1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2020, Intel Corporation. */ 3 4 #include <linux/vmalloc.h> 5 6 #include "ice.h" 7 #include "ice_lib.h" 8 #include "ice_devlink.h" 9 #include "ice_eswitch.h" 10 #include "ice_fw_update.h" 11 12 static int ice_active_port_option = -1; 13 14 /* context for devlink info version reporting */ 15 struct ice_info_ctx { 16 char buf[128]; 17 struct ice_orom_info pending_orom; 18 struct ice_nvm_info pending_nvm; 19 struct ice_netlist_info pending_netlist; 20 struct ice_hw_dev_caps dev_caps; 21 }; 22 23 /* The following functions are used to format specific strings for various 24 * devlink info versions. The ctx parameter is used to provide the storage 25 * buffer, as well as any ancillary information calculated when the info 26 * request was made. 27 * 28 * If a version does not exist, for example when attempting to get the 29 * inactive version of flash when there is no pending update, the function 30 * should leave the buffer in the ctx structure empty. 31 */ 32 33 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx) 34 { 35 u8 dsn[8]; 36 37 /* Copy the DSN into an array in Big Endian format */ 38 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn); 39 40 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn); 41 } 42 43 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx) 44 { 45 struct ice_hw *hw = &pf->hw; 46 int status; 47 48 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf)); 49 if (status) 50 /* We failed to locate the PBA, so just skip this entry */ 51 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n", 52 status); 53 } 54 55 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx) 56 { 57 struct ice_hw *hw = &pf->hw; 58 59 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 60 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch); 61 } 62 63 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx) 64 { 65 struct ice_hw *hw = &pf->hw; 66 67 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver, 68 hw->api_min_ver, hw->api_patch); 69 } 70 71 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 72 { 73 struct ice_hw *hw = &pf->hw; 74 75 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build); 76 } 77 78 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 79 { 80 struct ice_orom_info *orom = &pf->hw.flash.orom; 81 82 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 83 orom->major, orom->build, orom->patch); 84 } 85 86 static void 87 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf, 88 struct ice_info_ctx *ctx) 89 { 90 struct ice_orom_info *orom = &ctx->pending_orom; 91 92 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) 93 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", 94 orom->major, orom->build, orom->patch); 95 } 96 97 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 98 { 99 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 100 101 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor); 102 } 103 104 static void 105 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf, 106 struct ice_info_ctx *ctx) 107 { 108 struct ice_nvm_info *nvm = &ctx->pending_nvm; 109 110 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 111 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", 112 nvm->major, nvm->minor); 113 } 114 115 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 116 { 117 struct ice_nvm_info *nvm = &pf->hw.flash.nvm; 118 119 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 120 } 121 122 static void 123 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx) 124 { 125 struct ice_nvm_info *nvm = &ctx->pending_nvm; 126 127 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) 128 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack); 129 } 130 131 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx) 132 { 133 struct ice_hw *hw = &pf->hw; 134 135 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name); 136 } 137 138 static void 139 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx) 140 { 141 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver; 142 143 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u", 144 pkg->major, pkg->minor, pkg->update, pkg->draft); 145 } 146 147 static void 148 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx) 149 { 150 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id); 151 } 152 153 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx) 154 { 155 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 156 157 /* The netlist version fields are BCD formatted */ 158 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 159 netlist->major, netlist->minor, 160 netlist->type >> 16, netlist->type & 0xFFFF, 161 netlist->rev, netlist->cust_ver); 162 } 163 164 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx) 165 { 166 struct ice_netlist_info *netlist = &pf->hw.flash.netlist; 167 168 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 169 } 170 171 static void 172 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf, 173 struct ice_info_ctx *ctx) 174 { 175 struct ice_netlist_info *netlist = &ctx->pending_netlist; 176 177 /* The netlist version fields are BCD formatted */ 178 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 179 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x", 180 netlist->major, netlist->minor, 