xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_common.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 static const char * const ice_link_mode_str_low[] = {
12 	[0] = "100BASE_TX",
13 	[1] = "100M_SGMII",
14 	[2] = "1000BASE_T",
15 	[3] = "1000BASE_SX",
16 	[4] = "1000BASE_LX",
17 	[5] = "1000BASE_KX",
18 	[6] = "1G_SGMII",
19 	[7] = "2500BASE_T",
20 	[8] = "2500BASE_X",
21 	[9] = "2500BASE_KX",
22 	[10] = "5GBASE_T",
23 	[11] = "5GBASE_KR",
24 	[12] = "10GBASE_T",
25 	[13] = "10G_SFI_DA",
26 	[14] = "10GBASE_SR",
27 	[15] = "10GBASE_LR",
28 	[16] = "10GBASE_KR_CR1",
29 	[17] = "10G_SFI_AOC_ACC",
30 	[18] = "10G_SFI_C2C",
31 	[19] = "25GBASE_T",
32 	[20] = "25GBASE_CR",
33 	[21] = "25GBASE_CR_S",
34 	[22] = "25GBASE_CR1",
35 	[23] = "25GBASE_SR",
36 	[24] = "25GBASE_LR",
37 	[25] = "25GBASE_KR",
38 	[26] = "25GBASE_KR_S",
39 	[27] = "25GBASE_KR1",
40 	[28] = "25G_AUI_AOC_ACC",
41 	[29] = "25G_AUI_C2C",
42 	[30] = "40GBASE_CR4",
43 	[31] = "40GBASE_SR4",
44 	[32] = "40GBASE_LR4",
45 	[33] = "40GBASE_KR4",
46 	[34] = "40G_XLAUI_AOC_ACC",
47 	[35] = "40G_XLAUI",
48 	[36] = "50GBASE_CR2",
49 	[37] = "50GBASE_SR2",
50 	[38] = "50GBASE_LR2",
51 	[39] = "50GBASE_KR2",
52 	[40] = "50G_LAUI2_AOC_ACC",
53 	[41] = "50G_LAUI2",
54 	[42] = "50G_AUI2_AOC_ACC",
55 	[43] = "50G_AUI2",
56 	[44] = "50GBASE_CP",
57 	[45] = "50GBASE_SR",
58 	[46] = "50GBASE_FR",
59 	[47] = "50GBASE_LR",
60 	[48] = "50GBASE_KR_PAM4",
61 	[49] = "50G_AUI1_AOC_ACC",
62 	[50] = "50G_AUI1",
63 	[51] = "100GBASE_CR4",
64 	[52] = "100GBASE_SR4",
65 	[53] = "100GBASE_LR4",
66 	[54] = "100GBASE_KR4",
67 	[55] = "100G_CAUI4_AOC_ACC",
68 	[56] = "100G_CAUI4",
69 	[57] = "100G_AUI4_AOC_ACC",
70 	[58] = "100G_AUI4",
71 	[59] = "100GBASE_CR_PAM4",
72 	[60] = "100GBASE_KR_PAM4",
73 	[61] = "100GBASE_CP2",
74 	[62] = "100GBASE_SR2",
75 	[63] = "100GBASE_DR",
76 };
77 
78 static const char * const ice_link_mode_str_high[] = {
79 	[0] = "100GBASE_KR2_PAM4",
80 	[1] = "100G_CAUI2_AOC_ACC",
81 	[2] = "100G_CAUI2",
82 	[3] = "100G_AUI2_AOC_ACC",
83 	[4] = "100G_AUI2",
84 };
85 
86 /**
87  * ice_dump_phy_type - helper function to dump phy_type
88  * @hw: pointer to the HW structure
89  * @low: 64 bit value for phy_type_low
90  * @high: 64 bit value for phy_type_high
91  * @prefix: prefix string to differentiate multiple dumps
92  */
93 static void
94 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
95 {
96 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
97 
98 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
99 		if (low & BIT_ULL(i))
100 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
101 				  prefix, i, ice_link_mode_str_low[i]);
102 	}
103 
104 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
105 
106 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
107 		if (high & BIT_ULL(i))
108 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
109 				  prefix, i, ice_link_mode_str_high[i]);
110 	}
111 }
112 
113 /**
114  * ice_set_mac_type - Sets MAC type
115  * @hw: pointer to the HW structure
116  *
117  * This function sets the MAC type of the adapter based on the
118  * vendor ID and device ID stored in the HW structure.
119  */
120 static int ice_set_mac_type(struct ice_hw *hw)
121 {
122 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
123 		return -ENODEV;
124 
125 	switch (hw->device_id) {
126 	case ICE_DEV_ID_E810C_BACKPLANE:
127 	case ICE_DEV_ID_E810C_QSFP:
128 	case ICE_DEV_ID_E810C_SFP:
129 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
130 	case ICE_DEV_ID_E810_XXV_QSFP:
131 	case ICE_DEV_ID_E810_XXV_SFP:
132 		hw->mac_type = ICE_MAC_E810;
133 		break;
134 	case ICE_DEV_ID_E823C_10G_BASE_T:
135 	case ICE_DEV_ID_E823C_BACKPLANE:
136 	case ICE_DEV_ID_E823C_QSFP:
137 	case ICE_DEV_ID_E823C_SFP:
138 	case ICE_DEV_ID_E823C_SGMII:
139 	case ICE_DEV_ID_E822C_10G_BASE_T:
140 	case ICE_DEV_ID_E822C_BACKPLANE:
141 	case ICE_DEV_ID_E822C_QSFP:
142 	case ICE_DEV_ID_E822C_SFP:
143 	case ICE_DEV_ID_E822C_SGMII:
144 	case ICE_DEV_ID_E822L_10G_BASE_T:
145 	case ICE_DEV_ID_E822L_BACKPLANE:
146 	case ICE_DEV_ID_E822L_SFP:
147 	case ICE_DEV_ID_E822L_SGMII:
148 	case ICE_DEV_ID_E823L_10G_BASE_T:
149 	case ICE_DEV_ID_E823L_1GBE:
150 	case ICE_DEV_ID_E823L_BACKPLANE:
151 	case ICE_DEV_ID_E823L_QSFP:
152 	case ICE_DEV_ID_E823L_SFP:
153 		hw->mac_type = ICE_MAC_GENERIC;
154 		break;
155 	default:
156 		hw->mac_type = ICE_MAC_UNKNOWN;
157 		break;
158 	}
159 
160 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
161 	return 0;
162 }
163 
164 /**
165  * ice_is_e810
166  * @hw: pointer to the hardware structure
167  *
168  * returns true if the device is E810 based, false if not.
169  */
170 bool ice_is_e810(struct ice_hw *hw)
171 {
172 	return hw->mac_type == ICE_MAC_E810;
173 }
174 
175 /**
176  * ice_is_e810t
177  * @hw: pointer to the hardware structure
178  *
179  * returns true if the device is E810T based, false if not.
180  */
181 bool ice_is_e810t(struct ice_hw *hw)
182 {
183 	switch (hw->device_id) {
184 	case ICE_DEV_ID_E810C_SFP:
185 		switch (hw->subsystem_device_id) {
186 		case ICE_SUBDEV_ID_E810T:
187 		case ICE_SUBDEV_ID_E810T2:
188 		case ICE_SUBDEV_ID_E810T3:
189 		case ICE_SUBDEV_ID_E810T4:
190 		case ICE_SUBDEV_ID_E810T6:
191 		case ICE_SUBDEV_ID_E810T7:
192 			return true;
193 		}
194 		break;
195 	case ICE_DEV_ID_E810C_QSFP:
196 		switch (hw->subsystem_device_id) {
197 		case ICE_SUBDEV_ID_E810T2:
198 		case ICE_SUBDEV_ID_E810T3:
199 		case ICE_SUBDEV_ID_E810T5:
200 			return true;
201 		}
202 		break;
203 	default:
204 		break;
205 	}
206 
207 	return false;
208 }
209 
210 /**
211  * ice_is_e823
212  * @hw: pointer to the hardware structure
213  *
214  * returns true if the device is E823-L or E823-C based, false if not.
215  */
216 bool ice_is_e823(struct ice_hw *hw)
217 {
218 	switch (hw->device_id) {
219 	case ICE_DEV_ID_E823L_BACKPLANE:
220 	case ICE_DEV_ID_E823L_SFP:
221 	case ICE_DEV_ID_E823L_10G_BASE_T:
222 	case ICE_DEV_ID_E823L_1GBE:
223 	case ICE_DEV_ID_E823L_QSFP:
224 	case ICE_DEV_ID_E823C_BACKPLANE:
225 	case ICE_DEV_ID_E823C_QSFP:
226 	case ICE_DEV_ID_E823C_SFP:
227 	case ICE_DEV_ID_E823C_10G_BASE_T:
228 	case ICE_DEV_ID_E823C_SGMII:
229 		return true;
230 	default:
231 		return false;
232 	}
233 }
234 
235 /**
236  * ice_clear_pf_cfg - Clear PF configuration
237  * @hw: pointer to the hardware structure
238  *
239  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
240  * configuration, flow director filters, etc.).
241  */
242 int ice_clear_pf_cfg(struct ice_hw *hw)
243 {
244 	struct ice_aq_desc desc;
245 
246 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
247 
248 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
249 }
250 
251 /**
252  * ice_aq_manage_mac_read - manage MAC address read command
253  * @hw: pointer to the HW struct
254  * @buf: a virtual buffer to hold the manage MAC read response
255  * @buf_size: Size of the virtual buffer
256  * @cd: pointer to command details structure or NULL
257  *
258  * This function is used to return per PF station MAC address (0x0107).
259  * NOTE: Upon successful completion of this command, MAC address information
260  * is returned in user specified buffer. Please interpret user specified
261  * buffer as "manage_mac_read" response.
262  * Response such as various MAC addresses are stored in HW struct (port.mac)
263  * ice_discover_dev_caps is expected to be called before this function is
264  * called.
265  */
266 static int
267 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
268 		       struct ice_sq_cd *cd)
269 {
270 	struct ice_aqc_manage_mac_read_resp *resp;
271 	struct ice_aqc_manage_mac_read *cmd;
272 	struct ice_aq_desc desc;
273 	int status;
274 	u16 flags;
275 	u8 i;
276 
277 	cmd = &desc.params.mac_read;
278 
279 	if (buf_size < sizeof(*resp))
280 		return -EINVAL;
281 
282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
283 
284 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
285 	if (status)
286 		return status;
287 
288 	resp = buf;
289 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
290 
291 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
292 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
293 		return -EIO;
294 	}
295 
296 	/* A single port can report up to two (LAN and WoL) addresses */
297 	for (i = 0; i < cmd->num_addr; i++)
298 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
299 			ether_addr_copy(hw->port_info->mac.lan_addr,
300 					resp[i].mac_addr);
301 			ether_addr_copy(hw->port_info->mac.perm_addr,
302 					resp[i].mac_addr);
303 			break;
304 		}
305 
306 	return 0;
307 }
308 
309 /**
310  * ice_aq_get_phy_caps - returns PHY capabilities
311  * @pi: port information structure
312  * @qual_mods: report qualified modules
313  * @report_mode: report mode capabilities
314  * @pcaps: structure for PHY capabilities to be filled
315  * @cd: pointer to command details structure or NULL
316  *
317  * Returns the various PHY capabilities supported on the Port (0x0600)
318  */
319 int
320 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
321 		    struct ice_aqc_get_phy_caps_data *pcaps,
322 		    struct ice_sq_cd *cd)
323 {
324 	struct ice_aqc_get_phy_caps *cmd;
325 	u16 pcaps_size = sizeof(*pcaps);
326 	struct ice_aq_desc desc;
327 	const char *prefix;
328 	struct ice_hw *hw;
329 	int status;
330 
331 	cmd = &desc.params.get_phy;
332 
333 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
334 		return -EINVAL;
335 	hw = pi->hw;
336 
337 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
338 	    !ice_fw_supports_report_dflt_cfg(hw))
339 		return -EINVAL;
340 
341 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
342 
343 	if (qual_mods)
344 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
345 
346 	cmd->param0 |= cpu_to_le16(report_mode);
347 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
348 
349 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
350 
351 	switch (report_mode) {
352 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
353 		prefix = "phy_caps_media";
354 		break;
355 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
356 		prefix = "phy_caps_no_media";
357 		break;
358 	case ICE_AQC_REPORT_ACTIVE_CFG:
359 		prefix = "phy_caps_active";
360 		break;
361 	case ICE_AQC_REPORT_DFLT_CFG:
362 		prefix = "phy_caps_default";
363 		break;
364 	default:
365 		prefix = "phy_caps_invalid";
366 	}
367 
368 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
369 			  le64_to_cpu(pcaps->phy_type_high), prefix);
370 
371 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
372 		  prefix, report_mode);
373 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
374 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
375 		  pcaps->low_power_ctrl_an);
376 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
377 		  pcaps->eee_cap);
378 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
379 		  pcaps->eeer_value);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
381 		  pcaps->link_fec_options);
382 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
383 		  prefix, pcaps->module_compliance_enforcement);
384 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
385 		  prefix, pcaps->extended_compliance_code);
386 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
387 		  pcaps->module_type[0]);
388 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
389 		  pcaps->module_type[1]);
390 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
391 		  pcaps->module_type[2]);
392 
393 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
394 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
395 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
396 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
397 		       sizeof(pi->phy.link_info.module_type));
398 	}
399 
400 	return status;
401 }
402 
403 /**
404  * ice_aq_get_link_topo_handle - get link topology node return status
405  * @pi: port information structure
406  * @node_type: requested node type
407  * @cd: pointer to command details structure or NULL
408  *
409  * Get link topology node return status for specified node type (0x06E0)
410  *
411  * Node type cage can be used to determine if cage is present. If AQC
412  * returns error (ENOENT), then no cage present. If no cage present, then
413  * connection type is backplane or BASE-T.
414  */
415 static int
416 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
417 			    struct ice_sq_cd *cd)
418 {
419 	struct ice_aqc_get_link_topo *cmd;
420 	struct ice_aq_desc desc;
421 
422 	cmd = &desc.params.get_link_topo;
423 
424 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
425 
426 	cmd->addr.topo_params.node_type_ctx =
427 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
428 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
429 
430 	/* set node type */
431 	cmd->addr.topo_params.node_type_ctx |=
432 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
433 
434 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
435 }
436 
437 /**
438  * ice_is_media_cage_present
439  * @pi: port information structure
440  *
441  * Returns true if media cage is present, else false. If no cage, then
442  * media type is backplane or BASE-T.
443  */
444 static bool ice_is_media_cage_present(struct ice_port_info *pi)
445 {
446 	/* Node type cage can be used to determine if cage is present. If AQC
447 	 * returns error (ENOENT), then no cage present. If no cage present then
448 	 * connection type is backplane or BASE-T.
449 	 */
450 	return !ice_aq_get_link_topo_handle(pi,
451 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
452 					    NULL);
453 }
454 
455 /**
456  * ice_get_media_type - Gets media type
457  * @pi: port information structure
458  */
459 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
460 {
461 	struct ice_link_status *hw_link_info;
462 
463 	if (!pi)
464 		return ICE_MEDIA_UNKNOWN;
465 
466 	hw_link_info = &pi->phy.link_info;
467 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
468 		/* If more than one media type is selected, report unknown */
469 		return ICE_MEDIA_UNKNOWN;
470 
471 	if (hw_link_info->phy_type_low) {
472 		/* 1G SGMII is a special case where some DA cable PHYs
473 		 * may show this as an option when it really shouldn't
474 		 * be since SGMII is meant to be between a MAC and a PHY
475 		 * in a backplane. Try to detect this case and handle it
476 		 */
477 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
478 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
479 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
480 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
481 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
482 			return ICE_MEDIA_DA;
483 
484 		switch (hw_link_info->phy_type_low) {
485 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
486 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
487 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
488 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
489 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
490 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
491 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
492 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
493 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
494 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
495 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
496 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
497 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
498 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
499 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
500 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
501 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
502 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
503 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
504 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
505 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
506 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
507 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
508 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
509 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
510 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
511 			return ICE_MEDIA_FIBER;
512 		case ICE_PHY_TYPE_LOW_100BASE_TX:
513 		case ICE_PHY_TYPE_LOW_1000BASE_T:
514 		case ICE_PHY_TYPE_LOW_2500BASE_T:
515 		case ICE_PHY_TYPE_LOW_5GBASE_T:
516 		case ICE_PHY_TYPE_LOW_10GBASE_T:
517 		case ICE_PHY_TYPE_LOW_25GBASE_T:
518 			return ICE_MEDIA_BASET;
519 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
520 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
521 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
522 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
523 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
524 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
525 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
526 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
527 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
528 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
529 			return ICE_MEDIA_DA;
530 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
531 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
532 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
533 		case ICE_PHY_TYPE_LOW_50G_AUI2:
534 		case ICE_PHY_TYPE_LOW_50G_AUI1:
535 		case ICE_PHY_TYPE_LOW_100G_AUI4:
536 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
537 			if (ice_is_media_cage_present(pi))
538 				return ICE_MEDIA_DA;
539 			fallthrough;
540 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
541 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
542 		case ICE_PHY_TYPE_LOW_2500BASE_X:
543 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
544 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
545 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
546 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
547 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
548 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
549 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
550 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
551 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
552 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
553 			return ICE_MEDIA_BACKPLANE;
554 		}
555 	} else {
556 		switch (hw_link_info->phy_type_high) {
557 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
558 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
559 			if (ice_is_media_cage_present(pi))
560 				return ICE_MEDIA_DA;
561 			fallthrough;
562 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
563 			return ICE_MEDIA_BACKPLANE;
564 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
565 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
566 			return ICE_MEDIA_FIBER;
567 		}
568 	}
569 	return ICE_MEDIA_UNKNOWN;
570 }
571 
572 /**
573  * ice_aq_get_link_info
574  * @pi: port information structure
575  * @ena_lse: enable/disable LinkStatusEvent reporting
576  * @link: pointer to link status structure - optional
577  * @cd: pointer to command details structure or NULL
578  *
579  * Get Link Status (0x607). Returns the link status of the adapter.
