1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 8 #define ICE_PF_RESET_WAIT_COUNT 200 9 10 #define ICE_NIC_FLX_ENTRY(hw, mdid, idx) \ 11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(ICE_RXDID_FLEX_NIC), \ 12 ((ICE_RX_OPC_MDID << \ 13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \ 14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \ 15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \ 16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M)) 17 18 #define ICE_NIC_FLX_FLG_ENTRY(hw, flg_0, flg_1, flg_2, flg_3, idx) \ 19 wr32((hw), GLFLXP_RXDID_FLAGS(ICE_RXDID_FLEX_NIC, idx), \ 20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \ 21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \ 22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \ 23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \ 24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \ 25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \ 26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \ 27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M)) 28 29 /** 30 * ice_set_mac_type - Sets MAC type 31 * @hw: pointer to the HW structure 32 * 33 * This function sets the MAC type of the adapter based on the 34 * vendor ID and device ID stored in the hw structure. 35 */ 36 static enum ice_status ice_set_mac_type(struct ice_hw *hw) 37 { 38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 39 return ICE_ERR_DEVICE_NOT_SUPPORTED; 40 41 hw->mac_type = ICE_MAC_GENERIC; 42 return 0; 43 } 44 45 /** 46 * ice_clear_pf_cfg - Clear PF configuration 47 * @hw: pointer to the hardware structure 48 */ 49 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw) 50 { 51 struct ice_aq_desc desc; 52 53 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 54 55 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 56 } 57 58 /** 59 * ice_aq_manage_mac_read - manage MAC address read command 60 * @hw: pointer to the hw struct 61 * @buf: a virtual buffer to hold the manage MAC read response 62 * @buf_size: Size of the virtual buffer 63 * @cd: pointer to command details structure or NULL 64 * 65 * This function is used to return per PF station MAC address (0x0107). 66 * NOTE: Upon successful completion of this command, MAC address information 67 * is returned in user specified buffer. Please interpret user specified 68 * buffer as "manage_mac_read" response. 69 * Response such as various MAC addresses are stored in HW struct (port.mac) 70 * ice_aq_discover_caps is expected to be called before this function is called. 71 */ 72 static enum ice_status 73 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 74 struct ice_sq_cd *cd) 75 { 76 struct ice_aqc_manage_mac_read_resp *resp; 77 struct ice_aqc_manage_mac_read *cmd; 78 struct ice_aq_desc desc; 79 enum ice_status status; 80 u16 flags; 81 u8 i; 82 83 cmd = &desc.params.mac_read; 84 85 if (buf_size < sizeof(*resp)) 86 return ICE_ERR_BUF_TOO_SHORT; 87 88 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 89 90 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 91 if (status) 92 return status; 93 94 resp = (struct ice_aqc_manage_mac_read_resp *)buf; 95 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 96 97 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 98 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 99 return ICE_ERR_CFG; 100 } 101 102 /* A single port can report up to two (LAN and WoL) addresses */ 103 for (i = 0; i < cmd->num_addr; i++) 104 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 105 ether_addr_copy(hw->port_info->mac.lan_addr, 106 resp[i].mac_addr); 107 ether_addr_copy(hw->port_info->mac.perm_addr, 108 resp[i].mac_addr); 109 break; 110 } 111 112 return 0; 113 } 114 115 /** 116 * ice_aq_get_phy_caps - returns PHY capabilities 117 * @pi: port information structure 118 * @qual_mods: report qualified modules 119 * @report_mode: report mode capabilities 120 * @pcaps: structure for PHY capabilities to be filled 121 * @cd: pointer to command details structure or NULL 122 * 123 * Returns the various PHY capabilities supported on the Port (0x0600) 124 */ 125 static enum ice_status 126 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 127 struct ice_aqc_get_phy_caps_data *pcaps, 128 struct ice_sq_cd *cd) 129 { 130 struct ice_aqc_get_phy_caps *cmd; 131 u16 pcaps_size = sizeof(*pcaps); 132 struct ice_aq_desc desc; 133 enum ice_status status; 134 135 cmd = &desc.params.get_phy; 136 137 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 138 return ICE_ERR_PARAM; 139 140 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 141 142 if (qual_mods) 143 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 144 145 cmd->param0 |= cpu_to_le16(report_mode); 146 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd); 147 148 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) 149 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 150 151 return status; 152 } 153 154 /** 155 * ice_get_media_type - Gets media type 156 * @pi: port information structure 157 */ 158 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 159 { 160 struct ice_link_status *hw_link_info; 161 162 if (!pi) 163 return ICE_MEDIA_UNKNOWN; 164 165 hw_link_info = &pi->phy.link_info; 166 167 if (hw_link_info->phy_type_low) { 168 switch (hw_link_info->phy_type_low) { 169 case ICE_PHY_TYPE_LOW_1000BASE_SX: 170 case ICE_PHY_TYPE_LOW_1000BASE_LX: 171 case ICE_PHY_TYPE_LOW_10GBASE_SR: 172 case ICE_PHY_TYPE_LOW_10GBASE_LR: 173 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 174 case ICE_PHY_TYPE_LOW_25GBASE_SR: 175 case ICE_PHY_TYPE_LOW_25GBASE_LR: 176 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 177 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 178 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 179 return ICE_MEDIA_FIBER; 180 case ICE_PHY_TYPE_LOW_100BASE_TX: 181 case ICE_PHY_TYPE_LOW_1000BASE_T: 182 case ICE_PHY_TYPE_LOW_2500BASE_T: 183 case ICE_PHY_TYPE_LOW_5GBASE_T: 184 case ICE_PHY_TYPE_LOW_10GBASE_T: 185 case ICE_PHY_TYPE_LOW_25GBASE_T: 186 return ICE_MEDIA_BASET; 187 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 188 case ICE_PHY_TYPE_LOW_25GBASE_CR: 189 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 190 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 191 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 192 return ICE_MEDIA_DA; 193 case ICE_PHY_TYPE_LOW_1000BASE_KX: 194 case ICE_PHY_TYPE_LOW_2500BASE_KX: 195 case ICE_PHY_TYPE_LOW_2500BASE_X: 196 case ICE_PHY_TYPE_LOW_5GBASE_KR: 197 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 198 case ICE_PHY_TYPE_LOW_25GBASE_KR: 199 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 200 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 201 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 202 return ICE_MEDIA_BACKPLANE; 203 } 204 } 205 206 return ICE_MEDIA_UNKNOWN; 207 } 208 209 /** 210 * ice_aq_get_link_info 211 * @pi: port information structure 212 * @ena_lse: enable/disable LinkStatusEvent reporting 213 * @link: pointer to link status structure - optional 214 * @cd: pointer to command details structure or NULL 215 * 216 * Get Link Status (0x607). Returns the link status of the adapter. 217 */ 218 enum ice_status 219 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 220 struct ice_link_status *link, struct ice_sq_cd *cd) 221 { 222 struct ice_link_status *hw_link_info_old, *hw_link_info; 223 struct ice_aqc_get_link_status_data link_data = { 0 }; 224 struct ice_aqc_get_link_status *resp; 225 enum ice_media_type *hw_media_type; 226 struct ice_fc_info *hw_fc_info; 227 bool tx_pause, rx_pause; 228 struct ice_aq_desc desc; 229 enum ice_status status; 230 u16 cmd_flags; 231 232 if (!pi) 233 return ICE_ERR_PARAM; 234 hw_link_info_old = &pi->phy.link_info_old; 235 hw_media_type = &pi->phy.media_type; 236 hw_link_info = &pi->phy.link_info; 237 hw_fc_info = &pi->fc; 238 239 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 240 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 241 resp = &desc.params.get_link_status; 242 resp->cmd_flags = cpu_to_le16(cmd_flags); 243 resp->lport_num = pi->lport; 244 245 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data), 246 cd); 247 248 if (status) 249 return status; 250 251 /* save off old link status information */ 252 *hw_link_info_old = *hw_link_info; 253 254 /* update current link status information */ 255 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed); 256 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low); 257 *hw_media_type = ice_get_media_type(pi); 258 hw_link_info->link_info = link_data.link_info; 259 hw_link_info->an_info = link_data.an_info; 260 hw_link_info->ext_info = link_data.ext_info; 261 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size); 262 