1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 static const char * const ice_link_mode_str_low[] = {
12 	[0] = "100BASE_TX",
13 	[1] = "100M_SGMII",
14 	[2] = "1000BASE_T",
15 	[3] = "1000BASE_SX",
16 	[4] = "1000BASE_LX",
17 	[5] = "1000BASE_KX",
18 	[6] = "1G_SGMII",
19 	[7] = "2500BASE_T",
20 	[8] = "2500BASE_X",
21 	[9] = "2500BASE_KX",
22 	[10] = "5GBASE_T",
23 	[11] = "5GBASE_KR",
24 	[12] = "10GBASE_T",
25 	[13] = "10G_SFI_DA",
26 	[14] = "10GBASE_SR",
27 	[15] = "10GBASE_LR",
28 	[16] = "10GBASE_KR_CR1",
29 	[17] = "10G_SFI_AOC_ACC",
30 	[18] = "10G_SFI_C2C",
31 	[19] = "25GBASE_T",
32 	[20] = "25GBASE_CR",
33 	[21] = "25GBASE_CR_S",
34 	[22] = "25GBASE_CR1",
35 	[23] = "25GBASE_SR",
36 	[24] = "25GBASE_LR",
37 	[25] = "25GBASE_KR",
38 	[26] = "25GBASE_KR_S",
39 	[27] = "25GBASE_KR1",
40 	[28] = "25G_AUI_AOC_ACC",
41 	[29] = "25G_AUI_C2C",
42 	[30] = "40GBASE_CR4",
43 	[31] = "40GBASE_SR4",
44 	[32] = "40GBASE_LR4",
45 	[33] = "40GBASE_KR4",
46 	[34] = "40G_XLAUI_AOC_ACC",
47 	[35] = "40G_XLAUI",
48 	[36] = "50GBASE_CR2",
49 	[37] = "50GBASE_SR2",
50 	[38] = "50GBASE_LR2",
51 	[39] = "50GBASE_KR2",
52 	[40] = "50G_LAUI2_AOC_ACC",
53 	[41] = "50G_LAUI2",
54 	[42] = "50G_AUI2_AOC_ACC",
55 	[43] = "50G_AUI2",
56 	[44] = "50GBASE_CP",
57 	[45] = "50GBASE_SR",
58 	[46] = "50GBASE_FR",
59 	[47] = "50GBASE_LR",
60 	[48] = "50GBASE_KR_PAM4",
61 	[49] = "50G_AUI1_AOC_ACC",
62 	[50] = "50G_AUI1",
63 	[51] = "100GBASE_CR4",
64 	[52] = "100GBASE_SR4",
65 	[53] = "100GBASE_LR4",
66 	[54] = "100GBASE_KR4",
67 	[55] = "100G_CAUI4_AOC_ACC",
68 	[56] = "100G_CAUI4",
69 	[57] = "100G_AUI4_AOC_ACC",
70 	[58] = "100G_AUI4",
71 	[59] = "100GBASE_CR_PAM4",
72 	[60] = "100GBASE_KR_PAM4",
73 	[61] = "100GBASE_CP2",
74 	[62] = "100GBASE_SR2",
75 	[63] = "100GBASE_DR",
76 };
77 
78 static const char * const ice_link_mode_str_high[] = {
79 	[0] = "100GBASE_KR2_PAM4",
80 	[1] = "100G_CAUI2_AOC_ACC",
81 	[2] = "100G_CAUI2",
82 	[3] = "100G_AUI2_AOC_ACC",
83 	[4] = "100G_AUI2",
84 };
85 
86 /**
87  * ice_dump_phy_type - helper function to dump phy_type
88  * @hw: pointer to the HW structure
89  * @low: 64 bit value for phy_type_low
90  * @high: 64 bit value for phy_type_high
91  * @prefix: prefix string to differentiate multiple dumps
92  */
93 static void
94 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
95 {
96 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
97 
98 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
99 		if (low & BIT_ULL(i))
100 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
101 				  prefix, i, ice_link_mode_str_low[i]);
102 	}
103 
104 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
105 
106 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
107 		if (high & BIT_ULL(i))
108 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
109 				  prefix, i, ice_link_mode_str_high[i]);
110 	}
111 }
112 
113 /**
114  * ice_set_mac_type - Sets MAC type
115  * @hw: pointer to the HW structure
116  *
117  * This function sets the MAC type of the adapter based on the
118  * vendor ID and device ID stored in the HW structure.
119  */
120 static int ice_set_mac_type(struct ice_hw *hw)
121 {
122 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
123 		return -ENODEV;
124 
125 	switch (hw->device_id) {
126 	case ICE_DEV_ID_E810C_BACKPLANE:
127 	case ICE_DEV_ID_E810C_QSFP:
128 	case ICE_DEV_ID_E810C_SFP:
129 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
130 	case ICE_DEV_ID_E810_XXV_QSFP:
131 	case ICE_DEV_ID_E810_XXV_SFP:
132 		hw->mac_type = ICE_MAC_E810;
133 		break;
134 	case ICE_DEV_ID_E823C_10G_BASE_T:
135 	case ICE_DEV_ID_E823C_BACKPLANE:
136 	case ICE_DEV_ID_E823C_QSFP:
137 	case ICE_DEV_ID_E823C_SFP:
138 	case ICE_DEV_ID_E823C_SGMII:
139 	case ICE_DEV_ID_E822C_10G_BASE_T:
140 	case ICE_DEV_ID_E822C_BACKPLANE:
141 	case ICE_DEV_ID_E822C_QSFP:
142 	case ICE_DEV_ID_E822C_SFP:
143 	case ICE_DEV_ID_E822C_SGMII:
144 	case ICE_DEV_ID_E822L_10G_BASE_T:
145 	case ICE_DEV_ID_E822L_BACKPLANE:
146 	case ICE_DEV_ID_E822L_SFP:
147 	case ICE_DEV_ID_E822L_SGMII:
148 	case ICE_DEV_ID_E823L_10G_BASE_T:
149 	case ICE_DEV_ID_E823L_1GBE:
150 	case ICE_DEV_ID_E823L_BACKPLANE:
151 	case ICE_DEV_ID_E823L_QSFP:
152 	case ICE_DEV_ID_E823L_SFP:
153 		hw->mac_type = ICE_MAC_GENERIC;
154 		break;
155 	default:
156 		hw->mac_type = ICE_MAC_UNKNOWN;
157 		break;
158 	}
159 
160 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
161 	return 0;
162 }
163 
164 /**
165  * ice_is_e810
166  * @hw: pointer to the hardware structure
167  *
168  * returns true if the device is E810 based, false if not.
169  */
170 bool ice_is_e810(struct ice_hw *hw)
171 {
172 	return hw->mac_type == ICE_MAC_E810;
173 }
174 
175 /**
176  * ice_is_e810t
177  * @hw: pointer to the hardware structure
178  *
179  * returns true if the device is E810T based, false if not.
180  */
181 bool ice_is_e810t(struct ice_hw *hw)
182 {
183 	switch (hw->device_id) {
184 	case ICE_DEV_ID_E810C_SFP:
185 		switch (hw->subsystem_device_id) {
186 		case ICE_SUBDEV_ID_E810T:
187 		case ICE_SUBDEV_ID_E810T2:
188 		case ICE_SUBDEV_ID_E810T3:
189 		case ICE_SUBDEV_ID_E810T4:
190 		case ICE_SUBDEV_ID_E810T6:
191 		case ICE_SUBDEV_ID_E810T7:
192 			return true;
193 		}
194 		break;
195 	case ICE_DEV_ID_E810C_QSFP:
196 		switch (hw->subsystem_device_id) {
197 		case ICE_SUBDEV_ID_E810T2:
198 		case ICE_SUBDEV_ID_E810T3:
199 		case ICE_SUBDEV_ID_E810T5:
200 			return true;
201 		}
202 		break;
203 	default:
204 		break;
205 	}
206 
207 	return false;
208 }
209 
210 /**
211  * ice_is_e823
212  * @hw: pointer to the hardware structure
213  *
214  * returns true if the device is E823-L or E823-C based, false if not.
215  */
216 bool ice_is_e823(struct ice_hw *hw)
217 {
218 	switch (hw->device_id) {
219 	case ICE_DEV_ID_E823L_BACKPLANE:
220 	case ICE_DEV_ID_E823L_SFP:
221 	case ICE_DEV_ID_E823L_10G_BASE_T:
222 	case ICE_DEV_ID_E823L_1GBE:
223 	case ICE_DEV_ID_E823L_QSFP:
224 	case ICE_DEV_ID_E823C_BACKPLANE:
225 	case ICE_DEV_ID_E823C_QSFP:
226 	case ICE_DEV_ID_E823C_SFP:
227 	case ICE_DEV_ID_E823C_10G_BASE_T:
228 	case ICE_DEV_ID_E823C_SGMII:
229 		return true;
230 	default:
231 		return false;
232 	}
233 }
234 
235 /**
236  * ice_clear_pf_cfg - Clear PF configuration
237  * @hw: pointer to the hardware structure
238  *
239  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
240  * configuration, flow director filters, etc.).
241  */
242 int ice_clear_pf_cfg(struct ice_hw *hw)
243 {
244 	struct ice_aq_desc desc;
245 
246 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
247 
248 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
249 }
250 
251 /**
252  * ice_aq_manage_mac_read - manage MAC address read command
253  * @hw: pointer to the HW struct
254  * @buf: a virtual buffer to hold the manage MAC read response
255  * @buf_size: Size of the virtual buffer
256  * @cd: pointer to command details structure or NULL
257  *
258  * This function is used to return per PF station MAC address (0x0107).
259  * NOTE: Upon successful completion of this command, MAC address information
260  * is returned in user specified buffer. Please interpret user specified
261  * buffer as "manage_mac_read" response.
262  * Response such as various MAC addresses are stored in HW struct (port.mac)
263  * ice_discover_dev_caps is expected to be called before this function is
264  * called.
265  */
266 static int
267 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
268 		       struct ice_sq_cd *cd)
269 {
270 	struct ice_aqc_manage_mac_read_resp *resp;
271 	struct ice_aqc_manage_mac_read *cmd;
272 	struct ice_aq_desc desc;
273 	int status;
274 	u16 flags;
275 	u8 i;
276 
277 	cmd = &desc.params.mac_read;
278 
279 	if (buf_size < sizeof(*resp))
280 		return -EINVAL;
281 
282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
283 
284 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
285 	if (status)
286 		return status;
287 
288 	resp = buf;
289 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
290 
291 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
292 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
293 		return -EIO;
294 	}
295 
296 	/* A single port can report up to two (LAN and WoL) addresses */
297 	for (i = 0; i < cmd->num_addr; i++)
298 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
299 			ether_addr_copy(hw->port_info->mac.lan_addr,
300 					resp[i].mac_addr);
301 			ether_addr_copy(hw->port_info->mac.perm_addr,
302 					resp[i].mac_addr);
303 			break;
304 		}
305 
306 	return 0;
307 }
308 
309 /**
310  * ice_aq_get_phy_caps - returns PHY capabilities
311  * @pi: port information structure
312  * @qual_mods: report qualified modules
313  * @report_mode: report mode capabilities
314  * @pcaps: structure for PHY capabilities to be filled
315  * @cd: pointer to command details structure or NULL
316  *
317  * Returns the various PHY capabilities supported on the Port (0x0600)
318  */
319 int
320 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
321 		    struct ice_aqc_get_phy_caps_data *pcaps,
322 		    struct ice_sq_cd *cd)
323 {
324 	struct ice_aqc_get_phy_caps *cmd;
325 	u16 pcaps_size = sizeof(*pcaps);
326 	struct ice_aq_desc desc;
327 	const char *prefix;
328 	struct ice_hw *hw;
329 	int status;
330 
331 	cmd = &desc.params.get_phy;
332 
333 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
334 		return -EINVAL;
335 	hw = pi->hw;
336 
337 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
338 	    !ice_fw_supports_report_dflt_cfg(hw))
339 		return -EINVAL;
340 
341 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
342 
343 	if (qual_mods)
344 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
345 
346 	cmd->param0 |= cpu_to_le16(report_mode);
347 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
348 
349 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
350 
351 	switch (report_mode) {
352 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
353 		prefix = "phy_caps_media";
354 		break;
355 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
356 		prefix = "phy_caps_no_media";
357 		break;
358 	case ICE_AQC_REPORT_ACTIVE_CFG:
359 		prefix = "phy_caps_active";
360 		break;
361 	case ICE_AQC_REPORT_DFLT_CFG:
362 		prefix = "phy_caps_default";
363 		break;
364 	default:
365 		prefix = "phy_caps_invalid";
366 	}
367 
368 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
369 			  le64_to_cpu(pcaps->phy_type_high), prefix);
370 
371 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
372 		  prefix, report_mode);
373 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
374 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
375 		  pcaps->low_power_ctrl_an);
376 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
377 		  pcaps->eee_cap);
378 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
379 		  pcaps->eeer_value);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
381 		  pcaps->link_fec_options);
382 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
383 		  prefix, pcaps->module_compliance_enforcement);
384 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
385 		  prefix, pcaps->extended_compliance_code);
386 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
387 		  pcaps->module_type[0]);
388 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
389 		  pcaps->module_type[1]);
390 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
391 		  pcaps->module_type[2]);
392 
393 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
394 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
395 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
396 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
397 		       sizeof(pi->phy.link_info.module_type));
398 	}
399 
400 	return status;
401 }
402 
403 /**
404  * ice_aq_get_link_topo_handle - get link topology node return status
405  * @pi: port information structure
406  * @node_type: requested node type
407  * @cd: pointer to command details structure or NULL
408  *
409  * Get link topology node return status for specified node type (0x06E0)
410  *
411  * Node type cage can be used to determine if cage is present. If AQC
412  * returns error (ENOENT), then no cage present. If no cage present, then
413  * connection type is backplane or BASE-T.
414  */
415 static int
416 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
417 			    struct ice_sq_cd *cd)
418 {
419 	struct ice_aqc_get_link_topo *cmd;
420 	struct ice_aq_desc desc;
421 
422 	cmd = &desc.params.get_link_topo;
423 
424 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
425 
426 	cmd->addr.topo_params.node_type_ctx =
427 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
428 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
429 
430 	/* set node type */
431 	cmd->addr.topo_params.node_type_ctx |=
432 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
433 
434 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
435 }
436 
437 /**
438  * ice_is_media_cage_present
439  * @pi: port information structure
440  *
441  * Returns true if media cage is present, else false. If no cage, then
442  * media type is backplane or BASE-T.
443  */
444 static bool ice_is_media_cage_present(struct ice_port_info *pi)
445 {
446 	/* Node type cage can be used to determine if cage is present. If AQC
447 	 * returns error (ENOENT), then no cage present. If no cage present then
448 	 * connection type is backplane or BASE-T.
449 	 */
450 	return !ice_aq_get_link_topo_handle(pi,
451 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
452 					    NULL);
453 }
454 
455 /**
456  * ice_get_media_type - Gets media type
457  * @pi: port information structure
458  */
459 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
460 {
461 	struct ice_link_status *hw_link_info;
462 
463 	if (!pi)
464 		return ICE_MEDIA_UNKNOWN;
465 
466 	hw_link_info = &pi->phy.link_info;
467 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
468 		/* If more than one media type is selected, report unknown */
469 		return ICE_MEDIA_UNKNOWN;
470 
471 	if (hw_link_info->phy_type_low) {
472 		/* 1G SGMII is a special case where some DA cable PHYs
473 		 * may show this as an option when it really shouldn't
474 		 * be since SGMII is meant to be between a MAC and a PHY
475 		 * in a backplane. Try to detect this case and handle it
476 		 */
477 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
478 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
479 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
480 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
481 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
482 			return ICE_MEDIA_DA;
483 
484 		switch (hw_link_info->phy_type_low) {
485 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
486 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
487 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
488 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
489 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
490 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
491 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
492 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
493 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
494 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
495 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
496 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
497 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
498 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
499 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
500 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
501 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
502 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
503 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
504 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
505 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
506 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
507 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
508 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
509 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
510 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
511 			return ICE_MEDIA_FIBER;
512 		case ICE_PHY_TYPE_LOW_100BASE_TX:
513 		case ICE_PHY_TYPE_LOW_1000BASE_T:
514 		case ICE_PHY_TYPE_LOW_2500BASE_T:
515 		case ICE_PHY_TYPE_LOW_5GBASE_T:
516 		case ICE_PHY_TYPE_LOW_10GBASE_T:
517 		case ICE_PHY_TYPE_LOW_25GBASE_T:
518 			return ICE_MEDIA_BASET;
519 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
520 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
521 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
522 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
523 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
524 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
525 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
526 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
527 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
528 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
529 			return ICE_MEDIA_DA;
530 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
531 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
532 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
533 		case ICE_PHY_TYPE_LOW_50G_AUI2:
534 		case ICE_PHY_TYPE_LOW_50G_AUI1:
535 		case ICE_PHY_TYPE_LOW_100G_AUI4:
536 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
537 			if (ice_is_media_cage_present(pi))
538 				return ICE_MEDIA_DA;
539 			fallthrough;
540 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
541 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
542 		case ICE_PHY_TYPE_LOW_2500BASE_X:
543 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
544 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
545 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
546 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
547 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
548 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
549 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
550 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
551 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
552 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
553 			return ICE_MEDIA_BACKPLANE;
554 		}
555 	} else {
556 		switch (hw_link_info->phy_type_high) {
557 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
558 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
559 			if (ice_is_media_cage_present(pi))
560 				return ICE_MEDIA_DA;
561 			fallthrough;
562 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
563 			return ICE_MEDIA_BACKPLANE;
564 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
565 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
566 			return ICE_MEDIA_FIBER;
567 		}
568 	}
569 	return ICE_MEDIA_UNKNOWN;
570 }
571 
572 /**
573  * ice_aq_get_link_info
574  * @pi: port information structure
575  * @ena_lse: enable/disable LinkStatusEvent reporting
576  * @link: pointer to link status structure - optional
577  * @cd: pointer to command details structure or NULL
578  *
579  * Get Link Status (0x607). Returns the link status of the adapter.