580  */
581 int
582 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
583 		     struct ice_link_status *link, struct ice_sq_cd *cd)
584 {
585 	struct ice_aqc_get_link_status_data link_data = { 0 };
586 	struct ice_aqc_get_link_status *resp;
587 	struct ice_link_status *li_old, *li;
588 	enum ice_media_type *hw_media_type;
589 	struct ice_fc_info *hw_fc_info;
590 	bool tx_pause, rx_pause;
591 	struct ice_aq_desc desc;
592 	struct ice_hw *hw;
593 	u16 cmd_flags;
594 	int status;
595 
596 	if (!pi)
597 		return -EINVAL;
598 	hw = pi->hw;
599 	li_old = &pi->phy.link_info_old;
600 	hw_media_type = &pi->phy.media_type;
601 	li = &pi->phy.link_info;
602 	hw_fc_info = &pi->fc;
603 
604 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
605 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
606 	resp = &desc.params.get_link_status;
607 	resp->cmd_flags = cpu_to_le16(cmd_flags);
608 	resp->lport_num = pi->lport;
609 
610 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
611 
612 	if (status)
613 		return status;
614 
615 	/* save off old link status information */
616 	*li_old = *li;
617 
618 	/* update current link status information */
619 	li->link_speed = le16_to_cpu(link_data.link_speed);
620 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
621 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
622 	*hw_media_type = ice_get_media_type(pi);
623 	li->link_info = link_data.link_info;
624 	li->link_cfg_err = link_data.link_cfg_err;
625 	li->an_info = link_data.an_info;
626 	li->ext_info = link_data.ext_info;
627 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
628 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
629 	li->topo_media_conflict = link_data.topo_media_conflict;
630 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
631 				      ICE_AQ_CFG_PACING_TYPE_M);
632 
633 	/* update fc info */
634 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
635 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
636 	if (tx_pause && rx_pause)
637 		hw_fc_info->current_mode = ICE_FC_FULL;
638 	else if (tx_pause)
639 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
640 	else if (rx_pause)
641 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
642 	else
643 		hw_fc_info->current_mode = ICE_FC_NONE;
644 
645 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
646 
647 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
648 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
649 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
650 		  (unsigned long long)li->phy_type_low);
651 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
652 		  (unsigned long long)li->phy_type_high);
653 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
654 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
655 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
656 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
657 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
658 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
659 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
660 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
661 		  li->max_frame_size);
662 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
663 
664 	/* save link status information */
665 	if (link)
666 		*link = *li;
667 
668 	/* flag cleared so calling functions don't call AQ again */
669 	pi->phy.get_link_info = false;
670 
671 	return 0;
672 }
673 
674 /**
675  * ice_fill_tx_timer_and_fc_thresh
676  * @hw: pointer to the HW struct
677  * @cmd: pointer to MAC cfg structure
678  *
679  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
680  * descriptor
681  */
682 static void
683 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
684 				struct ice_aqc_set_mac_cfg *cmd)
685 {
686 	u16 fc_thres_val, tx_timer_val;
687 	u32 val;
688 
689 	/* We read back the transmit timer and FC threshold value of
690 	 * LFC. Thus, we will use index =
691 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
692 	 *
693 	 * Also, because we are operating on transmit timer and FC
694 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
695 	 */
696 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
697 
698 	/* Retrieve the transmit timer */
699 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
700 	tx_timer_val = val &
701 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
702 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
703 
704 	/* Retrieve the FC threshold */
705 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
706 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
707 
708 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
709 }
710 
711 /**
712  * ice_aq_set_mac_cfg
713  * @hw: pointer to the HW struct
714  * @max_frame_size: Maximum Frame Size to be supported
715  * @cd: pointer to command details structure or NULL
716  *
717  * Set MAC configuration (0x0603)
718  */
719 int
720 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_set_mac_cfg *cmd;
723 	struct ice_aq_desc desc;
724 
725 	cmd = &desc.params.set_mac_cfg;
726 
727 	if (max_frame_size == 0)
728 		return -EINVAL;
729 
730 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
731 
732 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
733 
734 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
735 
736 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
737 }
738 
739 /**
740  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
741  * @hw: pointer to the HW struct
742  */
743 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
744 {
745 	struct ice_switch_info *sw;
746 	int status;
747 
748 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
749 				       sizeof(*hw->switch_info), GFP_KERNEL);
750 	sw = hw->switch_info;
751 
752 	if (!sw)
753 		return -ENOMEM;
754 
755 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
756 	sw->prof_res_bm_init = 0;
757 
758 	status = ice_init_def_sw_recp(hw);
759 	if (status) {
760 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
761 		return status;
762 	}
763 	return 0;
764 }
765 
766 /**
767  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
768  * @hw: pointer to the HW struct
769  */
770 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
771 {
772 	struct ice_switch_info *sw = hw->switch_info;
773 	struct ice_vsi_list_map_info *v_pos_map;
774 	struct ice_vsi_list_map_info *v_tmp_map;
775 	struct ice_sw_recipe *recps;
776 	u8 i;
777 
778 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
779 				 list_entry) {
780 		list_del(&v_pos_map->list_entry);
781 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
782 	}
783 	recps = sw->recp_list;
784 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
785 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
786 
787 		recps[i].root_rid = i;
788 		list_for_each_entry_safe(rg_entry, tmprg_entry,
789 					 &recps[i].rg_list, l_entry) {
790 			list_del(&rg_entry->l_entry);
791 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
792 		}
793 
794 		if (recps[i].adv_rule) {
795 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
796 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
797 
798 			mutex_destroy(&recps[i].filt_rule_lock);
799 			list_for_each_entry_safe(lst_itr, tmp_entry,
800 						 &recps[i].filt_rules,
801 						 list_entry) {
802 				list_del(&lst_itr->list_entry);
803 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
804 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
805 			}
806 		} else {
807 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
808 
809 			mutex_destroy(&recps[i].filt_rule_lock);
810 			list_for_each_entry_safe(lst_itr, tmp_entry,
811 						 &recps[i].filt_rules,
812 						 list_entry) {
813 				list_del(&lst_itr->list_entry);
814 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
815 			}
816 		}
817 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
818 	}
819 	ice_rm_all_sw_replay_rule_info(hw);
820 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
821 	devm_kfree(ice_hw_to_dev(hw), sw);
822 }
823 
824 /**
825  * ice_get_fw_log_cfg - get FW logging configuration
826  * @hw: pointer to the HW struct
827  */
828 static int ice_get_fw_log_cfg(struct ice_hw *hw)
829 {
830 	struct ice_aq_desc desc;
831 	__le16 *config;
832 	int status;
833 	u16 size;
834 
835 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
836 	config = kzalloc(size, GFP_KERNEL);
837 	if (!config)
838 		return -ENOMEM;
839 
840 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
841 
842 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
843 	if (!status) {
844 		u16 i;
845 
846 		/* Save FW logging information into the HW structure */
847 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
848 			u16 v, m, flgs;
849 
850 			v = le16_to_cpu(config[i]);
851 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
852 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
853 
854 			if (m < ICE_AQC_FW_LOG_ID_MAX)
855 				hw->fw_log.evnts[m].cur = flgs;
856 		}
857 	}
858 
859 	kfree(config);
860 
861 	return status;
862 }
863 
864 /**
865  * ice_cfg_fw_log - configure FW logging
866  * @hw: pointer to the HW struct
867  * @enable: enable certain FW logging events if true, disable all if false
868  *
869  * This function enables/disables the FW logging via Rx CQ events and a UART
870  * port based on predetermined configurations. FW logging via the Rx CQ can be
871  * enabled/disabled for individual PF's. However, FW logging via the UART can
872  * only be enabled/disabled for all PFs on the same device.
873  *
874  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
875  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
876  * before initializing the device.
877  *
878  * When re/configuring FW logging, callers need to update the "cfg" elements of
879  * the hw->fw_log.evnts array with the desired logging event configurations for
880  * modules of interest. When disabling FW logging completely, the callers can
881  * just pass false in the "enable" parameter. On completion, the function will
882  * update the "cur" element of the hw->fw_log.evnts array with the resulting
883  * logging event configurations of the modules that are being re/configured. FW
884  * logging modules that are not part of a reconfiguration operation retain their
885  * previous states.
886  *
887  * Before resetting the device, it is recommended that the driver disables FW
888  * logging before shutting down the control queue. When disabling FW logging
889  * ("enable" = false), the latest configurations of FW logging events stored in
890  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
891  * a device reset.
892  *
893  * When enabling FW logging to emit log messages via the Rx CQ during the
894  * device's initialization phase, a mechanism alternative to interrupt handlers
895  * needs to be used to extract FW log messages from the Rx CQ periodically and
896  * to prevent the Rx CQ from being full and stalling other types of control
897  * messages from FW to SW. Interrupts are typically disabled during the device's
898  * initialization phase.
899  */
900 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
901 {
902 	struct ice_aqc_fw_logging *cmd;
903 	u16 i, chgs = 0, len = 0;
904 	struct ice_aq_desc desc;
905 	__le16 *data = NULL;
906 	u8 actv_evnts = 0;
907 	void *buf = NULL;
908 	int status = 0;
909 
910 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
911 		return 0;
912 
913 	/* Disable FW logging only when the control queue is still responsive */
914 	if (!enable &&
915 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
916 		return 0;
917 
918 	/* Get current FW log settings */
919 	status = ice_get_fw_log_cfg(hw);
920 	if (status)
921 		return status;
922 
923 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
924 	cmd = &desc.params.fw_logging;
925 
926 	/* Indicate which controls are valid */
927 	if (hw->fw_log.cq_en)
928 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
929 
930 	if (hw->fw_log.uart_en)
931 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
932 
933 	if (enable) {
934 		/* Fill in an array of entries with FW logging modules and
935 		 * logging events being reconfigured.
936 		 */
937 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
938 			u16 val;
939 
940 			/* Keep track of enabled event types */
941 			actv_evnts |= hw->fw_log.evnts[i].cfg;
942 
943 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
944 				continue;
945 
946 			if (!data) {
947 				data = devm_kcalloc(ice_hw_to_dev(hw),
948 						    ICE_AQC_FW_LOG_ID_MAX,
949 						    sizeof(*data),
950 						    GFP_KERNEL);
951 				if (!data)
952 					return -ENOMEM;
953 			}
954 
955 			val = i << ICE_AQC_FW_LOG_ID_S;
956 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
957 			data[chgs++] = cpu_to_le16(val);
958 		}
959 
960 		/* Only enable FW logging if at least one module is specified.
961 		 * If FW logging is currently enabled but all modules are not
962 		 * enabled to emit log messages, disable FW logging altogether.
963 		 */
964 		if (actv_evnts) {
965 			/* Leave if there is effectively no change */
966 			if (!chgs)
967 				goto out;
968 
969 			if (hw->fw_log.cq_en)
970 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
971 
972 			if (hw->fw_log.uart_en)
973 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
974 
975 			buf = data;
976 			len = sizeof(*data) * chgs;
977 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
978 		}
979 	}
980 
981 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
982 	if (!status) {
983 		/* Update the current configuration to reflect events enabled.
984 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
985 		 * logging mode is enabled for the device. They do not reflect
986 		 * actual modules being enabled to emit log messages. So, their
987 		 * values remain unchanged even when all modules are disabled.
988 		 */
989 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
990 
991 		hw->fw_log.actv_evnts = actv_evnts;
992 		for (i = 0; i < cnt; i++) {
993 			u16 v, m;
994 
995 			if (!enable) {
996 				/* When disabling all FW logging events as part
997 				 * of device's de-initialization, the original
998 				 * configurations are retained, and can be used
999 				 * to reconfigure FW logging later if the device
1000 				 * is re-initialized.
1001 				 */
1002 				hw->fw_log.evnts[i].cur = 0;
1003 				continue;
1004 			}
1005 
1006 			v = le16_to_cpu(data[i]);
1007 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1008 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1009 		}
1010 	}
1011 
1012 out:
1013 	devm_kfree(ice_hw_to_dev(hw), data);
1014 
1015 	return status;
1016 }
1017 
1018 /**
1019  * ice_output_fw_log
1020  * @hw: pointer to the HW struct
1021  * @desc: pointer to the AQ message descriptor
1022  * @buf: pointer to the buffer accompanying the AQ message
1023  *
1024  * Formats a FW Log message and outputs it via the standard driver logs.
1025  */
1026 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1027 {
1028 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1029 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1030 			le16_to_cpu(desc->datalen));
1031 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1032 }
1033 
1034 /**
1035  * ice_get_itr_intrl_gran
1036  * @hw: pointer to the HW struct
1037  *
1038  * Determines the ITR/INTRL granularities based on the maximum aggregate
1039  * bandwidth according to the device's configuration during power-on.
1040  */
1041 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1042 {
1043 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1044 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1045 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1046 
1047 	switch (max_agg_bw) {
1048 	case ICE_MAX_AGG_BW_200G:
1049 	case ICE_MAX_AGG_BW_100G:
1050 	case ICE_MAX_AGG_BW_50G:
1051 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1052 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1053 		break;
1054 	case ICE_MAX_AGG_BW_25G:
1055 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1056 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1057 		break;
1058 	}
1059 }
1060 
1061 /**
1062  * ice_init_hw - main hardware initialization routine
1063  * @hw: pointer to the hardware structure
1064  */
1065 int ice_init_hw(struct ice_hw *hw)
1066 {
1067 	struct ice_aqc_get_phy_caps_data *pcaps;
1068 	u16 mac_buf_len;
1069 	void *mac_buf;
1070 	int status;
1071 
1072 	/* Set MAC type based on DeviceID */
1073 	status = ice_set_mac_type(hw);
1074 	if (status)
1075 		return status;
1076 
1077 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1078 			 PF_FUNC_RID_FUNC_NUM_M) >>
1079 		PF_FUNC_RID_FUNC_NUM_S;
1080 
1081 	status = ice_reset(hw, ICE_RESET_PFR);
1082 	if (status)
1083 		return status;
1084 
1085 	ice_get_itr_intrl_gran(hw);
1086 
1087 	status = ice_create_all_ctrlq(hw);
1088 	if (status)
1089 		goto err_unroll_cqinit;
1090 
1091 	/* Enable FW logging. Not fatal if this fails. */
1092 	status = ice_cfg_fw_log(hw, true);
1093 	if (status)
1094 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1095 
1096 	status = ice_clear_pf_cfg(hw);
1097 	if (status)
1098 		goto err_unroll_cqinit;
1099 
1100 	/* Set bit to enable Flow Director filters */
1101 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1102 	INIT_LIST_HEAD(&hw->fdir_list_head);
1103 
1104 	ice_clear_pxe_mode(hw);
1105 
1106 	status = ice_init_nvm(hw);
1107 	if (status)
1108 		goto err_unroll_cqinit;
1109 
1110 	status = ice_get_caps(hw);
1111 	if (status)
1112 		goto err_unroll_cqinit;
1113 
1114 	if (!hw->port_info)
1115 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1116 					     sizeof(*hw->port_info),
1117 					     GFP_KERNEL);
1118 	if (!hw->port_info) {
1119 		status = -ENOMEM;
1120 		goto err_unroll_cqinit;
1121 	}
1122 
1123 	/* set the back pointer to HW */
1124 	hw->port_info->hw = hw;
1125 
1126 	/* Initialize port_info struct with switch configuration data */
1127 	status = ice_get_initial_sw_cfg(hw);
1128 	if (status)
1129 		goto err_unroll_alloc;
1130 
1131 	hw->evb_veb = true;
1132 
1133 	/* init xarray for identifying scheduling nodes uniquely */
1134 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1135 
1136 	/* Query the allocated resources for Tx scheduler */
1137 	status = ice_sched_query_res_alloc(hw);
1138 	if (status) {
1139 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1140 		goto err_unroll_alloc;
1141 	}
1142 	ice_sched_get_psm_clk_freq(hw);
1143 
1144 	/* Initialize port_info struct with scheduler data */
1145 	status = ice_sched_init_port(hw->port_info);
1146 	if (status)
1147 		goto err_unroll_sched;
1148 
1149 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1150 	if (!pcaps) {
1151 		status = -ENOMEM;
1152 		goto err_unroll_sched;
1153 	}
1154 
1155 	/* Initialize port_info struct with PHY capabilities */
1156 	status = ice_aq_get_phy_caps(hw->port_info, false,
1157 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1158 				     NULL);
1159 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1160 	if (status)
1161 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1162 			 status);
1163 
1164 	/* Initialize port_info struct with link information */
1165 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1166 	if (status)
1167 		goto err_unroll_sched;
1168 
1169 	/* need a valid SW entry point to build a Tx tree */
1170 	if (!hw->sw_entry_point_layer) {
1171 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1172 		status = -EIO;
1173 		goto err_unroll_sched;
1174 	}
1175 	INIT_LIST_HEAD(&hw->agg_list);
1176 	/* Initialize max burst size */
1177 	if (!hw->max_burst_size)
1178 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1179 
1180 	status = ice_init_fltr_mgmt_struct(hw);
1181 	if (status)
1182 		goto err_unroll_sched;
1183 
1184 	/* Get MAC information */
1185 	/* A single port can report up to two (LAN and WoL) addresses */
1186 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1187 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1188 			       GFP_KERNEL);
1189 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1190 
1191 	if (!mac_buf) {
1192 		status = -ENOMEM;
1193 		goto err_unroll_fltr_mgmt_struct;
1194 	}
1195 
1196 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1197 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1198 
1199 	if (status)
1200 		goto err_unroll_fltr_mgmt_struct;
1201 	/* enable jumbo frame support at MAC level */
1202 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1203 	if (status)
1204 		goto err_unroll_fltr_mgmt_struct;
1205 	/* Obtain counter base index which would be used by flow director */
1206 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1207 	if (status)
1208 		goto err_unroll_fltr_mgmt_struct;
1209 	status = ice_init_hw_tbls(hw);
1210 	if (status)
1211 		goto err_unroll_fltr_mgmt_struct;
1212 	mutex_init(&hw->tnl_lock);
1213 	return 0;
1214 
1215 err_unroll_fltr_mgmt_struct:
1216 	ice_cleanup_fltr_mgmt_struct(hw);
1217 err_unroll_sched:
1218 	ice_sched_cleanup_all(hw);
1219 err_unroll_alloc:
1220 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1221 err_unroll_cqinit:
1222 	ice_destroy_all_ctrlq(hw);
1223 	return status;
1224 }
1225 
1226 /**
1227  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1228  * @hw: pointer to the hardware structure
1229  *
1230  * This should be called only during nominal operation, not as a result of
1231  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1232  * applicable initializations if it fails for any reason.
1233  */
1234 void ice_deinit_hw(struct ice_hw *hw)
1235 {
1236 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1237 	ice_cleanup_fltr_mgmt_struct(hw);
1238 
1239 	ice_sched_cleanup_all(hw);
1240 	ice_sched_clear_agg(hw);
1241 	ice_free_seg(hw);
1242 	ice_free_hw_tbls(hw);
1243 	mutex_destroy(&hw->tnl_lock);
1244 
1245 	/* Attempt to disable FW logging before shutting down control queues */
1246 	ice_cfg_fw_log(hw, false);
1247 	ice_destroy_all_ctrlq(hw);
1248 
1249 	/* Clear VSI contexts if not already cleared */
1250 	ice_clear_all_vsi_ctx(hw);
1251 }
1252 
1253 /**
1254  * ice_check_reset - Check to see if a global reset is complete
1255  * @hw: pointer to the hardware structure
1256  */
1257 int ice_check_reset(struct ice_hw *hw)
1258 {
1259 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1260 
1261 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1262 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1263 	 * Add 1sec for outstanding AQ commands that can take a long time.
1264 	 */
1265 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1266 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1267 
1268 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1269 		mdelay(100);
1270 		reg = rd32(hw, GLGEN_RSTAT);
1271 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1272 			break;
1273 	}
1274 
1275 	if (cnt == grst_timeout) {
1276 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1277 		return -EIO;
1278 	}
1279 
1280 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1281 				 GLNVM_ULD_PCIER_DONE_1_M |\
1282 				 GLNVM_ULD_CORER_DONE_M |\
1283 				 GLNVM_ULD_GLOBR_DONE_M |\
1284 				 GLNVM_ULD_POR_DONE_M |\
1285 				 GLNVM_ULD_POR_DONE_1_M |\
1286 				 GLNVM_ULD_PCIER_DONE_2_M)
1287 
1288 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1289 					  GLNVM_ULD_PE_DONE_M : 0);
1290 
1291 	/* Device is Active; check Global Reset processes are done */
1292 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1293 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1294 		if (reg == uld_mask) {
1295 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1296 			break;
1297 		}
1298 		mdelay(10);
1299 	}
1300 
1301 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1302 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1303 			  reg);
1304 		return -EIO;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  * ice_pf_reset - Reset the PF
1312  * @hw: pointer to the hardware structure
1313  *
1314  * If a global reset has been triggered, this function checks
1315  * for its completion and then issues the PF reset
1316  */
1317 static int ice_pf_reset(struct ice_hw *hw)
1318 {
1319 	u32 cnt, reg;
1320 
1321 	/* If at function entry a global reset was already in progress, i.e.
