1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 #include "ice_flow.h" 8 9 #define ICE_PF_RESET_WAIT_COUNT 300 10 11 /** 12 * ice_set_mac_type - Sets MAC type 13 * @hw: pointer to the HW structure 14 * 15 * This function sets the MAC type of the adapter based on the 16 * vendor ID and device ID stored in the HW structure. 17 */ 18 static enum ice_status ice_set_mac_type(struct ice_hw *hw) 19 { 20 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 21 return ICE_ERR_DEVICE_NOT_SUPPORTED; 22 23 hw->mac_type = ICE_MAC_GENERIC; 24 return 0; 25 } 26 27 /** 28 * ice_clear_pf_cfg - Clear PF configuration 29 * @hw: pointer to the hardware structure 30 * 31 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port 32 * configuration, flow director filters, etc.). 33 */ 34 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw) 35 { 36 struct ice_aq_desc desc; 37 38 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 39 40 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 41 } 42 43 /** 44 * ice_aq_manage_mac_read - manage MAC address read command 45 * @hw: pointer to the HW struct 46 * @buf: a virtual buffer to hold the manage MAC read response 47 * @buf_size: Size of the virtual buffer 48 * @cd: pointer to command details structure or NULL 49 * 50 * This function is used to return per PF station MAC address (0x0107). 51 * NOTE: Upon successful completion of this command, MAC address information 52 * is returned in user specified buffer. Please interpret user specified 53 * buffer as "manage_mac_read" response. 54 * Response such as various MAC addresses are stored in HW struct (port.mac) 55 * ice_aq_discover_caps is expected to be called before this function is called. 56 */ 57 static enum ice_status 58 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 59 struct ice_sq_cd *cd) 60 { 61 struct ice_aqc_manage_mac_read_resp *resp; 62 struct ice_aqc_manage_mac_read *cmd; 63 struct ice_aq_desc desc; 64 enum ice_status status; 65 u16 flags; 66 u8 i; 67 68 cmd = &desc.params.mac_read; 69 70 if (buf_size < sizeof(*resp)) 71 return ICE_ERR_BUF_TOO_SHORT; 72 73 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 74 75 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 76 if (status) 77 return status; 78 79 resp = (struct ice_aqc_manage_mac_read_resp *)buf; 80 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 81 82 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 83 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 84 return ICE_ERR_CFG; 85 } 86 87 /* A single port can report up to two (LAN and WoL) addresses */ 88 for (i = 0; i < cmd->num_addr; i++) 89 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 90 ether_addr_copy(hw->port_info->mac.lan_addr, 91 resp[i].mac_addr); 92 ether_addr_copy(hw->port_info->mac.perm_addr, 93 resp[i].mac_addr); 94 break; 95 } 96 97 return 0; 98 } 99 100 /** 101 * ice_aq_get_phy_caps - returns PHY capabilities 102 * @pi: port information structure 103 * @qual_mods: report qualified modules 104 * @report_mode: report mode capabilities 105 * @pcaps: structure for PHY capabilities to be filled 106 * @cd: pointer to command details structure or NULL 107 * 108 * Returns the various PHY capabilities supported on the Port (0x0600) 109 */ 110 enum ice_status 111 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 112 struct ice_aqc_get_phy_caps_data *pcaps, 113 struct ice_sq_cd *cd) 114 { 115 struct ice_aqc_get_phy_caps *cmd; 116 u16 pcaps_size = sizeof(*pcaps); 117 struct ice_aq_desc desc; 118 enum ice_status status; 119 120 cmd = &desc.params.get_phy; 121 122 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 123 return ICE_ERR_PARAM; 124 125 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 126 127 if (qual_mods) 128 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 129 130 cmd->param0 |= cpu_to_le16(report_mode); 131 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd); 132 133 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) { 134 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 135 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 136 } 137 138 return status; 139 } 140 141 /** 142 * ice_get_media_type - Gets media type 143 * @pi: port information structure 144 */ 145 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 146 { 147 struct ice_link_status *hw_link_info; 148 149 if (!pi) 150 return ICE_MEDIA_UNKNOWN; 151 152 hw_link_info = &pi->phy.link_info; 153 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 154 /* If more than one media type is selected, report unknown */ 155 return ICE_MEDIA_UNKNOWN; 156 157 if (hw_link_info->phy_type_low) { 158 switch (hw_link_info->phy_type_low) { 159 case ICE_PHY_TYPE_LOW_1000BASE_SX: 160 case ICE_PHY_TYPE_LOW_1000BASE_LX: 161 case ICE_PHY_TYPE_LOW_10GBASE_SR: 162 case ICE_PHY_TYPE_LOW_10GBASE_LR: 163 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 164 case ICE_PHY_TYPE_LOW_25GBASE_SR: 165 case ICE_PHY_TYPE_LOW_25GBASE_LR: 166 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 167 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 168 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 169 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 170 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 171 case ICE_PHY_TYPE_LOW_50GBASE_SR: 172 case ICE_PHY_TYPE_LOW_50GBASE_FR: 173 case ICE_PHY_TYPE_LOW_50GBASE_LR: 174 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 175 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 176 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 177 case ICE_PHY_TYPE_LOW_100GBASE_DR: 178 return ICE_MEDIA_FIBER; 179 case ICE_PHY_TYPE_LOW_100BASE_TX: 180 case ICE_PHY_TYPE_LOW_1000BASE_T: 181 case ICE_PHY_TYPE_LOW_2500BASE_T: 182 case ICE_PHY_TYPE_LOW_5GBASE_T: 183 case ICE_PHY_TYPE_LOW_10GBASE_T: 184 case ICE_PHY_TYPE_LOW_25GBASE_T: 185 return ICE_MEDIA_BASET; 186 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 187 case ICE_PHY_TYPE_LOW_25GBASE_CR: 188 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 189 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 190 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 191 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 192 case ICE_PHY_TYPE_LOW_50GBASE_CP: 193 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 194 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 195 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 196 return ICE_MEDIA_DA; 197 case ICE_PHY_TYPE_LOW_1000BASE_KX: 198 case ICE_PHY_TYPE_LOW_2500BASE_KX: 199 case ICE_PHY_TYPE_LOW_2500BASE_X: 200 case ICE_PHY_TYPE_LOW_5GBASE_KR: 201 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 202 case ICE_PHY_TYPE_LOW_25GBASE_KR: 203 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 204 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 205 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 206 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 207 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 208 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 209 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 210 return ICE_MEDIA_BACKPLANE; 211 } 212 } else { 213 switch (hw_link_info->phy_type_high) { 214 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 215 return ICE_MEDIA_BACKPLANE; 216 } 217 } 218 return ICE_MEDIA_UNKNOWN; 219 } 220 221 /** 222 * ice_aq_get_link_info 223 * @pi: port information structure 224 * @ena_lse: enable/disable LinkStatusEvent reporting 225 * @link: pointer to link status structure - optional 226 * @cd: pointer to command details structure or NULL 227 * 228 * Get Link Status (0x607). Returns the link status of the adapter. 229 */ 230 enum ice_status 231 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 232 struct ice_link_status *link, struct ice_sq_cd *cd) 233 { 234 struct ice_aqc_get_link_status_data link_data = { 0 }; 235 struct ice_aqc_get_link_status *resp; 236 struct ice_link_status *li_old, *li; 237 enum ice_media_type *hw_media_type; 238 struct ice_fc_info *hw_fc_info; 239 bool tx_pause, rx_pause; 240 struct ice_aq_desc desc; 241 enum ice_status status; 242 struct ice_hw *hw; 243 u16 cmd_flags; 244 245 if (!pi) 246 return ICE_ERR_PARAM; 247 hw = pi->hw; 248 li_old = &pi->phy.link_info_old; 249 hw_media_type = &pi->phy.media_type; 250 li = &pi->phy.link_info; 251 hw_fc_info = &pi->fc; 252 253 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 254 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 255 resp = &desc.params.get_link_status; 256 resp->cmd_flags = cpu_to_le16(cmd_flags); 257 resp->lport_num = pi->lport; 258 259 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd); 260 261 if (status) 262 return status; 263 264 /* save off old link status information */ 265 *li_old = *li; 266 267 /* update current link status information */ 268 li->link_speed = le16_to_cpu(link_data.link_speed); 269 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 270 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 271 *hw_media_type = ice_get_media_type(pi); 272 li->link_info = link_data.link_info; 273 li->an_info = link_data.an_info; 274 li->ext_info = link_data.ext_info; 275 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 276 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; 277 li->topo_media_conflict = link_data.topo_media_conflict; 278 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | 279 ICE_AQ_CFG_PACING_TYPE_M); 280 281 /* update fc info */ 282 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 283 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 284 if (tx_pause && rx_pause) 285 hw_fc_info->current_mode = ICE_FC_FULL; 286 else if (tx_pause) 287 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 288 else if (rx_pause) 289 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 290 else 291 hw_fc_info->current_mode = ICE_FC_NONE; 292 293 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 294 295 ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed); 296 ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n", 297 (unsigned long long)li->phy_type_low); 298 ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n", 299 (unsigned long long)li->phy_type_high); 300 ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type); 301 ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info); 302 ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info); 303 ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info); 304 ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena); 305 ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size); 306 ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing); 307 308 /* save link status information */ 309 if (link) 310 *link = *li; 311 312 /* flag cleared so calling functions don't call AQ again */ 313 pi->phy.get_link_info = false; 314 315 return 0; 316 } 317 318 /** 319 * ice_fill_tx_timer_and_fc_thresh 320 * @hw: pointer to the HW struct 321 * @cmd: pointer to MAC cfg structure 322 * 323 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command 324 * descriptor 325 */ 326 static void 327 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, 328 struct ice_aqc_set_mac_cfg *cmd) 329 { 330 u16 fc_thres_val, tx_timer_val; 331 u32 val; 332 333 /* We read back the transmit timer and FC threshold value of 334 * LFC. Thus, we will use index = 335 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. 336 * 337 * Also, because we are operating on transmit timer and FC 338 * threshold of LFC, we don't turn on any bit in tx_tmr_priority 339 */ 340 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX 341 342 /* Retrieve the transmit timer */ 343 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC)); 344 tx_timer_val = val & 345 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M; 346 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val); 347 348 /* Retrieve the FC threshold */ 349 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC)); 350 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M; 351 352 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val); 353 } 354 355 /** 356 * ice_aq_set_mac_cfg 357 * @hw: pointer to the HW struct 358 * @max_frame_size: Maximum Frame Size to be supported 359 * @cd: pointer to command details structure or NULL 360 * 361 * Set MAC configuration (0x0603) 362 */ 363 enum ice_status 364 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) 365 { 366 struct ice_aqc_set_mac_cfg *cmd; 367 struct ice_aq_desc desc; 368 369 cmd = &desc.params.set_mac_cfg; 370 371 if (max_frame_size == 0) 372 return ICE_ERR_PARAM; 373 374 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); 375 376 cmd->max_frame_size = cpu_to_le16(max_frame_size); 377 378 ice_fill_tx_timer_and_fc_thresh(hw, cmd); 379 380 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 381 } 382 383 /** 384 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 385 * @hw: pointer to the HW struct 386 */ 387 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw) 388 { 389 struct ice_switch_info *sw; 390 enum ice_status status; 391 392 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 393 sizeof(*hw->switch_info), GFP_KERNEL); 394 sw = hw->switch_info; 395 396 if (!sw) 397 return ICE_ERR_NO_MEMORY; 398 399 INIT_LIST_HEAD(&sw->vsi_list_map_head); 400 401 status = ice_init_def_sw_recp(hw); 402 if (status) { 403 devm_kfree(ice_hw_to_dev(hw), hw->switch_info); 404 return status; 405 } 406 return 0; 407 } 408 409 /** 410 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 411 * @hw: pointer to the HW struct 412 */ 413 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 414 { 415 struct ice_switch_info *sw = hw->switch_info; 416 struct ice_vsi_list_map_info *v_pos_map; 417 struct ice_vsi_list_map_info *v_tmp_map; 418 struct ice_sw_recipe *recps; 419 u8 i; 420 421 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 422 list_entry) { 423 list_del(&v_pos_map->list_entry); 424 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 425 } 426 recps = hw->switch_info->recp_list; 427 for (i = 0; i < ICE_SW_LKUP_LAST; i++) { 428 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; 429 430 recps[i].root_rid = i; 431 mutex_destroy(&recps[i].filt_rule_lock); 432 list_for_each_entry_safe(lst_itr, tmp_entry, 433 &recps[i].filt_rules, list_entry) { 434 list_del(&lst_itr->list_entry); 435 devm_kfree(ice_hw_to_dev(hw), lst_itr); 436 } 437 } 438 ice_rm_all_sw_replay_rule_info(hw); 439 devm_kfree(ice_hw_to_dev(hw), sw->recp_list); 440 devm_kfree(ice_hw_to_dev(hw), sw); 441 } 442 443 /** 444 * ice_get_fw_log_cfg - get FW logging configuration 445 * @hw: pointer to the HW struct 446 */ 447 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw) 448 { 449 struct ice_aq_desc desc; 450 enum ice_status status; 451 __le16 *config; 452 u16 size; 453 454 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX; 455 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL); 456 if (!config) 457 return ICE_ERR_NO_MEMORY; 458 459 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info); 460 461 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 462 463 status = ice_aq_send_cmd(hw, &desc, config, size, NULL); 464 if (!status) { 465 u16 i; 466 467 /* Save FW logging information into the HW structure */ 468 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 469 u16 v, m, flgs; 470 471 v = le16_to_cpu(config[i]); 472 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 473 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S; 474 475 if (m < ICE_AQC_FW_LOG_ID_MAX) 476 hw->fw_log.evnts[m].cur = flgs; 477 } 478 } 479 480 devm_kfree(ice_hw_to_dev(hw), config); 481 482 return status; 483 } 484 485 /** 486 * ice_cfg_fw_log - configure FW logging 487 * @hw: pointer to the HW struct 488 * @enable: enable certain FW logging events if true, disable all if false 489 * 490 * This function enables/disables the FW logging via Rx CQ events and a UART 491 * port based on predetermined configurations. FW logging via the Rx CQ can be 492 * enabled/disabled for individual PF's. However, FW logging via the UART can 493 * only be enabled/disabled for all PFs on the same device. 