xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_devlink.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "ice_devlink.h"
9 #include "ice_eswitch.h"
10 #include "ice_fw_update.h"
11 #include "ice_dcb_lib.h"
12 
13 static int ice_active_port_option = -1;
14 
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 	char buf[128];
18 	struct ice_orom_info pending_orom;
19 	struct ice_nvm_info pending_nvm;
20 	struct ice_netlist_info pending_netlist;
21 	struct ice_hw_dev_caps dev_caps;
22 };
23 
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33 
34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 	u8 dsn[8];
37 
38 	/* Copy the DSN into an array in Big Endian format */
39 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40 
41 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43 
44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 	struct ice_hw *hw = &pf->hw;
47 	int status;
48 
49 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 	if (status)
51 		/* We failed to locate the PBA, so just skip this entry */
52 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 			status);
54 }
55 
56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 	struct ice_hw *hw = &pf->hw;
59 
60 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63 
64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 	struct ice_hw *hw = &pf->hw;
67 
68 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 		 hw->api_min_ver, hw->api_patch);
70 }
71 
72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 	struct ice_hw *hw = &pf->hw;
75 
76 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78 
79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 	struct ice_orom_info *orom = &pf->hw.flash.orom;
82 
83 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 		 orom->major, orom->build, orom->patch);
85 }
86 
87 static void
88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 			  struct ice_info_ctx *ctx)
90 {
91 	struct ice_orom_info *orom = &ctx->pending_orom;
92 
93 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 			 orom->major, orom->build, orom->patch);
96 }
97 
98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101 
102 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104 
105 static void
106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 			 struct ice_info_ctx *ctx)
108 {
109 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110 
111 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 			 nvm->major, nvm->minor);
114 }
115 
116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119 
120 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122 
123 static void
124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127 
128 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131 
132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 	struct ice_hw *hw = &pf->hw;
135 
136 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138 
139 static void
140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143 
144 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147 
148 static void
149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153 
154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157 
158 	/* The netlist version fields are BCD formatted */
159 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 		 netlist->major, netlist->minor,
161 		 netlist->type >> 16, netlist->type & 0xFFFF,
162 		 netlist->rev, netlist->cust_ver);
163 }
164 
165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168 
169 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171 
172 static void
173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 			     struct ice_info_ctx *ctx)
175 {
176 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177 
178 	/* The netlist version fields are BCD formatted */
179 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 			 netlist->major, netlist->minor,
182 			 netlist->type >> 16, netlist->type & 0xFFFF,
183 			 netlist->rev, netlist->cust_ver);
184 }
185 
186 static void
187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 			       struct ice_info_ctx *ctx)
189 {
190 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191 
192 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195 
196 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
197 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
198 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
199 
200 /* The combined() macro inserts both the running entry as well as a stored
201  * entry. The running entry will always report the version from the active
202  * handler. The stored entry will first try the pending handler, and fallback
203  * to the active handler if the pending function does not report a version.
204  * The pending handler should check the status of a pending update for the
205  * relevant flash component. It should only fill in the buffer in the case
206  * where a valid pending version is available. This ensures that the related
207  * stored and running versions remain in sync, and that stored versions are
208  * correctly reported as expected.
209  */
210 #define combined(key, active, pending) \
211 	running(key, active), \
212 	stored(key, pending, active)
213 
214 enum ice_version_type {
215 	ICE_VERSION_FIXED,
216 	ICE_VERSION_RUNNING,
217 	ICE_VERSION_STORED,
218 };
219 
220 static const struct ice_devlink_version {
221 	enum ice_version_type type;
222 	const char *key;
223 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
224 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
225 } ice_devlink_versions[] = {
226 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
227 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
228 	running("fw.mgmt.api", ice_info_fw_api),
229 	running("fw.mgmt.build", ice_info_fw_build),
230 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
231 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
232 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
233 	running("fw.app.name", ice_info_ddp_pkg_name),
234 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
235 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
236 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
237 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
238 };
239 
240 /**
241  * ice_devlink_info_get - .info_get devlink handler
242  * @devlink: devlink instance structure
243  * @req: the devlink info request
244  * @extack: extended netdev ack structure
245  *
246  * Callback for the devlink .info_get operation. Reports information about the
247  * device.
248  *
249  * Return: zero on success or an error code on failure.
250  */
251 static int ice_devlink_info_get(struct devlink *devlink,
252 				struct devlink_info_req *req,
253 				struct netlink_ext_ack *extack)
254 {
255 	struct ice_pf *pf = devlink_priv(devlink);
256 	struct device *dev = ice_pf_to_dev(pf);
257 	struct ice_hw *hw = &pf->hw;
258 	struct ice_info_ctx *ctx;
259 	size_t i;
260 	int err;
261 
262 	err = ice_wait_for_reset(pf, 10 * HZ);
263 	if (err) {
264 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
265 		return err;
266 	}
267 
268 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
269 	if (!ctx)
270 		return -ENOMEM;
271 
272 	/* discover capabilities first */
273 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
274 	if (err) {
275 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
276 			err, ice_aq_str(hw->adminq.sq_last_status));
277 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
278 		goto out_free_ctx;
279 	}
280 
281 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
282 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
283 		if (err) {
284 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
285 				err, ice_aq_str(hw->adminq.sq_last_status));
286 
287 			/* disable display of pending Option ROM */
288 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
289 		}
290 	}
291 
292 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
293 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
294 		if (err) {
295 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
296 				err, ice_aq_str(hw->adminq.sq_last_status));
297 
298 			/* disable display of pending Option ROM */
299 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
300 		}
301 	}
302 
303 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
304 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
305 		if (err) {
306 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
307 				err, ice_aq_str(hw->adminq.sq_last_status));
308 
309 			/* disable display of pending Option ROM */
310 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
311 		}
312 	}
313 
314 	ice_info_get_dsn(pf, ctx);
315 
316 	err = devlink_info_serial_number_put(req, ctx->buf);
317 	if (err) {
318 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
319 		goto out_free_ctx;
320 	}
321 
322 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
323 		enum ice_version_type type = ice_devlink_versions[i].type;
324 		const char *key = ice_devlink_versions[i].key;
325 
326 		memset(ctx->buf, 0, sizeof(ctx->buf));
327 
328 		ice_devlink_versions[i].getter(pf, ctx);
329 
330 		/* If the default getter doesn't report a version, use the
331 		 * fallback function. This is primarily useful in the case of
332 		 * "stored" versions that want to report the same value as the
333 		 * running version in the normal case of no pending update.
