1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
22 
23 	switch (hw->device_id) {
24 	case ICE_DEV_ID_E810C_BACKPLANE:
25 	case ICE_DEV_ID_E810C_QSFP:
26 	case ICE_DEV_ID_E810C_SFP:
27 	case ICE_DEV_ID_E810_XXV_SFP:
28 		hw->mac_type = ICE_MAC_E810;
29 		break;
30 	case ICE_DEV_ID_E823C_10G_BASE_T:
31 	case ICE_DEV_ID_E823C_BACKPLANE:
32 	case ICE_DEV_ID_E823C_QSFP:
33 	case ICE_DEV_ID_E823C_SFP:
34 	case ICE_DEV_ID_E823C_SGMII:
35 	case ICE_DEV_ID_E822C_10G_BASE_T:
36 	case ICE_DEV_ID_E822C_BACKPLANE:
37 	case ICE_DEV_ID_E822C_QSFP:
38 	case ICE_DEV_ID_E822C_SFP:
39 	case ICE_DEV_ID_E822C_SGMII:
40 	case ICE_DEV_ID_E822L_10G_BASE_T:
41 	case ICE_DEV_ID_E822L_BACKPLANE:
42 	case ICE_DEV_ID_E822L_SFP:
43 	case ICE_DEV_ID_E822L_SGMII:
44 	case ICE_DEV_ID_E823L_10G_BASE_T:
45 	case ICE_DEV_ID_E823L_1GBE:
46 	case ICE_DEV_ID_E823L_BACKPLANE:
47 	case ICE_DEV_ID_E823L_QSFP:
48 	case ICE_DEV_ID_E823L_SFP:
49 		hw->mac_type = ICE_MAC_GENERIC;
50 		break;
51 	default:
52 		hw->mac_type = ICE_MAC_UNKNOWN;
53 		break;
54 	}
55 
56 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
57 	return 0;
58 }
59 
60 /**
61  * ice_clear_pf_cfg - Clear PF configuration
62  * @hw: pointer to the hardware structure
63  *
64  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
65  * configuration, flow director filters, etc.).
66  */
67 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
68 {
69 	struct ice_aq_desc desc;
70 
71 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
72 
73 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
74 }
75 
76 /**
77  * ice_aq_manage_mac_read - manage MAC address read command
78  * @hw: pointer to the HW struct
79  * @buf: a virtual buffer to hold the manage MAC read response
80  * @buf_size: Size of the virtual buffer
81  * @cd: pointer to command details structure or NULL
82  *
83  * This function is used to return per PF station MAC address (0x0107).
84  * NOTE: Upon successful completion of this command, MAC address information
85  * is returned in user specified buffer. Please interpret user specified
86  * buffer as "manage_mac_read" response.
87  * Response such as various MAC addresses are stored in HW struct (port.mac)
88  * ice_discover_dev_caps is expected to be called before this function is
89  * called.
90  */
91 static enum ice_status
92 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
93 		       struct ice_sq_cd *cd)
94 {
95 	struct ice_aqc_manage_mac_read_resp *resp;
96 	struct ice_aqc_manage_mac_read *cmd;
97 	struct ice_aq_desc desc;
98 	enum ice_status status;
99 	u16 flags;
100 	u8 i;
101 
102 	cmd = &desc.params.mac_read;
103 
104 	if (buf_size < sizeof(*resp))
105 		return ICE_ERR_BUF_TOO_SHORT;
106 
107 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
108 
109 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
110 	if (status)
111 		return status;
112 
113 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
114 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
115 
116 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
117 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
118 		return ICE_ERR_CFG;
119 	}
120 
121 	/* A single port can report up to two (LAN and WoL) addresses */
122 	for (i = 0; i < cmd->num_addr; i++)
123 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
124 			ether_addr_copy(hw->port_info->mac.lan_addr,
125 					resp[i].mac_addr);
126 			ether_addr_copy(hw->port_info->mac.perm_addr,
127 					resp[i].mac_addr);
128 			break;
129 		}
130 
131 	return 0;
132 }
133 
134 /**
135  * ice_aq_get_phy_caps - returns PHY capabilities
136  * @pi: port information structure
137  * @qual_mods: report qualified modules
138  * @report_mode: report mode capabilities
139  * @pcaps: structure for PHY capabilities to be filled
140  * @cd: pointer to command details structure or NULL
141  *
142  * Returns the various PHY capabilities supported on the Port (0x0600)
143  */
144 enum ice_status
145 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
146 		    struct ice_aqc_get_phy_caps_data *pcaps,
147 		    struct ice_sq_cd *cd)
148 {
149 	struct ice_aqc_get_phy_caps *cmd;
150 	u16 pcaps_size = sizeof(*pcaps);
151 	struct ice_aq_desc desc;
152 	enum ice_status status;
153 	struct ice_hw *hw;
154 
155 	cmd = &desc.params.get_phy;
156 
157 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 		return ICE_ERR_PARAM;
159 	hw = pi->hw;
160 
161 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
162 
163 	if (qual_mods)
164 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
165 
166 	cmd->param0 |= cpu_to_le16(report_mode);
167 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
168 
169 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
170 		  report_mode);
171 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
172 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
173 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
174 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
175 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
176 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
177 		  pcaps->low_power_ctrl_an);
178 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
179 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
180 		  pcaps->eeer_value);
181 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
182 		  pcaps->link_fec_options);
183 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
184 		  pcaps->module_compliance_enforcement);
185 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
186 		  pcaps->extended_compliance_code);
187 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
188 		  pcaps->module_type[0]);
189 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
190 		  pcaps->module_type[1]);
191 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
192 		  pcaps->module_type[2]);
193 
194 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
195 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
196 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
197 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
198 		       sizeof(pi->phy.link_info.module_type));
199 	}
200 
201 	return status;
202 }
203 
204 /**
205  * ice_aq_get_link_topo_handle - get link topology node return status
206  * @pi: port information structure
207  * @node_type: requested node type
208  * @cd: pointer to command details structure or NULL
209  *
210  * Get link topology node return status for specified node type (0x06E0)
211  *
212  * Node type cage can be used to determine if cage is present. If AQC
213  * returns error (ENOENT), then no cage present. If no cage present, then
214  * connection type is backplane or BASE-T.
215  */
216 static enum ice_status
217 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
218 			    struct ice_sq_cd *cd)
219 {
220 	struct ice_aqc_get_link_topo *cmd;
221 	struct ice_aq_desc desc;
222 
223 	cmd = &desc.params.get_link_topo;
224 
225 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
226 
227 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
228 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
229 
230 	/* set node type */
231 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
232 
233 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
234 }
235 
236 /**
237  * ice_is_media_cage_present
238  * @pi: port information structure
239  *
240  * Returns true if media cage is present, else false. If no cage, then
241  * media type is backplane or BASE-T.
242  */
243 static bool ice_is_media_cage_present(struct ice_port_info *pi)
244 {
245 	/* Node type cage can be used to determine if cage is present. If AQC
246 	 * returns error (ENOENT), then no cage present. If no cage present then
247 	 * connection type is backplane or BASE-T.
248 	 */
249 	return !ice_aq_get_link_topo_handle(pi,
250 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
251 					    NULL);
252 }
253 
254 /**
255  * ice_get_media_type - Gets media type
256  * @pi: port information structure
257  */
258 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
259 {
260 	struct ice_link_status *hw_link_info;
261 
262 	if (!pi)
263 		return ICE_MEDIA_UNKNOWN;
264 
265 	hw_link_info = &pi->phy.link_info;
266 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
267 		/* If more than one media type is selected, report unknown */
268 		return ICE_MEDIA_UNKNOWN;
269 
270 	if (hw_link_info->phy_type_low) {
271 		/* 1G SGMII is a special case where some DA cable PHYs
272 		 * may show this as an option when it really shouldn't
273 		 * be since SGMII is meant to be between a MAC and a PHY
274 		 * in a backplane. Try to detect this case and handle it
275 		 */
276 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
277 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
278 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
279 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
280 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
281 			return ICE_MEDIA_DA;
282 
283 		switch (hw_link_info->phy_type_low) {
284 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
285 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
286 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
287 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
288 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
289 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
290 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
291 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
292 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
293 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
294 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
295 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
296 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
297 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
298 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
299 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
300 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
301 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
302 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
303 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
304 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
305 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
306 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
307 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
308 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
309 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
310 			return ICE_MEDIA_FIBER;
311 		case ICE_PHY_TYPE_LOW_100BASE_TX:
312 		case ICE_PHY_TYPE_LOW_1000BASE_T:
313 		case ICE_PHY_TYPE_LOW_2500BASE_T:
314 		case ICE_PHY_TYPE_LOW_5GBASE_T:
315 		case ICE_PHY_TYPE_LOW_10GBASE_T:
316 		case ICE_PHY_TYPE_LOW_25GBASE_T:
317 			return ICE_MEDIA_BASET;
318 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
319 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
320 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
321 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
322 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
323 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
324 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
325 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
326 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
327 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
328 			return ICE_MEDIA_DA;
329 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
330 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
331 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
332 		case ICE_PHY_TYPE_LOW_50G_AUI2:
333 		case ICE_PHY_TYPE_LOW_50G_AUI1:
334 		case ICE_PHY_TYPE_LOW_100G_AUI4:
335 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
336 			if (ice_is_media_cage_present(pi))
337 				return ICE_MEDIA_DA;
338 			fallthrough;
339 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
340 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
341 		case ICE_PHY_TYPE_LOW_2500BASE_X:
342 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
343 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
344 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
345 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
346 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
347 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
348 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
349 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
350 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
351 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
352 			return ICE_MEDIA_BACKPLANE;
353 		}
354 	} else {
355 		switch (hw_link_info->phy_type_high) {
356 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
357 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
358 			if (ice_is_media_cage_present(pi))
359 				return ICE_MEDIA_DA;
360 			fallthrough;
361 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
362 			return ICE_MEDIA_BACKPLANE;
363 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
364 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
365 			return ICE_MEDIA_FIBER;
366 		}
367 	}
368 	return ICE_MEDIA_UNKNOWN;
369 }
370 
371 /**
372  * ice_aq_get_link_info
373  * @pi: port information structure
374  * @ena_lse: enable/disable LinkStatusEvent reporting
375  * @link: pointer to link status structure - optional
376  * @cd: pointer to command details structure or NULL
377  *
378  * Get Link Status (0x607). Returns the link status of the adapter.