181 netlist->type >> 16, netlist->type & 0xFFFF, 182 netlist->rev, netlist->cust_ver); 183 } 184 185 static void 186 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf, 187 struct ice_info_ctx *ctx) 188 { 189 struct ice_netlist_info *netlist = &ctx->pending_netlist; 190 191 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) 192 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash); 193 } 194 195 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL } 196 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL } 197 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback } 198 199 /* The combined() macro inserts both the running entry as well as a stored 200 * entry. The running entry will always report the version from the active 201 * handler. The stored entry will first try the pending handler, and fallback 202 * to the active handler if the pending function does not report a version. 203 * The pending handler should check the status of a pending update for the 204 * relevant flash component. It should only fill in the buffer in the case 205 * where a valid pending version is available. This ensures that the related 206 * stored and running versions remain in sync, and that stored versions are 207 * correctly reported as expected. 208 */ 209 #define combined(key, active, pending) \ 210 running(key, active), \ 211 stored(key, pending, active) 212 213 enum ice_version_type { 214 ICE_VERSION_FIXED, 215 ICE_VERSION_RUNNING, 216 ICE_VERSION_STORED, 217 }; 218 219 static const struct ice_devlink_version { 220 enum ice_version_type type; 221 const char *key; 222 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx); 223 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx); 224 } ice_devlink_versions[] = { 225 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba), 226 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt), 227 running("fw.mgmt.api", ice_info_fw_api), 228 running("fw.mgmt.build", ice_info_fw_build), 229 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver), 230 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver), 231 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack), 232 running("fw.app.name", ice_info_ddp_pkg_name), 233 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version), 234 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id), 235 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver), 236 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build), 237 }; 238 239 /** 240 * ice_devlink_info_get - .info_get devlink handler 241 * @devlink: devlink instance structure 242 * @req: the devlink info request 243 * @extack: extended netdev ack structure 244 * 245 * Callback for the devlink .info_get operation. Reports information about the 246 * device. 247 * 248 * Return: zero on success or an error code on failure. 249 */ 250 static int ice_devlink_info_get(struct devlink *devlink, 251 struct devlink_info_req *req, 252 struct netlink_ext_ack *extack) 253 { 254 struct ice_pf *pf = devlink_priv(devlink); 255 struct device *dev = ice_pf_to_dev(pf); 256 struct ice_hw *hw = &pf->hw; 257 struct ice_info_ctx *ctx; 258 size_t i; 259 int err; 260 261 err = ice_wait_for_reset(pf, 10 * HZ); 262 if (err) { 263 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting"); 264 return err; 265 } 266 267 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 268 if (!ctx) 269 return -ENOMEM; 270 271 /* discover capabilities first */ 272 err = ice_discover_dev_caps(hw, &ctx->dev_caps); 273 if (err) { 274 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n", 275 err, ice_aq_str(hw->adminq.sq_last_status)); 276 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities"); 277 goto out_free_ctx; 278 } 279 280 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) { 281 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom); 282 if (err) { 283 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n", 284 err, ice_aq_str(hw->adminq.sq_last_status)); 285 286 /* disable display of pending Option ROM */ 287 ctx->dev_caps.common_cap.nvm_update_pending_orom = false; 288 } 289 } 290 291 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) { 292 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm); 293 if (err) { 294 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n", 295 err, ice_aq_str(hw->adminq.sq_last_status)); 296 297 /* disable display of pending Option ROM */ 298 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false; 299 } 300 } 301 302 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) { 303 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist); 304 if (err) { 305 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n", 306 err, ice_aq_str(hw->adminq.sq_last_status)); 307 308 /* disable display of pending Option ROM */ 309 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false; 310 } 311 } 312 313 err = devlink_info_driver_name_put(req, KBUILD_MODNAME); 314 if (err) { 315 NL_SET_ERR_MSG_MOD(extack, "Unable to set driver name"); 316 goto out_free_ctx; 317 } 318 319 ice_info_get_dsn(pf, ctx); 320 321 err = devlink_info_serial_number_put(req, ctx->buf); 322 if (err) { 323 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number"); 324 goto out_free_ctx; 325 } 326 327 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) { 328 enum ice_version_type type = ice_devlink_versions[i].type; 329 const char *key = ice_devlink_versions[i].key; 330 331 memset(ctx->buf, 0, sizeof(ctx->buf)); 332 333 ice_devlink_versions[i].getter(pf, ctx); 334 335 /* If the default getter doesn't report a version, use the 336 * fallback function. This is primarily useful in the case of 337 * "stored" versions that want to report the same value as the 338 * running version in the normal case of no pending update. 