334 		 */
335 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
336 			ice_devlink_versions[i].fallback(pf, ctx);
337 
338 		/* Do not report missing versions */
339 		if (ctx->buf[0] == '\0')
340 			continue;
341 
342 		switch (type) {
343 		case ICE_VERSION_FIXED:
344 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
345 			if (err) {
346 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
347 				goto out_free_ctx;
348 			}
349 			break;
350 		case ICE_VERSION_RUNNING:
351 			err = devlink_info_version_running_put(req, key, ctx->buf);
352 			if (err) {
353 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
354 				goto out_free_ctx;
355 			}
356 			break;
357 		case ICE_VERSION_STORED:
358 			err = devlink_info_version_stored_put(req, key, ctx->buf);
359 			if (err) {
360 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
361 				goto out_free_ctx;
362 			}
363 			break;
364 		}
365 	}
366 
367 out_free_ctx:
368 	kfree(ctx);
369 	return err;
370 }
371 
372 /**
373  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
374  * @pf: pointer to the pf instance
375  * @extack: netlink extended ACK structure
376  *
377  * Allow user to activate new Embedded Management Processor firmware by
378  * issuing device specific EMP reset. Called in response to
379  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
380  *
381  * Note that teardown and rebuild of the driver state happens automatically as
382  * part of an interrupt and watchdog task. This is because all physical
383  * functions on the device must be able to reset when an EMP reset occurs from
384  * any source.
385  */
386 static int
387 ice_devlink_reload_empr_start(struct ice_pf *pf,
388 			      struct netlink_ext_ack *extack)
389 {
390 	struct device *dev = ice_pf_to_dev(pf);
391 	struct ice_hw *hw = &pf->hw;
392 	u8 pending;
393 	int err;
394 
395 	err = ice_get_pending_updates(pf, &pending, extack);
396 	if (err)
397 		return err;
398 
399 	/* pending is a bitmask of which flash banks have a pending update,
400 	 * including the main NVM bank, the Option ROM bank, and the netlist
401 	 * bank. If any of these bits are set, then there is a pending update
402 	 * waiting to be activated.
403 	 */
404 	if (!pending) {
405 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
406 		return -ECANCELED;
407 	}
408 
409 	if (pf->fw_emp_reset_disabled) {
410 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
411 		return -ECANCELED;
412 	}
413 
414 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
415 
416 	err = ice_aq_nvm_update_empr(hw);
417 	if (err) {
418 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
419 			err, ice_aq_str(hw->adminq.sq_last_status));
420 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
421 		return err;
422 	}
423 
424 	return 0;
425 }
426 
427 /**
428  * ice_devlink_reload_down - prepare for reload
429  * @devlink: pointer to the devlink instance to reload
430  * @netns_change: if true, the network namespace is changing
431  * @action: the action to perform
432  * @limit: limits on what reload should do, such as not resetting
433  * @extack: netlink extended ACK structure
434  */
435 static int
436 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
437 			enum devlink_reload_action action,
438 			enum devlink_reload_limit limit,
439 			struct netlink_ext_ack *extack)
440 {
441 	struct ice_pf *pf = devlink_priv(devlink);
442 
443 	switch (action) {
444 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
445 		if (ice_is_eswitch_mode_switchdev(pf)) {
446 			NL_SET_ERR_MSG_MOD(extack,
447 					   "Go to legacy mode before doing reinit\n");
448 			return -EOPNOTSUPP;
449 		}
450 		if (ice_is_adq_active(pf)) {
451 			NL_SET_ERR_MSG_MOD(extack,
452 					   "Turn off ADQ before doing reinit\n");
453 			return -EOPNOTSUPP;
454 		}
455 		if (ice_has_vfs(pf)) {
456 			NL_SET_ERR_MSG_MOD(extack,
457 					   "Remove all VFs before doing reinit\n");
458 			return -EOPNOTSUPP;
459 		}
460 		ice_unload(pf);
461 		return 0;
462 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
463 		return ice_devlink_reload_empr_start(pf, extack);
464 	default:
465 		WARN_ON(1);
466 		return -EOPNOTSUPP;
467 	}
468 }
469 
470 /**
471  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
472  * @pf: pointer to the pf instance
473  * @extack: netlink extended ACK structure
474  *
475  * Wait for driver to finish rebuilding after EMP reset is completed. This
476  * includes time to wait for both the actual device reset as well as the time
477  * for the driver's rebuild to complete.
478  */
479 static int
480 ice_devlink_reload_empr_finish(struct ice_pf *pf,
481 			       struct netlink_ext_ack *extack)
482 {
483 	int err;
484 
485 	err = ice_wait_for_reset(pf, 60 * HZ);
486 	if (err) {
487 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
488 		return err;
489 	}
490 
491 	return 0;
492 }
493 
494 /**
495  * ice_devlink_port_opt_speed_str - convert speed to a string
496  * @speed: speed value
497  */
498 static const char *ice_devlink_port_opt_speed_str(u8 speed)
499 {
500 	switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
501 	case ICE_AQC_PORT_OPT_MAX_LANE_100M:
502 		return "0.1";
503 	case ICE_AQC_PORT_OPT_MAX_LANE_1G:
504 		return "1";
505 	case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
506 		return "2.5";
507 	case ICE_AQC_PORT_OPT_MAX_LANE_5G:
508 		return "5";
509 	case ICE_AQC_PORT_OPT_MAX_LANE_10G:
510 		return "10";
511 	case ICE_AQC_PORT_OPT_MAX_LANE_25G:
512 		return "25";
513 	case ICE_AQC_PORT_OPT_MAX_LANE_50G:
514 		return "50";
515 	case ICE_AQC_PORT_OPT_MAX_LANE_100G:
516 		return "100";
517 	}
518 
519 	return "-";
520 }
521 
522 #define ICE_PORT_OPT_DESC_LEN	50
523 /**
524  * ice_devlink_port_options_print - Print available port split options
525  * @pf: the PF to print split port options
526  *
527  * Prints a table with available port split options and max port speeds
528  */
529 static void ice_devlink_port_options_print(struct ice_pf *pf)
530 {
531 	u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
532 	struct ice_aqc_get_port_options_elem *options, *opt;
533 	struct device *dev = ice_pf_to_dev(pf);
534 	bool active_valid, pending_valid;
535 	char desc[ICE_PORT_OPT_DESC_LEN];
536 	const char *str;
537 	int status;
538 
539 	options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
540 			  sizeof(*options), GFP_KERNEL);
541 	if (!options)
542 		return;
543 
544 	for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
545 		opt = options + i * ICE_AQC_PORT_OPT_MAX;
546 		options_count = ICE_AQC_PORT_OPT_MAX;
547 		active_valid = 0;
548 
549 		status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
550 						 i, true, &active_idx,
551 						 &active_valid, &pending_idx,
552 						 &pending_valid);
553 		if (status) {
554 			dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
555 				i, status);
556 			goto err;
557 		}
558 	}
559 
560 	dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
561 	dev_dbg(dev, "Status  Split      Quad 0          Quad 1\n");
562 	dev_dbg(dev, "        count  L0  L1  L2  L3  L4  L5  L6  L7\n");
563 
564 	for (i = 0; i < options_count; i++) {
565 		cnt = 0;
566 
567 		if (i == ice_active_port_option)
568 			str = "Active";
569 		else if ((i == pending_idx) && pending_valid)
570 			str = "Pending";
571 		else
572 			str = "";
573 
574 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
575 				"%-8s", str);
576 
577 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
578 				"%-6u", options[i].pmd);
579 
580 		for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
581 			speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
582 			str = ice_devlink_port_opt_speed_str(speed);
583 			cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
584 					"%3s ", str);
585 		}
586 
587 		dev_dbg(dev, "%s\n", desc);
588 	}
589 
590 err:
591 	kfree(options);
592 }
593 
594 /**
595  * ice_devlink_aq_set_port_option - Send set port option admin queue command
596  * @pf: the PF to print split port options
597  * @option_idx: selected port option
598  * @extack: extended netdev ack structure
599  *
600  * Sends set port option admin queue command with selected port option and
601  * calls NVM write activate.