379  */
380 enum ice_status
381 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
382 		     struct ice_link_status *link, struct ice_sq_cd *cd)
383 {
384 	struct ice_aqc_get_link_status_data link_data = { 0 };
385 	struct ice_aqc_get_link_status *resp;
386 	struct ice_link_status *li_old, *li;
387 	enum ice_media_type *hw_media_type;
388 	struct ice_fc_info *hw_fc_info;
389 	bool tx_pause, rx_pause;
390 	struct ice_aq_desc desc;
391 	enum ice_status status;
392 	struct ice_hw *hw;
393 	u16 cmd_flags;
394 
395 	if (!pi)
396 		return ICE_ERR_PARAM;
397 	hw = pi->hw;
398 	li_old = &pi->phy.link_info_old;
399 	hw_media_type = &pi->phy.media_type;
400 	li = &pi->phy.link_info;
401 	hw_fc_info = &pi->fc;
402 
403 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
404 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
405 	resp = &desc.params.get_link_status;
406 	resp->cmd_flags = cpu_to_le16(cmd_flags);
407 	resp->lport_num = pi->lport;
408 
409 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
410 
411 	if (status)
412 		return status;
413 
414 	/* save off old link status information */
415 	*li_old = *li;
416 
417 	/* update current link status information */
418 	li->link_speed = le16_to_cpu(link_data.link_speed);
419 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
420 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
421 	*hw_media_type = ice_get_media_type(pi);
422 	li->link_info = link_data.link_info;
423 	li->an_info = link_data.an_info;
424 	li->ext_info = link_data.ext_info;
425 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
426 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
427 	li->topo_media_conflict = link_data.topo_media_conflict;
428 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
429 				      ICE_AQ_CFG_PACING_TYPE_M);
430 
431 	/* update fc info */
432 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
433 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
434 	if (tx_pause && rx_pause)
435 		hw_fc_info->current_mode = ICE_FC_FULL;
436 	else if (tx_pause)
437 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
438 	else if (rx_pause)
439 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
440 	else
441 		hw_fc_info->current_mode = ICE_FC_NONE;
442 
443 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
444 
445 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
446 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
447 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
448 		  (unsigned long long)li->phy_type_low);
449 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
450 		  (unsigned long long)li->phy_type_high);
451 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
452 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
453 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
454 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
455 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
456 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
457 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
458 		  li->max_frame_size);
459 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
460 
461 	/* save link status information */
462 	if (link)
463 		*link = *li;
464 
465 	/* flag cleared so calling functions don't call AQ again */
466 	pi->phy.get_link_info = false;
467 
468 	return 0;
469 }
470 
471 /**
472  * ice_fill_tx_timer_and_fc_thresh
473  * @hw: pointer to the HW struct
474  * @cmd: pointer to MAC cfg structure
475  *
476  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
477  * descriptor
478  */
479 static void
480 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
481 				struct ice_aqc_set_mac_cfg *cmd)
482 {
483 	u16 fc_thres_val, tx_timer_val;
484 	u32 val;
485 
486 	/* We read back the transmit timer and FC threshold value of
487 	 * LFC. Thus, we will use index =
488 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
489 	 *
490 	 * Also, because we are operating on transmit timer and FC
491 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
492 	 */
493 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
494 
495 	/* Retrieve the transmit timer */
496 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
497 	tx_timer_val = val &
498 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
499 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
500 
501 	/* Retrieve the FC threshold */
502 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
503 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
504 
505 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
506 }
507 
508 /**
509  * ice_aq_set_mac_cfg
510  * @hw: pointer to the HW struct
511  * @max_frame_size: Maximum Frame Size to be supported
512  * @cd: pointer to command details structure or NULL
513  *
514  * Set MAC configuration (0x0603)
515  */
516 enum ice_status
517 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
518 {
519 	struct ice_aqc_set_mac_cfg *cmd;
520 	struct ice_aq_desc desc;
521 
522 	cmd = &desc.params.set_mac_cfg;
523 
524 	if (max_frame_size == 0)
525 		return ICE_ERR_PARAM;
526 
527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
528 
529 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
530 
531 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
532 
533 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
534 }
535 
536 /**
537  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
538  * @hw: pointer to the HW struct
539  */
540 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
541 {
542 	struct ice_switch_info *sw;
543 	enum ice_status status;
544 
545 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
546 				       sizeof(*hw->switch_info), GFP_KERNEL);
547 	sw = hw->switch_info;
548 
549 	if (!sw)
550 		return ICE_ERR_NO_MEMORY;
551 
552 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
553 
554 	status = ice_init_def_sw_recp(hw);
555 	if (status) {
556 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
557 		return status;
558 	}
559 	return 0;
560 }
561 
562 /**
563  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
564  * @hw: pointer to the HW struct
565  */
566 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
567 {
568 	struct ice_switch_info *sw = hw->switch_info;
569 	struct ice_vsi_list_map_info *v_pos_map;
570 	struct ice_vsi_list_map_info *v_tmp_map;
571 	struct ice_sw_recipe *recps;
572 	u8 i;
573 
574 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
575 				 list_entry) {
576 		list_del(&v_pos_map->list_entry);
577 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
578 	}
579 	recps = hw->switch_info->recp_list;
580 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
581 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
582 
583 		recps[i].root_rid = i;
584 		mutex_destroy(&recps[i].filt_rule_lock);
585 		list_for_each_entry_safe(lst_itr, tmp_entry,
586 					 &recps[i].filt_rules, list_entry) {
587 			list_del(&lst_itr->list_entry);
588 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
589 		}
590 	}
591 	ice_rm_all_sw_replay_rule_info(hw);
592 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
593 	devm_kfree(ice_hw_to_dev(hw), sw);
594 }
595 
596 /**
597  * ice_get_fw_log_cfg - get FW logging configuration
598  * @hw: pointer to the HW struct
599  */
600 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
601 {
602 	struct ice_aq_desc desc;
603 	enum ice_status status;
604 	__le16 *config;
605 	u16 size;
606 
607 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
608 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
609 	if (!config)
610 		return ICE_ERR_NO_MEMORY;
611 
612 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
613 
614 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
615 
616 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
617 	if (!status) {
618 		u16 i;
619 
620 		/* Save FW logging information into the HW structure */
621 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
622 			u16 v, m, flgs;
623 
624 			v = le16_to_cpu(config[i]);
625 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
626 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
627 
628 			if (m < ICE_AQC_FW_LOG_ID_MAX)
629 				hw->fw_log.evnts[m].cur = flgs;
630 		}
631 	}
632 
633 	devm_kfree(ice_hw_to_dev(hw), config);
634 
635 	return status;
636 }
637 
638 /**
639  * ice_cfg_fw_log - configure FW logging
640  * @hw: pointer to the HW struct
641  * @enable: enable certain FW logging events if true, disable all if false
642  *
643  * This function enables/disables the FW logging via Rx CQ events and a UART
644  * port based on predetermined configurations. FW logging via the Rx CQ can be
645  * enabled/disabled for individual PF's. However, FW logging via the UART can
646  * only be enabled/disabled for all PFs on the same device.
647  *
648  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
649  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
650  * before initializing the device.
651  *
652  * When re/configuring FW logging, callers need to update the "cfg" elements of
653  * the hw->fw_log.evnts array with the desired logging event configurations for
654  * modules of interest. When disabling FW logging completely, the callers can
655  * just pass false in the "enable" parameter. On completion, the function will
656  * update the "cur" element of the hw->fw_log.evnts array with the resulting
657  * logging event configurations of the modules that are being re/configured. FW
658  * logging modules that are not part of a reconfiguration operation retain their
659  * previous states.
660  *
661  * Before resetting the device, it is recommended that the driver disables FW
662  * logging before shutting down the control queue. When disabling FW logging
663  * ("enable" = false), the latest configurations of FW logging events stored in
664  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
665  * a device reset.
666  *
667  * When enabling FW logging to emit log messages via the Rx CQ during the
668  * device's initialization phase, a mechanism alternative to interrupt handlers
669  * needs to be used to extract FW log messages from the Rx CQ periodically and
670  * to prevent the Rx CQ from being full and stalling other types of control
671  * messages from FW to SW. Interrupts are typically disabled during the device's
672  * initialization phase.
