1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2022, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice.h" 6 #include "ice_ddp.h" 7 8 /* For supporting double VLAN mode, it is necessary to enable or disable certain 9 * boost tcam entries. The metadata labels names that match the following 10 * prefixes will be saved to allow enabling double VLAN mode. 11 */ 12 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */ 13 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */ 14 15 /* To support tunneling entries by PF, the package will append the PF number to 16 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 17 */ 18 #define ICE_TNL_PRE "TNL_" 19 static const struct ice_tunnel_type_scan tnls[] = { 20 { TNL_VXLAN, "TNL_VXLAN_PF" }, 21 { TNL_GENEVE, "TNL_GENEVE_PF" }, 22 { TNL_LAST, "" } 23 }; 24 25 /** 26 * ice_verify_pkg - verify package 27 * @pkg: pointer to the package buffer 28 * @len: size of the package buffer 29 * 30 * Verifies various attributes of the package file, including length, format 31 * version, and the requirement of at least one segment. 32 */ 33 enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 34 { 35 u32 seg_count; 36 u32 i; 37 38 if (len < struct_size(pkg, seg_offset, 1)) 39 return ICE_DDP_PKG_INVALID_FILE; 40 41 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 42 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 43 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 44 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 45 return ICE_DDP_PKG_INVALID_FILE; 46 47 /* pkg must have at least one segment */ 48 seg_count = le32_to_cpu(pkg->seg_count); 49 if (seg_count < 1) 50 return ICE_DDP_PKG_INVALID_FILE; 51 52 /* make sure segment array fits in package length */ 53 if (len < struct_size(pkg, seg_offset, seg_count)) 54 return ICE_DDP_PKG_INVALID_FILE; 55 56 /* all segments must fit within length */ 57 for (i = 0; i < seg_count; i++) { 58 u32 off = le32_to_cpu(pkg->seg_offset[i]); 59 struct ice_generic_seg_hdr *seg; 60 61 /* segment header must fit */ 62 if (len < off + sizeof(*seg)) 63 return ICE_DDP_PKG_INVALID_FILE; 64 65 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 66 67 /* segment body must fit */ 68 if (len < off + le32_to_cpu(seg->seg_size)) 69 return ICE_DDP_PKG_INVALID_FILE; 70 } 71 72 return ICE_DDP_PKG_SUCCESS; 73 } 74 75 /** 76 * ice_free_seg - free package segment pointer 77 * @hw: pointer to the hardware structure 78 * 79 * Frees the package segment pointer in the proper manner, depending on if the 80 * segment was allocated or just the passed in pointer was stored. 81 */ 82 void ice_free_seg(struct ice_hw *hw) 83 { 84 if (hw->pkg_copy) { 85 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); 86 hw->pkg_copy = NULL; 87 hw->pkg_size = 0; 88 } 89 hw->seg = NULL; 90 } 91 92 /** 93 * ice_chk_pkg_version - check package version for compatibility with driver 94 * @pkg_ver: pointer to a version structure to check 95 * 96 * Check to make sure that the package about to be downloaded is compatible with 97 * the driver. To be compatible, the major and minor components of the package 98 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 99 * definitions. 100 */ 101 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 102 { 103 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || 104 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 105 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) 106 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; 107 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || 108 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && 109 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) 110 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; 111 112 return ICE_DDP_PKG_SUCCESS; 113 } 114 115 /** 116 * ice_pkg_val_buf 117 * @buf: pointer to the ice buffer 118 * 119 * This helper function validates a buffer's header. 120 */ 121 struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 122 { 123 struct ice_buf_hdr *hdr; 124 u16 section_count; 125 u16 data_end; 126 127 hdr = (struct ice_buf_hdr *)buf->buf; 128 /* verify data */ 129 section_count = le16_to_cpu(hdr->section_count); 130 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 131 return NULL; 132 133 data_end = le16_to_cpu(hdr->data_end); 134 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 135 return NULL; 136 137 return hdr; 138 } 139 140 /** 141 * ice_find_buf_table 142 * @ice_seg: pointer to the ice segment 143 * 144 * Returns the address of the buffer table within the ice segment. 145 */ 146 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 147 { 148 struct ice_nvm_table *nvms = (struct ice_nvm_table *) 149 (ice_seg->device_table + le32_to_cpu(ice_seg->device_table_count)); 150 151 return (__force struct ice_buf_table *)(nvms->vers + 152 le32_to_cpu(nvms->table_count)); 153 } 154 155 /** 156 * ice_pkg_enum_buf 157 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 158 * @state: pointer to the enum state 159 * 160 * This function will enumerate all the buffers in the ice segment. The first 161 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 162 * ice_seg is set to NULL which continues the enumeration. When the function 163 * returns a NULL pointer, then the end of the buffers has been reached, or an 164 * unexpected value has been detected (for example an invalid section count or 165 * an invalid buffer end value). 166 */ 167 static struct ice_buf_hdr *ice_pkg_enum_buf(struct ice_seg *ice_seg, 168 struct ice_pkg_enum *state) 169 { 170 if (ice_seg) { 171 state->buf_table = ice_find_buf_table(ice_seg); 172 if (!state->buf_table) 173 return NULL; 174 175 state->buf_idx = 0; 176 return ice_pkg_val_buf(state->buf_table->buf_array); 177 } 178 179 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) 180 return ice_pkg_val_buf(state->buf_table->buf_array + 181 state->buf_idx); 182 else 183 return NULL; 184 } 185 186 /** 187 * ice_pkg_advance_sect 188 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 189 * @state: pointer to the enum state 190 * 191 * This helper function will advance the section within the ice segment, 192 * also advancing the buffer if needed. 193 */ 194 static bool ice_pkg_advance_sect(struct ice_seg *ice_seg, 195 struct ice_pkg_enum *state) 196 { 197 if (!ice_seg && !state->buf) 198 return false; 199 200 if (!ice_seg && state->buf) 201 if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) 202 return true; 203 204 state->buf = ice_pkg_enum_buf(ice_seg, state); 205 if (!state->buf) 206 return false; 207 208 /* start of new buffer, reset section index */ 209 state->sect_idx = 0; 210 return true; 211 } 212 213 /** 214 * ice_pkg_enum_section 215 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 216 * @state: pointer to the enum state 217 * @sect_type: section type to enumerate 218 * 219 * This function will enumerate all the sections of a particular type in the 220 * ice segment. The first call is made with the ice_seg parameter non-NULL; 221 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 222 * When the function returns a NULL pointer, then the end of the matching 223 * sections has been reached. 