops ice_devlink_ops = { 1196 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK, 1197 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE), 1198 /* The ice driver currently does not support driver reinit */ 1199 .reload_down = ice_devlink_reload_empr_start, 1200 .reload_up = ice_devlink_reload_empr_finish, 1201 .port_split = ice_devlink_port_split, 1202 .port_unsplit = ice_devlink_port_unsplit, 1203 .eswitch_mode_get = ice_eswitch_mode_get, 1204 .eswitch_mode_set = ice_eswitch_mode_set, 1205 .info_get = ice_devlink_info_get, 1206 .flash_update = ice_devlink_flash_update, 1207 1208 .rate_node_new = ice_devlink_rate_node_new, 1209 .rate_node_del = ice_devlink_rate_node_del, 1210 1211 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set, 1212 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set, 1213 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set, 1214 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set, 1215 1216 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set, 1217 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set, 1218 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set, 1219 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set, 1220 1221 .rate_leaf_parent_set = ice_devlink_set_parent, 1222 .rate_node_parent_set = ice_devlink_set_parent, 1223 }; 1224 1225 static int 1226 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id, 1227 struct devlink_param_gset_ctx *ctx) 1228 { 1229 struct ice_pf *pf = devlink_priv(devlink); 1230 1231 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false; 1232 1233 return 0; 1234 } 1235 1236 static int 1237 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id, 1238 struct devlink_param_gset_ctx *ctx) 1239 { 1240 struct ice_pf *pf = devlink_priv(devlink); 1241 bool roce_ena = ctx->val.vbool; 1242 int ret; 1243 1244 if (!roce_ena) { 1245 ice_unplug_aux_dev(pf); 1246 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1247 return 0; 1248 } 1249 1250 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2; 1251 ret = ice_plug_aux_dev(pf); 1252 if (ret) 1253 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 1254 1255 return ret; 1256 } 1257 1258 static int 1259 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id, 1260 union devlink_param_value val, 1261 struct netlink_ext_ack *extack) 1262 { 1263 struct ice_pf *pf = devlink_priv(devlink); 1264 1265 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1266 return -EOPNOTSUPP; 1267 1268 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) { 1269 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1270 return -EOPNOTSUPP; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int 1277 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id, 1278 struct devlink_param_gset_ctx *ctx) 1279 { 1280 struct ice_pf *pf = devlink_priv(devlink); 1281 1282 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP; 1283 1284 return 0; 1285 } 1286 1287 static int 1288 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id, 1289 struct devlink_param_gset_ctx *ctx) 1290 { 1291 struct ice_pf *pf = devlink_priv(devlink); 1292 bool iw_ena = ctx->val.vbool; 1293 int ret; 1294 1295 if (!iw_ena) { 1296 ice_unplug_aux_dev(pf); 1297 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1298 return 0; 1299 } 1300 1301 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP; 1302 ret = ice_plug_aux_dev(pf); 1303 if (ret) 1304 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 1305 1306 return ret; 1307 } 1308 1309 static int 1310 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id, 1311 union devlink_param_value val, 1312 struct netlink_ext_ack *extack) 1313 { 1314 struct ice_pf *pf = devlink_priv(devlink); 1315 1316 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 1317 return -EOPNOTSUPP; 1318 1319 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) { 1320 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 1321 return -EOPNOTSUPP; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static const struct devlink_param ice_devlink_params[] = { 1328 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1329 ice_devlink_enable_roce_get, 1330 