1322 	 * state is not 'device active' or any of the reset done bits are not
1323 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1324 	 * global reset is done.
1325 	 */
1326 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1327 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1328 		/* poll on global reset currently in progress until done */
1329 		if (ice_check_reset(hw))
1330 			return -EIO;
1331 
1332 		return 0;
1333 	}
1334 
1335 	/* Reset the PF */
1336 	reg = rd32(hw, PFGEN_CTRL);
1337 
1338 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1339 
1340 	/* Wait for the PFR to complete. The wait time is the global config lock
1341 	 * timeout plus the PFR timeout which will account for a possible reset
1342 	 * that is occurring during a download package operation.
1343 	 */
1344 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1345 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1346 		reg = rd32(hw, PFGEN_CTRL);
1347 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1348 			break;
1349 
1350 		mdelay(1);
1351 	}
1352 
1353 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1354 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1355 		return -EIO;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 /**
1362  * ice_reset - Perform different types of reset
1363  * @hw: pointer to the hardware structure
1364  * @req: reset request
1365  *
1366  * This function triggers a reset as specified by the req parameter.
1367  *
1368  * Note:
1369  * If anything other than a PF reset is triggered, PXE mode is restored.
1370  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1371  * interface has been restored in the rebuild flow.
1372  */
1373 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1374 {
1375 	u32 val = 0;
1376 
1377 	switch (req) {
1378 	case ICE_RESET_PFR:
1379 		return ice_pf_reset(hw);
1380 	case ICE_RESET_CORER:
1381 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1382 		val = GLGEN_RTRIG_CORER_M;
1383 		break;
1384 	case ICE_RESET_GLOBR:
1385 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1386 		val = GLGEN_RTRIG_GLOBR_M;
1387 		break;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	val |= rd32(hw, GLGEN_RTRIG);
1393 	wr32(hw, GLGEN_RTRIG, val);
1394 	ice_flush(hw);
1395 
1396 	/* wait for the FW to be ready */
1397 	return ice_check_reset(hw);
1398 }
1399 
1400 /**
1401  * ice_copy_rxq_ctx_to_hw
1402  * @hw: pointer to the hardware structure
1403  * @ice_rxq_ctx: pointer to the rxq context
1404  * @rxq_index: the index of the Rx queue
1405  *
1406  * Copies rxq context from dense structure to HW register space
1407  */
1408 static int
1409 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1410 {
1411 	u8 i;
1412 
1413 	if (!ice_rxq_ctx)
1414 		return -EINVAL;
1415 
1416 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1417 		return -EINVAL;
1418 
1419 	/* Copy each dword separately to HW */
1420 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1421 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1422 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1423 
1424 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1425 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 /* LAN Rx Queue Context */
1432 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1433 	/* Field		Width	LSB */
1434 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1435 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1436 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1437 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1438 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1439 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1440 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1441 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1442 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1443 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1444 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1445 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1446 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1447 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1448 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1449 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1450 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1451 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1452 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1453 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1454 	{ 0 }
1455 };
1456 
1457 /**
1458  * ice_write_rxq_ctx
1459  * @hw: pointer to the hardware structure
1460  * @rlan_ctx: pointer to the rxq context
1461  * @rxq_index: the index of the Rx queue
1462  *
1463  * Converts rxq context from sparse to dense structure and then writes
1464  * it to HW register space and enables the hardware to prefetch descriptors
1465  * instead of only fetching them on demand
1466  */
1467 int
1468 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1469 		  u32 rxq_index)
1470 {
1471 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1472 
1473 	if (!rlan_ctx)
1474 		return -EINVAL;
1475 
1476 	rlan_ctx->prefena = 1;
1477 
1478 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1479 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1480 }
1481 
1482 /* LAN Tx Queue Context */
1483 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1484 				    /* Field			Width	LSB */
1485 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1486 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1487 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1488 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1489 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1490 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1491 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1492 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1493 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1494 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1495 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1496 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1497 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1498 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1499 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1500 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1501 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1502 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1503 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1504 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1505 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1506 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1507 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1508 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1509 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1510 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1511 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1512 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1513 	{ 0 }
1514 };
1515 
1516 /* Sideband Queue command wrappers */
1517 
1518 /**
1519  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1520  * @hw: pointer to the HW struct
1521  * @desc: descriptor describing the command
1522  * @buf: buffer to use for indirect commands (NULL for direct commands)
1523  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1524  * @cd: pointer to command details structure
1525  */
1526 static int
1527 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1528 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1529 {
1530 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1531 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1532 }
1533 
1534 /**
1535  * ice_sbq_rw_reg - Fill Sideband Queue command
1536  * @hw: pointer to the HW struct
1537  * @in: message info to be filled in descriptor
1538  */
1539 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1540 {
1541 	struct ice_sbq_cmd_desc desc = {0};
1542 	struct ice_sbq_msg_req msg = {0};
1543 	u16 msg_len;
1544 	int status;
1545 
1546 	msg_len = sizeof(msg);
1547 
1548 	msg.dest_dev = in->dest_dev;
1549 	msg.opcode = in->opcode;
1550 	msg.flags = ICE_SBQ_MSG_FLAGS;
1551 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1552 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1553 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1554 
1555 	if (in->opcode)
1556 		msg.data = cpu_to_le32(in->data);
1557 	else
1558 		/* data read comes back in completion, so shorten the struct by
1559 		 * sizeof(msg.data)
1560 		 */
1561 		msg_len -= sizeof(msg.data);
1562 
1563 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1564 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1565 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1566 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1567 	if (!status && !in->opcode)
1568 		in->data = le32_to_cpu
1569 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1570 	return status;
1571 }
1572 
1573 /* FW Admin Queue command wrappers */
1574 
1575 /* Software lock/mutex that is meant to be held while the Global Config Lock
1576  * in firmware is acquired by the software to prevent most (but not all) types
1577  * of AQ commands from being sent to FW
1578  */
1579 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1580 
1581 /**
1582  * ice_should_retry_sq_send_cmd
1583  * @opcode: AQ opcode
1584  *
1585  * Decide if we should retry the send command routine for the ATQ, depending
1586  * on the opcode.
1587  */
1588 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1589 {
1590 	switch (opcode) {
1591 	case ice_aqc_opc_get_link_topo:
1592 	case ice_aqc_opc_lldp_stop:
1593 	case ice_aqc_opc_lldp_start:
1594 	case ice_aqc_opc_lldp_filter_ctrl:
1595 		return true;
1596 	}
1597 
1598 	return false;
1599 }
1600 
1601 /**
1602  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1603  * @hw: pointer to the HW struct
1604  * @cq: pointer to the specific Control queue
1605  * @desc: prefilled descriptor describing the command
1606  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1607  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1608  * @cd: pointer to command details structure
1609  *
1610  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1611  * Queue if the EBUSY AQ error is returned.
1612  */
1613 static int
1614 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1615 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1616 		      struct ice_sq_cd *cd)
1617 {
1618 	struct ice_aq_desc desc_cpy;
1619 	bool is_cmd_for_retry;
1620 	u8 idx = 0;
1621 	u16 opcode;
1622 	int status;
1623 
1624 	opcode = le16_to_cpu(desc->opcode);
1625 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1626 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1627 
1628 	if (is_cmd_for_retry) {
1629 		/* All retryable cmds are direct, without buf. */
1630 		WARN_ON(buf);
1631 
1632 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1633 	}
1634 
1635 	do {
1636 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1637 
1638 		if (!is_cmd_for_retry || !status ||
1639 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1640 			break;
1641 
1642 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1643 
1644 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1645 
1646 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1647 
1648 	return status;
1649 }
1650 
1651 /**
1652  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1653  * @hw: pointer to the HW struct
1654  * @desc: descriptor describing the command
1655  * @buf: buffer to use for indirect commands (NULL for direct commands)
1656  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1657  * @cd: pointer to command details structure
1658  *
1659  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1660  */
1661 int
1662 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1663 		u16 buf_size, struct ice_sq_cd *cd)
1664 {
1665 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1666 	bool lock_acquired = false;
1667 	int status;
1668 
1669 	/* When a package download is in process (i.e. when the firmware's
1670 	 * Global Configuration Lock resource is held), only the Download
1671 	 * Package, Get Version, Get Package Info List, Upload Section,
1672 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1673 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1674 	 * Recipes to Profile Association, and Release Resource (with resource
1675 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1676 	 * must block until the package download completes and the Global Config
1677 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1678 	 */
1679 	switch (le16_to_cpu(desc->opcode)) {
1680 	case ice_aqc_opc_download_pkg:
1681 	case ice_aqc_opc_get_pkg_info_list:
1682 	case ice_aqc_opc_get_ver:
1683 	case ice_aqc_opc_upload_section:
1684 	case ice_aqc_opc_update_pkg:
1685 	case ice_aqc_opc_set_port_params:
1686 	case ice_aqc_opc_get_vlan_mode_parameters:
1687 	case ice_aqc_opc_set_vlan_mode_parameters:
1688 	case ice_aqc_opc_add_recipe:
1689 	case ice_aqc_opc_recipe_to_profile:
1690 	case ice_aqc_opc_get_recipe:
1691 	case ice_aqc_opc_get_recipe_to_profile:
1692 		break;
1693 	case ice_aqc_opc_release_res:
1694 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1695 			break;
1696 		fallthrough;
1697 	default:
1698 		mutex_lock(&ice_global_cfg_lock_sw);
1699 		lock_acquired = true;
1700 		break;
1701 	}
1702 
1703 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1704 	if (lock_acquired)
1705 		mutex_unlock(&ice_global_cfg_lock_sw);
1706 
1707 	return status;
1708 }
1709 
1710 /**
1711  * ice_aq_get_fw_ver
1712  * @hw: pointer to the HW struct
1713  * @cd: pointer to command details structure or NULL
1714  *
1715  * Get the firmware version (0x0001) from the admin queue commands
1716  */
1717 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1718 {
1719 	struct ice_aqc_get_ver *resp;
1720 	struct ice_aq_desc desc;
1721 	int status;
1722 
1723 	resp = &desc.params.get_ver;
1724 
1725 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1726 
1727 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1728 
1729 	if (!status) {
1730 		hw->fw_branch = resp->fw_branch;
1731 		hw->fw_maj_ver = resp->fw_major;
1732 		hw->fw_min_ver = resp->fw_minor;
1733 		hw->fw_patch = resp->fw_patch;
1734 		hw->fw_build = le32_to_cpu(resp->fw_build);
1735 		hw->api_branch = resp->api_branch;
1736 		hw->api_maj_ver = resp->api_major;
1737 		hw->api_min_ver = resp->api_minor;
1738 		hw->api_patch = resp->api_patch;
1739 	}
1740 
1741 	return status;
1742 }
1743 
1744 /**
1745  * ice_aq_send_driver_ver
1746  * @hw: pointer to the HW struct
1747  * @dv: driver's major, minor version
1748  * @cd: pointer to command details structure or NULL
1749  *
1750  * Send the driver version (0x0002) to the firmware
1751  */
1752 int
1753 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1754 		       struct ice_sq_cd *cd)
1755 {
1756 	struct ice_aqc_driver_ver *cmd;
1757 	struct ice_aq_desc desc;
1758 	u16 len;
1759 
1760 	cmd = &desc.params.driver_ver;
1761 
1762 	if (!dv)
1763 		return -EINVAL;
1764 
1765 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1766 
1767 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1768 	cmd->major_ver = dv->major_ver;
1769 	cmd->minor_ver = dv->minor_ver;
1770 	cmd->build_ver = dv->build_ver;
1771 	cmd->subbuild_ver = dv->subbuild_ver;
1772 
1773 	len = 0;
1774 	while (len < sizeof(dv->driver_string) &&
1775 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1776 		len++;
1777 
1778 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1779 }
1780 
1781 /**
1782  * ice_aq_q_shutdown
1783  * @hw: pointer to the HW struct
1784  * @unloading: is the driver unloading itself
1785  *
1786  * Tell the Firmware that we're shutting down the AdminQ and whether
1787  * or not the driver is unloading as well (0x0003).
1788  */
1789 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1790 {
1791 	struct ice_aqc_q_shutdown *cmd;
1792 	struct ice_aq_desc desc;
1793 
1794 	cmd = &desc.params.q_shutdown;
1795 
1796 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1797 
1798 	if (unloading)
1799 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1800 
1801 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1802 }
1803 
1804 /**
1805  * ice_aq_req_res
1806  * @hw: pointer to the HW struct
1807  * @res: resource ID
1808  * @access: access type
1809  * @sdp_number: resource number
1810  * @timeout: the maximum time in ms that the driver may hold the resource
1811  * @cd: pointer to command details structure or NULL
1812  *
1813  * Requests common resource using the admin queue commands (0x0008).
1814  * When attempting to acquire the Global Config Lock, the driver can
1815  * learn of three states:
1816  *  1) 0 -         acquired lock, and can perform download package
1817  *  2) -EIO -      did not get lock, driver should fail to load
1818  *  3) -EALREADY - did not get lock, but another driver has
1819  *                 successfully downloaded the package; the driver does
1820  *                 not have to download the package and can continue
1821  *                 loading
1822  *
1823  * Note that if the caller is in an acquire lock, perform action, release lock
1824  * phase of operation, it is possible that the FW may detect a timeout and issue
1825  * a CORER. In this case, the driver will receive a CORER interrupt and will
1826  * have to determine its cause. The calling thread that is handling this flow
1827  * will likely get an error propagated back to it indicating the Download
1828  * Package, Update Package or the Release Resource AQ commands timed out.
1829  */
1830 static int
1831 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1832 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1833 	       struct ice_sq_cd *cd)
1834 {
1835 	struct ice_aqc_req_res *cmd_resp;
1836 	struct ice_aq_desc desc;
1837 	int status;
1838 
1839 	cmd_resp = &desc.params.res_owner;
1840 
1841 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1842 
1843 	cmd_resp->res_id = cpu_to_le16(res);
1844 	cmd_resp->access_type = cpu_to_le16(access);
1845 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1846 	cmd_resp->timeout = cpu_to_le32(*timeout);
1847 	*timeout = 0;
1848 
1849 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1850 
1851 	/* The completion specifies the maximum time in ms that the driver
1852 	 * may hold the resource in the Timeout field.
1853 	 */
1854 
1855 	/* Global config lock response utilizes an additional status field.
1856 	 *
1857 	 * If the Global config lock resource is held by some other driver, the
1858 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1859 	 * and the timeout field indicates the maximum time the current owner
1860 	 * of the resource has to free it.
1861 	 */
1862 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1863 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1864 			*timeout = le32_to_cpu(cmd_resp->timeout);
1865 			return 0;
1866 		} else if (le16_to_cpu(cmd_resp->status) ==
1867 			   ICE_AQ_RES_GLBL_IN_PROG) {
1868 			*timeout = le32_to_cpu(cmd_resp->timeout);
1869 			return -EIO;
1870 		} else if (le16_to_cpu(cmd_resp->status) ==
1871 			   ICE_AQ_RES_GLBL_DONE) {
1872 			return -EALREADY;
1873 		}
1874 
1875 		/* invalid FW response, force a timeout immediately */
1876 		*timeout = 0;
1877 		return -EIO;
1878 	}
1879 
1880 	/* If the resource is held by some other driver, the command completes
1881 	 * with a busy return value and the timeout field indicates the maximum
1882 	 * time the current owner of the resource has to free it.
1883 	 */
1884 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1885 		*timeout = le32_to_cpu(cmd_resp->timeout);
1886 
1887 	return status;
1888 }
1889 
1890 /**
1891  * ice_aq_release_res
1892  * @hw: pointer to the HW struct
1893  * @res: resource ID
1894  * @sdp_number: resource number
1895  * @cd: pointer to command details structure or NULL
1896  *
1897  * release common resource using the admin queue commands (0x0009)
1898  */
1899 static int
1900 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1901 		   struct ice_sq_cd *cd)
1902 {
1903 	struct ice_aqc_req_res *cmd;
1904 	struct ice_aq_desc desc;
1905 
1906 	cmd = &desc.params.res_owner;
1907 
1908 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1909 
1910 	cmd->res_id = cpu_to_le16(res);
1911 	cmd->res_number = cpu_to_le32(sdp_number);
1912 
1913 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1914 }
1915 
1916 /**
1917  * ice_acquire_res
1918  * @hw: pointer to the HW structure
1919  * @res: resource ID
1920  * @access: access type (read or write)
1921  * @timeout: timeout in milliseconds
1922  *
1923  * This function will attempt to acquire the ownership of a resource.
1924  */
1925 int
1926 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1927 		enum ice_aq_res_access_type access, u32 timeout)
1928 {
1929 #define ICE_RES_POLLING_DELAY_MS	10
1930 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1931 	u32 time_left = timeout;
1932 	int status;
1933 
1934 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1935 
1936 	/* A return code of -EALREADY means that another driver has
1937 	 * previously acquired the resource and performed any necessary updates;
1938 	 * in this case the caller does not obtain the resource and has no
1939 	 * further work to do.
1940 	 */
1941 	if (status == -EALREADY)
1942 		goto ice_acquire_res_exit;
1943 
1944 	if (status)
1945 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1946 
1947 	/* If necessary, poll until the current lock owner timeouts */
1948 	timeout = time_left;
1949 	while (status && timeout && time_left) {
1950 		mdelay(delay);
1951 		timeout = (timeout > delay) ? timeout - delay : 0;
1952 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1953 
1954 		if (status == -EALREADY)
1955 			/* lock free, but no work to do */
1956 			break;
1957 
1958 		if (!status)
1959 			/* lock acquired */
1960 			break;
1961 	}
1962 	if (status && status != -EALREADY)
1963 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1964 
1965 ice_acquire_res_exit:
1966 	if (status == -EALREADY) {
1967 		if (access == ICE_RES_WRITE)
1968 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1969 		else
1970 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1971 	}
1972 	return status;
1973 }
1974 
1975 /**
1976  * ice_release_res
1977  * @hw: pointer to the HW structure
1978  * @res: resource ID
1979  *
1980  * This function will release a resource using the proper Admin Command.