580  */
581 int
582 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
583 		     struct ice_link_status *link, struct ice_sq_cd *cd)
584 {
585 	struct ice_aqc_get_link_status_data link_data = { 0 };
586 	struct ice_aqc_get_link_status *resp;
587 	struct ice_link_status *li_old, *li;
588 	enum ice_media_type *hw_media_type;
589 	struct ice_fc_info *hw_fc_info;
590 	bool tx_pause, rx_pause;
591 	struct ice_aq_desc desc;
592 	struct ice_hw *hw;
593 	u16 cmd_flags;
594 	int status;
595 
596 	if (!pi)
597 		return -EINVAL;
598 	hw = pi->hw;
599 	li_old = &pi->phy.link_info_old;
600 	hw_media_type = &pi->phy.media_type;
601 	li = &pi->phy.link_info;
602 	hw_fc_info = &pi->fc;
603 
604 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
605 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
606 	resp = &desc.params.get_link_status;
607 	resp->cmd_flags = cpu_to_le16(cmd_flags);
608 	resp->lport_num = pi->lport;
609 
610 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
611 
612 	if (status)
613 		return status;
614 
615 	/* save off old link status information */
616 	*li_old = *li;
617 
618 	/* update current link status information */
619 	li->link_speed = le16_to_cpu(link_data.link_speed);
620 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
621 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
622 	*hw_media_type = ice_get_media_type(pi);
623 	li->link_info = link_data.link_info;
624 	li->link_cfg_err = link_data.link_cfg_err;
625 	li->an_info = link_data.an_info;
626 	li->ext_info = link_data.ext_info;
627 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
628 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
629 	li->topo_media_conflict = link_data.topo_media_conflict;
630 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
631 				      ICE_AQ_CFG_PACING_TYPE_M);
632 
633 	/* update fc info */
634 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
635 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
636 	if (tx_pause && rx_pause)
637 		hw_fc_info->current_mode = ICE_FC_FULL;
638 	else if (tx_pause)
639 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
640 	else if (rx_pause)
641 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
642 	else
643 		hw_fc_info->current_mode = ICE_FC_NONE;
644 
645 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
646 
647 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
648 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
649 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
650 		  (unsigned long long)li->phy_type_low);
651 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
652 		  (unsigned long long)li->phy_type_high);
653 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
654 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
655 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
656 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
657 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
658 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
659 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
660 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
661 		  li->max_frame_size);
662 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
663 
664 	/* save link status information */
665 	if (link)
666 		*link = *li;
667 
668 	/* flag cleared so calling functions don't call AQ again */
669 	pi->phy.get_link_info = false;
670 
671 	return 0;
672 }
673 
674 /**
675  * ice_fill_tx_timer_and_fc_thresh
676  * @hw: pointer to the HW struct
677  * @cmd: pointer to MAC cfg structure
678  *
679  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
680  * descriptor
681  */
682 static void
683 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
684 				struct ice_aqc_set_mac_cfg *cmd)
685 {
686 	u16 fc_thres_val, tx_timer_val;
687 	u32 val;
688 
689 	/* We read back the transmit timer and FC threshold value of
690 	 * LFC. Thus, we will use index =
691 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
692 	 *
693 	 * Also, because we are operating on transmit timer and FC
694 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
695 	 */
696 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
697 
698 	/* Retrieve the transmit timer */
699 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
700 	tx_timer_val = val &
701 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
702 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
703 
704 	/* Retrieve the FC threshold */
705 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
706 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
707 
708 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
709 }
710 
711 /**
712  * ice_aq_set_mac_cfg
713  * @hw: pointer to the HW struct
714  * @max_frame_size: Maximum Frame Size to be supported
715  * @cd: pointer to command details structure or NULL
716  *
717  * Set MAC configuration (0x0603)
718  */
719 int
720 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_set_mac_cfg *cmd;
723 	struct ice_aq_desc desc;
724 
725 	cmd = &desc.params.set_mac_cfg;
726 
727 	if (max_frame_size == 0)
728 		return -EINVAL;
729 
730 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
731 
732 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
733 
734 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
735 
736 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
737 }
738 
739 /**
740  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
741  * @hw: pointer to the HW struct
742  */
743 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
744 {
745 	struct ice_switch_info *sw;
746 	int status;
747 
748 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
749 				       sizeof(*hw->switch_info), GFP_KERNEL);
750 	sw = hw->switch_info;
751 
752 	if (!sw)
753 		return -ENOMEM;
754 
755 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
756 	sw->prof_res_bm_init = 0;
757 
758 	status = ice_init_def_sw_recp(hw);
759 	if (status) {
760 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
761 		return status;
762 	}
763 	return 0;
764 }
765 
766 /**
767  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
768  * @hw: pointer to the HW struct
769  */
770 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
771 {
772 	struct ice_switch_info *sw = hw->switch_info;
773 	struct ice_vsi_list_map_info *v_pos_map;
774 	struct ice_vsi_list_map_info *v_tmp_map;
775 	struct ice_sw_recipe *recps;
776 	u8 i;
777 
778 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
779 				 list_entry) {
780 		list_del(&v_pos_map->list_entry);
781 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
782 	}
783 	recps = sw->recp_list;
784 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
785 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
786 
787 		recps[i].root_rid = i;
788 		list_for_each_entry_safe(rg_entry, tmprg_entry,
789 					 &recps[i].rg_list, l_entry) {
790 			list_del(&rg_entry->l_entry);
791 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
792 		}
793 
794 		if (recps[i].adv_rule) {
795 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
796 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
797 
798 			mutex_destroy(&recps[i].filt_rule_lock);
799 			list_for_each_entry_safe(lst_itr, tmp_entry,
800 						 &recps[i].filt_rules,
801 						 list_entry) {
802 				list_del(&lst_itr->list_entry);
803 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
804 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
805 			}
806 		} else {
807 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
808 
809 			mutex_destroy(&recps[i].filt_rule_lock);
810 			list_for_each_entry_safe(lst_itr, tmp_entry,
811 						 &recps[i].filt_rules,
812 						 list_entry) {
813 				list_del(&lst_itr->list_entry);
814 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
815 			}
816 		}
817 		if (recps[i].root_buf)
818 			devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
819 	}
820 	ice_rm_all_sw_replay_rule_info(hw);
821 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
822 	devm_kfree(ice_hw_to_dev(hw), sw);
823 }
824 
825 /**
826  * ice_get_fw_log_cfg - get FW logging configuration
827  * @hw: pointer to the HW struct
828  */
829 static int ice_get_fw_log_cfg(struct ice_hw *hw)
830 {
831 	struct ice_aq_desc desc;
832 	__le16 *config;
833 	int status;
834 	u16 size;
835 
836 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
837 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
838 	if (!config)
839 		return -ENOMEM;
840 
841 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
842 
843 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
844 	if (!status) {
845 		u16 i;
846 
847 		/* Save FW logging information into the HW structure */
848 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
849 			u16 v, m, flgs;
850 
851 			v = le16_to_cpu(config[i]);
852 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
853 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
854 
855 			if (m < ICE_AQC_FW_LOG_ID_MAX)
856 				hw->fw_log.evnts[m].cur = flgs;
857 		}
858 	}
859 
860 	devm_kfree(ice_hw_to_dev(hw), config);
861 
862 	return status;
863 }
864 
865 /**
866  * ice_cfg_fw_log - configure FW logging
867  * @hw: pointer to the HW struct
868  * @enable: enable certain FW logging events if true, disable all if false
869  *
870  * This function enables/disables the FW logging via Rx CQ events and a UART
871  * port based on predetermined configurations. FW logging via the Rx CQ can be
872  * enabled/disabled for individual PF's. However, FW logging via the UART can
873  * only be enabled/disabled for all PFs on the same device.
874  *
875  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
876  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
877  * before initializing the device.
878  *
879  * When re/configuring FW logging, callers need to update the "cfg" elements of
880  * the hw->fw_log.evnts array with the desired logging event configurations for
881  * modules of interest. When disabling FW logging completely, the callers can
882  * just pass false in the "enable" parameter. On completion, the function will
883  * update the "cur" element of the hw->fw_log.evnts array with the resulting
884  * logging event configurations of the modules that are being re/configured. FW
885  * logging modules that are not part of a reconfiguration operation retain their
886  * previous states.
887  *
888  * Before resetting the device, it is recommended that the driver disables FW
889  * logging before shutting down the control queue. When disabling FW logging
890  * ("enable" = false), the latest configurations of FW logging events stored in
891  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
892  * a device reset.
893  *
894  * When enabling FW logging to emit log messages via the Rx CQ during the
895  * device's initialization phase, a mechanism alternative to interrupt handlers
896  * needs to be used to extract FW log messages from the Rx CQ periodically and
897  * to prevent the Rx CQ from being full and stalling other types of control
898  * messages from FW to SW. Interrupts are typically disabled during the device's
899  * initialization phase.
900  */
901 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
902 {
903 	struct ice_aqc_fw_logging *cmd;
904 	u16 i, chgs = 0, len = 0;
905 	struct ice_aq_desc desc;
906 	__le16 *data = NULL;
907 	u8 actv_evnts = 0;
908 	void *buf = NULL;
909 	int status = 0;
910 
911 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
912 		return 0;
913 
914 	/* Disable FW logging only when the control queue is still responsive */
915 	if (!enable &&
916 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
917 		return 0;
918 
919 	/* Get current FW log settings */
920 	status = ice_get_fw_log_cfg(hw);
921 	if (status)
922 		return status;
923 
924 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
925 	cmd = &desc.params.fw_logging;
926 
927 	/* Indicate which controls are valid */
928 	if (hw->fw_log.cq_en)
929 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
930 
931 	if (hw->fw_log.uart_en)
932 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
933 
934 	if (enable) {
935 		/* Fill in an array of entries with FW logging modules and
936 		 * logging events being reconfigured.
937 		 */
938 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
939 			u16 val;
940 
941 			/* Keep track of enabled event types */
942 			actv_evnts |= hw->fw_log.evnts[i].cfg;
943 
944 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
945 				continue;
946 
947 			if (!data) {
948 				data = devm_kcalloc(ice_hw_to_dev(hw),
949 						    ICE_AQC_FW_LOG_ID_MAX,
950 						    sizeof(*data),
951 						    GFP_KERNEL);
952 				if (!data)
953 					return -ENOMEM;
954 			}
955 
956 			val = i << ICE_AQC_FW_LOG_ID_S;
957 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
958 			data[chgs++] = cpu_to_le16(val);
959 		}
960 
961 		/* Only enable FW logging if at least one module is specified.
962 		 * If FW logging is currently enabled but all modules are not
963 		 * enabled to emit log messages, disable FW logging altogether.
964 		 */
965 		if (actv_evnts) {
966 			/* Leave if there is effectively no change */
967 			if (!chgs)
968 				goto out;
969 
970 			if (hw->fw_log.cq_en)
971 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
972 
973 			if (hw->fw_log.uart_en)
974 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
975 
976 			buf = data;
977 			len = sizeof(*data) * chgs;
978 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
979 		}
980 	}
981 
982 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
983 	if (!status) {
984 		/* Update the current configuration to reflect events enabled.
985 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
986 		 * logging mode is enabled for the device. They do not reflect
987 		 * actual modules being enabled to emit log messages. So, their
988 		 * values remain unchanged even when all modules are disabled.
989 		 */
990 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
991 
992 		hw->fw_log.actv_evnts = actv_evnts;
993 		for (i = 0; i < cnt; i++) {
994 			u16 v, m;
995 
996 			if (!enable) {
997 				/* When disabling all FW logging events as part
998 				 * of device's de-initialization, the original
999 				 * configurations are retained, and can be used
1000 				 * to reconfigure FW logging later if the device
1001 				 * is re-initialized.
1002 				 */
1003 				hw->fw_log.evnts[i].cur = 0;
1004 				continue;
1005 			}
1006 
1007 			v = le16_to_cpu(data[i]);
1008 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1009 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1010 		}
1011 	}
1012 
1013 out:
1014 	if (data)
1015 		devm_kfree(ice_hw_to_dev(hw), data);
1016 
1017 	return status;
1018 }
1019 
1020 /**
1021  * ice_output_fw_log
1022  * @hw: pointer to the HW struct
1023  * @desc: pointer to the AQ message descriptor
1024  * @buf: pointer to the buffer accompanying the AQ message
1025  *
1026  * Formats a FW Log message and outputs it via the standard driver logs.
1027  */
1028 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1029 {
1030 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1031 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1032 			le16_to_cpu(desc->datalen));
1033 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1034 }
1035 
1036 /**
1037  * ice_get_itr_intrl_gran
1038  * @hw: pointer to the HW struct
1039  *
1040  * Determines the ITR/INTRL granularities based on the maximum aggregate
1041  * bandwidth according to the device's configuration during power-on.
1042  */
1043 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1044 {
1045 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1046 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1047 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1048 
1049 	switch (max_agg_bw) {
1050 	case ICE_MAX_AGG_BW_200G:
1051 	case ICE_MAX_AGG_BW_100G:
1052 	case ICE_MAX_AGG_BW_50G:
1053 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1054 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1055 		break;
1056 	case ICE_MAX_AGG_BW_25G:
1057 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1058 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1059 		break;
1060 	}
1061 }
1062 
1063 /**
1064  * ice_init_hw - main hardware initialization routine
1065  * @hw: pointer to the hardware structure
1066  */
1067 int ice_init_hw(struct ice_hw *hw)
1068 {
1069 	struct ice_aqc_get_phy_caps_data *pcaps;
1070 	u16 mac_buf_len;
1071 	void *mac_buf;
1072 	int status;
1073 
1074 	/* Set MAC type based on DeviceID */
1075 	status = ice_set_mac_type(hw);
1076 	if (status)
1077 		return status;
1078 
1079 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1080 			 PF_FUNC_RID_FUNC_NUM_M) >>
1081 		PF_FUNC_RID_FUNC_NUM_S;
1082 
1083 	status = ice_reset(hw, ICE_RESET_PFR);
1084 	if (status)
1085 		return status;
1086 
1087 	ice_get_itr_intrl_gran(hw);
1088 
1089 	status = ice_create_all_ctrlq(hw);
1090 	if (status)
1091 		goto err_unroll_cqinit;
1092 
1093 	/* Enable FW logging. Not fatal if this fails. */
1094 	status = ice_cfg_fw_log(hw, true);
1095 	if (status)
1096 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1097 
1098 	status = ice_clear_pf_cfg(hw);
1099 	if (status)
1100 		goto err_unroll_cqinit;
1101 
1102 	/* Set bit to enable Flow Director filters */
1103 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1104 	INIT_LIST_HEAD(&hw->fdir_list_head);
1105 
1106 	ice_clear_pxe_mode(hw);
1107 
1108 	status = ice_init_nvm(hw);
1109 	if (status)
1110 		goto err_unroll_cqinit;
1111 
1112 	status = ice_get_caps(hw);
1113 	if (status)
1114 		goto err_unroll_cqinit;
1115 
1116 	if (!hw->port_info)
1117 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1118 					     sizeof(*hw->port_info),
1119 					     GFP_KERNEL);
1120 	if (!hw->port_info) {
1121 		status = -ENOMEM;
1122 		goto err_unroll_cqinit;
1123 	}
1124 
1125 	/* set the back pointer to HW */
1126 	hw->port_info->hw = hw;
1127 
1128 	/* Initialize port_info struct with switch configuration data */
1129 	status = ice_get_initial_sw_cfg(hw);
1130 	if (status)
1131 		goto err_unroll_alloc;
1132 
1133 	hw->evb_veb = true;
1134 
1135 	/* init xarray for identifying scheduling nodes uniquely */
1136 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1137 
1138 	/* Query the allocated resources for Tx scheduler */
1139 	status = ice_sched_query_res_alloc(hw);
1140 	if (status) {
1141 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1142 		goto err_unroll_alloc;
1143 	}
1144 	ice_sched_get_psm_clk_freq(hw);
1145 
1146 	/* Initialize port_info struct with scheduler data */
1147 	status = ice_sched_init_port(hw->port_info);
1148 	if (status)
1149 		goto err_unroll_sched;
1150 
1151 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1152 	if (!pcaps) {
1153 		status = -ENOMEM;
1154 		goto err_unroll_sched;
1155 	}
1156 
1157 	/* Initialize port_info struct with PHY capabilities */
1158 	status = ice_aq_get_phy_caps(hw->port_info, false,
1159 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1160 				     NULL);
1161 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1162 	if (status)
1163 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1164 			 status);
1165 
1166 	/* Initialize port_info struct with link information */
1167 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1168 	if (status)
1169 		goto err_unroll_sched;
1170 
1171 	/* need a valid SW entry point to build a Tx tree */
1172 	if (!hw->sw_entry_point_layer) {
1173 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1174 		status = -EIO;
1175 		goto err_unroll_sched;
1176 	}
1177 	INIT_LIST_HEAD(&hw->agg_list);
1178 	/* Initialize max burst size */
1179 	if (!hw->max_burst_size)
1180 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1181 
1182 	status = ice_init_fltr_mgmt_struct(hw);
1183 	if (status)
1184 		goto err_unroll_sched;
1185 
1186 	/* Get MAC information */
1187 	/* A single port can report up to two (LAN and WoL) addresses */
1188 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1189 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1190 			       GFP_KERNEL);
1191 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1192 
1193 	if (!mac_buf) {
1194 		status = -ENOMEM;
1195 		goto err_unroll_fltr_mgmt_struct;
1196 	}
1197 
1198 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1199 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1200 
1201 	if (status)
1202 		goto err_unroll_fltr_mgmt_struct;
1203 	/* enable jumbo frame support at MAC level */
1204 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1205 	if (status)
1206 		goto err_unroll_fltr_mgmt_struct;
1207 	/* Obtain counter base index which would be used by flow director */
1208 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1209 	if (status)
1210 		goto err_unroll_fltr_mgmt_struct;
1211 	status = ice_init_hw_tbls(hw);
1212 	if (status)
1213 		goto err_unroll_fltr_mgmt_struct;
1214 	mutex_init(&hw->tnl_lock);
1215 	return 0;
1216 
1217 err_unroll_fltr_mgmt_struct:
1218 	ice_cleanup_fltr_mgmt_struct(hw);
1219 err_unroll_sched:
1220 	ice_sched_cleanup_all(hw);
1221 err_unroll_alloc:
1222 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1223 err_unroll_cqinit:
1224 	ice_destroy_all_ctrlq(hw);
1225 	return status;
1226 }
1227 
1228 /**
1229  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1230  * @hw: pointer to the hardware structure
1231  *
1232  * This should be called only during nominal operation, not as a result of
1233  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1234  * applicable initializations if it fails for any reason.
1235  */
1236 void ice_deinit_hw(struct ice_hw *hw)
1237 {
1238 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1239 	ice_cleanup_fltr_mgmt_struct(hw);
1240 
1241 	ice_sched_cleanup_all(hw);
1242 	ice_sched_clear_agg(hw);
1243 	ice_free_seg(hw);
1244 	ice_free_hw_tbls(hw);
1245 	mutex_destroy(&hw->tnl_lock);
1246 
1247 	/* Attempt to disable FW logging before shutting down control queues */
1248 	ice_cfg_fw_log(hw, false);
1249 	ice_destroy_all_ctrlq(hw);
1250 
1251 	/* Clear VSI contexts if not already cleared */
1252 	ice_clear_all_vsi_ctx(hw);
1253 }
1254 
1255 /**
1256  * ice_check_reset - Check to see if a global reset is complete
1257  * @hw: pointer to the hardware structure
1258  */
1259 int ice_check_reset(struct ice_hw *hw)
1260 {
1261 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1262 
1263 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1264 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1265 	 * Add 1sec for outstanding AQ commands that can take a long time.
1266 	 */
1267 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1268 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1269 
1270 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1271 		mdelay(100);
1272 		reg = rd32(hw, GLGEN_RSTAT);
1273 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1274 			break;
1275 	}
1276 
1277 	if (cnt == grst_timeout) {
1278 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1279 		return -EIO;
1280 	}
1281 
1282 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1283 				 GLNVM_ULD_PCIER_DONE_1_M |\
1284 				 GLNVM_ULD_CORER_DONE_M |\
1285 				 GLNVM_ULD_GLOBR_DONE_M |\
1286 				 GLNVM_ULD_POR_DONE_M |\
1287 				 GLNVM_ULD_POR_DONE_1_M |\
1288 				 GLNVM_ULD_PCIER_DONE_2_M)
1289 
1290 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1291 					  GLNVM_ULD_PE_DONE_M : 0);
1292 
1293 	/* Device is Active; check Global Reset processes are done */
1294 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1295 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1296 		if (reg == uld_mask) {
1297 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1298 			break;
1299 		}
1300 		mdelay(10);
1301 	}
1302 
1303 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1304 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1305 			  reg);
1306 		return -EIO;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 /**
1313  * ice_pf_reset - Reset the PF
1314  * @hw: pointer to the hardware structure
1315  *
1316  * If a global reset has been triggered, this function checks
1317  * for its completion and then issues the PF reset
1318  */
1319 static int ice_pf_reset(struct ice_hw *hw)
1320 {
1321 	u32 cnt, reg;
1322 
1323 	/* If at function entry a global reset was already in progress, i.e.