602  */
603 static int
604 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
605 			       struct netlink_ext_ack *extack)
606 {
607 	struct device *dev = ice_pf_to_dev(pf);
608 	int status;
609 
610 	status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
611 	if (status) {
612 		dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
613 			status, pf->hw.adminq.sq_last_status);
614 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
615 		return -EIO;
616 	}
617 
618 	status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
619 	if (status) {
620 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
621 			status, pf->hw.adminq.sq_last_status);
622 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
623 		return -EIO;
624 	}
625 
626 	status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
627 	if (status) {
628 		dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
629 			status, pf->hw.adminq.sq_last_status);
630 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
631 		ice_release_nvm(&pf->hw);
632 		return -EIO;
633 	}
634 
635 	ice_release_nvm(&pf->hw);
636 
637 	NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
638 	return 0;
639 }
640 
641 /**
642  * ice_devlink_port_split - .port_split devlink handler
643  * @devlink: devlink instance structure
644  * @port: devlink port structure
645  * @count: number of ports to split to
646  * @extack: extended netdev ack structure
647  *
648  * Callback for the devlink .port_split operation.
649  *
650  * Unfortunately, the devlink expression of available options is limited
651  * to just a number, so search for an FW port option which supports
652  * the specified number. As there could be multiple FW port options with
653  * the same port split count, allow switching between them. When the same
654  * port split count request is issued again, switch to the next FW port
655  * option with the same port split count.
656  *
657  * Return: zero on success or an error code on failure.
658  */
659 static int
660 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
661 		       unsigned int count, struct netlink_ext_ack *extack)
662 {
663 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
664 	u8 i, j, active_idx, pending_idx, new_option;
665 	struct ice_pf *pf = devlink_priv(devlink);
666 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
667 	struct device *dev = ice_pf_to_dev(pf);
668 	bool active_valid, pending_valid;
669 	int status;
670 
671 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
672 					 0, true, &active_idx, &active_valid,
673 					 &pending_idx, &pending_valid);
674 	if (status) {
675 		dev_dbg(dev, "Couldn't read port split options, err = %d\n",
676 			status);
677 		NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
678 		return -EIO;
679 	}
680 
681 	new_option = ICE_AQC_PORT_OPT_MAX;
682 	active_idx = pending_valid ? pending_idx : active_idx;
683 	for (i = 1; i <= option_count; i++) {
684 		/* In order to allow switching between FW port options with
685 		 * the same port split count, search for a new option starting
686 		 * from the active/pending option (with array wrap around).
687 		 */
688 		j = (active_idx + i) % option_count;
689 
690 		if (count == options[j].pmd) {
691 			new_option = j;
692 			break;
693 		}
694 	}
695 
696 	if (new_option == active_idx) {
697 		dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
698 			count);
699 		NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
700 		ice_devlink_port_options_print(pf);
701 		return -EINVAL;
702 	}
703 
704 	if (new_option == ICE_AQC_PORT_OPT_MAX) {
705 		dev_dbg(dev, "request to split: count: %u not found\n", count);
706 		NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
707 		ice_devlink_port_options_print(pf);
708 		return -EINVAL;
709 	}
710 
711 	status = ice_devlink_aq_set_port_option(pf, new_option, extack);
712 	if (status)
713 		return status;
714 
715 	ice_devlink_port_options_print(pf);
716 
717 	return 0;
718 }
719 
720 /**
721  * ice_devlink_port_unsplit - .port_unsplit devlink handler
722  * @devlink: devlink instance structure
723  * @port: devlink port structure
724  * @extack: extended netdev ack structure
725  *
726  * Callback for the devlink .port_unsplit operation.
727  * Calls ice_devlink_port_split with split count set to 1.
728  * There could be no FW option available with split count 1.
729  *
730  * Return: zero on success or an error code on failure.
731  */
732 static int
733 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
734 			 struct netlink_ext_ack *extack)
735 {
736 	return ice_devlink_port_split(devlink, port, 1, extack);
737 }
738 
739 /**
740  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
741  * @pf: pf struct
742  *
743  * This function tears down tree exported during VF's creation.
744  */
745 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
746 {
747 	struct devlink *devlink;
748 	struct ice_vf *vf;
749 	unsigned int bkt;
750 
751 	devlink = priv_to_devlink(pf);
752 
753 	devl_lock(devlink);
754 	mutex_lock(&pf->vfs.table_lock);
755 	ice_for_each_vf(pf, bkt, vf) {
756 		if (vf->devlink_port.devlink_rate)
757 			devl_rate_leaf_destroy(&vf->devlink_port);
758 	}
759 	mutex_unlock(&pf->vfs.table_lock);
760 
761 	devl_rate_nodes_destroy(devlink);
762 	devl_unlock(devlink);
763 }
764 
765 /**
766  * ice_enable_custom_tx - try to enable custom Tx feature
767  * @pf: pf struct
768  *
769  * This function tries to enable custom Tx feature,
770  * it's not possible to enable it, if DCB or ADQ is active.