1981  */
1982 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1983 {
1984 	unsigned long timeout;
1985 	int status;
1986 
1987 	/* there are some rare cases when trying to release the resource
1988 	 * results in an admin queue timeout, so handle them correctly
1989 	 */
1990 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1991 	do {
1992 		status = ice_aq_release_res(hw, res, 0, NULL);
1993 		if (status != -EIO)
1994 			break;
1995 		usleep_range(1000, 2000);
1996 	} while (time_before(jiffies, timeout));
1997 }
1998 
1999 /**
2000  * ice_aq_alloc_free_res - command to allocate/free resources
2001  * @hw: pointer to the HW struct
2002  * @num_entries: number of resource entries in buffer
2003  * @buf: Indirect buffer to hold data parameters and response
2004  * @buf_size: size of buffer for indirect commands
2005  * @opc: pass in the command opcode
2006  * @cd: pointer to command details structure or NULL
2007  *
2008  * Helper function to allocate/free resources using the admin queue commands
2009  */
2010 int
2011 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2012 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2013 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2014 {
2015 	struct ice_aqc_alloc_free_res_cmd *cmd;
2016 	struct ice_aq_desc desc;
2017 
2018 	cmd = &desc.params.sw_res_ctrl;
2019 
2020 	if (!buf)
2021 		return -EINVAL;
2022 
2023 	if (buf_size < flex_array_size(buf, elem, num_entries))
2024 		return -EINVAL;
2025 
2026 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2027 
2028 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2029 
2030 	cmd->num_entries = cpu_to_le16(num_entries);
2031 
2032 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2033 }
2034 
2035 /**
2036  * ice_alloc_hw_res - allocate resource
2037  * @hw: pointer to the HW struct
2038  * @type: type of resource
2039  * @num: number of resources to allocate
2040  * @btm: allocate from bottom
2041  * @res: pointer to array that will receive the resources
2042  */
2043 int
2044 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2045 {
2046 	struct ice_aqc_alloc_free_res_elem *buf;
2047 	u16 buf_len;
2048 	int status;
2049 
2050 	buf_len = struct_size(buf, elem, num);
2051 	buf = kzalloc(buf_len, GFP_KERNEL);
2052 	if (!buf)
2053 		return -ENOMEM;
2054 
2055 	/* Prepare buffer to allocate resource. */
2056 	buf->num_elems = cpu_to_le16(num);
2057 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2058 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2059 	if (btm)
2060 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2061 
2062 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2063 				       ice_aqc_opc_alloc_res, NULL);
2064 	if (status)
2065 		goto ice_alloc_res_exit;
2066 
2067 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2068 
2069 ice_alloc_res_exit:
2070 	kfree(buf);
2071 	return status;
2072 }
2073 
2074 /**
2075  * ice_free_hw_res - free allocated HW resource
2076  * @hw: pointer to the HW struct
2077  * @type: type of resource to free
2078  * @num: number of resources
2079  * @res: pointer to array that contains the resources to free
2080  */
2081 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2082 {
2083 	struct ice_aqc_alloc_free_res_elem *buf;
2084 	u16 buf_len;
2085 	int status;
2086 
2087 	buf_len = struct_size(buf, elem, num);
2088 	buf = kzalloc(buf_len, GFP_KERNEL);
2089 	if (!buf)
2090 		return -ENOMEM;
2091 
2092 	/* Prepare buffer to free resource. */
2093 	buf->num_elems = cpu_to_le16(num);
2094 	buf->res_type = cpu_to_le16(type);
2095 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2096 
2097 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2098 				       ice_aqc_opc_free_res, NULL);
2099 	if (status)
2100 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2101 
2102 	kfree(buf);
2103 	return status;
2104 }
2105 
2106 /**
2107  * ice_get_num_per_func - determine number of resources per PF
2108  * @hw: pointer to the HW structure
2109  * @max: value to be evenly split between each PF
2110  *
2111  * Determine the number of valid functions by going through the bitmap returned
2112  * from parsing capabilities and use this to calculate the number of resources
2113  * per PF based on the max value passed in.
2114  */
2115 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2116 {
2117 	u8 funcs;
2118 
2119 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2120 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2121 			 ICE_CAPS_VALID_FUNCS_M);
2122 
2123 	if (!funcs)
2124 		return 0;
2125 
2126 	return max / funcs;
2127 }
2128 
2129 /**
2130  * ice_parse_common_caps - parse common device/function capabilities
2131  * @hw: pointer to the HW struct
2132  * @caps: pointer to common capabilities structure
2133  * @elem: the capability element to parse
2134  * @prefix: message prefix for tracing capabilities
2135  *
2136  * Given a capability element, extract relevant details into the common
2137  * capability structure.
2138  *
2139  * Returns: true if the capability matches one of the common capability ids,
2140  * false otherwise.
2141  */
2142 static bool
2143 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2144 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2145 {
2146 	u32 logical_id = le32_to_cpu(elem->logical_id);
2147 	u32 phys_id = le32_to_cpu(elem->phys_id);
2148 	u32 number = le32_to_cpu(elem->number);
2149 	u16 cap = le16_to_cpu(elem->cap);
2150 	bool found = true;
2151 
2152 	switch (cap) {
2153 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2154 		caps->valid_functions = number;
2155 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2156 			  caps->valid_functions);
2157 		break;
2158 	case ICE_AQC_CAPS_SRIOV:
2159 		caps->sr_iov_1_1 = (number == 1);
2160 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2161 			  caps->sr_iov_1_1);
2162 		break;
2163 	case ICE_AQC_CAPS_DCB:
2164 		caps->dcb = (number == 1);
2165 		caps->active_tc_bitmap = logical_id;
2166 		caps->maxtc = phys_id;
2167 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2168 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2169 			  caps->active_tc_bitmap);
2170 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2171 		break;
2172 	case ICE_AQC_CAPS_RSS:
2173 		caps->rss_table_size = number;
2174 		caps->rss_table_entry_width = logical_id;
2175 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2176 			  caps->rss_table_size);
2177 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2178 			  caps->rss_table_entry_width);
2179 		break;
2180 	case ICE_AQC_CAPS_RXQS:
2181 		caps->num_rxq = number;
2182 		caps->rxq_first_id = phys_id;
2183 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2184 			  caps->num_rxq);
2185 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2186 			  caps->rxq_first_id);
2187 		break;
2188 	case ICE_AQC_CAPS_TXQS:
2189 		caps->num_txq = number;
2190 		caps->txq_first_id = phys_id;
2191 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2192 			  caps->num_txq);
2193 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2194 			  caps->txq_first_id);
2195 		break;
2196 	case ICE_AQC_CAPS_MSIX:
2197 		caps->num_msix_vectors = number;
2198 		caps->msix_vector_first_id = phys_id;
2199 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2200 			  caps->num_msix_vectors);
2201 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2202 			  caps->msix_vector_first_id);
2203 		break;
2204 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2205 		caps->nvm_update_pending_nvm = true;
2206 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2207 		break;
2208 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2209 		caps->nvm_update_pending_orom = true;
2210 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2211 		break;
2212 	case ICE_AQC_CAPS_PENDING_NET_VER:
2213 		caps->nvm_update_pending_netlist = true;
2214 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2215 		break;
2216 	case ICE_AQC_CAPS_NVM_MGMT:
2217 		caps->nvm_unified_update =
2218 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2219 			true : false;
2220 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2221 			  caps->nvm_unified_update);
2222 		break;
2223 	case ICE_AQC_CAPS_RDMA:
2224 		caps->rdma = (number == 1);
2225 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2226 		break;
2227 	case ICE_AQC_CAPS_MAX_MTU:
2228 		caps->max_mtu = number;
2229 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2230 			  prefix, caps->max_mtu);
2231 		break;
2232 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2233 		caps->pcie_reset_avoidance = (number > 0);
2234 		ice_debug(hw, ICE_DBG_INIT,
2235 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2236 			  caps->pcie_reset_avoidance);
2237 		break;
2238 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2239 		caps->reset_restrict_support = (number == 1);
2240 		ice_debug(hw, ICE_DBG_INIT,
2241 			  "%s: reset_restrict_support = %d\n", prefix,
2242 			  caps->reset_restrict_support);
2243 		break;
2244 	default:
2245 		/* Not one of the recognized common capabilities */
2246 		found = false;
2247 	}
2248 
2249 	return found;
2250 }
2251 
2252 /**
2253  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2254  * @hw: pointer to the HW structure
2255  * @caps: pointer to capabilities structure to fix
2256  *
2257  * Re-calculate the capabilities that are dependent on the number of physical
2258  * ports; i.e. some features are not supported or function differently on
2259  * devices with more than 4 ports.
2260  */
2261 static void
2262 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2263 {
2264 	/* This assumes device capabilities are always scanned before function
2265 	 * capabilities during the initialization flow.
2266 	 */
2267 	if (hw->dev_caps.num_funcs > 4) {
2268 		/* Max 4 TCs per port */
2269 		caps->maxtc = 4;
2270 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2271 			  caps->maxtc);
2272 		if (caps->rdma) {
2273 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2274 			caps->rdma = 0;
2275 		}
2276 
2277 		/* print message only when processing device capabilities
2278 		 * during initialization.
2279 		 */
2280 		if (caps == &hw->dev_caps.common_cap)
2281 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2282 	}
2283 }
2284 
2285 /**
2286  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2287  * @hw: pointer to the HW struct
2288  * @func_p: pointer to function capabilities structure
2289  * @cap: pointer to the capability element to parse
2290  *
2291  * Extract function capabilities for ICE_AQC_CAPS_VF.
2292  */
2293 static void
2294 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2295 		       struct ice_aqc_list_caps_elem *cap)
2296 {
2297 	u32 logical_id = le32_to_cpu(cap->logical_id);
2298 	u32 number = le32_to_cpu(cap->number);
2299 
2300 	func_p->num_allocd_vfs = number;
2301 	func_p->vf_base_id = logical_id;
2302 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2303 		  func_p->num_allocd_vfs);
2304 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2305 		  func_p->vf_base_id);
2306 }
2307 
2308 /**
2309  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2310  * @hw: pointer to the HW struct
2311  * @func_p: pointer to function capabilities structure
2312  * @cap: pointer to the capability element to parse
2313  *
2314  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2315  */
2316 static void
2317 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2318 			struct ice_aqc_list_caps_elem *cap)
2319 {
2320 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2321 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2322 		  le32_to_cpu(cap->number));
2323 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2324 		  func_p->guar_num_vsi);
2325 }
2326 
2327 /**
2328  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2329  * @hw: pointer to the HW struct
2330  * @func_p: pointer to function capabilities structure
2331  * @cap: pointer to the capability element to parse
2332  *
2333  * Extract function capabilities for ICE_AQC_CAPS_1588.
2334  */
2335 static void
2336 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2337 			 struct ice_aqc_list_caps_elem *cap)
2338 {
2339 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2340 	u32 number = le32_to_cpu(cap->number);
2341 
2342 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2343 	func_p->common_cap.ieee_1588 = info->ena;
2344 
2345 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2346 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2347 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2348 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2349 
2350 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2351 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2352 
2353 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2354 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2355 	} else {
2356 		/* Unknown clock frequency, so assume a (probably incorrect)
2357 		 * default to avoid out-of-bounds look ups of frequency
2358 		 * related information.
2359 		 */
2360 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2361 			  info->clk_freq);
2362 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2363 	}
2364 
2365 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2366 		  func_p->common_cap.ieee_1588);
2367 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2368 		  info->src_tmr_owned);
2369 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2370 		  info->tmr_ena);
2371 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2372 		  info->tmr_index_owned);
2373 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2374 		  info->tmr_index_assoc);
2375 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2376 		  info->clk_freq);
2377 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2378 		  info->clk_src);
2379 }
2380 
2381 /**
2382  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2383  * @hw: pointer to the HW struct
2384  * @func_p: pointer to function capabilities structure
2385  *
2386  * Extract function capabilities for ICE_AQC_CAPS_FD.
2387  */
2388 static void
2389 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2390 {
2391 	u32 reg_val, val;
2392 
2393 	reg_val = rd32(hw, GLQF_FD_SIZE);
2394 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2395 		GLQF_FD_SIZE_FD_GSIZE_S;
2396 	func_p->fd_fltr_guar =
2397 		ice_get_num_per_func(hw, val);
2398 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2399 		GLQF_FD_SIZE_FD_BSIZE_S;
2400 	func_p->fd_fltr_best_effort = val;
2401 
2402 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2403 		  func_p->fd_fltr_guar);
2404 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2405 		  func_p->fd_fltr_best_effort);
2406 }
2407 
2408 /**
2409  * ice_parse_func_caps - Parse function capabilities
2410  * @hw: pointer to the HW struct
2411  * @func_p: pointer to function capabilities structure
2412  * @buf: buffer containing the function capability records
2413  * @cap_count: the number of capabilities
2414  *
2415  * Helper function to parse function (0x000A) capabilities list. For
2416  * capabilities shared between device and function, this relies on
2417  * ice_parse_common_caps.
2418  *
2419  * Loop through the list of provided capabilities and extract the relevant
2420  * data into the function capabilities structured.
2421  */
2422 static void
2423 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2424 		    void *buf, u32 cap_count)
2425 {
2426 	struct ice_aqc_list_caps_elem *cap_resp;
2427 	u32 i;
2428 
2429 	cap_resp = buf;
2430 
2431 	memset(func_p, 0, sizeof(*func_p));
2432 
2433 	for (i = 0; i < cap_count; i++) {
2434 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2435 		bool found;
2436 
2437 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2438 					      &cap_resp[i], "func caps");
2439 
2440 		switch (cap) {
2441 		case ICE_AQC_CAPS_VF:
2442 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2443 			break;
2444 		case ICE_AQC_CAPS_VSI:
2445 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2446 			break;
2447 		case ICE_AQC_CAPS_1588:
2448 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2449 			break;
2450 		case ICE_AQC_CAPS_FD:
2451 			ice_parse_fdir_func_caps(hw, func_p);
2452 			break;
2453 		default:
2454 			/* Don't list common capabilities as unknown */
2455 			if (!found)
2456 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2457 					  i, cap);
2458 			break;
2459 		}
2460 	}
2461 
2462 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2463 }
2464 
2465 /**
2466  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2467  * @hw: pointer to the HW struct
2468  * @dev_p: pointer to device capabilities structure
2469  * @cap: capability element to parse
2470  *
2471  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2472  */
2473 static void
2474 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2475 			      struct ice_aqc_list_caps_elem *cap)
2476 {
2477 	u32 number = le32_to_cpu(cap->number);
2478 
2479 	dev_p->num_funcs = hweight32(number);
2480 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2481 		  dev_p->num_funcs);
2482 }
2483 
2484 /**
2485  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2486  * @hw: pointer to the HW struct
2487  * @dev_p: pointer to device capabilities structure
2488  * @cap: capability element to parse
2489  *
2490  * Parse ICE_AQC_CAPS_VF for device capabilities.
2491  */
2492 static void
2493 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2494 		      struct ice_aqc_list_caps_elem *cap)
2495 {
2496 	u32 number = le32_to_cpu(cap->number);
2497 
2498 	dev_p->num_vfs_exposed = number;
2499 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2500 		  dev_p->num_vfs_exposed);
2501 }
2502 
2503 /**
2504  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2505  * @hw: pointer to the HW struct
2506  * @dev_p: pointer to device capabilities structure
2507  * @cap: capability element to parse
2508  *
2509  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2510  */
2511 static void
2512 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2513 		       struct ice_aqc_list_caps_elem *cap)
2514 {
2515 	u32 number = le32_to_cpu(cap->number);
2516 
2517 	dev_p->num_vsi_allocd_to_host = number;
2518 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2519 		  dev_p->num_vsi_allocd_to_host);
2520 }
2521 
2522 /**
2523  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2524  * @hw: pointer to the HW struct
2525  * @dev_p: pointer to device capabilities structure
2526  * @cap: capability element to parse
2527  *
2528  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2529  */
2530 static void
2531 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2532 			struct ice_aqc_list_caps_elem *cap)
2533 {
2534 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2535 	u32 logical_id = le32_to_cpu(cap->logical_id);
2536 	u32 phys_id = le32_to_cpu(cap->phys_id);
2537 	u32 number = le32_to_cpu(cap->number);
2538 
2539 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2540 	dev_p->common_cap.ieee_1588 = info->ena;
2541 
2542 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2543 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2544 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2545 
2546 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2547 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2548 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2549 
2550 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2551 
2552 	info->ena_ports = logical_id;
2553 	info->tmr_own_map = phys_id;
2554 
2555 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2556 		  dev_p->common_cap.ieee_1588);
2557 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2558 		  info->tmr0_owner);
2559 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2560 		  info->tmr0_owned);
2561 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2562 		  info->tmr0_ena);
2563 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2564 		  info->tmr1_owner);
2565 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2566 		  info->tmr1_owned);
2567 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2568 		  info->tmr1_ena);
2569 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2570 		  info->ts_ll_read);
2571 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2572 		  info->ena_ports);
2573 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2574 		  info->tmr_own_map);
2575 }
2576 
2577 /**
2578  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2579  * @hw: pointer to the HW struct
2580  * @dev_p: pointer to device capabilities structure
2581  * @cap: capability element to parse
2582  *
2583  * Parse ICE_AQC_CAPS_FD for device capabilities.
2584  */
2585 static void
2586 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2587 			struct ice_aqc_list_caps_elem *cap)
2588 {
2589 	u32 number = le32_to_cpu(cap->number);
2590 
2591 	dev_p->num_flow_director_fltr = number;
2592 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2593 		  dev_p->num_flow_director_fltr);
2594 }
2595 
2596 /**
2597  * ice_parse_dev_caps - Parse device capabilities
2598  * @hw: pointer to the HW struct
2599  * @dev_p: pointer to device capabilities structure
2600  * @buf: buffer containing the device capability records
2601  * @cap_count: the number of capabilities
2602  *
2603  * Helper device to parse device (0x000B) capabilities list. For
2604  * capabilities shared between device and function, this relies on
2605  * ice_parse_common_caps.
2606  *
2607  * Loop through the list of provided capabilities and extract the relevant
2608  * data into the device capabilities structured.
2609  */
2610 static void
2611 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2612 		   void *buf, u32 cap_count)
2613 {
2614 	struct ice_aqc_list_caps_elem *cap_resp;
2615 	u32 i;
2616 
2617 	cap_resp = buf;
2618 
2619 	memset(dev_p, 0, sizeof(*dev_p));
2620 
2621 	for (i = 0; i < cap_count; i++) {
2622 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2623 		bool found;
2624 
2625 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2626 					      &cap_resp[i], "dev caps");
2627 
2628 		switch (cap) {
2629 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2630 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2631 			break;
2632 		case ICE_AQC_CAPS_VF:
2633 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2634 			break;
2635 		case ICE_AQC_CAPS_VSI:
2636 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2637 			break;
2638 		case ICE_AQC_CAPS_1588:
2639 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2640 			break;
2641 		case  ICE_AQC_CAPS_FD:
2642 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2643 			break;
2644 		default:
2645 			/* Don't list common capabilities as unknown */
2646 			if (!found)
2647 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2648 					  i, cap);
2649 			break;
2650 		}
2651 	}
2652 
2653 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2654 }
2655 
2656 /**
2657  * ice_aq_list_caps - query function/device capabilities
2658  * @hw: pointer to the HW struct
2659  * @buf: a buffer to hold the capabilities
2660  * @buf_size: size of the buffer
2661  * @cap_count: if not NULL, set to the number of capabilities reported
2662  * @opc: capabilities type to discover, device or function
2663  * @cd: pointer to command details structure or NULL
2664  *
2665  * Get the function (0x000A) or device (0x000B) capabilities description from
2666  * firmware and store it in the buffer.
2667  *
2668  * If the cap_count pointer is not NULL, then it is set to the number of
2669  * capabilities firmware will report. Note that if the buffer size is too
2670  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2671  * cap_count will still be updated in this case. It is recommended that the
2672  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2673  * firmware could return) to avoid this.
2674  */
2675 int
2676 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2677 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2678 {
2679 	struct ice_aqc_list_caps *cmd;
2680 	struct ice_aq_desc desc;
2681 	int status;
2682 
2683 	cmd = &desc.params.get_cap;
2684 
2685 	if (opc != ice_aqc_opc_list_func_caps &&
2686 	    opc != ice_aqc_opc_list_dev_caps)
2687 		return -EINVAL;
2688 
2689 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2690 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2691 
2692 	if (cap_count)
2693 		*cap_count = le32_to_cpu(cmd->count);
2694 
2695 	return status;
2696 }
2697 
2698 /**
2699  * ice_discover_dev_caps - Read and extract device capabilities
2700  * @hw: pointer to the hardware structure
2701  * @dev_caps: pointer to device capabilities structure
2702  *
2703  * Read the device capabilities and extract them into the dev_caps structure
2704  * for later use.