339 */ 340 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback) 341 ice_devlink_versions[i].fallback(pf, ctx); 342 343 /* Do not report missing versions */ 344 if (ctx->buf[0] == '\0') 345 continue; 346 347 switch (type) { 348 case ICE_VERSION_FIXED: 349 err = devlink_info_version_fixed_put(req, key, ctx->buf); 350 if (err) { 351 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version"); 352 goto out_free_ctx; 353 } 354 break; 355 case ICE_VERSION_RUNNING: 356 err = devlink_info_version_running_put(req, key, ctx->buf); 357 if (err) { 358 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version"); 359 goto out_free_ctx; 360 } 361 break; 362 case ICE_VERSION_STORED: 363 err = devlink_info_version_stored_put(req, key, ctx->buf); 364 if (err) { 365 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version"); 366 goto out_free_ctx; 367 } 368 break; 369 } 370 } 371 372 out_free_ctx: 373 kfree(ctx); 374 return err; 375 } 376 377 /** 378 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware 379 * @devlink: pointer to the devlink instance to reload 380 * @netns_change: if true, the network namespace is changing 381 * @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE 382 * @limit: limits on what reload should do, such as not resetting 383 * @extack: netlink extended ACK structure 384 * 385 * Allow user to activate new Embedded Management Processor firmware by 386 * issuing device specific EMP reset. Called in response to 387 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE. 388 * 389 * Note that teardown and rebuild of the driver state happens automatically as 390 * part of an interrupt and watchdog task. This is because all physical 391 * functions on the device must be able to reset when an EMP reset occurs from 392 * any source. 393 */ 394 static int 395 ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change, 396 enum devlink_reload_action action, 397 enum devlink_reload_limit limit, 398 struct netlink_ext_ack *extack) 399 { 400 struct ice_pf *pf = devlink_priv(devlink); 401 struct device *dev = ice_pf_to_dev(pf); 402 struct ice_hw *hw = &pf->hw; 403 u8 pending; 404 int err; 405 406 err = ice_get_pending_updates(pf, &pending, extack); 407 if (err) 408 return err; 409 410 /* pending is a bitmask of which flash banks have a pending update, 411 * including the main NVM bank, the Option ROM bank, and the netlist 412 * bank. If any of these bits are set, then there is a pending update 413 * waiting to be activated. 414 */ 415 if (!pending) { 416 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update"); 417 return -ECANCELED; 418 } 419 420 if (pf->fw_emp_reset_disabled) { 421 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed"); 422 return -ECANCELED; 423 } 424 425 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n"); 426 427 err = ice_aq_nvm_update_empr(hw); 428 if (err) { 429 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n", 430 err, ice_aq_str(hw->adminq.sq_last_status)); 431 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware"); 432 return err; 433 } 434 435 return 0; 436 } 437 438 /** 439 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish 440 * @devlink: pointer to the devlink instance reloading 441 * @action: the action requested 442 * @limit: limits imposed by userspace, such as not resetting 443 * @actions_performed: on return, indicate what actions actually performed 444 * @extack: netlink extended ACK structure 445 * 446 * Wait for driver to finish rebuilding after EMP reset is completed. This 447 * includes time to wait for both the actual device reset as well as the time 448 * for the driver's rebuild to complete. 449 */ 450 static int 451 ice_devlink_reload_empr_finish(struct devlink *devlink, 452 enum devlink_reload_action action, 453 enum devlink_reload_limit limit, 454 u32 *actions_performed, 455 struct netlink_ext_ack *extack) 456 { 457 struct ice_pf *pf = devlink_priv(devlink); 458 int err; 459 460 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE); 461 462 err = ice_wait_for_reset(pf, 60 * HZ); 463 if (err) { 464 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute"); 465 return err; 466 } 467 468 return 0; 469 } 470 471 /** 472 * ice_devlink_port_opt_speed_str - convert speed to a string 473 * @speed: speed value 474 */ 475 static const char *ice_devlink_port_opt_speed_str(u8 speed) 476 { 477 switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) { 478 case ICE_AQC_PORT_OPT_MAX_LANE_100M: 479 return "0.1"; 480 case ICE_AQC_PORT_OPT_MAX_LANE_1G: 481 return "1"; 482 case ICE_AQC_PORT_OPT_MAX_LANE_2500M: 483 return "2.5"; 484 case ICE_AQC_PORT_OPT_MAX_LANE_5G: 485 return "5"; 486 case ICE_AQC_PORT_OPT_MAX_LANE_10G: 487 return "10"; 488 case ICE_AQC_PORT_OPT_MAX_LANE_25G: 489 return "25"; 490 case ICE_AQC_PORT_OPT_MAX_LANE_50G: 491 return "50"; 492 case ICE_AQC_PORT_OPT_MAX_LANE_100G: 