771  */
772 static bool ice_enable_custom_tx(struct ice_pf *pf)
773 {
774 	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
775 	struct device *dev = ice_pf_to_dev(pf);
776 
777 	if (pi->is_custom_tx_enabled)
778 		/* already enabled, return true */
779 		return true;
780 
781 	if (ice_is_adq_active(pf)) {
782 		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
783 		return false;
784 	}
785 
786 	if (ice_is_dcb_active(pf)) {
787 		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
788 		return false;
789 	}
790 
791 	pi->is_custom_tx_enabled = true;
792 
793 	return true;
794 }
795 
796 /**
797  * ice_traverse_tx_tree - traverse Tx scheduler tree
798  * @devlink: devlink struct
799  * @node: current node, used for recursion
800  * @tc_node: tc_node struct, that is treated as a root
801  * @pf: pf struct
802  *
803  * This function traverses Tx scheduler tree and exports
804  * entire structure to the devlink-rate.
805  */
806 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
807 				 struct ice_sched_node *tc_node, struct ice_pf *pf)
808 {
809 	struct devlink_rate *rate_node = NULL;
810 	struct ice_vf *vf;
811 	int i;
812 
813 	if (node->parent == tc_node) {
814 		/* create root node */
815 		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
816 	} else if (node->vsi_handle &&
817 		   pf->vsi[node->vsi_handle]->vf) {
818 		vf = pf->vsi[node->vsi_handle]->vf;
819 		if (!vf->devlink_port.devlink_rate)
820 			/* leaf nodes doesn't have children
821 			 * so we don't set rate_node
822 			 */
823 			devl_rate_leaf_create(&vf->devlink_port, node,
824 					      node->parent->rate_node);
825 	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
826 		   node->parent->rate_node) {
827 		rate_node = devl_rate_node_create(devlink, node, node->name,
828 						  node->parent->rate_node);
829 	}
830 
831 	if (rate_node && !IS_ERR(rate_node))
832 		node->rate_node = rate_node;
833 
834 	for (i = 0; i < node->num_children; i++)
835 		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
836 }
837 
838 /**
839  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
840  * @devlink: devlink struct
841  * @vsi: main vsi struct
842  *
843  * This function finds a root node, then calls ice_traverse_tx tree, which
844  * traverses the tree and exports it's contents to devlink rate.
845  */
846 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
847 {
848 	struct ice_port_info *pi = vsi->port_info;
849 	struct ice_sched_node *tc_node;
850 	struct ice_pf *pf = vsi->back;
851 	int i;
852 
853 	tc_node = pi->root->children[0];
854 	mutex_lock(&pi->sched_lock);
855 	devl_lock(devlink);
856 	for (i = 0; i < tc_node->num_children; i++)
857 		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
858 	devl_unlock(devlink);
859 	mutex_unlock(&pi->sched_lock);
860 
861 	return 0;
862 }
863 
864 /**
865  * ice_set_object_tx_share - sets node scheduling parameter
866  * @pi: devlink struct instance
867  * @node: node struct instance
868  * @bw: bandwidth in bytes per second
869  * @extack: extended netdev ack structure
870  *
871  * This function sets ICE_MIN_BW scheduling BW limit.
872  */
873 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
874 				   u64 bw, struct netlink_ext_ack *extack)
875 {
876 	int status;
877 
878 	mutex_lock(&pi->sched_lock);
879 	/* converts bytes per second to kilo bits per second */
880 	node->tx_share = div_u64(bw, 125);
881 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
882 	mutex_unlock(&pi->sched_lock);
883 
884 	if (status)
885 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
886 
887 	return status;
888 }
889 
890 /**
891  * ice_set_object_tx_max - sets node scheduling parameter
892  * @pi: devlink struct instance
893  * @node: node struct instance
894  * @bw: bandwidth in bytes per second
895  * @extack: extended netdev ack structure
896  *
897  * This function sets ICE_MAX_BW scheduling BW limit.
898  */
899 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
900 				 u64 bw, struct netlink_ext_ack *extack)
901 {
902 	int status;
903 
904 	mutex_lock(&pi->sched_lock);
905 	/* converts bytes per second value to kilo bits per second */
906 	node->tx_max = div_u64(bw, 125);
907 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
908 	mutex_unlock(&pi->sched_lock);
909 
910 	if (status)
911 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
912 
913 	return status;
914 }
915 
916 /**
917  * ice_set_object_tx_priority - sets node scheduling parameter
918  * @pi: devlink struct instance
919  * @node: node struct instance
920  * @priority: value representing priority for strict priority arbitration
921  * @extack: extended netdev ack structure
922  *
923  * This function sets priority of node among siblings.
924  */
925 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
926 				      u32 priority, struct netlink_ext_ack *extack)
927 {
928 	int status;
929 
930 	if (priority >= 8) {
931 		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
932 		return -EINVAL;
933 	}
934 
935 	mutex_lock(&pi->sched_lock);
936 	node->tx_priority = priority;
937 	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
938 	mutex_unlock(&pi->sched_lock);
939 
940 	if (status)
941 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
942 
943 	return status;
944 }
945 
946 /**
947  * ice_set_object_tx_weight - sets node scheduling parameter
948  * @pi: devlink struct instance
949  * @node: node struct instance
950  * @weight: value represeting relative weight for WFQ arbitration
951  * @extack: extended netdev ack structure
952  *
953  * This function sets node weight for WFQ algorithm.