494 * 495 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in 496 * hw->fw_log need to be set accordingly, e.g. based on user-provided input, 497 * before initializing the device. 498 * 499 * When re/configuring FW logging, callers need to update the "cfg" elements of 500 * the hw->fw_log.evnts array with the desired logging event configurations for 501 * modules of interest. When disabling FW logging completely, the callers can 502 * just pass false in the "enable" parameter. On completion, the function will 503 * update the "cur" element of the hw->fw_log.evnts array with the resulting 504 * logging event configurations of the modules that are being re/configured. FW 505 * logging modules that are not part of a reconfiguration operation retain their 506 * previous states. 507 * 508 * Before resetting the device, it is recommended that the driver disables FW 509 * logging before shutting down the control queue. When disabling FW logging 510 * ("enable" = false), the latest configurations of FW logging events stored in 511 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after 512 * a device reset. 513 * 514 * When enabling FW logging to emit log messages via the Rx CQ during the 515 * device's initialization phase, a mechanism alternative to interrupt handlers 516 * needs to be used to extract FW log messages from the Rx CQ periodically and 517 * to prevent the Rx CQ from being full and stalling other types of control 518 * messages from FW to SW. Interrupts are typically disabled during the device's 519 * initialization phase. 520 */ 521 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable) 522 { 523 struct ice_aqc_fw_logging *cmd; 524 enum ice_status status = 0; 525 u16 i, chgs = 0, len = 0; 526 struct ice_aq_desc desc; 527 __le16 *data = NULL; 528 u8 actv_evnts = 0; 529 void *buf = NULL; 530 531 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) 532 return 0; 533 534 /* Disable FW logging only when the control queue is still responsive */ 535 if (!enable && 536 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) 537 return 0; 538 539 /* Get current FW log settings */ 540 status = ice_get_fw_log_cfg(hw); 541 if (status) 542 return status; 543 544 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); 545 cmd = &desc.params.fw_logging; 546 547 /* Indicate which controls are valid */ 548 if (hw->fw_log.cq_en) 549 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; 550 551 if (hw->fw_log.uart_en) 552 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; 553 554 if (enable) { 555 /* Fill in an array of entries with FW logging modules and 556 * logging events being reconfigured. 557 */ 558 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 559 u16 val; 560 561 /* Keep track of enabled event types */ 562 actv_evnts |= hw->fw_log.evnts[i].cfg; 563 564 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) 565 continue; 566 567 if (!data) { 568 data = devm_kcalloc(ice_hw_to_dev(hw), 569 sizeof(*data), 570 ICE_AQC_FW_LOG_ID_MAX, 571 GFP_KERNEL); 572 if (!data) 573 return ICE_ERR_NO_MEMORY; 574 } 575 576 val = i << ICE_AQC_FW_LOG_ID_S; 577 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; 578 data[chgs++] = cpu_to_le16(val); 579 } 580 581 /* Only enable FW logging if at least one module is specified. 582 * If FW logging is currently enabled but all modules are not 583 * enabled to emit log messages, disable FW logging altogether. 584 */ 585 if (actv_evnts) { 586 /* Leave if there is effectively no change */ 587 if (!chgs) 588 goto out; 589 590 if (hw->fw_log.cq_en) 591 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; 592 593 if (hw->fw_log.uart_en) 594 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; 595 596 buf = data; 597 len = sizeof(*data) * chgs; 598 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 599 } 600 } 601 602 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); 603 if (!status) { 604 /* Update the current configuration to reflect events enabled. 605 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW 606 * logging mode is enabled for the device. They do not reflect 607 * actual modules being enabled to emit log messages. So, their 608 * values remain unchanged even when all modules are disabled. 609 */ 610 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; 611 612 hw->fw_log.actv_evnts = actv_evnts; 613 for (i = 0; i < cnt; i++) { 614 u16 v, m; 615 616 if (!enable) { 617 /* When disabling all FW logging events as part 618 * of device's de-initialization, the original 619 * configurations are retained, and can be used 620 * to reconfigure FW logging later if the device 621 * is re-initialized. 622 */ 623 hw->fw_log.evnts[i].cur = 0; 624 continue; 625 } 626 627 v = le16_to_cpu(data[i]); 628 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 629 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; 630 } 631 } 632 633 out: 634 if (data) 635 devm_kfree(ice_hw_to_dev(hw), data); 636 637 return status; 638 } 639 640 /** 641 * ice_output_fw_log 642 * @hw: pointer to the HW struct 643 * @desc: pointer to the AQ message descriptor 644 * @buf: pointer to the buffer accompanying the AQ message 645 * 646 * Formats a FW Log message and outputs it via the standard driver logs. 647 */ 648 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) 649 { 650 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n"); 651 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf, 652 le16_to_cpu(desc->datalen)); 653 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n"); 654 } 655 656 /** 657 * ice_get_itr_intrl_gran 658 * @hw: pointer to the HW struct 659 * 660 * Determines the ITR/INTRL granularities based on the maximum aggregate 661 * bandwidth according to the device's configuration during power-on. 662 */ 663 static void ice_get_itr_intrl_gran(struct ice_hw *hw) 664 { 665 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & 666 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> 667 GL_PWR_MODE_CTL_CAR_MAX_BW_S; 668 669 switch (max_agg_bw) { 670 case ICE_MAX_AGG_BW_200G: 671 case ICE_MAX_AGG_BW_100G: 672 case ICE_MAX_AGG_BW_50G: 673 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; 674 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; 675 break; 676 case ICE_MAX_AGG_BW_25G: 677 hw->itr_gran = ICE_ITR_GRAN_MAX_25; 678 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; 679 break; 680 } 681 } 682 683 /** 684 * ice_init_hw - main hardware initialization routine 685 * @hw: pointer to the hardware structure 686 */ 687 enum ice_status ice_init_hw(struct ice_hw *hw) 688 { 689 struct ice_aqc_get_phy_caps_data *pcaps; 690 enum ice_status status; 691 u16 mac_buf_len; 692 void *mac_buf; 693 694 /* Set MAC type based on DeviceID */ 695 status = ice_set_mac_type(hw); 696 if (status) 697 return status; 698 699 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & 700 PF_FUNC_RID_FUNC_NUM_M) >> 701 PF_FUNC_RID_FUNC_NUM_S; 702 703 status = ice_reset(hw, ICE_RESET_PFR); 704 if (status) 705 return status; 706 707 ice_get_itr_intrl_gran(hw); 708 709 status = ice_create_all_ctrlq(hw); 710 if (status) 711 goto err_unroll_cqinit; 712 713 /* Enable FW logging. Not fatal if this fails. */ 714 status = ice_cfg_fw_log(hw, true); 715 if (status) 716 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); 717 718 status = ice_clear_pf_cfg(hw); 719 if (status) 720 goto err_unroll_cqinit; 721 722 /* Set bit to enable Flow Director filters */ 723 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 724 INIT_LIST_HEAD(&hw->fdir_list_head); 725 726 ice_clear_pxe_mode(hw); 727 728 status = ice_init_nvm(hw); 729 if (status) 730 goto err_unroll_cqinit; 731 732 status = ice_get_caps(hw); 733 if (status) 734 goto err_unroll_cqinit; 735 736 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 737 sizeof(*hw->port_info), GFP_KERNEL); 738 if (!hw->port_info) { 739 status = ICE_ERR_NO_MEMORY; 740 goto err_unroll_cqinit; 741 } 742 743 /* set the back pointer to HW */ 744 hw->port_info->hw = hw; 745 746 /* Initialize port_info struct with switch configuration data */ 747 status = ice_get_initial_sw_cfg(hw); 748 if (status) 749 goto err_unroll_alloc; 750 751 hw->evb_veb = true; 752 753 /* Query the allocated resources for Tx scheduler */ 754 status = ice_sched_query_res_alloc(hw); 755 if (status) { 756 ice_debug(hw, ICE_DBG_SCHED, 757 "Failed to get scheduler allocated resources\n"); 758 goto err_unroll_alloc; 759 } 760 761 /* Initialize port_info struct with scheduler data */ 762 status = ice_sched_init_port(hw->port_info); 763 if (status) 764 goto err_unroll_sched; 765 766 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 767 if (!pcaps) { 768 status = ICE_ERR_NO_MEMORY; 769 goto err_unroll_sched; 770 } 771 772 /* Initialize port_info struct with PHY capabilities */ 773 status = ice_aq_get_phy_caps(hw->port_info, false, 774 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL); 775 devm_kfree(ice_hw_to_dev(hw), pcaps); 776 if (status) 777 goto err_unroll_sched; 778 779 /* Initialize port_info struct with link information */ 780 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 781 if (status) 782 goto err_unroll_sched; 783 784 /* need a valid SW entry point to build a Tx tree */ 785 if (!hw->sw_entry_point_layer) { 786 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); 787 status = ICE_ERR_CFG; 788 goto err_unroll_sched; 789 } 790 INIT_LIST_HEAD(&hw->agg_list); 791 /* Initialize max burst size */ 792 if (!hw->max_burst_size) 793 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); 794 795 status = ice_init_fltr_mgmt_struct(hw); 796 if (status) 797 goto err_unroll_sched; 798 799 /* Get MAC information */ 800 /* A single port can report up to two (LAN and WoL) addresses */ 801 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, 802 sizeof(struct ice_aqc_manage_mac_read_resp), 803 GFP_KERNEL); 804 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 805 806 if (!mac_buf) { 807 status = ICE_ERR_NO_MEMORY; 808 goto err_unroll_fltr_mgmt_struct; 809 } 810 811 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 812 devm_kfree(ice_hw_to_dev(hw), mac_buf); 813 814 if (status) 815 goto err_unroll_fltr_mgmt_struct; 816 /* enable jumbo frame support at MAC level */ 817 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 818 if (status) 819 goto err_unroll_fltr_mgmt_struct; 820 /* Obtain counter base index which would be used by flow director */ 821 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); 822 if (status) 823 goto err_unroll_fltr_mgmt_struct; 824 status = ice_init_hw_tbls(hw); 825 if (status) 826 goto err_unroll_fltr_mgmt_struct; 827 mutex_init(&hw->tnl_lock); 828 return 0; 829 830 err_unroll_fltr_mgmt_struct: 831 ice_cleanup_fltr_mgmt_struct(hw); 832 err_unroll_sched: 833 ice_sched_cleanup_all(hw); 834 err_unroll_alloc: 835 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 836 err_unroll_cqinit: 837 ice_destroy_all_ctrlq(hw); 838 return status; 839 } 840 841 /** 842 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 843 * @hw: pointer to the hardware structure 844 * 845 * This should be called only during nominal operation, not as a result of 846 * ice_init_hw() failing since ice_init_hw() will take care of unrolling 847 * applicable initializations if it fails for any reason. 848 */ 849 void ice_deinit_hw(struct ice_hw *hw) 850 { 851 ice_free_fd_res_cntr(hw, hw->fd_ctr_base); 852 ice_cleanup_fltr_mgmt_struct(hw); 853 854 ice_sched_cleanup_all(hw); 855 ice_sched_clear_agg(hw); 856 ice_free_seg(hw); 857 ice_free_hw_tbls(hw); 858 mutex_destroy(&hw->tnl_lock); 859 860 if (hw->port_info) { 861 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 862 hw->port_info = NULL; 863 } 864 865 /* Attempt to disable FW logging before shutting down control queues */ 866 ice_cfg_fw_log(hw, false); 867 ice_destroy_all_ctrlq(hw); 868 869 /* Clear VSI contexts if not already cleared */ 870 ice_clear_all_vsi_ctx(hw); 871 } 872 873 /** 874 * ice_check_reset - Check to see if a global reset is complete 875 * @hw: pointer to the hardware structure 876 */ 877 enum ice_status ice_check_reset(struct ice_hw *hw) 878 { 879 u32 cnt, reg = 0, grst_delay, uld_mask; 880 881 /* Poll for Device Active state in case a recent CORER, GLOBR, 882 * or EMPR has occurred. The grst delay value is in 100ms units. 883 * Add 1sec for outstanding AQ commands that can take a long time. 884 */ 885 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> 886 GLGEN_RSTCTL_GRSTDEL_S) + 10; 887 888 for (cnt = 0; cnt < grst_delay; cnt++) { 889 mdelay(100); 890 reg = rd32(hw, GLGEN_RSTAT); 891 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 892 break; 893 } 894 895 if (cnt == grst_delay) { 896 ice_debug(hw, ICE_DBG_INIT, 897 "Global reset polling failed to complete.\n"); 898 return ICE_ERR_RESET_FAILED; 899 } 900 901 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ 902 GLNVM_ULD_PCIER_DONE_1_M |\ 903 GLNVM_ULD_CORER_DONE_M |\ 904 GLNVM_ULD_GLOBR_DONE_M |\ 905 GLNVM_ULD_POR_DONE_M |\ 906 GLNVM_ULD_POR_DONE_1_M |\ 907 GLNVM_ULD_PCIER_DONE_2_M) 908 909 uld_mask = ICE_RESET_DONE_MASK; 910 911 /* Device is Active; check Global Reset processes are done */ 912 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 913 reg = rd32(hw, GLNVM_ULD) & uld_mask; 914 if (reg == uld_mask) { 915 ice_debug(hw, ICE_DBG_INIT, 916 "Global reset processes done. %d\n", cnt); 917 break; 918 } 919 mdelay(10); 920 } 921 922 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 923 ice_debug(hw, ICE_DBG_INIT, 924 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 925 reg); 926 return ICE_ERR_RESET_FAILED; 927 } 928 929 return 0; 930 } 931 932 /** 933 * ice_pf_reset - Reset the PF 934 * @hw: pointer to the hardware structure 935 * 936 * If a global reset has been triggered, this function checks 937 * for its completion and then issues the PF reset 938 */ 939 static enum ice_status ice_pf_reset(struct ice_hw *hw) 940 { 941 u32 cnt, reg; 942 943 /* If at function entry a global reset was already in progress, i.e. 944 * state is not 'device active' or any of the reset done bits are not 945 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 946 * global reset is done. 947 */ 948 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 949 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 950 /* poll on global reset currently in progress until done */ 951 if (ice_check_reset(hw)) 952 return ICE_ERR_RESET_FAILED; 953 954 return 0; 955 } 956 957 /* Reset the PF */ 958 reg = rd32(hw, PFGEN_CTRL); 959 960 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 961 962 /* Wait for the PFR to complete. The wait time is the global config lock 963 * timeout plus the PFR timeout which will account for a possible reset 964 * that is occurring during a download package operation. 