673  */
674 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
675 {
676 	struct ice_aqc_fw_logging *cmd;
677 	enum ice_status status = 0;
678 	u16 i, chgs = 0, len = 0;
679 	struct ice_aq_desc desc;
680 	__le16 *data = NULL;
681 	u8 actv_evnts = 0;
682 	void *buf = NULL;
683 
684 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
685 		return 0;
686 
687 	/* Disable FW logging only when the control queue is still responsive */
688 	if (!enable &&
689 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
690 		return 0;
691 
692 	/* Get current FW log settings */
693 	status = ice_get_fw_log_cfg(hw);
694 	if (status)
695 		return status;
696 
697 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
698 	cmd = &desc.params.fw_logging;
699 
700 	/* Indicate which controls are valid */
701 	if (hw->fw_log.cq_en)
702 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
703 
704 	if (hw->fw_log.uart_en)
705 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
706 
707 	if (enable) {
708 		/* Fill in an array of entries with FW logging modules and
709 		 * logging events being reconfigured.
710 		 */
711 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
712 			u16 val;
713 
714 			/* Keep track of enabled event types */
715 			actv_evnts |= hw->fw_log.evnts[i].cfg;
716 
717 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
718 				continue;
719 
720 			if (!data) {
721 				data = devm_kcalloc(ice_hw_to_dev(hw),
722 						    sizeof(*data),
723 						    ICE_AQC_FW_LOG_ID_MAX,
724 						    GFP_KERNEL);
725 				if (!data)
726 					return ICE_ERR_NO_MEMORY;
727 			}
728 
729 			val = i << ICE_AQC_FW_LOG_ID_S;
730 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
731 			data[chgs++] = cpu_to_le16(val);
732 		}
733 
734 		/* Only enable FW logging if at least one module is specified.
735 		 * If FW logging is currently enabled but all modules are not
736 		 * enabled to emit log messages, disable FW logging altogether.
737 		 */
738 		if (actv_evnts) {
739 			/* Leave if there is effectively no change */
740 			if (!chgs)
741 				goto out;
742 
743 			if (hw->fw_log.cq_en)
744 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
745 
746 			if (hw->fw_log.uart_en)
747 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
748 
749 			buf = data;
750 			len = sizeof(*data) * chgs;
751 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
752 		}
753 	}
754 
755 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
756 	if (!status) {
757 		/* Update the current configuration to reflect events enabled.
758 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
759 		 * logging mode is enabled for the device. They do not reflect
760 		 * actual modules being enabled to emit log messages. So, their
761 		 * values remain unchanged even when all modules are disabled.
762 		 */
763 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
764 
765 		hw->fw_log.actv_evnts = actv_evnts;
766 		for (i = 0; i < cnt; i++) {
767 			u16 v, m;
768 
769 			if (!enable) {
770 				/* When disabling all FW logging events as part
771 				 * of device's de-initialization, the original
772 				 * configurations are retained, and can be used
773 				 * to reconfigure FW logging later if the device
774 				 * is re-initialized.
775 				 */
776 				hw->fw_log.evnts[i].cur = 0;
777 				continue;
778 			}
779 
780 			v = le16_to_cpu(data[i]);
781 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
782 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
783 		}
784 	}
785 
786 out:
787 	if (data)
788 		devm_kfree(ice_hw_to_dev(hw), data);
789 
790 	return status;
791 }
792 
793 /**
794  * ice_output_fw_log
795  * @hw: pointer to the HW struct
796  * @desc: pointer to the AQ message descriptor
797  * @buf: pointer to the buffer accompanying the AQ message
798  *
799  * Formats a FW Log message and outputs it via the standard driver logs.
800  */
801 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
802 {
803 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
804 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
805 			le16_to_cpu(desc->datalen));
806 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
807 }
808 
809 /**
810  * ice_get_itr_intrl_gran
811  * @hw: pointer to the HW struct
812  *
813  * Determines the ITR/INTRL granularities based on the maximum aggregate
814  * bandwidth according to the device's configuration during power-on.
815  */
816 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
817 {
818 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
819 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
820 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
821 
822 	switch (max_agg_bw) {
823 	case ICE_MAX_AGG_BW_200G:
824 	case ICE_MAX_AGG_BW_100G:
825 	case ICE_MAX_AGG_BW_50G:
826 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
827 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
828 		break;
829 	case ICE_MAX_AGG_BW_25G:
830 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
831 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
832 		break;
833 	}
834 }
835 
836 /**
837  * ice_init_hw - main hardware initialization routine
838  * @hw: pointer to the hardware structure
839  */
840 enum ice_status ice_init_hw(struct ice_hw *hw)
841 {
842 	struct ice_aqc_get_phy_caps_data *pcaps;
843 	enum ice_status status;
844 	u16 mac_buf_len;
845 	void *mac_buf;
846 
847 	/* Set MAC type based on DeviceID */
848 	status = ice_set_mac_type(hw);
849 	if (status)
850 		return status;
851 
852 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
853 			 PF_FUNC_RID_FUNC_NUM_M) >>
854 		PF_FUNC_RID_FUNC_NUM_S;
855 
856 	status = ice_reset(hw, ICE_RESET_PFR);
857 	if (status)
858 		return status;
859 
860 	ice_get_itr_intrl_gran(hw);
861 
862 	status = ice_create_all_ctrlq(hw);
863 	if (status)
864 		goto err_unroll_cqinit;
865 
866 	/* Enable FW logging. Not fatal if this fails. */
867 	status = ice_cfg_fw_log(hw, true);
868 	if (status)
869 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
870 
871 	status = ice_clear_pf_cfg(hw);
872 	if (status)
873 		goto err_unroll_cqinit;
874 
875 	/* Set bit to enable Flow Director filters */
876 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
877 	INIT_LIST_HEAD(&hw->fdir_list_head);
878 
879 	ice_clear_pxe_mode(hw);
880 
881 	status = ice_init_nvm(hw);
882 	if (status)
883 		goto err_unroll_cqinit;
884 
885 	status = ice_get_caps(hw);
886 	if (status)
887 		goto err_unroll_cqinit;
888 
889 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
890 				     sizeof(*hw->port_info), GFP_KERNEL);
891 	if (!hw->port_info) {
892 		status = ICE_ERR_NO_MEMORY;
893 		goto err_unroll_cqinit;
894 	}
895 
896 	/* set the back pointer to HW */
897 	hw->port_info->hw = hw;
898 
899 	/* Initialize port_info struct with switch configuration data */
900 	status = ice_get_initial_sw_cfg(hw);
901 	if (status)
902 		goto err_unroll_alloc;
903 
904 	hw->evb_veb = true;
905 
906 	/* Query the allocated resources for Tx scheduler */
907 	status = ice_sched_query_res_alloc(hw);
908 	if (status) {
909 		ice_debug(hw, ICE_DBG_SCHED,
910 			  "Failed to get scheduler allocated resources\n");
911 		goto err_unroll_alloc;
912 	}
913 
914 	/* Initialize port_info struct with scheduler data */
915 	status = ice_sched_init_port(hw->port_info);
916 	if (status)
917 		goto err_unroll_sched;
918 
919 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
920 	if (!pcaps) {
921 		status = ICE_ERR_NO_MEMORY;
922 		goto err_unroll_sched;
923 	}
924 
925 	/* Initialize port_info struct with PHY capabilities */
926 	status = ice_aq_get_phy_caps(hw->port_info, false,
927 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
928 	devm_kfree(ice_hw_to_dev(hw), pcaps);
929 	if (status)
930 		goto err_unroll_sched;
931 
932 	/* Initialize port_info struct with link information */
933 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
934 	if (status)
935 		goto err_unroll_sched;
936 
937 	/* need a valid SW entry point to build a Tx tree */
938 	if (!hw->sw_entry_point_layer) {
939 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
940 		status = ICE_ERR_CFG;
941 		goto err_unroll_sched;
942 	}
943 	INIT_LIST_HEAD(&hw->agg_list);
944 	/* Initialize max burst size */
945 	if (!hw->max_burst_size)
946 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
947 
948 	status = ice_init_fltr_mgmt_struct(hw);
949 	if (status)
950 		goto err_unroll_sched;
951 
952 	/* Get MAC information */
953 	/* A single port can report up to two (LAN and WoL) addresses */
954 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
955 			       sizeof(struct ice_aqc_manage_mac_read_resp),
956 			       GFP_KERNEL);
957 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
958 
959 	if (!mac_buf) {
960 		status = ICE_ERR_NO_MEMORY;
961 		goto err_unroll_fltr_mgmt_struct;
962 	}
963 
964 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
965 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
966 
967 	if (status)
968 		goto err_unroll_fltr_mgmt_struct;
969 	/* enable jumbo frame support at MAC level */
970 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
971 	if (status)
972 		goto err_unroll_fltr_mgmt_struct;
973 	/* Obtain counter base index which would be used by flow director */
974 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
975 	if (status)
976 		goto err_unroll_fltr_mgmt_struct;
977 	status = ice_init_hw_tbls(hw);
978 	if (status)
979 		goto err_unroll_fltr_mgmt_struct;
980 	mutex_init(&hw->tnl_lock);
981 	return 0;
982 
983 err_unroll_fltr_mgmt_struct:
984 	ice_cleanup_fltr_mgmt_struct(hw);
985 err_unroll_sched:
986 	ice_sched_cleanup_all(hw);
987 err_unroll_alloc:
988 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
989 err_unroll_cqinit:
990 	ice_destroy_all_ctrlq(hw);
991 	return status;
992 }
993 
994 /**
995  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
996  * @hw: pointer to the hardware structure
997  *
998  * This should be called only during nominal operation, not as a result of
999  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1000  * applicable initializations if it fails for any reason.