954  */
955 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
956 				    u32 weight, struct netlink_ext_ack *extack)
957 {
958 	int status;
959 
960 	if (weight > 200 || weight < 1) {
961 		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
962 		return -EINVAL;
963 	}
964 
965 	mutex_lock(&pi->sched_lock);
966 	node->tx_weight = weight;
967 	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
968 	mutex_unlock(&pi->sched_lock);
969 
970 	if (status)
971 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
972 
973 	return status;
974 }
975 
976 /**
977  * ice_get_pi_from_dev_rate - get port info from devlink_rate
978  * @rate_node: devlink struct instance
979  *
980  * This function returns corresponding port_info struct of devlink_rate
981  */
982 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
983 {
984 	struct ice_pf *pf = devlink_priv(rate_node->devlink);
985 
986 	return ice_get_main_vsi(pf)->port_info;
987 }
988 
989 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
990 				     struct netlink_ext_ack *extack)
991 {
992 	struct ice_sched_node *node;
993 	struct ice_port_info *pi;
994 
995 	pi = ice_get_pi_from_dev_rate(rate_node);
996 
997 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
998 		return -EBUSY;
999 
1000 	/* preallocate memory for ice_sched_node */
1001 	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
1002 	*priv = node;
1003 
1004 	return 0;
1005 }
1006 
1007 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
1008 				     struct netlink_ext_ack *extack)
1009 {
1010 	struct ice_sched_node *node, *tc_node;
1011 	struct ice_port_info *pi;
1012 
1013 	pi = ice_get_pi_from_dev_rate(rate_node);
1014 	tc_node = pi->root->children[0];
1015 	node = priv;
1016 
1017 	if (!rate_node->parent || !node || tc_node == node || !extack)
1018 		return 0;
1019 
1020 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1021 		return -EBUSY;
1022 
1023 	/* can't allow to delete a node with children */
1024 	if (node->num_children)
1025 		return -EINVAL;
1026 
1027 	mutex_lock(&pi->sched_lock);
1028 	ice_free_sched_node(pi, node);
1029 	mutex_unlock(&pi->sched_lock);
1030 
1031 	return 0;
1032 }
1033 
1034 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1035 					    u64 tx_max, struct netlink_ext_ack *extack)
1036 {
1037 	struct ice_sched_node *node = priv;
1038 
1039 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1040 		return -EBUSY;
1041 
1042 	if (!node)
1043 		return 0;
1044 
1045 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1046 				     node, tx_max, extack);
1047 }
1048 
1049 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1050 					      u64 tx_share, struct netlink_ext_ack *extack)
1051 {
1052 	struct ice_sched_node *node = priv;
1053 
1054 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1055 		return -EBUSY;
1056 
1057 	if (!node)
1058 		return 0;
1059 
1060 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1061 				       tx_share, extack);
1062 }
1063 
1064 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1065 						 u32 tx_priority, struct netlink_ext_ack *extack)
1066 {
1067 	struct ice_sched_node *node = priv;
1068 
1069 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1070 		return -EBUSY;
1071 
1072 	if (!node)
1073 		return 0;
1074 
1075 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1076 					  tx_priority, extack);
1077 }
1078 
1079 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1080 					       u32 tx_weight, struct netlink_ext_ack *extack)
1081 {
1082 	struct ice_sched_node *node = priv;
1083 
1084 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1085 		return -EBUSY;
1086 
1087 	if (!node)
1088 		return 0;
1089 
1090 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1091 					tx_weight, extack);
1092 }
1093 
1094 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1095 					    u64 tx_max, struct netlink_ext_ack *extack)
1096 {
1097 	struct ice_sched_node *node = priv;
1098 
1099 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1100 		return -EBUSY;
1101 
1102 	if (!node)
1103 		return 0;
1104 
1105 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1106 				     node, tx_max, extack);
1107 }
1108 
1109 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1110 					      u64 tx_share, struct netlink_ext_ack *extack)
1111 {
1112 	struct ice_sched_node *node = priv;
1113 
1114 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1115 		return -EBUSY;
1116 
1117 	if (!node)
1118 		return 0;
1119 
1120 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1121 				       node, tx_share, extack);
1122 }
1123 
1124 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1125 						 u32 tx_priority, struct netlink_ext_ack *extack)
1126 {
1127 	struct ice_sched_node *node = priv;
1128 
1129 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1130 		return -EBUSY;
1131 
1132 	if (!node)
1133 		return 0;
1134 
1135 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1136 					  node, tx_priority, extack);
1137 }
1138 
1139 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1140 					       u32 tx_weight, struct netlink_ext_ack *extack)
1141 {
1142 	struct ice_sched_node *node = priv;
1143 
1144 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1145 		return -EBUSY;
1146 
1147 	if (!node)
1148 		return 0;
1149 
1150 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1151 					node, tx_weight, extack);
1152 }
1153 
1154 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1155 				  struct devlink_rate *parent,
1156 				  void *priv, void *parent_priv,
1157 				  struct netlink_ext_ack *extack)
1158 {
1159 	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1160 	struct ice_sched_node *tc_node, *node, *parent_node;
1161 	u16 num_nodes_added;
1162 	u32 first_node_teid;
1163 	u32 node_teid;
1164 	int status;
1165 
1166 	tc_node = pi->root->children[0];
1167 	node = priv;
1168 
1169 	if (!extack)
1170 		return 0;
1171 
1172 	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1173 		return -EBUSY;
1174 
1175 	if (!parent) {
1176 		if (!node || tc_node == node || node->num_children)
1177 			return -EINVAL;
1178 
1179 		mutex_lock(&pi->sched_lock);
1180 		ice_free_sched_node(pi, node);
1181 		mutex_unlock(&pi->sched_lock);
1182 
1183 		return 0;
1184 	}
1185 
1186 	parent_node = parent_priv;
1187 
1188 	/* if the node doesn't exist, create it */
1189 	if (!node->parent) {
1190 		mutex_lock(&pi->sched_lock);
1191 		status = ice_sched_add_elems(pi, tc_node, parent_node,
1192 					     parent_node->tx_sched_layer + 1,
1193 					     1, &num_nodes_added, &first_node_teid,
1194 					     &node);
1195 		mutex_unlock(&pi->sched_lock);
1196 
1197 		if (status) {
1198 			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1199 			return status;
1200 		}
1201 
1202 		if (devlink_rate->tx_share)
1203 			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1204 		if (devlink_rate->tx_max)
1205 			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1206 		if (devlink_rate->tx_priority)
1207 			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1208 		if (devlink_rate->tx_weight)
1209 			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1210 	} else {
1211 		node_teid = le32_to_cpu(node->info.node_teid);
1212 		mutex_lock(&pi->sched_lock);
1213 		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1214 		mutex_unlock(&pi->sched_lock);
1215 
1216 		if (status)
1217 			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1218 	}
1219 
1220 	return status;
1221 }
1222 
1223 /**
1224  * ice_devlink_reload_up - do reload up after reinit
1225  * @devlink: pointer to the devlink instance reloading
1226  * @action: the action requested
1227  * @limit: limits imposed by userspace, such as not resetting
1228  * @actions_performed: on return, indicate what actions actually performed
1229  * @extack: netlink extended ACK structure
1230  */
1231 static int
1232 ice_devlink_reload_up(struct devlink *devlink,
1233 		      enum devlink_reload_action action,
1234 		      enum devlink_reload_limit limit,
1235 		      u32 *actions_performed,
1236 		      struct netlink_ext_ack *extack)
1237 {
1238 	struct ice_pf *pf = devlink_priv(devlink);
1239 
1240 	switch (action) {
1241 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1242 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1243 		return ice_load(pf);
1244 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1245 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1246 		return ice_devlink_reload_empr_finish(pf, extack);