ice_devlink_enable_roce_set, 1331 ice_devlink_enable_roce_validate), 1332 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 1333 ice_devlink_enable_iw_get, 1334 ice_devlink_enable_iw_set, 1335 ice_devlink_enable_iw_validate), 1336 1337 }; 1338 1339 static void ice_devlink_free(void *devlink_ptr) 1340 { 1341 devlink_free((struct devlink *)devlink_ptr); 1342 } 1343 1344 /** 1345 * ice_allocate_pf - Allocate devlink and return PF structure pointer 1346 * @dev: the device to allocate for 1347 * 1348 * Allocate a devlink instance for this device and return the private area as 1349 * the PF structure. The devlink memory is kept track of through devres by 1350 * adding an action to remove it when unwinding. 1351 */ 1352 struct ice_pf *ice_allocate_pf(struct device *dev) 1353 { 1354 struct devlink *devlink; 1355 1356 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev); 1357 if (!devlink) 1358 return NULL; 1359 1360 /* Add an action to teardown the devlink when unwinding the driver */ 1361 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink)) 1362 return NULL; 1363 1364 return devlink_priv(devlink); 1365 } 1366 1367 /** 1368 * ice_devlink_register - Register devlink interface for this PF 1369 * @pf: the PF to register the devlink for. 1370 * 1371 * Register the devlink instance associated with this physical function. 1372 * 1373 * Return: zero on success or an error code on failure. 1374 */ 1375 void ice_devlink_register(struct ice_pf *pf) 1376 { 1377 struct devlink *devlink = priv_to_devlink(pf); 1378 1379 devlink_set_features(devlink, DEVLINK_F_RELOAD); 1380 devlink_register(devlink); 1381 } 1382 1383 /** 1384 * ice_devlink_unregister - Unregister devlink resources for this PF. 1385 * @pf: the PF structure to cleanup 1386 * 1387 * Releases resources used by devlink and cleans up associated memory. 1388 */ 1389 void ice_devlink_unregister(struct ice_pf *pf) 1390 { 1391 devlink_unregister(priv_to_devlink(pf)); 1392 } 1393 1394 /** 1395 * ice_devlink_set_switch_id - Set unique switch id based on pci dsn 1396 * @pf: the PF to create a devlink port for 1397 * @ppid: struct with switch id information 1398 */ 1399 static void 1400 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid) 1401 { 1402 struct pci_dev *pdev = pf->pdev; 1403 u64 id; 1404 1405 id = pci_get_dsn(pdev); 1406 1407 ppid->id_len = sizeof(id); 1408 put_unaligned_be64(id, &ppid->id); 1409 } 1410 1411 int ice_devlink_register_params(struct ice_pf *pf) 1412 { 1413 struct devlink *devlink = priv_to_devlink(pf); 1414 union devlink_param_value value; 1415 int err; 1416 1417 err = devlink_params_register(devlink, ice_devlink_params, 1418 ARRAY_SIZE(ice_devlink_params)); 1419 if (err) 1420 return err; 1421 1422 value.vbool = false; 1423 devlink_param_driverinit_value_set(devlink, 1424 DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP, 1425 value); 1426 1427 value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false; 1428 devlink_param_driverinit_value_set(devlink, 1429 DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE, 1430 value); 1431 1432 return 0; 1433 } 1434 1435 void ice_devlink_unregister_params(struct ice_pf *pf) 1436 { 1437 devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params, 1438 ARRAY_SIZE(ice_devlink_params)); 1439 } 1440 1441 /** 1442 * ice_devlink_set_port_split_options - Set port split options 1443 * @pf: the PF to set port split options 1444 * @attrs: devlink attributes 1445 * 1446 * Sets devlink port split options based on available FW port options 1447 */ 1448 static void 1449 ice_devlink_set_port_split_options(struct ice_pf *pf, 1450 struct devlink_port_attrs *attrs) 1451 { 1452 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX]; 1453 u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX; 1454 bool active_valid, pending_valid; 1455 int status; 1456 1457 status = ice_aq_get_port_options(&pf->hw, options, &option_count, 1458 0, true, &active_idx, &active_valid, 1459 &pending_idx, &pending_valid); 1460 if (status) { 1461 dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n", 1462 status); 1463 return; 1464 } 1465 1466 /* find the biggest available port split count */ 1467 for (i = 0; i < option_count; i++) 1468 attrs->lanes = max_t(int, attrs->lanes, options[i].pmd); 1469 1470 attrs->splittable = attrs->lanes ? 