224 */ 225 void *ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 226 u32 sect_type) 227 { 228 u16 offset, size; 229 230 if (ice_seg) 231 state->type = sect_type; 232 233 if (!ice_pkg_advance_sect(ice_seg, state)) 234 return NULL; 235 236 /* scan for next matching section */ 237 while (state->buf->section_entry[state->sect_idx].type != 238 cpu_to_le32(state->type)) 239 if (!ice_pkg_advance_sect(NULL, state)) 240 return NULL; 241 242 /* validate section */ 243 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 244 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 245 return NULL; 246 247 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); 248 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 249 return NULL; 250 251 /* make sure the section fits in the buffer */ 252 if (offset + size > ICE_PKG_BUF_SIZE) 253 return NULL; 254 255 state->sect_type = 256 le32_to_cpu(state->buf->section_entry[state->sect_idx].type); 257 258 /* calc pointer to this section */ 259 state->sect = 260 ((u8 *)state->buf) + 261 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); 262 263 return state->sect; 264 } 265 266 /** 267 * ice_pkg_enum_entry 268 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 269 * @state: pointer to the enum state 270 * @sect_type: section type to enumerate 271 * @offset: pointer to variable that receives the offset in the table (optional) 272 * @handler: function that handles access to the entries into the section type 273 * 274 * This function will enumerate all the entries in particular section type in 275 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 276 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 277 * When the function returns a NULL pointer, then the end of the entries has 278 * been reached. 279 * 280 * Since each section may have a different header and entry size, the handler 281 * function is needed to determine the number and location entries in each 282 * section. 283 * 284 * The offset parameter is optional, but should be used for sections that 285 * contain an offset for each section table. For such cases, the section handler 286 * function must return the appropriate offset + index to give the absolution 287 * offset for each entry. For example, if the base for a section's header 288 * indicates a base offset of 10, and the index for the entry is 2, then 289 * section handler function should set the offset to 10 + 2 = 12. 290 */ 291 static void *ice_pkg_enum_entry(struct ice_seg *ice_seg, 292 struct ice_pkg_enum *state, u32 sect_type, 293 u32 *offset, 294 void *(*handler)(u32 sect_type, void *section, 295 u32 index, u32 *offset)) 296 { 297 void *entry; 298 299 if (ice_seg) { 300 if (!handler) 301 return NULL; 302 303 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 304 return NULL; 305 306 state->entry_idx = 0; 307 state->handler = handler; 308 } else { 309 state->entry_idx++; 310 } 311 312 if (!state->handler) 313 return NULL; 314 315 /* get entry */ 316 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 317 offset); 318 if (!entry) { 319 /* end of a section, look for another section of this type */ 320 if (!ice_pkg_enum_section(NULL, state, 0)) 321 return NULL; 322 323 state->entry_idx = 0; 324 entry = state->handler(state->sect_type, state->sect, 325 state->entry_idx, offset); 326 } 327 328 return entry; 329 } 330 331 /** 332 * ice_sw_fv_handler 333 * @sect_type: section type 334 * @section: pointer to section 335 * @index: index of the field vector entry to be returned 336 * @offset: ptr to variable that receives the offset in the field vector table 337 * 338 * This is a callback function that can be passed to ice_pkg_enum_entry. 339 * This function treats the given section as of type ice_sw_fv_section and 340 * enumerates offset field. "offset" is an index into the field vector table. 341 */ 342 static void *ice_sw_fv_handler(u32 sect_type, void *section, u32 index, 343 u32 *offset) 344 { 345 struct ice_sw_fv_section *fv_section = section; 346 347 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 348 return NULL; 349 if (index >= le16_to_cpu(fv_section->count)) 350 return NULL; 351 if (offset) 352 /* "index" passed in to this function is relative to a given 353 * 4k block. To get to the true index into the field vector 354 * table need to add the relative index to the base_offset 355 * field of this section 356 */ 357 *offset = le16_to_cpu(fv_section->base_offset) + index; 358 return fv_section->fv + index; 359 } 360 361 /** 362 * ice_get_prof_index_max - get the max profile index for used profile 363 * @hw: pointer to the HW struct 364 * 365 * Calling this function will get the max profile index for used profile 366 * and store the index number in struct ice_switch_info *switch_info 367 * in HW for following use. 368 */ 369 static int ice_get_prof_index_max(struct ice_hw *hw) 370 { 371 u16 prof_index = 0, j, max_prof_index = 0; 372 struct ice_pkg_enum state; 373 struct ice_seg *ice_seg; 374 bool flag = false; 375 struct ice_fv *fv; 376 u32 offset; 377 378 memset(&state, 0, sizeof(state)); 379 380 if (!hw->seg) 381 return -EINVAL; 382 383 ice_seg = hw->seg; 384 385 do { 386 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 387 &offset, ice_sw_fv_handler); 388 if (!fv) 389 break; 390 ice_seg = NULL; 391 392 /* in the profile that not be used, the prot_id is set to 0xff 393 * and the off is set to 0x1ff for all the field vectors. 394 */ 395 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 396 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 397 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 398 flag = true; 399 if (flag && prof_index > max_prof_index) 400 max_prof_index = prof_index; 401 402 prof_index++; 403 flag = false; 404 } while (fv); 405 406 hw->switch_info->max_used_prof_index = max_prof_index; 407 408 return 0; 409 } 410 411 /** 412 * ice_get_ddp_pkg_state - get DDP pkg state after download 413 * @hw: pointer to the HW struct 414 * @already_loaded: indicates if pkg was already loaded onto the device 415 */ 416 static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw, 417 bool already_loaded) 418 { 419 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 420 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 421 hw->pkg_ver.update == hw->active_pkg_ver.update && 422 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 423 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { 424 if (already_loaded) 425 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; 426 else 427 return ICE_DDP_PKG_SUCCESS; 428 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 429 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 430 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; 431 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 432 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 433 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; 434 } else { 435 return ICE_DDP_PKG_ERR; 436 } 437 } 438 439 /** 440 * ice_init_pkg_regs - initialize additional package registers 441 * @hw: pointer to the hardware structure 442 */ 443 static void ice_init_pkg_regs(struct ice_hw *hw) 444 { 445 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 446 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 447 #define ICE_SW_BLK_IDX 0 448 449 /* setup Switch block input mask, which is 48-bits in two parts */ 450 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 451 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 452 } 453 454 /** 455 * ice_marker_ptype_tcam_handler 456 * @sect_type: section type 457 * @section: pointer to section 458 * @index: index of the Marker PType TCAM entry to be returned 459 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections 460 * 461 * This is a callback function that can be passed to ice_pkg_enum_entry. 