493 return "100"; 494 } 495 496 return "-"; 497 } 498 499 #define ICE_PORT_OPT_DESC_LEN 50 500 /** 501 * ice_devlink_port_options_print - Print available port split options 502 * @pf: the PF to print split port options 503 * 504 * Prints a table with available port split options and max port speeds 505 */ 506 static void ice_devlink_port_options_print(struct ice_pf *pf) 507 { 508 u8 i, j, options_count, cnt, speed, pending_idx, active_idx; 509 struct ice_aqc_get_port_options_elem *options, *opt; 510 struct device *dev = ice_pf_to_dev(pf); 511 bool active_valid, pending_valid; 512 char desc[ICE_PORT_OPT_DESC_LEN]; 513 const char *str; 514 int status; 515 516 options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV, 517 sizeof(*options), GFP_KERNEL); 518 if (!options) 519 return; 520 521 for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) { 522 opt = options + i * ICE_AQC_PORT_OPT_MAX; 523 options_count = ICE_AQC_PORT_OPT_MAX; 524 active_valid = 0; 525 526 status = ice_aq_get_port_options(&pf->hw, opt, &options_count, 527 i, true, &active_idx, 528 &active_valid, &pending_idx, 529 &pending_valid); 530 if (status) { 531 dev_dbg(dev, "Couldn't read port option for port %d, err %d\n", 532 i, status); 533 goto err; 534 } 535 } 536 537 dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n"); 538 dev_dbg(dev, "Status Split Quad 0 Quad 1\n"); 539 dev_dbg(dev, " count L0 L1 L2 L3 L4 L5 L6 L7\n"); 540 541 for (i = 0; i < options_count; i++) { 542 cnt = 0; 543 544 if (i == ice_active_port_option) 545 str = "Active"; 546 else if ((i == pending_idx) && pending_valid) 547 str = "Pending"; 548 else 549 str = ""; 550 551 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 552 "%-8s", str); 553 554 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 555 "%-6u", options[i].pmd); 556 557 for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) { 558 speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed; 559 str = ice_devlink_port_opt_speed_str(speed); 560 cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt, 561 "%3s ", str); 562 } 563 564 dev_dbg(dev, "%s\n", desc); 565 } 566 567 err: 568 kfree(options); 569 } 570 571 /** 572 * ice_devlink_aq_set_port_option - Send set port option admin queue command 573 * @pf: the PF to print split port options 574 * @option_idx: selected port option 575 * @extack: extended netdev ack structure 576 * 577 * Sends set port option admin queue command with selected port option and 578 * calls NVM write activate. 579 */ 580 static int 581 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx, 582 struct netlink_ext_ack *extack) 583 { 584 struct device *dev = ice_pf_to_dev(pf); 585 int status; 586 587 status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx); 588 if (status) { 589 dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n", 590 status, pf->hw.adminq.sq_last_status); 591 NL_SET_ERR_MSG_MOD(extack, "Port split request failed"); 592 return -EIO; 593 } 594 595 status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE); 596 if (status) { 597 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 598 status, pf->hw.adminq.sq_last_status); 599 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 600 return -EIO; 601 } 602 603 status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL); 604 if (status) { 605 dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n", 606 status, pf->hw.adminq.sq_last_status); 607 NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data"); 608 ice_release_nvm(&pf->hw); 609 return -EIO; 610 } 611 612 ice_release_nvm(&pf->hw); 613 614 NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split"); 615 return 0; 616 } 617 618 /** 619 * ice_devlink_port_split - .port_split devlink handler 620 * @devlink: devlink instance structure 621 * @port: devlink port structure 622 * @count: number of ports to split to 623 * @extack: extended netdev ack structure 624 * 625 * Callback for the devlink .port_split operation. 626 * 627 * Unfortunately, the devlink expression of available options is limited 628 * to just a number, so search for an FW port option which supports 629 * the specified number. As there could be multiple FW port options with 630 * the same port split count, allow switching between them. When the same 631 * port split count request is issued again, switch to the next FW port 632 * option with the same port split count. 633 * 634 * Return: zero on success or an error code on failure. 635 */ 636 static int 637 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port, 638 unsigned int count, struct netlink_ext_ack *extack) 639 { 640 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX]; 641 u8 i, j, active_idx, pending_idx, new_option; 642 struct ice_pf *pf = devlink_priv(devlink); 643 u8 option_count = ICE_AQC_PORT_OPT_MAX; 644 struct device *dev = ice_pf_to_dev(pf); 645 bool active_valid, pending_valid; 646 int status; 647 648 status = ice_aq_get_port_options(&pf->hw, options, &option_count, 649 0, true, &active_idx, &active_valid, 650 &pending_idx, &pending_valid); 651 if (status) { 652 dev_dbg(dev, "Couldn't read port split options, err = %d\n", 653 status); 654 NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options"); 655 return -EIO; 656 } 657 658 new_option = ICE_AQC_PORT_OPT_MAX; 659 active_idx = pending_valid ? pending_idx : active_idx; 660 for (i = 1; i <= option_count; i++) { 661 /* In order to allow switching between FW port options with 662 * the same port split count, search for a new option starting 663 * from the active/pending option (with array wrap around). 