1247 	default:
1248 		WARN_ON(1);
1249 		return -EOPNOTSUPP;
1250 	}
1251 }
1252 
1253 static const struct devlink_ops ice_devlink_ops = {
1254 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1255 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1256 			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1257 	/* The ice driver currently does not support driver reinit */
1258 	.reload_down = ice_devlink_reload_down,
1259 	.reload_up = ice_devlink_reload_up,
1260 	.port_split = ice_devlink_port_split,
1261 	.port_unsplit = ice_devlink_port_unsplit,
1262 	.eswitch_mode_get = ice_eswitch_mode_get,
1263 	.eswitch_mode_set = ice_eswitch_mode_set,
1264 	.info_get = ice_devlink_info_get,
1265 	.flash_update = ice_devlink_flash_update,
1266 
1267 	.rate_node_new = ice_devlink_rate_node_new,
1268 	.rate_node_del = ice_devlink_rate_node_del,
1269 
1270 	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1271 	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1272 	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1273 	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1274 
1275 	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1276 	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1277 	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1278 	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1279 
1280 	.rate_leaf_parent_set = ice_devlink_set_parent,
1281 	.rate_node_parent_set = ice_devlink_set_parent,
1282 };
1283 
1284 static int
1285 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1286 			    struct devlink_param_gset_ctx *ctx)
1287 {
1288 	struct ice_pf *pf = devlink_priv(devlink);
1289 
1290 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1291 
1292 	return 0;
1293 }
1294 
1295 static int
1296 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1297 			    struct devlink_param_gset_ctx *ctx)
1298 {
1299 	struct ice_pf *pf = devlink_priv(devlink);
1300 	bool roce_ena = ctx->val.vbool;
1301 	int ret;
1302 
1303 	if (!roce_ena) {
1304 		ice_unplug_aux_dev(pf);
1305 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1306 		return 0;
1307 	}
1308 
1309 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1310 	ret = ice_plug_aux_dev(pf);
1311 	if (ret)
1312 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1313 
1314 	return ret;
1315 }
1316 
1317 static int
1318 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1319 				 union devlink_param_value val,
1320 				 struct netlink_ext_ack *extack)
1321 {
1322 	struct ice_pf *pf = devlink_priv(devlink);
1323 
1324 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1325 		return -EOPNOTSUPP;
1326 
1327 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1328 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1329 		return -EOPNOTSUPP;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 static int
1336 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1337 			  struct devlink_param_gset_ctx *ctx)
1338 {
1339 	struct ice_pf *pf = devlink_priv(devlink);
1340 
1341 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1342 
1343 	return 0;
1344 }
1345 
1346 static int
1347 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1348 			  struct devlink_param_gset_ctx *ctx)
1349 {
1350 	struct ice_pf *pf = devlink_priv(devlink);
1351 	bool iw_ena = ctx->val.vbool;
1352 	int ret;
1353 
1354 	if (!iw_ena) {
1355 		ice_unplug_aux_dev(pf);
1356 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1357 		return 0;
1358 	}
1359 
1360 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1361 	ret = ice_plug_aux_dev(pf);
1362 	if (ret)
1363 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1364 
1365 	return ret;
1366 }
1367 
1368 static int
1369 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1370 			       union devlink_param_value val,
1371 			       struct netlink_ext_ack *extack)
1372 {
1373 	struct ice_pf *pf = devlink_priv(devlink);
1374 
1375 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1376 		return -EOPNOTSUPP;
1377 
1378 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1379 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1380 		return -EOPNOTSUPP;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static const struct devlink_param ice_devlink_params[] = {
1387 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1388 			      ice_devlink_enable_roce_get,
1389 			      ice_devlink_enable_roce_set,
1390 			      ice_devlink_enable_roce_validate),
1391 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1392 			      ice_devlink_enable_iw_get,
1393 			      ice_devlink_enable_iw_set,
1394 			      ice_devlink_enable_iw_validate),
1395 
1396 };
1397 
1398 static void ice_devlink_free(void *devlink_ptr)
1399 {
1400 	devlink_free((struct devlink *)devlink_ptr);
1401 }
1402 
1403 /**
1404  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1405  * @dev: the device to allocate for
1406  *
1407  * Allocate a devlink instance for this device and return the private area as
1408  * the PF structure. The devlink memory is kept track of through devres by
1409  * adding an action to remove it when unwinding.
1410  */
1411 struct ice_pf *ice_allocate_pf(struct device *dev)
1412 {
1413 	struct devlink *devlink;
1414 
1415 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1416 	if (!devlink)
1417 		return NULL;
1418 
1419 	/* Add an action to teardown the devlink when unwinding the driver */
1420 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1421 		return NULL;
1422 
1423 	return devlink_priv(devlink);
1424 }
1425 
1426 /**
1427  * ice_devlink_register - Register devlink interface for this PF
1428  * @pf: the PF to register the devlink for.
1429  *
1430  * Register the devlink instance associated with this physical function.
1431  *
1432  * Return: zero on success or an error code on failure.
1433  */
1434 void ice_devlink_register(struct ice_pf *pf)
1435 {
1436 	struct devlink *devlink = priv_to_devlink(pf);
1437 
1438 	devlink_register(devlink);
1439 }
1440 
1441 /**
1442  * ice_devlink_unregister - Unregister devlink resources for this PF.
1443  * @pf: the PF structure to cleanup
1444  *
1445  * Releases resources used by devlink and cleans up associated memory.
1446  */
1447 void ice_devlink_unregister(struct ice_pf *pf)
1448 {
1449 	devlink_unregister(priv_to_devlink(pf));
1450 }
1451 
1452 /**
1453  * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
1454  * @pf: the PF to create a devlink port for
1455  * @ppid: struct with switch id information
1456  */
1457 static void
1458 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
1459 {
1460 	struct pci_dev *pdev = pf->pdev;
1461 	u64 id;
1462 
1463 	id = pci_get_dsn(pdev);
1464 
1465 	ppid->id_len = sizeof(id);
1466 	put_unaligned_be64(id, &ppid->id);
1467 }
1468 
1469 int ice_devlink_register_params(struct ice_pf *pf)
1470 {
1471 	struct devlink *devlink = priv_to_devlink(pf);
1472 
1473 	return devlink_params_register(devlink, ice_devlink_params,
1474 				       ARRAY_SIZE(ice_devlink_params));
1475 }
1476 
1477 void ice_devlink_unregister_params(struct ice_pf *pf)
1478 {
1479 	devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
1480 				  ARRAY_SIZE(ice_devlink_params));
1481 }
1482 
1483 /**
1484  * ice_devlink_set_port_split_options - Set port split options
1485  * @pf: the PF to set port split options
1486  * @attrs: devlink attributes
1487  *
1488  * Sets devlink port split options based on available FW port options
1489  */
1490 static void
1491 ice_devlink_set_port_split_options(struct ice_pf *pf,
1492 				   struct devlink_port_attrs *attrs)
1493 {
1494 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
1495 	u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
1496 	bool active_valid, pending_valid;
1497 	int status;
1498 
1499 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
1500 					 0, true, &active_idx, &active_valid,
1501 					 &pending_idx, &pending_valid);
1502 	if (status) {
1503 		dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
1504 			status);
1505 		return;
1506 	}
1507 
1508 	/* find the biggest available port split count */
1509 	for (i = 0; i < option_count; i++)
1510 		attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
1511 
1512 	attrs->splittable = attrs->lanes ? 1 : 0;
1513 	ice_active_port_option = active_idx;
1514 }
1515 
1516 /**
1517  * ice_devlink_create_pf_port - Create a devlink port for this PF
1518  * @pf: the PF to create a devlink port for
1519  *
1520  * Create and register a devlink_port for this PF.