462 * Handles enumeration of individual Marker PType TCAM entries. 463 */ 464 static void *ice_marker_ptype_tcam_handler(u32 sect_type, void *section, 465 u32 index, u32 *offset) 466 { 467 struct ice_marker_ptype_tcam_section *marker_ptype; 468 469 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) 470 return NULL; 471 472 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) 473 return NULL; 474 475 if (offset) 476 *offset = 0; 477 478 marker_ptype = section; 479 if (index >= le16_to_cpu(marker_ptype->count)) 480 return NULL; 481 482 return marker_ptype->tcam + index; 483 } 484 485 /** 486 * ice_add_dvm_hint 487 * @hw: pointer to the HW structure 488 * @val: value of the boost entry 489 * @enable: true if entry needs to be enabled, or false if needs to be disabled 490 */ 491 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable) 492 { 493 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) { 494 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val; 495 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable; 496 hw->dvm_upd.count++; 497 } 498 } 499 500 /** 501 * ice_add_tunnel_hint 502 * @hw: pointer to the HW structure 503 * @label_name: label text 504 * @val: value of the tunnel port boost entry 505 */ 506 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 507 { 508 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 509 u16 i; 510 511 for (i = 0; tnls[i].type != TNL_LAST; i++) { 512 size_t len = strlen(tnls[i].label_prefix); 513 514 /* Look for matching label start, before continuing */ 515 if (strncmp(label_name, tnls[i].label_prefix, len)) 516 continue; 517 518 /* Make sure this label matches our PF. Note that the PF 519 * character ('0' - '7') will be located where our 520 * prefix string's null terminator is located. 521 */ 522 if ((label_name[len] - '0') == hw->pf_id) { 523 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 524 hw->tnl.tbl[hw->tnl.count].valid = false; 525 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 526 hw->tnl.tbl[hw->tnl.count].port = 0; 527 hw->tnl.count++; 528 break; 529 } 530 } 531 } 532 } 533 534 /** 535 * ice_label_enum_handler 536 * @sect_type: section type 537 * @section: pointer to section 538 * @index: index of the label entry to be returned 539 * @offset: pointer to receive absolute offset, always zero for label sections 540 * 541 * This is a callback function that can be passed to ice_pkg_enum_entry. 542 * Handles enumeration of individual label entries. 543 */ 544 static void *ice_label_enum_handler(u32 __always_unused sect_type, 545 void *section, u32 index, u32 *offset) 546 { 547 struct ice_label_section *labels; 548 549 if (!section) 550 return NULL; 551 552 if (index > ICE_MAX_LABELS_IN_BUF) 553 return NULL; 554 555 if (offset) 556 *offset = 0; 557 558 labels = section; 559 if (index >= le16_to_cpu(labels->count)) 560 return NULL; 561 562 return labels->label + index; 563 } 564 565 /** 566 * ice_enum_labels 567 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 568 * @type: the section type that will contain the label (0 on subsequent calls) 569 * @state: ice_pkg_enum structure that will hold the state of the enumeration 570 * @value: pointer to a value that will return the label's value if found 571 * 572 * Enumerates a list of labels in the package. The caller will call 573 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 574 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 575 * the end of the list has been reached. 576 */ 577 static char *ice_enum_labels(struct ice_seg *ice_seg, u32 type, 578 struct ice_pkg_enum *state, u16 *value) 579 { 580 struct ice_label *label; 581 582 /* Check for valid label section on first call */ 583 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 584 return NULL; 585 586 label = ice_pkg_enum_entry(ice_seg, state, type, NULL, 587 ice_label_enum_handler); 588 if (!label) 589 return NULL; 590 591 *value = le16_to_cpu(label->value); 592 return label->name; 593 } 594 595 /** 596 * ice_boost_tcam_handler 597 * @sect_type: section type 598 * @section: pointer to section 599 * @index: index of the boost TCAM entry to be returned 600 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 601 * 602 * This is a callback function that can be passed to ice_pkg_enum_entry. 603 * Handles enumeration of individual boost TCAM entries. 604 */ 605 static void *ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, 606 u32 *offset) 607 { 608 struct ice_boost_tcam_section *boost; 609 610 if (!section) 611 return NULL; 612 613 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 614 return NULL; 615 616 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 617 return NULL; 618 619 if (offset) 620 *offset = 0; 621 622 boost = section; 623 if (index >= le16_to_cpu(boost->count)) 624 return NULL; 625 626 return boost->tcam + index; 627 } 628 629 /** 630 * ice_find_boost_entry 631 * @ice_seg: pointer to the ice segment (non-NULL) 632 * @addr: Boost TCAM address of entry to search for 633 * @entry: returns pointer to the entry 634 * 635 * Finds a particular Boost TCAM entry and returns a pointer to that entry 636 * if it is found. The ice_seg parameter must not be NULL since the first call 637 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 638 */ 639 static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 640 struct ice_boost_tcam_entry **entry) 641 { 642 struct ice_boost_tcam_entry *tcam; 643 struct ice_pkg_enum state; 644 645 memset(&state, 0, sizeof(state)); 646 647 if (!ice_seg) 648 return -EINVAL; 649 650 do { 651 tcam = ice_pkg_enum_entry(ice_seg, &state, 652 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 653 ice_boost_tcam_handler); 654 if (tcam && le16_to_cpu(tcam->addr) == addr) { 655 *entry = tcam; 656 return 0; 657 } 658 659 ice_seg = NULL; 660 } while (tcam); 661 662 *entry = NULL; 663 return -EIO; 664 } 665 666 /** 667 * ice_is_init_pkg_successful - check if DDP init was successful 668 * @state: state of the DDP pkg after download 669 */ 670 bool ice_is_init_pkg_successful(enum ice_ddp_state state) 671 { 672 switch (state) { 673 case ICE_DDP_PKG_SUCCESS: 674 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 675 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 676 return true; 677 default: 678 return false; 679 } 680 } 681 682 /** 683 * ice_pkg_buf_alloc 684 * @hw: pointer to the HW structure 685 * 686 * Allocates a package buffer and returns a pointer to the buffer header. 