1001  */
1002 void ice_deinit_hw(struct ice_hw *hw)
1003 {
1004 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1005 	ice_cleanup_fltr_mgmt_struct(hw);
1006 
1007 	ice_sched_cleanup_all(hw);
1008 	ice_sched_clear_agg(hw);
1009 	ice_free_seg(hw);
1010 	ice_free_hw_tbls(hw);
1011 	mutex_destroy(&hw->tnl_lock);
1012 
1013 	if (hw->port_info) {
1014 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1015 		hw->port_info = NULL;
1016 	}
1017 
1018 	/* Attempt to disable FW logging before shutting down control queues */
1019 	ice_cfg_fw_log(hw, false);
1020 	ice_destroy_all_ctrlq(hw);
1021 
1022 	/* Clear VSI contexts if not already cleared */
1023 	ice_clear_all_vsi_ctx(hw);
1024 }
1025 
1026 /**
1027  * ice_check_reset - Check to see if a global reset is complete
1028  * @hw: pointer to the hardware structure
1029  */
1030 enum ice_status ice_check_reset(struct ice_hw *hw)
1031 {
1032 	u32 cnt, reg = 0, grst_delay, uld_mask;
1033 
1034 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1035 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1036 	 * Add 1sec for outstanding AQ commands that can take a long time.
1037 	 */
1038 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1039 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
1040 
1041 	for (cnt = 0; cnt < grst_delay; cnt++) {
1042 		mdelay(100);
1043 		reg = rd32(hw, GLGEN_RSTAT);
1044 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1045 			break;
1046 	}
1047 
1048 	if (cnt == grst_delay) {
1049 		ice_debug(hw, ICE_DBG_INIT,
1050 			  "Global reset polling failed to complete.\n");
1051 		return ICE_ERR_RESET_FAILED;
1052 	}
1053 
1054 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1055 				 GLNVM_ULD_PCIER_DONE_1_M |\
1056 				 GLNVM_ULD_CORER_DONE_M |\
1057 				 GLNVM_ULD_GLOBR_DONE_M |\
1058 				 GLNVM_ULD_POR_DONE_M |\
1059 				 GLNVM_ULD_POR_DONE_1_M |\
1060 				 GLNVM_ULD_PCIER_DONE_2_M)
1061 
1062 	uld_mask = ICE_RESET_DONE_MASK;
1063 
1064 	/* Device is Active; check Global Reset processes are done */
1065 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1066 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1067 		if (reg == uld_mask) {
1068 			ice_debug(hw, ICE_DBG_INIT,
1069 				  "Global reset processes done. %d\n", cnt);
1070 			break;
1071 		}
1072 		mdelay(10);
1073 	}
1074 
1075 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1076 		ice_debug(hw, ICE_DBG_INIT,
1077 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1078 			  reg);
1079 		return ICE_ERR_RESET_FAILED;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * ice_pf_reset - Reset the PF
1087  * @hw: pointer to the hardware structure
1088  *
1089  * If a global reset has been triggered, this function checks
1090  * for its completion and then issues the PF reset
1091  */
1092 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1093 {
1094 	u32 cnt, reg;
1095 
1096 	/* If at function entry a global reset was already in progress, i.e.
1097 	 * state is not 'device active' or any of the reset done bits are not
1098 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1099 	 * global reset is done.
1100 	 */
1101 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1102 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1103 		/* poll on global reset currently in progress until done */
1104 		if (ice_check_reset(hw))
1105 			return ICE_ERR_RESET_FAILED;
1106 
1107 		return 0;
1108 	}
1109 
1110 	/* Reset the PF */
1111 	reg = rd32(hw, PFGEN_CTRL);
1112 
1113 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1114 
1115 	/* Wait for the PFR to complete. The wait time is the global config lock
1116 	 * timeout plus the PFR timeout which will account for a possible reset
1117 	 * that is occurring during a download package operation.
1118 	 */
1119 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1120 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1121 		reg = rd32(hw, PFGEN_CTRL);
1122 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1123 			break;
1124 
1125 		mdelay(1);
1126 	}
1127 
1128 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1129 		ice_debug(hw, ICE_DBG_INIT,
1130 			  "PF reset polling failed to complete.\n");
1131 		return ICE_ERR_RESET_FAILED;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * ice_reset - Perform different types of reset
1139  * @hw: pointer to the hardware structure
1140  * @req: reset request
1141  *
1142  * This function triggers a reset as specified by the req parameter.
1143  *
1144  * Note:
1145  * If anything other than a PF reset is triggered, PXE mode is restored.
1146  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1147  * interface has been restored in the rebuild flow.
1148  */
1149 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1150 {
1151 	u32 val = 0;
1152 
1153 	switch (req) {
1154 	case ICE_RESET_PFR:
1155 		return ice_pf_reset(hw);
1156 	case ICE_RESET_CORER:
1157 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1158 		val = GLGEN_RTRIG_CORER_M;
1159 		break;
1160 	case ICE_RESET_GLOBR:
1161 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1162 		val = GLGEN_RTRIG_GLOBR_M;
1163 		break;
1164 	default:
1165 		return ICE_ERR_PARAM;
1166 	}
1167 
1168 	val |= rd32(hw, GLGEN_RTRIG);
1169 	wr32(hw, GLGEN_RTRIG, val);
1170 	ice_flush(hw);
1171 
1172 	/* wait for the FW to be ready */
1173 	return ice_check_reset(hw);
1174 }
1175 
1176 /**
1177  * ice_copy_rxq_ctx_to_hw
1178  * @hw: pointer to the hardware structure
1179  * @ice_rxq_ctx: pointer to the rxq context
1180  * @rxq_index: the index of the Rx queue
1181  *
1182  * Copies rxq context from dense structure to HW register space
1183  */
1184 static enum ice_status
1185 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1186 {
1187 	u8 i;
1188 
1189 	if (!ice_rxq_ctx)
1190 		return ICE_ERR_BAD_PTR;
1191 
1192 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1193 		return ICE_ERR_PARAM;
1194 
1195 	/* Copy each dword separately to HW */
1196 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1197 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1198 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1199 
1200 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1201 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /* LAN Rx Queue Context */
1208 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1209 	/* Field		Width	LSB */
1210 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1211 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1212 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1213 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1214 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1215 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1216 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1217 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1218 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1219 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1220 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1221 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1222 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1223 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1224 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1225 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1226 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1227 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1228 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1229 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1230 	{ 0 }
1231 };
1232 
1233 /**
1234  * ice_write_rxq_ctx
1235  * @hw: pointer to the hardware structure
1236  * @rlan_ctx: pointer to the rxq context
1237  * @rxq_index: the index of the Rx queue
1238  *
1239  * Converts rxq context from sparse to dense structure and then writes
1240  * it to HW register space and enables the hardware to prefetch descriptors
1241  * instead of only fetching them on demand
1242  */
1243 enum ice_status
1244 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1245 		  u32 rxq_index)
1246 {
1247 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1248 
1249 	if (!rlan_ctx)
1250 		return ICE_ERR_BAD_PTR;
1251 
1252 	rlan_ctx->prefena = 1;
1253 
1254 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1255 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1256 }
1257 
1258 /* LAN Tx Queue Context */
1259 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1260 				    /* Field			Width	LSB */
1261 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1262 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1263 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1264 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1265 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1266 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1267 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1268 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1269 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1270 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1271 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1272 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1273 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1274 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1275 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1276 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1277 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1278 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1279 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1280 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1281 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1282 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1283 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1284 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1285 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1286 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1287 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1288 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1289 	{ 0 }
1290 };
1291 
1292 /* FW Admin Queue command wrappers */
1293 
1294 /* Software lock/mutex that is meant to be held while the Global Config Lock
1295  * in firmware is acquired by the software to prevent most (but not all) types
1296  * of AQ commands from being sent to FW
1297  */
1298 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1299 
1300 /**
1301  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1302  * @hw: pointer to the HW struct
1303  * @desc: descriptor describing the command
1304  * @buf: buffer to use for indirect commands (NULL for direct commands)
1305  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1306  * @cd: pointer to command details structure
1307  *
1308  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1309  */
1310 enum ice_status
1311 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1312 		u16 buf_size, struct ice_sq_cd *cd)
1313 {
1314 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1315 	bool lock_acquired = false;
1316 	enum ice_status status;
1317 
1318 	/* When a package download is in process (i.e. when the firmware's
1319 	 * Global Configuration Lock resource is held), only the Download
1320 	 * Package, Get Version, Get Package Info List and Release Resource
1321 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1322 	 * allowed; all others must block until the package download completes
1323 	 * and the Global Config Lock is released.  See also
1324 	 * ice_acquire_global_cfg_lock().