1 : 0; 1471 ice_active_port_option = active_idx; 1472 } 1473 1474 /** 1475 * ice_devlink_create_pf_port - Create a devlink port for this PF 1476 * @pf: the PF to create a devlink port for 1477 * 1478 * Create and register a devlink_port for this PF. 1479 * 1480 * Return: zero on success or an error code on failure. 1481 */ 1482 int ice_devlink_create_pf_port(struct ice_pf *pf) 1483 { 1484 struct devlink_port_attrs attrs = {}; 1485 struct devlink_port *devlink_port; 1486 struct devlink *devlink; 1487 struct ice_vsi *vsi; 1488 struct device *dev; 1489 int err; 1490 1491 dev = ice_pf_to_dev(pf); 1492 1493 devlink_port = &pf->devlink_port; 1494 1495 vsi = ice_get_main_vsi(pf); 1496 if (!vsi) 1497 return -EIO; 1498 1499 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; 1500 attrs.phys.port_number = pf->hw.bus.func; 1501 1502 /* As FW supports only port split options for whole device, 1503 * set port split options only for first PF. 1504 */ 1505 if (pf->hw.pf_id == 0) 1506 ice_devlink_set_port_split_options(pf, &attrs); 1507 1508 ice_devlink_set_switch_id(pf, &attrs.switch_id); 1509 1510 devlink_port_attrs_set(devlink_port, &attrs); 1511 devlink = priv_to_devlink(pf); 1512 1513 err = devlink_port_register(devlink, devlink_port, vsi->idx); 1514 if (err) { 1515 dev_err(dev, "Failed to create devlink port for PF %d, error %d\n", 1516 pf->hw.pf_id, err); 1517 return err; 1518 } 1519 1520 return 0; 1521 } 1522 1523 /** 1524 * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF 1525 * @pf: the PF to cleanup 1526 * 1527 * Unregisters the devlink_port structure associated with this PF. 1528 */ 1529 void ice_devlink_destroy_pf_port(struct ice_pf *pf) 1530 { 1531 devlink_port_unregister(&pf->devlink_port); 1532 } 1533 1534 /** 1535 * ice_devlink_create_vf_port - Create a devlink port for this VF 1536 * @vf: the VF to create a port for 1537 * 1538 * Create and register a devlink_port for this VF. 1539 * 1540 * Return: zero on success or an error code on failure. 1541 */ 1542 int ice_devlink_create_vf_port(struct ice_vf *vf) 1543 { 1544 struct devlink_port_attrs attrs = {}; 1545 struct devlink_port *devlink_port; 1546 struct devlink *devlink; 1547 struct ice_vsi *vsi; 1548 struct device *dev; 1549 struct ice_pf *pf; 1550 int err; 1551 1552 pf = vf->pf; 1553 dev = ice_pf_to_dev(pf); 1554 devlink_port = &vf->devlink_port; 1555 1556 vsi = ice_get_vf_vsi(vf); 1557 if (!vsi) 1558 return -EINVAL; 1559 1560 attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF; 1561 attrs.pci_vf.pf = pf->hw.bus.func; 1562 attrs.pci_vf.vf = vf->vf_id; 1563 1564 ice_devlink_set_switch_id(pf, &attrs.switch_id); 1565 1566 devlink_port_attrs_set(devlink_port, &attrs); 1567 devlink = priv_to_devlink(pf); 1568 1569 err = devlink_port_register(devlink, devlink_port, vsi->idx); 1570 if (err) { 1571 dev_err(dev, "Failed to create devlink port for VF %d, error %d\n", 1572 vf->vf_id, err); 1573 return err; 1574 } 1575 1576 return 0; 1577 } 1578 1579 /** 1580 * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF 1581 * @vf: the VF to cleanup 1582 * 1583 * Unregisters the devlink_port structure associated with this VF. 1584 */ 1585 void ice_devlink_destroy_vf_port(struct ice_vf *vf) 1586 { 1587 devl_rate_leaf_destroy(&vf->devlink_port); 1588 devlink_port_unregister(&vf->devlink_port); 1589 } 1590 1591 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024) 1592 1593 static const struct devlink_region_ops ice_nvm_region_ops; 1594 static const struct devlink_region_ops ice_sram_region_ops; 1595 1596 /** 1597 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents 1598 * @devlink: the devlink instance 1599 * @ops: the devlink region to snapshot 1600 * @extack: extended ACK response structure 1601 * @data: on exit points to snapshot data buffer 1602 * 1603 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either 1604 * the nvm-flash or shadow-ram region. 1605 * 1606 * It captures a snapshot of the NVM or Shadow RAM flash contents. This 1607 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink 1608 * interface. 