2705  */
2706 int
2707 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2708 {
2709 	u32 cap_count = 0;
2710 	void *cbuf;
2711 	int status;
2712 
2713 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2714 	if (!cbuf)
2715 		return -ENOMEM;
2716 
2717 	/* Although the driver doesn't know the number of capabilities the
2718 	 * device will return, we can simply send a 4KB buffer, the maximum
2719 	 * possible size that firmware can return.
2720 	 */
2721 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2722 
2723 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2724 				  ice_aqc_opc_list_dev_caps, NULL);
2725 	if (!status)
2726 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2727 	kfree(cbuf);
2728 
2729 	return status;
2730 }
2731 
2732 /**
2733  * ice_discover_func_caps - Read and extract function capabilities
2734  * @hw: pointer to the hardware structure
2735  * @func_caps: pointer to function capabilities structure
2736  *
2737  * Read the function capabilities and extract them into the func_caps structure
2738  * for later use.
2739  */
2740 static int
2741 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2742 {
2743 	u32 cap_count = 0;
2744 	void *cbuf;
2745 	int status;
2746 
2747 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2748 	if (!cbuf)
2749 		return -ENOMEM;
2750 
2751 	/* Although the driver doesn't know the number of capabilities the
2752 	 * device will return, we can simply send a 4KB buffer, the maximum
2753 	 * possible size that firmware can return.
2754 	 */
2755 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2756 
2757 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2758 				  ice_aqc_opc_list_func_caps, NULL);
2759 	if (!status)
2760 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2761 	kfree(cbuf);
2762 
2763 	return status;
2764 }
2765 
2766 /**
2767  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2768  * @hw: pointer to the hardware structure
2769  */
2770 void ice_set_safe_mode_caps(struct ice_hw *hw)
2771 {
2772 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2773 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2774 	struct ice_hw_common_caps cached_caps;
2775 	u32 num_funcs;
2776 
2777 	/* cache some func_caps values that should be restored after memset */
2778 	cached_caps = func_caps->common_cap;
2779 
2780 	/* unset func capabilities */
2781 	memset(func_caps, 0, sizeof(*func_caps));
2782 
2783 #define ICE_RESTORE_FUNC_CAP(name) \
2784 	func_caps->common_cap.name = cached_caps.name
2785 
2786 	/* restore cached values */
2787 	ICE_RESTORE_FUNC_CAP(valid_functions);
2788 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2789 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2790 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2791 	ICE_RESTORE_FUNC_CAP(max_mtu);
2792 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2793 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2794 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2795 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2796 
2797 	/* one Tx and one Rx queue in safe mode */
2798 	func_caps->common_cap.num_rxq = 1;
2799 	func_caps->common_cap.num_txq = 1;
2800 
2801 	/* two MSIX vectors, one for traffic and one for misc causes */
2802 	func_caps->common_cap.num_msix_vectors = 2;
2803 	func_caps->guar_num_vsi = 1;
2804 
2805 	/* cache some dev_caps values that should be restored after memset */
2806 	cached_caps = dev_caps->common_cap;
2807 	num_funcs = dev_caps->num_funcs;
2808 
2809 	/* unset dev capabilities */
2810 	memset(dev_caps, 0, sizeof(*dev_caps));
2811 
2812 #define ICE_RESTORE_DEV_CAP(name) \
2813 	dev_caps->common_cap.name = cached_caps.name
2814 
2815 	/* restore cached values */
2816 	ICE_RESTORE_DEV_CAP(valid_functions);
2817 	ICE_RESTORE_DEV_CAP(txq_first_id);
2818 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2819 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2820 	ICE_RESTORE_DEV_CAP(max_mtu);
2821 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2822 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2823 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2824 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2825 	dev_caps->num_funcs = num_funcs;
2826 
2827 	/* one Tx and one Rx queue per function in safe mode */
2828 	dev_caps->common_cap.num_rxq = num_funcs;
2829 	dev_caps->common_cap.num_txq = num_funcs;
2830 
2831 	/* two MSIX vectors per function */
2832 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2833 }
2834 
2835 /**
2836  * ice_get_caps - get info about the HW
2837  * @hw: pointer to the hardware structure
2838  */
2839 int ice_get_caps(struct ice_hw *hw)
2840 {
2841 	int status;
2842 
2843 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2844 	if (status)
2845 		return status;
2846 
2847 	return ice_discover_func_caps(hw, &hw->func_caps);
2848 }
2849 
2850 /**
2851  * ice_aq_manage_mac_write - manage MAC address write command
2852  * @hw: pointer to the HW struct
2853  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2854  * @flags: flags to control write behavior
2855  * @cd: pointer to command details structure or NULL
2856  *
2857  * This function is used to write MAC address to the NVM (0x0108).
2858  */
2859 int
2860 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2861 			struct ice_sq_cd *cd)
2862 {
2863 	struct ice_aqc_manage_mac_write *cmd;
2864 	struct ice_aq_desc desc;
2865 
2866 	cmd = &desc.params.mac_write;
2867 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2868 
2869 	cmd->flags = flags;
2870 	ether_addr_copy(cmd->mac_addr, mac_addr);
2871 
2872 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2873 }
2874 
2875 /**
2876  * ice_aq_clear_pxe_mode
2877  * @hw: pointer to the HW struct
2878  *
2879  * Tell the firmware that the driver is taking over from PXE (0x0110).
2880  */
2881 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2882 {
2883 	struct ice_aq_desc desc;
2884 
2885 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2886 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2887 
2888 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2889 }
2890 
2891 /**
2892  * ice_clear_pxe_mode - clear pxe operations mode
2893  * @hw: pointer to the HW struct
2894  *
2895  * Make sure all PXE mode settings are cleared, including things
2896  * like descriptor fetch/write-back mode.
2897  */
2898 void ice_clear_pxe_mode(struct ice_hw *hw)
2899 {
2900 	if (ice_check_sq_alive(hw, &hw->adminq))
2901 		ice_aq_clear_pxe_mode(hw);
2902 }
2903 
2904 /**
2905  * ice_aq_set_port_params - set physical port parameters.
2906  * @pi: pointer to the port info struct
2907  * @double_vlan: if set double VLAN is enabled
2908  * @cd: pointer to command details structure or NULL
2909  *
2910  * Set Physical port parameters (0x0203)
2911  */
2912 int
2913 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2914 		       struct ice_sq_cd *cd)
2915 
2916 {
2917 	struct ice_aqc_set_port_params *cmd;
2918 	struct ice_hw *hw = pi->hw;
2919 	struct ice_aq_desc desc;
2920 	u16 cmd_flags = 0;
2921 
2922 	cmd = &desc.params.set_port_params;
2923 
2924 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2925 	if (double_vlan)
2926 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2927 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2928 
2929 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2930 }
2931 
2932 /**
2933  * ice_is_100m_speed_supported
2934  * @hw: pointer to the HW struct
2935  *
2936  * returns true if 100M speeds are supported by the device,
2937  * false otherwise.
2938  */
2939 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2940 {
2941 	switch (hw->device_id) {
2942 	case ICE_DEV_ID_E822C_SGMII:
2943 	case ICE_DEV_ID_E822L_SGMII:
2944 	case ICE_DEV_ID_E823L_1GBE:
2945 	case ICE_DEV_ID_E823C_SGMII:
2946 		return true;
2947 	default:
2948 		return false;
2949 	}
2950 }
2951 
2952 /**
2953  * ice_get_link_speed_based_on_phy_type - returns link speed
2954  * @phy_type_low: lower part of phy_type
2955  * @phy_type_high: higher part of phy_type
2956  *
2957  * This helper function will convert an entry in PHY type structure
2958  * [phy_type_low, phy_type_high] to its corresponding link speed.
2959  * Note: In the structure of [phy_type_low, phy_type_high], there should
2960  * be one bit set, as this function will convert one PHY type to its
2961  * speed.
2962  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2963  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2964  */
2965 static u16
2966 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2967 {
2968 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2969 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2970 
2971 	switch (phy_type_low) {
2972 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2973 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2974 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2975 		break;
2976 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2977 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2978 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2979 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2980 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2981 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2982 		break;
2983 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2984 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2985 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2986 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2987 		break;
2988 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2989 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2990 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2991 		break;
2992 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2993 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2994 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2995 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2996 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2997 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2998 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2999 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3000 		break;
3001 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3002 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3003 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3004 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3005 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3006 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3007 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3008 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3009 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3010 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3011 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3012 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3013 		break;
3014 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3015 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3016 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3017 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3018 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3019 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3020 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3021 		break;
3022 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3023 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3024 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3025 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3026 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3027 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3028 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3029 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3030 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3031 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3032 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3033 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3034 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3035 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3036 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3037 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3038 		break;
3039 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3040 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3041 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3042 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3043 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3044 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3045 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3046 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3047 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3048 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3049 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3050 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3051 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3052 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3053 		break;
3054 	default:
3055 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3056 		break;
3057 	}
3058 
3059 	switch (phy_type_high) {
3060 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3061 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3062 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3063 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3064 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3065 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3066 		break;
3067 	default:
3068 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3069 		break;
3070 	}
3071 
3072 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3073 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3074 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3075 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3076 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3077 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3078 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3079 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3080 		return speed_phy_type_low;
3081 	else
3082 		return speed_phy_type_high;
3083 }
3084 
3085 /**
3086  * ice_update_phy_type
3087  * @phy_type_low: pointer to the lower part of phy_type
3088  * @phy_type_high: pointer to the higher part of phy_type
3089  * @link_speeds_bitmap: targeted link speeds bitmap
3090  *
3091  * Note: For the link_speeds_bitmap structure, you can check it at
3092  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3093  * link_speeds_bitmap include multiple speeds.
3094  *
3095  * Each entry in this [phy_type_low, phy_type_high] structure will
3096  * present a certain link speed. This helper function will turn on bits
3097  * in [phy_type_low, phy_type_high] structure based on the value of
3098  * link_speeds_bitmap input parameter.
3099  */
3100 void
3101 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3102 		    u16 link_speeds_bitmap)
3103 {
3104 	u64 pt_high;
3105 	u64 pt_low;
3106 	int index;
3107 	u16 speed;
3108 
3109 	/* We first check with low part of phy_type */
3110 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3111 		pt_low = BIT_ULL(index);
3112 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3113 
3114 		if (link_speeds_bitmap & speed)
3115 			*phy_type_low |= BIT_ULL(index);
3116 	}
3117 
3118 	/* We then check with high part of phy_type */
3119 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3120 		pt_high = BIT_ULL(index);
3121 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3122 
3123 		if (link_speeds_bitmap & speed)
3124 			*phy_type_high |= BIT_ULL(index);
3125 	}
3126 }
3127 
3128 /**
3129  * ice_aq_set_phy_cfg
3130  * @hw: pointer to the HW struct
3131  * @pi: port info structure of the interested logical port
3132  * @cfg: structure with PHY configuration data to be set
3133  * @cd: pointer to command details structure or NULL
3134  *
3135  * Set the various PHY configuration parameters supported on the Port.
3136  * One or more of the Set PHY config parameters may be ignored in an MFP
3137  * mode as the PF may not have the privilege to set some of the PHY Config
3138  * parameters. This status will be indicated by the command response (0x0601).
3139  */
3140 int
3141 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3142 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3143 {
3144 	struct ice_aq_desc desc;
3145 	int status;
3146 
3147 	if (!cfg)
3148 		return -EINVAL;
3149 
3150 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3151 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3152 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3153 			  cfg->caps);
3154 
3155 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3156 	}
3157 
3158 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3159 	desc.params.set_phy.lport_num = pi->lport;
3160 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3161 
3162 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3163 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3164 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3165 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3166 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3167 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3168 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3169 		  cfg->low_power_ctrl_an);
3170 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3171 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3172 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3173 		  cfg->link_fec_opt);
3174 
3175 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3176 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3177 		status = 0;
3178 
3179 	if (!status)
3180 		pi->phy.curr_user_phy_cfg = *cfg;
3181 
3182 	return status;
3183 }
3184 
3185 /**
3186  * ice_update_link_info - update status of the HW network link
3187  * @pi: port info structure of the interested logical port
3188  */
3189 int ice_update_link_info(struct ice_port_info *pi)
3190 {
3191 	struct ice_link_status *li;
3192 	int status;
3193 
3194 	if (!pi)
3195 		return -EINVAL;
3196 
3197 	li = &pi->phy.link_info;
3198 
3199 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3200 	if (status)
3201 		return status;
3202 
3203 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3204 		struct ice_aqc_get_phy_caps_data *pcaps;
3205 		struct ice_hw *hw;
3206 
3207 		hw = pi->hw;
3208 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3209 				     GFP_KERNEL);
3210 		if (!pcaps)
3211 			return -ENOMEM;
3212 
3213 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3214 					     pcaps, NULL);
3215 
3216 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3217 	}
3218 
3219 	return status;
3220 }
3221 
3222 /**
3223  * ice_cache_phy_user_req
3224  * @pi: port information structure
3225  * @cache_data: PHY logging data
3226  * @cache_mode: PHY logging mode
3227  *
3228  * Log the user request on (FC, FEC, SPEED) for later use.
3229  */
3230 static void
3231 ice_cache_phy_user_req(struct ice_port_info *pi,
3232 		       struct ice_phy_cache_mode_data cache_data,
3233 		       enum ice_phy_cache_mode cache_mode)
3234 {
3235 	if (!pi)
3236 		return;
3237 
3238 	switch (cache_mode) {
3239 	case ICE_FC_MODE:
3240 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3241 		break;
3242 	case ICE_SPEED_MODE:
3243 		pi->phy.curr_user_speed_req =
3244 			cache_data.data.curr_user_speed_req;
3245 		break;
3246 	case ICE_FEC_MODE:
3247 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3248 		break;
3249 	default:
3250 		break;
3251 	}
3252 }
3253 
3254 /**
3255  * ice_caps_to_fc_mode
3256  * @caps: PHY capabilities
3257  *
3258  * Convert PHY FC capabilities to ice FC mode
3259  */
3260 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3261 {
3262 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3263 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3264 		return ICE_FC_FULL;
3265 
3266 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3267 		return ICE_FC_TX_PAUSE;
3268 
3269 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3270 		return ICE_FC_RX_PAUSE;
3271 
3272 	return ICE_FC_NONE;
3273 }
3274 
3275 /**
3276  * ice_caps_to_fec_mode
3277  * @caps: PHY capabilities
3278  * @fec_options: Link FEC options
3279  *
3280  * Convert PHY FEC capabilities to ice FEC mode
3281  */
3282 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3283 {
3284 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3285 		return ICE_FEC_AUTO;
3286 
3287 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3288 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3289 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3290 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3291 		return ICE_FEC_BASER;
3292 
3293 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3294 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3295 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3296 		return ICE_FEC_RS;
3297 
3298 	return ICE_FEC_NONE;
3299 }
3300 
3301 /**
3302  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3303  * @pi: port information structure
3304  * @cfg: PHY configuration data to set FC mode
3305  * @req_mode: FC mode to configure
3306  */
3307 int
3308 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3309 	       enum ice_fc_mode req_mode)
3310 {
3311 	struct ice_phy_cache_mode_data cache_data;
3312 	u8 pause_mask = 0x0;
3313 
3314 	if (!pi || !cfg)
3315 		return -EINVAL;
3316 
3317 	switch (req_mode) {
3318 	case ICE_FC_FULL:
3319 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3320 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3321 		break;
3322 	case ICE_FC_RX_PAUSE:
3323 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3324 		break;
3325 	case ICE_FC_TX_PAUSE:
3326 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3327 		break;
3328 	default:
3329 		break;
3330 	}
3331 
3332 	/* clear the old pause settings */
3333 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3334 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3335 
3336 	/* set the new capabilities */
3337 	cfg->caps |= pause_mask;
3338 
3339 	/* Cache user FC request */
3340 	cache_data.data.curr_user_fc_req = req_mode;
3341 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3342 
3343 	return 0;
3344 }
3345 
3346 /**
3347  * ice_set_fc
3348  * @pi: port information structure
3349  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3350  * @ena_auto_link_update: enable automatic link update
3351  *
3352  * Set the requested flow control mode.
3353  */
3354 int
3355 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3356 {
3357 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3358 	struct ice_aqc_get_phy_caps_data *pcaps;
3359 	struct ice_hw *hw;
3360 	int status;
3361 
3362 	if (!pi || !aq_failures)
3363 		return -EINVAL;
3364 
3365 	*aq_failures = 0;
3366 	hw = pi->hw;
3367 
3368 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3369 	if (!pcaps)
3370 		return -ENOMEM;
3371 
3372 	/* Get the current PHY config */
3373 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3374 				     pcaps, NULL);
3375 	if (status) {
3376 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3377 		goto out;
3378 	}
3379 
3380 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3381 
3382 	/* Configure the set PHY data */
3383 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3384 	if (status)
3385 		goto out;
3386 
3387 	/* If the capabilities have changed, then set the new config */
3388 	if (cfg.caps != pcaps->caps) {
3389 		int retry_count, retry_max = 10;
3390 
3391 		/* Auto restart link so settings take effect */
3392 		if (ena_auto_link_update)
3393 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3394 
3395 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3396 		if (status) {
3397 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3398 			goto out;
3399 		}
3400 
3401 		/* Update the link info
3402 		 * It sometimes takes a really long time for link to
3403 		 * come back from the atomic reset. Thus, we wait a
3404 		 * little bit.
3405 		 */
3406 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3407 			status = ice_update_link_info(pi);
3408 
3409 			if (!status)
3410 				break;
3411 
3412 			mdelay(100);
3413 		}
3414 
3415 		if (status)
3416 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3417 	}
3418 
3419 out:
3420 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3421 	return status;
3422 }
3423 
3424 /**
3425  * ice_phy_caps_equals_cfg
3426  * @phy_caps: PHY capabilities
3427  * @phy_cfg: PHY configuration
3428  *
3429  * Helper function to determine if PHY capabilities matches PHY
3430  * configuration
3431  */
3432 bool
3433 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3434 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3435 {
3436 	u8 caps_mask, cfg_mask;
3437 
3438 	if (!phy_caps || !phy_cfg)
3439 		return false;
3440 
3441 	/* These bits are not common between capabilities and configuration.
3442 	 * Do not use them to determine equality.
3443 	 */
3444 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3445 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3446 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3447 
3448 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3449 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3450 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3451 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3452 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3453 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3454 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3455 		return false;
3456 
3457 	return true;
3458 }
3459 
3460 /**
3461  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3462  * @pi: port information structure
3463  * @caps: PHY ability structure to copy date from
3464  * @cfg: PHY configuration structure to copy data to
3465  *
3466  * Helper function to copy AQC PHY get ability data to PHY set configuration
3467  * data structure
3468  */
3469 void
3470 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3471 			 struct ice_aqc_get_phy_caps_data *caps,
3472 			 struct ice_aqc_set_phy_cfg_data *cfg)
3473 {
3474 	if (!pi || !caps || !cfg)
3475 		return;
3476 
3477 	memset(cfg, 0, sizeof(*cfg));
3478 	cfg->phy_type_low = caps->phy_type_low;
3479 	cfg->phy_type_high = caps->phy_type_high;
3480 	cfg->caps = caps->caps;
3481 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3482 	cfg->eee_cap = caps->eee_cap;
3483 	cfg->eeer_value = caps->eeer_value;
3484 	cfg->link_fec_opt = caps->link_fec_options;
3485 	cfg->module_compliance_enforcement =
3486 		caps->module_compliance_enforcement;
3487 }
3488 
3489 /**
3490  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3491  * @pi: port information structure
3492  * @cfg: PHY configuration data to set FEC mode
3493  * @fec: FEC mode to configure
3494  */
3495 int
3496 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3497 		enum ice_fec_mode fec)
3498 {
3499 	struct ice_aqc_get_phy_caps_data *pcaps;
3500 	struct ice_hw *hw;
3501 	int status;
3502 
3503 	if (!pi || !cfg)
3504 		return -EINVAL;
3505 
3506 	hw = pi->hw;
3507 
3508 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3509 	if (!pcaps)
3510 		return -ENOMEM;
3511 
3512 	status = ice_aq_get_phy_caps(pi, false,
3513 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3514 				      ICE_AQC_REPORT_DFLT_CFG :
3515 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3516 	if (status)
3517 		goto out;
3518 
3519 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3520 	cfg->link_fec_opt = pcaps->link_fec_options;
3521 
3522 	switch (fec) {
3523 	case ICE_FEC_BASER:
3524 		/* Clear RS bits, and AND BASE-R ability
3525 		 * bits and OR request bits.