687 * Note: all package contents must be in Little Endian form. 688 */ 689 struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 690 { 691 struct ice_buf_build *bld; 692 struct ice_buf_hdr *buf; 693 694 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); 695 if (!bld) 696 return NULL; 697 698 buf = (struct ice_buf_hdr *)bld; 699 buf->data_end = 700 cpu_to_le16(offsetof(struct ice_buf_hdr, section_entry)); 701 return bld; 702 } 703 704 static bool ice_is_gtp_u_profile(u16 prof_idx) 705 { 706 return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID && 707 prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) || 708 prof_idx == ICE_PROFID_IPV4_GTPU_TEID; 709 } 710 711 static bool ice_is_gtp_c_profile(u16 prof_idx) 712 { 713 switch (prof_idx) { 714 case ICE_PROFID_IPV4_GTPC_TEID: 715 case ICE_PROFID_IPV4_GTPC_NO_TEID: 716 case ICE_PROFID_IPV6_GTPC_TEID: 717 case ICE_PROFID_IPV6_GTPC_NO_TEID: 718 return true; 719 default: 720 return false; 721 } 722 } 723 724 /** 725 * ice_get_sw_prof_type - determine switch profile type 726 * @hw: pointer to the HW structure 727 * @fv: pointer to the switch field vector 728 * @prof_idx: profile index to check 729 */ 730 static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw, 731 struct ice_fv *fv, u32 prof_idx) 732 { 733 u16 i; 734 735 if (ice_is_gtp_c_profile(prof_idx)) 736 return ICE_PROF_TUN_GTPC; 737 738 if (ice_is_gtp_u_profile(prof_idx)) 739 return ICE_PROF_TUN_GTPU; 740 741 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 742 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 743 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 744 fv->ew[i].off == ICE_VNI_OFFSET) 745 return ICE_PROF_TUN_UDP; 746 747 /* GRE tunnel will have GRE protocol */ 748 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 749 return ICE_PROF_TUN_GRE; 750 } 751 752 return ICE_PROF_NON_TUN; 753 } 754 755 /** 756 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 757 * @hw: pointer to hardware structure 758 * @req_profs: type of profiles requested 759 * @bm: pointer to memory for returning the bitmap of field vectors 760 */ 761 void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 762 unsigned long *bm) 763 { 764 struct ice_pkg_enum state; 765 struct ice_seg *ice_seg; 766 struct ice_fv *fv; 767 768 if (req_profs == ICE_PROF_ALL) { 769 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 770 return; 771 } 772 773 memset(&state, 0, sizeof(state)); 774 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 775 ice_seg = hw->seg; 776 do { 777 enum ice_prof_type prof_type; 778 u32 offset; 779 780 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 781 &offset, ice_sw_fv_handler); 782 ice_seg = NULL; 783 784 if (fv) { 785 /* Determine field vector type */ 786 prof_type = ice_get_sw_prof_type(hw, fv, offset); 787 788 if (req_profs & prof_type) 789 set_bit((u16)offset, bm); 790 } 791 } while (fv); 792 } 793 794 /** 795 * ice_get_sw_fv_list 796 * @hw: pointer to the HW structure 797 * @lkups: list of protocol types 798 * @bm: bitmap of field vectors to consider 799 * @fv_list: Head of a list 800 * 801 * Finds all the field vector entries from switch block that contain 802 * a given protocol ID and offset and returns a list of structures of type 803 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 804 * definition and profile ID information 805 * NOTE: The caller of the function is responsible for freeing the memory 806 * allocated for every list entry. 807 */ 808 int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, 809 unsigned long *bm, struct list_head *fv_list) 810 { 811 struct ice_sw_fv_list_entry *fvl; 812 struct ice_sw_fv_list_entry *tmp; 813 struct ice_pkg_enum state; 814 struct ice_seg *ice_seg; 815 struct ice_fv *fv; 816 u32 offset; 817 818 memset(&state, 0, sizeof(state)); 819 820 if (!lkups->n_val_words || !hw->seg) 821 return -EINVAL; 822 823 ice_seg = hw->seg; 824 do { 825 u16 i; 826 827 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 828 &offset, ice_sw_fv_handler); 829 if (!fv) 830 break; 831 ice_seg = NULL; 832 833 /* If field vector is not in the bitmap list, then skip this 834 * profile. 835 */ 836 if (!test_bit((u16)offset, bm)) 837 continue; 838 839 for (i = 0; i < lkups->n_val_words; i++) { 840 int j; 841 842 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 843 if (fv->ew[j].prot_id == 844 lkups->fv_words[i].prot_id && 845 fv->ew[j].off == lkups->fv_words[i].off) 846 break; 847 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 848 break; 849 if (i + 1 == lkups->n_val_words) { 850 fvl = devm_kzalloc(ice_hw_to_dev(hw), 851 sizeof(*fvl), GFP_KERNEL); 852 if (!fvl) 853 goto err; 854 fvl->fv_ptr = fv; 855 fvl->profile_id = offset; 856 list_add(&fvl->list_entry, fv_list); 857 break; 858 } 859 } 860 } while (fv); 861 if (list_empty(fv_list)) { 862 dev_warn(ice_hw_to_dev(hw), 863 "Required profiles not found in currently loaded DDP package"); 864 return -EIO; 865 } 866 867 return 0; 868 869 err: 870 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { 871 list_del(&fvl->list_entry); 872 devm_kfree(ice_hw_to_dev(hw), fvl); 873 } 874 875 return -ENOMEM; 876 } 877 878 /** 879 * ice_init_prof_result_bm - Initialize the profile result index bitmap 880 * @hw: pointer to hardware structure 881 */ 882 void ice_init_prof_result_bm(struct ice_hw *hw) 883 { 884 struct ice_pkg_enum state; 885 struct ice_seg *ice_seg; 886 struct ice_fv *fv; 887 888 memset(&state, 0, sizeof(state)); 889 890 if (!hw->seg) 891 return; 892 893 ice_seg = hw->seg; 894 do { 895 u32 off; 896 u16 i; 897 898 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 899 &off, ice_sw_fv_handler); 900 ice_seg = NULL; 901 if (!fv) 902 break; 903 904 bitmap_zero(hw->switch_info->prof_res_bm[off], 905 ICE_MAX_FV_WORDS); 906 907 /* Determine empty field vector indices, these can be 908 * used for recipe results. Skip index 0, since it is 909 * always used for Switch ID. 910 */ 911 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 912 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 913 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 914 set_bit(i, hw->switch_info->prof_res_bm[off]); 915 } while (fv); 916 } 917 918 /** 919 * ice_pkg_buf_free 920 * @hw: pointer to the HW structure 921 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 922 * 923 * Frees a package buffer 924 */ 925 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 926 { 927 devm_kfree(ice_hw_to_dev(hw), bld); 928 } 929 930 /** 931 * ice_pkg_buf_reserve_section 932 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 933 * @count: the number of sections to reserve 934 * 935 * Reserves one or more section table entries in a package buffer. This routine 936 * can be called multiple times as long as they are made before calling 937 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 938 * is called once, the number of sections that can be allocated will not be able 939 * to be increased; not using all reserved sections is fine, but this will 940 * result in some wasted space in the buffer. 941 * Note: all package contents must be in Little Endian form. 942 */ 943 int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 944 { 945 struct ice_buf_hdr *buf; 946 u16 section_count; 947 u16 data_end; 948 949 if (!bld) 950 return -EINVAL; 951 952 buf = (struct ice_buf_hdr *)&bld->buf; 953 954 /* already an active section, can't increase table size */ 955 section_count = le16_to_cpu(buf->section_count); 956 if (section_count > 0) 957 return -EIO; 958 959 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 960 return -EIO; 961 bld->reserved_section_table_entries += count; 962 963 data_end = le16_to_cpu(buf->data_end) + 964 flex_array_size(buf, section_entry, count); 965 buf->data_end = cpu_to_le16(data_end); 966 967 return 0; 968 } 969 970 /** 971 * ice_pkg_buf_alloc_section 972 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 973 * @type: the section type value 974 * @size: the size of the section to reserve (in bytes) 975 * 976 * Reserves memory in the buffer for a section's content and updates the 977 * buffers' status accordingly. This routine returns a pointer to the first 978 * byte of the section start within the buffer, which is used to fill in the 979 * section contents. 