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M; 263 264 /* update fc info */ 265 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 266 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 267 if (tx_pause && rx_pause) 268 hw_fc_info->current_mode = ICE_FC_FULL; 269 else if (tx_pause) 270 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 271 else if (rx_pause) 272 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 273 else 274 hw_fc_info->current_mode = ICE_FC_NONE; 275 276 hw_link_info->lse_ena = 277 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 278 279 /* save link status information */ 280 if (link) 281 *link = *hw_link_info; 282 283 /* flag cleared so calling functions don't call AQ again */ 284 pi->phy.get_link_info = false; 285 286 return status; 287 } 288 289 /** 290 * ice_init_flex_parser - initialize rx flex parser 291 * @hw: pointer to the hardware structure 292 * 293 * Function to initialize flex descriptors 294 */ 295 static void ice_init_flex_parser(struct ice_hw *hw) 296 { 297 u8 idx = 0; 298 299 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_LOW, 0); 300 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_HIGH, 1); 301 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_LOWER, 2); 302 ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_HIGH, 3); 303 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_FRG, ICE_RXFLG_UDP_GRE, 304 ICE_RXFLG_PKT_DSI, ICE_RXFLG_FIN, idx++); 305 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_SYN, ICE_RXFLG_RST, 306 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++); 307 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, 308 ICE_RXFLG_EVLAN_x8100, ICE_RXFLG_EVLAN_x9100, 309 idx++); 310 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_VLAN_x8100, ICE_RXFLG_TNL_VLAN, 311 ICE_RXFLG_TNL_MAC, ICE_RXFLG_TNL0, idx++); 312 ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2, 313 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx); 314 } 315 316 /** 317 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 318 * @hw: pointer to the hw struct 319 */ 320 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw) 321 { 322 struct ice_switch_info *sw; 323 324 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 325 sizeof(*hw->switch_info), GFP_KERNEL); 326 sw = hw->switch_info; 327 328 if (!sw) 329 return ICE_ERR_NO_MEMORY; 330 331 INIT_LIST_HEAD(&sw->vsi_list_map_head); 332 333 mutex_init(&sw->mac_list_lock); 334 INIT_LIST_HEAD(&sw->mac_list_head); 335 336 mutex_init(&sw->vlan_list_lock); 337 INIT_LIST_HEAD(&sw->vlan_list_head); 338 339 mutex_init(&sw->eth_m_list_lock); 340 INIT_LIST_HEAD(&sw->eth_m_list_head); 341 342 mutex_init(&sw->promisc_list_lock); 343 INIT_LIST_HEAD(&sw->promisc_list_head); 344 345 mutex_init(&sw->mac_vlan_list_lock); 346 INIT_LIST_HEAD(&sw->mac_vlan_list_head); 347 348 return 0; 349 } 350 351 /** 352 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 353 * @hw: pointer to the hw struct 354 */ 355 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 356 { 357 struct ice_switch_info *sw = hw->switch_info; 358 struct ice_vsi_list_map_info *v_pos_map; 359 struct ice_vsi_list_map_info *v_tmp_map; 360 361 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 362 list_entry) { 363 list_del(&v_pos_map->list_entry); 364 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 365 } 366 367 mutex_destroy(&sw->mac_list_lock); 368 mutex_destroy(&sw->vlan_list_lock); 369 mutex_destroy(&sw->eth_m_list_lock); 370 mutex_destroy(&sw->promisc_list_lock); 371 mutex_destroy(&sw->mac_vlan_list_lock); 372 373 devm_kfree(ice_hw_to_dev(hw), sw); 374 } 375 376 /** 377 * ice_init_hw - main hardware initialization routine 378 * @hw: pointer to the hardware structure 379 */ 380 enum ice_status ice_init_hw(struct ice_hw *hw) 381 { 382 struct ice_aqc_get_phy_caps_data *pcaps; 383 enum ice_status status; 384 u16 mac_buf_len; 385 void *mac_buf; 386 387 /* Set MAC type based on DeviceID */ 388 status = ice_set_mac_type(hw); 389 if (status) 390 return status; 391 392 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & 393 PF_FUNC_RID_FUNC_NUM_M) >> 394 PF_FUNC_RID_FUNC_NUM_S; 395 396 status = ice_reset(hw, ICE_RESET_PFR); 397 if (status) 398 return status; 399 400 /* set these values to minimum allowed */ 401 hw->itr_gran_200 = ICE_ITR_GRAN_MIN_200; 402 hw->itr_gran_100 = ICE_ITR_GRAN_MIN_100; 403 hw->itr_gran_50 = ICE_ITR_GRAN_MIN_50; 404 hw->itr_gran_25 = ICE_ITR_GRAN_MIN_25; 405 406 status = ice_init_all_ctrlq(hw); 407 if (status) 408 goto err_unroll_cqinit; 409 410 status = ice_clear_pf_cfg(hw); 411 if (status) 412 goto err_unroll_cqinit; 413 414 ice_clear_pxe_mode(hw); 415 416 status = ice_init_nvm(hw); 417 if (status) 418 goto err_unroll_cqinit; 419 420 status = ice_get_caps(hw); 421 if (status) 422 goto err_unroll_cqinit; 423 424 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 425 sizeof(*hw->port_info), GFP_KERNEL); 426 if (!hw->port_info) { 427 status = ICE_ERR_NO_MEMORY; 428 goto err_unroll_cqinit; 429 } 430 431 /* set the back pointer to hw */ 432 hw->port_info->hw = hw; 433 434 /* Initialize port_info struct with switch configuration data */ 435 status = ice_get_initial_sw_cfg(hw); 436 if (status) 437 goto err_unroll_alloc; 438 439 hw->evb_veb = true; 440 441 /* Query the allocated resources for tx scheduler */ 442 status = ice_sched_query_res_alloc(hw); 443 if (status) { 444 ice_debug(hw, ICE_DBG_SCHED, 445 "Failed to get scheduler allocated resources\n"); 446 goto err_unroll_alloc; 447 } 448 449 /* Initialize port_info struct with scheduler data */ 450 status = ice_sched_init_port(hw->port_info); 451 if (status) 452 goto err_unroll_sched; 453 454 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 455 if (!pcaps) { 456 status = ICE_ERR_NO_MEMORY; 457 goto err_unroll_sched; 458 } 459 460 /* Initialize port_info struct with PHY capabilities */ 461 status = ice_aq_get_phy_caps(hw->port_info, false, 462 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL); 463 devm_kfree(ice_hw_to_dev(hw), pcaps); 464 if (status) 465 goto err_unroll_sched; 466 467 /* Initialize port_info struct with link information */ 468 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 469 if (status) 470 goto err_unroll_sched; 471 472 status = ice_init_fltr_mgmt_struct(hw); 473 if (status) 474 goto err_unroll_sched; 475 476 /* Get MAC information */ 477 /* A single port can report up to two (LAN and WoL) addresses */ 478 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, 479 sizeof(struct ice_aqc_manage_mac_read_resp), 480 GFP_KERNEL); 481 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 482 483 if (!mac_buf) { 484 status = ICE_ERR_NO_MEMORY; 485 goto err_unroll_fltr_mgmt_struct; 486 } 487 488 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 489 devm_kfree(ice_hw_to_dev(hw), mac_buf); 490 491 if (status) 492 goto err_unroll_fltr_mgmt_struct; 493 494 ice_init_flex_parser(hw); 495 496 return 0; 497 498 err_unroll_fltr_mgmt_struct: 499 ice_cleanup_fltr_mgmt_struct(hw); 500 err_unroll_sched: 501 ice_sched_cleanup_all(hw); 502 err_unroll_alloc: 503 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 504 err_unroll_cqinit: 505 ice_shutdown_all_ctrlq(hw); 506 return status; 507 } 508 509 /** 510 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 511 * @hw: pointer to the hardware structure 512 */ 513 void ice_deinit_hw(struct ice_hw *hw) 514 { 515 ice_sched_cleanup_all(hw); 516 ice_shutdown_all_ctrlq(hw); 517 518 if (hw->port_info) { 519 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 520 hw->port_info = NULL; 521 } 522 523 ice_cleanup_fltr_mgmt_struct(hw); 524 } 525 526 /** 527 * ice_check_reset - Check to see if a global reset is complete 528 * @hw: pointer to the hardware structure 529 */ 530 enum ice_status ice_check_reset(struct ice_hw *hw) 531 { 532 u32 cnt, reg = 0, grst_delay; 533 534 /* Poll for Device Active state in case a recent CORER, GLOBR, 535 * or EMPR has occurred. The grst delay value is in 100ms units. 536 * Add 1sec for outstanding AQ commands that can take a long time. 537 */ 538 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> 539 GLGEN_RSTCTL_GRSTDEL_S) + 10; 540 541 for (cnt = 0; cnt < grst_delay; cnt++) { 542 mdelay(100); 543 reg = rd32(hw, GLGEN_RSTAT); 544 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 545 break; 546 } 547 548 if (cnt == grst_delay) { 549 ice_debug(hw, ICE_DBG_INIT, 550 "Global reset polling failed to complete.