1324 	 * state is not 'device active' or any of the reset done bits are not
1325 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1326 	 * global reset is done.
1327 	 */
1328 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1329 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1330 		/* poll on global reset currently in progress until done */
1331 		if (ice_check_reset(hw))
1332 			return -EIO;
1333 
1334 		return 0;
1335 	}
1336 
1337 	/* Reset the PF */
1338 	reg = rd32(hw, PFGEN_CTRL);
1339 
1340 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1341 
1342 	/* Wait for the PFR to complete. The wait time is the global config lock
1343 	 * timeout plus the PFR timeout which will account for a possible reset
1344 	 * that is occurring during a download package operation.
1345 	 */
1346 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1347 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1348 		reg = rd32(hw, PFGEN_CTRL);
1349 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1350 			break;
1351 
1352 		mdelay(1);
1353 	}
1354 
1355 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1356 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1357 		return -EIO;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  * ice_reset - Perform different types of reset
1365  * @hw: pointer to the hardware structure
1366  * @req: reset request
1367  *
1368  * This function triggers a reset as specified by the req parameter.
1369  *
1370  * Note:
1371  * If anything other than a PF reset is triggered, PXE mode is restored.
1372  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1373  * interface has been restored in the rebuild flow.
1374  */
1375 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1376 {
1377 	u32 val = 0;
1378 
1379 	switch (req) {
1380 	case ICE_RESET_PFR:
1381 		return ice_pf_reset(hw);
1382 	case ICE_RESET_CORER:
1383 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1384 		val = GLGEN_RTRIG_CORER_M;
1385 		break;
1386 	case ICE_RESET_GLOBR:
1387 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1388 		val = GLGEN_RTRIG_GLOBR_M;
1389 		break;
1390 	default:
1391 		return -EINVAL;
1392 	}
1393 
1394 	val |= rd32(hw, GLGEN_RTRIG);
1395 	wr32(hw, GLGEN_RTRIG, val);
1396 	ice_flush(hw);
1397 
1398 	/* wait for the FW to be ready */
1399 	return ice_check_reset(hw);
1400 }
1401 
1402 /**
1403  * ice_copy_rxq_ctx_to_hw
1404  * @hw: pointer to the hardware structure
1405  * @ice_rxq_ctx: pointer to the rxq context
1406  * @rxq_index: the index of the Rx queue
1407  *
1408  * Copies rxq context from dense structure to HW register space
1409  */
1410 static int
1411 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1412 {
1413 	u8 i;
1414 
1415 	if (!ice_rxq_ctx)
1416 		return -EINVAL;
1417 
1418 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1419 		return -EINVAL;
1420 
1421 	/* Copy each dword separately to HW */
1422 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1423 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1424 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1425 
1426 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1427 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /* LAN Rx Queue Context */
1434 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1435 	/* Field		Width	LSB */
1436 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1437 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1438 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1439 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1440 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1441 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1442 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1443 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1444 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1445 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1446 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1447 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1448 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1449 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1450 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1451 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1452 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1453 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1454 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1455 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1456 	{ 0 }
1457 };
1458 
1459 /**
1460  * ice_write_rxq_ctx
1461  * @hw: pointer to the hardware structure
1462  * @rlan_ctx: pointer to the rxq context
1463  * @rxq_index: the index of the Rx queue
1464  *
1465  * Converts rxq context from sparse to dense structure and then writes
1466  * it to HW register space and enables the hardware to prefetch descriptors
1467  * instead of only fetching them on demand
1468  */
1469 int
1470 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1471 		  u32 rxq_index)
1472 {
1473 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1474 
1475 	if (!rlan_ctx)
1476 		return -EINVAL;
1477 
1478 	rlan_ctx->prefena = 1;
1479 
1480 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1481 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1482 }
1483 
1484 /* LAN Tx Queue Context */
1485 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1486 				    /* Field			Width	LSB */
1487 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1488 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1489 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1490 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1491 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1492 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1493 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1494 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1495 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1496 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1497 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1498 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1499 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1500 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1501 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1502 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1503 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1504 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1505 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1506 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1507 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1508 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1509 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1510 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1511 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1512 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1513 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1514 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1515 	{ 0 }
1516 };
1517 
1518 /* Sideband Queue command wrappers */
1519 
1520 /**
1521  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1522  * @hw: pointer to the HW struct
1523  * @desc: descriptor describing the command
1524  * @buf: buffer to use for indirect commands (NULL for direct commands)
1525  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1526  * @cd: pointer to command details structure
1527  */
1528 static int
1529 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1530 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1531 {
1532 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1533 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1534 }
1535 
1536 /**
1537  * ice_sbq_rw_reg - Fill Sideband Queue command
1538  * @hw: pointer to the HW struct
1539  * @in: message info to be filled in descriptor
1540  */
1541 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1542 {
1543 	struct ice_sbq_cmd_desc desc = {0};
1544 	struct ice_sbq_msg_req msg = {0};
1545 	u16 msg_len;
1546 	int status;
1547 
1548 	msg_len = sizeof(msg);
1549 
1550 	msg.dest_dev = in->dest_dev;
1551 	msg.opcode = in->opcode;
1552 	msg.flags = ICE_SBQ_MSG_FLAGS;
1553 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1554 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1555 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1556 
1557 	if (in->opcode)
1558 		msg.data = cpu_to_le32(in->data);
1559 	else
1560 		/* data read comes back in completion, so shorten the struct by
1561 		 * sizeof(msg.data)
1562 		 */
1563 		msg_len -= sizeof(msg.data);
1564 
1565 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1566 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1567 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1568 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1569 	if (!status && !in->opcode)
1570 		in->data = le32_to_cpu
1571 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1572 	return status;
1573 }
1574 
1575 /* FW Admin Queue command wrappers */
1576 
1577 /* Software lock/mutex that is meant to be held while the Global Config Lock
1578  * in firmware is acquired by the software to prevent most (but not all) types
1579  * of AQ commands from being sent to FW
1580  */
1581 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1582 
1583 /**
1584  * ice_should_retry_sq_send_cmd
1585  * @opcode: AQ opcode
1586  *
1587  * Decide if we should retry the send command routine for the ATQ, depending
1588  * on the opcode.
1589  */
1590 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1591 {
1592 	switch (opcode) {
1593 	case ice_aqc_opc_get_link_topo:
1594 	case ice_aqc_opc_lldp_stop:
1595 	case ice_aqc_opc_lldp_start:
1596 	case ice_aqc_opc_lldp_filter_ctrl:
1597 		return true;
1598 	}
1599 
1600 	return false;
1601 }
1602 
1603 /**
1604  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1605  * @hw: pointer to the HW struct
1606  * @cq: pointer to the specific Control queue
1607  * @desc: prefilled descriptor describing the command
1608  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1609  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1610  * @cd: pointer to command details structure
1611  *
1612  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1613  * Queue if the EBUSY AQ error is returned.
1614  */
1615 static int
1616 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1617 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1618 		      struct ice_sq_cd *cd)
1619 {
1620 	struct ice_aq_desc desc_cpy;
1621 	bool is_cmd_for_retry;
1622 	u8 idx = 0;
1623 	u16 opcode;
1624 	int status;
1625 
1626 	opcode = le16_to_cpu(desc->opcode);
1627 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1628 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1629 
1630 	if (is_cmd_for_retry) {
1631 		/* All retryable cmds are direct, without buf. */
1632 		WARN_ON(buf);
1633 
1634 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1635 	}
1636 
1637 	do {
1638 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1639 
1640 		if (!is_cmd_for_retry || !status ||
1641 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1642 			break;
1643 
1644 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1645 
1646 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1647 
1648 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1649 
1650 	return status;
1651 }
1652 
1653 /**
1654  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1655  * @hw: pointer to the HW struct
1656  * @desc: descriptor describing the command
1657  * @buf: buffer to use for indirect commands (NULL for direct commands)
1658  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1659  * @cd: pointer to command details structure
1660  *
1661  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1662  */
1663 int
1664 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1665 		u16 buf_size, struct ice_sq_cd *cd)
1666 {
1667 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1668 	bool lock_acquired = false;
1669 	int status;
1670 
1671 	/* When a package download is in process (i.e. when the firmware's
1672 	 * Global Configuration Lock resource is held), only the Download
1673 	 * Package, Get Version, Get Package Info List, Upload Section,
1674 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1675 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1676 	 * Recipes to Profile Association, and Release Resource (with resource
1677 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1678 	 * must block until the package download completes and the Global Config
1679 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1680 	 */
1681 	switch (le16_to_cpu(desc->opcode)) {
1682 	case ice_aqc_opc_download_pkg:
1683 	case ice_aqc_opc_get_pkg_info_list:
1684 	case ice_aqc_opc_get_ver:
1685 	case ice_aqc_opc_upload_section:
1686 	case ice_aqc_opc_update_pkg:
1687 	case ice_aqc_opc_set_port_params:
1688 	case ice_aqc_opc_get_vlan_mode_parameters:
1689 	case ice_aqc_opc_set_vlan_mode_parameters:
1690 	case ice_aqc_opc_add_recipe:
1691 	case ice_aqc_opc_recipe_to_profile:
1692 	case ice_aqc_opc_get_recipe:
1693 	case ice_aqc_opc_get_recipe_to_profile:
1694 		break;
1695 	case ice_aqc_opc_release_res:
1696 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1697 			break;
1698 		fallthrough;
1699 	default:
1700 		mutex_lock(&ice_global_cfg_lock_sw);
1701 		lock_acquired = true;
1702 		break;
1703 	}
1704 
1705 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1706 	if (lock_acquired)
1707 		mutex_unlock(&ice_global_cfg_lock_sw);
1708 
1709 	return status;
1710 }
1711 
1712 /**
1713  * ice_aq_get_fw_ver
1714  * @hw: pointer to the HW struct
1715  * @cd: pointer to command details structure or NULL
1716  *
1717  * Get the firmware version (0x0001) from the admin queue commands
1718  */
1719 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1720 {
1721 	struct ice_aqc_get_ver *resp;
1722 	struct ice_aq_desc desc;
1723 	int status;
1724 
1725 	resp = &desc.params.get_ver;
1726 
1727 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1728 
1729 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1730 
1731 	if (!status) {
1732 		hw->fw_branch = resp->fw_branch;
1733 		hw->fw_maj_ver = resp->fw_major;
1734 		hw->fw_min_ver = resp->fw_minor;
1735 		hw->fw_patch = resp->fw_patch;
1736 		hw->fw_build = le32_to_cpu(resp->fw_build);
1737 		hw->api_branch = resp->api_branch;
1738 		hw->api_maj_ver = resp->api_major;
1739 		hw->api_min_ver = resp->api_minor;
1740 		hw->api_patch = resp->api_patch;
1741 	}
1742 
1743 	return status;
1744 }
1745 
1746 /**
1747  * ice_aq_send_driver_ver
1748  * @hw: pointer to the HW struct
1749  * @dv: driver's major, minor version
1750  * @cd: pointer to command details structure or NULL
1751  *
1752  * Send the driver version (0x0002) to the firmware
1753  */
1754 int
1755 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1756 		       struct ice_sq_cd *cd)
1757 {
1758 	struct ice_aqc_driver_ver *cmd;
1759 	struct ice_aq_desc desc;
1760 	u16 len;
1761 
1762 	cmd = &desc.params.driver_ver;
1763 
1764 	if (!dv)
1765 		return -EINVAL;
1766 
1767 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1768 
1769 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1770 	cmd->major_ver = dv->major_ver;
1771 	cmd->minor_ver = dv->minor_ver;
1772 	cmd->build_ver = dv->build_ver;
1773 	cmd->subbuild_ver = dv->subbuild_ver;
1774 
1775 	len = 0;
1776 	while (len < sizeof(dv->driver_string) &&
1777 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1778 		len++;
1779 
1780 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1781 }
1782 
1783 /**
1784  * ice_aq_q_shutdown
1785  * @hw: pointer to the HW struct
1786  * @unloading: is the driver unloading itself
1787  *
1788  * Tell the Firmware that we're shutting down the AdminQ and whether
1789  * or not the driver is unloading as well (0x0003).
1790  */
1791 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1792 {
1793 	struct ice_aqc_q_shutdown *cmd;
1794 	struct ice_aq_desc desc;
1795 
1796 	cmd = &desc.params.q_shutdown;
1797 
1798 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1799 
1800 	if (unloading)
1801 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1802 
1803 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1804 }
1805 
1806 /**
1807  * ice_aq_req_res
1808  * @hw: pointer to the HW struct
1809  * @res: resource ID
1810  * @access: access type
1811  * @sdp_number: resource number
1812  * @timeout: the maximum time in ms that the driver may hold the resource
1813  * @cd: pointer to command details structure or NULL
1814  *
1815  * Requests common resource using the admin queue commands (0x0008).
1816  * When attempting to acquire the Global Config Lock, the driver can
1817  * learn of three states:
1818  *  1) 0 -         acquired lock, and can perform download package
1819  *  2) -EIO -      did not get lock, driver should fail to load
1820  *  3) -EALREADY - did not get lock, but another driver has
1821  *                 successfully downloaded the package; the driver does
1822  *                 not have to download the package and can continue
1823  *                 loading
1824  *
1825  * Note that if the caller is in an acquire lock, perform action, release lock
1826  * phase of operation, it is possible that the FW may detect a timeout and issue
1827  * a CORER. In this case, the driver will receive a CORER interrupt and will
1828  * have to determine its cause. The calling thread that is handling this flow
1829  * will likely get an error propagated back to it indicating the Download
1830  * Package, Update Package or the Release Resource AQ commands timed out.
1831  */
1832 static int
1833 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1834 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1835 	       struct ice_sq_cd *cd)
1836 {
1837 	struct ice_aqc_req_res *cmd_resp;
1838 	struct ice_aq_desc desc;
1839 	int status;
1840 
1841 	cmd_resp = &desc.params.res_owner;
1842 
1843 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1844 
1845 	cmd_resp->res_id = cpu_to_le16(res);
1846 	cmd_resp->access_type = cpu_to_le16(access);
1847 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1848 	cmd_resp->timeout = cpu_to_le32(*timeout);
1849 	*timeout = 0;
1850 
1851 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1852 
1853 	/* The completion specifies the maximum time in ms that the driver
1854 	 * may hold the resource in the Timeout field.
1855 	 */
1856 
1857 	/* Global config lock response utilizes an additional status field.
1858 	 *
1859 	 * If the Global config lock resource is held by some other driver, the
1860 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1861 	 * and the timeout field indicates the maximum time the current owner
1862 	 * of the resource has to free it.
1863 	 */
1864 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1865 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1866 			*timeout = le32_to_cpu(cmd_resp->timeout);
1867 			return 0;
1868 		} else if (le16_to_cpu(cmd_resp->status) ==
1869 			   ICE_AQ_RES_GLBL_IN_PROG) {
1870 			*timeout = le32_to_cpu(cmd_resp->timeout);
1871 			return -EIO;
1872 		} else if (le16_to_cpu(cmd_resp->status) ==
1873 			   ICE_AQ_RES_GLBL_DONE) {
1874 			return -EALREADY;
1875 		}
1876 
1877 		/* invalid FW response, force a timeout immediately */
1878 		*timeout = 0;
1879 		return -EIO;
1880 	}
1881 
1882 	/* If the resource is held by some other driver, the command completes
1883 	 * with a busy return value and the timeout field indicates the maximum
1884 	 * time the current owner of the resource has to free it.
1885 	 */
1886 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1887 		*timeout = le32_to_cpu(cmd_resp->timeout);
1888 
1889 	return status;
1890 }
1891 
1892 /**
1893  * ice_aq_release_res
1894  * @hw: pointer to the HW struct
1895  * @res: resource ID
1896  * @sdp_number: resource number
1897  * @cd: pointer to command details structure or NULL
1898  *
1899  * release common resource using the admin queue commands (0x0009)
1900  */
1901 static int
1902 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1903 		   struct ice_sq_cd *cd)
1904 {
1905 	struct ice_aqc_req_res *cmd;
1906 	struct ice_aq_desc desc;
1907 
1908 	cmd = &desc.params.res_owner;
1909 
1910 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1911 
1912 	cmd->res_id = cpu_to_le16(res);
1913 	cmd->res_number = cpu_to_le32(sdp_number);
1914 
1915 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1916 }
1917 
1918 /**
1919  * ice_acquire_res
1920  * @hw: pointer to the HW structure
1921  * @res: resource ID
1922  * @access: access type (read or write)
1923  * @timeout: timeout in milliseconds
1924  *
1925  * This function will attempt to acquire the ownership of a resource.
1926  */
1927 int
1928 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1929 		enum ice_aq_res_access_type access, u32 timeout)
1930 {
1931 #define ICE_RES_POLLING_DELAY_MS	10
1932 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1933 	u32 time_left = timeout;
1934 	int status;
1935 
1936 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1937 
1938 	/* A return code of -EALREADY means that another driver has
1939 	 * previously acquired the resource and performed any necessary updates;
1940 	 * in this case the caller does not obtain the resource and has no
1941 	 * further work to do.
1942 	 */
1943 	if (status == -EALREADY)
1944 		goto ice_acquire_res_exit;
1945 
1946 	if (status)
1947 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1948 
1949 	/* If necessary, poll until the current lock owner timeouts */
1950 	timeout = time_left;
1951 	while (status && timeout && time_left) {
1952 		mdelay(delay);
1953 		timeout = (timeout > delay) ? timeout - delay : 0;
1954 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1955 
1956 		if (status == -EALREADY)
1957 			/* lock free, but no work to do */
1958 			break;
1959 
1960 		if (!status)
1961 			/* lock acquired */
1962 			break;
1963 	}
1964 	if (status && status != -EALREADY)
1965 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1966 
1967 ice_acquire_res_exit:
1968 	if (status == -EALREADY) {
1969 		if (access == ICE_RES_WRITE)
1970 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1971 		else
1972 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1973 	}
1974 	return status;
1975 }
1976 
1977 /**
1978  * ice_release_res
1979  * @hw: pointer to the HW structure
1980  * @res: resource ID
1981  *
1982  * This function will release a resource using the proper Admin Command.