3526 		 */
3527 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3528 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3529 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3530 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3531 		break;
3532 	case ICE_FEC_RS:
3533 		/* Clear BASE-R bits, and AND RS ability
3534 		 * bits and OR request bits.
3535 		 */
3536 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3537 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3538 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3539 		break;
3540 	case ICE_FEC_NONE:
3541 		/* Clear all FEC option bits. */
3542 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3543 		break;
3544 	case ICE_FEC_AUTO:
3545 		/* AND auto FEC bit, and all caps bits. */
3546 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3547 		cfg->link_fec_opt |= pcaps->link_fec_options;
3548 		break;
3549 	default:
3550 		status = -EINVAL;
3551 		break;
3552 	}
3553 
3554 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3555 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3556 		struct ice_link_default_override_tlv tlv = { 0 };
3557 
3558 		status = ice_get_link_default_override(&tlv, pi);
3559 		if (status)
3560 			goto out;
3561 
3562 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3563 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3564 			cfg->link_fec_opt = tlv.fec_options;
3565 	}
3566 
3567 out:
3568 	kfree(pcaps);
3569 
3570 	return status;
3571 }
3572 
3573 /**
3574  * ice_get_link_status - get status of the HW network link
3575  * @pi: port information structure
3576  * @link_up: pointer to bool (true/false = linkup/linkdown)
3577  *
3578  * Variable link_up is true if link is up, false if link is down.
3579  * The variable link_up is invalid if status is non zero. As a
3580  * result of this call, link status reporting becomes enabled
3581  */
3582 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3583 {
3584 	struct ice_phy_info *phy_info;
3585 	int status = 0;
3586 
3587 	if (!pi || !link_up)
3588 		return -EINVAL;
3589 
3590 	phy_info = &pi->phy;
3591 
3592 	if (phy_info->get_link_info) {
3593 		status = ice_update_link_info(pi);
3594 
3595 		if (status)
3596 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3597 				  status);
3598 	}
3599 
3600 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3601 
3602 	return status;
3603 }
3604 
3605 /**
3606  * ice_aq_set_link_restart_an
3607  * @pi: pointer to the port information structure
3608  * @ena_link: if true: enable link, if false: disable link
3609  * @cd: pointer to command details structure or NULL
3610  *
3611  * Sets up the link and restarts the Auto-Negotiation over the link.
3612  */
3613 int
3614 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3615 			   struct ice_sq_cd *cd)
3616 {
3617 	struct ice_aqc_restart_an *cmd;
3618 	struct ice_aq_desc desc;
3619 
3620 	cmd = &desc.params.restart_an;
3621 
3622 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3623 
3624 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3625 	cmd->lport_num = pi->lport;
3626 	if (ena_link)
3627 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3628 	else
3629 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3630 
3631 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3632 }
3633 
3634 /**
3635  * ice_aq_set_event_mask
3636  * @hw: pointer to the HW struct
3637  * @port_num: port number of the physical function
3638  * @mask: event mask to be set
3639  * @cd: pointer to command details structure or NULL
3640  *
3641  * Set event mask (0x0613)
3642  */
3643 int
3644 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3645 		      struct ice_sq_cd *cd)
3646 {
3647 	struct ice_aqc_set_event_mask *cmd;
3648 	struct ice_aq_desc desc;
3649 
3650 	cmd = &desc.params.set_event_mask;
3651 
3652 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3653 
3654 	cmd->lport_num = port_num;
3655 
3656 	cmd->event_mask = cpu_to_le16(mask);
3657 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3658 }
3659 
3660 /**
3661  * ice_aq_set_mac_loopback
3662  * @hw: pointer to the HW struct
3663  * @ena_lpbk: Enable or Disable loopback
3664  * @cd: pointer to command details structure or NULL
3665  *
3666  * Enable/disable loopback on a given port
3667  */
3668 int
3669 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3670 {
3671 	struct ice_aqc_set_mac_lb *cmd;
3672 	struct ice_aq_desc desc;
3673 
3674 	cmd = &desc.params.set_mac_lb;
3675 
3676 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3677 	if (ena_lpbk)
3678 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3679 
3680 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3681 }
3682 
3683 /**
3684  * ice_aq_set_port_id_led
3685  * @pi: pointer to the port information
3686  * @is_orig_mode: is this LED set to original mode (by the net-list)
3687  * @cd: pointer to command details structure or NULL
3688  *
3689  * Set LED value for the given port (0x06e9)
3690  */
3691 int
3692 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3693 		       struct ice_sq_cd *cd)
3694 {
3695 	struct ice_aqc_set_port_id_led *cmd;
3696 	struct ice_hw *hw = pi->hw;
3697 	struct ice_aq_desc desc;
3698 
3699 	cmd = &desc.params.set_port_id_led;
3700 
3701 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3702 
3703 	if (is_orig_mode)
3704 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3705 	else
3706 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3707 
3708 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3709 }
3710 
3711 /**
3712  * ice_aq_get_port_options
3713  * @hw: pointer to the HW struct
3714  * @options: buffer for the resultant port options
3715  * @option_count: input - size of the buffer in port options structures,
3716  *                output - number of returned port options
3717  * @lport: logical port to call the command with (optional)
3718  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3719  *               when PF owns more than 1 port it must be true
3720  * @active_option_idx: index of active port option in returned buffer
3721  * @active_option_valid: active option in returned buffer is valid
3722  * @pending_option_idx: index of pending port option in returned buffer
3723  * @pending_option_valid: pending option in returned buffer is valid
3724  *
3725  * Calls Get Port Options AQC (0x06ea) and verifies result.
3726  */
3727 int
3728 ice_aq_get_port_options(struct ice_hw *hw,
3729 			struct ice_aqc_get_port_options_elem *options,
3730 			u8 *option_count, u8 lport, bool lport_valid,
3731 			u8 *active_option_idx, bool *active_option_valid,
3732 			u8 *pending_option_idx, bool *pending_option_valid)
3733 {
3734 	struct ice_aqc_get_port_options *cmd;
3735 	struct ice_aq_desc desc;
3736 	int status;
3737 	u8 i;
3738 
3739 	/* options buffer shall be able to hold max returned options */
3740 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3741 		return -EINVAL;
3742 
3743 	cmd = &desc.params.get_port_options;
3744 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3745 
3746 	if (lport_valid)
3747 		cmd->lport_num = lport;
3748 	cmd->lport_num_valid = lport_valid;
3749 
3750 	status = ice_aq_send_cmd(hw, &desc, options,
3751 				 *option_count * sizeof(*options), NULL);
3752 	if (status)
3753 		return status;
3754 
3755 	/* verify direct FW response & set output parameters */
3756 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3757 				  cmd->port_options_count);
3758 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3759 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3760 					 cmd->port_options);
3761 	if (*active_option_valid) {
3762 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3763 					       cmd->port_options);
3764 		if (*active_option_idx > (*option_count - 1))
3765 			return -EIO;
3766 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3767 			  *active_option_idx);
3768 	}
3769 
3770 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3771 					  cmd->pending_port_option_status);
3772 	if (*pending_option_valid) {
3773 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3774 						cmd->pending_port_option_status);
3775 		if (*pending_option_idx > (*option_count - 1))
3776 			return -EIO;
3777 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3778 			  *pending_option_idx);
3779 	}
3780 
3781 	/* mask output options fields */
3782 	for (i = 0; i < *option_count; i++) {
3783 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3784 					   options[i].pmd);
3785 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3786 						      options[i].max_lane_speed);
3787 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3788 			  options[i].pmd, options[i].max_lane_speed);
3789 	}
3790 
3791 	return 0;
3792 }
3793 
3794 /**
3795  * ice_aq_set_port_option
3796  * @hw: pointer to the HW struct
3797  * @lport: logical port to call the command with
3798  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3799  *               when PF owns more than 1 port it must be true
3800  * @new_option: new port option to be written
3801  *
3802  * Calls Set Port Options AQC (0x06eb).
3803  */
3804 int
3805 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3806 		       u8 new_option)
3807 {
3808 	struct ice_aqc_set_port_option *cmd;
3809 	struct ice_aq_desc desc;
3810 
3811 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3812 		return -EINVAL;
3813 
3814 	cmd = &desc.params.set_port_option;
3815 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3816 
3817 	if (lport_valid)
3818 		cmd->lport_num = lport;
3819 
3820 	cmd->lport_num_valid = lport_valid;
3821 	cmd->selected_port_option = new_option;
3822 
3823 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3824 }
3825 
3826 /**
3827  * ice_aq_sff_eeprom
3828  * @hw: pointer to the HW struct
3829  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3830  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3831  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3832  * @page: QSFP page
3833  * @set_page: set or ignore the page
3834  * @data: pointer to data buffer to be read/written to the I2C device.
3835  * @length: 1-16 for read, 1 for write.
3836  * @write: 0 read, 1 for write.
3837  * @cd: pointer to command details structure or NULL
3838  *
3839  * Read/Write SFF EEPROM (0x06EE)
3840  */
3841 int
3842 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3843 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3844 		  bool write, struct ice_sq_cd *cd)
3845 {
3846 	struct ice_aqc_sff_eeprom *cmd;
3847 	struct ice_aq_desc desc;
3848 	int status;
3849 
3850 	if (!data || (mem_addr & 0xff00))
3851 		return -EINVAL;
3852 
3853 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3854 	cmd = &desc.params.read_write_sff_param;
3855 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3856 	cmd->lport_num = (u8)(lport & 0xff);
3857 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3858 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3859 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3860 					((set_page <<
3861 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3862 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3863 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3864 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3865 	if (write)
3866 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3867 
3868 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3869 	return status;
3870 }
3871 
3872 /**
3873  * __ice_aq_get_set_rss_lut
3874  * @hw: pointer to the hardware structure
3875  * @params: RSS LUT parameters
3876  * @set: set true to set the table, false to get the table
3877  *
3878  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3879  */
3880 static int
3881 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3882 {
3883 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3884 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3885 	struct ice_aq_desc desc;
3886 	int status;
3887 	u8 *lut;
3888 
3889 	if (!params)
3890 		return -EINVAL;
3891 
3892 	vsi_handle = params->vsi_handle;
3893 	lut = params->lut;
3894 
3895 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3896 		return -EINVAL;
3897 
3898 	lut_size = params->lut_size;
3899 	lut_type = params->lut_type;
3900 	glob_lut_idx = params->global_lut_id;
3901 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3902 
3903 	cmd_resp = &desc.params.get_set_rss_lut;
3904 
3905 	if (set) {
3906 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3907 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3908 	} else {
3909 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3910 	}
3911 
3912 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3913 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3914 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3915 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3916 
3917 	switch (lut_type) {
3918 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3919 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3920 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3921 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3922 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3923 		break;
3924 	default:
3925 		status = -EINVAL;
3926 		goto ice_aq_get_set_rss_lut_exit;
3927 	}
3928 
3929 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3930 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3931 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3932 
3933 		if (!set)
3934 			goto ice_aq_get_set_rss_lut_send;
3935 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3936 		if (!set)
3937 			goto ice_aq_get_set_rss_lut_send;
3938 	} else {
3939 		goto ice_aq_get_set_rss_lut_send;
3940 	}
3941 
3942 	/* LUT size is only valid for Global and PF table types */
3943 	switch (lut_size) {
3944 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3945 		break;
3946 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3947 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3948 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3949 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3950 		break;
3951 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3952 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3953 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3954 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3955 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3956 			break;
3957 		}
3958 		fallthrough;
3959 	default:
3960 		status = -EINVAL;
3961 		goto ice_aq_get_set_rss_lut_exit;
3962 	}
3963 
3964 ice_aq_get_set_rss_lut_send:
3965 	cmd_resp->flags = cpu_to_le16(flags);
3966 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3967 
3968 ice_aq_get_set_rss_lut_exit:
3969 	return status;
3970 }
3971 
3972 /**
3973  * ice_aq_get_rss_lut
3974  * @hw: pointer to the hardware structure
3975  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3976  *
3977  * get the RSS lookup table, PF or VSI type
3978  */
3979 int
3980 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3981 {
3982 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3983 }
3984 
3985 /**
3986  * ice_aq_set_rss_lut
3987  * @hw: pointer to the hardware structure
3988  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3989  *
3990  * set the RSS lookup table, PF or VSI type
3991  */
3992 int
3993 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3994 {
3995 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3996 }
3997 
3998 /**
3999  * __ice_aq_get_set_rss_key
4000  * @hw: pointer to the HW struct
4001  * @vsi_id: VSI FW index
4002  * @key: pointer to key info struct
4003  * @set: set true to set the key, false to get the key
4004  *
4005  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4006  */
4007 static int
4008 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4009 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4010 {
4011 	struct ice_aqc_get_set_rss_key *cmd_resp;
4012 	u16 key_size = sizeof(*key);
4013 	struct ice_aq_desc desc;
4014 
4015 	cmd_resp = &desc.params.get_set_rss_key;
4016 
4017 	if (set) {
4018 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4019 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4020 	} else {
4021 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4022 	}
4023 
4024 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4025 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4026 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4027 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4028 
4029 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4030 }
4031 
4032 /**
4033  * ice_aq_get_rss_key
4034  * @hw: pointer to the HW struct
4035  * @vsi_handle: software VSI handle
4036  * @key: pointer to key info struct
4037  *
4038  * get the RSS key per VSI
4039  */
4040 int
4041 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4042 		   struct ice_aqc_get_set_rss_keys *key)
4043 {
4044 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4045 		return -EINVAL;
4046 
4047 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4048 					key, false);
4049 }
4050 
4051 /**
4052  * ice_aq_set_rss_key
4053  * @hw: pointer to the HW struct
4054  * @vsi_handle: software VSI handle
4055  * @keys: pointer to key info struct
4056  *
4057  * set the RSS key per VSI
4058  */
4059 int
4060 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4061 		   struct ice_aqc_get_set_rss_keys *keys)
4062 {
4063 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4064 		return -EINVAL;
4065 
4066 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4067 					keys, true);
4068 }
4069 
4070 /**
4071  * ice_aq_add_lan_txq
4072  * @hw: pointer to the hardware structure
4073  * @num_qgrps: Number of added queue groups
4074  * @qg_list: list of queue groups to be added
4075  * @buf_size: size of buffer for indirect command
4076  * @cd: pointer to command details structure or NULL
4077  *
4078  * Add Tx LAN queue (0x0C30)
4079  *
4080  * NOTE:
4081  * Prior to calling add Tx LAN queue:
4082  * Initialize the following as part of the Tx queue context:
4083  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4084  * Cache profile and Packet shaper profile.
4085  *
4086  * After add Tx LAN queue AQ command is completed:
4087  * Interrupts should be associated with specific queues,
4088  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4089  * flow.