980 * Note: all package contents must be in Little Endian form. 981 */ 982 void *ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 983 { 984 struct ice_buf_hdr *buf; 985 u16 sect_count; 986 u16 data_end; 987 988 if (!bld || !type || !size) 989 return NULL; 990 991 buf = (struct ice_buf_hdr *)&bld->buf; 992 993 /* check for enough space left in buffer */ 994 data_end = le16_to_cpu(buf->data_end); 995 996 /* section start must align on 4 byte boundary */ 997 data_end = ALIGN(data_end, 4); 998 999 if ((data_end + size) > ICE_MAX_S_DATA_END) 1000 return NULL; 1001 1002 /* check for more available section table entries */ 1003 sect_count = le16_to_cpu(buf->section_count); 1004 if (sect_count < bld->reserved_section_table_entries) { 1005 void *section_ptr = ((u8 *)buf) + data_end; 1006 1007 buf->section_entry[sect_count].offset = cpu_to_le16(data_end); 1008 buf->section_entry[sect_count].size = cpu_to_le16(size); 1009 buf->section_entry[sect_count].type = cpu_to_le32(type); 1010 1011 data_end += size; 1012 buf->data_end = cpu_to_le16(data_end); 1013 1014 buf->section_count = cpu_to_le16(sect_count + 1); 1015 return section_ptr; 1016 } 1017 1018 /* no free section table entries */ 1019 return NULL; 1020 } 1021 1022 /** 1023 * ice_pkg_buf_alloc_single_section 1024 * @hw: pointer to the HW structure 1025 * @type: the section type value 1026 * @size: the size of the section to reserve (in bytes) 1027 * @section: returns pointer to the section 1028 * 1029 * Allocates a package buffer with a single section. 1030 * Note: all package contents must be in Little Endian form. 1031 */ 1032 struct ice_buf_build *ice_pkg_buf_alloc_single_section(struct ice_hw *hw, 1033 u32 type, u16 size, 1034 void **section) 1035 { 1036 struct ice_buf_build *buf; 1037 1038 if (!section) 1039 return NULL; 1040 1041 buf = ice_pkg_buf_alloc(hw); 1042 if (!buf) 1043 return NULL; 1044 1045 if (ice_pkg_buf_reserve_section(buf, 1)) 1046 goto ice_pkg_buf_alloc_single_section_err; 1047 1048 *section = ice_pkg_buf_alloc_section(buf, type, size); 1049 if (!*section) 1050 goto ice_pkg_buf_alloc_single_section_err; 1051 1052 return buf; 1053 1054 ice_pkg_buf_alloc_single_section_err: 1055 ice_pkg_buf_free(hw, buf); 1056 return NULL; 1057 } 1058 1059 /** 1060 * ice_pkg_buf_get_active_sections 1061 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1062 * 1063 * Returns the number of active sections. Before using the package buffer 1064 * in an update package command, the caller should make sure that there is at 1065 * least one active section - otherwise, the buffer is not legal and should 1066 * not be used. 1067 * Note: all package contents must be in Little Endian form. 1068 */ 1069 u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 1070 { 1071 struct ice_buf_hdr *buf; 1072 1073 if (!bld) 1074 return 0; 1075 1076 buf = (struct ice_buf_hdr *)&bld->buf; 1077 return le16_to_cpu(buf->section_count); 1078 } 1079 1080 /** 1081 * ice_pkg_buf 1082 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1083 * 1084 * Return a pointer to the buffer's header 1085 */ 1086 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 1087 { 1088 if (!bld) 1089 return NULL; 1090 1091 return &bld->buf; 1092 } 1093 1094 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) 1095 { 1096 switch (aq_err) { 1097 case ICE_AQ_RC_ENOSEC: 1098 case ICE_AQ_RC_EBADSIG: 1099 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; 1100 case ICE_AQ_RC_ESVN: 1101 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; 1102 case ICE_AQ_RC_EBADMAN: 1103 case ICE_AQ_RC_EBADBUF: 1104 return ICE_DDP_PKG_LOAD_ERROR; 1105 default: 1106 return ICE_DDP_PKG_ERR; 1107 } 1108 } 1109 1110 /** 1111 * ice_acquire_global_cfg_lock 1112 * @hw: pointer to the HW structure 1113 * @access: access type (read or write) 1114 * 1115 * This function will request ownership of the global config lock for reading 1116 * or writing of the package. When attempting to obtain write access, the 1117 * caller must check for the following two return values: 1118 * 1119 * 0 - Means the caller has acquired the global config lock 1120 * and can perform writing of the package. 1121 * -EALREADY - Indicates another driver has already written the 1122 * package or has found that no update was necessary; in 1123 * this case, the caller can just skip performing any 1124 * update of the package. 1125 */ 1126 static int ice_acquire_global_cfg_lock(struct ice_hw *hw, 1127 enum ice_aq_res_access_type access) 1128 { 1129 int status; 1130 1131 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 1132 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 1133 1134 if (!status) 1135 mutex_lock(&ice_global_cfg_lock_sw); 1136 else if (status == -EALREADY) 1137 ice_debug(hw, ICE_DBG_PKG, 1138 "Global config lock: No work to do\n"); 1139 1140 return status; 1141 } 1142 1143 /** 1144 * ice_release_global_cfg_lock 1145 * @hw: pointer to the HW structure 1146 * 1147 * This function will release the global config lock. 1148 */ 1149 static void ice_release_global_cfg_lock(struct ice_hw *hw) 1150 { 1151 mutex_unlock(&ice_global_cfg_lock_sw); 1152 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 1153 } 1154 1155 /** 1156 * ice_dwnld_cfg_bufs 1157 * @hw: pointer to the hardware structure 1158 * @bufs: pointer to an array of buffers 1159 * @count: the number of buffers in the array 1160 * 1161 * Obtains global config lock and downloads the package configuration buffers 1162 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1163 * found indicates that the rest of the buffers are all metadata buffers. 1164 */ 1165 static enum ice_ddp_state ice_dwnld_cfg_bufs(struct ice_hw *hw, 1166 struct ice_buf *bufs, u32 count) 1167 { 1168 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1169 struct ice_buf_hdr *bh; 1170 enum ice_aq_err err; 1171 u32 offset, info, i; 1172 int status; 1173 1174 if (!bufs || !count) 1175 return ICE_DDP_PKG_ERR; 1176 1177 /* If the first buffer's first section has its metadata bit set 1178 * then there are no buffers to be downloaded, and the operation is 1179 * considered a success. 