1983  */
1984 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1985 {
1986 	unsigned long timeout;
1987 	int status;
1988 
1989 	/* there are some rare cases when trying to release the resource
1990 	 * results in an admin queue timeout, so handle them correctly
1991 	 */
1992 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1993 	do {
1994 		status = ice_aq_release_res(hw, res, 0, NULL);
1995 		if (status != -EIO)
1996 			break;
1997 		usleep_range(1000, 2000);
1998 	} while (time_before(jiffies, timeout));
1999 }
2000 
2001 /**
2002  * ice_aq_alloc_free_res - command to allocate/free resources
2003  * @hw: pointer to the HW struct
2004  * @num_entries: number of resource entries in buffer
2005  * @buf: Indirect buffer to hold data parameters and response
2006  * @buf_size: size of buffer for indirect commands
2007  * @opc: pass in the command opcode
2008  * @cd: pointer to command details structure or NULL
2009  *
2010  * Helper function to allocate/free resources using the admin queue commands
2011  */
2012 int
2013 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2014 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2015 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2016 {
2017 	struct ice_aqc_alloc_free_res_cmd *cmd;
2018 	struct ice_aq_desc desc;
2019 
2020 	cmd = &desc.params.sw_res_ctrl;
2021 
2022 	if (!buf)
2023 		return -EINVAL;
2024 
2025 	if (buf_size < flex_array_size(buf, elem, num_entries))
2026 		return -EINVAL;
2027 
2028 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2029 
2030 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2031 
2032 	cmd->num_entries = cpu_to_le16(num_entries);
2033 
2034 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2035 }
2036 
2037 /**
2038  * ice_alloc_hw_res - allocate resource
2039  * @hw: pointer to the HW struct
2040  * @type: type of resource
2041  * @num: number of resources to allocate
2042  * @btm: allocate from bottom
2043  * @res: pointer to array that will receive the resources
2044  */
2045 int
2046 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2047 {
2048 	struct ice_aqc_alloc_free_res_elem *buf;
2049 	u16 buf_len;
2050 	int status;
2051 
2052 	buf_len = struct_size(buf, elem, num);
2053 	buf = kzalloc(buf_len, GFP_KERNEL);
2054 	if (!buf)
2055 		return -ENOMEM;
2056 
2057 	/* Prepare buffer to allocate resource. */
2058 	buf->num_elems = cpu_to_le16(num);
2059 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2060 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2061 	if (btm)
2062 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2063 
2064 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2065 				       ice_aqc_opc_alloc_res, NULL);
2066 	if (status)
2067 		goto ice_alloc_res_exit;
2068 
2069 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2070 
2071 ice_alloc_res_exit:
2072 	kfree(buf);
2073 	return status;
2074 }
2075 
2076 /**
2077  * ice_free_hw_res - free allocated HW resource
2078  * @hw: pointer to the HW struct
2079  * @type: type of resource to free
2080  * @num: number of resources
2081  * @res: pointer to array that contains the resources to free
2082  */
2083 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2084 {
2085 	struct ice_aqc_alloc_free_res_elem *buf;
2086 	u16 buf_len;
2087 	int status;
2088 
2089 	buf_len = struct_size(buf, elem, num);
2090 	buf = kzalloc(buf_len, GFP_KERNEL);
2091 	if (!buf)
2092 		return -ENOMEM;
2093 
2094 	/* Prepare buffer to free resource. */
2095 	buf->num_elems = cpu_to_le16(num);
2096 	buf->res_type = cpu_to_le16(type);
2097 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2098 
2099 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2100 				       ice_aqc_opc_free_res, NULL);
2101 	if (status)
2102 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2103 
2104 	kfree(buf);
2105 	return status;
2106 }
2107 
2108 /**
2109  * ice_get_num_per_func - determine number of resources per PF
2110  * @hw: pointer to the HW structure
2111  * @max: value to be evenly split between each PF
2112  *
2113  * Determine the number of valid functions by going through the bitmap returned
2114  * from parsing capabilities and use this to calculate the number of resources
2115  * per PF based on the max value passed in.
2116  */
2117 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2118 {
2119 	u8 funcs;
2120 
2121 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2122 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2123 			 ICE_CAPS_VALID_FUNCS_M);
2124 
2125 	if (!funcs)
2126 		return 0;
2127 
2128 	return max / funcs;
2129 }
2130 
2131 /**
2132  * ice_parse_common_caps - parse common device/function capabilities
2133  * @hw: pointer to the HW struct
2134  * @caps: pointer to common capabilities structure
2135  * @elem: the capability element to parse
2136  * @prefix: message prefix for tracing capabilities
2137  *
2138  * Given a capability element, extract relevant details into the common
2139  * capability structure.
2140  *
2141  * Returns: true if the capability matches one of the common capability ids,
2142  * false otherwise.
2143  */
2144 static bool
2145 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2146 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2147 {
2148 	u32 logical_id = le32_to_cpu(elem->logical_id);
2149 	u32 phys_id = le32_to_cpu(elem->phys_id);
2150 	u32 number = le32_to_cpu(elem->number);
2151 	u16 cap = le16_to_cpu(elem->cap);
2152 	bool found = true;
2153 
2154 	switch (cap) {
2155 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2156 		caps->valid_functions = number;
2157 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2158 			  caps->valid_functions);
2159 		break;
2160 	case ICE_AQC_CAPS_SRIOV:
2161 		caps->sr_iov_1_1 = (number == 1);
2162 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2163 			  caps->sr_iov_1_1);
2164 		break;
2165 	case ICE_AQC_CAPS_DCB:
2166 		caps->dcb = (number == 1);
2167 		caps->active_tc_bitmap = logical_id;
2168 		caps->maxtc = phys_id;
2169 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2170 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2171 			  caps->active_tc_bitmap);
2172 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2173 		break;
2174 	case ICE_AQC_CAPS_RSS:
2175 		caps->rss_table_size = number;
2176 		caps->rss_table_entry_width = logical_id;
2177 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2178 			  caps->rss_table_size);
2179 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2180 			  caps->rss_table_entry_width);
2181 		break;
2182 	case ICE_AQC_CAPS_RXQS:
2183 		caps->num_rxq = number;
2184 		caps->rxq_first_id = phys_id;
2185 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2186 			  caps->num_rxq);
2187 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2188 			  caps->rxq_first_id);
2189 		break;
2190 	case ICE_AQC_CAPS_TXQS:
2191 		caps->num_txq = number;
2192 		caps->txq_first_id = phys_id;
2193 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2194 			  caps->num_txq);
2195 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2196 			  caps->txq_first_id);
2197 		break;
2198 	case ICE_AQC_CAPS_MSIX:
2199 		caps->num_msix_vectors = number;
2200 		caps->msix_vector_first_id = phys_id;
2201 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2202 			  caps->num_msix_vectors);
2203 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2204 			  caps->msix_vector_first_id);
2205 		break;
2206 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2207 		caps->nvm_update_pending_nvm = true;
2208 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2209 		break;
2210 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2211 		caps->nvm_update_pending_orom = true;
2212 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2213 		break;
2214 	case ICE_AQC_CAPS_PENDING_NET_VER:
2215 		caps->nvm_update_pending_netlist = true;
2216 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2217 		break;
2218 	case ICE_AQC_CAPS_NVM_MGMT:
2219 		caps->nvm_unified_update =
2220 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2221 			true : false;
2222 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2223 			  caps->nvm_unified_update);
2224 		break;
2225 	case ICE_AQC_CAPS_RDMA:
2226 		caps->rdma = (number == 1);
2227 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2228 		break;
2229 	case ICE_AQC_CAPS_MAX_MTU:
2230 		caps->max_mtu = number;
2231 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2232 			  prefix, caps->max_mtu);
2233 		break;
2234 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2235 		caps->pcie_reset_avoidance = (number > 0);
2236 		ice_debug(hw, ICE_DBG_INIT,
2237 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2238 			  caps->pcie_reset_avoidance);
2239 		break;
2240 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2241 		caps->reset_restrict_support = (number == 1);
2242 		ice_debug(hw, ICE_DBG_INIT,
2243 			  "%s: reset_restrict_support = %d\n", prefix,
2244 			  caps->reset_restrict_support);
2245 		break;
2246 	default:
2247 		/* Not one of the recognized common capabilities */
2248 		found = false;
2249 	}
2250 
2251 	return found;
2252 }
2253 
2254 /**
2255  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2256  * @hw: pointer to the HW structure
2257  * @caps: pointer to capabilities structure to fix
2258  *
2259  * Re-calculate the capabilities that are dependent on the number of physical
2260  * ports; i.e. some features are not supported or function differently on
2261  * devices with more than 4 ports.
2262  */
2263 static void
2264 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2265 {
2266 	/* This assumes device capabilities are always scanned before function
2267 	 * capabilities during the initialization flow.
2268 	 */
2269 	if (hw->dev_caps.num_funcs > 4) {
2270 		/* Max 4 TCs per port */
2271 		caps->maxtc = 4;
2272 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2273 			  caps->maxtc);
2274 		if (caps->rdma) {
2275 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2276 			caps->rdma = 0;
2277 		}
2278 
2279 		/* print message only when processing device capabilities
2280 		 * during initialization.
2281 		 */
2282 		if (caps == &hw->dev_caps.common_cap)
2283 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2284 	}
2285 }
2286 
2287 /**
2288  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2289  * @hw: pointer to the HW struct
2290  * @func_p: pointer to function capabilities structure
2291  * @cap: pointer to the capability element to parse
2292  *
2293  * Extract function capabilities for ICE_AQC_CAPS_VF.
2294  */
2295 static void
2296 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2297 		       struct ice_aqc_list_caps_elem *cap)
2298 {
2299 	u32 logical_id = le32_to_cpu(cap->logical_id);
2300 	u32 number = le32_to_cpu(cap->number);
2301 
2302 	func_p->num_allocd_vfs = number;
2303 	func_p->vf_base_id = logical_id;
2304 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2305 		  func_p->num_allocd_vfs);
2306 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2307 		  func_p->vf_base_id);
2308 }
2309 
2310 /**
2311  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2312  * @hw: pointer to the HW struct
2313  * @func_p: pointer to function capabilities structure
2314  * @cap: pointer to the capability element to parse
2315  *
2316  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2317  */
2318 static void
2319 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2320 			struct ice_aqc_list_caps_elem *cap)
2321 {
2322 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2323 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2324 		  le32_to_cpu(cap->number));
2325 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2326 		  func_p->guar_num_vsi);
2327 }
2328 
2329 /**
2330  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2331  * @hw: pointer to the HW struct
2332  * @func_p: pointer to function capabilities structure
2333  * @cap: pointer to the capability element to parse
2334  *
2335  * Extract function capabilities for ICE_AQC_CAPS_1588.
2336  */
2337 static void
2338 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2339 			 struct ice_aqc_list_caps_elem *cap)
2340 {
2341 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2342 	u32 number = le32_to_cpu(cap->number);
2343 
2344 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2345 	func_p->common_cap.ieee_1588 = info->ena;
2346 
2347 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2348 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2349 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2350 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2351 
2352 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2353 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2354 
2355 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2356 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2357 	} else {
2358 		/* Unknown clock frequency, so assume a (probably incorrect)
2359 		 * default to avoid out-of-bounds look ups of frequency
2360 		 * related information.
2361 		 */
2362 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2363 			  info->clk_freq);
2364 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2365 	}
2366 
2367 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2368 		  func_p->common_cap.ieee_1588);
2369 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2370 		  info->src_tmr_owned);
2371 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2372 		  info->tmr_ena);
2373 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2374 		  info->tmr_index_owned);
2375 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2376 		  info->tmr_index_assoc);
2377 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2378 		  info->clk_freq);
2379 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2380 		  info->clk_src);
2381 }
2382 
2383 /**
2384  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2385  * @hw: pointer to the HW struct
2386  * @func_p: pointer to function capabilities structure
2387  *
2388  * Extract function capabilities for ICE_AQC_CAPS_FD.
2389  */
2390 static void
2391 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2392 {
2393 	u32 reg_val, val;
2394 
2395 	reg_val = rd32(hw, GLQF_FD_SIZE);
2396 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2397 		GLQF_FD_SIZE_FD_GSIZE_S;
2398 	func_p->fd_fltr_guar =
2399 		ice_get_num_per_func(hw, val);
2400 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2401 		GLQF_FD_SIZE_FD_BSIZE_S;
2402 	func_p->fd_fltr_best_effort = val;
2403 
2404 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2405 		  func_p->fd_fltr_guar);
2406 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2407 		  func_p->fd_fltr_best_effort);
2408 }
2409 
2410 /**
2411  * ice_parse_func_caps - Parse function capabilities
2412  * @hw: pointer to the HW struct
2413  * @func_p: pointer to function capabilities structure
2414  * @buf: buffer containing the function capability records
2415  * @cap_count: the number of capabilities
2416  *
2417  * Helper function to parse function (0x000A) capabilities list. For
2418  * capabilities shared between device and function, this relies on
2419  * ice_parse_common_caps.
2420  *
2421  * Loop through the list of provided capabilities and extract the relevant
2422  * data into the function capabilities structured.
2423  */
2424 static void
2425 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2426 		    void *buf, u32 cap_count)
2427 {
2428 	struct ice_aqc_list_caps_elem *cap_resp;
2429 	u32 i;
2430 
2431 	cap_resp = buf;
2432 
2433 	memset(func_p, 0, sizeof(*func_p));
2434 
2435 	for (i = 0; i < cap_count; i++) {
2436 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2437 		bool found;
2438 
2439 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2440 					      &cap_resp[i], "func caps");
2441 
2442 		switch (cap) {
2443 		case ICE_AQC_CAPS_VF:
2444 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2445 			break;
2446 		case ICE_AQC_CAPS_VSI:
2447 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2448 			break;
2449 		case ICE_AQC_CAPS_1588:
2450 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2451 			break;
2452 		case ICE_AQC_CAPS_FD:
2453 			ice_parse_fdir_func_caps(hw, func_p);
2454 			break;
2455 		default:
2456 			/* Don't list common capabilities as unknown */
2457 			if (!found)
2458 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2459 					  i, cap);
2460 			break;
2461 		}
2462 	}
2463 
2464 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2465 }
2466 
2467 /**
2468  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2469  * @hw: pointer to the HW struct
2470  * @dev_p: pointer to device capabilities structure
2471  * @cap: capability element to parse
2472  *
2473  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2474  */
2475 static void
2476 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2477 			      struct ice_aqc_list_caps_elem *cap)
2478 {
2479 	u32 number = le32_to_cpu(cap->number);
2480 
2481 	dev_p->num_funcs = hweight32(number);
2482 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2483 		  dev_p->num_funcs);
2484 }
2485 
2486 /**
2487  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2488  * @hw: pointer to the HW struct
2489  * @dev_p: pointer to device capabilities structure
2490  * @cap: capability element to parse
2491  *
2492  * Parse ICE_AQC_CAPS_VF for device capabilities.
2493  */
2494 static void
2495 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2496 		      struct ice_aqc_list_caps_elem *cap)
2497 {
2498 	u32 number = le32_to_cpu(cap->number);
2499 
2500 	dev_p->num_vfs_exposed = number;
2501 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2502 		  dev_p->num_vfs_exposed);
2503 }
2504 
2505 /**
2506  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2507  * @hw: pointer to the HW struct
2508  * @dev_p: pointer to device capabilities structure
2509  * @cap: capability element to parse
2510  *
2511  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2512  */
2513 static void
2514 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2515 		       struct ice_aqc_list_caps_elem *cap)
2516 {
2517 	u32 number = le32_to_cpu(cap->number);
2518 
2519 	dev_p->num_vsi_allocd_to_host = number;
2520 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2521 		  dev_p->num_vsi_allocd_to_host);
2522 }
2523 
2524 /**
2525  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2526  * @hw: pointer to the HW struct
2527  * @dev_p: pointer to device capabilities structure
2528  * @cap: capability element to parse
2529  *
2530  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2531  */
2532 static void
2533 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2534 			struct ice_aqc_list_caps_elem *cap)
2535 {
2536 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2537 	u32 logical_id = le32_to_cpu(cap->logical_id);
2538 	u32 phys_id = le32_to_cpu(cap->phys_id);
2539 	u32 number = le32_to_cpu(cap->number);
2540 
2541 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2542 	dev_p->common_cap.ieee_1588 = info->ena;
2543 
2544 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2545 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2546 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2547 
2548 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2549 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2550 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2551 
2552 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2553 
2554 	info->ena_ports = logical_id;
2555 	info->tmr_own_map = phys_id;
2556 
2557 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2558 		  dev_p->common_cap.ieee_1588);
2559 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2560 		  info->tmr0_owner);
2561 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2562 		  info->tmr0_owned);
2563 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2564 		  info->tmr0_ena);
2565 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2566 		  info->tmr1_owner);
2567 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2568 		  info->tmr1_owned);
2569 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2570 		  info->tmr1_ena);
2571 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2572 		  info->ts_ll_read);
2573 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2574 		  info->ena_ports);
2575 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2576 		  info->tmr_own_map);
2577 }
2578 
2579 /**
2580  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2581  * @hw: pointer to the HW struct
2582  * @dev_p: pointer to device capabilities structure
2583  * @cap: capability element to parse
2584  *
2585  * Parse ICE_AQC_CAPS_FD for device capabilities.
2586  */
2587 static void
2588 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2589 			struct ice_aqc_list_caps_elem *cap)
2590 {
2591 	u32 number = le32_to_cpu(cap->number);
2592 
2593 	dev_p->num_flow_director_fltr = number;
2594 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2595 		  dev_p->num_flow_director_fltr);
2596 }
2597 
2598 /**
2599  * ice_parse_dev_caps - Parse device capabilities
2600  * @hw: pointer to the HW struct
2601  * @dev_p: pointer to device capabilities structure
2602  * @buf: buffer containing the device capability records
2603  * @cap_count: the number of capabilities
2604  *
2605  * Helper device to parse device (0x000B) capabilities list. For
2606  * capabilities shared between device and function, this relies on
2607  * ice_parse_common_caps.
2608  *
2609  * Loop through the list of provided capabilities and extract the relevant
2610  * data into the device capabilities structured.
2611  */
2612 static void
2613 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2614 		   void *buf, u32 cap_count)
2615 {
2616 	struct ice_aqc_list_caps_elem *cap_resp;
2617 	u32 i;
2618 
2619 	cap_resp = buf;
2620 
2621 	memset(dev_p, 0, sizeof(*dev_p));
2622 
2623 	for (i = 0; i < cap_count; i++) {
2624 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2625 		bool found;
2626 
2627 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2628 					      &cap_resp[i], "dev caps");
2629 
2630 		switch (cap) {
2631 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2632 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2633 			break;
2634 		case ICE_AQC_CAPS_VF:
2635 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2636 			break;
2637 		case ICE_AQC_CAPS_VSI:
2638 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2639 			break;
2640 		case ICE_AQC_CAPS_1588:
2641 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2642 			break;
2643 		case  ICE_AQC_CAPS_FD:
2644 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2645 			break;
2646 		default:
2647 			/* Don't list common capabilities as unknown */
2648 			if (!found)
2649 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2650 					  i, cap);
2651 			break;
2652 		}
2653 	}
2654 
2655 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2656 }
2657 
2658 /**
2659  * ice_aq_list_caps - query function/device capabilities
2660  * @hw: pointer to the HW struct
2661  * @buf: a buffer to hold the capabilities
2662  * @buf_size: size of the buffer
2663  * @cap_count: if not NULL, set to the number of capabilities reported
2664  * @opc: capabilities type to discover, device or function
2665  * @cd: pointer to command details structure or NULL
2666  *
2667  * Get the function (0x000A) or device (0x000B) capabilities description from
2668  * firmware and store it in the buffer.
2669  *
2670  * If the cap_count pointer is not NULL, then it is set to the number of
2671  * capabilities firmware will report. Note that if the buffer size is too
2672  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2673  * cap_count will still be updated in this case. It is recommended that the
2674  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2675  * firmware could return) to avoid this.
2676  */
2677 int
2678 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2679 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2680 {
2681 	struct ice_aqc_list_caps *cmd;
2682 	struct ice_aq_desc desc;
2683 	int status;
2684 
2685 	cmd = &desc.params.get_cap;
2686 
2687 	if (opc != ice_aqc_opc_list_func_caps &&
2688 	    opc != ice_aqc_opc_list_dev_caps)
2689 		return -EINVAL;
2690 
2691 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2692 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2693 
2694 	if (cap_count)
2695 		*cap_count = le32_to_cpu(cmd->count);
2696 
2697 	return status;
2698 }
2699 
2700 /**
2701  * ice_discover_dev_caps - Read and extract device capabilities
2702  * @hw: pointer to the hardware structure
2703  * @dev_caps: pointer to device capabilities structure
2704  *
2705  * Read the device capabilities and extract them into the dev_caps structure
2706  * for later use.