965 */ 966 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + 967 ICE_PF_RESET_WAIT_COUNT; cnt++) { 968 reg = rd32(hw, PFGEN_CTRL); 969 if (!(reg & PFGEN_CTRL_PFSWR_M)) 970 break; 971 972 mdelay(1); 973 } 974 975 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 976 ice_debug(hw, ICE_DBG_INIT, 977 "PF reset polling failed to complete.\n"); 978 return ICE_ERR_RESET_FAILED; 979 } 980 981 return 0; 982 } 983 984 /** 985 * ice_reset - Perform different types of reset 986 * @hw: pointer to the hardware structure 987 * @req: reset request 988 * 989 * This function triggers a reset as specified by the req parameter. 990 * 991 * Note: 992 * If anything other than a PF reset is triggered, PXE mode is restored. 993 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 994 * interface has been restored in the rebuild flow. 995 */ 996 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req) 997 { 998 u32 val = 0; 999 1000 switch (req) { 1001 case ICE_RESET_PFR: 1002 return ice_pf_reset(hw); 1003 case ICE_RESET_CORER: 1004 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 1005 val = GLGEN_RTRIG_CORER_M; 1006 break; 1007 case ICE_RESET_GLOBR: 1008 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 1009 val = GLGEN_RTRIG_GLOBR_M; 1010 break; 1011 default: 1012 return ICE_ERR_PARAM; 1013 } 1014 1015 val |= rd32(hw, GLGEN_RTRIG); 1016 wr32(hw, GLGEN_RTRIG, val); 1017 ice_flush(hw); 1018 1019 /* wait for the FW to be ready */ 1020 return ice_check_reset(hw); 1021 } 1022 1023 /** 1024 * ice_copy_rxq_ctx_to_hw 1025 * @hw: pointer to the hardware structure 1026 * @ice_rxq_ctx: pointer to the rxq context 1027 * @rxq_index: the index of the Rx queue 1028 * 1029 * Copies rxq context from dense structure to HW register space 1030 */ 1031 static enum ice_status 1032 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) 1033 { 1034 u8 i; 1035 1036 if (!ice_rxq_ctx) 1037 return ICE_ERR_BAD_PTR; 1038 1039 if (rxq_index > QRX_CTRL_MAX_INDEX) 1040 return ICE_ERR_PARAM; 1041 1042 /* Copy each dword separately to HW */ 1043 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 1044 wr32(hw, QRX_CONTEXT(i, rxq_index), 1045 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1046 1047 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, 1048 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1049 } 1050 1051 return 0; 1052 } 1053 1054 /* LAN Rx Queue Context */ 1055 static const struct ice_ctx_ele ice_rlan_ctx_info[] = { 1056 /* Field Width LSB */ 1057 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 1058 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 1059 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 1060 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 1061 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 1062 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 1063 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 1064 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 1065 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 1066 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 1067 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 1068 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 1069 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 1070 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 1071 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 1072 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 1073 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 1074 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 1075 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 1076 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), 1077 { 0 } 1078 }; 1079 1080 /** 1081 * ice_write_rxq_ctx 1082 * @hw: pointer to the hardware structure 1083 * @rlan_ctx: pointer to the rxq context 1084 * @rxq_index: the index of the Rx queue 1085 * 1086 * Converts rxq context from sparse to dense structure and then writes 1087 * it to HW register space and enables the hardware to prefetch descriptors 1088 * instead of only fetching them on demand 1089 */ 1090 enum ice_status 1091 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 1092 u32 rxq_index) 1093 { 1094 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; 1095 1096 if (!rlan_ctx) 1097 return ICE_ERR_BAD_PTR; 1098 1099 rlan_ctx->prefena = 1; 1100 1101 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); 1102 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); 1103 } 1104 1105 /* LAN Tx Queue Context */ 1106 const struct ice_ctx_ele ice_tlan_ctx_info[] = { 1107 /* Field Width LSB */ 1108 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 1109 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 1110 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 1111 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 1112 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 1113 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 1114 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 1115 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 1116 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), 1117 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 1118 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 1119 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 1120 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 1121 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 1122 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 1123 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 1124 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 1125 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 1126 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 1127 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 1128 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 1129 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 1130 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 1131 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 1132 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 1133 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 1134 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 1135 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171), 1136 { 0 } 1137 }; 1138 1139 /* FW Admin Queue command wrappers */ 1140 1141 /* Software lock/mutex that is meant to be held while the Global Config Lock 1142 * in firmware is acquired by the software to prevent most (but not all) types 1143 * of AQ commands from being sent to FW 1144 */ 1145 DEFINE_MUTEX(ice_global_cfg_lock_sw); 1146 1147 /** 1148 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 1149 * @hw: pointer to the HW struct 1150 * @desc: descriptor describing the command 1151 * @buf: buffer to use for indirect commands (NULL for direct commands) 1152 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1153 * @cd: pointer to command details structure 1154 * 1155 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 1156 */ 1157 enum ice_status 1158 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 1159 u16 buf_size, struct ice_sq_cd *cd) 1160 { 1161 struct ice_aqc_req_res *cmd = &desc->params.res_owner; 1162 bool lock_acquired = false; 1163 enum ice_status status; 1164 1165 /* When a package download is in process (i.e. when the firmware's 1166 * Global Configuration Lock resource is held), only the Download 1167 * Package, Get Version, Get Package Info List and Release Resource 1168 * (with resource ID set to Global Config Lock) AdminQ commands are 1169 * allowed; all others must block until the package download completes 1170 * and the Global Config Lock is released. See also 1171 * ice_acquire_global_cfg_lock(). 1172 */ 1173 switch (le16_to_cpu(desc->opcode)) { 1174 case ice_aqc_opc_download_pkg: 1175 case ice_aqc_opc_get_pkg_info_list: 1176 case ice_aqc_opc_get_ver: 1177 break; 1178 case ice_aqc_opc_release_res: 1179 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) 1180 break; 1181 fallthrough; 1182 default: 1183 mutex_lock(&ice_global_cfg_lock_sw); 1184 lock_acquired = true; 1185 break; 1186 } 1187 1188 status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd); 1189 if (lock_acquired) 1190 mutex_unlock(&ice_global_cfg_lock_sw); 1191 1192 return status; 1193 } 1194 1195 /** 1196 * ice_aq_get_fw_ver 1197 * @hw: pointer to the HW struct 1198 * @cd: pointer to command details structure or NULL 1199 * 1200 * Get the firmware version (0x0001) from the admin queue commands 1201 */ 1202 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 1203 { 1204 struct ice_aqc_get_ver *resp; 1205 struct ice_aq_desc desc; 1206 enum ice_status status; 1207 1208 resp = &desc.params.get_ver; 1209 1210 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 1211 1212 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1213 1214 if (!status) { 1215 hw->fw_branch = resp->fw_branch; 1216 hw->fw_maj_ver = resp->fw_major; 1217 hw->fw_min_ver = resp->fw_minor; 1218 hw->fw_patch = resp->fw_patch; 1219 hw->fw_build = le32_to_cpu(resp->fw_build); 1220 hw->api_branch = resp->api_branch; 1221 hw->api_maj_ver = resp->api_major; 1222 hw->api_min_ver = resp->api_minor; 1223 hw->api_patch = resp->api_patch; 1224 } 1225 1226 return status; 1227 } 1228 1229 /** 1230 * ice_aq_send_driver_ver 1231 * @hw: pointer to the HW struct 1232 * @dv: driver's major, minor version 1233 * @cd: pointer to command details structure or NULL 1234 * 1235 * Send the driver version (0x0002) to the firmware 1236 */ 1237 enum ice_status 1238 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, 1239 struct ice_sq_cd *cd) 1240 { 1241 struct ice_aqc_driver_ver *cmd; 1242 struct ice_aq_desc desc; 1243 u16 len; 1244 1245 cmd = &desc.params.driver_ver; 1246 1247 if (!dv) 1248 return ICE_ERR_PARAM; 1249 1250 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); 1251 1252 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1253 cmd->major_ver = dv->major_ver; 1254 cmd->minor_ver = dv->minor_ver; 1255 cmd->build_ver = dv->build_ver; 1256 cmd->subbuild_ver = dv->subbuild_ver; 1257 1258 len = 0; 1259 while (len < sizeof(dv->driver_string) && 1260 isascii(dv->driver_string[len]) && dv->driver_string[len]) 1261 len++; 1262 1263 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); 1264 } 1265 1266 /** 1267 * ice_aq_q_shutdown 1268 * @hw: pointer to the HW struct 1269 * @unloading: is the driver unloading itself 1270 * 1271 * Tell the Firmware that we're shutting down the AdminQ and whether 1272 * or not the driver is unloading as well (0x0003). 1273 */ 1274 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 1275 { 1276 struct ice_aqc_q_shutdown *cmd; 1277 struct ice_aq_desc desc; 1278 1279 cmd = &desc.params.q_shutdown; 1280 1281 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 1282 1283 if (unloading) 1284 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; 1285 1286 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1287 } 1288 1289 /** 1290 * ice_aq_req_res 1291 * @hw: pointer to the HW struct 1292 * @res: resource ID 1293 * @access: access type 1294 * @sdp_number: resource number 1295 * @timeout: the maximum time in ms that the driver may hold the resource 1296 * @cd: pointer to command details structure or NULL 1297 * 1298 * Requests common resource using the admin queue commands (0x0008). 1299 * When attempting to acquire the Global Config Lock, the driver can 1300 * learn of three states: 1301 * 1) ICE_SUCCESS - acquired lock, and can perform download package 1302 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load 1303 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has 1304 * successfully downloaded the package; the driver does 1305 * not have to download the package and can continue 1306 * loading 1307 * 1308 * Note that if the caller is in an acquire lock, perform action, release lock 1309 * phase of operation, it is possible that the FW may detect a timeout and issue 1310 * a CORER. In this case, the driver will receive a CORER interrupt and will 1311 * have to determine its cause. The calling thread that is handling this flow 1312 * will likely get an error propagated back to it indicating the Download 1313 * Package, Update Package or the Release Resource AQ commands timed out. 1314 */ 1315 static enum ice_status 1316 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1317 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 1318 struct ice_sq_cd *cd) 1319 { 1320 struct ice_aqc_req_res *cmd_resp; 1321 struct ice_aq_desc desc; 1322 enum ice_status status; 1323 1324 cmd_resp = &desc.params.res_owner; 1325 1326 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 1327 1328 cmd_resp->res_id = cpu_to_le16(res); 1329 cmd_resp->access_type = cpu_to_le16(access); 1330 cmd_resp->res_number = cpu_to_le32(sdp_number); 1331 cmd_resp->timeout = cpu_to_le32(*timeout); 1332 *timeout = 0; 1333 1334 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1335 1336 /* The completion specifies the maximum time in ms that the driver 1337 * may hold the resource in the Timeout field. 1338 */ 1339 1340 /* Global config lock response utilizes an additional status field. 1341 * 1342 * If the Global config lock resource is held by some other driver, the 1343 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field 1344 * and the timeout field indicates the maximum time the current owner 1345 * of the resource has to free it. 1346 */ 1347 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { 1348 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { 1349 *timeout = le32_to_cpu(cmd_resp->timeout); 1350 return 0; 1351 } else if (le16_to_cpu(cmd_resp->status) == 1352 ICE_AQ_RES_GLBL_IN_PROG) { 1353 *timeout = le32_to_cpu(cmd_resp->timeout); 1354 return ICE_ERR_AQ_ERROR; 1355 } else if (le16_to_cpu(cmd_resp->status) == 1356 ICE_AQ_RES_GLBL_DONE) { 1357 return ICE_ERR_AQ_NO_WORK; 1358 } 1359 1360 /* invalid FW response, force a timeout immediately */ 1361 *timeout = 0; 1362 return ICE_ERR_AQ_ERROR; 1363 } 1364 1365 /* If the resource is held by some other driver, the command completes 1366 * with a busy return value and the timeout field indicates the maximum 1367 * time the current owner of the resource has to free it. 1368 */ 1369 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 1370 *timeout = le32_to_cpu(cmd_resp->timeout); 1371 1372 return status; 1373 } 1374 1375 /** 1376 * ice_aq_release_res 1377 * @hw: pointer to the HW struct 1378 * @res: resource ID 1379 * @sdp_number: resource number 1380 * @cd: pointer to command details structure or NULL 1381 * 1382 * release common resource using the admin queue commands (0x0009) 1383 */ 1384 static enum ice_status 1385 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 1386 struct ice_sq_cd *cd) 1387 { 1388 struct ice_aqc_req_res *cmd; 1389 struct ice_aq_desc desc; 1390 1391 cmd = &desc.params.res_owner; 1392 1393 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 1394 1395 cmd->res_id = cpu_to_le16(res); 1396 cmd->res_number = cpu_to_le32(sdp_number); 1397 1398 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1399 } 1400 1401 /** 1402 * ice_acquire_res 1403 * @hw: pointer to the HW structure 1404 * @res: resource ID 1405 * @access: access type (read or write) 1406 * @timeout: timeout in milliseconds 1407 * 1408 * This function will attempt to acquire the ownership of a resource. 