1180 */ 1181 bh = (struct ice_buf_hdr *)bufs; 1182 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) 1183 return ICE_DDP_PKG_SUCCESS; 1184 1185 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1186 if (status) { 1187 if (status == -EALREADY) 1188 return ICE_DDP_PKG_ALREADY_LOADED; 1189 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); 1190 } 1191 1192 for (i = 0; i < count; i++) { 1193 bool last = ((i + 1) == count); 1194 1195 if (!last) { 1196 /* check next buffer for metadata flag */ 1197 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1198 1199 /* A set metadata flag in the next buffer will signal 1200 * that the current buffer will be the last buffer 1201 * downloaded 1202 */ 1203 if (le16_to_cpu(bh->section_count)) 1204 if (le32_to_cpu(bh->section_entry[0].type) & 1205 ICE_METADATA_BUF) 1206 last = true; 1207 } 1208 1209 bh = (struct ice_buf_hdr *)(bufs + i); 1210 1211 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1212 &offset, &info, NULL); 1213 1214 /* Save AQ status from download package */ 1215 if (status) { 1216 ice_debug(hw, ICE_DBG_PKG, 1217 "Pkg download failed: err %d off %d inf %d\n", 1218 status, offset, info); 1219 err = hw->adminq.sq_last_status; 1220 state = ice_map_aq_err_to_ddp_state(err); 1221 break; 1222 } 1223 1224 if (last) 1225 break; 1226 } 1227 1228 if (!status) { 1229 status = ice_set_vlan_mode(hw); 1230 if (status) 1231 ice_debug(hw, ICE_DBG_PKG, 1232 "Failed to set VLAN mode: err %d\n", status); 1233 } 1234 1235 ice_release_global_cfg_lock(hw); 1236 1237 return state; 1238 } 1239 1240 /** 1241 * ice_aq_get_pkg_info_list 1242 * @hw: pointer to the hardware structure 1243 * @pkg_info: the buffer which will receive the information list 1244 * @buf_size: the size of the pkg_info information buffer 1245 * @cd: pointer to command details structure or NULL 1246 * 1247 * Get Package Info List (0x0C43) 1248 */ 1249 static int ice_aq_get_pkg_info_list(struct ice_hw *hw, 1250 struct ice_aqc_get_pkg_info_resp *pkg_info, 1251 u16 buf_size, struct ice_sq_cd *cd) 1252 { 1253 struct ice_aq_desc desc; 1254 1255 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1256 1257 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1258 } 1259 1260 /** 1261 * ice_download_pkg 1262 * @hw: pointer to the hardware structure 1263 * @ice_seg: pointer to the segment of the package to be downloaded 1264 * 1265 * Handles the download of a complete package. 1266 */ 1267 static enum ice_ddp_state ice_download_pkg(struct ice_hw *hw, 1268 struct ice_seg *ice_seg) 1269 { 1270 struct ice_buf_table *ice_buf_tbl; 1271 int status; 1272 1273 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1274 ice_seg->hdr.seg_format_ver.major, 1275 ice_seg->hdr.seg_format_ver.minor, 1276 ice_seg->hdr.seg_format_ver.update, 1277 ice_seg->hdr.seg_format_ver.draft); 1278 1279 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1280 le32_to_cpu(ice_seg->hdr.seg_type), 1281 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1282 1283 ice_buf_tbl = ice_find_buf_table(ice_seg); 1284 1285 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1286 le32_to_cpu(ice_buf_tbl->buf_count)); 1287 1288 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1289 le32_to_cpu(ice_buf_tbl->buf_count)); 1290 1291 ice_post_pkg_dwnld_vlan_mode_cfg(hw); 1292 1293 return status; 1294 } 1295 1296 /** 1297 * ice_aq_download_pkg 1298 * @hw: pointer to the hardware structure 1299 * @pkg_buf: the package buffer to transfer 1300 * @buf_size: the size of the package buffer 1301 * @last_buf: last buffer indicator 1302 * @error_offset: returns error offset 1303 * @error_info: returns error information 1304 * @cd: pointer to command details structure or NULL 1305 * 1306 * Download Package (0x0C40) 1307 */ 1308 int ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 1309 u16 buf_size, bool last_buf, u32 *error_offset, 1310 u32 *error_info, struct ice_sq_cd *cd) 1311 { 1312 struct ice_aqc_download_pkg *cmd; 1313 struct ice_aq_desc desc; 1314 int status; 1315 1316 if (error_offset) 1317 *error_offset = 0; 1318 if (error_info) 1319 *error_info = 0; 1320 1321 cmd = &desc.params.download_pkg; 1322 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 1323 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1324 1325 if (last_buf) 1326 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 1327 1328 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 1329 if (status == -EIO) { 1330 /* Read error from buffer only when the FW returned an error */ 1331 struct ice_aqc_download_pkg_resp *resp; 1332 1333 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 1334 if (error_offset) 1335 *error_offset = le32_to_cpu(resp->error_offset); 1336 if (error_info) 1337 *error_info = le32_to_cpu(resp->error_info); 1338 } 1339 1340 return status; 1341 } 1342 1343 /** 1344 * ice_aq_upload_section 1345 * @hw: pointer to the hardware structure 1346 * @pkg_buf: the package buffer which will receive the section 1347 * @buf_size: the size of the package buffer 1348 * @cd: pointer to command details structure or NULL 1349 * 1350 * Upload Section (0x0C41) 1351 */ 1352 int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 1353 u16 buf_size, struct ice_sq_cd *cd) 1354 { 1355 struct ice_aq_desc desc; 1356 1357 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 1358 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1359 1360 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 1361 } 1362 1363 /** 1364 * ice_aq_update_pkg 1365 * @hw: pointer to the hardware structure 1366 * @pkg_buf: the package cmd buffer 1367 * @buf_size: the size of the package cmd buffer 1368 * @last_buf: last buffer indicator 1369 * @error_offset: returns error offset 1370 * @error_info: returns error information 1371 * @cd: pointer to command details structure or NULL 1372 * 1373 * Update Package (0x0C42) 1374 */ 1375 static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 1376 u16 buf_size, bool last_buf, u32 *error_offset, 1377 u32 *error_info, struct ice_sq_cd *cd) 1378 { 1379 struct ice_aqc_download_pkg *cmd; 1380 struct ice_aq_desc desc; 1381 int status; 1382 1383 if (error_offset) 1384 *error_offset = 0; 1385 if (error_info) 1386 *error_info = 0; 1387 1388 cmd = &desc.params.download_pkg; 1389 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 1390 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1391 1392 if (last_buf) 1393 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 1394 1395 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 1396 if (status == -EIO) { 1397 /* Read error from buffer only when the FW returned an error */ 1398 struct ice_aqc_download_pkg_resp *resp; 1399 1400 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 1401 if (error_offset) 1402 *error_offset = le32_to_cpu(resp->error_offset); 1403 if (error_info) 1404 *error_info = le32_to_cpu(resp->error_info); 1405 } 1406 1407 return status; 1408 } 1409 1410 /** 1411 * ice_update_pkg_no_lock 1412 * @hw: pointer to the hardware structure 1413 * @bufs: pointer to an array of buffers 1414 * @count: the number of buffers in the array 1415 */ 1416 int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1417 { 1418 int status = 0; 1419 u32 i; 1420 1421 for (i = 0; i < count; i++) { 1422 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 1423 bool last = ((i + 1) == count); 1424 u32 offset, info; 1425 1426 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), 1427 last, &offset, &info, NULL); 1428 1429 if (status) { 1430 ice_debug(hw, ICE_DBG_PKG, 1431 "Update pkg failed: err %d off %d inf %d\n", 1432 status, offset, info); 1433 break; 1434 } 1435 } 1436 1437 return status; 1438 } 1439 1440 /** 1441 * ice_update_pkg 1442 * @hw: pointer to the hardware structure 1443 * @bufs: pointer to an array of buffers 1444 * @count: the number of buffers in the array 1445 * 1446 * Obtains change lock and updates package. 