1609 * 1610 * @returns zero on success, and updates the data pointer. Returns a non-zero 1611 * error code on failure. 1612 */ 1613 static int ice_devlink_nvm_snapshot(struct devlink *devlink, 1614 const struct devlink_region_ops *ops, 1615 struct netlink_ext_ack *extack, u8 **data) 1616 { 1617 struct ice_pf *pf = devlink_priv(devlink); 1618 struct device *dev = ice_pf_to_dev(pf); 1619 struct ice_hw *hw = &pf->hw; 1620 bool read_shadow_ram; 1621 u8 *nvm_data, *tmp, i; 1622 u32 nvm_size, left; 1623 s8 num_blks; 1624 int status; 1625 1626 if (ops == &ice_nvm_region_ops) { 1627 read_shadow_ram = false; 1628 nvm_size = hw->flash.flash_size; 1629 } else if (ops == &ice_sram_region_ops) { 1630 read_shadow_ram = true; 1631 nvm_size = hw->flash.sr_words * 2u; 1632 } else { 1633 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1634 return -EOPNOTSUPP; 1635 } 1636 1637 nvm_data = vzalloc(nvm_size); 1638 if (!nvm_data) 1639 return -ENOMEM; 1640 1641 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE); 1642 tmp = nvm_data; 1643 left = nvm_size; 1644 1645 /* Some systems take longer to read the NVM than others which causes the 1646 * FW to reclaim the NVM lock before the entire NVM has been read. Fix 1647 * this by breaking the reads of the NVM into smaller chunks that will 1648 * probably not take as long. This has some overhead since we are 1649 * increasing the number of AQ commands, but it should always work 1650 */ 1651 for (i = 0; i < num_blks; i++) { 1652 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left); 1653 1654 status = ice_acquire_nvm(hw, ICE_RES_READ); 1655 if (status) { 1656 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1657 status, hw->adminq.sq_last_status); 1658 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1659 vfree(nvm_data); 1660 return -EIO; 1661 } 1662 1663 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE, 1664 &read_sz, tmp, read_shadow_ram); 1665 if (status) { 1666 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1667 read_sz, status, hw->adminq.sq_last_status); 1668 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1669 ice_release_nvm(hw); 1670 vfree(nvm_data); 1671 return -EIO; 1672 } 1673 ice_release_nvm(hw); 1674 1675 tmp += read_sz; 1676 left -= read_sz; 1677 } 1678 1679 *data = nvm_data; 1680 1681 return 0; 1682 } 1683 1684 /** 1685 * ice_devlink_nvm_read - Read a portion of NVM flash contents 1686 * @devlink: the devlink instance 1687 * @ops: the devlink region to snapshot 1688 * @extack: extended ACK response structure 1689 * @offset: the offset to start at 1690 * @size: the amount to read 1691 * @data: the data buffer to read into 1692 * 1693 * This function is called in response to DEVLINK_CMD_REGION_READ to directly 1694 * read a section of the NVM contents. 1695 * 1696 * It reads from either the nvm-flash or shadow-ram region contents. 1697 * 1698 * @returns zero on success, and updates the data pointer. Returns a non-zero 1699 * error code on failure. 1700 */ 1701 static int ice_devlink_nvm_read(struct devlink *devlink, 1702 const struct devlink_region_ops *ops, 1703 struct netlink_ext_ack *extack, 1704 u64 offset, u32 size, u8 *data) 1705 { 1706 struct ice_pf *pf = devlink_priv(devlink); 1707 struct device *dev = ice_pf_to_dev(pf); 1708 struct ice_hw *hw = &pf->hw; 1709 bool read_shadow_ram; 1710 u64 nvm_size; 1711 int status; 1712 1713 if (ops == &ice_nvm_region_ops) { 1714 read_shadow_ram = false; 1715 nvm_size = hw->flash.flash_size; 1716 } else if (ops == &ice_sram_region_ops) { 1717 read_shadow_ram = true; 1718 nvm_size = hw->flash.sr_words * 2u; 1719 } else { 1720 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function"); 1721 return -EOPNOTSUPP; 1722 } 1723 1724 if (offset + size >= nvm_size) { 1725 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size"); 1726 return -ERANGE; 1727 } 1728 1729 status = ice_acquire_nvm(hw, ICE_RES_READ); 1730 if (status) { 1731 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1732 status, hw->adminq.sq_last_status); 1733 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1734 return -EIO; 1735 } 1736 1737 status = ice_read_flat_nvm(hw, (u32)offset, &size, data, 1738 read_shadow_ram); 1739 if (status) { 1740 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1741 size, status, hw->adminq.sq_last_status); 1742 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1743 ice_release_nvm(hw); 1744 return -EIO; 1745 } 1746 ice_release_nvm(hw); 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities 1753 * @devlink: the devlink instance 1754 * @ops: the devlink region being snapshotted 1755 * @extack: extended ACK response structure 1756 * @data: on exit points to snapshot data buffer 1757 * 1758 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1759 * the device-caps devlink region. It captures a snapshot of the device 1760 * capabilities reported by firmware. 1761 * 1762 * @returns zero on success, and updates the data pointer. Returns a non-zero 1763 * error code on failure. 1764 */ 1765 static int 1766 ice_devlink_devcaps_snapshot(struct devlink *devlink, 1767 const struct devlink_region_ops *ops, 1768 struct netlink_ext_ack *extack, u8 **data) 1769 { 1770 struct ice_pf *pf = devlink_priv(devlink); 1771 struct device *dev = ice_pf_to_dev(pf); 1772 struct ice_hw *hw = &pf->hw; 1773 void *devcaps; 1774 int status; 1775 1776 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN); 1777 if (!devcaps) 1778 return -ENOMEM; 1779 1780 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL, 1781 ice_aqc_opc_list_dev_caps, NULL); 1782 if (status) { 1783 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n", 1784 status, hw->adminq.sq_last_status); 1785 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities"); 1786 vfree(devcaps); 1787 return status; 1788 } 1789 1790 *data = (u8 *)devcaps; 1791 1792 return 0; 1793 } 1794 1795 static const struct devlink_region_ops ice_nvm_region_ops = { 1796 .name = "nvm-flash", 1797 .destructor = vfree, 1798 .snapshot = ice_devlink_nvm_snapshot, 1799 .read = ice_devlink_nvm_read, 1800 }; 1801 1802 static const struct devlink_region_ops ice_sram_region_ops = { 1803 .name = "shadow-ram", 1804 .destructor = vfree, 1805 .snapshot = ice_devlink_nvm_snapshot, 1806 .read = ice_devlink_nvm_read, 1807 }; 1808 1809 static const struct devlink_region_ops ice_devcaps_region_ops = { 1810 .name = "device-caps", 1811 .destructor = vfree, 1812 .snapshot = ice_devlink_devcaps_snapshot, 1813 }; 1814 1815 /** 1816 * ice_devlink_init_regions - Initialize devlink regions 1817 * @pf: the PF device structure 1818 * 1819 * Create devlink regions used to enable access to dump the contents of the 1820 * flash memory on the device. 1821 */ 1822 void ice_devlink_init_regions(struct ice_pf *pf) 1823 { 1824 struct devlink *devlink = priv_to_devlink(pf); 1825 struct device *dev = ice_pf_to_dev(pf); 1826 u64 nvm_size, sram_size; 1827 1828 nvm_size = pf->hw.flash.flash_size; 1829 pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1, 1830 nvm_size); 1831 if (IS_ERR(pf->nvm_region)) { 1832 dev_err(dev, "failed to create NVM devlink region, err %ld\n", 1833 PTR_ERR(pf->nvm_region)); 1834 pf->nvm_region = NULL; 1835 } 1836 1837 sram_size = pf->hw.flash.sr_words * 2u; 1838 pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops, 1839 1, sram_size); 1840 if (IS_ERR(pf->sram_region)) { 1841 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n", 1842 PTR_ERR(pf->sram_region)); 1843 pf->sram_region = NULL; 1844 } 1845 1846 pf->devcaps_region = devlink_region_create(devlink, 1847 &ice_devcaps_region_ops, 10, 1848 ICE_AQ_MAX_BUF_LEN); 1849 if (IS_ERR(pf->devcaps_region)) { 1850 dev_err(dev, "failed to create device-caps devlink region, err %ld\n", 1851 PTR_ERR(pf->devcaps_region)); 1852 pf->devcaps_region = NULL; 1853 } 1854 } 1855 1856 /** 1857 * ice_devlink_destroy_regions - Destroy devlink regions 1858 * @pf: the PF device structure 1859 * 1860 * Remove previously created regions for this PF. 1861 */ 1862 void ice_devlink_destroy_regions(struct ice_pf *pf) 1863 { 1864 if (pf->nvm_region) 1865 devlink_region_destroy(pf->nvm_region); 1866 1867 if (pf->sram_region) 1868 devlink_region_destroy(pf->sram_region); 1869 1870 if (pf->devcaps_region) 1871 devlink_region_destroy(pf->devcaps_region); 1872 } 1873