2707  */
2708 int
2709 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2710 {
2711 	u32 cap_count = 0;
2712 	void *cbuf;
2713 	int status;
2714 
2715 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2716 	if (!cbuf)
2717 		return -ENOMEM;
2718 
2719 	/* Although the driver doesn't know the number of capabilities the
2720 	 * device will return, we can simply send a 4KB buffer, the maximum
2721 	 * possible size that firmware can return.
2722 	 */
2723 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2724 
2725 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2726 				  ice_aqc_opc_list_dev_caps, NULL);
2727 	if (!status)
2728 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2729 	kfree(cbuf);
2730 
2731 	return status;
2732 }
2733 
2734 /**
2735  * ice_discover_func_caps - Read and extract function capabilities
2736  * @hw: pointer to the hardware structure
2737  * @func_caps: pointer to function capabilities structure
2738  *
2739  * Read the function capabilities and extract them into the func_caps structure
2740  * for later use.
2741  */
2742 static int
2743 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2744 {
2745 	u32 cap_count = 0;
2746 	void *cbuf;
2747 	int status;
2748 
2749 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2750 	if (!cbuf)
2751 		return -ENOMEM;
2752 
2753 	/* Although the driver doesn't know the number of capabilities the
2754 	 * device will return, we can simply send a 4KB buffer, the maximum
2755 	 * possible size that firmware can return.
2756 	 */
2757 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2758 
2759 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2760 				  ice_aqc_opc_list_func_caps, NULL);
2761 	if (!status)
2762 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2763 	kfree(cbuf);
2764 
2765 	return status;
2766 }
2767 
2768 /**
2769  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2770  * @hw: pointer to the hardware structure
2771  */
2772 void ice_set_safe_mode_caps(struct ice_hw *hw)
2773 {
2774 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2775 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2776 	struct ice_hw_common_caps cached_caps;
2777 	u32 num_funcs;
2778 
2779 	/* cache some func_caps values that should be restored after memset */
2780 	cached_caps = func_caps->common_cap;
2781 
2782 	/* unset func capabilities */
2783 	memset(func_caps, 0, sizeof(*func_caps));
2784 
2785 #define ICE_RESTORE_FUNC_CAP(name) \
2786 	func_caps->common_cap.name = cached_caps.name
2787 
2788 	/* restore cached values */
2789 	ICE_RESTORE_FUNC_CAP(valid_functions);
2790 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2791 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2792 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2793 	ICE_RESTORE_FUNC_CAP(max_mtu);
2794 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2795 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2796 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2797 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2798 
2799 	/* one Tx and one Rx queue in safe mode */
2800 	func_caps->common_cap.num_rxq = 1;
2801 	func_caps->common_cap.num_txq = 1;
2802 
2803 	/* two MSIX vectors, one for traffic and one for misc causes */
2804 	func_caps->common_cap.num_msix_vectors = 2;
2805 	func_caps->guar_num_vsi = 1;
2806 
2807 	/* cache some dev_caps values that should be restored after memset */
2808 	cached_caps = dev_caps->common_cap;
2809 	num_funcs = dev_caps->num_funcs;
2810 
2811 	/* unset dev capabilities */
2812 	memset(dev_caps, 0, sizeof(*dev_caps));
2813 
2814 #define ICE_RESTORE_DEV_CAP(name) \
2815 	dev_caps->common_cap.name = cached_caps.name
2816 
2817 	/* restore cached values */
2818 	ICE_RESTORE_DEV_CAP(valid_functions);
2819 	ICE_RESTORE_DEV_CAP(txq_first_id);
2820 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2821 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2822 	ICE_RESTORE_DEV_CAP(max_mtu);
2823 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2824 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2825 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2826 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2827 	dev_caps->num_funcs = num_funcs;
2828 
2829 	/* one Tx and one Rx queue per function in safe mode */
2830 	dev_caps->common_cap.num_rxq = num_funcs;
2831 	dev_caps->common_cap.num_txq = num_funcs;
2832 
2833 	/* two MSIX vectors per function */
2834 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2835 }
2836 
2837 /**
2838  * ice_get_caps - get info about the HW
2839  * @hw: pointer to the hardware structure
2840  */
2841 int ice_get_caps(struct ice_hw *hw)
2842 {
2843 	int status;
2844 
2845 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2846 	if (status)
2847 		return status;
2848 
2849 	return ice_discover_func_caps(hw, &hw->func_caps);
2850 }
2851 
2852 /**
2853  * ice_aq_manage_mac_write - manage MAC address write command
2854  * @hw: pointer to the HW struct
2855  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2856  * @flags: flags to control write behavior
2857  * @cd: pointer to command details structure or NULL
2858  *
2859  * This function is used to write MAC address to the NVM (0x0108).
2860  */
2861 int
2862 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2863 			struct ice_sq_cd *cd)
2864 {
2865 	struct ice_aqc_manage_mac_write *cmd;
2866 	struct ice_aq_desc desc;
2867 
2868 	cmd = &desc.params.mac_write;
2869 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2870 
2871 	cmd->flags = flags;
2872 	ether_addr_copy(cmd->mac_addr, mac_addr);
2873 
2874 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2875 }
2876 
2877 /**
2878  * ice_aq_clear_pxe_mode
2879  * @hw: pointer to the HW struct
2880  *
2881  * Tell the firmware that the driver is taking over from PXE (0x0110).
2882  */
2883 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2884 {
2885 	struct ice_aq_desc desc;
2886 
2887 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2888 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2889 
2890 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2891 }
2892 
2893 /**
2894  * ice_clear_pxe_mode - clear pxe operations mode
2895  * @hw: pointer to the HW struct
2896  *
2897  * Make sure all PXE mode settings are cleared, including things
2898  * like descriptor fetch/write-back mode.
2899  */
2900 void ice_clear_pxe_mode(struct ice_hw *hw)
2901 {
2902 	if (ice_check_sq_alive(hw, &hw->adminq))
2903 		ice_aq_clear_pxe_mode(hw);
2904 }
2905 
2906 /**
2907  * ice_aq_set_port_params - set physical port parameters.
2908  * @pi: pointer to the port info struct
2909  * @double_vlan: if set double VLAN is enabled
2910  * @cd: pointer to command details structure or NULL
2911  *
2912  * Set Physical port parameters (0x0203)
2913  */
2914 int
2915 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2916 		       struct ice_sq_cd *cd)
2917 
2918 {
2919 	struct ice_aqc_set_port_params *cmd;
2920 	struct ice_hw *hw = pi->hw;
2921 	struct ice_aq_desc desc;
2922 	u16 cmd_flags = 0;
2923 
2924 	cmd = &desc.params.set_port_params;
2925 
2926 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2927 	if (double_vlan)
2928 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2929 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2930 
2931 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2932 }
2933 
2934 /**
2935  * ice_is_100m_speed_supported
2936  * @hw: pointer to the HW struct
2937  *
2938  * returns true if 100M speeds are supported by the device,
2939  * false otherwise.
2940  */
2941 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2942 {
2943 	switch (hw->device_id) {
2944 	case ICE_DEV_ID_E822C_SGMII:
2945 	case ICE_DEV_ID_E822L_SGMII:
2946 	case ICE_DEV_ID_E823L_1GBE:
2947 	case ICE_DEV_ID_E823C_SGMII:
2948 		return true;
2949 	default:
2950 		return false;
2951 	}
2952 }
2953 
2954 /**
2955  * ice_get_link_speed_based_on_phy_type - returns link speed
2956  * @phy_type_low: lower part of phy_type
2957  * @phy_type_high: higher part of phy_type
2958  *
2959  * This helper function will convert an entry in PHY type structure
2960  * [phy_type_low, phy_type_high] to its corresponding link speed.
2961  * Note: In the structure of [phy_type_low, phy_type_high], there should
2962  * be one bit set, as this function will convert one PHY type to its
2963  * speed.
2964  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2965  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2966  */
2967 static u16
2968 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2969 {
2970 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2971 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2972 
2973 	switch (phy_type_low) {
2974 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2975 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2976 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2977 		break;
2978 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2979 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2980 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2981 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2982 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2983 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2984 		break;
2985 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2986 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2987 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2988 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2989 		break;
2990 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2991 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2992 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2993 		break;
2994 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2995 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2996 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2997 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2998 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2999 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3000 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3001 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3002 		break;
3003 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3004 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3005 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3006 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3007 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3008 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3009 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3010 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3011 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3012 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3013 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3014 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3015 		break;
3016 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3017 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3018 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3019 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3020 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3021 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3022 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3023 		break;
3024 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3025 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3026 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3027 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3028 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3029 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3030 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3031 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3032 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3033 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3034 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3035 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3036 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3037 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3038 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3039 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3040 		break;
3041 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3042 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3043 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3044 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3045 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3046 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3047 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3048 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3049 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3050 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3051 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3052 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3053 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3054 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3055 		break;
3056 	default:
3057 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3058 		break;
3059 	}
3060 
3061 	switch (phy_type_high) {
3062 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3063 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3064 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3065 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3066 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3067 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3068 		break;
3069 	default:
3070 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3071 		break;
3072 	}
3073 
3074 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3075 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3076 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3077 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3078 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3079 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3080 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3081 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3082 		return speed_phy_type_low;
3083 	else
3084 		return speed_phy_type_high;
3085 }
3086 
3087 /**
3088  * ice_update_phy_type
3089  * @phy_type_low: pointer to the lower part of phy_type
3090  * @phy_type_high: pointer to the higher part of phy_type
3091  * @link_speeds_bitmap: targeted link speeds bitmap
3092  *
3093  * Note: For the link_speeds_bitmap structure, you can check it at
3094  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3095  * link_speeds_bitmap include multiple speeds.
3096  *
3097  * Each entry in this [phy_type_low, phy_type_high] structure will
3098  * present a certain link speed. This helper function will turn on bits
3099  * in [phy_type_low, phy_type_high] structure based on the value of
3100  * link_speeds_bitmap input parameter.
3101  */
3102 void
3103 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3104 		    u16 link_speeds_bitmap)
3105 {
3106 	u64 pt_high;
3107 	u64 pt_low;
3108 	int index;
3109 	u16 speed;
3110 
3111 	/* We first check with low part of phy_type */
3112 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3113 		pt_low = BIT_ULL(index);
3114 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3115 
3116 		if (link_speeds_bitmap & speed)
3117 			*phy_type_low |= BIT_ULL(index);
3118 	}
3119 
3120 	/* We then check with high part of phy_type */
3121 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3122 		pt_high = BIT_ULL(index);
3123 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3124 
3125 		if (link_speeds_bitmap & speed)
3126 			*phy_type_high |= BIT_ULL(index);
3127 	}
3128 }
3129 
3130 /**
3131  * ice_aq_set_phy_cfg
3132  * @hw: pointer to the HW struct
3133  * @pi: port info structure of the interested logical port
3134  * @cfg: structure with PHY configuration data to be set
3135  * @cd: pointer to command details structure or NULL
3136  *
3137  * Set the various PHY configuration parameters supported on the Port.
3138  * One or more of the Set PHY config parameters may be ignored in an MFP
3139  * mode as the PF may not have the privilege to set some of the PHY Config
3140  * parameters. This status will be indicated by the command response (0x0601).
3141  */
3142 int
3143 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3144 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3145 {
3146 	struct ice_aq_desc desc;
3147 	int status;
3148 
3149 	if (!cfg)
3150 		return -EINVAL;
3151 
3152 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3153 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3154 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3155 			  cfg->caps);
3156 
3157 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3158 	}
3159 
3160 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3161 	desc.params.set_phy.lport_num = pi->lport;
3162 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3163 
3164 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3165 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3166 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3167 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3168 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3169 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3170 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3171 		  cfg->low_power_ctrl_an);
3172 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3173 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3174 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3175 		  cfg->link_fec_opt);
3176 
3177 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3178 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3179 		status = 0;
3180 
3181 	if (!status)
3182 		pi->phy.curr_user_phy_cfg = *cfg;
3183 
3184 	return status;
3185 }
3186 
3187 /**
3188  * ice_update_link_info - update status of the HW network link
3189  * @pi: port info structure of the interested logical port
3190  */
3191 int ice_update_link_info(struct ice_port_info *pi)
3192 {
3193 	struct ice_link_status *li;
3194 	int status;
3195 
3196 	if (!pi)
3197 		return -EINVAL;
3198 
3199 	li = &pi->phy.link_info;
3200 
3201 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3202 	if (status)
3203 		return status;
3204 
3205 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3206 		struct ice_aqc_get_phy_caps_data *pcaps;
3207 		struct ice_hw *hw;
3208 
3209 		hw = pi->hw;
3210 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3211 				     GFP_KERNEL);
3212 		if (!pcaps)
3213 			return -ENOMEM;
3214 
3215 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3216 					     pcaps, NULL);
3217 
3218 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3219 	}
3220 
3221 	return status;
3222 }
3223 
3224 /**
3225  * ice_cache_phy_user_req
3226  * @pi: port information structure
3227  * @cache_data: PHY logging data
3228  * @cache_mode: PHY logging mode
3229  *
3230  * Log the user request on (FC, FEC, SPEED) for later use.
3231  */
3232 static void
3233 ice_cache_phy_user_req(struct ice_port_info *pi,
3234 		       struct ice_phy_cache_mode_data cache_data,
3235 		       enum ice_phy_cache_mode cache_mode)
3236 {
3237 	if (!pi)
3238 		return;
3239 
3240 	switch (cache_mode) {
3241 	case ICE_FC_MODE:
3242 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3243 		break;
3244 	case ICE_SPEED_MODE:
3245 		pi->phy.curr_user_speed_req =
3246 			cache_data.data.curr_user_speed_req;
3247 		break;
3248 	case ICE_FEC_MODE:
3249 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3250 		break;
3251 	default:
3252 		break;
3253 	}
3254 }
3255 
3256 /**
3257  * ice_caps_to_fc_mode
3258  * @caps: PHY capabilities
3259  *
3260  * Convert PHY FC capabilities to ice FC mode
3261  */
3262 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3263 {
3264 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3265 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3266 		return ICE_FC_FULL;
3267 
3268 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3269 		return ICE_FC_TX_PAUSE;
3270 
3271 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3272 		return ICE_FC_RX_PAUSE;
3273 
3274 	return ICE_FC_NONE;
3275 }
3276 
3277 /**
3278  * ice_caps_to_fec_mode
3279  * @caps: PHY capabilities
3280  * @fec_options: Link FEC options
3281  *
3282  * Convert PHY FEC capabilities to ice FEC mode
3283  */
3284 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3285 {
3286 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3287 		return ICE_FEC_AUTO;
3288 
3289 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3290 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3291 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3292 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3293 		return ICE_FEC_BASER;
3294 
3295 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3296 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3297 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3298 		return ICE_FEC_RS;
3299 
3300 	return ICE_FEC_NONE;
3301 }
3302 
3303 /**
3304  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3305  * @pi: port information structure
3306  * @cfg: PHY configuration data to set FC mode
3307  * @req_mode: FC mode to configure
3308  */
3309 int
3310 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3311 	       enum ice_fc_mode req_mode)
3312 {
3313 	struct ice_phy_cache_mode_data cache_data;
3314 	u8 pause_mask = 0x0;
3315 
3316 	if (!pi || !cfg)
3317 		return -EINVAL;
3318 
3319 	switch (req_mode) {
3320 	case ICE_FC_FULL:
3321 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3322 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3323 		break;
3324 	case ICE_FC_RX_PAUSE:
3325 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3326 		break;
3327 	case ICE_FC_TX_PAUSE:
3328 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3329 		break;
3330 	default:
3331 		break;
3332 	}
3333 
3334 	/* clear the old pause settings */
3335 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3336 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3337 
3338 	/* set the new capabilities */
3339 	cfg->caps |= pause_mask;
3340 
3341 	/* Cache user FC request */
3342 	cache_data.data.curr_user_fc_req = req_mode;
3343 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3344 
3345 	return 0;
3346 }
3347 
3348 /**
3349  * ice_set_fc
3350  * @pi: port information structure
3351  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3352  * @ena_auto_link_update: enable automatic link update
3353  *
3354  * Set the requested flow control mode.
3355  */
3356 int
3357 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3358 {
3359 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3360 	struct ice_aqc_get_phy_caps_data *pcaps;
3361 	struct ice_hw *hw;
3362 	int status;
3363 
3364 	if (!pi || !aq_failures)
3365 		return -EINVAL;
3366 
3367 	*aq_failures = 0;
3368 	hw = pi->hw;
3369 
3370 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3371 	if (!pcaps)
3372 		return -ENOMEM;
3373 
3374 	/* Get the current PHY config */
3375 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3376 				     pcaps, NULL);
3377 	if (status) {
3378 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3379 		goto out;
3380 	}
3381 
3382 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3383 
3384 	/* Configure the set PHY data */
3385 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3386 	if (status)
3387 		goto out;
3388 
3389 	/* If the capabilities have changed, then set the new config */
3390 	if (cfg.caps != pcaps->caps) {
3391 		int retry_count, retry_max = 10;
3392 
3393 		/* Auto restart link so settings take effect */
3394 		if (ena_auto_link_update)
3395 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3396 
3397 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3398 		if (status) {
3399 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3400 			goto out;
3401 		}
3402 
3403 		/* Update the link info
3404 		 * It sometimes takes a really long time for link to
3405 		 * come back from the atomic reset. Thus, we wait a
3406 		 * little bit.
3407 		 */
3408 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3409 			status = ice_update_link_info(pi);
3410 
3411 			if (!status)
3412 				break;
3413 
3414 			mdelay(100);
3415 		}
3416 
3417 		if (status)
3418 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3419 	}
3420 
3421 out:
3422 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3423 	return status;
3424 }
3425 
3426 /**
3427  * ice_phy_caps_equals_cfg
3428  * @phy_caps: PHY capabilities
3429  * @phy_cfg: PHY configuration
3430  *
3431  * Helper function to determine if PHY capabilities matches PHY
3432  * configuration
3433  */
3434 bool
3435 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3436 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3437 {
3438 	u8 caps_mask, cfg_mask;
3439 
3440 	if (!phy_caps || !phy_cfg)
3441 		return false;
3442 
3443 	/* These bits are not common between capabilities and configuration.
3444 	 * Do not use them to determine equality.
3445 	 */
3446 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3447 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3448 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3449 
3450 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3451 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3452 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3453 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3454 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3455 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3456 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3457 		return false;
3458 
3459 	return true;
3460 }
3461 
3462 /**
3463  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3464  * @pi: port information structure
3465  * @caps: PHY ability structure to copy date from
3466  * @cfg: PHY configuration structure to copy data to
3467  *
3468  * Helper function to copy AQC PHY get ability data to PHY set configuration
3469  * data structure
3470  */
3471 void
3472 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3473 			 struct ice_aqc_get_phy_caps_data *caps,
3474 			 struct ice_aqc_set_phy_cfg_data *cfg)
3475 {
3476 	if (!pi || !caps || !cfg)
3477 		return;
3478 
3479 	memset(cfg, 0, sizeof(*cfg));
3480 	cfg->phy_type_low = caps->phy_type_low;
3481 	cfg->phy_type_high = caps->phy_type_high;
3482 	cfg->caps = caps->caps;
3483 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3484 	cfg->eee_cap = caps->eee_cap;
3485 	cfg->eeer_value = caps->eeer_value;
3486 	cfg->link_fec_opt = caps->link_fec_options;
3487 	cfg->module_compliance_enforcement =
3488 		caps->module_compliance_enforcement;
3489 }
3490 
3491 /**
3492  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3493  * @pi: port information structure
3494  * @cfg: PHY configuration data to set FEC mode
3495  * @fec: FEC mode to configure
3496  */
3497 int
3498 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3499 		enum ice_fec_mode fec)
3500 {
3501 	struct ice_aqc_get_phy_caps_data *pcaps;
3502 	struct ice_hw *hw;
3503 	int status;
3504 
3505 	if (!pi || !cfg)
3506 		return -EINVAL;
3507 
3508 	hw = pi->hw;
3509 
3510 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3511 	if (!pcaps)
3512 		return -ENOMEM;
3513 
3514 	status = ice_aq_get_phy_caps(pi, false,
3515 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3516 				      ICE_AQC_REPORT_DFLT_CFG :
3517 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3518 	if (status)
3519 		goto out;
3520 
3521 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3522 	cfg->link_fec_opt = pcaps->link_fec_options;
3523 
3524 	switch (fec) {
3525 	case ICE_FEC_BASER:
3526 		/* Clear RS bits, and AND BASE-R ability
3527 		 * bits and OR request bits.