664 */ 665 j = (active_idx + i) % option_count; 666 667 if (count == options[j].pmd) { 668 new_option = j; 669 break; 670 } 671 } 672 673 if (new_option == active_idx) { 674 dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n", 675 count); 676 NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set"); 677 ice_devlink_port_options_print(pf); 678 return -EINVAL; 679 } 680 681 if (new_option == ICE_AQC_PORT_OPT_MAX) { 682 dev_dbg(dev, "request to split: count: %u not found\n", count); 683 NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config"); 684 ice_devlink_port_options_print(pf); 685 return -EINVAL; 686 } 687 688 status = ice_devlink_aq_set_port_option(pf, new_option, extack); 689 if (status) 690 return status; 691 692 ice_devlink_port_options_print(pf); 693 694 return 0; 695 } 696 697 /** 698 * ice_devlink_port_unsplit - .port_unsplit devlink handler 699 * @devlink: devlink instance structure 700 * @port: devlink port structure 701 * @extack: extended netdev ack structure 702 * 703 * Callback for the devlink .port_unsplit operation. 704 * Calls ice_devlink_port_split with split count set to 1. 705 * There could be no FW option available with split count 1. 706 * 707 * Return: zero on success or an error code on failure. 708 */ 709 static int 710 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port, 711 struct netlink_ext_ack *extack) 712 { 713 return ice_devlink_port_split(devlink, port, 1, extack); 714 } 715 716 static const struct devlink_ops ice_devlink_ops = { 717 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK, 718 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE), 719 /* The ice driver currently does not support driver reinit */ 720 .reload_down = ice_devlink_reload_empr_start, 721 .reload_up = ice_devlink_reload_empr_finish, 722 .port_split = ice_devlink_port_split, 723 .port_unsplit = ice_devlink_port_unsplit, 724 .eswitch_mode_get = ice_eswitch_mode_get, 725 .eswitch_mode_set = ice_eswitch_mode_set, 726 .info_get = ice_devlink_info_get, 727 .flash_update = ice_devlink_flash_update, 728 }; 729 730 static int 731 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id, 732 struct devlink_param_gset_ctx *ctx) 733 { 734 struct ice_pf *pf = devlink_priv(devlink); 735 736 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false; 737 738 return 0; 739 } 740 741 static int 742 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id, 743 struct devlink_param_gset_ctx *ctx) 744 { 745 struct ice_pf *pf = devlink_priv(devlink); 746 bool roce_ena = ctx->val.vbool; 747 int ret; 748 749 if (!roce_ena) { 750 ice_unplug_aux_dev(pf); 751 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 752 return 0; 753 } 754 755 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2; 756 ret = ice_plug_aux_dev(pf); 757 if (ret) 758 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2; 759 760 return ret; 761 } 762 763 static int 764 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id, 765 union devlink_param_value val, 766 struct netlink_ext_ack *extack) 767 { 768 struct ice_pf *pf = devlink_priv(devlink); 769 770 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 771 return -EOPNOTSUPP; 772 773 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) { 774 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 775 return -EOPNOTSUPP; 776 } 777 778 return 0; 779 } 780 781 static int 782 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id, 783 struct devlink_param_gset_ctx *ctx) 784 { 785 struct ice_pf *pf = devlink_priv(devlink); 786 787 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP; 788 789 return 0; 790 } 791 792 static int 793 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id, 794 struct devlink_param_gset_ctx *ctx) 795 { 796 struct ice_pf *pf = devlink_priv(devlink); 797 bool iw_ena = ctx->val.vbool; 798 int ret; 799 800 if (!iw_ena) { 801 ice_unplug_aux_dev(pf); 802 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 803 return 0; 804 } 805 806 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP; 807 ret = ice_plug_aux_dev(pf); 808 if (ret) 809 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP; 810 811 return ret; 812 } 813 814 static int 815 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id, 816 union devlink_param_value val, 817 struct netlink_ext_ack *extack) 818 { 819 struct ice_pf *pf = devlink_priv(devlink); 820 821 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 822 return -EOPNOTSUPP; 823 824 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) { 825 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously"); 826 return -EOPNOTSUPP; 827 } 828 829 return 0; 830 } 831 832 static const struct devlink_param ice_devlink_params[] = { 833 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 834 ice_devlink_enable_roce_get, 835 ice_devlink_enable_roce_set, 836 ice_devlink_enable_roce_validate), 837 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME), 838 ice_devlink_enable_iw_get, 839 ice_devlink_enable_iw_set, 840 ice_devlink_enable_iw_validate), 841 842 }; 843 844 static void ice_devlink_free(void *devlink_ptr) 845 { 846 devlink_free((struct devlink *)devlink_ptr); 847 } 848 849 /** 850 * ice_allocate_pf - Allocate devlink and return PF structure pointer 851 * @dev: the device to allocate for 852 * 853 * Allocate a devlink instance for this device and return the private area as 854 * the PF structure. The devlink memory is kept track of through devres by 855 * adding an action to remove it when unwinding. 