\n"); 551 return ICE_ERR_RESET_FAILED; 552 } 553 554 #define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \ 555 GLNVM_ULD_GLOBR_DONE_M) 556 557 /* Device is Active; check Global Reset processes are done */ 558 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 559 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK; 560 if (reg == ICE_RESET_DONE_MASK) { 561 ice_debug(hw, ICE_DBG_INIT, 562 "Global reset processes done. %d\n", cnt); 563 break; 564 } 565 mdelay(10); 566 } 567 568 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 569 ice_debug(hw, ICE_DBG_INIT, 570 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 571 reg); 572 return ICE_ERR_RESET_FAILED; 573 } 574 575 return 0; 576 } 577 578 /** 579 * ice_pf_reset - Reset the PF 580 * @hw: pointer to the hardware structure 581 * 582 * If a global reset has been triggered, this function checks 583 * for its completion and then issues the PF reset 584 */ 585 static enum ice_status ice_pf_reset(struct ice_hw *hw) 586 { 587 u32 cnt, reg; 588 589 /* If at function entry a global reset was already in progress, i.e. 590 * state is not 'device active' or any of the reset done bits are not 591 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 592 * global reset is done. 593 */ 594 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 595 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 596 /* poll on global reset currently in progress until done */ 597 if (ice_check_reset(hw)) 598 return ICE_ERR_RESET_FAILED; 599 600 return 0; 601 } 602 603 /* Reset the PF */ 604 reg = rd32(hw, PFGEN_CTRL); 605 606 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 607 608 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 609 reg = rd32(hw, PFGEN_CTRL); 610 if (!(reg & PFGEN_CTRL_PFSWR_M)) 611 break; 612 613 mdelay(1); 614 } 615 616 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 617 ice_debug(hw, ICE_DBG_INIT, 618 "PF reset polling failed to complete.\n"); 619 return ICE_ERR_RESET_FAILED; 620 } 621 622 return 0; 623 } 624 625 /** 626 * ice_reset - Perform different types of reset 627 * @hw: pointer to the hardware structure 628 * @req: reset request 629 * 630 * This function triggers a reset as specified by the req parameter. 631 * 632 * Note: 633 * If anything other than a PF reset is triggered, PXE mode is restored. 634 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 635 * interface has been restored in the rebuild flow. 636 */ 637 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req) 638 { 639 u32 val = 0; 640 641 switch (req) { 642 case ICE_RESET_PFR: 643 return ice_pf_reset(hw); 644 case ICE_RESET_CORER: 645 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 646 val = GLGEN_RTRIG_CORER_M; 647 break; 648 case ICE_RESET_GLOBR: 649 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 650 val = GLGEN_RTRIG_GLOBR_M; 651 break; 652 } 653 654 val |= rd32(hw, GLGEN_RTRIG); 655 wr32(hw, GLGEN_RTRIG, val); 656 ice_flush(hw); 657 658 /* wait for the FW to be ready */ 659 return ice_check_reset(hw); 660 } 661 662 /** 663 * ice_copy_rxq_ctx_to_hw 664 * @hw: pointer to the hardware structure 665 * @ice_rxq_ctx: pointer to the rxq context 666 * @rxq_index: the index of the rx queue 667 * 668 * Copies rxq context from dense structure to hw register space 669 */ 670 static enum ice_status 671 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) 672 { 673 u8 i; 674 675 if (!ice_rxq_ctx) 676 return ICE_ERR_BAD_PTR; 677 678 if (rxq_index > QRX_CTRL_MAX_INDEX) 679 return ICE_ERR_PARAM; 680 681 /* Copy each dword separately to hw */ 682 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 683 wr32(hw, QRX_CONTEXT(i, rxq_index), 684 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 685 686 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, 687 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 688 } 689 690 return 0; 691 } 692 693 /* LAN Rx Queue Context */ 694 static const struct ice_ctx_ele ice_rlan_ctx_info[] = { 695 /* Field Width LSB */ 696 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 697 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 698 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 699 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 700 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 701 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 702 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 703 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 704 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 705 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 706 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 707 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 708 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 709 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 710 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 711 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 712 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 713 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 714 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 715 { 0 } 716 }; 717 718 /** 719 * ice_write_rxq_ctx 720 * @hw: pointer to the hardware structure 721 * @rlan_ctx: pointer to the rxq context 722 * @rxq_index: the index of the rx queue 723 * 724 * Converts rxq context from sparse to dense structure and then writes 725 * it to hw register space 726 */ 727 enum ice_status 728 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 729 u32 rxq_index) 730 { 731 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; 732 733 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); 734 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); 735 } 736 737 /* LAN Tx Queue Context */ 738 const struct ice_ctx_ele ice_tlan_ctx_info[] = { 739 /* Field Width LSB */ 740 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 741 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 742 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 743 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 744 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 745 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 746 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 747 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 748 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 749 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 750 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 751 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 752 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 753 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 754 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 755 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 756 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 757 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 758 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 759 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 760 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 761 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 762 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 763 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 764 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 765 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 766 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171), 767 { 0 } 768 }; 769 770 /** 771 * ice_debug_cq 772 * @hw: pointer to the hardware structure 773 * @mask: debug mask 774 * @desc: pointer to control queue descriptor 775 * @buf: pointer to command buffer 776 * @buf_len: max length of buf 777 * 778 * Dumps debug log about control command with descriptor contents. 779 */ 780 void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, 781 void *buf, u16 buf_len) 782 { 783 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc; 784 u16 len; 785 786 #ifndef CONFIG_DYNAMIC_DEBUG 787 if (!