1409 */ 1410 enum ice_status 1411 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1412 enum ice_aq_res_access_type access, u32 timeout) 1413 { 1414 #define ICE_RES_POLLING_DELAY_MS 10 1415 u32 delay = ICE_RES_POLLING_DELAY_MS; 1416 u32 time_left = timeout; 1417 enum ice_status status; 1418 1419 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1420 1421 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has 1422 * previously acquired the resource and performed any necessary updates; 1423 * in this case the caller does not obtain the resource and has no 1424 * further work to do. 1425 */ 1426 if (status == ICE_ERR_AQ_NO_WORK) 1427 goto ice_acquire_res_exit; 1428 1429 if (status) 1430 ice_debug(hw, ICE_DBG_RES, 1431 "resource %d acquire type %d failed.\n", res, access); 1432 1433 /* If necessary, poll until the current lock owner timeouts */ 1434 timeout = time_left; 1435 while (status && timeout && time_left) { 1436 mdelay(delay); 1437 timeout = (timeout > delay) ? timeout - delay : 0; 1438 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1439 1440 if (status == ICE_ERR_AQ_NO_WORK) 1441 /* lock free, but no work to do */ 1442 break; 1443 1444 if (!status) 1445 /* lock acquired */ 1446 break; 1447 } 1448 if (status && status != ICE_ERR_AQ_NO_WORK) 1449 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1450 1451 ice_acquire_res_exit: 1452 if (status == ICE_ERR_AQ_NO_WORK) { 1453 if (access == ICE_RES_WRITE) 1454 ice_debug(hw, ICE_DBG_RES, 1455 "resource indicates no work to do.\n"); 1456 else 1457 ice_debug(hw, ICE_DBG_RES, 1458 "Warning: ICE_ERR_AQ_NO_WORK not expected\n"); 1459 } 1460 return status; 1461 } 1462 1463 /** 1464 * ice_release_res 1465 * @hw: pointer to the HW structure 1466 * @res: resource ID 1467 * 1468 * This function will release a resource using the proper Admin Command. 1469 */ 1470 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 1471 { 1472 enum ice_status status; 1473 u32 total_delay = 0; 1474 1475 status = ice_aq_release_res(hw, res, 0, NULL); 1476 1477 /* there are some rare cases when trying to release the resource 1478 * results in an admin queue timeout, so handle them correctly 1479 */ 1480 while ((status == ICE_ERR_AQ_TIMEOUT) && 1481 (total_delay < hw->adminq.sq_cmd_timeout)) { 1482 mdelay(1); 1483 status = ice_aq_release_res(hw, res, 0, NULL); 1484 total_delay++; 1485 } 1486 } 1487 1488 /** 1489 * ice_aq_alloc_free_res - command to allocate/free resources 1490 * @hw: pointer to the HW struct 1491 * @num_entries: number of resource entries in buffer 1492 * @buf: Indirect buffer to hold data parameters and response 1493 * @buf_size: size of buffer for indirect commands 1494 * @opc: pass in the command opcode 1495 * @cd: pointer to command details structure or NULL 1496 * 1497 * Helper function to allocate/free resources using the admin queue commands 1498 */ 1499 enum ice_status 1500 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, 1501 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 1502 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1503 { 1504 struct ice_aqc_alloc_free_res_cmd *cmd; 1505 struct ice_aq_desc desc; 1506 1507 cmd = &desc.params.sw_res_ctrl; 1508 1509 if (!buf) 1510 return ICE_ERR_PARAM; 1511 1512 if (buf_size < (num_entries * sizeof(buf->elem[0]))) 1513 return ICE_ERR_PARAM; 1514 1515 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1516 1517 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1518 1519 cmd->num_entries = cpu_to_le16(num_entries); 1520 1521 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1522 } 1523 1524 /** 1525 * ice_alloc_hw_res - allocate resource 1526 * @hw: pointer to the HW struct 1527 * @type: type of resource 1528 * @num: number of resources to allocate 1529 * @btm: allocate from bottom 1530 * @res: pointer to array that will receive the resources 1531 */ 1532 enum ice_status 1533 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) 1534 { 1535 struct ice_aqc_alloc_free_res_elem *buf; 1536 enum ice_status status; 1537 u16 buf_len; 1538 1539 buf_len = struct_size(buf, elem, num); 1540 buf = kzalloc(buf_len, GFP_KERNEL); 1541 if (!buf) 1542 return ICE_ERR_NO_MEMORY; 1543 1544 /* Prepare buffer to allocate resource. */ 1545 buf->num_elems = cpu_to_le16(num); 1546 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | 1547 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); 1548 if (btm) 1549 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); 1550 1551 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 1552 ice_aqc_opc_alloc_res, NULL); 1553 if (status) 1554 goto ice_alloc_res_exit; 1555 1556 memcpy(res, buf->elem, sizeof(*buf->elem) * num); 1557 1558 ice_alloc_res_exit: 1559 kfree(buf); 1560 return status; 1561 } 1562 1563 /** 1564 * ice_free_hw_res - free allocated HW resource 1565 * @hw: pointer to the HW struct 1566 * @type: type of resource to free 1567 * @num: number of resources 1568 * @res: pointer to array that contains the resources to free 1569 */ 1570 enum ice_status 1571 ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) 1572 { 1573 struct ice_aqc_alloc_free_res_elem *buf; 1574 enum ice_status status; 1575 u16 buf_len; 1576 1577 buf_len = struct_size(buf, elem, num); 1578 buf = kzalloc(buf_len, GFP_KERNEL); 1579 if (!buf) 1580 return ICE_ERR_NO_MEMORY; 1581 1582 /* Prepare buffer to free resource. */ 1583 buf->num_elems = cpu_to_le16(num); 1584 buf->res_type = cpu_to_le16(type); 1585 memcpy(buf->elem, res, sizeof(*buf->elem) * num); 1586 1587 status = ice_aq_alloc_free_res(hw, num, buf, buf_len, 1588 ice_aqc_opc_free_res, NULL); 1589 if (status) 1590 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 1591 1592 kfree(buf); 1593 return status; 1594 } 1595 1596 /** 1597 * ice_get_num_per_func - determine number of resources per PF 1598 * @hw: pointer to the HW structure 1599 * @max: value to be evenly split between each PF 1600 * 1601 * Determine the number of valid functions by going through the bitmap returned 1602 * from parsing capabilities and use this to calculate the number of resources 1603 * per PF based on the max value passed in. 1604 */ 1605 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) 1606 { 1607 u8 funcs; 1608 1609 #define ICE_CAPS_VALID_FUNCS_M 0xFF 1610 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 1611 ICE_CAPS_VALID_FUNCS_M); 1612 1613 if (!funcs) 1614 return 0; 1615 1616 return max / funcs; 1617 } 1618 1619 /** 1620 * ice_parse_caps - parse function/device capabilities 1621 * @hw: pointer to the HW struct 1622 * @buf: pointer to a buffer containing function/device capability records 1623 * @cap_count: number of capability records in the list 1624 * @opc: type of capabilities list to parse 1625 * 1626 * Helper function to parse function(0x000a)/device(0x000b) capabilities list. 1627 */ 1628 static void 1629 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count, 1630 enum ice_adminq_opc opc) 1631 { 1632 struct ice_aqc_list_caps_elem *cap_resp; 1633 struct ice_hw_func_caps *func_p = NULL; 1634 struct ice_hw_dev_caps *dev_p = NULL; 1635 struct ice_hw_common_caps *caps; 1636 char const *prefix; 1637 u32 i; 1638 1639 if (!buf) 1640 return; 1641 1642 cap_resp = (struct ice_aqc_list_caps_elem *)buf; 1643 1644 if (opc == ice_aqc_opc_list_dev_caps) { 1645 dev_p = &hw->dev_caps; 1646 caps = &dev_p->common_cap; 1647 prefix = "dev cap"; 1648 } else if (opc == ice_aqc_opc_list_func_caps) { 1649 func_p = &hw->func_caps; 1650 caps = &func_p->common_cap; 1651 prefix = "func cap"; 1652 } else { 1653 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n"); 1654 return; 1655 } 1656 1657 for (i = 0; caps && i < cap_count; i++, cap_resp++) { 1658 u32 logical_id = le32_to_cpu(cap_resp->logical_id); 1659 u32 phys_id = le32_to_cpu(cap_resp->phys_id); 1660 u32 number = le32_to_cpu(cap_resp->number); 1661 u16 cap = le16_to_cpu(cap_resp->cap); 1662 1663 switch (cap) { 1664 case ICE_AQC_CAPS_VALID_FUNCTIONS: 1665 caps->valid_functions = number; 1666 ice_debug(hw, ICE_DBG_INIT, 1667 "%s: valid_functions (bitmap) = %d\n", prefix, 1668 caps->valid_functions); 1669 1670 /* store func count for resource management purposes */ 1671 if (dev_p) 1672 dev_p->num_funcs = hweight32(number); 1673 break; 1674 case ICE_AQC_CAPS_SRIOV: 1675 caps->sr_iov_1_1 = (number == 1); 1676 ice_debug(hw, ICE_DBG_INIT, 1677 "%s: sr_iov_1_1 = %d\n", prefix, 1678 caps->sr_iov_1_1); 1679 break; 1680 case ICE_AQC_CAPS_VF: 1681 if (dev_p) { 1682 dev_p->num_vfs_exposed = number; 1683 ice_debug(hw, ICE_DBG_INIT, 1684 "%s: num_vfs_exposed = %d\n", prefix, 1685 dev_p->num_vfs_exposed); 1686 } else if (func_p) { 1687 func_p->num_allocd_vfs = number; 1688 func_p->vf_base_id = logical_id; 1689 ice_debug(hw, ICE_DBG_INIT, 1690 "%s: num_allocd_vfs = %d\n", prefix, 1691 func_p->num_allocd_vfs); 1692 ice_debug(hw, ICE_DBG_INIT, 1693 "%s: vf_base_id = %d\n", prefix, 1694 func_p->vf_base_id); 1695 } 1696 break; 1697 case ICE_AQC_CAPS_VSI: 1698 if (dev_p) { 1699 dev_p->num_vsi_allocd_to_host = number; 1700 ice_debug(hw, ICE_DBG_INIT, 1701 "%s: num_vsi_allocd_to_host = %d\n", 1702 prefix, 1703 dev_p->num_vsi_allocd_to_host); 1704 } else if (func_p) { 1705 func_p->guar_num_vsi = 1706 ice_get_num_per_func(hw, ICE_MAX_VSI); 1707 ice_debug(hw, ICE_DBG_INIT, 1708 "%s: guar_num_vsi (fw) = %d\n", 1709 prefix, number); 1710 ice_debug(hw, ICE_DBG_INIT, 1711 "%s: guar_num_vsi = %d\n", 1712 prefix, func_p->guar_num_vsi); 1713 } 1714 break; 1715 case ICE_AQC_CAPS_DCB: 1716 caps->dcb = (number == 1); 1717 caps->active_tc_bitmap = logical_id; 1718 caps->maxtc = phys_id; 1719 ice_debug(hw, ICE_DBG_INIT, 1720 "%s: dcb = %d\n", prefix, caps->dcb); 1721 ice_debug(hw, ICE_DBG_INIT, 1722 "%s: active_tc_bitmap = %d\n", prefix, 1723 caps->active_tc_bitmap); 1724 ice_debug(hw, ICE_DBG_INIT, 1725 "%s: maxtc = %d\n", prefix, caps->maxtc); 1726 break; 1727 case ICE_AQC_CAPS_RSS: 1728 caps->rss_table_size = number; 1729 caps->rss_table_entry_width = logical_id; 1730 ice_debug(hw, ICE_DBG_INIT, 1731 "%s: rss_table_size = %d\n", prefix, 1732 caps->rss_table_size); 1733 ice_debug(hw, ICE_DBG_INIT, 1734 "%s: rss_table_entry_width = %d\n", prefix, 1735 caps->rss_table_entry_width); 1736 break; 1737 case ICE_AQC_CAPS_RXQS: 1738 caps->num_rxq = number; 1739 caps->rxq_first_id = phys_id; 1740 ice_debug(hw, ICE_DBG_INIT, 1741 "%s: num_rxq = %d\n", prefix, 1742 caps->num_rxq); 1743 ice_debug(hw, ICE_DBG_INIT, 1744 "%s: rxq_first_id = %d\n", prefix, 1745 caps->rxq_first_id); 1746 break; 1747 case ICE_AQC_CAPS_TXQS: 1748 caps->num_txq = number; 1749 caps->txq_first_id = phys_id; 1750 ice_debug(hw, ICE_DBG_INIT, 1751 "%s: num_txq = %d\n", prefix, 1752 caps->num_txq); 1753 ice_debug(hw, ICE_DBG_INIT, 1754 "%s: txq_first_id = %d\n", prefix, 1755 caps->txq_first_id); 1756 break; 1757 case ICE_AQC_CAPS_MSIX: 1758 caps->num_msix_vectors = number; 1759 caps->msix_vector_first_id = phys_id; 1760 ice_debug(hw, ICE_DBG_INIT, 1761 "%s: num_msix_vectors = %d\n", prefix, 1762 caps->num_msix_vectors); 1763 ice_debug(hw, ICE_DBG_INIT, 1764 "%s: msix_vector_first_id = %d\n", prefix, 1765 caps->msix_vector_first_id); 1766 break; 1767 case ICE_AQC_CAPS_FD: 1768 if (dev_p) { 1769 dev_p->num_flow_director_fltr = number; 1770 ice_debug(hw, ICE_DBG_INIT, 1771 "%s: num_flow_director_fltr = %d\n", 1772 prefix, 1773 dev_p->num_flow_director_fltr); 1774 } 1775 if (func_p) { 1776 u32 reg_val, val; 1777 1778 reg_val = rd32(hw, GLQF_FD_SIZE); 1779 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >> 1780 GLQF_FD_SIZE_FD_GSIZE_S; 1781 func_p->fd_fltr_guar = 1782 ice_get_num_per_func(hw, val); 1783 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >> 1784 GLQF_FD_SIZE_FD_BSIZE_S; 1785 func_p->fd_fltr_best_effort = val; 1786 ice_debug(hw, ICE_DBG_INIT, 1787 "%s: fd_fltr_guar = %d\n", 1788 prefix, func_p->fd_fltr_guar); 1789 ice_debug(hw, ICE_DBG_INIT, 1790 "%s: fd_fltr_best_effort = %d\n", 1791 prefix, func_p->fd_fltr_best_effort); 1792 } 1793 break; 1794 case ICE_AQC_CAPS_MAX_MTU: 1795 caps->max_mtu = number; 1796 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", 1797 prefix, caps->max_mtu); 1798 break; 1799 default: 1800 ice_debug(hw, ICE_DBG_INIT, 1801 "%s: unknown capability[%d]: 0x%x\n", prefix, 1802 i, cap); 1803 break; 1804 } 1805 } 1806 1807 /* Re-calculate capabilities that are dependent on the number of 1808 * physical ports; i.e. some features are not supported or function 1809 * differently on devices with more than 4 ports. 1810 */ 1811 if (hw->dev_caps.num_funcs > 4) { 1812 /* Max 4 TCs per port */ 1813 caps->maxtc = 4; 1814 ice_debug(hw, ICE_DBG_INIT, 1815 "%s: maxtc = %d (based on #ports)\n", prefix, 1816 caps->maxtc); 1817 } 1818 } 1819 1820 /** 1821 * ice_aq_list_caps - query function/device capabilities 1822 * @hw: pointer to the HW struct 1823 * @buf: a buffer to hold the capabilities 1824 * @buf_size: size of the buffer 1825 * @cap_count: if not NULL, set to the number of capabilities reported 1826 * @opc: capabilities type to discover, device or function 1827 * @cd: pointer to command details structure or NULL 1828 * 1829 * Get the function (0x000A) or device (0x000B) capabilities description from 1830 * firmware and store it in the buffer. 1831 * 1832 * If the cap_count pointer is not NULL, then it is set to the number of 1833 * capabilities firmware will report. Note that if the buffer size is too 1834 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The 1835 * cap_count will still be updated in this case. It is recommended that the 1836 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that 1837 * firmware could return) to avoid this. 1838 */ 1839 enum ice_status 1840 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 1841 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1842 { 1843 struct ice_aqc_list_caps *cmd; 1844 struct ice_aq_desc desc; 1845 enum ice_status status; 1846 1847 cmd = &desc.params.get_cap; 1848 1849 if (opc != ice_aqc_opc_list_func_caps && 1850 opc != ice_aqc_opc_list_dev_caps) 1851 return ICE_ERR_PARAM; 1852 1853 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1854 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1855 1856 if (cap_count) 1857 *cap_count = le32_to_cpu(cmd->count); 1858 1859 return status; 1860 } 1861 1862 /** 1863 * ice_aq_discover_caps - query function/device capabilities 1864 * @hw: pointer to the HW struct 1865 * @buf: a virtual buffer to hold the capabilities 1866 * @buf_size: Size of the virtual buffer 1867 * @cap_count: cap count needed if AQ err==ENOMEM 1868 * @opc: capabilities type to discover - pass in the command opcode 1869 * @cd: pointer to command details structure or NULL 1870 * 1871 * Get the function(0x000a)/device(0x000b) capabilities description from 1872 * the firmware. 