3528 		 */
3529 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3530 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3531 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3532 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3533 		break;
3534 	case ICE_FEC_RS:
3535 		/* Clear BASE-R bits, and AND RS ability
3536 		 * bits and OR request bits.
3537 		 */
3538 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3539 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3540 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3541 		break;
3542 	case ICE_FEC_NONE:
3543 		/* Clear all FEC option bits. */
3544 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3545 		break;
3546 	case ICE_FEC_AUTO:
3547 		/* AND auto FEC bit, and all caps bits. */
3548 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3549 		cfg->link_fec_opt |= pcaps->link_fec_options;
3550 		break;
3551 	default:
3552 		status = -EINVAL;
3553 		break;
3554 	}
3555 
3556 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3557 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3558 		struct ice_link_default_override_tlv tlv = { 0 };
3559 
3560 		status = ice_get_link_default_override(&tlv, pi);
3561 		if (status)
3562 			goto out;
3563 
3564 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3565 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3566 			cfg->link_fec_opt = tlv.fec_options;
3567 	}
3568 
3569 out:
3570 	kfree(pcaps);
3571 
3572 	return status;
3573 }
3574 
3575 /**
3576  * ice_get_link_status - get status of the HW network link
3577  * @pi: port information structure
3578  * @link_up: pointer to bool (true/false = linkup/linkdown)
3579  *
3580  * Variable link_up is true if link is up, false if link is down.
3581  * The variable link_up is invalid if status is non zero. As a
3582  * result of this call, link status reporting becomes enabled
3583  */
3584 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3585 {
3586 	struct ice_phy_info *phy_info;
3587 	int status = 0;
3588 
3589 	if (!pi || !link_up)
3590 		return -EINVAL;
3591 
3592 	phy_info = &pi->phy;
3593 
3594 	if (phy_info->get_link_info) {
3595 		status = ice_update_link_info(pi);
3596 
3597 		if (status)
3598 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3599 				  status);
3600 	}
3601 
3602 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3603 
3604 	return status;
3605 }
3606 
3607 /**
3608  * ice_aq_set_link_restart_an
3609  * @pi: pointer to the port information structure
3610  * @ena_link: if true: enable link, if false: disable link
3611  * @cd: pointer to command details structure or NULL
3612  *
3613  * Sets up the link and restarts the Auto-Negotiation over the link.
3614  */
3615 int
3616 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3617 			   struct ice_sq_cd *cd)
3618 {
3619 	struct ice_aqc_restart_an *cmd;
3620 	struct ice_aq_desc desc;
3621 
3622 	cmd = &desc.params.restart_an;
3623 
3624 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3625 
3626 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3627 	cmd->lport_num = pi->lport;
3628 	if (ena_link)
3629 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3630 	else
3631 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3632 
3633 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3634 }
3635 
3636 /**
3637  * ice_aq_set_event_mask
3638  * @hw: pointer to the HW struct
3639  * @port_num: port number of the physical function
3640  * @mask: event mask to be set
3641  * @cd: pointer to command details structure or NULL
3642  *
3643  * Set event mask (0x0613)
3644  */
3645 int
3646 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3647 		      struct ice_sq_cd *cd)
3648 {
3649 	struct ice_aqc_set_event_mask *cmd;
3650 	struct ice_aq_desc desc;
3651 
3652 	cmd = &desc.params.set_event_mask;
3653 
3654 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3655 
3656 	cmd->lport_num = port_num;
3657 
3658 	cmd->event_mask = cpu_to_le16(mask);
3659 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3660 }
3661 
3662 /**
3663  * ice_aq_set_mac_loopback
3664  * @hw: pointer to the HW struct
3665  * @ena_lpbk: Enable or Disable loopback
3666  * @cd: pointer to command details structure or NULL
3667  *
3668  * Enable/disable loopback on a given port
3669  */
3670 int
3671 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3672 {
3673 	struct ice_aqc_set_mac_lb *cmd;
3674 	struct ice_aq_desc desc;
3675 
3676 	cmd = &desc.params.set_mac_lb;
3677 
3678 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3679 	if (ena_lpbk)
3680 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3681 
3682 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3683 }
3684 
3685 /**
3686  * ice_aq_set_port_id_led
3687  * @pi: pointer to the port information
3688  * @is_orig_mode: is this LED set to original mode (by the net-list)
3689  * @cd: pointer to command details structure or NULL
3690  *
3691  * Set LED value for the given port (0x06e9)
3692  */
3693 int
3694 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3695 		       struct ice_sq_cd *cd)
3696 {
3697 	struct ice_aqc_set_port_id_led *cmd;
3698 	struct ice_hw *hw = pi->hw;
3699 	struct ice_aq_desc desc;
3700 
3701 	cmd = &desc.params.set_port_id_led;
3702 
3703 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3704 
3705 	if (is_orig_mode)
3706 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3707 	else
3708 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3709 
3710 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3711 }
3712 
3713 /**
3714  * ice_aq_get_port_options
3715  * @hw: pointer to the HW struct
3716  * @options: buffer for the resultant port options
3717  * @option_count: input - size of the buffer in port options structures,
3718  *                output - number of returned port options
3719  * @lport: logical port to call the command with (optional)
3720  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3721  *               when PF owns more than 1 port it must be true
3722  * @active_option_idx: index of active port option in returned buffer
3723  * @active_option_valid: active option in returned buffer is valid
3724  * @pending_option_idx: index of pending port option in returned buffer
3725  * @pending_option_valid: pending option in returned buffer is valid
3726  *
3727  * Calls Get Port Options AQC (0x06ea) and verifies result.
3728  */
3729 int
3730 ice_aq_get_port_options(struct ice_hw *hw,
3731 			struct ice_aqc_get_port_options_elem *options,
3732 			u8 *option_count, u8 lport, bool lport_valid,
3733 			u8 *active_option_idx, bool *active_option_valid,
3734 			u8 *pending_option_idx, bool *pending_option_valid)
3735 {
3736 	struct ice_aqc_get_port_options *cmd;
3737 	struct ice_aq_desc desc;
3738 	int status;
3739 	u8 i;
3740 
3741 	/* options buffer shall be able to hold max returned options */
3742 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3743 		return -EINVAL;
3744 
3745 	cmd = &desc.params.get_port_options;
3746 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3747 
3748 	if (lport_valid)
3749 		cmd->lport_num = lport;
3750 	cmd->lport_num_valid = lport_valid;
3751 
3752 	status = ice_aq_send_cmd(hw, &desc, options,
3753 				 *option_count * sizeof(*options), NULL);
3754 	if (status)
3755 		return status;
3756 
3757 	/* verify direct FW response & set output parameters */
3758 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3759 				  cmd->port_options_count);
3760 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3761 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3762 					 cmd->port_options);
3763 	if (*active_option_valid) {
3764 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3765 					       cmd->port_options);
3766 		if (*active_option_idx > (*option_count - 1))
3767 			return -EIO;
3768 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3769 			  *active_option_idx);
3770 	}
3771 
3772 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3773 					  cmd->pending_port_option_status);
3774 	if (*pending_option_valid) {
3775 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3776 						cmd->pending_port_option_status);
3777 		if (*pending_option_idx > (*option_count - 1))
3778 			return -EIO;
3779 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3780 			  *pending_option_idx);
3781 	}
3782 
3783 	/* mask output options fields */
3784 	for (i = 0; i < *option_count; i++) {
3785 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3786 					   options[i].pmd);
3787 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3788 						      options[i].max_lane_speed);
3789 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3790 			  options[i].pmd, options[i].max_lane_speed);
3791 	}
3792 
3793 	return 0;
3794 }
3795 
3796 /**
3797  * ice_aq_set_port_option
3798  * @hw: pointer to the HW struct
3799  * @lport: logical port to call the command with
3800  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3801  *               when PF owns more than 1 port it must be true
3802  * @new_option: new port option to be written
3803  *
3804  * Calls Set Port Options AQC (0x06eb).
3805  */
3806 int
3807 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3808 		       u8 new_option)
3809 {
3810 	struct ice_aqc_set_port_option *cmd;
3811 	struct ice_aq_desc desc;
3812 
3813 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3814 		return -EINVAL;
3815 
3816 	cmd = &desc.params.set_port_option;
3817 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3818 
3819 	if (lport_valid)
3820 		cmd->lport_num = lport;
3821 
3822 	cmd->lport_num_valid = lport_valid;
3823 	cmd->selected_port_option = new_option;
3824 
3825 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3826 }
3827 
3828 /**
3829  * ice_aq_sff_eeprom
3830  * @hw: pointer to the HW struct
3831  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3832  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3833  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3834  * @page: QSFP page
3835  * @set_page: set or ignore the page
3836  * @data: pointer to data buffer to be read/written to the I2C device.
3837  * @length: 1-16 for read, 1 for write.
3838  * @write: 0 read, 1 for write.
3839  * @cd: pointer to command details structure or NULL
3840  *
3841  * Read/Write SFF EEPROM (0x06EE)
3842  */
3843 int
3844 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3845 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3846 		  bool write, struct ice_sq_cd *cd)
3847 {
3848 	struct ice_aqc_sff_eeprom *cmd;
3849 	struct ice_aq_desc desc;
3850 	int status;
3851 
3852 	if (!data || (mem_addr & 0xff00))
3853 		return -EINVAL;
3854 
3855 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3856 	cmd = &desc.params.read_write_sff_param;
3857 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3858 	cmd->lport_num = (u8)(lport & 0xff);
3859 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3860 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3861 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3862 					((set_page <<
3863 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3864 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3865 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3866 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3867 	if (write)
3868 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3869 
3870 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3871 	return status;
3872 }
3873 
3874 /**
3875  * __ice_aq_get_set_rss_lut
3876  * @hw: pointer to the hardware structure
3877  * @params: RSS LUT parameters
3878  * @set: set true to set the table, false to get the table
3879  *
3880  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3881  */
3882 static int
3883 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3884 {
3885 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3886 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3887 	struct ice_aq_desc desc;
3888 	int status;
3889 	u8 *lut;
3890 
3891 	if (!params)
3892 		return -EINVAL;
3893 
3894 	vsi_handle = params->vsi_handle;
3895 	lut = params->lut;
3896 
3897 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3898 		return -EINVAL;
3899 
3900 	lut_size = params->lut_size;
3901 	lut_type = params->lut_type;
3902 	glob_lut_idx = params->global_lut_id;
3903 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3904 
3905 	cmd_resp = &desc.params.get_set_rss_lut;
3906 
3907 	if (set) {
3908 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3909 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3910 	} else {
3911 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3912 	}
3913 
3914 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3915 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3916 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3917 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3918 
3919 	switch (lut_type) {
3920 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3921 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3922 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3923 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3924 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3925 		break;
3926 	default:
3927 		status = -EINVAL;
3928 		goto ice_aq_get_set_rss_lut_exit;
3929 	}
3930 
3931 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3932 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3933 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3934 
3935 		if (!set)
3936 			goto ice_aq_get_set_rss_lut_send;
3937 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3938 		if (!set)
3939 			goto ice_aq_get_set_rss_lut_send;
3940 	} else {
3941 		goto ice_aq_get_set_rss_lut_send;
3942 	}
3943 
3944 	/* LUT size is only valid for Global and PF table types */
3945 	switch (lut_size) {
3946 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3947 		break;
3948 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3949 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3950 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3951 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3952 		break;
3953 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3954 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3955 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3956 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3957 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3958 			break;
3959 		}
3960 		fallthrough;
3961 	default:
3962 		status = -EINVAL;
3963 		goto ice_aq_get_set_rss_lut_exit;
3964 	}
3965 
3966 ice_aq_get_set_rss_lut_send:
3967 	cmd_resp->flags = cpu_to_le16(flags);
3968 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3969 
3970 ice_aq_get_set_rss_lut_exit:
3971 	return status;
3972 }
3973 
3974 /**
3975  * ice_aq_get_rss_lut
3976  * @hw: pointer to the hardware structure
3977  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3978  *
3979  * get the RSS lookup table, PF or VSI type
3980  */
3981 int
3982 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3983 {
3984 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3985 }
3986 
3987 /**
3988  * ice_aq_set_rss_lut
3989  * @hw: pointer to the hardware structure
3990  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3991  *
3992  * set the RSS lookup table, PF or VSI type
3993  */
3994 int
3995 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3996 {
3997 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3998 }
3999 
4000 /**
4001  * __ice_aq_get_set_rss_key
4002  * @hw: pointer to the HW struct
4003  * @vsi_id: VSI FW index
4004  * @key: pointer to key info struct
4005  * @set: set true to set the key, false to get the key
4006  *
4007  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4008  */
4009 static int
4010 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4011 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4012 {
4013 	struct ice_aqc_get_set_rss_key *cmd_resp;
4014 	u16 key_size = sizeof(*key);
4015 	struct ice_aq_desc desc;
4016 
4017 	cmd_resp = &desc.params.get_set_rss_key;
4018 
4019 	if (set) {
4020 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4021 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4022 	} else {
4023 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4024 	}
4025 
4026 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4027 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4028 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4029 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4030 
4031 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4032 }
4033 
4034 /**
4035  * ice_aq_get_rss_key
4036  * @hw: pointer to the HW struct
4037  * @vsi_handle: software VSI handle
4038  * @key: pointer to key info struct
4039  *
4040  * get the RSS key per VSI
4041  */
4042 int
4043 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4044 		   struct ice_aqc_get_set_rss_keys *key)
4045 {
4046 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4047 		return -EINVAL;
4048 
4049 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4050 					key, false);
4051 }
4052 
4053 /**
4054  * ice_aq_set_rss_key
4055  * @hw: pointer to the HW struct
4056  * @vsi_handle: software VSI handle
4057  * @keys: pointer to key info struct
4058  *
4059  * set the RSS key per VSI
4060  */
4061 int
4062 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4063 		   struct ice_aqc_get_set_rss_keys *keys)
4064 {
4065 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4066 		return -EINVAL;
4067 
4068 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4069 					keys, true);
4070 }
4071 
4072 /**
4073  * ice_aq_add_lan_txq
4074  * @hw: pointer to the hardware structure
4075  * @num_qgrps: Number of added queue groups
4076  * @qg_list: list of queue groups to be added
4077  * @buf_size: size of buffer for indirect command
4078  * @cd: pointer to command details structure or NULL
4079  *
4080  * Add Tx LAN queue (0x0C30)
4081  *
4082  * NOTE:
4083  * Prior to calling add Tx LAN queue:
4084  * Initialize the following as part of the Tx queue context:
4085  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4086  * Cache profile and Packet shaper profile.
4087  *
4088  * After add Tx LAN queue AQ command is completed:
4089  * Interrupts should be associated with specific queues,
4090  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4091  * flow.