1325 	 */
1326 	switch (le16_to_cpu(desc->opcode)) {
1327 	case ice_aqc_opc_download_pkg:
1328 	case ice_aqc_opc_get_pkg_info_list:
1329 	case ice_aqc_opc_get_ver:
1330 		break;
1331 	case ice_aqc_opc_release_res:
1332 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1333 			break;
1334 		fallthrough;
1335 	default:
1336 		mutex_lock(&ice_global_cfg_lock_sw);
1337 		lock_acquired = true;
1338 		break;
1339 	}
1340 
1341 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1342 	if (lock_acquired)
1343 		mutex_unlock(&ice_global_cfg_lock_sw);
1344 
1345 	return status;
1346 }
1347 
1348 /**
1349  * ice_aq_get_fw_ver
1350  * @hw: pointer to the HW struct
1351  * @cd: pointer to command details structure or NULL
1352  *
1353  * Get the firmware version (0x0001) from the admin queue commands
1354  */
1355 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1356 {
1357 	struct ice_aqc_get_ver *resp;
1358 	struct ice_aq_desc desc;
1359 	enum ice_status status;
1360 
1361 	resp = &desc.params.get_ver;
1362 
1363 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1364 
1365 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1366 
1367 	if (!status) {
1368 		hw->fw_branch = resp->fw_branch;
1369 		hw->fw_maj_ver = resp->fw_major;
1370 		hw->fw_min_ver = resp->fw_minor;
1371 		hw->fw_patch = resp->fw_patch;
1372 		hw->fw_build = le32_to_cpu(resp->fw_build);
1373 		hw->api_branch = resp->api_branch;
1374 		hw->api_maj_ver = resp->api_major;
1375 		hw->api_min_ver = resp->api_minor;
1376 		hw->api_patch = resp->api_patch;
1377 	}
1378 
1379 	return status;
1380 }
1381 
1382 /**
1383  * ice_aq_send_driver_ver
1384  * @hw: pointer to the HW struct
1385  * @dv: driver's major, minor version
1386  * @cd: pointer to command details structure or NULL
1387  *
1388  * Send the driver version (0x0002) to the firmware
1389  */
1390 enum ice_status
1391 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1392 		       struct ice_sq_cd *cd)
1393 {
1394 	struct ice_aqc_driver_ver *cmd;
1395 	struct ice_aq_desc desc;
1396 	u16 len;
1397 
1398 	cmd = &desc.params.driver_ver;
1399 
1400 	if (!dv)
1401 		return ICE_ERR_PARAM;
1402 
1403 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1404 
1405 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1406 	cmd->major_ver = dv->major_ver;
1407 	cmd->minor_ver = dv->minor_ver;
1408 	cmd->build_ver = dv->build_ver;
1409 	cmd->subbuild_ver = dv->subbuild_ver;
1410 
1411 	len = 0;
1412 	while (len < sizeof(dv->driver_string) &&
1413 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1414 		len++;
1415 
1416 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1417 }
1418 
1419 /**
1420  * ice_aq_q_shutdown
1421  * @hw: pointer to the HW struct
1422  * @unloading: is the driver unloading itself
1423  *
1424  * Tell the Firmware that we're shutting down the AdminQ and whether
1425  * or not the driver is unloading as well (0x0003).
1426  */
1427 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1428 {
1429 	struct ice_aqc_q_shutdown *cmd;
1430 	struct ice_aq_desc desc;
1431 
1432 	cmd = &desc.params.q_shutdown;
1433 
1434 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1435 
1436 	if (unloading)
1437 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1438 
1439 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1440 }
1441 
1442 /**
1443  * ice_aq_req_res
1444  * @hw: pointer to the HW struct
1445  * @res: resource ID
1446  * @access: access type
1447  * @sdp_number: resource number
1448  * @timeout: the maximum time in ms that the driver may hold the resource
1449  * @cd: pointer to command details structure or NULL
1450  *
1451  * Requests common resource using the admin queue commands (0x0008).
1452  * When attempting to acquire the Global Config Lock, the driver can
1453  * learn of three states:
1454  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1455  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1456  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1457  *                          successfully downloaded the package; the driver does
1458  *                          not have to download the package and can continue
1459  *                          loading
1460  *
1461  * Note that if the caller is in an acquire lock, perform action, release lock
1462  * phase of operation, it is possible that the FW may detect a timeout and issue
1463  * a CORER. In this case, the driver will receive a CORER interrupt and will
1464  * have to determine its cause. The calling thread that is handling this flow
1465  * will likely get an error propagated back to it indicating the Download
1466  * Package, Update Package or the Release Resource AQ commands timed out.
1467  */
1468 static enum ice_status
1469 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1470 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1471 	       struct ice_sq_cd *cd)
1472 {
1473 	struct ice_aqc_req_res *cmd_resp;
1474 	struct ice_aq_desc desc;
1475 	enum ice_status status;
1476 
1477 	cmd_resp = &desc.params.res_owner;
1478 
1479 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1480 
1481 	cmd_resp->res_id = cpu_to_le16(res);
1482 	cmd_resp->access_type = cpu_to_le16(access);
1483 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1484 	cmd_resp->timeout = cpu_to_le32(*timeout);
1485 	*timeout = 0;
1486 
1487 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1488 
1489 	/* The completion specifies the maximum time in ms that the driver
1490 	 * may hold the resource in the Timeout field.
1491 	 */
1492 
1493 	/* Global config lock response utilizes an additional status field.
1494 	 *
1495 	 * If the Global config lock resource is held by some other driver, the
1496 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1497 	 * and the timeout field indicates the maximum time the current owner
1498 	 * of the resource has to free it.
1499 	 */
1500 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1501 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1502 			*timeout = le32_to_cpu(cmd_resp->timeout);
1503 			return 0;
1504 		} else if (le16_to_cpu(cmd_resp->status) ==
1505 			   ICE_AQ_RES_GLBL_IN_PROG) {
1506 			*timeout = le32_to_cpu(cmd_resp->timeout);
1507 			return ICE_ERR_AQ_ERROR;
1508 		} else if (le16_to_cpu(cmd_resp->status) ==
1509 			   ICE_AQ_RES_GLBL_DONE) {
1510 			return ICE_ERR_AQ_NO_WORK;
1511 		}
1512 
1513 		/* invalid FW response, force a timeout immediately */
1514 		*timeout = 0;
1515 		return ICE_ERR_AQ_ERROR;
1516 	}
1517 
1518 	/* If the resource is held by some other driver, the command completes
1519 	 * with a busy return value and the timeout field indicates the maximum
1520 	 * time the current owner of the resource has to free it.
1521 	 */
1522 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1523 		*timeout = le32_to_cpu(cmd_resp->timeout);
1524 
1525 	return status;
1526 }
1527 
1528 /**
1529  * ice_aq_release_res
1530  * @hw: pointer to the HW struct
1531  * @res: resource ID
1532  * @sdp_number: resource number
1533  * @cd: pointer to command details structure or NULL
1534  *
1535  * release common resource using the admin queue commands (0x0009)
1536  */
1537 static enum ice_status
1538 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1539 		   struct ice_sq_cd *cd)
1540 {
1541 	struct ice_aqc_req_res *cmd;
1542 	struct ice_aq_desc desc;
1543 
1544 	cmd = &desc.params.res_owner;
1545 
1546 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1547 
1548 	cmd->res_id = cpu_to_le16(res);
1549 	cmd->res_number = cpu_to_le32(sdp_number);
1550 
1551 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1552 }
1553 
1554 /**
1555  * ice_acquire_res
1556  * @hw: pointer to the HW structure
1557  * @res: resource ID
1558  * @access: access type (read or write)
1559  * @timeout: timeout in milliseconds
1560  *
1561  * This function will attempt to acquire the ownership of a resource.
1562  */
1563 enum ice_status
1564 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1565 		enum ice_aq_res_access_type access, u32 timeout)
1566 {
1567 #define ICE_RES_POLLING_DELAY_MS	10
1568 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1569 	u32 time_left = timeout;
1570 	enum ice_status status;
1571 
1572 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1573 
1574 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1575 	 * previously acquired the resource and performed any necessary updates;
1576 	 * in this case the caller does not obtain the resource and has no
1577 	 * further work to do.
1578 	 */
1579 	if (status == ICE_ERR_AQ_NO_WORK)
1580 		goto ice_acquire_res_exit;
1581 
1582 	if (status)
1583 		ice_debug(hw, ICE_DBG_RES,
1584 			  "resource %d acquire type %d failed.\n", res, access);
1585 
1586 	/* If necessary, poll until the current lock owner timeouts */
1587 	timeout = time_left;
1588 	while (status && timeout && time_left) {
1589 		mdelay(delay);
1590 		timeout = (timeout > delay) ? timeout - delay : 0;
1591 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1592 
1593 		if (status == ICE_ERR_AQ_NO_WORK)
1594 			/* lock free, but no work to do */
1595 			break;
1596 
1597 		if (!status)
1598 			/* lock acquired */
1599 			break;
1600 	}
1601 	if (status && status != ICE_ERR_AQ_NO_WORK)
1602 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1603 
1604 ice_acquire_res_exit:
1605 	if (status == ICE_ERR_AQ_NO_WORK) {
1606 		if (access == ICE_RES_WRITE)
1607 			ice_debug(hw, ICE_DBG_RES,
1608 				  "resource indicates no work to do.\n");
1609 		else
1610 			ice_debug(hw, ICE_DBG_RES,
1611 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1612 	}
1613 	return status;
1614 }
1615 
1616 /**
1617  * ice_release_res
1618  * @hw: pointer to the HW structure
1619  * @res: resource ID
1620  *
1621  * This function will release a resource using the proper Admin Command.