1873 * 1874 * NOTE: this function has the side effect of updating the hw->dev_caps or 1875 * hw->func_caps by way of calling ice_parse_caps. 1876 */ 1877 static enum ice_status 1878 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 1879 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1880 { 1881 u32 local_cap_count = 0; 1882 enum ice_status status; 1883 1884 status = ice_aq_list_caps(hw, buf, buf_size, &local_cap_count, 1885 opc, cd); 1886 if (!status) 1887 ice_parse_caps(hw, buf, local_cap_count, opc); 1888 else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM) 1889 *cap_count = local_cap_count; 1890 1891 return status; 1892 } 1893 1894 /** 1895 * ice_discover_caps - get info about the HW 1896 * @hw: pointer to the hardware structure 1897 * @opc: capabilities type to discover - pass in the command opcode 1898 */ 1899 static enum ice_status 1900 ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc) 1901 { 1902 enum ice_status status; 1903 u32 cap_count; 1904 u16 cbuf_len; 1905 u8 retries; 1906 1907 /* The driver doesn't know how many capabilities the device will return 1908 * so the buffer size required isn't known ahead of time. The driver 1909 * starts with cbuf_len and if this turns out to be insufficient, the 1910 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs. 1911 * The driver then allocates the buffer based on the count and retries 1912 * the operation. So it follows that the retry count is 2. 1913 */ 1914 #define ICE_GET_CAP_BUF_COUNT 40 1915 #define ICE_GET_CAP_RETRY_COUNT 2 1916 1917 cap_count = ICE_GET_CAP_BUF_COUNT; 1918 retries = ICE_GET_CAP_RETRY_COUNT; 1919 1920 do { 1921 void *cbuf; 1922 1923 cbuf_len = (u16)(cap_count * 1924 sizeof(struct ice_aqc_list_caps_elem)); 1925 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL); 1926 if (!cbuf) 1927 return ICE_ERR_NO_MEMORY; 1928 1929 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count, 1930 opc, NULL); 1931 devm_kfree(ice_hw_to_dev(hw), cbuf); 1932 1933 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM) 1934 break; 1935 1936 /* If ENOMEM is returned, try again with bigger buffer */ 1937 } while (--retries); 1938 1939 return status; 1940 } 1941 1942 /** 1943 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode 1944 * @hw: pointer to the hardware structure 1945 */ 1946 void ice_set_safe_mode_caps(struct ice_hw *hw) 1947 { 1948 struct ice_hw_func_caps *func_caps = &hw->func_caps; 1949 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; 1950 u32 valid_func, rxq_first_id, txq_first_id; 1951 u32 msix_vector_first_id, max_mtu; 1952 u32 num_funcs; 1953 1954 /* cache some func_caps values that should be restored after memset */ 1955 valid_func = func_caps->common_cap.valid_functions; 1956 txq_first_id = func_caps->common_cap.txq_first_id; 1957 rxq_first_id = func_caps->common_cap.rxq_first_id; 1958 msix_vector_first_id = func_caps->common_cap.msix_vector_first_id; 1959 max_mtu = func_caps->common_cap.max_mtu; 1960 1961 /* unset func capabilities */ 1962 memset(func_caps, 0, sizeof(*func_caps)); 1963 1964 /* restore cached values */ 1965 func_caps->common_cap.valid_functions = valid_func; 1966 func_caps->common_cap.txq_first_id = txq_first_id; 1967 func_caps->common_cap.rxq_first_id = rxq_first_id; 1968 func_caps->common_cap.msix_vector_first_id = msix_vector_first_id; 1969 func_caps->common_cap.max_mtu = max_mtu; 1970 1971 /* one Tx and one Rx queue in safe mode */ 1972 func_caps->common_cap.num_rxq = 1; 1973 func_caps->common_cap.num_txq = 1; 1974 1975 /* two MSIX vectors, one for traffic and one for misc causes */ 1976 func_caps->common_cap.num_msix_vectors = 2; 1977 func_caps->guar_num_vsi = 1; 1978 1979 /* cache some dev_caps values that should be restored after memset */ 1980 valid_func = dev_caps->common_cap.valid_functions; 1981 txq_first_id = dev_caps->common_cap.txq_first_id; 1982 rxq_first_id = dev_caps->common_cap.rxq_first_id; 1983 msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id; 1984 max_mtu = dev_caps->common_cap.max_mtu; 1985 num_funcs = dev_caps->num_funcs; 1986 1987 /* unset dev capabilities */ 1988 memset(dev_caps, 0, sizeof(*dev_caps)); 1989 1990 /* restore cached values */ 1991 dev_caps->common_cap.valid_functions = valid_func; 1992 dev_caps->common_cap.txq_first_id = txq_first_id; 1993 dev_caps->common_cap.rxq_first_id = rxq_first_id; 1994 dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id; 1995 dev_caps->common_cap.max_mtu = max_mtu; 1996 dev_caps->num_funcs = num_funcs; 1997 1998 /* one Tx and one Rx queue per function in safe mode */ 1999 dev_caps->common_cap.num_rxq = num_funcs; 2000 dev_caps->common_cap.num_txq = num_funcs; 2001 2002 /* two MSIX vectors per function */ 2003 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; 2004 } 2005 2006 /** 2007 * ice_get_caps - get info about the HW 2008 * @hw: pointer to the hardware structure 2009 */ 2010 enum ice_status ice_get_caps(struct ice_hw *hw) 2011 { 2012 enum ice_status status; 2013 2014 status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps); 2015 if (!status) 2016 status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps); 2017 2018 return status; 2019 } 2020 2021 /** 2022 * ice_aq_manage_mac_write - manage MAC address write command 2023 * @hw: pointer to the HW struct 2024 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 2025 * @flags: flags to control write behavior 2026 * @cd: pointer to command details structure or NULL 2027 * 2028 * This function is used to write MAC address to the NVM (0x0108). 2029 */ 2030 enum ice_status 2031 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, 2032 struct ice_sq_cd *cd) 2033 { 2034 struct ice_aqc_manage_mac_write *cmd; 2035 struct ice_aq_desc desc; 2036 2037 cmd = &desc.params.mac_write; 2038 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 2039 2040 cmd->flags = flags; 2041 ether_addr_copy(cmd->mac_addr, mac_addr); 2042 2043 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2044 } 2045 2046 /** 2047 * ice_aq_clear_pxe_mode 2048 * @hw: pointer to the HW struct 2049 * 2050 * Tell the firmware that the driver is taking over from PXE (0x0110). 2051 */ 2052 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw) 2053 { 2054 struct ice_aq_desc desc; 2055 2056 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 2057 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 2058 2059 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 2060 } 2061 2062 /** 2063 * ice_clear_pxe_mode - clear pxe operations mode 2064 * @hw: pointer to the HW struct 2065 * 2066 * Make sure all PXE mode settings are cleared, including things 2067 * like descriptor fetch/write-back mode. 2068 */ 2069 void ice_clear_pxe_mode(struct ice_hw *hw) 2070 { 2071 if (ice_check_sq_alive(hw, &hw->adminq)) 2072 ice_aq_clear_pxe_mode(hw); 2073 } 2074 2075 /** 2076 * ice_get_link_speed_based_on_phy_type - returns link speed 2077 * @phy_type_low: lower part of phy_type 2078 * @phy_type_high: higher part of phy_type 2079 * 2080 * This helper function will convert an entry in PHY type structure 2081 * [phy_type_low, phy_type_high] to its corresponding link speed. 2082 * Note: In the structure of [phy_type_low, phy_type_high], there should 2083 * be one bit set, as this function will convert one PHY type to its 2084 * speed. 2085 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned 2086 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned 2087 */ 2088 static u16 2089 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) 2090 { 2091 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 2092 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 2093 2094 switch (phy_type_low) { 2095 case ICE_PHY_TYPE_LOW_100BASE_TX: 2096 case ICE_PHY_TYPE_LOW_100M_SGMII: 2097 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; 2098 break; 2099 case ICE_PHY_TYPE_LOW_1000BASE_T: 2100 case ICE_PHY_TYPE_LOW_1000BASE_SX: 2101 case ICE_PHY_TYPE_LOW_1000BASE_LX: 2102 case ICE_PHY_TYPE_LOW_1000BASE_KX: 2103 case ICE_PHY_TYPE_LOW_1G_SGMII: 2104 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; 2105 break; 2106 case ICE_PHY_TYPE_LOW_2500BASE_T: 2107 case ICE_PHY_TYPE_LOW_2500BASE_X: 2108 case ICE_PHY_TYPE_LOW_2500BASE_KX: 2109 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; 2110 break; 2111 case ICE_PHY_TYPE_LOW_5GBASE_T: 2112 case ICE_PHY_TYPE_LOW_5GBASE_KR: 2113 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; 2114 break; 2115 case ICE_PHY_TYPE_LOW_10GBASE_T: 2116 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 2117 case ICE_PHY_TYPE_LOW_10GBASE_SR: 2118 case ICE_PHY_TYPE_LOW_10GBASE_LR: 2119 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 2120 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 2121 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 2122 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; 2123 break; 2124 case ICE_PHY_TYPE_LOW_25GBASE_T: 2125 case ICE_PHY_TYPE_LOW_25GBASE_CR: 2126 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 2127 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 2128 case ICE_PHY_TYPE_LOW_25GBASE_SR: 2129 case ICE_PHY_TYPE_LOW_25GBASE_LR: 2130 case ICE_PHY_TYPE_LOW_25GBASE_KR: 2131 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 2132 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 2133 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 2134 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 2135 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; 2136 break; 2137 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 2138 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 2139 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 2140 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 2141 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 2142 case ICE_PHY_TYPE_LOW_40G_XLAUI: 2143 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; 2144 break; 2145 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 2146 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 2147 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 2148 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 2149 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 2150 case ICE_PHY_TYPE_LOW_50G_LAUI2: 2151 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 2152 case ICE_PHY_TYPE_LOW_50G_AUI2: 2153 case ICE_PHY_TYPE_LOW_50GBASE_CP: 2154 case ICE_PHY_TYPE_LOW_50GBASE_SR: 2155 case ICE_PHY_TYPE_LOW_50GBASE_FR: 2156 case ICE_PHY_TYPE_LOW_50GBASE_LR: 2157 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 2158 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 2159 case ICE_PHY_TYPE_LOW_50G_AUI1: 2160 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; 2161 break; 2162 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 2163 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 2164 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 2165 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 2166 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 2167 case ICE_PHY_TYPE_LOW_100G_CAUI4: 2168 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 2169 case ICE_PHY_TYPE_LOW_100G_AUI4: 2170 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 2171 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 2172 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 2173 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 2174 case ICE_PHY_TYPE_LOW_100GBASE_DR: 2175 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; 2176 break; 2177 default: 2178 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 2179 break; 2180 } 2181 2182 switch (phy_type_high) { 2183 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 2184 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 2185 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 2186 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 2187 case ICE_PHY_TYPE_HIGH_100G_AUI2: 2188 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; 2189 break; 2190 default: 2191 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 2192 break; 2193 } 2194 2195 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && 2196 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 2197 return ICE_AQ_LINK_SPEED_UNKNOWN; 2198 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 2199 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) 2200 return ICE_AQ_LINK_SPEED_UNKNOWN; 2201 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 2202 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 2203 return speed_phy_type_low; 2204 else 2205 return speed_phy_type_high; 2206 } 2207 2208 /** 2209 * ice_update_phy_type 2210 * @phy_type_low: pointer to the lower part of phy_type 2211 * @phy_type_high: pointer to the higher part of phy_type 2212 * @link_speeds_bitmap: targeted link speeds bitmap 2213 * 2214 * Note: For the link_speeds_bitmap structure, you can check it at 2215 * [ice_aqc_get_link_status->link_speed]. Caller can pass in 2216 * link_speeds_bitmap include multiple speeds. 2217 * 2218 * Each entry in this [phy_type_low, phy_type_high] structure will 2219 * present a certain link speed. This helper function will turn on bits 2220 * in [phy_type_low, phy_type_high] structure based on the value of 2221 * link_speeds_bitmap input parameter. 2222 */ 2223 void 2224 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, 2225 u16 link_speeds_bitmap) 2226 { 2227 u64 pt_high; 2228 u64 pt_low; 2229 int index; 2230 u16 speed; 2231 2232 /* We first check with low part of phy_type */ 2233 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { 2234 pt_low = BIT_ULL(index); 2235 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); 2236 2237 if (link_speeds_bitmap & speed) 2238 *phy_type_low |= BIT_ULL(index); 2239 } 2240 2241 /* We then check with high part of phy_type */ 2242 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { 2243 pt_high = BIT_ULL(index); 2244 speed = ice_get_link_speed_based_on_phy_type(0, pt_high); 2245 2246 if (link_speeds_bitmap & speed) 2247 *phy_type_high |= BIT_ULL(index); 2248 } 2249 } 2250 2251 /** 2252 * ice_aq_set_phy_cfg 2253 * @hw: pointer to the HW struct 2254 * @lport: logical port number 2255 * @cfg: structure with PHY configuration data to be set 2256 * @cd: pointer to command details structure or NULL 2257 * 2258 * Set the various PHY configuration parameters supported on the Port. 2259 * One or more of the Set PHY config parameters may be ignored in an MFP 2260 * mode as the PF may not have the privilege to set some of the PHY Config 2261 * parameters. This status will be indicated by the command response (0x0601). 