1521  *
1522  * Return: zero on success or an error code on failure.
1523  */
1524 int ice_devlink_create_pf_port(struct ice_pf *pf)
1525 {
1526 	struct devlink_port_attrs attrs = {};
1527 	struct devlink_port *devlink_port;
1528 	struct devlink *devlink;
1529 	struct ice_vsi *vsi;
1530 	struct device *dev;
1531 	int err;
1532 
1533 	dev = ice_pf_to_dev(pf);
1534 
1535 	devlink_port = &pf->devlink_port;
1536 
1537 	vsi = ice_get_main_vsi(pf);
1538 	if (!vsi)
1539 		return -EIO;
1540 
1541 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1542 	attrs.phys.port_number = pf->hw.bus.func;
1543 
1544 	/* As FW supports only port split options for whole device,
1545 	 * set port split options only for first PF.
1546 	 */
1547 	if (pf->hw.pf_id == 0)
1548 		ice_devlink_set_port_split_options(pf, &attrs);
1549 
1550 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1551 
1552 	devlink_port_attrs_set(devlink_port, &attrs);
1553 	devlink = priv_to_devlink(pf);
1554 
1555 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1556 	if (err) {
1557 		dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1558 			pf->hw.pf_id, err);
1559 		return err;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1567  * @pf: the PF to cleanup
1568  *
1569  * Unregisters the devlink_port structure associated with this PF.
1570  */
1571 void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1572 {
1573 	devlink_port_unregister(&pf->devlink_port);
1574 }
1575 
1576 /**
1577  * ice_devlink_create_vf_port - Create a devlink port for this VF
1578  * @vf: the VF to create a port for
1579  *
1580  * Create and register a devlink_port for this VF.
1581  *
1582  * Return: zero on success or an error code on failure.
1583  */
1584 int ice_devlink_create_vf_port(struct ice_vf *vf)
1585 {
1586 	struct devlink_port_attrs attrs = {};
1587 	struct devlink_port *devlink_port;
1588 	struct devlink *devlink;
1589 	struct ice_vsi *vsi;
1590 	struct device *dev;
1591 	struct ice_pf *pf;
1592 	int err;
1593 
1594 	pf = vf->pf;
1595 	dev = ice_pf_to_dev(pf);
1596 	devlink_port = &vf->devlink_port;
1597 
1598 	vsi = ice_get_vf_vsi(vf);
1599 	if (!vsi)
1600 		return -EINVAL;
1601 
1602 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1603 	attrs.pci_vf.pf = pf->hw.bus.func;
1604 	attrs.pci_vf.vf = vf->vf_id;
1605 
1606 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1607 
1608 	devlink_port_attrs_set(devlink_port, &attrs);
1609 	devlink = priv_to_devlink(pf);
1610 
1611 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1612 	if (err) {
1613 		dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1614 			vf->vf_id, err);
1615 		return err;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /**
1622  * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1623  * @vf: the VF to cleanup
1624  *
1625  * Unregisters the devlink_port structure associated with this VF.
1626  */
1627 void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1628 {
1629 	devl_rate_leaf_destroy(&vf->devlink_port);
1630 	devlink_port_unregister(&vf->devlink_port);
1631 }
1632 
1633 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1634 
1635 static const struct devlink_region_ops ice_nvm_region_ops;
1636 static const struct devlink_region_ops ice_sram_region_ops;
1637 
1638 /**
1639  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1640  * @devlink: the devlink instance
1641  * @ops: the devlink region to snapshot
1642  * @extack: extended ACK response structure
1643  * @data: on exit points to snapshot data buffer
1644  *
1645  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1646  * the nvm-flash or shadow-ram region.
1647  *
1648  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1649  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1650  * interface.
1651  *
1652  * @returns zero on success, and updates the data pointer. Returns a non-zero
1653  * error code on failure.
1654  */
1655 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1656 				    const struct devlink_region_ops *ops,
1657 				    struct netlink_ext_ack *extack, u8 **data)
1658 {
1659 	struct ice_pf *pf = devlink_priv(devlink);
1660 	struct device *dev = ice_pf_to_dev(pf);
1661 	struct ice_hw *hw = &pf->hw;
1662 	bool read_shadow_ram;
1663 	u8 *nvm_data, *tmp, i;
1664 	u32 nvm_size, left;
1665 	s8 num_blks;
1666 	int status;
1667 
1668 	if (ops == &ice_nvm_region_ops) {
1669 		read_shadow_ram = false;
1670 		nvm_size = hw->flash.flash_size;
1671 	} else if (ops == &ice_sram_region_ops) {
1672 		read_shadow_ram = true;
1673 		nvm_size = hw->flash.sr_words * 2u;
1674 	} else {
1675 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1676 		return -EOPNOTSUPP;
1677 	}
1678 
1679 	nvm_data = vzalloc(nvm_size);
1680 	if (!nvm_data)
1681 		return -ENOMEM;
1682 
1683 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1684 	tmp = nvm_data;
1685 	left = nvm_size;
1686 
1687 	/* Some systems take longer to read the NVM than others which causes the
1688 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1689 	 * this by breaking the reads of the NVM into smaller chunks that will
1690 	 * probably not take as long. This has some overhead since we are
1691 	 * increasing the number of AQ commands, but it should always work
1692 	 */
1693 	for (i = 0; i < num_blks; i++) {
1694 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1695 
1696 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1697 		if (status) {
1698 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1699 				status, hw->adminq.sq_last_status);
1700 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1701 			vfree(nvm_data);
1702 			return -EIO;
1703 		}
1704 
1705 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1706 					   &read_sz, tmp, read_shadow_ram);
1707 		if (status) {
1708 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1709 				read_sz, status, hw->adminq.sq_last_status);
1710 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1711 			ice_release_nvm(hw);
1712 			vfree(nvm_data);
1713 			return -EIO;
1714 		}
1715 		ice_release_nvm(hw);
1716 
1717 		tmp += read_sz;
1718 		left -= read_sz;
1719 	}
1720 
1721 	*data = nvm_data;
1722 
1723 	return 0;
1724 }
1725 
1726 /**
1727  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1728  * @devlink: the devlink instance
1729  * @ops: the devlink region to snapshot
1730  * @extack: extended ACK response structure
1731  * @offset: the offset to start at
1732  * @size: the amount to read
1733  * @data: the data buffer to read into
1734  *
1735  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1736  * read a section of the NVM contents.