1447 */ 1448 int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1449 { 1450 int status; 1451 1452 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1453 if (status) 1454 return status; 1455 1456 status = ice_update_pkg_no_lock(hw, bufs, count); 1457 1458 ice_release_change_lock(hw); 1459 1460 return status; 1461 } 1462 1463 /** 1464 * ice_find_seg_in_pkg 1465 * @hw: pointer to the hardware structure 1466 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 1467 * @pkg_hdr: pointer to the package header to be searched 1468 * 1469 * This function searches a package file for a particular segment type. On 1470 * success it returns a pointer to the segment header, otherwise it will 1471 * return NULL. 1472 */ 1473 struct ice_generic_seg_hdr *ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 1474 struct ice_pkg_hdr *pkg_hdr) 1475 { 1476 u32 i; 1477 1478 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 1479 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 1480 pkg_hdr->pkg_format_ver.update, 1481 pkg_hdr->pkg_format_ver.draft); 1482 1483 /* Search all package segments for the requested segment type */ 1484 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { 1485 struct ice_generic_seg_hdr *seg; 1486 1487 seg = (struct ice_generic_seg_hdr 1488 *)((u8 *)pkg_hdr + 1489 le32_to_cpu(pkg_hdr->seg_offset[i])); 1490 1491 if (le32_to_cpu(seg->seg_type) == seg_type) 1492 return seg; 1493 } 1494 1495 return NULL; 1496 } 1497 1498 /** 1499 * ice_init_pkg_info 1500 * @hw: pointer to the hardware structure 1501 * @pkg_hdr: pointer to the driver's package hdr 1502 * 1503 * Saves off the package details into the HW structure. 1504 */ 1505 static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw, 1506 struct ice_pkg_hdr *pkg_hdr) 1507 { 1508 struct ice_generic_seg_hdr *seg_hdr; 1509 1510 if (!pkg_hdr) 1511 return ICE_DDP_PKG_ERR; 1512 1513 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); 1514 if (seg_hdr) { 1515 struct ice_meta_sect *meta; 1516 struct ice_pkg_enum state; 1517 1518 memset(&state, 0, sizeof(state)); 1519 1520 /* Get package information from the Metadata Section */ 1521 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1522 ICE_SID_METADATA); 1523 if (!meta) { 1524 ice_debug(hw, ICE_DBG_INIT, 1525 "Did not find ice metadata section in package\n"); 1526 return ICE_DDP_PKG_INVALID_FILE; 1527 } 1528 1529 hw->pkg_ver = meta->ver; 1530 memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); 1531 1532 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1533 meta->ver.major, meta->ver.minor, meta->ver.update, 1534 meta->ver.draft, meta->name); 1535 1536 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1537 memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id)); 1538 1539 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1540 seg_hdr->seg_format_ver.major, 1541 seg_hdr->seg_format_ver.minor, 1542 seg_hdr->seg_format_ver.update, 1543 seg_hdr->seg_format_ver.draft, seg_hdr->seg_id); 1544 } else { 1545 ice_debug(hw, ICE_DBG_INIT, 1546 "Did not find ice segment in driver package\n"); 1547 return ICE_DDP_PKG_INVALID_FILE; 1548 } 1549 1550 return ICE_DDP_PKG_SUCCESS; 1551 } 1552 1553 /** 1554 * ice_get_pkg_info 1555 * @hw: pointer to the hardware structure 1556 * 1557 * Store details of the package currently loaded in HW into the HW structure. 1558 */ 1559 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) 1560 { 1561 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; 1562 struct ice_aqc_get_pkg_info_resp *pkg_info; 1563 u16 size; 1564 u32 i; 1565 1566 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1567 pkg_info = kzalloc(size, GFP_KERNEL); 1568 if (!pkg_info) 1569 return ICE_DDP_PKG_ERR; 1570 1571 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { 1572 state = ICE_DDP_PKG_ERR; 1573 goto init_pkg_free_alloc; 1574 } 1575 1576 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { 1577 #define ICE_PKG_FLAG_COUNT 4 1578 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1579 u8 place = 0; 1580 1581 if (pkg_info->pkg_info[i].is_active) { 1582 flags[place++] = 'A'; 1583 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1584 hw->active_track_id = 1585 le32_to_cpu(pkg_info->pkg_info[i].track_id); 1586 memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name, 1587 sizeof(pkg_info->pkg_info[i].name)); 1588 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1589 } 1590 if (pkg_info->pkg_info[i].is_active_at_boot) 1591 flags[place++] = 'B'; 1592 if (pkg_info->pkg_info[i].is_modified) 1593 flags[place++] = 'M'; 1594 if (pkg_info->pkg_info[i].is_in_nvm) 1595 flags[place++] = 'N'; 1596 1597 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i, 1598 pkg_info->pkg_info[i].ver.major, 1599 pkg_info->pkg_info[i].ver.minor, 1600 pkg_info->pkg_info[i].ver.update, 1601 pkg_info->pkg_info[i].ver.draft, 1602 pkg_info->pkg_info[i].name, flags); 1603 } 1604 1605 init_pkg_free_alloc: 1606 kfree(pkg_info); 1607 1608 return state; 1609 } 1610 1611 /** 1612 * ice_chk_pkg_compat 1613 * @hw: pointer to the hardware structure 1614 * @ospkg: pointer to the package hdr 1615 * @seg: pointer to the package segment hdr 1616 * 1617 * This function checks the package version compatibility with driver and NVM 1618 */ 1619 static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw, 1620 struct ice_pkg_hdr *ospkg, 1621 struct ice_seg **seg) 1622 { 1623 struct ice_aqc_get_pkg_info_resp *pkg; 1624 enum ice_ddp_state state; 1625 u16 size; 1626 u32 i; 1627 1628 /* Check package version compatibility */ 1629 state = ice_chk_pkg_version(&hw->pkg_ver); 1630 if (state) { 1631 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1632 return state; 1633 } 1634 1635 /* find ICE segment in given package */ 1636 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, 1637 ospkg); 1638 if (!*seg) { 1639 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1640 return ICE_DDP_PKG_INVALID_FILE; 1641 } 1642 1643 /* Check if FW is compatible with the OS package */ 1644 size = struct_size(pkg, pkg_info, ICE_PKG_CNT); 1645 pkg = kzalloc(size, GFP_KERNEL); 1646 if (!pkg) 1647 return ICE_DDP_PKG_ERR; 1648 1649 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { 1650 state = ICE_DDP_PKG_LOAD_ERROR; 1651 goto fw_ddp_compat_free_alloc; 1652 } 1653 1654 for (i = 0; i < le32_to_cpu(pkg->count); i++) { 1655 /* loop till we find the NVM package */ 1656 if (!pkg->pkg_info[i].is_in_nvm) 1657 continue; 1658 if ((*seg)->hdr.seg_format_ver.major != 1659 pkg->pkg_info[i].ver.major || 1660 (*seg)->hdr.seg_format_ver.minor > 1661 pkg->pkg_info[i].ver.minor) { 1662 state = ICE_DDP_PKG_FW_MISMATCH; 1663 ice_debug(hw, ICE_DBG_INIT, 1664 "OS package is not compatible with NVM.\n"); 1665 } 1666 /* done processing NVM package so break */ 1667 break; 1668 } 1669 fw_ddp_compat_free_alloc: 1670 kfree(pkg); 1671 return state; 1672 } 1673 1674 /** 1675 * ice_init_pkg_hints 1676 * @hw: pointer to the HW structure 1677 * @ice_seg: pointer to the segment of the package scan (non-NULL) 1678 * 1679 * This function will scan the package and save off relevant information 1680 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 1681 * since the first call to ice_enum_labels requires a pointer to an actual 1682 * ice_seg structure. 