2262 */ 2263 enum ice_status 2264 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport, 2265 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 2266 { 2267 struct ice_aq_desc desc; 2268 enum ice_status status; 2269 2270 if (!cfg) 2271 return ICE_ERR_PARAM; 2272 2273 /* Ensure that only valid bits of cfg->caps can be turned on. */ 2274 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { 2275 ice_debug(hw, ICE_DBG_PHY, 2276 "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", 2277 cfg->caps); 2278 2279 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; 2280 } 2281 2282 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 2283 desc.params.set_phy.lport_num = lport; 2284 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2285 2286 ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n", 2287 (unsigned long long)le64_to_cpu(cfg->phy_type_low)); 2288 ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n", 2289 (unsigned long long)le64_to_cpu(cfg->phy_type_high)); 2290 ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps); 2291 ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n", 2292 cfg->low_power_ctrl); 2293 ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap); 2294 ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value); 2295 ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt); 2296 2297 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 2298 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 2299 status = 0; 2300 2301 return status; 2302 } 2303 2304 /** 2305 * ice_update_link_info - update status of the HW network link 2306 * @pi: port info structure of the interested logical port 2307 */ 2308 enum ice_status ice_update_link_info(struct ice_port_info *pi) 2309 { 2310 struct ice_link_status *li; 2311 enum ice_status status; 2312 2313 if (!pi) 2314 return ICE_ERR_PARAM; 2315 2316 li = &pi->phy.link_info; 2317 2318 status = ice_aq_get_link_info(pi, true, NULL, NULL); 2319 if (status) 2320 return status; 2321 2322 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { 2323 struct ice_aqc_get_phy_caps_data *pcaps; 2324 struct ice_hw *hw; 2325 2326 hw = pi->hw; 2327 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), 2328 GFP_KERNEL); 2329 if (!pcaps) 2330 return ICE_ERR_NO_MEMORY; 2331 2332 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, 2333 pcaps, NULL); 2334 if (!status) 2335 memcpy(li->module_type, &pcaps->module_type, 2336 sizeof(li->module_type)); 2337 2338 devm_kfree(ice_hw_to_dev(hw), pcaps); 2339 } 2340 2341 return status; 2342 } 2343 2344 /** 2345 * ice_set_fc 2346 * @pi: port information structure 2347 * @aq_failures: pointer to status code, specific to ice_set_fc routine 2348 * @ena_auto_link_update: enable automatic link update 2349 * 2350 * Set the requested flow control mode. 2351 */ 2352 enum ice_status 2353 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) 2354 { 2355 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 2356 struct ice_aqc_get_phy_caps_data *pcaps; 2357 enum ice_status status; 2358 u8 pause_mask = 0x0; 2359 struct ice_hw *hw; 2360 2361 if (!pi) 2362 return ICE_ERR_PARAM; 2363 hw = pi->hw; 2364 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE; 2365 2366 switch (pi->fc.req_mode) { 2367 case ICE_FC_FULL: 2368 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 2369 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 2370 break; 2371 case ICE_FC_RX_PAUSE: 2372 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 2373 break; 2374 case ICE_FC_TX_PAUSE: 2375 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 2376 break; 2377 default: 2378 break; 2379 } 2380 2381 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 2382 if (!pcaps) 2383 return ICE_ERR_NO_MEMORY; 2384 2385 /* Get the current PHY config */ 2386 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 2387 NULL); 2388 if (status) { 2389 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 2390 goto out; 2391 } 2392 2393 /* clear the old pause settings */ 2394 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 2395 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 2396 2397 /* set the new capabilities */ 2398 cfg.caps |= pause_mask; 2399 2400 /* If the capabilities have changed, then set the new config */ 2401 if (cfg.caps != pcaps->caps) { 2402 int retry_count, retry_max = 10; 2403 2404 /* Auto restart link so settings take effect */ 2405 if (ena_auto_link_update) 2406 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2407 /* Copy over all the old settings */ 2408 cfg.phy_type_high = pcaps->phy_type_high; 2409 cfg.phy_type_low = pcaps->phy_type_low; 2410 cfg.low_power_ctrl = pcaps->low_power_ctrl; 2411 cfg.eee_cap = pcaps->eee_cap; 2412 cfg.eeer_value = pcaps->eeer_value; 2413 cfg.link_fec_opt = pcaps->link_fec_options; 2414 2415 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL); 2416 if (status) { 2417 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 2418 goto out; 2419 } 2420 2421 /* Update the link info 2422 * It sometimes takes a really long time for link to 2423 * come back from the atomic reset. Thus, we wait a 2424 * little bit. 2425 */ 2426 for (retry_count = 0; retry_count < retry_max; retry_count++) { 2427 status = ice_update_link_info(pi); 2428 2429 if (!status) 2430 break; 2431 2432 mdelay(100); 2433 } 2434 2435 if (status) 2436 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 2437 } 2438 2439 out: 2440 devm_kfree(ice_hw_to_dev(hw), pcaps); 2441 return status; 2442 } 2443 2444 /** 2445 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 2446 * @caps: PHY ability structure to copy date from 2447 * @cfg: PHY configuration structure to copy data to 2448 * 2449 * Helper function to copy AQC PHY get ability data to PHY set configuration 2450 * data structure 2451 */ 2452 void 2453 ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps, 2454 struct ice_aqc_set_phy_cfg_data *cfg) 2455 { 2456 if (!caps || !cfg) 2457 return; 2458 2459 cfg->phy_type_low = caps->phy_type_low; 2460 cfg->phy_type_high = caps->phy_type_high; 2461 cfg->caps = caps->caps; 2462 cfg->low_power_ctrl = caps->low_power_ctrl; 2463 cfg->eee_cap = caps->eee_cap; 2464 cfg->eeer_value = caps->eeer_value; 2465 cfg->link_fec_opt = caps->link_fec_options; 2466 } 2467 2468 /** 2469 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode 2470 * @cfg: PHY configuration data to set FEC mode 2471 * @fec: FEC mode to configure 2472 * 2473 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC 2474 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps 2475 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling. 2476 */ 2477 void 2478 ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec) 2479 { 2480 switch (fec) { 2481 case ICE_FEC_BASER: 2482 /* Clear RS bits, and AND BASE-R ability 2483 * bits and OR request bits. 2484 */ 2485 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 2486 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; 2487 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 2488 ICE_AQC_PHY_FEC_25G_KR_REQ; 2489 break; 2490 case ICE_FEC_RS: 2491 /* Clear BASE-R bits, and AND RS ability 2492 * bits and OR request bits. 2493 */ 2494 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; 2495 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | 2496 ICE_AQC_PHY_FEC_25G_RS_544_REQ; 2497 break; 2498 case ICE_FEC_NONE: 2499 /* Clear all FEC option bits. */ 2500 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; 2501 break; 2502 case ICE_FEC_AUTO: 2503 /* AND auto FEC bit, and all caps bits. */ 2504 cfg->caps &= ICE_AQC_PHY_CAPS_MASK; 2505 break; 2506 } 2507 } 2508 2509 /** 2510 * ice_get_link_status - get status of the HW network link 2511 * @pi: port information structure 2512 * @link_up: pointer to bool (true/false = linkup/linkdown) 2513 * 2514 * Variable link_up is true if link is up, false if link is down. 2515 * The variable link_up is invalid if status is non zero. As a 2516 * result of this call, link status reporting becomes enabled 2517 */ 2518 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up) 2519 { 2520 struct ice_phy_info *phy_info; 2521 enum ice_status status = 0; 2522 2523 if (!pi || !link_up) 2524 return ICE_ERR_PARAM; 2525 2526 phy_info = &pi->phy; 2527 2528 if (phy_info->get_link_info) { 2529 status = ice_update_link_info(pi); 2530 2531 if (status) 2532 ice_debug(pi->hw, ICE_DBG_LINK, 2533 "get link status error, status = %d\n", 2534 status); 2535 } 2536 2537 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 2538 2539 return status; 2540 } 2541 2542 /** 2543 * ice_aq_set_link_restart_an 2544 * @pi: pointer to the port information structure 2545 * @ena_link: if true: enable link, if false: disable link 2546 * @cd: pointer to command details structure or NULL 2547 * 2548 * Sets up the link and restarts the Auto-Negotiation over the link. 2549 */ 2550 enum ice_status 2551 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 2552 struct ice_sq_cd *cd) 2553 { 2554 struct ice_aqc_restart_an *cmd; 2555 struct ice_aq_desc desc; 2556 2557 cmd = &desc.params.restart_an; 2558 2559 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 2560 2561 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 2562 cmd->lport_num = pi->lport; 2563 if (ena_link) 2564 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 2565 else 2566 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 2567 2568 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 2569 } 2570 2571 /** 2572 * ice_aq_set_event_mask 2573 * @hw: pointer to the HW struct 2574 * @port_num: port number of the physical function 2575 * @mask: event mask to be set 2576 * @cd: pointer to command details structure or NULL 2577 * 2578 * Set event mask (0x0613) 2579 */ 2580 enum ice_status 2581 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 2582 struct ice_sq_cd *cd) 2583 { 2584 struct ice_aqc_set_event_mask *cmd; 2585 struct ice_aq_desc desc; 2586 2587 cmd = &desc.params.set_event_mask; 2588 2589 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 2590 2591 cmd->lport_num = port_num; 2592 2593 cmd->event_mask = cpu_to_le16(mask); 2594 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2595 } 2596 2597 /** 2598 * ice_aq_set_mac_loopback 2599 * @hw: pointer to the HW struct 2600 * @ena_lpbk: Enable or Disable loopback 2601 * @cd: pointer to command details structure or NULL 2602 * 2603 * Enable/disable loopback on a given port 2604 */ 2605 enum ice_status 2606 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) 2607 { 2608 struct ice_aqc_set_mac_lb *cmd; 2609 struct ice_aq_desc desc; 2610 2611 cmd = &desc.params.set_mac_lb; 2612 2613 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); 2614 if (ena_lpbk) 2615 cmd->lb_mode = ICE_AQ_MAC_LB_EN; 2616 2617 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2618 } 2619 2620 /** 2621 * ice_aq_set_port_id_led 2622 * @pi: pointer to the port information 2623 * @is_orig_mode: is this LED set to original mode (by the net-list) 2624 * @cd: pointer to command details structure or NULL 2625 * 2626 * Set LED value for the given port (0x06e9) 2627 */ 2628 enum ice_status 2629 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, 2630 struct ice_sq_cd *cd) 2631 { 2632 struct ice_aqc_set_port_id_led *cmd; 2633 struct ice_hw *hw = pi->hw; 2634 struct ice_aq_desc desc; 2635 2636 cmd = &desc.params.set_port_id_led; 2637 2638 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); 2639 2640 if (is_orig_mode) 2641 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; 2642 else 2643 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; 2644 2645 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2646 } 2647 2648 /** 2649 * ice_aq_sff_eeprom 2650 * @hw: pointer to the HW struct 2651 * @lport: bits [7:0] = logical port, bit [8] = logical port valid 2652 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) 2653 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. 2654 * @page: QSFP page 2655 * @set_page: set or ignore the page 2656 * @data: pointer to data buffer to be read/written to the I2C device. 2657 * @length: 1-16 for read, 1 for write. 2658 * @write: 0 read, 1 for write. 2659 * @cd: pointer to command details structure or NULL 2660 * 2661 * Read/Write SFF EEPROM (0x06EE) 2662 */ 2663 enum ice_status 2664 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, 2665 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, 2666 bool write, struct ice_sq_cd *cd) 2667 { 2668 struct ice_aqc_sff_eeprom *cmd; 2669 struct ice_aq_desc desc; 2670 enum ice_status status; 2671 2672 if (!data || (mem_addr & 0xff00)) 2673 return ICE_ERR_PARAM; 2674 2675 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); 2676 cmd = &desc.params.read_write_sff_param; 2677 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF); 2678 cmd->lport_num = (u8)(lport & 0xff); 2679 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); 2680 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) & 2681 ICE_AQC_SFF_I2CBUS_7BIT_M) | 2682 ((set_page << 2683 ICE_AQC_SFF_SET_EEPROM_PAGE_S) & 2684 ICE_AQC_SFF_SET_EEPROM_PAGE_M)); 2685 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); 2686 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S); 2687 if (write) 2688 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE); 2689 2690 status = ice_aq_send_cmd(hw, &desc, data, length, cd); 2691 return status; 2692 } 2693 2694 /** 2695 * __ice_aq_get_set_rss_lut 2696 * @hw: pointer to the hardware structure 2697 * @vsi_id: VSI FW index 2698 * @lut_type: LUT table type 2699 * @lut: pointer to the LUT buffer provided by the caller 2700 * @lut_size: size of the LUT buffer 2701 * @glob_lut_idx: global LUT index 2702 * @set: set true to set the table, false to get the table 2703 * 2704 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 2705 */ 2706 static enum ice_status 2707 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, 2708 u16 lut_size, u8 glob_lut_idx, bool set) 2709 { 2710 struct ice_aqc_get_set_rss_lut *cmd_resp; 2711 struct ice_aq_desc desc; 2712 enum ice_status status; 2713 u16 flags = 0; 2714 2715 cmd_resp = &desc.params.get_set_rss_lut; 2716 2717 if (set) { 2718 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); 2719 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2720 } else { 2721 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); 2722 } 2723 2724 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 2725 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & 2726 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | 2727 ICE_AQC_GSET_RSS_LUT_VSI_VALID); 2728 2729 switch (lut_type) { 2730 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: 2731 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: 2732 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: 2733 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & 2734 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); 