4092  */
4093 static int
4094 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4095 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4096 		   struct ice_sq_cd *cd)
4097 {
4098 	struct ice_aqc_add_tx_qgrp *list;
4099 	struct ice_aqc_add_txqs *cmd;
4100 	struct ice_aq_desc desc;
4101 	u16 i, sum_size = 0;
4102 
4103 	cmd = &desc.params.add_txqs;
4104 
4105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4106 
4107 	if (!qg_list)
4108 		return -EINVAL;
4109 
4110 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4111 		return -EINVAL;
4112 
4113 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4114 		sum_size += struct_size(list, txqs, list->num_txqs);
4115 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4116 						      list->num_txqs);
4117 	}
4118 
4119 	if (buf_size != sum_size)
4120 		return -EINVAL;
4121 
4122 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4123 
4124 	cmd->num_qgrps = num_qgrps;
4125 
4126 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4127 }
4128 
4129 /**
4130  * ice_aq_dis_lan_txq
4131  * @hw: pointer to the hardware structure
4132  * @num_qgrps: number of groups in the list
4133  * @qg_list: the list of groups to disable
4134  * @buf_size: the total size of the qg_list buffer in bytes
4135  * @rst_src: if called due to reset, specifies the reset source
4136  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4137  * @cd: pointer to command details structure or NULL
4138  *
4139  * Disable LAN Tx queue (0x0C31)
4140  */
4141 static int
4142 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4143 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4144 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4145 		   struct ice_sq_cd *cd)
4146 {
4147 	struct ice_aqc_dis_txq_item *item;
4148 	struct ice_aqc_dis_txqs *cmd;
4149 	struct ice_aq_desc desc;
4150 	u16 i, sz = 0;
4151 	int status;
4152 
4153 	cmd = &desc.params.dis_txqs;
4154 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4155 
4156 	/* qg_list can be NULL only in VM/VF reset flow */
4157 	if (!qg_list && !rst_src)
4158 		return -EINVAL;
4159 
4160 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4161 		return -EINVAL;
4162 
4163 	cmd->num_entries = num_qgrps;
4164 
4165 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4166 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4167 
4168 	switch (rst_src) {
4169 	case ICE_VM_RESET:
4170 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4171 		cmd->vmvf_and_timeout |=
4172 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4173 		break;
4174 	case ICE_VF_RESET:
4175 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4176 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4177 		cmd->vmvf_and_timeout |=
4178 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4179 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4180 		break;
4181 	case ICE_NO_RESET:
4182 	default:
4183 		break;
4184 	}
4185 
4186 	/* flush pipe on time out */
4187 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4188 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4189 	if (!qg_list)
4190 		goto do_aq;
4191 
4192 	/* set RD bit to indicate that command buffer is provided by the driver
4193 	 * and it needs to be read by the firmware
4194 	 */
4195 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4196 
4197 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4198 		u16 item_size = struct_size(item, q_id, item->num_qs);
4199 
4200 		/* If the num of queues is even, add 2 bytes of padding */
4201 		if ((item->num_qs % 2) == 0)
4202 			item_size += 2;
4203 
4204 		sz += item_size;
4205 
4206 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4207 	}
4208 
4209 	if (buf_size != sz)
4210 		return -EINVAL;
4211 
4212 do_aq:
4213 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4214 	if (status) {
4215 		if (!qg_list)
4216 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4217 				  vmvf_num, hw->adminq.sq_last_status);
4218 		else
4219 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4220 				  le16_to_cpu(qg_list[0].q_id[0]),
4221 				  hw->adminq.sq_last_status);
4222 	}
4223 	return status;
4224 }
4225 
4226 /**
4227  * ice_aq_add_rdma_qsets
4228  * @hw: pointer to the hardware structure
4229  * @num_qset_grps: Number of RDMA Qset groups
4230  * @qset_list: list of Qset groups to be added
4231  * @buf_size: size of buffer for indirect command
4232  * @cd: pointer to command details structure or NULL
4233  *
4234  * Add Tx RDMA Qsets (0x0C33)
4235  */
4236 static int
4237 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4238 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4239 		      u16 buf_size, struct ice_sq_cd *cd)
4240 {
4241 	struct ice_aqc_add_rdma_qset_data *list;
4242 	struct ice_aqc_add_rdma_qset *cmd;
4243 	struct ice_aq_desc desc;
4244 	u16 i, sum_size = 0;
4245 
4246 	cmd = &desc.params.add_rdma_qset;
4247 
4248 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4249 
4250 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4251 		return -EINVAL;
4252 
4253 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4254 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4255 
4256 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4257 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4258 							     num_qsets);
4259 	}
4260 
4261 	if (buf_size != sum_size)
4262 		return -EINVAL;
4263 
4264 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4265 
4266 	cmd->num_qset_grps = num_qset_grps;
4267 
4268 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4269 }
4270 
4271 /* End of FW Admin Queue command wrappers */
4272 
4273 /**
4274  * ice_write_byte - write a byte to a packed context structure
4275  * @src_ctx:  the context structure to read from
4276  * @dest_ctx: the context to be written to
4277  * @ce_info:  a description of the struct to be filled
4278  */
4279 static void
4280 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4281 {
4282 	u8 src_byte, dest_byte, mask;
4283 	u8 *from, *dest;
4284 	u16 shift_width;
4285 
4286 	/* copy from the next struct field */
4287 	from = src_ctx + ce_info->offset;
4288 
4289 	/* prepare the bits and mask */
4290 	shift_width = ce_info->lsb % 8;
4291 	mask = (u8)(BIT(ce_info->width) - 1);
4292 
4293 	src_byte = *from;
4294 	src_byte &= mask;
4295 
4296 	/* shift to correct alignment */
4297 	mask <<= shift_width;
4298 	src_byte <<= shift_width;
4299 
4300 	/* get the current bits from the target bit string */
4301 	dest = dest_ctx + (ce_info->lsb / 8);
4302 
4303 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4304 
4305 	dest_byte &= ~mask;	/* get the bits not changing */
4306 	dest_byte |= src_byte;	/* add in the new bits */
4307 
4308 	/* put it all back */
4309 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4310 }
4311 
4312 /**
4313  * ice_write_word - write a word to a packed context structure
4314  * @src_ctx:  the context structure to read from
4315  * @dest_ctx: the context to be written to
4316  * @ce_info:  a description of the struct to be filled
4317  */
4318 static void
4319 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4320 {
4321 	u16 src_word, mask;
4322 	__le16 dest_word;
4323 	u8 *from, *dest;
4324 	u16 shift_width;
4325 
4326 	/* copy from the next struct field */
4327 	from = src_ctx + ce_info->offset;
4328 
4329 	/* prepare the bits and mask */
4330 	shift_width = ce_info->lsb % 8;
4331 	mask = BIT(ce_info->width) - 1;
4332 
4333 	/* don't swizzle the bits until after the mask because the mask bits
4334 	 * will be in a different bit position on big endian machines
4335 	 */
4336 	src_word = *(u16 *)from;
4337 	src_word &= mask;
4338 
4339 	/* shift to correct alignment */
4340 	mask <<= shift_width;
4341 	src_word <<= shift_width;
4342 
4343 	/* get the current bits from the target bit string */
4344 	dest = dest_ctx + (ce_info->lsb / 8);
4345 
4346 	memcpy(&dest_word, dest, sizeof(dest_word));
4347 
4348 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4349 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4350 
4351 	/* put it all back */
4352 	memcpy(dest, &dest_word, sizeof(dest_word));
4353 }
4354 
4355 /**
4356  * ice_write_dword - write a dword to a packed context structure
4357  * @src_ctx:  the context structure to read from
4358  * @dest_ctx: the context to be written to
4359  * @ce_info:  a description of the struct to be filled
4360  */
4361 static void
4362 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4363 {
4364 	u32 src_dword, mask;
4365 	__le32 dest_dword;
4366 	u8 *from, *dest;
4367 	u16 shift_width;
4368 
4369 	/* copy from the next struct field */
4370 	from = src_ctx + ce_info->offset;
4371 
4372 	/* prepare the bits and mask */
4373 	shift_width = ce_info->lsb % 8;
4374 
4375 	/* if the field width is exactly 32 on an x86 machine, then the shift
4376 	 * operation will not work because the SHL instructions count is masked
4377 	 * to 5 bits so the shift will do nothing
4378 	 */
4379 	if (ce_info->width < 32)
4380 		mask = BIT(ce_info->width) - 1;
4381 	else
4382 		mask = (u32)~0;
4383 
4384 	/* don't swizzle the bits until after the mask because the mask bits
4385 	 * will be in a different bit position on big endian machines
4386 	 */
4387 	src_dword = *(u32 *)from;
4388 	src_dword &= mask;
4389 
4390 	/* shift to correct alignment */
4391 	mask <<= shift_width;
4392 	src_dword <<= shift_width;
4393 
4394 	/* get the current bits from the target bit string */
4395 	dest = dest_ctx + (ce_info->lsb / 8);
4396 
4397 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4398 
4399 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4400 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4401 
4402 	/* put it all back */
4403 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4404 }
4405 
4406 /**
4407  * ice_write_qword - write a qword to a packed context structure
4408  * @src_ctx:  the context structure to read from
4409  * @dest_ctx: the context to be written to
4410  * @ce_info:  a description of the struct to be filled
4411  */
4412 static void
4413 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4414 {
4415 	u64 src_qword, mask;
4416 	__le64 dest_qword;
4417 	u8 *from, *dest;
4418 	u16 shift_width;
4419 
4420 	/* copy from the next struct field */
4421 	from = src_ctx + ce_info->offset;
4422 
4423 	/* prepare the bits and mask */
4424 	shift_width = ce_info->lsb % 8;
4425 
4426 	/* if the field width is exactly 64 on an x86 machine, then the shift
4427 	 * operation will not work because the SHL instructions count is masked
4428 	 * to 6 bits so the shift will do nothing
4429 	 */
4430 	if (ce_info->width < 64)
4431 		mask = BIT_ULL(ce_info->width) - 1;
4432 	else
4433 		mask = (u64)~0;
4434 
4435 	/* don't swizzle the bits until after the mask because the mask bits
4436 	 * will be in a different bit position on big endian machines
4437 	 */
4438 	src_qword = *(u64 *)from;
4439 	src_qword &= mask;
4440 
4441 	/* shift to correct alignment */
4442 	mask <<= shift_width;
4443 	src_qword <<= shift_width;
4444 
4445 	/* get the current bits from the target bit string */
4446 	dest = dest_ctx + (ce_info->lsb / 8);
4447 
4448 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4449 
4450 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4451 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4452 
4453 	/* put it all back */
4454 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4455 }
4456 
4457 /**
4458  * ice_set_ctx - set context bits in packed structure
4459  * @hw: pointer to the hardware structure
4460  * @src_ctx:  pointer to a generic non-packed context structure
4461  * @dest_ctx: pointer to memory for the packed structure
4462  * @ce_info:  a description of the structure to be transformed
4463  */
4464 int
4465 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4466 	    const struct ice_ctx_ele *ce_info)
4467 {
4468 	int f;
4469 
4470 	for (f = 0; ce_info[f].width; f++) {
4471 		/* We have to deal with each element of the FW response
4472 		 * using the correct size so that we are correct regardless
4473 		 * of the endianness of the machine.
4474 		 */
4475 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4476 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4477 				  f, ce_info[f].width, ce_info[f].size_of);
4478 			continue;
4479 		}
4480 		switch (ce_info[f].size_of) {
4481 		case sizeof(u8):
4482 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4483 			break;
4484 		case sizeof(u16):
4485 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4486 			break;
4487 		case sizeof(u32):
4488 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4489 			break;
4490 		case sizeof(u64):
4491 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4492 			break;
4493 		default:
4494 			return -EINVAL;
4495 		}
4496 	}
4497 
4498 	return 0;
4499 }
4500 
4501 /**
4502  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4503  * @hw: pointer to the HW struct
4504  * @vsi_handle: software VSI handle
4505  * @tc: TC number
4506  * @q_handle: software queue handle
4507  */
4508 struct ice_q_ctx *
4509 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4510 {
4511 	struct ice_vsi_ctx *vsi;
4512 	struct ice_q_ctx *q_ctx;
4513 
4514 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4515 	if (!vsi)
4516 		return NULL;
4517 	if (q_handle >= vsi->num_lan_q_entries[tc])
4518 		return NULL;
4519 	if (!vsi->lan_q_ctx[tc])
4520 		return NULL;
4521 	q_ctx = vsi->lan_q_ctx[tc];
4522 	return &q_ctx[q_handle];
4523 }
4524 
4525 /**
4526  * ice_ena_vsi_txq
4527  * @pi: port information structure
4528  * @vsi_handle: software VSI handle
4529  * @tc: TC number
4530  * @q_handle: software queue handle
4531  * @num_qgrps: Number of added queue groups
4532  * @buf: list of queue groups to be added
4533  * @buf_size: size of buffer for indirect command
4534  * @cd: pointer to command details structure or NULL
4535  *
4536  * This function adds one LAN queue
4537  */
4538 int
4539 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4540 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4541 		struct ice_sq_cd *cd)
4542 {
4543 	struct ice_aqc_txsched_elem_data node = { 0 };
4544 	struct ice_sched_node *parent;
4545 	struct ice_q_ctx *q_ctx;
4546 	struct ice_hw *hw;
4547 	int status;
4548 
4549 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4550 		return -EIO;
4551 
4552 	if (num_qgrps > 1 || buf->num_txqs > 1)
4553 		return -ENOSPC;
4554 
4555 	hw = pi->hw;
4556 
4557 	if (!ice_is_vsi_valid(hw, vsi_handle))
4558 		return -EINVAL;
4559 
4560 	mutex_lock(&pi->sched_lock);
4561 
4562 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4563 	if (!q_ctx) {
4564 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4565 			  q_handle);
4566 		status = -EINVAL;
4567 		goto ena_txq_exit;
4568 	}
4569 
4570 	/* find a parent node */
4571 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4572 					    ICE_SCHED_NODE_OWNER_LAN);
4573 	if (!parent) {
4574 		status = -EINVAL;
4575 		goto ena_txq_exit;
4576 	}
4577 
4578 	buf->parent_teid = parent->info.node_teid;
4579 	node.parent_teid = parent->info.node_teid;
4580 	/* Mark that the values in the "generic" section as valid. The default
4581 	 * value in the "generic" section is zero. This means that :
4582 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4583 	 * - 0 priority among siblings, indicated by Bit 1-3.
4584 	 * - WFQ, indicated by Bit 4.
4585 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4586 	 * Bit 5-6.
4587 	 * - Bit 7 is reserved.
4588 	 * Without setting the generic section as valid in valid_sections, the
4589 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4590 	 */
4591 	buf->txqs[0].info.valid_sections =
4592 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4593 		ICE_AQC_ELEM_VALID_EIR;
4594 	buf->txqs[0].info.generic = 0;
4595 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4596 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4597 	buf->txqs[0].info.cir_bw.bw_alloc =
4598 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4599 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4600 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4601 	buf->txqs[0].info.eir_bw.bw_alloc =
4602 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4603 
4604 	/* add the LAN queue */
4605 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4606 	if (status) {
4607 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4608 			  le16_to_cpu(buf->txqs[0].txq_id),
4609 			  hw->adminq.sq_last_status);
4610 		goto ena_txq_exit;
4611 	}
4612 
4613 	node.node_teid = buf->txqs[0].q_teid;
4614 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4615 	q_ctx->q_handle = q_handle;
4616 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4617 
4618 	/* add a leaf node into scheduler tree queue layer */
4619 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4620 	if (!status)
4621 		status = ice_sched_replay_q_bw(pi, q_ctx);
4622 
4623 ena_txq_exit:
4624 	mutex_unlock(&pi->sched_lock);
4625 	return status;
4626 }
4627 
4628 /**
4629  * ice_dis_vsi_txq
4630  * @pi: port information structure
4631  * @vsi_handle: software VSI handle
4632  * @tc: TC number
4633  * @num_queues: number of queues
4634  * @q_handles: pointer to software queue handle array
4635  * @q_ids: pointer to the q_id array
4636  * @q_teids: pointer to queue node teids
4637  * @rst_src: if called due to reset, specifies the reset source
4638  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4639  * @cd: pointer to command details structure or NULL
4640  *
4641  * This function removes queues and their corresponding nodes in SW DB
4642  */
4643 int
4644 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4645 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4646 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4647 		struct ice_sq_cd *cd)
4648 {
4649 	struct ice_aqc_dis_txq_item *qg_list;
4650 	struct ice_q_ctx *q_ctx;
4651 	int status = -ENOENT;
4652 	struct ice_hw *hw;
4653 	u16 i, buf_size;
4654 
4655 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4656 		return -EIO;
4657 
4658 	hw = pi->hw;
4659 
4660 	if (!num_queues) {
4661 		/* if queue is disabled already yet the disable queue command
4662 		 * has to be sent to complete the VF reset, then call
4663 		 * ice_aq_dis_lan_txq without any queue information
4664 		 */
4665 		if (rst_src)
4666 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4667 						  vmvf_num, NULL);
4668 		return -EIO;
4669 	}
4670 
4671 	buf_size = struct_size(qg_list, q_id, 1);
4672 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4673 	if (!qg_list)
4674 		return -ENOMEM;
4675 
4676 	mutex_lock(&pi->sched_lock);
4677 
4678 	for (i = 0; i < num_queues; i++) {
4679 		struct ice_sched_node *node;
4680 
4681 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4682 		if (!node)
4683 			continue;
4684 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4685 		if (!q_ctx) {
4686 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4687 				  q_handles[i]);
4688 			continue;
4689 		}
4690 		if (q_ctx->q_handle != q_handles[i]) {
4691 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4692 				  q_ctx->q_handle, q_handles[i]);
4693 			continue;
4694 		}
4695 		qg_list->parent_teid = node->info.parent_teid;
4696 		qg_list->num_qs = 1;
4697 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4698 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4699 					    vmvf_num, cd);
4700 
4701 		if (status)
4702 			break;
4703 		ice_free_sched_node(pi, node);
4704 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4705 	}
4706 	mutex_unlock(&pi->sched_lock);
4707 	kfree(qg_list);
4708 	return status;
4709 }
4710 
4711 /**
4712  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4713  * @pi: port information structure
4714  * @vsi_handle: software VSI handle
4715  * @tc_bitmap: TC bitmap
4716  * @maxqs: max queues array per TC
4717  * @owner: LAN or RDMA
4718  *
4719  * This function adds/updates the VSI queues per TC.
4720  */
4721 static int
4722 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4723 	       u16 *maxqs, u8 owner)
4724 {
4725 	int status = 0;
4726 	u8 i;
4727 
4728 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4729 		return -EIO;
4730 
4731 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4732 		return -EINVAL;
4733 
4734 	mutex_lock(&pi->sched_lock);
4735 
4736 	ice_for_each_traffic_class(i) {
4737 		/* configuration is possible only if TC node is present */
4738 		if (!ice_sched_get_tc_node(pi, i))
4739 			continue;
4740 
4741 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4742 					   ice_is_tc_ena(tc_bitmap, i));
4743 		if (status)
4744 			break;
4745 	}
4746 
4747 	mutex_unlock(&pi->sched_lock);
4748 	return status;
4749 }
4750 
4751 /**
4752  * ice_cfg_vsi_lan - configure VSI LAN queues
4753  * @pi: port information structure
4754  * @vsi_handle: software VSI handle
4755  * @tc_bitmap: TC bitmap
4756  * @max_lanqs: max LAN queues array per TC
4757  *
4758  * This function adds/updates the VSI LAN queues per TC.
4759  */
4760 int
4761 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4762 		u16 *max_lanqs)
4763 {
4764 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4765 			      ICE_SCHED_NODE_OWNER_LAN);
4766 }
4767 
4768 /**
4769  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4770  * @pi: port information structure
4771  * @vsi_handle: software VSI handle
4772  * @tc_bitmap: TC bitmap
4773  * @max_rdmaqs: max RDMA queues array per TC
4774  *
4775  * This function adds/updates the VSI RDMA queues per TC.
4776  */
4777 int
4778 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4779 		 u16 *max_rdmaqs)
4780 {
4781 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4782 			      ICE_SCHED_NODE_OWNER_RDMA);
4783 }
4784 
4785 /**
4786  * ice_ena_vsi_rdma_qset
4787  * @pi: port information structure
4788  * @vsi_handle: software VSI handle
4789  * @tc: TC number
4790  * @rdma_qset: pointer to RDMA Qset
4791  * @num_qsets: number of RDMA Qsets
4792  * @qset_teid: pointer to Qset node TEIDs
4793  *
4794  * This function adds RDMA Qset
4795  */
4796 int
4797 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4798 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4799 {
4800 	struct ice_aqc_txsched_elem_data node = { 0 };
4801 	struct ice_aqc_add_rdma_qset_data *buf;
4802 	struct ice_sched_node *parent;
4803 	struct ice_hw *hw;
4804 	u16 i, buf_size;
4805 	int ret;
4806 
4807 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4808 		return -EIO;
4809 	hw = pi->hw;
4810 
4811 	if (!ice_is_vsi_valid(hw, vsi_handle))
4812 		return -EINVAL;
4813 
4814 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4815 	buf = kzalloc(buf_size, GFP_KERNEL);
4816 	if (!buf)
4817 		return -ENOMEM;
4818 	mutex_lock(&pi->sched_lock);
4819 
4820 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4821 					    ICE_SCHED_NODE_OWNER_RDMA);
4822 	if (!parent) {
4823 		ret = -EINVAL;
4824 		goto rdma_error_exit;
4825 	}
4826 	buf->parent_teid = parent->info.node_teid;
4827 	node.parent_teid = parent->info.node_teid;
4828 
4829 	buf->num_qsets = cpu_to_le16(num_qsets);
4830 	for (i = 0; i < num_qsets; i++) {
4831 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4832 		buf->rdma_qsets[i].info.valid_sections =
4833 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4834 			ICE_AQC_ELEM_VALID_EIR;
4835 		buf->rdma_qsets[i].info.generic = 0;
4836 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4837 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4838 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4839 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4840 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4841 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4842 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4843 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4844 	}
4845 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4846 	if (ret) {
4847 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4848 		goto rdma_error_exit;
4849 	}
4850 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4851 	for (i = 0; i < num_qsets; i++) {
4852 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4853 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4854 					 &node, NULL);
4855 		if (ret)
4856 			break;
4857 		qset_teid[i] = le32_to_cpu(node.node_teid);
4858 	}
4859 rdma_error_exit:
4860 	mutex_unlock(&pi->sched_lock);
4861 	kfree(buf);
4862 	return ret;
4863 }
4864 
4865 /**
4866  * ice_dis_vsi_rdma_qset - free RDMA resources
4867  * @pi: port_info struct
4868  * @count: number of RDMA Qsets to free
4869  * @qset_teid: TEID of Qset node
4870  * @q_id: list of queue IDs being disabled
4871  */
4872 int
4873 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4874 		      u16 *q_id)
4875 {
4876 	struct ice_aqc_dis_txq_item *qg_list;
4877 	struct ice_hw *hw;
4878 	int status = 0;
4879 	u16 qg_size;
4880 	int i;
4881 
4882 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4883 		return -EIO;
4884 
4885 	hw = pi->hw;
4886 
4887 	qg_size = struct_size(qg_list, q_id, 1);
4888 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4889 	if (!qg_list)
4890 		return -ENOMEM;
4891 
4892 	mutex_lock(&pi->sched_lock);
4893 
4894 	for (i = 0; i < count; i++) {
4895 		struct ice_sched_node *node;
4896 
4897 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4898 		if (!node)
4899 			continue;
4900 
4901 		qg_list->parent_teid = node->info.parent_teid;
4902 		qg_list->num_qs = 1;
4903 		qg_list->q_id[0] =
4904 			cpu_to_le16(q_id[i] |
4905 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4906 
4907 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4908 					    ICE_NO_RESET, 0, NULL);
4909 		if (status)
4910 			break;
4911 
4912 		ice_free_sched_node(pi, node);
4913 	}
4914 
4915 	mutex_unlock(&pi->sched_lock);
4916 	kfree(qg_list);
4917 	return status;
4918 }
4919 
4920 /**
4921  * ice_replay_pre_init - replay pre initialization
4922  * @hw: pointer to the HW struct
4923  *
4924  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4925  */
4926 static int ice_replay_pre_init(struct ice_hw *hw)
4927 {
4928 	struct ice_switch_info *sw = hw->switch_info;
4929 	u8 i;
4930 
4931 	/* Delete old entries from replay filter list head if there is any */
4932 	ice_rm_all_sw_replay_rule_info(hw);
4933 	/* In start of replay, move entries into replay_rules list, it
4934 	 * will allow adding rules entries back to filt_rules list,
4935 	 * which is operational list.