(mask & hw->debug_mask)) 788 return; 789 #endif 790 791 if (!desc) 792 return; 793 794 len = le16_to_cpu(cq_desc->datalen); 795 796 ice_debug(hw, mask, 797 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", 798 le16_to_cpu(cq_desc->opcode), 799 le16_to_cpu(cq_desc->flags), 800 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval)); 801 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n", 802 le32_to_cpu(cq_desc->cookie_high), 803 le32_to_cpu(cq_desc->cookie_low)); 804 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n", 805 le32_to_cpu(cq_desc->params.generic.param0), 806 le32_to_cpu(cq_desc->params.generic.param1)); 807 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n", 808 le32_to_cpu(cq_desc->params.generic.addr_high), 809 le32_to_cpu(cq_desc->params.generic.addr_low)); 810 if (buf && cq_desc->datalen != 0) { 811 ice_debug(hw, mask, "Buffer:\n"); 812 if (buf_len < len) 813 len = buf_len; 814 815 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len); 816 } 817 } 818 819 /* FW Admin Queue command wrappers */ 820 821 /** 822 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 823 * @hw: pointer to the hw struct 824 * @desc: descriptor describing the command 825 * @buf: buffer to use for indirect commands (NULL for direct commands) 826 * @buf_size: size of buffer for indirect commands (0 for direct commands) 827 * @cd: pointer to command details structure 828 * 829 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 830 */ 831 enum ice_status 832 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 833 u16 buf_size, struct ice_sq_cd *cd) 834 { 835 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd); 836 } 837 838 /** 839 * ice_aq_get_fw_ver 840 * @hw: pointer to the hw struct 841 * @cd: pointer to command details structure or NULL 842 * 843 * Get the firmware version (0x0001) from the admin queue commands 844 */ 845 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 846 { 847 struct ice_aqc_get_ver *resp; 848 struct ice_aq_desc desc; 849 enum ice_status status; 850 851 resp = &desc.params.get_ver; 852 853 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 854 855 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 856 857 if (!status) { 858 hw->fw_branch = resp->fw_branch; 859 hw->fw_maj_ver = resp->fw_major; 860 hw->fw_min_ver = resp->fw_minor; 861 hw->fw_patch = resp->fw_patch; 862 hw->fw_build = le32_to_cpu(resp->fw_build); 863 hw->api_branch = resp->api_branch; 864 hw->api_maj_ver = resp->api_major; 865 hw->api_min_ver = resp->api_minor; 866 hw->api_patch = resp->api_patch; 867 } 868 869 return status; 870 } 871 872 /** 873 * ice_aq_q_shutdown 874 * @hw: pointer to the hw struct 875 * @unloading: is the driver unloading itself 876 * 877 * Tell the Firmware that we're shutting down the AdminQ and whether 878 * or not the driver is unloading as well (0x0003). 879 */ 880 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 881 { 882 struct ice_aqc_q_shutdown *cmd; 883 struct ice_aq_desc desc; 884 885 cmd = &desc.params.q_shutdown; 886 887 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 888 889 if (unloading) 890 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING); 891 892 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 893 } 894 895 /** 896 * ice_aq_req_res 897 * @hw: pointer to the hw struct 898 * @res: resource id 899 * @access: access type 900 * @sdp_number: resource number 901 * @timeout: the maximum time in ms that the driver may hold the resource 902 * @cd: pointer to command details structure or NULL 903 * 904 * requests common resource using the admin queue commands (0x0008) 905 */ 906 static enum ice_status 907 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 908 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 909 struct ice_sq_cd *cd) 910 { 911 struct ice_aqc_req_res *cmd_resp; 912 struct ice_aq_desc desc; 913 enum ice_status status; 914 915 cmd_resp = &desc.params.res_owner; 916 917 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 918 919 cmd_resp->res_id = cpu_to_le16(res); 920 cmd_resp->access_type = cpu_to_le16(access); 921 cmd_resp->res_number = cpu_to_le32(sdp_number); 922 923 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 924 /* The completion specifies the maximum time in ms that the driver 925 * may hold the resource in the Timeout field. 926 * If the resource is held by someone else, the command completes with 927 * busy return value and the timeout field indicates the maximum time 928 * the current owner of the resource has to free it. 929 */ 930 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 931 *timeout = le32_to_cpu(cmd_resp->timeout); 932 933 return status; 934 } 935 936 /** 937 * ice_aq_release_res 938 * @hw: pointer to the hw struct 939 * @res: resource id 940 * @sdp_number: resource number 941 * @cd: pointer to command details structure or NULL 942 * 943 * release common resource using the admin queue commands (0x0009) 944 */ 945 static enum ice_status 946 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 947 struct ice_sq_cd *cd) 948 { 949 struct ice_aqc_req_res *cmd; 950 struct ice_aq_desc desc; 951 952 cmd = &desc.params.res_owner; 953 954 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 955 956 cmd->res_id = cpu_to_le16(res); 957 cmd->res_number = cpu_to_le32(sdp_number); 958 959 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 960 } 961 962 /** 963 * ice_acquire_res 964 * @hw: pointer to the HW structure 965 * @res: resource id 966 * @access: access type (read or write) 967 * 968 * This function will attempt to acquire the ownership of a resource. 969 */ 970 enum ice_status 971 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 972 enum ice_aq_res_access_type access) 973 { 974 #define ICE_RES_POLLING_DELAY_MS 10 975 u32 delay = ICE_RES_POLLING_DELAY_MS; 976 enum ice_status status; 977 u32 time_left = 0; 978 u32 timeout; 979 980 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 981 982 /* An admin queue return code of ICE_AQ_RC_EEXIST means that another 983 * driver has previously acquired the resource and performed any 984 * necessary updates; in this case the caller does not obtain the 985 * resource and has no further work to do. 986 */ 987 if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) { 988 status = ICE_ERR_AQ_NO_WORK; 989 goto ice_acquire_res_exit; 990 } 991 992 if (status) 993 ice_debug(hw, ICE_DBG_RES, 994 "resource %d acquire type %d failed.\n", res, access); 995 996 /* If necessary, poll until the current lock owner timeouts */ 997 timeout = time_left; 998 while (status && timeout && time_left) { 999 mdelay(delay); 1000 timeout = (timeout > delay) ? timeout - delay : 0; 1001 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1002 1003 if (hw->adminq.sq_last_status == ICE_AQ_RC_EEXIST) { 1004 /* lock free, but no work to do */ 1005 status = ICE_ERR_AQ_NO_WORK; 1006 break; 1007 } 1008 1009 if (!status) 1010 /* lock acquired */ 1011 break; 1012 } 1013 if (status && status != ICE_ERR_AQ_NO_WORK) 1014 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1015 1016 ice_acquire_res_exit: 1017 if (status == ICE_ERR_AQ_NO_WORK) { 1018 if (access == ICE_RES_WRITE) 1019 ice_debug(hw, ICE_DBG_RES, 1020 "resource indicates no work to do.\n"); 1021 else 1022 ice_debug(hw, ICE_DBG_RES, 1023 "Warning: ICE_ERR_AQ_NO_WORK not expected\n"); 1024 } 1025 return status; 1026 } 1027 1028 /** 1029 * ice_release_res 1030 * @hw: pointer to the HW structure 1031 * @res: resource id 1032 * 1033 * This function will release a resource using the proper Admin Command. 1034 */ 1035 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 1036 { 1037 enum ice_status status; 1038 u32 total_delay = 0; 1039 1040 status = ice_aq_release_res(hw, res, 0, NULL); 1041 1042 /* there are some rare cases when trying to release the resource 1043 * results in an admin Q timeout, so handle them correctly 1044 */ 1045 while ((status == ICE_ERR_AQ_TIMEOUT) && 1046 (total_delay < hw->adminq.sq_cmd_timeout)) { 1047 mdelay(1); 1048 status = ice_aq_release_res(hw, res, 0, NULL); 1049 total_delay++; 1050 } 1051 } 1052 1053 /** 1054 * ice_parse_caps - parse function/device capabilities 1055 * @hw: pointer to the hw struct 1056 * @buf: pointer to a buffer containing function/device capability records 1057 * @cap_count: number of capability records in the list 1058 * @opc: type of capabilities list to parse 1059 * 1060 * Helper function to parse function(0x000a)/device(0x000b) capabilities list. 1061 */ 1062 static void 1063 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count, 1064 enum ice_adminq_opc opc) 1065 { 1066 struct ice_aqc_list_caps_elem *cap_resp; 1067 struct ice_hw_func_caps *func_p = NULL; 1068 struct ice_hw_dev_caps *dev_p = NULL; 1069 struct ice_hw_common_caps *caps; 1070 u32 i; 1071 1072 if (!buf) 1073 return; 1074 1075 cap_resp = (struct ice_aqc_list_caps_elem *)buf; 1076 1077 if (opc == ice_aqc_opc_list_dev_caps) { 1078 dev_p = &hw->dev_caps; 1079 caps = &dev_p->common_cap; 1080 } else if (opc == ice_aqc_opc_list_func_caps) { 1081 func_p = &hw->func_caps; 1082 caps = &func_p->common_cap; 1083 } else { 1084 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n"); 1085 return; 1086 } 1087 1088 for (i = 0; caps && i < cap_count; i++, cap_resp++) { 1089 u32 logical_id = le32_to_cpu(cap_resp->logical_id); 1090 u32 phys_id = le32_to_cpu(cap_resp->phys_id); 1091 u32 number = le32_to_cpu(cap_resp->number); 1092 u16 cap = le16_to_cpu(cap_resp->cap); 1093 1094 switch (cap) { 1095 case ICE_AQC_CAPS_VSI: 1096 if (dev_p) { 1097 dev_p->num_vsi_allocd_to_host = number; 1098 ice_debug(hw, ICE_DBG_INIT, 1099 "HW caps: Dev.VSI cnt = %d\n", 1100 dev_p->num_vsi_allocd_to_host); 1101 } else if (func_p) { 1102 func_p->guaranteed_num_vsi = number; 1103 ice_debug(hw, ICE_DBG_INIT, 1104 "HW caps: Func.VSI cnt = %d\n", 1105 func_p->guaranteed_num_vsi); 1106 } 1107 break; 1108 case ICE_AQC_CAPS_RSS: 1109 caps->rss_table_size = number; 1110 caps->rss_table_entry_width = logical_id; 1111 ice_debug(hw, ICE_DBG_INIT, 1112 "HW caps: RSS table size = %d\n", 1113 caps->rss_table_size); 1114 ice_debug(hw, ICE_DBG_INIT, 1115 "HW caps: RSS table width = %d\n", 1116 caps->rss_table_entry_width); 1117 break; 1118 case ICE_AQC_CAPS_RXQS: 1119 caps->num_rxq = number; 1120 caps->rxq_first_id = phys_id; 1121 ice_debug(hw, ICE_DBG_INIT, 1122 "HW caps: Num Rx Qs = %d\n", caps->num_rxq); 1123 ice_debug(hw, ICE_DBG_INIT, 1124 "HW caps: Rx first queue ID = %d\n", 1125 caps->rxq_first_id); 1126 break; 1127 case ICE_AQC_CAPS_TXQS: 1128 caps->num_txq = number; 1129 caps->txq_first_id = phys_id; 1130 ice_debug(hw, ICE_DBG_INIT, 1131 "HW caps: Num Tx Qs = %d\n", caps->num_txq); 1132 ice_debug(hw, ICE_DBG_INIT, 1133 "HW caps: Tx first queue ID = %d\n", 1134 caps->txq_first_id); 1135 break; 1136 case ICE_AQC_CAPS_MSIX: 1137 caps->num_msix_vectors = number; 1138 caps->msix_vector_first_id = phys_id; 1139 ice_debug(hw, ICE_DBG_INIT, 1140 "HW caps: MSIX vector count = %d\n", 1141 caps->num_msix_vectors); 1142 ice_debug(hw, ICE_DBG_INIT, 1143 "HW caps: MSIX first vector index = %d\n", 1144 caps->msix_vector_first_id); 1145 break; 1146 case ICE_AQC_CAPS_MAX_MTU: 1147 caps->max_mtu = number; 1148 if (dev_p) 1149 ice_debug(hw, ICE_DBG_INIT, 1150 "HW caps: Dev.MaxMTU = %d\n", 1151 caps->max_mtu); 1152 else if (func_p) 1153 ice_debug(hw, ICE_DBG_INIT, 1154 "HW caps: func.MaxMTU = %d\n", 1155 caps->max_mtu); 1156 break; 1157 default: 1158 ice_debug(hw, ICE_DBG_INIT, 1159 "HW caps: Unknown capability[%d]: 0x%x\n", i, 1160 cap); 1161 break; 1162 } 1163 } 1164 } 1165 1166 /** 1167 * ice_aq_discover_caps - query function/device capabilities 1168 * @hw: pointer to the hw struct 1169 * @buf: a virtual buffer to hold the capabilities 1170 * @buf_size: Size of the virtual buffer 1171 * @data_size: Size of the returned data, or buf size needed if AQ err==ENOMEM 1172 * @opc: capabilities type to discover - pass in the command opcode 1173 * @cd: pointer to command details structure or NULL 1174 * 1175 * Get the function(0x000a)/device(0x000b) capabilities description from 1176 * the firmware. 1177 */ 1178 static enum ice_status 1179 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u16 *data_size, 1180 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1181 { 1182 struct ice_aqc_list_caps *cmd; 1183 struct ice_aq_desc desc; 1184 enum ice_status status; 1185 1186 cmd = &desc.params.get_cap; 1187 1188 if (opc != ice_aqc_opc_list_func_caps && 1189 opc != ice_aqc_opc_list_dev_caps) 1190 return ICE_ERR_PARAM; 1191 1192 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1193 1194 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1195 if (!status) 1196 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc); 1197 *data_size = le16_to_cpu(desc.datalen); 1198 1199 return status; 1200 } 1201 1202 /** 1203 * ice_get_caps - get info about the HW 1204 * @hw: pointer to the hardware structure 1205 */ 1206 enum ice_status ice_get_caps(struct ice_hw *hw) 1207 { 1208 enum ice_status status; 1209 u16 data_size = 0; 1210 u16 cbuf_len; 1211 u8 retries; 1212 1213 /* The driver doesn't know how many capabilities the device will return 1214 * so the buffer size required isn't known ahead of time. The driver 1215 * starts with cbuf_len and if this turns out to be insufficient, the 1216 * device returns ICE_AQ_RC_ENOMEM and also the buffer size it needs. 1217 * The driver then allocates the buffer of this size and retries the 1218 * operation. So it follows that the retry count is 2. 1219 */ 1220 #define ICE_GET_CAP_BUF_COUNT 40 1221 #define ICE_GET_CAP_RETRY_COUNT 2 1222 1223 cbuf_len = ICE_GET_CAP_BUF_COUNT * 1224 sizeof(struct ice_aqc_list_caps_elem); 1225 1226 retries = ICE_GET_CAP_RETRY_COUNT; 1227 1228 do { 1229 void *cbuf; 1230 1231 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL); 1232 if (!cbuf) 1233 return ICE_ERR_NO_MEMORY; 1234 1235 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &data_size, 1236 ice_aqc_opc_list_func_caps, NULL); 1237 devm_kfree(ice_hw_to_dev(hw), cbuf); 1238 1239 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM) 1240 break; 1241 1242 /* If ENOMEM is returned, try again with bigger buffer */ 1243 cbuf_len = data_size; 1244 } while (--retries); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_aq_manage_mac_write - manage MAC address write command 1251 * @hw: pointer to the hw struct 1252 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 1253 * @flags: flags to control write behavior 1254 * @cd: pointer to command details structure or NULL 1255 * 1256 * This function is used to write MAC address to the NVM (0x0108). 1257 */ 1258 enum ice_status 1259 ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags, 1260 struct ice_sq_cd *cd) 1261 { 1262 struct ice_aqc_manage_mac_write *cmd; 1263 struct ice_aq_desc desc; 1264 1265 cmd = &desc.params.mac_write; 1266 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 1267 1268 cmd->flags = flags; 1269 1270 /* Prep values for flags, sah, sal */ 1271 cmd->sah = htons(*((u16 *)mac_addr)); 1272 cmd->sal = htonl(*((u32 *)(mac_addr + 2))); 1273 1274 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1275 } 1276 1277 /** 1278 * ice_aq_clear_pxe_mode 1279 * @hw: pointer to the hw struct 1280 * 1281 * Tell the firmware that the driver is taking over from PXE (0x0110). 1282 */ 1283 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw) 1284 { 1285 struct ice_aq_desc desc; 1286 1287 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 1288 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 1289 1290 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1291 } 1292 1293 /** 1294 * ice_clear_pxe_mode - clear pxe operations mode 1295 * @hw: pointer to the hw struct 1296 * 1297 * Make sure all PXE mode settings are cleared, including things 1298 * like descriptor fetch/write-back mode. 1299 */ 1300 void ice_clear_pxe_mode(struct ice_hw *hw) 1301 { 1302 if (ice_check_sq_alive(hw, &hw->adminq)) 1303 ice_aq_clear_pxe_mode(hw); 1304 } 1305 1306 /** 1307 * ice_aq_set_phy_cfg 1308 * @hw: pointer to the hw struct 1309 * @lport: logical port number 1310 * @cfg: structure with PHY configuration data to be set 1311 * @cd: pointer to command details structure or NULL 1312 * 1313 * Set the various PHY configuration parameters supported on the Port. 1314 * One or more of the Set PHY config parameters may be ignored in an MFP 1315 * mode as the PF may not have the privilege to set some of the PHY Config 1316 * parameters. This status will be indicated by the command response (0x0601). 1317 */ 1318 static enum ice_status 1319 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport, 1320 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 1321 { 1322 struct ice_aqc_set_phy_cfg *cmd; 1323 struct ice_aq_desc desc; 1324 1325 if (!cfg) 1326 return ICE_ERR_PARAM; 1327 1328 cmd = &desc.params.set_phy; 1329 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 1330 cmd->lport_num = lport; 1331 1332 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 1333 } 1334 1335 /** 1336 * ice_update_link_info - update status of the HW network link 1337 * @pi: port info structure of the interested logical port 1338 */ 1339 static enum ice_status 1340 ice_update_link_info(struct ice_port_info *pi) 1341 { 1342 struct ice_aqc_get_phy_caps_data *pcaps; 1343 struct ice_phy_info *phy_info; 1344 enum ice_status status; 1345 struct ice_hw *hw; 1346 1347 if (!pi) 1348 return ICE_ERR_PARAM; 1349 1350 hw = pi->hw; 1351 1352 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 1353 if (!pcaps) 1354 return ICE_ERR_NO_MEMORY; 1355 1356 phy_info = &pi->phy; 1357 status = ice_aq_get_link_info(pi, true, NULL, NULL); 1358 if (status) 1359 goto out; 1360 1361 if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1362 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, 1363 pcaps, NULL); 1364 if (status) 1365 goto out; 1366 1367 memcpy(phy_info->link_info.module_type, &pcaps->module_type, 1368 sizeof(phy_info->link_info.module_type)); 1369 } 1370 out: 1371 devm_kfree(ice_hw_to_dev(hw), pcaps); 1372 return status; 1373 } 1374 1375 /** 1376 * ice_set_fc 1377 * @pi: port information structure 1378 * @aq_failures: pointer to status code, specific to ice_set_fc routine 1379 * @atomic_restart: enable automatic link update 1380 * 1381 * Set the requested flow control mode. 1382 */ 1383 enum ice_status 1384 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool atomic_restart) 1385 { 1386 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 1387 struct ice_aqc_get_phy_caps_data *pcaps; 1388 enum ice_status status; 1389 u8 pause_mask = 0x0; 1390 struct ice_hw *hw; 1391 1392 if (!pi) 1393 return ICE_ERR_PARAM; 1394 hw = pi->hw; 1395 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE; 