1622  */
1623 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1624 {
1625 	enum ice_status status;
1626 	u32 total_delay = 0;
1627 
1628 	status = ice_aq_release_res(hw, res, 0, NULL);
1629 
1630 	/* there are some rare cases when trying to release the resource
1631 	 * results in an admin queue timeout, so handle them correctly
1632 	 */
1633 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1634 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1635 		mdelay(1);
1636 		status = ice_aq_release_res(hw, res, 0, NULL);
1637 		total_delay++;
1638 	}
1639 }
1640 
1641 /**
1642  * ice_aq_alloc_free_res - command to allocate/free resources
1643  * @hw: pointer to the HW struct
1644  * @num_entries: number of resource entries in buffer
1645  * @buf: Indirect buffer to hold data parameters and response
1646  * @buf_size: size of buffer for indirect commands
1647  * @opc: pass in the command opcode
1648  * @cd: pointer to command details structure or NULL
1649  *
1650  * Helper function to allocate/free resources using the admin queue commands
1651  */
1652 enum ice_status
1653 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1654 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1655 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1656 {
1657 	struct ice_aqc_alloc_free_res_cmd *cmd;
1658 	struct ice_aq_desc desc;
1659 
1660 	cmd = &desc.params.sw_res_ctrl;
1661 
1662 	if (!buf)
1663 		return ICE_ERR_PARAM;
1664 
1665 	if (buf_size < (num_entries * sizeof(buf->elem[0])))
1666 		return ICE_ERR_PARAM;
1667 
1668 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1669 
1670 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1671 
1672 	cmd->num_entries = cpu_to_le16(num_entries);
1673 
1674 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1675 }
1676 
1677 /**
1678  * ice_alloc_hw_res - allocate resource
1679  * @hw: pointer to the HW struct
1680  * @type: type of resource
1681  * @num: number of resources to allocate
1682  * @btm: allocate from bottom
1683  * @res: pointer to array that will receive the resources
1684  */
1685 enum ice_status
1686 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1687 {
1688 	struct ice_aqc_alloc_free_res_elem *buf;
1689 	enum ice_status status;
1690 	u16 buf_len;
1691 
1692 	buf_len = struct_size(buf, elem, num);
1693 	buf = kzalloc(buf_len, GFP_KERNEL);
1694 	if (!buf)
1695 		return ICE_ERR_NO_MEMORY;
1696 
1697 	/* Prepare buffer to allocate resource. */
1698 	buf->num_elems = cpu_to_le16(num);
1699 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1700 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1701 	if (btm)
1702 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1703 
1704 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1705 				       ice_aqc_opc_alloc_res, NULL);
1706 	if (status)
1707 		goto ice_alloc_res_exit;
1708 
1709 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1710 
1711 ice_alloc_res_exit:
1712 	kfree(buf);
1713 	return status;
1714 }
1715 
1716 /**
1717  * ice_free_hw_res - free allocated HW resource
1718  * @hw: pointer to the HW struct
1719  * @type: type of resource to free
1720  * @num: number of resources
1721  * @res: pointer to array that contains the resources to free
1722  */
1723 enum ice_status
1724 ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1725 {
1726 	struct ice_aqc_alloc_free_res_elem *buf;
1727 	enum ice_status status;
1728 	u16 buf_len;
1729 
1730 	buf_len = struct_size(buf, elem, num);
1731 	buf = kzalloc(buf_len, GFP_KERNEL);
1732 	if (!buf)
1733 		return ICE_ERR_NO_MEMORY;
1734 
1735 	/* Prepare buffer to free resource. */
1736 	buf->num_elems = cpu_to_le16(num);
1737 	buf->res_type = cpu_to_le16(type);
1738 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1739 
1740 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1741 				       ice_aqc_opc_free_res, NULL);
1742 	if (status)
1743 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1744 
1745 	kfree(buf);
1746 	return status;
1747 }
1748 
1749 /**
1750  * ice_get_num_per_func - determine number of resources per PF
1751  * @hw: pointer to the HW structure
1752  * @max: value to be evenly split between each PF
1753  *
1754  * Determine the number of valid functions by going through the bitmap returned
1755  * from parsing capabilities and use this to calculate the number of resources
1756  * per PF based on the max value passed in.
1757  */
1758 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1759 {
1760 	u8 funcs;
1761 
1762 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1763 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1764 			 ICE_CAPS_VALID_FUNCS_M);
1765 
1766 	if (!funcs)
1767 		return 0;
1768 
1769 	return max / funcs;
1770 }
1771 
1772 /**
1773  * ice_parse_common_caps - parse common device/function capabilities
1774  * @hw: pointer to the HW struct
1775  * @caps: pointer to common capabilities structure
1776  * @elem: the capability element to parse
1777  * @prefix: message prefix for tracing capabilities
1778  *
1779  * Given a capability element, extract relevant details into the common
1780  * capability structure.
1781  *
1782  * Returns: true if the capability matches one of the common capability ids,
1783  * false otherwise.
1784  */
1785 static bool
1786 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1787 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1788 {
1789 	u32 logical_id = le32_to_cpu(elem->logical_id);
1790 	u32 phys_id = le32_to_cpu(elem->phys_id);
1791 	u32 number = le32_to_cpu(elem->number);
1792 	u16 cap = le16_to_cpu(elem->cap);
1793 	bool found = true;
1794 
1795 	switch (cap) {
1796 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1797 		caps->valid_functions = number;
1798 		ice_debug(hw, ICE_DBG_INIT,
1799 			  "%s: valid_functions (bitmap) = %d\n", prefix,
1800 			  caps->valid_functions);
1801 		break;
1802 	case ICE_AQC_CAPS_SRIOV:
1803 		caps->sr_iov_1_1 = (number == 1);
1804 		ice_debug(hw, ICE_DBG_INIT,
1805 			  "%s: sr_iov_1_1 = %d\n", prefix,
1806 			  caps->sr_iov_1_1);
1807 		break;
1808 	case ICE_AQC_CAPS_DCB:
1809 		caps->dcb = (number == 1);
1810 		caps->active_tc_bitmap = logical_id;
1811 		caps->maxtc = phys_id;
1812 		ice_debug(hw, ICE_DBG_INIT,
1813 			  "%s: dcb = %d\n", prefix, caps->dcb);
1814 		ice_debug(hw, ICE_DBG_INIT,
1815 			  "%s: active_tc_bitmap = %d\n", prefix,
1816 			  caps->active_tc_bitmap);
1817 		ice_debug(hw, ICE_DBG_INIT,
1818 			  "%s: maxtc = %d\n", prefix, caps->maxtc);
1819 		break;
1820 	case ICE_AQC_CAPS_RSS:
1821 		caps->rss_table_size = number;
1822 		caps->rss_table_entry_width = logical_id;
1823 		ice_debug(hw, ICE_DBG_INIT,
1824 			  "%s: rss_table_size = %d\n", prefix,
1825 			  caps->rss_table_size);
1826 		ice_debug(hw, ICE_DBG_INIT,
1827 			  "%s: rss_table_entry_width = %d\n", prefix,
1828 			  caps->rss_table_entry_width);
1829 		break;
1830 	case ICE_AQC_CAPS_RXQS:
1831 		caps->num_rxq = number;
1832 		caps->rxq_first_id = phys_id;
1833 		ice_debug(hw, ICE_DBG_INIT,
1834 			  "%s: num_rxq = %d\n", prefix,
1835 			  caps->num_rxq);
1836 		ice_debug(hw, ICE_DBG_INIT,
1837 			  "%s: rxq_first_id = %d\n", prefix,
1838 			  caps->rxq_first_id);
1839 		break;
1840 	case ICE_AQC_CAPS_TXQS:
1841 		caps->num_txq = number;
1842 		caps->txq_first_id = phys_id;
1843 		ice_debug(hw, ICE_DBG_INIT,
1844 			  "%s: num_txq = %d\n", prefix,
1845 			  caps->num_txq);
1846 		ice_debug(hw, ICE_DBG_INIT,
1847 			  "%s: txq_first_id = %d\n", prefix,
1848 			  caps->txq_first_id);
1849 		break;
1850 	case ICE_AQC_CAPS_MSIX:
1851 		caps->num_msix_vectors = number;
1852 		caps->msix_vector_first_id = phys_id;
1853 		ice_debug(hw, ICE_DBG_INIT,
1854 			  "%s: num_msix_vectors = %d\n", prefix,
1855 			  caps->num_msix_vectors);
1856 		ice_debug(hw, ICE_DBG_INIT,
1857 			  "%s: msix_vector_first_id = %d\n", prefix,
1858 			  caps->msix_vector_first_id);
1859 		break;
1860 	case ICE_AQC_CAPS_MAX_MTU:
1861 		caps->max_mtu = number;
1862 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1863 			  prefix, caps->max_mtu);
1864 		break;
1865 	default:
1866 		/* Not one of the recognized common capabilities */
1867 		found = false;
1868 	}
1869 
1870 	return found;
1871 }
1872 
1873 /**
1874  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1875  * @hw: pointer to the HW structure
1876  * @caps: pointer to capabilities structure to fix
1877  *
1878  * Re-calculate the capabilities that are dependent on the number of physical
1879  * ports; i.e. some features are not supported or function differently on
1880  * devices with more than 4 ports.
1881  */
1882 static void
1883 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1884 {
1885 	/* This assumes device capabilities are always scanned before function
1886 	 * capabilities during the initialization flow.
1887 	 */
1888 	if (hw->dev_caps.num_funcs > 4) {
1889 		/* Max 4 TCs per port */
1890 		caps->maxtc = 4;
1891 		ice_debug(hw, ICE_DBG_INIT,
1892 			  "reducing maxtc to %d (based on #ports)\n",
1893 			  caps->maxtc);
1894 	}
1895 }
1896 
1897 /**
1898  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1899  * @hw: pointer to the HW struct
1900  * @func_p: pointer to function capabilities structure
1901  * @cap: pointer to the capability element to parse
1902  *
1903  * Extract function capabilities for ICE_AQC_CAPS_VF.