4936 	 */
4937 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4938 		list_replace_init(&sw->recp_list[i].filt_rules,
4939 				  &sw->recp_list[i].filt_replay_rules);
4940 	ice_sched_replay_agg_vsi_preinit(hw);
4941 
4942 	return 0;
4943 }
4944 
4945 /**
4946  * ice_replay_vsi - replay VSI configuration
4947  * @hw: pointer to the HW struct
4948  * @vsi_handle: driver VSI handle
4949  *
4950  * Restore all VSI configuration after reset. It is required to call this
4951  * function with main VSI first.
4952  */
4953 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4954 {
4955 	int status;
4956 
4957 	if (!ice_is_vsi_valid(hw, vsi_handle))
4958 		return -EINVAL;
4959 
4960 	/* Replay pre-initialization if there is any */
4961 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4962 		status = ice_replay_pre_init(hw);
4963 		if (status)
4964 			return status;
4965 	}
4966 	/* Replay per VSI all RSS configurations */
4967 	status = ice_replay_rss_cfg(hw, vsi_handle);
4968 	if (status)
4969 		return status;
4970 	/* Replay per VSI all filters */
4971 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4972 	if (!status)
4973 		status = ice_replay_vsi_agg(hw, vsi_handle);
4974 	return status;
4975 }
4976 
4977 /**
4978  * ice_replay_post - post replay configuration cleanup
4979  * @hw: pointer to the HW struct
4980  *
4981  * Post replay cleanup.
4982  */
4983 void ice_replay_post(struct ice_hw *hw)
4984 {
4985 	/* Delete old entries from replay filter list head */
4986 	ice_rm_all_sw_replay_rule_info(hw);
4987 	ice_sched_replay_agg(hw);
4988 }
4989 
4990 /**
4991  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4992  * @hw: ptr to the hardware info
4993  * @reg: offset of 64 bit HW register to read from
4994  * @prev_stat_loaded: bool to specify if previous stats are loaded
4995  * @prev_stat: ptr to previous loaded stat value
4996  * @cur_stat: ptr to current stat value
4997  */
4998 void
4999 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5000 		  u64 *prev_stat, u64 *cur_stat)
5001 {
5002 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5003 
5004 	/* device stats are not reset at PFR, they likely will not be zeroed
5005 	 * when the driver starts. Thus, save the value from the first read
5006 	 * without adding to the statistic value so that we report stats which
5007 	 * count up from zero.
5008 	 */
5009 	if (!prev_stat_loaded) {
5010 		*prev_stat = new_data;
5011 		return;
5012 	}
5013 
5014 	/* Calculate the difference between the new and old values, and then
5015 	 * add it to the software stat value.
5016 	 */
5017 	if (new_data >= *prev_stat)
5018 		*cur_stat += new_data - *prev_stat;
5019 	else
5020 		/* to manage the potential roll-over */
5021 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5022 
5023 	/* Update the previously stored value to prepare for next read */
5024 	*prev_stat = new_data;
5025 }
5026 
5027 /**
5028  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5029  * @hw: ptr to the hardware info
5030  * @reg: offset of HW register to read from
5031  * @prev_stat_loaded: bool to specify if previous stats are loaded
5032  * @prev_stat: ptr to previous loaded stat value
5033  * @cur_stat: ptr to current stat value
5034  */
5035 void
5036 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5037 		  u64 *prev_stat, u64 *cur_stat)
5038 {
5039 	u32 new_data;
5040 
5041 	new_data = rd32(hw, reg);
5042 
5043 	/* device stats are not reset at PFR, they likely will not be zeroed
5044 	 * when the driver starts. Thus, save the value from the first read
5045 	 * without adding to the statistic value so that we report stats which
5046 	 * count up from zero.
5047 	 */
5048 	if (!prev_stat_loaded) {
5049 		*prev_stat = new_data;
5050 		return;
5051 	}
5052 
5053 	/* Calculate the difference between the new and old values, and then
5054 	 * add it to the software stat value.
5055 	 */
5056 	if (new_data >= *prev_stat)
5057 		*cur_stat += new_data - *prev_stat;
5058 	else
5059 		/* to manage the potential roll-over */
5060 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5061 
5062 	/* Update the previously stored value to prepare for next read */
5063 	*prev_stat = new_data;
5064 }
5065 
5066 /**
5067  * ice_sched_query_elem - query element information from HW
5068  * @hw: pointer to the HW struct
5069  * @node_teid: node TEID to be queried
5070  * @buf: buffer to element information
5071  *
5072  * This function queries HW element information
5073  */
5074 int
5075 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5076 		     struct ice_aqc_txsched_elem_data *buf)
5077 {
5078 	u16 buf_size, num_elem_ret = 0;
5079 	int status;
5080 
5081 	buf_size = sizeof(*buf);
5082 	memset(buf, 0, buf_size);
5083 	buf->node_teid = cpu_to_le32(node_teid);
5084 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5085 					  NULL);
5086 	if (status || num_elem_ret != 1)
5087 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5088 	return status;
5089 }
5090 
5091 /**
5092  * ice_aq_read_i2c
5093  * @hw: pointer to the hw struct
5094  * @topo_addr: topology address for a device to communicate with
5095  * @bus_addr: 7-bit I2C bus address
5096  * @addr: I2C memory address (I2C offset) with up to 16 bits
5097  * @params: I2C parameters: bit [7] - Repeated start,
5098  *			    bits [6:5] data offset size,
5099  *			    bit [4] - I2C address type,
5100  *			    bits [3:0] - data size to read (0-16 bytes)
5101  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5102  * @cd: pointer to command details structure or NULL
5103  *
5104  * Read I2C (0x06E2)
5105  */
5106 int
5107 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5108 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5109 		struct ice_sq_cd *cd)
5110 {
5111 	struct ice_aq_desc desc = { 0 };
5112 	struct ice_aqc_i2c *cmd;
5113 	u8 data_size;
5114 	int status;
5115 
5116 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5117 	cmd = &desc.params.read_write_i2c;
5118 
5119 	if (!data)
5120 		return -EINVAL;
5121 
5122 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5123 
5124 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5125 	cmd->topo_addr = topo_addr;
5126 	cmd->i2c_params = params;
5127 	cmd->i2c_addr = addr;
5128 
5129 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5130 	if (!status) {
5131 		struct ice_aqc_read_i2c_resp *resp;
5132 		u8 i;
5133 
5134 		resp = &desc.params.read_i2c_resp;
5135 		for (i = 0; i < data_size; i++) {
5136 			*data = resp->i2c_data[i];
5137 			data++;
5138 		}
5139 	}
5140 
5141 	return status;
5142 }
5143 
5144 /**
5145  * ice_aq_write_i2c
5146  * @hw: pointer to the hw struct
5147  * @topo_addr: topology address for a device to communicate with
5148  * @bus_addr: 7-bit I2C bus address
5149  * @addr: I2C memory address (I2C offset) with up to 16 bits
5150  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5151  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5152  * @cd: pointer to command details structure or NULL
5153  *
5154  * Write I2C (0x06E3)
5155  *
5156  * * Return:
5157  * * 0             - Successful write to the i2c device
5158  * * -EINVAL       - Data size greater than 4 bytes
5159  * * -EIO          - FW error
5160  */
5161 int
5162 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5163 		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5164 		 struct ice_sq_cd *cd)
5165 {
5166 	struct ice_aq_desc desc = { 0 };
5167 	struct ice_aqc_i2c *cmd;
5168 	u8 data_size;
5169 
5170 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5171 	cmd = &desc.params.read_write_i2c;
5172 
5173 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5174 
5175 	/* data_size limited to 4 */
5176 	if (data_size > 4)
5177 		return -EINVAL;
5178 
5179 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5180 	cmd->topo_addr = topo_addr;
5181 	cmd->i2c_params = params;
5182 	cmd->i2c_addr = addr;
5183 
5184 	memcpy(cmd->i2c_data, data, data_size);
5185 
5186 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5187 }
5188 
5189 /**
5190  * ice_aq_set_driver_param - Set driver parameter to share via firmware
5191  * @hw: pointer to the HW struct
5192  * @idx: parameter index to set
5193  * @value: the value to set the parameter to
5194  * @cd: pointer to command details structure or NULL
5195  *
5196  * Set the value of one of the software defined parameters. All PFs connected
5197  * to this device can read the value using ice_aq_get_driver_param.
5198  *
5199  * Note that firmware provides no synchronization or locking, and will not
5200  * save the parameter value during a device reset. It is expected that
5201  * a single PF will write the parameter value, while all other PFs will only
5202  * read it.
5203  */
5204 int
5205 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5206 			u32 value, struct ice_sq_cd *cd)
5207 {
5208 	struct ice_aqc_driver_shared_params *cmd;
5209 	struct ice_aq_desc desc;
5210 
5211 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5212 		return -EIO;
5213 
5214 	cmd = &desc.params.drv_shared_params;
5215 
5216 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5217 
5218 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5219 	cmd->param_indx = idx;
5220 	cmd->param_val = cpu_to_le32(value);
5221 
5222 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5223 }
5224 
5225 /**
5226  * ice_aq_get_driver_param - Get driver parameter shared via firmware
5227  * @hw: pointer to the HW struct
5228  * @idx: parameter index to set
5229  * @value: storage to return the shared parameter
5230  * @cd: pointer to command details structure or NULL
5231  *
5232  * Get the value of one of the software defined parameters.
5233  *
5234  * Note that firmware provides no synchronization or locking. It is expected
5235  * that only a single PF will write a given parameter.
5236  */
5237 int
5238 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5239 			u32 *value, struct ice_sq_cd *cd)
5240 {
5241 	struct ice_aqc_driver_shared_params *cmd;
5242 	struct ice_aq_desc desc;
5243 	int status;
5244 
5245 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5246 		return -EIO;
5247 
5248 	cmd = &desc.params.drv_shared_params;
5249 
5250 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5251 
5252 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5253 	cmd->param_indx = idx;
5254 
5255 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5256 	if (status)
5257 		return status;
5258 
5259 	*value = le32_to_cpu(cmd->param_val);
5260 
5261 	return 0;
5262 }
5263 
5264 /**
5265  * ice_aq_set_gpio
5266  * @hw: pointer to the hw struct
5267  * @gpio_ctrl_handle: GPIO controller node handle
5268  * @pin_idx: IO Number of the GPIO that needs to be set
5269  * @value: SW provide IO value to set in the LSB
5270  * @cd: pointer to command details structure or NULL
5271  *
5272  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5273  */
5274 int
5275 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5276 		struct ice_sq_cd *cd)
5277 {
5278 	struct ice_aqc_gpio *cmd;
5279 	struct ice_aq_desc desc;
5280 
5281 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5282 	cmd = &desc.params.read_write_gpio;
5283 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5284 	cmd->gpio_num = pin_idx;
5285 	cmd->gpio_val = value ? 1 : 0;
5286 
5287 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5288 }
5289 
5290 /**
5291  * ice_aq_get_gpio
5292  * @hw: pointer to the hw struct
5293  * @gpio_ctrl_handle: GPIO controller node handle
5294  * @pin_idx: IO Number of the GPIO that needs to be set
5295  * @value: IO value read
5296  * @cd: pointer to command details structure or NULL
5297  *
5298  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5299  * the topology
5300  */
5301 int
5302 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5303 		bool *value, struct ice_sq_cd *cd)
5304 {
5305 	struct ice_aqc_gpio *cmd;
5306 	struct ice_aq_desc desc;
5307 	int status;
5308 
5309 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5310 	cmd = &desc.params.read_write_gpio;
5311 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5312 	cmd->gpio_num = pin_idx;
5313 
5314 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5315 	if (status)
5316 		return status;
5317 
5318 	*value = !!cmd->gpio_val;
5319 	return 0;
5320 }
5321 
5322 /**
5323  * ice_is_fw_api_min_ver
5324  * @hw: pointer to the hardware structure
5325  * @maj: major version
5326  * @min: minor version
5327  * @patch: patch version
5328  *
5329  * Checks if the firmware API is minimum version
5330  */
5331 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5332 {
5333 	if (hw->api_maj_ver == maj) {
5334 		if (hw->api_min_ver > min)
5335 			return true;
5336 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5337 			return true;
5338 	} else if (hw->api_maj_ver > maj) {
5339 		return true;
5340 	}
5341 
5342 	return false;
5343 }
5344 
5345 /**
5346  * ice_fw_supports_link_override
5347  * @hw: pointer to the hardware structure
5348  *
5349  * Checks if the firmware supports link override
5350  */
5351 bool ice_fw_supports_link_override(struct ice_hw *hw)
5352 {
5353 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5354 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5355 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5356 }
5357 
5358 /**
5359  * ice_get_link_default_override
5360  * @ldo: pointer to the link default override struct
5361  * @pi: pointer to the port info struct
5362  *
5363  * Gets the link default override for a port
5364  */
5365 int
5366 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5367 			      struct ice_port_info *pi)
5368 {
5369 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5370 	struct ice_hw *hw = pi->hw;
5371 	int status;
5372 
5373 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5374 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5375 	if (status) {
5376 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5377 		return status;
5378 	}
5379 
5380 	/* Each port has its own config; calculate for our port */
5381 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5382 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5383 
5384 	/* link options first */
5385 	status = ice_read_sr_word(hw, tlv_start, &buf);
5386 	if (status) {
5387 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5388 		return status;
5389 	}
5390 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5391 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5392 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5393 
5394 	/* link PHY config */
5395 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5396 	status = ice_read_sr_word(hw, offset, &buf);
5397 	if (status) {
5398 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5399 		return status;
5400 	}
5401 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5402 
5403 	/* PHY types low */
5404 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5405 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5406 		status = ice_read_sr_word(hw, (offset + i), &buf);
5407 		if (status) {
5408 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5409 			return status;
5410 		}
5411 		/* shift 16 bits at a time to fill 64 bits */
5412 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5413 	}
5414 
5415 	/* PHY types high */
5416 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5417 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5418 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5419 		status = ice_read_sr_word(hw, (offset + i), &buf);
5420 		if (status) {
5421 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5422 			return status;
5423 		}
5424 		/* shift 16 bits at a time to fill 64 bits */
5425 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5426 	}
5427 
5428 	return status;
5429 }
5430 
5431 /**
5432  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5433  * @caps: get PHY capability data
5434  */
5435 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5436 {
5437 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5438 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5439 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5440 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5441 		return true;
5442 
5443 	return false;
5444 }
5445 
5446 /**
5447  * ice_aq_set_lldp_mib - Set the LLDP MIB
5448  * @hw: pointer to the HW struct
5449  * @mib_type: Local, Remote or both Local and Remote MIBs
5450  * @buf: pointer to the caller-supplied buffer to store the MIB block
5451  * @buf_size: size of the buffer (in bytes)
5452  * @cd: pointer to command details structure or NULL
5453  *
5454  * Set the LLDP MIB. (0x0A08)
5455  */
5456 int
5457 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5458 		    struct ice_sq_cd *cd)
5459 {
5460 	struct ice_aqc_lldp_set_local_mib *cmd;
5461 	struct ice_aq_desc desc;
5462 
5463 	cmd = &desc.params.lldp_set_mib;
5464 
5465 	if (buf_size == 0 || !buf)
5466 		return -EINVAL;
5467 
5468 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5469 
5470 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5471 	desc.datalen = cpu_to_le16(buf_size);
5472 
5473 	cmd->type = mib_type;
5474 	cmd->length = cpu_to_le16(buf_size);
5475 
5476 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5477 }
5478 
5479 /**
5480  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5481  * @hw: pointer to HW struct
5482  */
5483 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5484 {
5485 	if (hw->mac_type != ICE_MAC_E810)
5486 		return false;
5487 
5488 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5489 				     ICE_FW_API_LLDP_FLTR_MIN,
5490 				     ICE_FW_API_LLDP_FLTR_PATCH);
5491 }
5492 
5493 /**
5494  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5495  * @hw: pointer to HW struct
5496  * @vsi_num: absolute HW index for VSI
5497  * @add: boolean for if adding or removing a filter
5498  */
5499 int
5500 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5501 {
5502 	struct ice_aqc_lldp_filter_ctrl *cmd;
5503 	struct ice_aq_desc desc;
5504 
5505 	cmd = &desc.params.lldp_filter_ctrl;
5506 
5507 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5508 
5509 	if (add)
5510 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5511 	else
5512 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5513 
5514 	cmd->vsi_num = cpu_to_le16(vsi_num);
5515 
5516 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5517 }
5518 
5519 /**
5520  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5521  * @hw: pointer to HW struct
5522  */
5523 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5524 {
5525 	struct ice_aq_desc desc;
5526 
5527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5528 
5529 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5530 }
5531 
5532 /**
5533  * ice_fw_supports_report_dflt_cfg
5534  * @hw: pointer to the hardware structure
5535  *
5536  * Checks if the firmware supports report default configuration
5537  */
5538 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5539 {
5540 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5541 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5542 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5543 }
5544 
5545 /* each of the indexes into the following array match the speed of a return
5546  * value from the list of AQ returned speeds like the range:
5547  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5548  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5549  * array. The array is defined as 15 elements long because the link_speed
5550  * returned by the firmware is a 16 bit * value, but is indexed
5551  * by [fls(speed) - 1]
5552  */
5553 static const u32 ice_aq_to_link_speed[] = {
5554 	SPEED_10,	/* BIT(0) */
5555 	SPEED_100,
5556 	SPEED_1000,
5557 	SPEED_2500,
5558 	SPEED_5000,
5559 	SPEED_10000,
5560 	SPEED_20000,
5561 	SPEED_25000,
5562 	SPEED_40000,
5563 	SPEED_50000,
5564 	SPEED_100000,	/* BIT(10) */
5565 };
5566 
5567 /**
5568  * ice_get_link_speed - get integer speed from table
5569  * @index: array index from fls(aq speed) - 1
5570  *
5571  * Returns: u32 value containing integer speed
5572  */
5573 u32 ice_get_link_speed(u16 index)
5574 {
5575 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5576 		return 0;
5577 
5578 	return ice_aq_to_link_speed[index];
5579 }
5580