2735 break; 2736 default: 2737 status = ICE_ERR_PARAM; 2738 goto ice_aq_get_set_rss_lut_exit; 2739 } 2740 2741 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { 2742 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & 2743 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); 2744 2745 if (!set) 2746 goto ice_aq_get_set_rss_lut_send; 2747 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { 2748 if (!set) 2749 goto ice_aq_get_set_rss_lut_send; 2750 } else { 2751 goto ice_aq_get_set_rss_lut_send; 2752 } 2753 2754 /* LUT size is only valid for Global and PF table types */ 2755 switch (lut_size) { 2756 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128: 2757 break; 2758 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512: 2759 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << 2760 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 2761 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 2762 break; 2763 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K: 2764 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { 2765 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << 2766 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 2767 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 2768 break; 2769 } 2770 fallthrough; 2771 default: 2772 status = ICE_ERR_PARAM; 2773 goto ice_aq_get_set_rss_lut_exit; 2774 } 2775 2776 ice_aq_get_set_rss_lut_send: 2777 cmd_resp->flags = cpu_to_le16(flags); 2778 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 2779 2780 ice_aq_get_set_rss_lut_exit: 2781 return status; 2782 } 2783 2784 /** 2785 * ice_aq_get_rss_lut 2786 * @hw: pointer to the hardware structure 2787 * @vsi_handle: software VSI handle 2788 * @lut_type: LUT table type 2789 * @lut: pointer to the LUT buffer provided by the caller 2790 * @lut_size: size of the LUT buffer 2791 * 2792 * get the RSS lookup table, PF or VSI type 2793 */ 2794 enum ice_status 2795 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, 2796 u8 *lut, u16 lut_size) 2797 { 2798 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) 2799 return ICE_ERR_PARAM; 2800 2801 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), 2802 lut_type, lut, lut_size, 0, false); 2803 } 2804 2805 /** 2806 * ice_aq_set_rss_lut 2807 * @hw: pointer to the hardware structure 2808 * @vsi_handle: software VSI handle 2809 * @lut_type: LUT table type 2810 * @lut: pointer to the LUT buffer provided by the caller 2811 * @lut_size: size of the LUT buffer 2812 * 2813 * set the RSS lookup table, PF or VSI type 2814 */ 2815 enum ice_status 2816 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, 2817 u8 *lut, u16 lut_size) 2818 { 2819 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) 2820 return ICE_ERR_PARAM; 2821 2822 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), 2823 lut_type, lut, lut_size, 0, true); 2824 } 2825 2826 /** 2827 * __ice_aq_get_set_rss_key 2828 * @hw: pointer to the HW struct 2829 * @vsi_id: VSI FW index 2830 * @key: pointer to key info struct 2831 * @set: set true to set the key, false to get the key 2832 * 2833 * get (0x0B04) or set (0x0B02) the RSS key per VSI 2834 */ 2835 static enum 2836 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 2837 struct ice_aqc_get_set_rss_keys *key, 2838 bool set) 2839 { 2840 struct ice_aqc_get_set_rss_key *cmd_resp; 2841 u16 key_size = sizeof(*key); 2842 struct ice_aq_desc desc; 2843 2844 cmd_resp = &desc.params.get_set_rss_key; 2845 2846 if (set) { 2847 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 2848 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2849 } else { 2850 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 2851 } 2852 2853 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 2854 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & 2855 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | 2856 ICE_AQC_GSET_RSS_KEY_VSI_VALID); 2857 2858 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 2859 } 2860 2861 /** 2862 * ice_aq_get_rss_key 2863 * @hw: pointer to the HW struct 2864 * @vsi_handle: software VSI handle 2865 * @key: pointer to key info struct 2866 * 2867 * get the RSS key per VSI 2868 */ 2869 enum ice_status 2870 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, 2871 struct ice_aqc_get_set_rss_keys *key) 2872 { 2873 if (!ice_is_vsi_valid(hw, vsi_handle) || !key) 2874 return ICE_ERR_PARAM; 2875 2876 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 2877 key, false); 2878 } 2879 2880 /** 2881 * ice_aq_set_rss_key 2882 * @hw: pointer to the HW struct 2883 * @vsi_handle: software VSI handle 2884 * @keys: pointer to key info struct 2885 * 2886 * set the RSS key per VSI 2887 */ 2888 enum ice_status 2889 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, 2890 struct ice_aqc_get_set_rss_keys *keys) 2891 { 2892 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) 2893 return ICE_ERR_PARAM; 2894 2895 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 2896 keys, true); 2897 } 2898 2899 /** 2900 * ice_aq_add_lan_txq 2901 * @hw: pointer to the hardware structure 2902 * @num_qgrps: Number of added queue groups 2903 * @qg_list: list of queue groups to be added 2904 * @buf_size: size of buffer for indirect command 2905 * @cd: pointer to command details structure or NULL 2906 * 2907 * Add Tx LAN queue (0x0C30) 2908 * 2909 * NOTE: 2910 * Prior to calling add Tx LAN queue: 2911 * Initialize the following as part of the Tx queue context: 2912 * Completion queue ID if the queue uses Completion queue, Quanta profile, 2913 * Cache profile and Packet shaper profile. 2914 * 2915 * After add Tx LAN queue AQ command is completed: 2916 * Interrupts should be associated with specific queues, 2917 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 2918 * flow. 2919 */ 2920 static enum ice_status 2921 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 2922 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 2923 struct ice_sq_cd *cd) 2924 { 2925 struct ice_aqc_add_tx_qgrp *list; 2926 struct ice_aqc_add_txqs *cmd; 2927 struct ice_aq_desc desc; 2928 u16 i, sum_size = 0; 2929 2930 cmd = &desc.params.add_txqs; 2931 2932 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 2933 2934 if (!qg_list) 2935 return ICE_ERR_PARAM; 2936 2937 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 2938 return ICE_ERR_PARAM; 2939 2940 for (i = 0, list = qg_list; i < num_qgrps; i++) { 2941 sum_size += struct_size(list, txqs, list->num_txqs); 2942 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + 2943 list->num_txqs); 2944 } 2945 2946 if (buf_size != sum_size) 2947 return ICE_ERR_PARAM; 2948 2949 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2950 2951 cmd->num_qgrps = num_qgrps; 2952 2953 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 2954 } 2955 2956 /** 2957 * ice_aq_dis_lan_txq 2958 * @hw: pointer to the hardware structure 2959 * @num_qgrps: number of groups in the list 2960 * @qg_list: the list of groups to disable 2961 * @buf_size: the total size of the qg_list buffer in bytes 2962 * @rst_src: if called due to reset, specifies the reset source 2963 * @vmvf_num: the relative VM or VF number that is undergoing the reset 2964 * @cd: pointer to command details structure or NULL 2965 * 2966 * Disable LAN Tx queue (0x0C31) 2967 */ 2968 static enum ice_status 2969 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 2970 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 2971 enum ice_disq_rst_src rst_src, u16 vmvf_num, 2972 struct ice_sq_cd *cd) 2973 { 2974 struct ice_aqc_dis_txq_item *item; 2975 struct ice_aqc_dis_txqs *cmd; 2976 struct ice_aq_desc desc; 2977 enum ice_status status; 2978 u16 i, sz = 0; 2979 2980 cmd = &desc.params.dis_txqs; 2981 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 2982 2983 /* qg_list can be NULL only in VM/VF reset flow */ 2984 if (!qg_list && !rst_src) 2985 return ICE_ERR_PARAM; 2986 2987 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 2988 return ICE_ERR_PARAM; 2989 2990 cmd->num_entries = num_qgrps; 2991 2992 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & 2993 ICE_AQC_Q_DIS_TIMEOUT_M); 2994 2995 switch (rst_src) { 2996 case ICE_VM_RESET: 2997 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; 2998 cmd->vmvf_and_timeout |= 2999 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); 3000 break; 3001 case ICE_VF_RESET: 3002 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; 3003 /* In this case, FW expects vmvf_num to be absolute VF ID */ 3004 cmd->vmvf_and_timeout |= 3005 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & 3006 ICE_AQC_Q_DIS_VMVF_NUM_M); 3007 break; 3008 case ICE_NO_RESET: 3009 default: 3010 break; 3011 } 3012 3013 /* flush pipe on time out */ 3014 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; 3015 /* If no queue group info, we are in a reset flow. Issue the AQ */ 3016 if (!qg_list) 3017 goto do_aq; 3018 3019 /* set RD bit to indicate that command buffer is provided by the driver 3020 * and it needs to be read by the firmware 3021 */ 3022 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3023 3024 for (i = 0, item = qg_list; i < num_qgrps; i++) { 3025 u16 item_size = struct_size(item, q_id, item->num_qs); 3026 3027 /* If the num of queues is even, add 2 bytes of padding */ 3028 if ((item->num_qs % 2) == 0) 3029 item_size += 2; 3030 3031 sz += item_size; 3032 3033 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); 3034 } 3035 3036 if (buf_size != sz) 3037 return ICE_ERR_PARAM; 3038 3039 do_aq: 3040 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 3041 if (status) { 3042 if (!qg_list) 3043 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", 3044 vmvf_num, hw->adminq.sq_last_status); 3045 else 3046 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", 3047 le16_to_cpu(qg_list[0].q_id[0]), 3048 hw->adminq.sq_last_status); 3049 } 3050 return status; 3051 } 3052 3053 /* End of FW Admin Queue command wrappers */ 3054 3055 /** 3056 * ice_write_byte - write a byte to a packed context structure 3057 * @src_ctx: the context structure to read from 3058 * @dest_ctx: the context to be written to 3059 * @ce_info: a description of the struct to be filled 3060 */ 3061 static void 3062 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 3063 { 3064 u8 src_byte, dest_byte, mask; 3065 u8 *from, *dest; 3066 u16 shift_width; 3067 3068 /* copy from the next struct field */ 3069 from = src_ctx + ce_info->offset; 3070 3071 /* prepare the bits and mask */ 3072 shift_width = ce_info->lsb % 8; 3073 mask = (u8)(BIT(ce_info->width) - 1); 3074 3075 src_byte = *from; 3076 src_byte &= mask; 3077 3078 /* shift to correct alignment */ 3079 mask <<= shift_width; 3080 src_byte <<= shift_width; 3081 3082 /* get the current bits from the target bit string */ 3083 dest = dest_ctx + (ce_info->lsb / 8); 3084 3085 memcpy(&dest_byte, dest, sizeof(dest_byte)); 3086 3087 dest_byte &= ~mask; /* get the bits not changing */ 3088 dest_byte |= src_byte; /* add in the new bits */ 3089 3090 /* put it all back */ 3091 memcpy(dest, &dest_byte, sizeof(dest_byte)); 3092 } 3093 3094 /** 3095 * ice_write_word - write a word to a packed context structure 3096 * @src_ctx: the context structure to read from 3097 * @dest_ctx: the context to be written to 3098 * @ce_info: a description of the struct to be filled 3099 */ 3100 static void 3101 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 3102 { 3103 u16 src_word, mask; 3104 __le16 dest_word; 3105 u8 *from, *dest; 3106 u16 shift_width; 3107 3108 /* copy from the next struct field */ 3109 from = src_ctx + ce_info->offset; 3110 3111 /* prepare the bits and mask */ 3112 shift_width = ce_info->lsb % 8; 3113 mask = BIT(ce_info->width) - 1; 3114 3115 /* don't swizzle the bits until after the mask because the mask bits 3116 * will be in a different bit position on big endian machines 3117 */ 3118 src_word = *(u16 *)from; 3119 src_word &= mask; 3120 3121 /* shift to correct alignment */ 3122 mask <<= shift_width; 3123 src_word <<= shift_width; 3124 3125 /* get the current bits from the target bit string */ 3126 dest = dest_ctx + (ce_info->lsb / 8); 3127 3128 memcpy(&dest_word, dest, sizeof(dest_word)); 3129 3130 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ 3131 dest_word |= cpu_to_le16(src_word); /* add in the new bits */ 3132 3133 /* put it all back */ 3134 memcpy(dest, &dest_word, sizeof(dest_word)); 3135 } 3136 3137 /** 3138 * ice_write_dword - write a dword to a packed context structure 3139 * @src_ctx: the context structure to read from 3140 * @dest_ctx: the context to be written to 3141 * @ce_info: a description of the struct to be filled 3142 */ 3143 static void 3144 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 3145 { 3146 u32 src_dword, mask; 3147 __le32 dest_dword; 3148 u8 *from, *dest; 3149 u16 shift_width; 3150 3151 /* copy from the next struct field */ 3152 from = src_ctx + ce_info->offset; 3153 3154 /* prepare the bits and mask */ 3155 shift_width = ce_info->lsb % 8; 3156 3157 /* if the field width is exactly 32 on an x86 machine, then the shift 3158 * operation will not work because the SHL instructions count is masked 3159 * to 5 bits so the shift will do nothing 3160 */ 3161 if (ce_info->width < 32) 3162 mask = BIT(ce_info->width) - 1; 3163 else 3164 mask = (u32)~0; 3165 3166 /* don't swizzle the bits until after the mask because the mask bits 3167 * will be in a different bit position on big endian machines 3168 */ 3169 src_dword = *(u32 *)from; 3170 src_dword &= mask; 3171 3172 /* shift to correct alignment */ 3173 mask <<= shift_width; 3174 src_dword <<= shift_width; 3175 3176 /* get the current bits from the target bit string */ 3177 dest = dest_ctx + (ce_info->lsb / 8); 3178 3179 memcpy(&dest_dword, dest, sizeof(dest_dword)); 3180 3181 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ 3182 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ 3183 3184 /* put it all back */ 3185 memcpy(dest, &dest_dword, sizeof(dest_dword)); 3186 } 3187 3188 /** 3189 * ice_write_qword - write a qword to a packed context structure 3190 * @src_ctx: the context structure to read from 3191 * @dest_ctx: the context to be written to 3192 * @ce_info: a description of the struct to be filled 3193 */ 3194 static void 3195 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 3196 { 3197 u64 src_qword, mask; 3198 __le64 dest_qword; 3199 u8 *from, *dest; 3200 u16 shift_width; 3201 3202 /* copy from the next struct field */ 3203 from = src_ctx + ce_info->offset; 3204 3205 /* prepare the bits and mask */ 3206 shift_width = ce_info->lsb % 8; 3207 3208 /* if the field width is exactly 64 on an x86 machine, then the shift 3209 * operation will not work because the SHL instructions count is masked 3210 * to 6 bits so the shift will do nothing 3211 */ 3212 if (ce_info->width < 64) 3213 mask = BIT_ULL(ce_info->width) - 1; 3214 else 3215 mask = (u64)~0; 3216 3217 /* don't swizzle the bits until after the mask because the mask bits 3218 * will be in a different bit position on big endian machines 3219 */ 3220 src_qword = *(u64 *)from; 3221 src_qword &= mask; 3222 3223 /* shift to correct alignment */ 3224 mask <<= shift_width; 3225 src_qword <<= shift_width; 3226 3227 /* get the current bits from the target bit string */ 3228 dest = dest_ctx + (ce_info->lsb / 8); 3229 3230 memcpy(&dest_qword, dest, sizeof(dest_qword)); 3231 3232 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ 3233 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ 3234 3235 /* put it all back */ 3236 memcpy(dest, &dest_qword, sizeof(dest_qword)); 3237 } 3238 3239 /** 3240 * ice_set_ctx - set context bits in packed structure 3241 * @hw: pointer to the hardware structure 3242 * @src_ctx: pointer to a generic non-packed context structure 3243 * @dest_ctx: pointer to memory for the packed structure 3244 * @ce_info: a description of the structure to be transformed 3245 */ 3246 enum ice_status 3247 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx, 3248 const struct ice_ctx_ele *ce_info) 3249 { 3250 int f; 3251 3252 for (f = 0; ce_info[f].width; f++) { 3253 /* We have to deal with each element of the FW response 3254 * using the correct size so that we are correct regardless 3255 * of the endianness of the machine. 