1737  *
1738  * It reads from either the nvm-flash or shadow-ram region contents.
1739  *
1740  * @returns zero on success, and updates the data pointer. Returns a non-zero
1741  * error code on failure.
1742  */
1743 static int ice_devlink_nvm_read(struct devlink *devlink,
1744 				const struct devlink_region_ops *ops,
1745 				struct netlink_ext_ack *extack,
1746 				u64 offset, u32 size, u8 *data)
1747 {
1748 	struct ice_pf *pf = devlink_priv(devlink);
1749 	struct device *dev = ice_pf_to_dev(pf);
1750 	struct ice_hw *hw = &pf->hw;
1751 	bool read_shadow_ram;
1752 	u64 nvm_size;
1753 	int status;
1754 
1755 	if (ops == &ice_nvm_region_ops) {
1756 		read_shadow_ram = false;
1757 		nvm_size = hw->flash.flash_size;
1758 	} else if (ops == &ice_sram_region_ops) {
1759 		read_shadow_ram = true;
1760 		nvm_size = hw->flash.sr_words * 2u;
1761 	} else {
1762 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1763 		return -EOPNOTSUPP;
1764 	}
1765 
1766 	if (offset + size >= nvm_size) {
1767 		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1768 		return -ERANGE;
1769 	}
1770 
1771 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1772 	if (status) {
1773 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1774 			status, hw->adminq.sq_last_status);
1775 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1776 		return -EIO;
1777 	}
1778 
1779 	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1780 				   read_shadow_ram);
1781 	if (status) {
1782 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1783 			size, status, hw->adminq.sq_last_status);
1784 		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1785 		ice_release_nvm(hw);
1786 		return -EIO;
1787 	}
1788 	ice_release_nvm(hw);
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1795  * @devlink: the devlink instance
1796  * @ops: the devlink region being snapshotted
1797  * @extack: extended ACK response structure
1798  * @data: on exit points to snapshot data buffer
1799  *
1800  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1801  * the device-caps devlink region. It captures a snapshot of the device
1802  * capabilities reported by firmware.
1803  *
1804  * @returns zero on success, and updates the data pointer. Returns a non-zero
1805  * error code on failure.
1806  */
1807 static int
1808 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1809 			     const struct devlink_region_ops *ops,
1810 			     struct netlink_ext_ack *extack, u8 **data)
1811 {
1812 	struct ice_pf *pf = devlink_priv(devlink);
1813 	struct device *dev = ice_pf_to_dev(pf);
1814 	struct ice_hw *hw = &pf->hw;
1815 	void *devcaps;
1816 	int status;
1817 
1818 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1819 	if (!devcaps)
1820 		return -ENOMEM;
1821 
1822 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1823 				  ice_aqc_opc_list_dev_caps, NULL);
1824 	if (status) {
1825 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1826 			status, hw->adminq.sq_last_status);
1827 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1828 		vfree(devcaps);
1829 		return status;
1830 	}
1831 
1832 	*data = (u8 *)devcaps;
1833 
1834 	return 0;
1835 }
1836 
1837 static const struct devlink_region_ops ice_nvm_region_ops = {
1838 	.name = "nvm-flash",
1839 	.destructor = vfree,
1840 	.snapshot = ice_devlink_nvm_snapshot,
1841 	.read = ice_devlink_nvm_read,
1842 };
1843 
1844 static const struct devlink_region_ops ice_sram_region_ops = {
1845 	.name = "shadow-ram",
1846 	.destructor = vfree,
1847 	.snapshot = ice_devlink_nvm_snapshot,
1848 	.read = ice_devlink_nvm_read,
1849 };
1850 
1851 static const struct devlink_region_ops ice_devcaps_region_ops = {
1852 	.name = "device-caps",
1853 	.destructor = vfree,
1854 	.snapshot = ice_devlink_devcaps_snapshot,
1855 };
1856 
1857 /**
1858  * ice_devlink_init_regions - Initialize devlink regions
1859  * @pf: the PF device structure
1860  *
1861  * Create devlink regions used to enable access to dump the contents of the
1862  * flash memory on the device.
1863  */
1864 void ice_devlink_init_regions(struct ice_pf *pf)
1865 {
1866 	struct devlink *devlink = priv_to_devlink(pf);
1867 	struct device *dev = ice_pf_to_dev(pf);
1868 	u64 nvm_size, sram_size;
1869 
1870 	nvm_size = pf->hw.flash.flash_size;
1871 	pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
1872 					       nvm_size);
1873 	if (IS_ERR(pf->nvm_region)) {
1874 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1875 			PTR_ERR(pf->nvm_region));
1876 		pf->nvm_region = NULL;
1877 	}
1878 
1879 	sram_size = pf->hw.flash.sr_words * 2u;
1880 	pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1881 						1, sram_size);
1882 	if (IS_ERR(pf->sram_region)) {
1883 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1884 			PTR_ERR(pf->sram_region));
1885 		pf->sram_region = NULL;
1886 	}
1887 
1888 	pf->devcaps_region = devlink_region_create(devlink,
1889 						   &ice_devcaps_region_ops, 10,
1890 						   ICE_AQ_MAX_BUF_LEN);
1891 	if (IS_ERR(pf->devcaps_region)) {
1892 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1893 			PTR_ERR(pf->devcaps_region));
1894 		pf->devcaps_region = NULL;
1895 	}
1896 }
1897 
1898 /**
1899  * ice_devlink_destroy_regions - Destroy devlink regions
1900  * @pf: the PF device structure
1901  *
1902  * Remove previously created regions for this PF.
1903  */
1904 void ice_devlink_destroy_regions(struct ice_pf *pf)
1905 {
1906 	if (pf->nvm_region)
1907 		devlink_region_destroy(pf->nvm_region);
1908 
1909 	if (pf->sram_region)
1910 		devlink_region_destroy(pf->sram_region);
1911 
1912 	if (pf->devcaps_region)
1913 		devlink_region_destroy(pf->devcaps_region);
1914 }
1915