4090  */
4091 static int
4092 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4093 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4094 		   struct ice_sq_cd *cd)
4095 {
4096 	struct ice_aqc_add_tx_qgrp *list;
4097 	struct ice_aqc_add_txqs *cmd;
4098 	struct ice_aq_desc desc;
4099 	u16 i, sum_size = 0;
4100 
4101 	cmd = &desc.params.add_txqs;
4102 
4103 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4104 
4105 	if (!qg_list)
4106 		return -EINVAL;
4107 
4108 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4109 		return -EINVAL;
4110 
4111 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4112 		sum_size += struct_size(list, txqs, list->num_txqs);
4113 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4114 						      list->num_txqs);
4115 	}
4116 
4117 	if (buf_size != sum_size)
4118 		return -EINVAL;
4119 
4120 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4121 
4122 	cmd->num_qgrps = num_qgrps;
4123 
4124 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4125 }
4126 
4127 /**
4128  * ice_aq_dis_lan_txq
4129  * @hw: pointer to the hardware structure
4130  * @num_qgrps: number of groups in the list
4131  * @qg_list: the list of groups to disable
4132  * @buf_size: the total size of the qg_list buffer in bytes
4133  * @rst_src: if called due to reset, specifies the reset source
4134  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4135  * @cd: pointer to command details structure or NULL
4136  *
4137  * Disable LAN Tx queue (0x0C31)
4138  */
4139 static int
4140 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4141 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4142 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4143 		   struct ice_sq_cd *cd)
4144 {
4145 	struct ice_aqc_dis_txq_item *item;
4146 	struct ice_aqc_dis_txqs *cmd;
4147 	struct ice_aq_desc desc;
4148 	u16 i, sz = 0;
4149 	int status;
4150 
4151 	cmd = &desc.params.dis_txqs;
4152 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4153 
4154 	/* qg_list can be NULL only in VM/VF reset flow */
4155 	if (!qg_list && !rst_src)
4156 		return -EINVAL;
4157 
4158 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4159 		return -EINVAL;
4160 
4161 	cmd->num_entries = num_qgrps;
4162 
4163 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4164 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4165 
4166 	switch (rst_src) {
4167 	case ICE_VM_RESET:
4168 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4169 		cmd->vmvf_and_timeout |=
4170 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4171 		break;
4172 	case ICE_VF_RESET:
4173 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4174 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4175 		cmd->vmvf_and_timeout |=
4176 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4177 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4178 		break;
4179 	case ICE_NO_RESET:
4180 	default:
4181 		break;
4182 	}
4183 
4184 	/* flush pipe on time out */
4185 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4186 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4187 	if (!qg_list)
4188 		goto do_aq;
4189 
4190 	/* set RD bit to indicate that command buffer is provided by the driver
4191 	 * and it needs to be read by the firmware
4192 	 */
4193 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4194 
4195 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4196 		u16 item_size = struct_size(item, q_id, item->num_qs);
4197 
4198 		/* If the num of queues is even, add 2 bytes of padding */
4199 		if ((item->num_qs % 2) == 0)
4200 			item_size += 2;
4201 
4202 		sz += item_size;
4203 
4204 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4205 	}
4206 
4207 	if (buf_size != sz)
4208 		return -EINVAL;
4209 
4210 do_aq:
4211 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4212 	if (status) {
4213 		if (!qg_list)
4214 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4215 				  vmvf_num, hw->adminq.sq_last_status);
4216 		else
4217 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4218 				  le16_to_cpu(qg_list[0].q_id[0]),
4219 				  hw->adminq.sq_last_status);
4220 	}
4221 	return status;
4222 }
4223 
4224 /**
4225  * ice_aq_add_rdma_qsets
4226  * @hw: pointer to the hardware structure
4227  * @num_qset_grps: Number of RDMA Qset groups
4228  * @qset_list: list of Qset groups to be added
4229  * @buf_size: size of buffer for indirect command
4230  * @cd: pointer to command details structure or NULL
4231  *
4232  * Add Tx RDMA Qsets (0x0C33)
4233  */
4234 static int
4235 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4236 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4237 		      u16 buf_size, struct ice_sq_cd *cd)
4238 {
4239 	struct ice_aqc_add_rdma_qset_data *list;
4240 	struct ice_aqc_add_rdma_qset *cmd;
4241 	struct ice_aq_desc desc;
4242 	u16 i, sum_size = 0;
4243 
4244 	cmd = &desc.params.add_rdma_qset;
4245 
4246 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4247 
4248 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4249 		return -EINVAL;
4250 
4251 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4252 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4253 
4254 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4255 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4256 							     num_qsets);
4257 	}
4258 
4259 	if (buf_size != sum_size)
4260 		return -EINVAL;
4261 
4262 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4263 
4264 	cmd->num_qset_grps = num_qset_grps;
4265 
4266 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4267 }
4268 
4269 /* End of FW Admin Queue command wrappers */
4270 
4271 /**
4272  * ice_write_byte - write a byte to a packed context structure
4273  * @src_ctx:  the context structure to read from
4274  * @dest_ctx: the context to be written to
4275  * @ce_info:  a description of the struct to be filled
4276  */
4277 static void
4278 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4279 {
4280 	u8 src_byte, dest_byte, mask;
4281 	u8 *from, *dest;
4282 	u16 shift_width;
4283 
4284 	/* copy from the next struct field */
4285 	from = src_ctx + ce_info->offset;
4286 
4287 	/* prepare the bits and mask */
4288 	shift_width = ce_info->lsb % 8;
4289 	mask = (u8)(BIT(ce_info->width) - 1);
4290 
4291 	src_byte = *from;
4292 	src_byte &= mask;
4293 
4294 	/* shift to correct alignment */
4295 	mask <<= shift_width;
4296 	src_byte <<= shift_width;
4297 
4298 	/* get the current bits from the target bit string */
4299 	dest = dest_ctx + (ce_info->lsb / 8);
4300 
4301 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4302 
4303 	dest_byte &= ~mask;	/* get the bits not changing */
4304 	dest_byte |= src_byte;	/* add in the new bits */
4305 
4306 	/* put it all back */
4307 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4308 }
4309 
4310 /**
4311  * ice_write_word - write a word to a packed context structure
4312  * @src_ctx:  the context structure to read from
4313  * @dest_ctx: the context to be written to
4314  * @ce_info:  a description of the struct to be filled
4315  */
4316 static void
4317 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4318 {
4319 	u16 src_word, mask;
4320 	__le16 dest_word;
4321 	u8 *from, *dest;
4322 	u16 shift_width;
4323 
4324 	/* copy from the next struct field */
4325 	from = src_ctx + ce_info->offset;
4326 
4327 	/* prepare the bits and mask */
4328 	shift_width = ce_info->lsb % 8;
4329 	mask = BIT(ce_info->width) - 1;
4330 
4331 	/* don't swizzle the bits until after the mask because the mask bits
4332 	 * will be in a different bit position on big endian machines
4333 	 */
4334 	src_word = *(u16 *)from;
4335 	src_word &= mask;
4336 
4337 	/* shift to correct alignment */
4338 	mask <<= shift_width;
4339 	src_word <<= shift_width;
4340 
4341 	/* get the current bits from the target bit string */
4342 	dest = dest_ctx + (ce_info->lsb / 8);
4343 
4344 	memcpy(&dest_word, dest, sizeof(dest_word));
4345 
4346 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4347 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4348 
4349 	/* put it all back */
4350 	memcpy(dest, &dest_word, sizeof(dest_word));
4351 }
4352 
4353 /**
4354  * ice_write_dword - write a dword to a packed context structure
4355  * @src_ctx:  the context structure to read from
4356  * @dest_ctx: the context to be written to
4357  * @ce_info:  a description of the struct to be filled
4358  */
4359 static void
4360 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4361 {
4362 	u32 src_dword, mask;
4363 	__le32 dest_dword;
4364 	u8 *from, *dest;
4365 	u16 shift_width;
4366 
4367 	/* copy from the next struct field */
4368 	from = src_ctx + ce_info->offset;
4369 
4370 	/* prepare the bits and mask */
4371 	shift_width = ce_info->lsb % 8;
4372 
4373 	/* if the field width is exactly 32 on an x86 machine, then the shift
4374 	 * operation will not work because the SHL instructions count is masked
4375 	 * to 5 bits so the shift will do nothing
4376 	 */
4377 	if (ce_info->width < 32)
4378 		mask = BIT(ce_info->width) - 1;
4379 	else
4380 		mask = (u32)~0;
4381 
4382 	/* don't swizzle the bits until after the mask because the mask bits
4383 	 * will be in a different bit position on big endian machines
4384 	 */
4385 	src_dword = *(u32 *)from;
4386 	src_dword &= mask;
4387 
4388 	/* shift to correct alignment */
4389 	mask <<= shift_width;
4390 	src_dword <<= shift_width;
4391 
4392 	/* get the current bits from the target bit string */
4393 	dest = dest_ctx + (ce_info->lsb / 8);
4394 
4395 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4396 
4397 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4398 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4399 
4400 	/* put it all back */
4401 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4402 }
4403 
4404 /**
4405  * ice_write_qword - write a qword to a packed context structure
4406  * @src_ctx:  the context structure to read from
4407  * @dest_ctx: the context to be written to
4408  * @ce_info:  a description of the struct to be filled
4409  */
4410 static void
4411 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4412 {
4413 	u64 src_qword, mask;
4414 	__le64 dest_qword;
4415 	u8 *from, *dest;
4416 	u16 shift_width;
4417 
4418 	/* copy from the next struct field */
4419 	from = src_ctx + ce_info->offset;
4420 
4421 	/* prepare the bits and mask */
4422 	shift_width = ce_info->lsb % 8;
4423 
4424 	/* if the field width is exactly 64 on an x86 machine, then the shift
4425 	 * operation will not work because the SHL instructions count is masked
4426 	 * to 6 bits so the shift will do nothing
4427 	 */
4428 	if (ce_info->width < 64)
4429 		mask = BIT_ULL(ce_info->width) - 1;
4430 	else
4431 		mask = (u64)~0;
4432 
4433 	/* don't swizzle the bits until after the mask because the mask bits
4434 	 * will be in a different bit position on big endian machines
4435 	 */
4436 	src_qword = *(u64 *)from;
4437 	src_qword &= mask;
4438 
4439 	/* shift to correct alignment */
4440 	mask <<= shift_width;
4441 	src_qword <<= shift_width;
4442 
4443 	/* get the current bits from the target bit string */
4444 	dest = dest_ctx + (ce_info->lsb / 8);
4445 
4446 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4447 
4448 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4449 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4450 
4451 	/* put it all back */
4452 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4453 }
4454 
4455 /**
4456  * ice_set_ctx - set context bits in packed structure
4457  * @hw: pointer to the hardware structure
4458  * @src_ctx:  pointer to a generic non-packed context structure
4459  * @dest_ctx: pointer to memory for the packed structure
4460  * @ce_info:  a description of the structure to be transformed
4461  */
4462 int
4463 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4464 	    const struct ice_ctx_ele *ce_info)
4465 {
4466 	int f;
4467 
4468 	for (f = 0; ce_info[f].width; f++) {
4469 		/* We have to deal with each element of the FW response
4470 		 * using the correct size so that we are correct regardless
4471 		 * of the endianness of the machine.
4472 		 */
4473 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4474 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4475 				  f, ce_info[f].width, ce_info[f].size_of);
4476 			continue;
4477 		}
4478 		switch (ce_info[f].size_of) {
4479 		case sizeof(u8):
4480 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4481 			break;
4482 		case sizeof(u16):
4483 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4484 			break;
4485 		case sizeof(u32):
4486 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4487 			break;
4488 		case sizeof(u64):
4489 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4490 			break;
4491 		default:
4492 			return -EINVAL;
4493 		}
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 /**
4500  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4501  * @hw: pointer to the HW struct
4502  * @vsi_handle: software VSI handle
4503  * @tc: TC number
4504  * @q_handle: software queue handle
4505  */
4506 struct ice_q_ctx *
4507 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4508 {
4509 	struct ice_vsi_ctx *vsi;
4510 	struct ice_q_ctx *q_ctx;
4511 
4512 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4513 	if (!vsi)
4514 		return NULL;
4515 	if (q_handle >= vsi->num_lan_q_entries[tc])
4516 		return NULL;
4517 	if (!vsi->lan_q_ctx[tc])
4518 		return NULL;
4519 	q_ctx = vsi->lan_q_ctx[tc];
4520 	return &q_ctx[q_handle];
4521 }
4522 
4523 /**
4524  * ice_ena_vsi_txq
4525  * @pi: port information structure
4526  * @vsi_handle: software VSI handle
4527  * @tc: TC number
4528  * @q_handle: software queue handle
4529  * @num_qgrps: Number of added queue groups
4530  * @buf: list of queue groups to be added
4531  * @buf_size: size of buffer for indirect command
4532  * @cd: pointer to command details structure or NULL
4533  *
4534  * This function adds one LAN queue
4535  */
4536 int
4537 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4538 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4539 		struct ice_sq_cd *cd)
4540 {
4541 	struct ice_aqc_txsched_elem_data node = { 0 };
4542 	struct ice_sched_node *parent;
4543 	struct ice_q_ctx *q_ctx;
4544 	struct ice_hw *hw;
4545 	int status;
4546 
4547 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4548 		return -EIO;
4549 
4550 	if (num_qgrps > 1 || buf->num_txqs > 1)
4551 		return -ENOSPC;
4552 
4553 	hw = pi->hw;
4554 
4555 	if (!ice_is_vsi_valid(hw, vsi_handle))
4556 		return -EINVAL;
4557 
4558 	mutex_lock(&pi->sched_lock);
4559 
4560 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4561 	if (!q_ctx) {
4562 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4563 			  q_handle);
4564 		status = -EINVAL;
4565 		goto ena_txq_exit;
4566 	}
4567 
4568 	/* find a parent node */
4569 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4570 					    ICE_SCHED_NODE_OWNER_LAN);
4571 	if (!parent) {
4572 		status = -EINVAL;
4573 		goto ena_txq_exit;
4574 	}
4575 
4576 	buf->parent_teid = parent->info.node_teid;
4577 	node.parent_teid = parent->info.node_teid;
4578 	/* Mark that the values in the "generic" section as valid. The default
4579 	 * value in the "generic" section is zero. This means that :
4580 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4581 	 * - 0 priority among siblings, indicated by Bit 1-3.
4582 	 * - WFQ, indicated by Bit 4.
4583 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4584 	 * Bit 5-6.
4585 	 * - Bit 7 is reserved.
4586 	 * Without setting the generic section as valid in valid_sections, the
4587 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4588 	 */
4589 	buf->txqs[0].info.valid_sections =
4590 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4591 		ICE_AQC_ELEM_VALID_EIR;
4592 	buf->txqs[0].info.generic = 0;
4593 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4594 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4595 	buf->txqs[0].info.cir_bw.bw_alloc =
4596 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4597 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4598 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4599 	buf->txqs[0].info.eir_bw.bw_alloc =
4600 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4601 
4602 	/* add the LAN queue */
4603 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4604 	if (status) {
4605 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4606 			  le16_to_cpu(buf->txqs[0].txq_id),
4607 			  hw->adminq.sq_last_status);
4608 		goto ena_txq_exit;
4609 	}
4610 
4611 	node.node_teid = buf->txqs[0].q_teid;
4612 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4613 	q_ctx->q_handle = q_handle;
4614 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4615 
4616 	/* add a leaf node into scheduler tree queue layer */
4617 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4618 	if (!status)
4619 		status = ice_sched_replay_q_bw(pi, q_ctx);
4620 
4621 ena_txq_exit:
4622 	mutex_unlock(&pi->sched_lock);
4623 	return status;
4624 }
4625 
4626 /**
4627  * ice_dis_vsi_txq
4628  * @pi: port information structure
4629  * @vsi_handle: software VSI handle
4630  * @tc: TC number
4631  * @num_queues: number of queues
4632  * @q_handles: pointer to software queue handle array
4633  * @q_ids: pointer to the q_id array
4634  * @q_teids: pointer to queue node teids
4635  * @rst_src: if called due to reset, specifies the reset source
4636  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4637  * @cd: pointer to command details structure or NULL
4638  *
4639  * This function removes queues and their corresponding nodes in SW DB
4640  */
4641 int
4642 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4643 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4644 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4645 		struct ice_sq_cd *cd)
4646 {
4647 	struct ice_aqc_dis_txq_item *qg_list;
4648 	struct ice_q_ctx *q_ctx;
4649 	int status = -ENOENT;
4650 	struct ice_hw *hw;
4651 	u16 i, buf_size;
4652 
4653 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4654 		return -EIO;
4655 
4656 	hw = pi->hw;
4657 
4658 	if (!num_queues) {
4659 		/* if queue is disabled already yet the disable queue command
4660 		 * has to be sent to complete the VF reset, then call
4661 		 * ice_aq_dis_lan_txq without any queue information
4662 		 */
4663 		if (rst_src)
4664 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4665 						  vmvf_num, NULL);
4666 		return -EIO;
4667 	}
4668 
4669 	buf_size = struct_size(qg_list, q_id, 1);
4670 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4671 	if (!qg_list)
4672 		return -ENOMEM;
4673 
4674 	mutex_lock(&pi->sched_lock);
4675 
4676 	for (i = 0; i < num_queues; i++) {
4677 		struct ice_sched_node *node;
4678 
4679 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4680 		if (!node)
4681 			continue;
4682 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4683 		if (!q_ctx) {
4684 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4685 				  q_handles[i]);
4686 			continue;
4687 		}
4688 		if (q_ctx->q_handle != q_handles[i]) {
4689 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4690 				  q_ctx->q_handle, q_handles[i]);
4691 			continue;
4692 		}
4693 		qg_list->parent_teid = node->info.parent_teid;
4694 		qg_list->num_qs = 1;
4695 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4696 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4697 					    vmvf_num, cd);
4698 
4699 		if (status)
4700 			break;
4701 		ice_free_sched_node(pi, node);
4702 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4703 	}
4704 	mutex_unlock(&pi->sched_lock);
4705 	kfree(qg_list);
4706 	return status;
4707 }
4708 
4709 /**
4710  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4711  * @pi: port information structure
4712  * @vsi_handle: software VSI handle
4713  * @tc_bitmap: TC bitmap
4714  * @maxqs: max queues array per TC
4715  * @owner: LAN or RDMA
4716  *
4717  * This function adds/updates the VSI queues per TC.
4718  */
4719 static int
4720 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4721 	       u16 *maxqs, u8 owner)
4722 {
4723 	int status = 0;
4724 	u8 i;
4725 
4726 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4727 		return -EIO;
4728 
4729 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4730 		return -EINVAL;
4731 
4732 	mutex_lock(&pi->sched_lock);
4733 
4734 	ice_for_each_traffic_class(i) {
4735 		/* configuration is possible only if TC node is present */
4736 		if (!ice_sched_get_tc_node(pi, i))
4737 			continue;
4738 
4739 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4740 					   ice_is_tc_ena(tc_bitmap, i));
4741 		if (status)
4742 			break;
4743 	}
4744 
4745 	mutex_unlock(&pi->sched_lock);
4746 	return status;
4747 }
4748 
4749 /**
4750  * ice_cfg_vsi_lan - configure VSI LAN queues
4751  * @pi: port information structure
4752  * @vsi_handle: software VSI handle
4753  * @tc_bitmap: TC bitmap
4754  * @max_lanqs: max LAN queues array per TC
4755  *
4756  * This function adds/updates the VSI LAN queues per TC.
4757  */
4758 int
4759 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4760 		u16 *max_lanqs)
4761 {
4762 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4763 			      ICE_SCHED_NODE_OWNER_LAN);
4764 }
4765 
4766 /**
4767  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4768  * @pi: port information structure
4769  * @vsi_handle: software VSI handle
4770  * @tc_bitmap: TC bitmap
4771  * @max_rdmaqs: max RDMA queues array per TC
4772  *
4773  * This function adds/updates the VSI RDMA queues per TC.
4774  */
4775 int
4776 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4777 		 u16 *max_rdmaqs)
4778 {
4779 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4780 			      ICE_SCHED_NODE_OWNER_RDMA);
4781 }
4782 
4783 /**
4784  * ice_ena_vsi_rdma_qset
4785  * @pi: port information structure
4786  * @vsi_handle: software VSI handle
4787  * @tc: TC number
4788  * @rdma_qset: pointer to RDMA Qset
4789  * @num_qsets: number of RDMA Qsets
4790  * @qset_teid: pointer to Qset node TEIDs
4791  *
4792  * This function adds RDMA Qset
4793  */
4794 int
4795 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4796 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4797 {
4798 	struct ice_aqc_txsched_elem_data node = { 0 };
4799 	struct ice_aqc_add_rdma_qset_data *buf;
4800 	struct ice_sched_node *parent;
4801 	struct ice_hw *hw;
4802 	u16 i, buf_size;
4803 	int ret;
4804 
4805 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4806 		return -EIO;
4807 	hw = pi->hw;
4808 
4809 	if (!ice_is_vsi_valid(hw, vsi_handle))
4810 		return -EINVAL;
4811 
4812 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4813 	buf = kzalloc(buf_size, GFP_KERNEL);
4814 	if (!buf)
4815 		return -ENOMEM;
4816 	mutex_lock(&pi->sched_lock);
4817 
4818 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4819 					    ICE_SCHED_NODE_OWNER_RDMA);
4820 	if (!parent) {
4821 		ret = -EINVAL;
4822 		goto rdma_error_exit;
4823 	}
4824 	buf->parent_teid = parent->info.node_teid;
4825 	node.parent_teid = parent->info.node_teid;
4826 
4827 	buf->num_qsets = cpu_to_le16(num_qsets);
4828 	for (i = 0; i < num_qsets; i++) {
4829 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4830 		buf->rdma_qsets[i].info.valid_sections =
4831 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4832 			ICE_AQC_ELEM_VALID_EIR;
4833 		buf->rdma_qsets[i].info.generic = 0;
4834 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4835 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4836 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4837 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4838 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4839 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4840 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4841 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4842 	}
4843 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4844 	if (ret) {
4845 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4846 		goto rdma_error_exit;
4847 	}
4848 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4849 	for (i = 0; i < num_qsets; i++) {
4850 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4851 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4852 					 &node, NULL);
4853 		if (ret)
4854 			break;
4855 		qset_teid[i] = le32_to_cpu(node.node_teid);
4856 	}
4857 rdma_error_exit:
4858 	mutex_unlock(&pi->sched_lock);
4859 	kfree(buf);
4860 	return ret;
4861 }
4862 
4863 /**
4864  * ice_dis_vsi_rdma_qset - free RDMA resources
4865  * @pi: port_info struct
4866  * @count: number of RDMA Qsets to free
4867  * @qset_teid: TEID of Qset node
4868  * @q_id: list of queue IDs being disabled
4869  */
4870 int
4871 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4872 		      u16 *q_id)
4873 {
4874 	struct ice_aqc_dis_txq_item *qg_list;
4875 	struct ice_hw *hw;
4876 	int status = 0;
4877 	u16 qg_size;
4878 	int i;
4879 
4880 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4881 		return -EIO;
4882 
4883 	hw = pi->hw;
4884 
4885 	qg_size = struct_size(qg_list, q_id, 1);
4886 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4887 	if (!qg_list)
4888 		return -ENOMEM;
4889 
4890 	mutex_lock(&pi->sched_lock);
4891 
4892 	for (i = 0; i < count; i++) {
4893 		struct ice_sched_node *node;
4894 
4895 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4896 		if (!node)
4897 			continue;
4898 
4899 		qg_list->parent_teid = node->info.parent_teid;
4900 		qg_list->num_qs = 1;
4901 		qg_list->q_id[0] =
4902 			cpu_to_le16(q_id[i] |
4903 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4904 
4905 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4906 					    ICE_NO_RESET, 0, NULL);
4907 		if (status)
4908 			break;
4909 
4910 		ice_free_sched_node(pi, node);
4911 	}
4912 
4913 	mutex_unlock(&pi->sched_lock);
4914 	kfree(qg_list);
4915 	return status;
4916 }
4917 
4918 /**
4919  * ice_replay_pre_init - replay pre initialization
4920  * @hw: pointer to the HW struct
4921  *
4922  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4923  */
4924 static int ice_replay_pre_init(struct ice_hw *hw)
4925 {
4926 	struct ice_switch_info *sw = hw->switch_info;
4927 	u8 i;
4928 
4929 	/* Delete old entries from replay filter list head if there is any */
4930 	ice_rm_all_sw_replay_rule_info(hw);
4931 	/* In start of replay, move entries into replay_rules list, it
4932 	 * will allow adding rules entries back to filt_rules list,
4933 	 * which is operational list.