856 */ 857 struct ice_pf *ice_allocate_pf(struct device *dev) 858 { 859 struct devlink *devlink; 860 861 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev); 862 if (!devlink) 863 return NULL; 864 865 /* Add an action to teardown the devlink when unwinding the driver */ 866 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink)) 867 return NULL; 868 869 return devlink_priv(devlink); 870 } 871 872 /** 873 * ice_devlink_register - Register devlink interface for this PF 874 * @pf: the PF to register the devlink for. 875 * 876 * Register the devlink instance associated with this physical function. 877 * 878 * Return: zero on success or an error code on failure. 879 */ 880 void ice_devlink_register(struct ice_pf *pf) 881 { 882 struct devlink *devlink = priv_to_devlink(pf); 883 884 devlink_set_features(devlink, DEVLINK_F_RELOAD); 885 devlink_register(devlink); 886 } 887 888 /** 889 * ice_devlink_unregister - Unregister devlink resources for this PF. 890 * @pf: the PF structure to cleanup 891 * 892 * Releases resources used by devlink and cleans up associated memory. 893 */ 894 void ice_devlink_unregister(struct ice_pf *pf) 895 { 896 devlink_unregister(priv_to_devlink(pf)); 897 } 898 899 /** 900 * ice_devlink_set_switch_id - Set unique switch id based on pci dsn 901 * @pf: the PF to create a devlink port for 902 * @ppid: struct with switch id information 903 */ 904 static void 905 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid) 906 { 907 struct pci_dev *pdev = pf->pdev; 908 u64 id; 909 910 id = pci_get_dsn(pdev); 911 912 ppid->id_len = sizeof(id); 913 put_unaligned_be64(id, &ppid->id); 914 } 915 916 int ice_devlink_register_params(struct ice_pf *pf) 917 { 918 struct devlink *devlink = priv_to_devlink(pf); 919 union devlink_param_value value; 920 int err; 921 922 err = devlink_params_register(devlink, ice_devlink_params, 923 ARRAY_SIZE(ice_devlink_params)); 924 if (err) 925 return err; 926 927 value.vbool = false; 928 devlink_param_driverinit_value_set(devlink, 929 DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP, 930 value); 931 932 value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false; 933 devlink_param_driverinit_value_set(devlink, 934 DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE, 935 value); 936 937 return 0; 938 } 939 940 void ice_devlink_unregister_params(struct ice_pf *pf) 941 { 942 devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params, 943 ARRAY_SIZE(ice_devlink_params)); 944 } 945 946 /** 947 * ice_devlink_set_port_split_options - Set port split options 948 * @pf: the PF to set port split options 949 * @attrs: devlink attributes 950 * 951 * Sets devlink port split options based on available FW port options 952 */ 953 static void 954 ice_devlink_set_port_split_options(struct ice_pf *pf, 955 struct devlink_port_attrs *attrs) 956 { 957 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX]; 958 u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX; 959 bool active_valid, pending_valid; 960 int status; 961 962 status = ice_aq_get_port_options(&pf->hw, options, &option_count, 963 0, true, &active_idx, &active_valid, 964 &pending_idx, &pending_valid); 965 if (status) { 966 dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n", 967 status); 968 return; 969 } 970 971 /* find the biggest available port split count */ 972 for (i = 0; i < option_count; i++) 973 attrs->lanes = max_t(int, attrs->lanes, options[i].pmd); 974 975 attrs->splittable = attrs->lanes ? 1 : 0; 976 ice_active_port_option = active_idx; 977 } 978 979 /** 980 * ice_devlink_create_pf_port - Create a devlink port for this PF 981 * @pf: the PF to create a devlink port for 982 * 983 * Create and register a devlink_port for this PF. 984 * 985 * Return: zero on success or an error code on failure. 986 */ 987 int ice_devlink_create_pf_port(struct ice_pf *pf) 988 { 989 struct devlink_port_attrs attrs = {}; 990 struct devlink_port *devlink_port; 991 struct devlink *devlink; 992 struct ice_vsi *vsi; 993 struct device *dev; 994 int err; 995 996 dev = ice_pf_to_dev(pf); 997 998 devlink_port = &pf->devlink_port; 999 1000 vsi = ice_get_main_vsi(pf); 1001 if (!vsi) 1002 return -EIO; 1003 1004 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; 1005 attrs.phys.port_number = pf->hw.bus.func; 1006 1007 /* As FW supports only port split options for whole device, 1008 * set port split options only for first PF. 1009 */ 1010 if (pf->hw.pf_id == 0) 1011 ice_devlink_set_port_split_options(pf, &attrs); 1012 1013 ice_devlink_set_switch_id(pf, &attrs.switch_id); 1014 1015 devlink_port_attrs_set(devlink_port, &attrs); 1016 devlink = priv_to_devlink(pf); 1017 1018 err = devlink_port_register(devlink, devlink_port, vsi->idx); 1019 if (err) { 1020 dev_err(dev, "Failed to create devlink port for PF %d, error %d\n", 1021 pf->hw.pf_id, err); 1022 return err; 1023 } 1024 1025 return 0; 1026 } 1027 1028 /** 1029 * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF 1030 * @pf: the PF to cleanup 1031 * 1032 * Unregisters the devlink_port structure associated with this PF. 1033 */ 1034 void ice_devlink_destroy_pf_port(struct ice_pf *pf) 1035 { 1036 struct devlink_port *devlink_port; 1037 1038 devlink_port = &pf->devlink_port; 1039 1040 devlink_port_type_clear(devlink_port); 1041 devlink_port_unregister(devlink_port); 1042 } 1043 1044 /** 1045 * ice_devlink_create_vf_port - Create a devlink port for this VF 1046 * @vf: the VF to create a port for 1047 * 1048 * Create and register a devlink_port for this VF. 1049 * 1050 * Return: zero on success or an error code on failure. 