1396 1397 switch (pi->fc.req_mode) { 1398 case ICE_FC_FULL: 1399 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 1400 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 1401 break; 1402 case ICE_FC_RX_PAUSE: 1403 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 1404 break; 1405 case ICE_FC_TX_PAUSE: 1406 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 1407 break; 1408 default: 1409 break; 1410 } 1411 1412 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 1413 if (!pcaps) 1414 return ICE_ERR_NO_MEMORY; 1415 1416 /* Get the current phy config */ 1417 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1418 NULL); 1419 if (status) { 1420 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 1421 goto out; 1422 } 1423 1424 /* clear the old pause settings */ 1425 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 1426 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 1427 /* set the new capabilities */ 1428 cfg.caps |= pause_mask; 1429 /* If the capabilities have changed, then set the new config */ 1430 if (cfg.caps != pcaps->caps) { 1431 int retry_count, retry_max = 10; 1432 1433 /* Auto restart link so settings take effect */ 1434 if (atomic_restart) 1435 cfg.caps |= ICE_AQ_PHY_ENA_ATOMIC_LINK; 1436 /* Copy over all the old settings */ 1437 cfg.phy_type_low = pcaps->phy_type_low; 1438 cfg.low_power_ctrl = pcaps->low_power_ctrl; 1439 cfg.eee_cap = pcaps->eee_cap; 1440 cfg.eeer_value = pcaps->eeer_value; 1441 cfg.link_fec_opt = pcaps->link_fec_options; 1442 1443 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL); 1444 if (status) { 1445 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 1446 goto out; 1447 } 1448 1449 /* Update the link info 1450 * It sometimes takes a really long time for link to 1451 * come back from the atomic reset. Thus, we wait a 1452 * little bit. 1453 */ 1454 for (retry_count = 0; retry_count < retry_max; retry_count++) { 1455 status = ice_update_link_info(pi); 1456 1457 if (!status) 1458 break; 1459 1460 mdelay(100); 1461 } 1462 1463 if (status) 1464 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 1465 } 1466 1467 out: 1468 devm_kfree(ice_hw_to_dev(hw), pcaps); 1469 return status; 1470 } 1471 1472 /** 1473 * ice_get_link_status - get status of the HW network link 1474 * @pi: port information structure 1475 * @link_up: pointer to bool (true/false = linkup/linkdown) 1476 * 1477 * Variable link_up is true if link is up, false if link is down. 1478 * The variable link_up is invalid if status is non zero. As a 1479 * result of this call, link status reporting becomes enabled 1480 */ 1481 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up) 1482 { 1483 struct ice_phy_info *phy_info; 1484 enum ice_status status = 0; 1485 1486 if (!pi) 1487 return ICE_ERR_PARAM; 1488 1489 phy_info = &pi->phy; 1490 1491 if (phy_info->get_link_info) { 1492 status = ice_update_link_info(pi); 1493 1494 if (status) 1495 ice_debug(pi->hw, ICE_DBG_LINK, 1496 "get link status error, status = %d\n", 1497 status); 1498 } 1499 1500 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 1501 1502 return status; 1503 } 1504 1505 /** 1506 * ice_aq_set_link_restart_an 1507 * @pi: pointer to the port information structure 1508 * @ena_link: if true: enable link, if false: disable link 1509 * @cd: pointer to command details structure or NULL 1510 * 1511 * Sets up the link and restarts the Auto-Negotiation over the link. 1512 */ 1513 enum ice_status 1514 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 1515 struct ice_sq_cd *cd) 1516 { 1517 struct ice_aqc_restart_an *cmd; 1518 struct ice_aq_desc desc; 1519 1520 cmd = &desc.params.restart_an; 1521 1522 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 1523 1524 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 1525 cmd->lport_num = pi->lport; 1526 if (ena_link) 1527 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 1528 else 1529 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 1530 1531 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 1532 } 1533 1534 /** 1535 * ice_aq_set_event_mask 1536 * @hw: pointer to the hw struct 1537 * @port_num: port number of the physical function 1538 * @mask: event mask to be set 1539 * @cd: pointer to command details structure or NULL 1540 * 1541 * Set event mask (0x0613) 1542 */ 1543 enum ice_status 1544 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 1545 struct ice_sq_cd *cd) 1546 { 1547 struct ice_aqc_set_event_mask *cmd; 1548 struct ice_aq_desc desc; 1549 1550 cmd = &desc.params.set_event_mask; 1551 1552 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 1553 1554 cmd->lport_num = port_num; 1555 1556 cmd->event_mask = cpu_to_le16(mask); 1557 1558 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1559 } 1560 1561 /** 1562 * __ice_aq_get_set_rss_lut 1563 * @hw: pointer to the hardware structure 1564 * @vsi_id: VSI FW index 1565 * @lut_type: LUT table type 1566 * @lut: pointer to the LUT buffer provided by the caller 1567 * @lut_size: size of the LUT buffer 1568 * @glob_lut_idx: global LUT index 1569 * @set: set true to set the table, false to get the table 1570 * 1571 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 1572 */ 1573 static enum ice_status 1574 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, 1575 u16 lut_size, u8 glob_lut_idx, bool set) 1576 { 1577 struct ice_aqc_get_set_rss_lut *cmd_resp; 1578 struct ice_aq_desc desc; 1579 enum ice_status status; 1580 u16 flags = 0; 1581 1582 cmd_resp = &desc.params.get_set_rss_lut; 1583 1584 if (set) { 1585 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); 1586 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1587 } else { 1588 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); 1589 } 1590 1591 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 1592 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & 1593 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | 1594 ICE_AQC_GSET_RSS_LUT_VSI_VALID); 1595 1596 switch (lut_type) { 1597 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: 1598 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: 1599 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: 1600 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & 1601 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); 1602 break; 1603 default: 1604 status = ICE_ERR_PARAM; 1605 goto ice_aq_get_set_rss_lut_exit; 1606 } 1607 1608 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { 1609 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & 1610 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); 1611 1612 if (!set) 1613 goto ice_aq_get_set_rss_lut_send; 1614 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { 1615 if (!set) 1616 goto ice_aq_get_set_rss_lut_send; 1617 } else { 1618 goto ice_aq_get_set_rss_lut_send; 1619 } 1620 1621 /* LUT size is only valid for Global and PF table types */ 1622 if (lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128) { 1623 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG << 1624 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 1625 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 1626 } else if (lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512) { 1627 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << 1628 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 1629 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 1630 } else if ((lut_size == ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K) && 1631 (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF)) { 1632 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << 1633 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 1634 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 1635 } else { 1636 status = ICE_ERR_PARAM; 1637 goto ice_aq_get_set_rss_lut_exit; 1638 } 1639 1640 ice_aq_get_set_rss_lut_send: 1641 cmd_resp->flags = cpu_to_le16(flags); 1642 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 1643 1644 ice_aq_get_set_rss_lut_exit: 1645 return status; 1646 } 1647 1648 /** 1649 * ice_aq_get_rss_lut 1650 * @hw: pointer to the hardware structure 1651 * @vsi_id: VSI FW index 1652 * @lut_type: LUT table type 1653 * @lut: pointer to the LUT buffer provided by the caller 1654 * @lut_size: size of the LUT buffer 1655 * 1656 * get the RSS lookup table, PF or VSI type 1657 */ 1658 enum ice_status 1659 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, 1660 u16 lut_size) 1661 { 1662 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0, 1663 false); 1664 } 1665 1666 /** 1667 * ice_aq_set_rss_lut 1668 * @hw: pointer to the hardware structure 1669 * @vsi_id: VSI FW index 1670 * @lut_type: LUT table type 1671 * @lut: pointer to the LUT buffer provided by the caller 1672 * @lut_size: size of the LUT