1683 */ 1684 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 1685 { 1686 struct ice_pkg_enum state; 1687 char *label_name; 1688 u16 val; 1689 int i; 1690 1691 memset(&hw->tnl, 0, sizeof(hw->tnl)); 1692 memset(&state, 0, sizeof(state)); 1693 1694 if (!ice_seg) 1695 return; 1696 1697 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 1698 &val); 1699 1700 while (label_name) { 1701 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 1702 /* check for a tunnel entry */ 1703 ice_add_tunnel_hint(hw, label_name, val); 1704 1705 /* check for a dvm mode entry */ 1706 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE))) 1707 ice_add_dvm_hint(hw, val, true); 1708 1709 /* check for a svm mode entry */ 1710 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE))) 1711 ice_add_dvm_hint(hw, val, false); 1712 1713 label_name = ice_enum_labels(NULL, 0, &state, &val); 1714 } 1715 1716 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 1717 for (i = 0; i < hw->tnl.count; i++) { 1718 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 1719 &hw->tnl.tbl[i].boost_entry); 1720 if (hw->tnl.tbl[i].boost_entry) { 1721 hw->tnl.tbl[i].valid = true; 1722 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) 1723 hw->tnl.valid_count[hw->tnl.tbl[i].type]++; 1724 } 1725 } 1726 1727 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */ 1728 for (i = 0; i < hw->dvm_upd.count; i++) 1729 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr, 1730 &hw->dvm_upd.tbl[i].boost_entry); 1731 } 1732 1733 /** 1734 * ice_fill_hw_ptype - fill the enabled PTYPE bit information 1735 * @hw: pointer to the HW structure 1736 */ 1737 static void ice_fill_hw_ptype(struct ice_hw *hw) 1738 { 1739 struct ice_marker_ptype_tcam_entry *tcam; 1740 struct ice_seg *seg = hw->seg; 1741 struct ice_pkg_enum state; 1742 1743 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); 1744 if (!seg) 1745 return; 1746 1747 memset(&state, 0, sizeof(state)); 1748 1749 do { 1750 tcam = ice_pkg_enum_entry(seg, &state, 1751 ICE_SID_RXPARSER_MARKER_PTYPE, NULL, 1752 ice_marker_ptype_tcam_handler); 1753 if (tcam && 1754 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && 1755 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) 1756 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); 1757 1758 seg = NULL; 1759 } while (tcam); 1760 } 1761 1762 /** 1763 * ice_init_pkg - initialize/download package 1764 * @hw: pointer to the hardware structure 1765 * @buf: pointer to the package buffer 1766 * @len: size of the package buffer 1767 * 1768 * This function initializes a package. The package contains HW tables 1769 * required to do packet processing. First, the function extracts package 1770 * information such as version. Then it finds the ice configuration segment 1771 * within the package; this function then saves a copy of the segment pointer 1772 * within the supplied package buffer. Next, the function will cache any hints 1773 * from the package, followed by downloading the package itself. Note, that if 1774 * a previous PF driver has already downloaded the package successfully, then 1775 * the current driver will not have to download the package again. 1776 * 1777 * The local package contents will be used to query default behavior and to 1778 * update specific sections of the HW's version of the package (e.g. to update 1779 * the parse graph to understand new protocols). 1780 * 1781 * This function stores a pointer to the package buffer memory, and it is 1782 * expected that the supplied buffer will not be freed immediately. If the 1783 * package buffer needs to be freed, such as when read from a file, use 1784 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1785 * case. 1786 */ 1787 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1788 { 1789 bool already_loaded = false; 1790 enum ice_ddp_state state; 1791 struct ice_pkg_hdr *pkg; 1792 struct ice_seg *seg; 1793 1794 if (!buf || !len) 1795 return ICE_DDP_PKG_ERR; 1796 1797 pkg = (struct ice_pkg_hdr *)buf; 1798 state = ice_verify_pkg(pkg, len); 1799 if (state) { 1800 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1801 state); 1802 return state; 1803 } 1804 1805 /* initialize package info */ 1806 state = ice_init_pkg_info(hw, pkg); 1807 if (state) 1808 return state; 1809 1810 /* before downloading the package, check package version for 1811 * compatibility with driver 1812 */ 1813 state = ice_chk_pkg_compat(hw, pkg, &seg); 1814 if (state) 1815 return state; 1816 1817 /* initialize package hints and then download package */ 1818 ice_init_pkg_hints(hw, seg); 1819 state = ice_download_pkg(hw, seg); 1820 if (state == ICE_DDP_PKG_ALREADY_LOADED) { 1821 ice_debug(hw, ICE_DBG_INIT, 1822 "package previously loaded - no work.\n"); 1823 already_loaded = true; 1824 } 1825 1826 /* Get information on the package currently loaded in HW, then make sure 1827 * the driver is compatible with this version. 1828 */ 1829 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { 1830 state = ice_get_pkg_info(hw); 1831 if (!state) 1832 state = ice_get_ddp_pkg_state(hw, already_loaded); 1833 } 1834 1835 if (ice_is_init_pkg_successful(state)) { 1836 hw->seg = seg; 1837 /* on successful package download update other required 1838 * registers to support the package and fill HW tables 1839 * with package content. 1840 */ 1841 ice_init_pkg_regs(hw); 1842 ice_fill_blk_tbls(hw); 1843 ice_fill_hw_ptype(hw); 1844 ice_get_prof_index_max(hw); 1845 } else { 1846 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state); 1847 } 1848 1849 return state; 1850 } 1851 1852 /** 1853 * ice_copy_and_init_pkg - initialize/download a copy of the package 1854 * @hw: pointer to the hardware structure 1855 * @buf: pointer to the package buffer 1856 * @len: size of the package buffer 1857 * 1858 * This function copies the package buffer, and then calls ice_init_pkg() to 1859 * initialize the copied package contents. 1860 * 1861 * The copying is necessary if the package buffer supplied is constant, or if 1862 * the memory may disappear shortly after calling this function. 1863 * 1864 * If the package buffer resides in the data segment and can be modified, the 1865 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1866 * 1867 * However, if the package buffer needs to be copied first, such as when being 1868 * read from a file, the caller should use ice_copy_and_init_pkg(). 1869 * 1870 * This function will first copy the package buffer, before calling 1871 * ice_init_pkg(). The caller is free to immediately destroy the original 1872 * package buffer, as the new copy will be managed by this function and 1873 * related routines. 1874 */ 1875 enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, 1876 u32 len) 1877 { 1878 enum ice_ddp_state state; 1879 u8 *buf_copy; 1880 1881 if (!buf || !len) 1882 return ICE_DDP_PKG_ERR; 1883 1884 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); 1885 1886 state = ice_init_pkg(hw, buf_copy, len); 1887 if (!ice_is_init_pkg_successful(state)) { 1888 /* Free the copy, since we failed to initialize the package */ 1889 devm_kfree(ice_hw_to_dev(hw), buf_copy); 1890 } else { 1891 /* Track the copied pkg so we can free it later */ 1892 hw->pkg_copy = buf_copy; 1893 hw->pkg_size = len; 1894 } 1895 1896 return state; 1897 } 1898