1051 */ 1052 int ice_devlink_create_vf_port(struct ice_vf *vf) 1053 { 1054 struct devlink_port_attrs attrs = {}; 1055 struct devlink_port *devlink_port; 1056 struct devlink *devlink; 1057 struct ice_vsi *vsi; 1058 struct device *dev; 1059 struct ice_pf *pf; 1060 int err; 1061 1062 pf = vf->pf; 1063 dev = ice_pf_to_dev(pf); 1064 devlink_port = &vf->devlink_port; 1065 1066 vsi = ice_get_vf_vsi(vf); 1067 if (!vsi) 1068 return -EINVAL; 1069 1070 attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF; 1071 attrs.pci_vf.pf = pf->hw.bus.func; 1072 attrs.pci_vf.vf = vf->vf_id; 1073 1074 ice_devlink_set_switch_id(pf, &attrs.switch_id); 1075 1076 devlink_port_attrs_set(devlink_port, &attrs); 1077 devlink = priv_to_devlink(pf); 1078 1079 err = devlink_port_register(devlink, devlink_port, vsi->idx); 1080 if (err) { 1081 dev_err(dev, "Failed to create devlink port for VF %d, error %d\n", 1082 vf->vf_id, err); 1083 return err; 1084 } 1085 1086 return 0; 1087 } 1088 1089 /** 1090 * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF 1091 * @vf: the VF to cleanup 1092 * 1093 * Unregisters the devlink_port structure associated with this VF. 1094 */ 1095 void ice_devlink_destroy_vf_port(struct ice_vf *vf) 1096 { 1097 struct devlink_port *devlink_port; 1098 1099 devlink_port = &vf->devlink_port; 1100 1101 devlink_port_type_clear(devlink_port); 1102 devlink_port_unregister(devlink_port); 1103 } 1104 1105 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024) 1106 1107 /** 1108 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents 1109 * @devlink: the devlink instance 1110 * @ops: the devlink region being snapshotted 1111 * @extack: extended ACK response structure 1112 * @data: on exit points to snapshot data buffer 1113 * 1114 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1115 * the nvm-flash devlink region. It captures a snapshot of the full NVM flash 1116 * contents, including both banks of flash. This snapshot can later be viewed 1117 * via the devlink-region interface. 1118 * 1119 * It captures the flash using the FLASH_ONLY bit set when reading via 1120 * firmware, so it does not read the current Shadow RAM contents. For that, 1121 * use the shadow-ram region. 1122 * 1123 * @returns zero on success, and updates the data pointer. Returns a non-zero 1124 * error code on failure. 1125 */ 1126 static int ice_devlink_nvm_snapshot(struct devlink *devlink, 1127 const struct devlink_region_ops *ops, 1128 struct netlink_ext_ack *extack, u8 **data) 1129 { 1130 struct ice_pf *pf = devlink_priv(devlink); 1131 struct device *dev = ice_pf_to_dev(pf); 1132 struct ice_hw *hw = &pf->hw; 1133 u8 *nvm_data, *tmp, i; 1134 u32 nvm_size, left; 1135 s8 num_blks; 1136 int status; 1137 1138 nvm_size = hw->flash.flash_size; 1139 nvm_data = vzalloc(nvm_size); 1140 if (!nvm_data) 1141 return -ENOMEM; 1142 1143 1144 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE); 1145 tmp = nvm_data; 1146 left = nvm_size; 1147 1148 /* Some systems take longer to read the NVM than others which causes the 1149 * FW to reclaim the NVM lock before the entire NVM has been read. Fix 1150 * this by breaking the reads of the NVM into smaller chunks that will 1151 * probably not take as long. This has some overhead since we are 1152 * increasing the number of AQ commands, but it should always work 1153 */ 1154 for (i = 0; i < num_blks; i++) { 1155 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left); 1156 1157 status = ice_acquire_nvm(hw, ICE_RES_READ); 1158 if (status) { 1159 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1160 status, hw->adminq.sq_last_status); 1161 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1162 vfree(nvm_data); 1163 return -EIO; 1164 } 1165 1166 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE, 1167 &read_sz, tmp, false); 1168 if (status) { 1169 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1170 read_sz, status, hw->adminq.sq_last_status); 1171 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents"); 1172 ice_release_nvm(hw); 1173 vfree(nvm_data); 1174 return -EIO; 1175 } 1176 ice_release_nvm(hw); 1177 1178 tmp += read_sz; 1179 left -= read_sz; 1180 } 1181 1182 *data = nvm_data; 1183 1184 return 0; 1185 } 1186 1187 /** 1188 * ice_devlink_sram_snapshot - Capture a snapshot of the Shadow RAM contents 1189 * @devlink: the devlink instance 1190 * @ops: the devlink region being snapshotted 1191 * @extack: extended ACK response structure 1192 * @data: on exit points to snapshot data buffer 1193 * 1194 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1195 * the shadow-ram devlink region. It captures a snapshot of the shadow ram 1196 * contents. This snapshot can later be viewed via the devlink-region 1197 * interface. 