3256 */ 3257 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) { 3258 ice_debug(hw, ICE_DBG_QCTX, 3259 "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n", 3260 f, ce_info[f].width, ce_info[f].size_of); 3261 continue; 3262 } 3263 switch (ce_info[f].size_of) { 3264 case sizeof(u8): 3265 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); 3266 break; 3267 case sizeof(u16): 3268 ice_write_word(src_ctx, dest_ctx, &ce_info[f]); 3269 break; 3270 case sizeof(u32): 3271 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); 3272 break; 3273 case sizeof(u64): 3274 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); 3275 break; 3276 default: 3277 return ICE_ERR_INVAL_SIZE; 3278 } 3279 } 3280 3281 return 0; 3282 } 3283 3284 /** 3285 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC 3286 * @hw: pointer to the HW struct 3287 * @vsi_handle: software VSI handle 3288 * @tc: TC number 3289 * @q_handle: software queue handle 3290 */ 3291 struct ice_q_ctx * 3292 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) 3293 { 3294 struct ice_vsi_ctx *vsi; 3295 struct ice_q_ctx *q_ctx; 3296 3297 vsi = ice_get_vsi_ctx(hw, vsi_handle); 3298 if (!vsi) 3299 return NULL; 3300 if (q_handle >= vsi->num_lan_q_entries[tc]) 3301 return NULL; 3302 if (!vsi->lan_q_ctx[tc]) 3303 return NULL; 3304 q_ctx = vsi->lan_q_ctx[tc]; 3305 return &q_ctx[q_handle]; 3306 } 3307 3308 /** 3309 * ice_ena_vsi_txq 3310 * @pi: port information structure 3311 * @vsi_handle: software VSI handle 3312 * @tc: TC number 3313 * @q_handle: software queue handle 3314 * @num_qgrps: Number of added queue groups 3315 * @buf: list of queue groups to be added 3316 * @buf_size: size of buffer for indirect command 3317 * @cd: pointer to command details structure or NULL 3318 * 3319 * This function adds one LAN queue 3320 */ 3321 enum ice_status 3322 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, 3323 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 3324 struct ice_sq_cd *cd) 3325 { 3326 struct ice_aqc_txsched_elem_data node = { 0 }; 3327 struct ice_sched_node *parent; 3328 struct ice_q_ctx *q_ctx; 3329 enum ice_status status; 3330 struct ice_hw *hw; 3331 3332 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 3333 return ICE_ERR_CFG; 3334 3335 if (num_qgrps > 1 || buf->num_txqs > 1) 3336 return ICE_ERR_MAX_LIMIT; 3337 3338 hw = pi->hw; 3339 3340 if (!ice_is_vsi_valid(hw, vsi_handle)) 3341 return ICE_ERR_PARAM; 3342 3343 mutex_lock(&pi->sched_lock); 3344 3345 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); 3346 if (!q_ctx) { 3347 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", 3348 q_handle); 3349 status = ICE_ERR_PARAM; 3350 goto ena_txq_exit; 3351 } 3352 3353 /* find a parent node */ 3354 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 3355 ICE_SCHED_NODE_OWNER_LAN); 3356 if (!parent) { 3357 status = ICE_ERR_PARAM; 3358 goto ena_txq_exit; 3359 } 3360 3361 buf->parent_teid = parent->info.node_teid; 3362 node.parent_teid = parent->info.node_teid; 3363 /* Mark that the values in the "generic" section as valid. The default 3364 * value in the "generic" section is zero. This means that : 3365 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 3366 * - 0 priority among siblings, indicated by Bit 1-3. 3367 * - WFQ, indicated by Bit 4. 3368 * - 0 Adjustment value is used in PSM credit update flow, indicated by 3369 * Bit 5-6. 3370 * - Bit 7 is reserved. 3371 * Without setting the generic section as valid in valid_sections, the 3372 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. 3373 */ 3374 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC; 3375 3376 /* add the LAN queue */ 3377 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 3378 if (status) { 3379 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", 3380 le16_to_cpu(buf->txqs[0].txq_id), 3381 hw->adminq.sq_last_status); 3382 goto ena_txq_exit; 3383 } 3384 3385 node.node_teid = buf->txqs[0].q_teid; 3386 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 3387 q_ctx->q_handle = q_handle; 3388 q_ctx->q_teid = le32_to_cpu(node.node_teid); 3389 3390 /* add a leaf node into scheduler tree queue layer */ 3391 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); 3392 if (!status) 3393 status = ice_sched_replay_q_bw(pi, q_ctx); 3394 3395 ena_txq_exit: 3396 mutex_unlock(&pi->sched_lock); 3397 return status; 3398 } 3399 3400 /** 3401 * ice_dis_vsi_txq 3402 * @pi: port information structure 3403 * @vsi_handle: software VSI handle 3404 * @tc: TC number 3405 * @num_queues: number of queues 3406 * @q_handles: pointer to software queue handle array 3407 * @q_ids: pointer to the q_id array 3408 * @q_teids: pointer to queue node teids 3409 * @rst_src: if called due to reset, specifies the reset source 3410 * @vmvf_num: the relative VM or VF number that is undergoing the reset 3411 * @cd: pointer to command details structure or NULL 3412 * 3413 * This function removes queues and their corresponding nodes in SW DB 3414 */ 3415 enum ice_status 3416 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, 3417 u16 *q_handles, u16 *q_ids, u32 *q_teids, 3418 enum ice_disq_rst_src rst_src, u16 vmvf_num, 3419 struct ice_sq_cd *cd) 3420 { 3421 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 3422 struct ice_aqc_dis_txq_item *qg_list; 3423 struct ice_q_ctx *q_ctx; 3424 struct ice_hw *hw; 3425 u16 i, buf_size; 3426 3427 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 3428 return ICE_ERR_CFG; 3429 3430 hw = pi->hw; 3431 3432 if (!num_queues) { 3433 /* if queue is disabled already yet the disable queue command 3434 * has to be sent to complete the VF reset, then call 3435 * ice_aq_dis_lan_txq without any queue information 3436 */ 3437 if (rst_src) 3438 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, 3439 vmvf_num, NULL); 3440 return ICE_ERR_CFG; 3441 } 3442 3443 buf_size = struct_size(qg_list, q_id, 1); 3444 qg_list = kzalloc(buf_size, GFP_KERNEL); 3445 if (!qg_list) 3446 return ICE_ERR_NO_MEMORY; 3447 3448 mutex_lock(&pi->sched_lock); 3449 3450 for (i = 0; i < num_queues; i++) { 3451 struct ice_sched_node *node; 3452 3453 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 3454 if (!node) 3455 continue; 3456 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); 3457 if (!q_ctx) { 3458 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", 3459 q_handles[i]); 3460 continue; 3461 } 3462 if (q_ctx->q_handle != q_handles[i]) { 3463 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", 3464 q_ctx->q_handle, q_handles[i]); 3465 continue; 3466 } 3467 qg_list->parent_teid = node->info.parent_teid; 3468 qg_list->num_qs = 1; 3469 qg_list->q_id[0] = cpu_to_le16(q_ids[i]); 3470 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, 3471 vmvf_num, cd); 3472 3473 if (status) 3474 break; 3475 ice_free_sched_node(pi, node); 3476 q_ctx->q_handle = ICE_INVAL_Q_HANDLE; 3477 } 3478 mutex_unlock(&pi->sched_lock); 3479 kfree(qg_list); 3480 return status; 3481 } 3482 3483 /** 3484 * ice_cfg_vsi_qs - configure the new/existing VSI queues 3485 * @pi: port information structure 3486 * @vsi_handle: software VSI handle 3487 * @tc_bitmap: TC bitmap 3488 * @maxqs: max queues array per TC 3489 * @owner: LAN or RDMA 3490 * 3491 * This function adds/updates the VSI queues per TC. 3492 */ 3493 static enum ice_status 3494 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 3495 u16 *maxqs, u8 owner) 3496 { 3497 enum ice_status status = 0; 3498 u8 i; 3499 3500 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 3501 return ICE_ERR_CFG; 3502 3503 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3504 return ICE_ERR_PARAM; 3505 3506 mutex_lock(&pi->sched_lock); 3507 3508 ice_for_each_traffic_class(i) { 3509 /* configuration is possible only if TC node is present */ 3510 if (!ice_sched_get_tc_node(pi, i)) 3511 continue; 3512 3513 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, 3514 ice_is_tc_ena(tc_bitmap, i)); 3515 if (status) 3516 break; 3517 } 3518 3519 mutex_unlock(&pi->sched_lock); 3520 return status; 3521 } 3522 3523 /** 3524 * ice_cfg_vsi_lan - configure VSI LAN queues 3525 * @pi: port information structure 3526 * @vsi_handle: software VSI handle 3527 * @tc_bitmap: TC bitmap 3528 * @max_lanqs: max LAN queues array per TC 3529 * 3530 * This function adds/updates the VSI LAN queues per TC. 3531 */ 3532 enum ice_status 3533 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 3534 u16 *max_lanqs) 3535 { 3536 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, 3537 ICE_SCHED_NODE_OWNER_LAN); 3538 } 3539 3540 /** 3541 * ice_replay_pre_init - replay pre initialization 3542 * @hw: pointer to the HW struct 3543 * 3544 * Initializes required config data for VSI, FD, ACL, and RSS before replay. 3545 */ 3546 static enum ice_status ice_replay_pre_init(struct ice_hw *hw) 3547 { 3548 struct ice_switch_info *sw = hw->switch_info; 3549 u8 i; 3550 3551 /* Delete old entries from replay filter list head if there is any */ 3552 ice_rm_all_sw_replay_rule_info(hw); 3553 /* In start of replay, move entries into replay_rules list, it 3554 * will allow adding rules entries back to filt_rules list, 3555 * which is operational list. 3556 */ 3557 for (i = 0; i < ICE_SW_LKUP_LAST; i++) 3558 list_replace_init(&sw->recp_list[i].filt_rules, 3559 &sw->recp_list[i].filt_replay_rules); 3560 3561 return 0; 3562 } 3563 3564 /** 3565 * ice_replay_vsi - replay VSI configuration 3566 * @hw: pointer to the HW struct 3567 * @vsi_handle: driver VSI handle 3568 * 3569 * Restore all VSI configuration after reset. It is required to call this 3570 * function with main VSI first. 3571 */ 3572 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) 3573 { 3574 enum ice_status status; 3575 3576 if (!ice_is_vsi_valid(hw, vsi_handle)) 3577 return ICE_ERR_PARAM; 3578 3579 /* Replay pre-initialization if there is any */ 3580 if (vsi_handle == ICE_MAIN_VSI_HANDLE) { 3581 status = ice_replay_pre_init(hw); 3582 if (status) 3583 return status; 3584 } 3585 /* Replay per VSI all RSS configurations */ 3586 status = ice_replay_rss_cfg(hw, vsi_handle); 3587 if (status) 3588 return status; 3589 /* Replay per VSI all filters */ 3590 status = ice_replay_vsi_all_fltr(hw, vsi_handle); 3591 return status; 3592 } 3593 3594 /** 3595 * ice_replay_post - post replay configuration cleanup 3596 * @hw: pointer to the HW struct 3597 * 3598 * Post replay cleanup. 3599 */ 3600 void ice_replay_post(struct ice_hw *hw) 3601 { 3602 /* Delete old entries from replay filter list head */ 3603 ice_rm_all_sw_replay_rule_info(hw); 3604 } 3605 3606 /** 3607 * ice_stat_update40 - read 40 bit stat from the chip and update stat values 3608 * @hw: ptr to the hardware info 3609 * @reg: offset of 64 bit HW register to read from 3610 * @prev_stat_loaded: bool to specify if previous stats are loaded 3611 * @prev_stat: ptr to previous loaded stat value 3612 * @cur_stat: ptr to current stat value 3613 */ 3614 void 3615 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 3616 u64 *prev_stat, u64 *cur_stat) 3617 { 3618 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); 3619 3620 /* device stats are not reset at PFR, they likely will not be zeroed 3621 * when the driver starts. Thus, save the value from the first read 3622 * without adding to the statistic value so that we report stats which 3623 * count up from zero. 3624 */ 3625 if (!prev_stat_loaded) { 3626 *prev_stat = new_data; 3627 return; 3628 } 3629 3630 /* Calculate the difference between the new and old values, and then 3631 * add it to the software stat value. 3632 */ 3633 if (new_data >= *prev_stat) 3634 *cur_stat += new_data - *prev_stat; 3635 else 3636 /* to manage the potential roll-over */ 3637 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; 3638 3639 /* Update the previously stored value to prepare for next read */ 3640 *prev_stat = new_data; 3641 } 3642 3643 /** 3644 * ice_stat_update32 - read 32 bit stat from the chip and update stat values 3645 * @hw: ptr to the hardware info 3646 * @reg: offset of HW register to read from 3647 * @prev_stat_loaded: bool to specify if previous stats are loaded 3648 * @prev_stat: ptr to previous loaded stat value 3649 * @cur_stat: ptr to current stat value 3650 */ 3651 void 3652 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 3653 u64 *prev_stat, u64 *cur_stat) 3654 { 3655 u32 new_data; 3656 3657 new_data = rd32(hw, reg); 3658 3659 /* device stats are not reset at PFR, they likely will not be zeroed 3660 * when the driver starts. Thus, save the value from the first read 3661 * without adding to the statistic value so that we report stats which 3662 * count up from zero. 3663 */ 3664 if (!prev_stat_loaded) { 3665 *prev_stat = new_data; 3666 return; 3667 } 3668 3669 /* Calculate the difference between the new and old values, and then 3670 * add it to the software stat value. 3671 */ 3672 if (new_data >= *prev_stat) 3673 *cur_stat += new_data - *prev_stat; 3674 else 3675 /* to manage the potential roll-over */ 3676 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; 3677 3678 /* Update the previously stored value to prepare for next read */ 3679 *prev_stat = new_data; 3680 } 3681 3682 /** 3683 * ice_sched_query_elem - query element information from HW 3684 * @hw: pointer to the HW struct 3685 * @node_teid: node TEID to be queried 3686 * @buf: buffer to element information 3687 * 3688 * This function queries HW element information 3689 */ 3690 enum ice_status 3691 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 3692 struct ice_aqc_txsched_elem_data *buf) 3693 { 3694 u16 buf_size, num_elem_ret = 0; 3695 enum ice_status status; 3696 3697 buf_size = sizeof(*buf); 3698 memset(buf, 0, buf_size); 3699 buf->node_teid = cpu_to_le32(node_teid); 3700 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 3701 NULL); 3702 if (status || num_elem_ret != 1) 3703 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 3704 return status; 3705 } 3706