1904  */
1905 static void
1906 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1907 		       struct ice_aqc_list_caps_elem *cap)
1908 {
1909 	u32 logical_id = le32_to_cpu(cap->logical_id);
1910 	u32 number = le32_to_cpu(cap->number);
1911 
1912 	func_p->num_allocd_vfs = number;
1913 	func_p->vf_base_id = logical_id;
1914 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1915 		  func_p->num_allocd_vfs);
1916 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1917 		  func_p->vf_base_id);
1918 }
1919 
1920 /**
1921  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
1922  * @hw: pointer to the HW struct
1923  * @func_p: pointer to function capabilities structure
1924  * @cap: pointer to the capability element to parse
1925  *
1926  * Extract function capabilities for ICE_AQC_CAPS_VSI.
1927  */
1928 static void
1929 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1930 			struct ice_aqc_list_caps_elem *cap)
1931 {
1932 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
1933 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
1934 		  le32_to_cpu(cap->number));
1935 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
1936 		  func_p->guar_num_vsi);
1937 }
1938 
1939 /**
1940  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
1941  * @hw: pointer to the HW struct
1942  * @func_p: pointer to function capabilities structure
1943  *
1944  * Extract function capabilities for ICE_AQC_CAPS_FD.
1945  */
1946 static void
1947 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
1948 {
1949 	u32 reg_val, val;
1950 
1951 	reg_val = rd32(hw, GLQF_FD_SIZE);
1952 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1953 		GLQF_FD_SIZE_FD_GSIZE_S;
1954 	func_p->fd_fltr_guar =
1955 		ice_get_num_per_func(hw, val);
1956 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1957 		GLQF_FD_SIZE_FD_BSIZE_S;
1958 	func_p->fd_fltr_best_effort = val;
1959 
1960 	ice_debug(hw, ICE_DBG_INIT,
1961 		  "func caps: fd_fltr_guar = %d\n",
1962 		  func_p->fd_fltr_guar);
1963 	ice_debug(hw, ICE_DBG_INIT,
1964 		  "func caps: fd_fltr_best_effort = %d\n",
1965 		  func_p->fd_fltr_best_effort);
1966 }
1967 
1968 /**
1969  * ice_parse_func_caps - Parse function capabilities
1970  * @hw: pointer to the HW struct
1971  * @func_p: pointer to function capabilities structure
1972  * @buf: buffer containing the function capability records
1973  * @cap_count: the number of capabilities
1974  *
1975  * Helper function to parse function (0x000A) capabilities list. For
1976  * capabilities shared between device and function, this relies on
1977  * ice_parse_common_caps.
1978  *
1979  * Loop through the list of provided capabilities and extract the relevant
1980  * data into the function capabilities structured.
1981  */
1982 static void
1983 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1984 		    void *buf, u32 cap_count)
1985 {
1986 	struct ice_aqc_list_caps_elem *cap_resp;
1987 	u32 i;
1988 
1989 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1990 
1991 	memset(func_p, 0, sizeof(*func_p));
1992 
1993 	for (i = 0; i < cap_count; i++) {
1994 		u16 cap = le16_to_cpu(cap_resp[i].cap);
1995 		bool found;
1996 
1997 		found = ice_parse_common_caps(hw, &func_p->common_cap,
1998 					      &cap_resp[i], "func caps");
1999 
2000 		switch (cap) {
2001 		case ICE_AQC_CAPS_VF:
2002 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2003 			break;
2004 		case ICE_AQC_CAPS_VSI:
2005 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2006 			break;
2007 		case ICE_AQC_CAPS_FD:
2008 			ice_parse_fdir_func_caps(hw, func_p);
2009 			break;
2010 		default:
2011 			/* Don't list common capabilities as unknown */
2012 			if (!found)
2013 				ice_debug(hw, ICE_DBG_INIT,
2014 					  "func caps: unknown capability[%d]: 0x%x\n",
2015 					  i, cap);
2016 			break;
2017 		}
2018 	}
2019 
2020 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2021 }
2022 
2023 /**
2024  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2025  * @hw: pointer to the HW struct
2026  * @dev_p: pointer to device capabilities structure
2027  * @cap: capability element to parse
2028  *
2029  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2030  */
2031 static void
2032 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2033 			      struct ice_aqc_list_caps_elem *cap)
2034 {
2035 	u32 number = le32_to_cpu(cap->number);
2036 
2037 	dev_p->num_funcs = hweight32(number);
2038 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2039 		  dev_p->num_funcs);
2040 }
2041 
2042 /**
2043  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2044  * @hw: pointer to the HW struct
2045  * @dev_p: pointer to device capabilities structure
2046  * @cap: capability element to parse
2047  *
2048  * Parse ICE_AQC_CAPS_VF for device capabilities.
2049  */
2050 static void
2051 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2052 		      struct ice_aqc_list_caps_elem *cap)
2053 {
2054 	u32 number = le32_to_cpu(cap->number);
2055 
2056 	dev_p->num_vfs_exposed = number;
2057 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2058 		  dev_p->num_vfs_exposed);
2059 }
2060 
2061 /**
2062  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2063  * @hw: pointer to the HW struct
2064  * @dev_p: pointer to device capabilities structure
2065  * @cap: capability element to parse
2066  *
2067  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2068  */
2069 static void
2070 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2071 		       struct ice_aqc_list_caps_elem *cap)
2072 {
2073 	u32 number = le32_to_cpu(cap->number);
2074 
2075 	dev_p->num_vsi_allocd_to_host = number;
2076 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2077 		  dev_p->num_vsi_allocd_to_host);
2078 }
2079 
2080 /**
2081  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2082  * @hw: pointer to the HW struct
2083  * @dev_p: pointer to device capabilities structure
2084  * @cap: capability element to parse
2085  *
2086  * Parse ICE_AQC_CAPS_FD for device capabilities.
2087  */
2088 static void
2089 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2090 			struct ice_aqc_list_caps_elem *cap)
2091 {
2092 	u32 number = le32_to_cpu(cap->number);
2093 
2094 	dev_p->num_flow_director_fltr = number;
2095 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2096 		  dev_p->num_flow_director_fltr);
2097 }
2098 
2099 /**
2100  * ice_parse_dev_caps - Parse device capabilities
2101  * @hw: pointer to the HW struct
2102  * @dev_p: pointer to device capabilities structure
2103  * @buf: buffer containing the device capability records
2104  * @cap_count: the number of capabilities
2105  *
2106  * Helper device to parse device (0x000B) capabilities list. For
2107  * capabilities shared between device and device, this relies on
2108  * ice_parse_common_caps.
2109  *
2110  * Loop through the list of provided capabilities and extract the relevant
2111  * data into the device capabilities structured.
2112  */
2113 static void
2114 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2115 		   void *buf, u32 cap_count)
2116 {
2117 	struct ice_aqc_list_caps_elem *cap_resp;
2118 	u32 i;
2119 
2120 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2121 
2122 	memset(dev_p, 0, sizeof(*dev_p));
2123 
2124 	for (i = 0; i < cap_count; i++) {
2125 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2126 		bool found;
2127 
2128 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2129 					      &cap_resp[i], "dev caps");
2130 
2131 		switch (cap) {
2132 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2133 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2134 			break;
2135 		case ICE_AQC_CAPS_VF:
2136 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2137 			break;
2138 		case ICE_AQC_CAPS_VSI:
2139 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2140 			break;
2141 		case  ICE_AQC_CAPS_FD:
2142 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2143 			break;
2144 		default:
2145 			/* Don't list common capabilities as unknown */
2146 			if (!found)
2147 				ice_debug(hw, ICE_DBG_INIT,
2148 					  "dev caps: unknown capability[%d]: 0x%x\n",
2149 					  i, cap);
2150 			break;
2151 		}
2152 	}
2153 
2154 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2155 }
2156 
2157 /**
2158  * ice_aq_list_caps - query function/device capabilities
2159  * @hw: pointer to the HW struct
2160  * @buf: a buffer to hold the capabilities
2161  * @buf_size: size of the buffer
2162  * @cap_count: if not NULL, set to the number of capabilities reported
2163  * @opc: capabilities type to discover, device or function
2164  * @cd: pointer to command details structure or NULL
2165  *
2166  * Get the function (0x000A) or device (0x000B) capabilities description from
2167  * firmware and store it in the buffer.
2168  *
2169  * If the cap_count pointer is not NULL, then it is set to the number of
2170  * capabilities firmware will report. Note that if the buffer size is too
2171  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2172  * cap_count will still be updated in this case. It is recommended that the
2173  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2174  * firmware could return) to avoid this.
2175  */
2176 enum ice_status
2177 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2178 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2179 {
2180 	struct ice_aqc_list_caps *cmd;
2181 	struct ice_aq_desc desc;
2182 	enum ice_status status;
2183 
2184 	cmd = &desc.params.get_cap;
2185 
2186 	if (opc != ice_aqc_opc_list_func_caps &&
2187 	    opc != ice_aqc_opc_list_dev_caps)
2188 		return ICE_ERR_PARAM;
2189 
2190 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2191 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2192 
2193 	if (cap_count)
2194 		*cap_count = le32_to_cpu(cmd->count);
2195 
2196 	return status;
2197 }
2198 
2199 /**
2200  * ice_discover_dev_caps - Read and extract device capabilities
2201  * @hw: pointer to the hardware structure
2202  * @dev_caps: pointer to device capabilities structure
2203  *
2204  * Read the device capabilities and extract them into the dev_caps structure
2205  * for later use.