1198 * 1199 * @returns zero on success, and updates the data pointer. Returns a non-zero 1200 * error code on failure. 1201 */ 1202 static int 1203 ice_devlink_sram_snapshot(struct devlink *devlink, 1204 const struct devlink_region_ops __always_unused *ops, 1205 struct netlink_ext_ack *extack, u8 **data) 1206 { 1207 struct ice_pf *pf = devlink_priv(devlink); 1208 struct device *dev = ice_pf_to_dev(pf); 1209 struct ice_hw *hw = &pf->hw; 1210 u8 *sram_data; 1211 u32 sram_size; 1212 int err; 1213 1214 sram_size = hw->flash.sr_words * 2u; 1215 sram_data = vzalloc(sram_size); 1216 if (!sram_data) 1217 return -ENOMEM; 1218 1219 err = ice_acquire_nvm(hw, ICE_RES_READ); 1220 if (err) { 1221 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n", 1222 err, hw->adminq.sq_last_status); 1223 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore"); 1224 vfree(sram_data); 1225 return err; 1226 } 1227 1228 /* Read from the Shadow RAM, rather than directly from NVM */ 1229 err = ice_read_flat_nvm(hw, 0, &sram_size, sram_data, true); 1230 if (err) { 1231 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n", 1232 sram_size, err, hw->adminq.sq_last_status); 1233 NL_SET_ERR_MSG_MOD(extack, 1234 "Failed to read Shadow RAM contents"); 1235 ice_release_nvm(hw); 1236 vfree(sram_data); 1237 return err; 1238 } 1239 1240 ice_release_nvm(hw); 1241 1242 *data = sram_data; 1243 1244 return 0; 1245 } 1246 1247 /** 1248 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities 1249 * @devlink: the devlink instance 1250 * @ops: the devlink region being snapshotted 1251 * @extack: extended ACK response structure 1252 * @data: on exit points to snapshot data buffer 1253 * 1254 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for 1255 * the device-caps devlink region. It captures a snapshot of the device 1256 * capabilities reported by firmware. 1257 * 1258 * @returns zero on success, and updates the data pointer. Returns a non-zero 1259 * error code on failure. 1260 */ 1261 static int 1262 ice_devlink_devcaps_snapshot(struct devlink *devlink, 1263 const struct devlink_region_ops *ops, 1264 struct netlink_ext_ack *extack, u8 **data) 1265 { 1266 struct ice_pf *pf = devlink_priv(devlink); 1267 struct device *dev = ice_pf_to_dev(pf); 1268 struct ice_hw *hw = &pf->hw; 1269 void *devcaps; 1270 int status; 1271 1272 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN); 1273 if (!devcaps) 1274 return -ENOMEM; 1275 1276 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL, 1277 ice_aqc_opc_list_dev_caps, NULL); 1278 if (status) { 1279 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n", 1280 status, hw->adminq.sq_last_status); 1281 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities"); 1282 vfree(devcaps); 1283 return status; 1284 } 1285 1286 *data = (u8 *)devcaps; 1287 1288 return 0; 1289 } 1290 1291 static const struct devlink_region_ops ice_nvm_region_ops = { 1292 .name = "nvm-flash", 1293 .destructor = vfree, 1294 .snapshot = ice_devlink_nvm_snapshot, 1295 }; 1296 1297 static const struct devlink_region_ops ice_sram_region_ops = { 1298 .name = "shadow-ram", 1299 .destructor = vfree, 1300 .snapshot = ice_devlink_sram_snapshot, 1301 }; 1302 1303 static const struct devlink_region_ops ice_devcaps_region_ops = { 1304 .name = "device-caps", 1305 .destructor = vfree, 1306 .snapshot = ice_devlink_devcaps_snapshot, 1307 }; 1308 1309 /** 1310 * ice_devlink_init_regions - Initialize devlink regions 1311 * @pf: the PF device structure 1312 * 1313 * Create devlink regions used to enable access to dump the contents of the 1314 * flash memory on the device. 1315 */ 1316 void ice_devlink_init_regions(struct ice_pf *pf) 1317 { 1318 struct devlink *devlink = priv_to_devlink(pf); 1319 struct device *dev = ice_pf_to_dev(pf); 1320 u64 nvm_size, sram_size; 1321 1322 nvm_size = pf->hw.flash.flash_size; 1323 pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1, 1324 nvm_size); 1325 if (IS_ERR(pf->nvm_region)) { 1326 dev_err(dev, "failed to create NVM devlink region, err %ld\n", 1327 PTR_ERR(pf->nvm_region)); 1328 pf->nvm_region = NULL; 1329 } 1330 1331 sram_size = pf->hw.flash.sr_words * 2u; 1332 pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops, 1333 1, sram_size); 1334 if (IS_ERR(pf->sram_region)) { 1335 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n", 1336 PTR_ERR(pf->sram_region)); 1337 pf->sram_region = NULL; 1338 } 1339 1340 pf->devcaps_region = devlink_region_create(devlink, 1341 &ice_devcaps_region_ops, 10, 1342 ICE_AQ_MAX_BUF_LEN); 1343 if (IS_ERR(pf->devcaps_region)) { 1344 dev_err(dev, "failed to create device-caps devlink region, err %ld\n", 1345 PTR_ERR(pf->devcaps_region)); 1346 pf->devcaps_region = NULL; 1347 } 1348 } 1349 1350 /** 1351 * ice_devlink_destroy_regions - Destroy devlink regions 1352 * @pf: the PF device structure 1353 * 1354 * Remove previously created regions for this PF. 1355 */ 1356 void ice_devlink_destroy_regions(struct ice_pf *pf) 1357 { 1358 if (pf->nvm_region) 1359 devlink_region_destroy(pf->nvm_region); 1360 1361 if (pf->sram_region) 1362 devlink_region_destroy(pf->sram_region); 1363 1364 if (pf->devcaps_region) 1365 devlink_region_destroy(pf->devcaps_region); 1366 } 1367