buffer 1673 * 1674 * set the RSS lookup table, PF or VSI type 1675 */ 1676 enum ice_status 1677 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, 1678 u16 lut_size) 1679 { 1680 return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0, 1681 true); 1682 } 1683 1684 /** 1685 * __ice_aq_get_set_rss_key 1686 * @hw: pointer to the hw struct 1687 * @vsi_id: VSI FW index 1688 * @key: pointer to key info struct 1689 * @set: set true to set the key, false to get the key 1690 * 1691 * get (0x0B04) or set (0x0B02) the RSS key per VSI 1692 */ 1693 static enum 1694 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 1695 struct ice_aqc_get_set_rss_keys *key, 1696 bool set) 1697 { 1698 struct ice_aqc_get_set_rss_key *cmd_resp; 1699 u16 key_size = sizeof(*key); 1700 struct ice_aq_desc desc; 1701 1702 cmd_resp = &desc.params.get_set_rss_key; 1703 1704 if (set) { 1705 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 1706 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1707 } else { 1708 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 1709 } 1710 1711 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 1712 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & 1713 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | 1714 ICE_AQC_GSET_RSS_KEY_VSI_VALID); 1715 1716 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 1717 } 1718 1719 /** 1720 * ice_aq_get_rss_key 1721 * @hw: pointer to the hw struct 1722 * @vsi_id: VSI FW index 1723 * @key: pointer to key info struct 1724 * 1725 * get the RSS key per VSI 1726 */ 1727 enum ice_status 1728 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_id, 1729 struct ice_aqc_get_set_rss_keys *key) 1730 { 1731 return __ice_aq_get_set_rss_key(hw, vsi_id, key, false); 1732 } 1733 1734 /** 1735 * ice_aq_set_rss_key 1736 * @hw: pointer to the hw struct 1737 * @vsi_id: VSI FW index 1738 * @keys: pointer to key info struct 1739 * 1740 * set the RSS key per VSI 1741 */ 1742 enum ice_status 1743 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_id, 1744 struct ice_aqc_get_set_rss_keys *keys) 1745 { 1746 return __ice_aq_get_set_rss_key(hw, vsi_id, keys, true); 1747 } 1748 1749 /** 1750 * ice_aq_add_lan_txq 1751 * @hw: pointer to the hardware structure 1752 * @num_qgrps: Number of added queue groups 1753 * @qg_list: list of queue groups to be added 1754 * @buf_size: size of buffer for indirect command 1755 * @cd: pointer to command details structure or NULL 1756 * 1757 * Add Tx LAN queue (0x0C30) 1758 * 1759 * NOTE: 1760 * Prior to calling add Tx LAN queue: 1761 * Initialize the following as part of the Tx queue context: 1762 * Completion queue ID if the queue uses Completion queue, Quanta profile, 1763 * Cache profile and Packet shaper profile. 1764 * 1765 * After add Tx LAN queue AQ command is completed: 1766 * Interrupts should be associated with specific queues, 1767 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 1768 * flow. 1769 */ 1770 static enum ice_status 1771 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 1772 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 1773 struct ice_sq_cd *cd) 1774 { 1775 u16 i, sum_header_size, sum_q_size = 0; 1776 struct ice_aqc_add_tx_qgrp *list; 1777 struct ice_aqc_add_txqs *cmd; 1778 struct ice_aq_desc desc; 1779 1780 cmd = &desc.params.add_txqs; 1781 1782 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 1783 1784 if (!qg_list) 1785 return ICE_ERR_PARAM; 1786 1787 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 1788 return ICE_ERR_PARAM; 1789 1790 sum_header_size = num_qgrps * 1791 (sizeof(*qg_list) - sizeof(*qg_list->txqs)); 1792 1793 list = qg_list; 1794 for (i = 0; i < num_qgrps; i++) { 1795 struct ice_aqc_add_txqs_perq *q = list->txqs; 1796 1797 sum_q_size += list->num_txqs * sizeof(*q); 1798 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs); 1799 } 1800 1801 if (buf_size != (sum_header_size + sum_q_size)) 1802 return ICE_ERR_PARAM; 1803 1804 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1805 1806 cmd->num_qgrps = num_qgrps; 1807 1808 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 1809 } 1810 1811 /** 1812 * ice_aq_dis_lan_txq 1813 * @hw: pointer to the hardware structure 1814 * @num_qgrps: number of groups in the list 1815 * @qg_list: the list of groups to disable 1816 * @buf_size: the total size of the qg_list buffer in bytes 1817 * @cd: pointer to command details structure or NULL 1818 * 1819 * Disable LAN Tx queue (0x0C31) 1820 */ 1821 static enum ice_status 1822 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 1823 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 1824 struct ice_sq_cd *cd) 1825 { 1826 struct ice_aqc_dis_txqs *cmd; 1827 struct ice_aq_desc desc; 1828 u16 i, sz = 0; 1829 1830 cmd = &desc.params.dis_txqs; 1831 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 1832 1833 if (!qg_list) 1834 return ICE_ERR_PARAM; 1835 1836 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 1837 return ICE_ERR_PARAM; 1838 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1839 cmd->num_entries = num_qgrps; 1840 1841 for (i = 0; i < num_qgrps; ++i) { 1842 /* Calculate the size taken up by the queue IDs in this group */ 1843 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id); 1844 1845 /* Add the size of the group header */ 1846 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id); 1847 1848 /* If the num of queues is even, add 2 bytes of padding */ 1849 if ((qg_list[i].num_qs % 2) == 0) 1850 sz += 2; 1851 } 1852 1853 if (buf_size != sz) 1854 return ICE_ERR_PARAM; 1855 1856 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 1857 } 1858 1859 /* End of FW Admin Queue command wrappers */ 1860 1861 /** 1862 * ice_write_byte - write a byte to a packed context structure 1863 * @src_ctx: the context structure to read from 1864 * @dest_ctx: the context to be written to 1865 * @ce_info: a description of the struct to be filled 1866 */ 1867 static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx, 1868 const struct ice_ctx_ele *ce_info) 1869 { 1870 u8 src_byte, dest_byte, mask; 1871 u8 *from, *dest; 1872 u16 shift_width; 1873 1874 /* copy from the next struct field */ 1875 from = src_ctx + ce_info->offset; 1876 1877 /* prepare the bits and mask */ 1878 shift_width = ce_info->lsb % 8; 1879 mask = (u8)(BIT(ce_info->width) - 1); 1880 1881 src_byte = *from; 1882 src_byte &= mask; 1883 1884 /* shift to correct alignment */ 1885 mask <<= shift_width; 1886 src_byte <<= shift_width; 1887 1888 /* get the current bits from the target bit string */ 1889 dest = dest_ctx + (ce_info->lsb / 8); 1890 1891 memcpy(&dest_byte, dest, sizeof(dest_byte)); 1892 1893 dest_byte &= ~mask; /* get the bits not changing */ 1894 dest_byte |= src_byte; /* add in the new bits */ 1895 1896 /* put it all back */ 1897 memcpy(dest, &dest_byte, sizeof(dest_byte)); 1898 } 1899 1900 /** 1901 * ice_write_word - write a word to a packed context structure 1902 * @src_ctx: the context structure to read from 1903 * @dest_ctx: the context to be written to 1904 * @ce_info: a description of the struct to be filled 1905 */ 1906 static void ice_write_word(u8 *src_ctx, u8 *dest_ctx, 1907 const struct ice_ctx_ele *ce_info) 1908 { 1909 u16 src_word, mask; 1910 __le16 dest_word; 1911 u8 *from, *dest; 1912 u16 shift_width; 1913 1914 /* copy from the next struct field */ 1915 from = src_ctx + ce_info->offset; 1916 1917 /* prepare the bits and mask */ 1918 shift_width = ce_info->lsb % 8; 1919 mask = BIT(ce_info->width) - 1; 1920 1921 /* don't swizzle the bits until after the mask because the mask bits 1922 * will be in a different bit position on big endian machines 1923 */ 1924 src_word = *(u16 *)from; 1925 src_word &= mask; 1926 1927 /* shift to correct alignment */ 1928 mask <<= shift_width; 1929 src_word <<= shift_width; 1930 1931 /* get the current bits from the target bit string */ 1932 dest = dest_ctx + (ce_info->lsb / 8); 1933 1934 memcpy(&dest_word, dest, sizeof(dest_word)); 1935 1936 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ 1937 dest_word |= cpu_to_le16(src_word); /* add in the new bits */ 1938 1939 /* put it all back */ 1940 memcpy(dest, &dest_word, sizeof(dest_word)); 1941 } 1942 1943 /** 1944 * ice_write_dword - write a dword to a packed context structure 1945 * @src_ctx: the context structure to read from 1946 * @dest_ctx: the context to be written to 1947 * @ce_info: a description of the struct to be filled 1948 */ 1949 static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx, 1950 const struct ice_ctx_ele *ce_info) 1951 { 1952 u32 src_dword, mask; 1953 __le32 dest_dword; 1954 u8 *from, *dest; 1955 u16 shift_width; 1956 1957 /* copy from the next struct field */ 1958 from = src_ctx + ce_info->offset; 1959 1960 /* prepare the bits and mask */ 1961 