4934 	 */
4935 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4936 		list_replace_init(&sw->recp_list[i].filt_rules,
4937 				  &sw->recp_list[i].filt_replay_rules);
4938 	ice_sched_replay_agg_vsi_preinit(hw);
4939 
4940 	return 0;
4941 }
4942 
4943 /**
4944  * ice_replay_vsi - replay VSI configuration
4945  * @hw: pointer to the HW struct
4946  * @vsi_handle: driver VSI handle
4947  *
4948  * Restore all VSI configuration after reset. It is required to call this
4949  * function with main VSI first.
4950  */
4951 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4952 {
4953 	int status;
4954 
4955 	if (!ice_is_vsi_valid(hw, vsi_handle))
4956 		return -EINVAL;
4957 
4958 	/* Replay pre-initialization if there is any */
4959 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4960 		status = ice_replay_pre_init(hw);
4961 		if (status)
4962 			return status;
4963 	}
4964 	/* Replay per VSI all RSS configurations */
4965 	status = ice_replay_rss_cfg(hw, vsi_handle);
4966 	if (status)
4967 		return status;
4968 	/* Replay per VSI all filters */
4969 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4970 	if (!status)
4971 		status = ice_replay_vsi_agg(hw, vsi_handle);
4972 	return status;
4973 }
4974 
4975 /**
4976  * ice_replay_post - post replay configuration cleanup
4977  * @hw: pointer to the HW struct
4978  *
4979  * Post replay cleanup.
4980  */
4981 void ice_replay_post(struct ice_hw *hw)
4982 {
4983 	/* Delete old entries from replay filter list head */
4984 	ice_rm_all_sw_replay_rule_info(hw);
4985 	ice_sched_replay_agg(hw);
4986 }
4987 
4988 /**
4989  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4990  * @hw: ptr to the hardware info
4991  * @reg: offset of 64 bit HW register to read from
4992  * @prev_stat_loaded: bool to specify if previous stats are loaded
4993  * @prev_stat: ptr to previous loaded stat value
4994  * @cur_stat: ptr to current stat value
4995  */
4996 void
4997 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4998 		  u64 *prev_stat, u64 *cur_stat)
4999 {
5000 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5001 
5002 	/* device stats are not reset at PFR, they likely will not be zeroed
5003 	 * when the driver starts. Thus, save the value from the first read
5004 	 * without adding to the statistic value so that we report stats which
5005 	 * count up from zero.
5006 	 */
5007 	if (!prev_stat_loaded) {
5008 		*prev_stat = new_data;
5009 		return;
5010 	}
5011 
5012 	/* Calculate the difference between the new and old values, and then
5013 	 * add it to the software stat value.
5014 	 */
5015 	if (new_data >= *prev_stat)
5016 		*cur_stat += new_data - *prev_stat;
5017 	else
5018 		/* to manage the potential roll-over */
5019 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5020 
5021 	/* Update the previously stored value to prepare for next read */
5022 	*prev_stat = new_data;
5023 }
5024 
5025 /**
5026  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5027  * @hw: ptr to the hardware info
5028  * @reg: offset of HW register to read from
5029  * @prev_stat_loaded: bool to specify if previous stats are loaded
5030  * @prev_stat: ptr to previous loaded stat value
5031  * @cur_stat: ptr to current stat value
5032  */
5033 void
5034 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5035 		  u64 *prev_stat, u64 *cur_stat)
5036 {
5037 	u32 new_data;
5038 
5039 	new_data = rd32(hw, reg);
5040 
5041 	/* device stats are not reset at PFR, they likely will not be zeroed
5042 	 * when the driver starts. Thus, save the value from the first read
5043 	 * without adding to the statistic value so that we report stats which
5044 	 * count up from zero.
5045 	 */
5046 	if (!prev_stat_loaded) {
5047 		*prev_stat = new_data;
5048 		return;
5049 	}
5050 
5051 	/* Calculate the difference between the new and old values, and then
5052 	 * add it to the software stat value.
5053 	 */
5054 	if (new_data >= *prev_stat)
5055 		*cur_stat += new_data - *prev_stat;
5056 	else
5057 		/* to manage the potential roll-over */
5058 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5059 
5060 	/* Update the previously stored value to prepare for next read */
5061 	*prev_stat = new_data;
5062 }
5063 
5064 /**
5065  * ice_sched_query_elem - query element information from HW
5066  * @hw: pointer to the HW struct
5067  * @node_teid: node TEID to be queried
5068  * @buf: buffer to element information
5069  *
5070  * This function queries HW element information
5071  */
5072 int
5073 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5074 		     struct ice_aqc_txsched_elem_data *buf)
5075 {
5076 	u16 buf_size, num_elem_ret = 0;
5077 	int status;
5078 
5079 	buf_size = sizeof(*buf);
5080 	memset(buf, 0, buf_size);
5081 	buf->node_teid = cpu_to_le32(node_teid);
5082 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5083 					  NULL);
5084 	if (status || num_elem_ret != 1)
5085 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5086 	return status;
5087 }
5088 
5089 /**
5090  * ice_aq_read_i2c
5091  * @hw: pointer to the hw struct
5092  * @topo_addr: topology address for a device to communicate with
5093  * @bus_addr: 7-bit I2C bus address
5094  * @addr: I2C memory address (I2C offset) with up to 16 bits
5095  * @params: I2C parameters: bit [7] - Repeated start,
5096  *			    bits [6:5] data offset size,
5097  *			    bit [4] - I2C address type,
5098  *			    bits [3:0] - data size to read (0-16 bytes)
5099  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5100  * @cd: pointer to command details structure or NULL
5101  *
5102  * Read I2C (0x06E2)
5103  */
5104 int
5105 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5106 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5107 		struct ice_sq_cd *cd)
5108 {
5109 	struct ice_aq_desc desc = { 0 };
5110 	struct ice_aqc_i2c *cmd;
5111 	u8 data_size;
5112 	int status;
5113 
5114 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5115 	cmd = &desc.params.read_write_i2c;
5116 
5117 	if (!data)
5118 		return -EINVAL;
5119 
5120 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5121 
5122 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5123 	cmd->topo_addr = topo_addr;
5124 	cmd->i2c_params = params;
5125 	cmd->i2c_addr = addr;
5126 
5127 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5128 	if (!status) {
5129 		struct ice_aqc_read_i2c_resp *resp;
5130 		u8 i;
5131 
5132 		resp = &desc.params.read_i2c_resp;
5133 		for (i = 0; i < data_size; i++) {
5134 			*data = resp->i2c_data[i];
5135 			data++;
5136 		}
5137 	}
5138 
5139 	return status;
5140 }
5141 
5142 /**
5143  * ice_aq_write_i2c
5144  * @hw: pointer to the hw struct
5145  * @topo_addr: topology address for a device to communicate with
5146  * @bus_addr: 7-bit I2C bus address
5147  * @addr: I2C memory address (I2C offset) with up to 16 bits
5148  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5149  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5150  * @cd: pointer to command details structure or NULL
5151  *
5152  * Write I2C (0x06E3)
5153  *
5154  * * Return:
5155  * * 0             - Successful write to the i2c device
5156  * * -EINVAL       - Data size greater than 4 bytes
5157  * * -EIO          - FW error
5158  */
5159 int
5160 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5161 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5162 		 struct ice_sq_cd *cd)
5163 {
5164 	struct ice_aq_desc desc = { 0 };
5165 	struct ice_aqc_i2c *cmd;
5166 	u8 data_size;
5167 
5168 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5169 	cmd = &desc.params.read_write_i2c;
5170 
5171 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5172 
5173 	/* data_size limited to 4 */
5174 	if (data_size > 4)
5175 		return -EINVAL;
5176 
5177 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5178 	cmd->topo_addr = topo_addr;
5179 	cmd->i2c_params = params;
5180 	cmd->i2c_addr = addr;
5181 
5182 	memcpy(cmd->i2c_data, data, data_size);
5183 
5184 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5185 }
5186 
5187 /**
5188  * ice_aq_set_driver_param - Set driver parameter to share via firmware
5189  * @hw: pointer to the HW struct
5190  * @idx: parameter index to set
5191  * @value: the value to set the parameter to
5192  * @cd: pointer to command details structure or NULL
5193  *
5194  * Set the value of one of the software defined parameters. All PFs connected
5195  * to this device can read the value using ice_aq_get_driver_param.
5196  *
5197  * Note that firmware provides no synchronization or locking, and will not
5198  * save the parameter value during a device reset. It is expected that
5199  * a single PF will write the parameter value, while all other PFs will only
5200  * read it.
5201  */
5202 int
5203 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5204 			u32 value, struct ice_sq_cd *cd)
5205 {
5206 	struct ice_aqc_driver_shared_params *cmd;
5207 	struct ice_aq_desc desc;
5208 
5209 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5210 		return -EIO;
5211 
5212 	cmd = &desc.params.drv_shared_params;
5213 
5214 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5215 
5216 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5217 	cmd->param_indx = idx;
5218 	cmd->param_val = cpu_to_le32(value);
5219 
5220 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5221 }
5222 
5223 /**
5224  * ice_aq_get_driver_param - Get driver parameter shared via firmware
5225  * @hw: pointer to the HW struct
5226  * @idx: parameter index to set
5227  * @value: storage to return the shared parameter
5228  * @cd: pointer to command details structure or NULL
5229  *
5230  * Get the value of one of the software defined parameters.
5231  *
5232  * Note that firmware provides no synchronization or locking. It is expected
5233  * that only a single PF will write a given parameter.
5234  */
5235 int
5236 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5237 			u32 *value, struct ice_sq_cd *cd)
5238 {
5239 	struct ice_aqc_driver_shared_params *cmd;
5240 	struct ice_aq_desc desc;
5241 	int status;
5242 
5243 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5244 		return -EIO;
5245 
5246 	cmd = &desc.params.drv_shared_params;
5247 
5248 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5249 
5250 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5251 	cmd->param_indx = idx;
5252 
5253 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5254 	if (status)
5255 		return status;
5256 
5257 	*value = le32_to_cpu(cmd->param_val);
5258 
5259 	return 0;
5260 }
5261 
5262 /**
5263  * ice_aq_set_gpio
5264  * @hw: pointer to the hw struct
5265  * @gpio_ctrl_handle: GPIO controller node handle
5266  * @pin_idx: IO Number of the GPIO that needs to be set
5267  * @value: SW provide IO value to set in the LSB
5268  * @cd: pointer to command details structure or NULL
5269  *
5270  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5271  */
5272 int
5273 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5274 		struct ice_sq_cd *cd)
5275 {
5276 	struct ice_aqc_gpio *cmd;
5277 	struct ice_aq_desc desc;
5278 
5279 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5280 	cmd = &desc.params.read_write_gpio;
5281 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5282 	cmd->gpio_num = pin_idx;
5283 	cmd->gpio_val = value ? 1 : 0;
5284 
5285 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5286 }
5287 
5288 /**
5289  * ice_aq_get_gpio
5290  * @hw: pointer to the hw struct
5291  * @gpio_ctrl_handle: GPIO controller node handle
5292  * @pin_idx: IO Number of the GPIO that needs to be set
5293  * @value: IO value read
5294  * @cd: pointer to command details structure or NULL
5295  *
5296  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5297  * the topology
5298  */
5299 int
5300 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5301 		bool *value, struct ice_sq_cd *cd)
5302 {
5303 	struct ice_aqc_gpio *cmd;
5304 	struct ice_aq_desc desc;
5305 	int status;
5306 
5307 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5308 	cmd = &desc.params.read_write_gpio;
5309 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5310 	cmd->gpio_num = pin_idx;
5311 
5312 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5313 	if (status)
5314 		return status;
5315 
5316 	*value = !!cmd->gpio_val;
5317 	return 0;
5318 }
5319 
5320 /**
5321  * ice_is_fw_api_min_ver
5322  * @hw: pointer to the hardware structure
5323  * @maj: major version
5324  * @min: minor version
5325  * @patch: patch version
5326  *
5327  * Checks if the firmware API is minimum version
5328  */
5329 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5330 {
5331 	if (hw->api_maj_ver == maj) {
5332 		if (hw->api_min_ver > min)
5333 			return true;
5334 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5335 			return true;
5336 	} else if (hw->api_maj_ver > maj) {
5337 		return true;
5338 	}
5339 
5340 	return false;
5341 }
5342 
5343 /**
5344  * ice_fw_supports_link_override
5345  * @hw: pointer to the hardware structure
5346  *
5347  * Checks if the firmware supports link override
5348  */
5349 bool ice_fw_supports_link_override(struct ice_hw *hw)
5350 {
5351 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5352 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5353 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5354 }
5355 
5356 /**
5357  * ice_get_link_default_override
5358  * @ldo: pointer to the link default override struct
5359  * @pi: pointer to the port info struct
5360  *
5361  * Gets the link default override for a port
5362  */
5363 int
5364 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5365 			      struct ice_port_info *pi)
5366 {
5367 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5368 	struct ice_hw *hw = pi->hw;
5369 	int status;
5370 
5371 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5372 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5373 	if (status) {
5374 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5375 		return status;
5376 	}
5377 
5378 	/* Each port has its own config; calculate for our port */
5379 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5380 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5381 
5382 	/* link options first */
5383 	status = ice_read_sr_word(hw, tlv_start, &buf);
5384 	if (status) {
5385 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5386 		return status;
5387 	}
5388 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5389 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5390 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5391 
5392 	/* link PHY config */
5393 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5394 	status = ice_read_sr_word(hw, offset, &buf);
5395 	if (status) {
5396 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5397 		return status;
5398 	}
5399 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5400 
5401 	/* PHY types low */
5402 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5403 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5404 		status = ice_read_sr_word(hw, (offset + i), &buf);
5405 		if (status) {
5406 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5407 			return status;
5408 		}
5409 		/* shift 16 bits at a time to fill 64 bits */
5410 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5411 	}
5412 
5413 	/* PHY types high */
5414 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5415 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5416 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5417 		status = ice_read_sr_word(hw, (offset + i), &buf);
5418 		if (status) {
5419 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5420 			return status;
5421 		}
5422 		/* shift 16 bits at a time to fill 64 bits */
5423 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5424 	}
5425 
5426 	return status;
5427 }
5428 
5429 /**
5430  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5431  * @caps: get PHY capability data
5432  */
5433 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5434 {
5435 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5436 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5437 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5438 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5439 		return true;
5440 
5441 	return false;
5442 }
5443 
5444 /**
5445  * ice_aq_set_lldp_mib - Set the LLDP MIB
5446  * @hw: pointer to the HW struct
5447  * @mib_type: Local, Remote or both Local and Remote MIBs
5448  * @buf: pointer to the caller-supplied buffer to store the MIB block
5449  * @buf_size: size of the buffer (in bytes)
5450  * @cd: pointer to command details structure or NULL
5451  *
5452  * Set the LLDP MIB. (0x0A08)
5453  */
5454 int
5455 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5456 		    struct ice_sq_cd *cd)
5457 {
5458 	struct ice_aqc_lldp_set_local_mib *cmd;
5459 	struct ice_aq_desc desc;
5460 
5461 	cmd = &desc.params.lldp_set_mib;
5462 
5463 	if (buf_size == 0 || !buf)
5464 		return -EINVAL;
5465 
5466 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5467 
5468 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5469 	desc.datalen = cpu_to_le16(buf_size);
5470 
5471 	cmd->type = mib_type;
5472 	cmd->length = cpu_to_le16(buf_size);
5473 
5474 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5475 }
5476 
5477 /**
5478  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5479  * @hw: pointer to HW struct
5480  */
5481 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5482 {
5483 	if (hw->mac_type != ICE_MAC_E810)
5484 		return false;
5485 
5486 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5487 				     ICE_FW_API_LLDP_FLTR_MIN,
5488 				     ICE_FW_API_LLDP_FLTR_PATCH);
5489 }
5490 
5491 /**
5492  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5493  * @hw: pointer to HW struct
5494  * @vsi_num: absolute HW index for VSI
5495  * @add: boolean for if adding or removing a filter
5496  */
5497 int
5498 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5499 {
5500 	struct ice_aqc_lldp_filter_ctrl *cmd;
5501 	struct ice_aq_desc desc;
5502 
5503 	cmd = &desc.params.lldp_filter_ctrl;
5504 
5505 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5506 
5507 	if (add)
5508 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5509 	else
5510 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5511 
5512 	cmd->vsi_num = cpu_to_le16(vsi_num);
5513 
5514 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5515 }
5516 
5517 /**
5518  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5519  * @hw: pointer to HW struct
5520  */
5521 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5522 {
5523 	struct ice_aq_desc desc;
5524 
5525 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5526 
5527 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5528 }
5529 
5530 /**
5531  * ice_fw_supports_report_dflt_cfg
5532  * @hw: pointer to the hardware structure
5533  *
5534  * Checks if the firmware supports report default configuration
5535  */
5536 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5537 {
5538 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5539 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5540 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5541 }
5542 
5543 /* each of the indexes into the following array match the speed of a return
5544  * value from the list of AQ returned speeds like the range:
5545  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5546  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5547  * array. The array is defined as 15 elements long because the link_speed
5548  * returned by the firmware is a 16 bit * value, but is indexed
5549  * by [fls(speed) - 1]
5550  */
5551 static const u32 ice_aq_to_link_speed[] = {
5552 	SPEED_10,	/* BIT(0) */
5553 	SPEED_100,
5554 	SPEED_1000,
5555 	SPEED_2500,
5556 	SPEED_5000,
5557 	SPEED_10000,
5558 	SPEED_20000,
5559 	SPEED_25000,
5560 	SPEED_40000,
5561 	SPEED_50000,
5562 	SPEED_100000,	/* BIT(10) */
5563 };
5564 
5565 /**
5566  * ice_get_link_speed - get integer speed from table
5567  * @index: array index from fls(aq speed) - 1
5568  *
5569  * Returns: u32 value containing integer speed
5570  */
5571 u32 ice_get_link_speed(u16 index)
5572 {
5573 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5574 		return 0;
5575 
5576 	return ice_aq_to_link_speed[index];
5577 }
5578