shift_width = ce_info->lsb % 8; 1962 1963 /* if the field width is exactly 32 on an x86 machine, then the shift 1964 * operation will not work because the SHL instructions count is masked 1965 * to 5 bits so the shift will do nothing 1966 */ 1967 if (ce_info->width < 32) 1968 mask = BIT(ce_info->width) - 1; 1969 else 1970 mask = (u32)~0; 1971 1972 /* don't swizzle the bits until after the mask because the mask bits 1973 * will be in a different bit position on big endian machines 1974 */ 1975 src_dword = *(u32 *)from; 1976 src_dword &= mask; 1977 1978 /* shift to correct alignment */ 1979 mask <<= shift_width; 1980 src_dword <<= shift_width; 1981 1982 /* get the current bits from the target bit string */ 1983 dest = dest_ctx + (ce_info->lsb / 8); 1984 1985 memcpy(&dest_dword, dest, sizeof(dest_dword)); 1986 1987 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ 1988 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ 1989 1990 /* put it all back */ 1991 memcpy(dest, &dest_dword, sizeof(dest_dword)); 1992 } 1993 1994 /** 1995 * ice_write_qword - write a qword to a packed context structure 1996 * @src_ctx: the context structure to read from 1997 * @dest_ctx: the context to be written to 1998 * @ce_info: a description of the struct to be filled 1999 */ 2000 static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx, 2001 const struct ice_ctx_ele *ce_info) 2002 { 2003 u64 src_qword, mask; 2004 __le64 dest_qword; 2005 u8 *from, *dest; 2006 u16 shift_width; 2007 2008 /* copy from the next struct field */ 2009 from = src_ctx + ce_info->offset; 2010 2011 /* prepare the bits and mask */ 2012 shift_width = ce_info->lsb % 8; 2013 2014 /* if the field width is exactly 64 on an x86 machine, then the shift 2015 * operation will not work because the SHL instructions count is masked 2016 * to 6 bits so the shift will do nothing 2017 */ 2018 if (ce_info->width < 64) 2019 mask = BIT_ULL(ce_info->width) - 1; 2020 else 2021 mask = (u64)~0; 2022 2023 /* don't swizzle the bits until after the mask because the mask bits 2024 * will be in a different bit position on big endian machines 2025 */ 2026 src_qword = *(u64 *)from; 2027 src_qword &= mask; 2028 2029 /* shift to correct alignment */ 2030 mask <<= shift_width; 2031 src_qword <<= shift_width; 2032 2033 /* get the current bits from the target bit string */ 2034 dest = dest_ctx + (ce_info->lsb / 8); 2035 2036 memcpy(&dest_qword, dest, sizeof(dest_qword)); 2037 2038 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ 2039 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ 2040 2041 /* put it all back */ 2042 memcpy(dest, &dest_qword, sizeof(dest_qword)); 2043 } 2044 2045 /** 2046 * ice_set_ctx - set context bits in packed structure 2047 * @src_ctx: pointer to a generic non-packed context structure 2048 * @dest_ctx: pointer to memory for the packed structure 2049 * @ce_info: a description of the structure to be transformed 2050 */ 2051 enum ice_status 2052 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 2053 { 2054 int f; 2055 2056 for (f = 0; ce_info[f].width; f++) { 2057 /* We have to deal with each element of the FW response 2058 * using the correct size so that we are correct regardless 2059 * of the endianness of the machine. 2060 */ 2061 switch (ce_info[f].size_of) { 2062 case sizeof(u8): 2063 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); 2064 break; 2065 case sizeof(u16): 2066 ice_write_word(src_ctx, dest_ctx, &ce_info[f]); 2067 break; 2068 case sizeof(u32): 2069 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); 2070 break; 2071 case sizeof(u64): 2072 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); 2073 break; 2074 default: 2075 return ICE_ERR_INVAL_SIZE; 2076 } 2077 } 2078 2079 return 0; 2080 } 2081 2082 /** 2083 * ice_ena_vsi_txq 2084 * @pi: port information structure 2085 * @vsi_id: VSI id 2086 * @tc: tc number 2087 * @num_qgrps: Number of added queue groups 2088 * @buf: list of queue groups to be added 2089 * @buf_size: size of buffer for indirect command 2090 * @cd: pointer to command details structure or NULL 2091 * 2092 * This function adds one lan q 2093 */ 2094 enum ice_status 2095 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps, 2096 struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 2097 struct ice_sq_cd *cd) 2098 { 2099 struct ice_aqc_txsched_elem_data node = { 0 }; 2100 struct ice_sched_node *parent; 2101 enum ice_status status; 2102 struct ice_hw *hw; 2103 2104 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 2105 return ICE_ERR_CFG; 2106 2107 if (num_qgrps > 1 || buf->num_txqs > 1) 2108 return ICE_ERR_MAX_LIMIT; 2109 2110 hw = pi->hw; 2111 2112 mutex_lock(&pi->sched_lock); 2113 2114 /* find a parent node */ 2115 parent = ice_sched_get_free_qparent(pi, vsi_id, tc, 2116 ICE_SCHED_NODE_OWNER_LAN); 2117 if (!parent) { 2118 status = ICE_ERR_PARAM; 2119 goto ena_txq_exit; 2120 } 2121 buf->parent_teid = parent->info.node_teid; 2122 node.parent_teid = parent->info.node_teid; 2123 /* Mark that the values in the "generic" section as valid. The default 2124 * value in the "generic" section is zero. This means that : 2125 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 2126 * - 0 priority among siblings, indicated by Bit 1-3. 2127 * - WFQ, indicated by Bit 4. 2128 * - 0 Adjustment value is used in PSM credit update flow, indicated by 2129 * Bit 5-6. 2130 * - Bit 7 is reserved. 2131 * Without setting the generic section as valid in valid_sections, the 2132 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL. 2133 */ 2134 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC; 2135 2136 /* add the lan q */ 2137 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 2138 if (status) 2139 goto ena_txq_exit; 2140 2141 node.node_teid = buf->txqs[0].q_teid; 2142 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 2143 2144 /* add a leaf node into schduler tree q layer */ 2145 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); 2146 2147 ena_txq_exit: 2148 mutex_unlock(&pi->sched_lock); 2149 return status; 2150 } 2151 2152 /** 2153 * ice_dis_vsi_txq 2154 * @pi: port information structure 2155 * @num_queues: number of queues 2156 * @q_ids: pointer to the q_id array 2157 * @q_teids: pointer to queue node teids 2158 * @cd: pointer to command details structure or NULL 2159 * 2160 * This function removes queues and their corresponding nodes in SW DB 2161 */ 2162 enum ice_status 2163 ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, 2164 u32 *q_teids, struct ice_sq_cd *cd) 2165 { 2166 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 2167 struct ice_aqc_dis_txq_item qg_list; 2168 u16 i; 2169 2170 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 2171 return ICE_ERR_CFG; 2172 2173 mutex_lock(&pi->sched_lock); 2174 2175 for (i = 0; i < num_queues; i++) { 2176 struct ice_sched_node *node; 2177 2178 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 2179 if (!node) 2180 continue; 2181 qg_list.parent_teid = node->info.parent_teid; 2182 qg_list.num_qs = 1; 2183 qg_list.q_id[0] = cpu_to_le16(q_ids[i]); 2184 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list, 2185 sizeof(qg_list), cd); 2186 2187 if (status) 2188 break; 2189 ice_free_sched_node(pi, node); 2190 } 2191 mutex_unlock(&pi->sched_lock); 2192 return status; 2193 } 2194 2195 /** 2196 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues 2197 * @pi: port information structure 2198 * @vsi_id: VSI Id 2199 * @tc_bitmap: TC bitmap 2200 * @maxqs: max queues array per TC 2201 * @owner: lan or rdma 2202 * 2203 * This function adds/updates the VSI queues per TC. 2204 */ 2205 static enum ice_status 2206 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap, 2207 u16 *maxqs, u8 owner) 2208 { 2209 enum ice_status status = 0; 2210 u8 i; 2211 2212 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 2213 return ICE_ERR_CFG; 2214 2215 mutex_lock(&pi->sched_lock); 2216 2217 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { 2218 /* configuration is possible only if TC node is present */ 2219 if (!ice_sched_get_tc_node(pi, i)) 2220 continue; 2221 2222 status = ice_sched_cfg_vsi(pi, vsi_id, i, maxqs[i], owner, 2223 ice_is_tc_ena(tc_bitmap, i)); 2224 if (status) 2225 break; 2226 } 2227 2228 mutex_unlock(&pi->sched_lock); 2229 return status; 2230 } 2231 2232 /** 2233 * ice_cfg_vsi_lan - configure VSI lan queues 2234 * @pi: port information structure 2235 * @vsi_id: VSI Id 2236 * @tc_bitmap: TC bitmap 2237 * @max_lanqs: max lan queues array per TC 2238 * 2239 * This function adds/updates the VSI lan queues per TC. 2240 */ 2241 enum ice_status 2242 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap, 2243 u16 *max_lanqs) 2244 { 2245 return ice_cfg_vsi_qs(pi, vsi_id, tc_bitmap, max_lanqs, 2246 ICE_SCHED_NODE_OWNER_LAN); 2247 } 2248