2206  */
2207 static enum ice_status
2208 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2209 {
2210 	enum ice_status status;
2211 	u32 cap_count = 0;
2212 	void *cbuf;
2213 
2214 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2215 	if (!cbuf)
2216 		return ICE_ERR_NO_MEMORY;
2217 
2218 	/* Although the driver doesn't know the number of capabilities the
2219 	 * device will return, we can simply send a 4KB buffer, the maximum
2220 	 * possible size that firmware can return.
2221 	 */
2222 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2223 
2224 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2225 				  ice_aqc_opc_list_dev_caps, NULL);
2226 	if (!status)
2227 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2228 	kfree(cbuf);
2229 
2230 	return status;
2231 }
2232 
2233 /**
2234  * ice_discover_func_caps - Read and extract function capabilities
2235  * @hw: pointer to the hardware structure
2236  * @func_caps: pointer to function capabilities structure
2237  *
2238  * Read the function capabilities and extract them into the func_caps structure
2239  * for later use.
2240  */
2241 static enum ice_status
2242 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2243 {
2244 	enum ice_status status;
2245 	u32 cap_count = 0;
2246 	void *cbuf;
2247 
2248 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2249 	if (!cbuf)
2250 		return ICE_ERR_NO_MEMORY;
2251 
2252 	/* Although the driver doesn't know the number of capabilities the
2253 	 * device will return, we can simply send a 4KB buffer, the maximum
2254 	 * possible size that firmware can return.
2255 	 */
2256 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2257 
2258 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2259 				  ice_aqc_opc_list_func_caps, NULL);
2260 	if (!status)
2261 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2262 	kfree(cbuf);
2263 
2264 	return status;
2265 }
2266 
2267 /**
2268  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2269  * @hw: pointer to the hardware structure
2270  */
2271 void ice_set_safe_mode_caps(struct ice_hw *hw)
2272 {
2273 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2274 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2275 	u32 valid_func, rxq_first_id, txq_first_id;
2276 	u32 msix_vector_first_id, max_mtu;
2277 	u32 num_funcs;
2278 
2279 	/* cache some func_caps values that should be restored after memset */
2280 	valid_func = func_caps->common_cap.valid_functions;
2281 	txq_first_id = func_caps->common_cap.txq_first_id;
2282 	rxq_first_id = func_caps->common_cap.rxq_first_id;
2283 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
2284 	max_mtu = func_caps->common_cap.max_mtu;
2285 
2286 	/* unset func capabilities */
2287 	memset(func_caps, 0, sizeof(*func_caps));
2288 
2289 	/* restore cached values */
2290 	func_caps->common_cap.valid_functions = valid_func;
2291 	func_caps->common_cap.txq_first_id = txq_first_id;
2292 	func_caps->common_cap.rxq_first_id = rxq_first_id;
2293 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2294 	func_caps->common_cap.max_mtu = max_mtu;
2295 
2296 	/* one Tx and one Rx queue in safe mode */
2297 	func_caps->common_cap.num_rxq = 1;
2298 	func_caps->common_cap.num_txq = 1;
2299 
2300 	/* two MSIX vectors, one for traffic and one for misc causes */
2301 	func_caps->common_cap.num_msix_vectors = 2;
2302 	func_caps->guar_num_vsi = 1;
2303 
2304 	/* cache some dev_caps values that should be restored after memset */
2305 	valid_func = dev_caps->common_cap.valid_functions;
2306 	txq_first_id = dev_caps->common_cap.txq_first_id;
2307 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
2308 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
2309 	max_mtu = dev_caps->common_cap.max_mtu;
2310 	num_funcs = dev_caps->num_funcs;
2311 
2312 	/* unset dev capabilities */
2313 	memset(dev_caps, 0, sizeof(*dev_caps));
2314 
2315 	/* restore cached values */
2316 	dev_caps->common_cap.valid_functions = valid_func;
2317 	dev_caps->common_cap.txq_first_id = txq_first_id;
2318 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
2319 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2320 	dev_caps->common_cap.max_mtu = max_mtu;
2321 	dev_caps->num_funcs = num_funcs;
2322 
2323 	/* one Tx and one Rx queue per function in safe mode */
2324 	dev_caps->common_cap.num_rxq = num_funcs;
2325 	dev_caps->common_cap.num_txq = num_funcs;
2326 
2327 	/* two MSIX vectors per function */
2328 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2329 }
2330 
2331 /**
2332  * ice_get_caps - get info about the HW
2333  * @hw: pointer to the hardware structure
2334  */
2335 enum ice_status ice_get_caps(struct ice_hw *hw)
2336 {
2337 	enum ice_status status;
2338 
2339 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2340 	if (status)
2341 		return status;
2342 
2343 	return ice_discover_func_caps(hw, &hw->func_caps);
2344 }
2345 
2346 /**
2347  * ice_aq_manage_mac_write - manage MAC address write command
2348  * @hw: pointer to the HW struct
2349  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2350  * @flags: flags to control write behavior
2351  * @cd: pointer to command details structure or NULL
2352  *
2353  * This function is used to write MAC address to the NVM (0x0108).
2354  */
2355 enum ice_status
2356 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2357 			struct ice_sq_cd *cd)
2358 {
2359 	struct ice_aqc_manage_mac_write *cmd;
2360 	struct ice_aq_desc desc;
2361 
2362 	cmd = &desc.params.mac_write;
2363 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2364 
2365 	cmd->flags = flags;
2366 	ether_addr_copy(cmd->mac_addr, mac_addr);
2367 
2368 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2369 }
2370 
2371 /**
2372  * ice_aq_clear_pxe_mode
2373  * @hw: pointer to the HW struct
2374  *
2375  * Tell the firmware that the driver is taking over from PXE (0x0110).
2376  */
2377 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2378 {
2379 	struct ice_aq_desc desc;
2380 
2381 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2382 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2383 
2384 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2385 }
2386 
2387 /**
2388  * ice_clear_pxe_mode - clear pxe operations mode
2389  * @hw: pointer to the HW struct
2390  *
2391  * Make sure all PXE mode settings are cleared, including things
2392  * like descriptor fetch/write-back mode.
2393  */
2394 void ice_clear_pxe_mode(struct ice_hw *hw)
2395 {
2396 	if (ice_check_sq_alive(hw, &hw->adminq))
2397 		ice_aq_clear_pxe_mode(hw);
2398 }
2399 
2400 /**
2401  * ice_get_link_speed_based_on_phy_type - returns link speed
2402  * @phy_type_low: lower part of phy_type
2403  * @phy_type_high: higher part of phy_type
2404  *
2405  * This helper function will convert an entry in PHY type structure
2406  * [phy_type_low, phy_type_high] to its corresponding link speed.
2407  * Note: In the structure of [phy_type_low, phy_type_high], there should
2408  * be one bit set, as this function will convert one PHY type to its
2409  * speed.
2410  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2411  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2412  */
2413 static u16
2414 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2415 {
2416 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2417 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2418 
2419 	switch (phy_type_low) {
2420 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2421 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2422 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2423 		break;
2424 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2425 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2426 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2427 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2428 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2429 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2430 		break;
2431 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2432 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2433 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2434 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2435 		break;
2436 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2437 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2438 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2439 		break;
2440 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2441 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2442 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2443 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2444 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2445 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2446 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2447 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2448 		break;
2449 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2450 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2451 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2452 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2453 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2454 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2455 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2456 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2457 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2458 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2459 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2460 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2461 		break;
2462 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2463 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2464 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2465 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2466 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2467 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2468 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2469 		break;
2470 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2471 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2472 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2473 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2474 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2475 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2476 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2477 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2478 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2479 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2480 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2481 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2482 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2483 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2484 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2485 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2486 		break;
2487 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2488 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2489 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2490 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2491 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2492 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2493 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2494 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2495 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2496 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2497 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2498 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2499 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2500 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2501 		break;
2502 	default:
2503 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2504 		break;
2505 	}
2506 
2507 	switch (phy_type_high) {
2508 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2509 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2510 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2511 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2512 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2513 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2514 		break;
2515 	default:
2516 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2517 		break;
2518 	}
2519 
2520 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2521 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2522 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2523 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2524 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2525 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2526 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2527 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2528 		return speed_phy_type_low;
2529 	else
2530 		return speed_phy_type_high;
2531 }
2532 
2533 /**
2534  * ice_update_phy_type
2535  * @phy_type_low: pointer to the lower part of phy_type
2536  * @phy_type_high: pointer to the higher part of phy_type
2537  * @link_speeds_bitmap: targeted link speeds bitmap
2538  *
2539  * Note: For the link_speeds_bitmap structure, you can check it at
2540  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2541  * link_speeds_bitmap include multiple speeds.
2542  *
2543  * Each entry in this [phy_type_low, phy_type_high] structure will
2544  * present a certain link speed. This helper function will turn on bits
2545  * in [phy_type_low, phy_type_high] structure based on the value of
2546  * link_speeds_bitmap input parameter.
2547  */
2548 void
2549 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2550 		    u16 link_speeds_bitmap)
2551 {
2552 	u64 pt_high;
2553 	u64 pt_low;
2554 	int index;
2555 	u16 speed;
2556 
2557 	/* We first check with low part of phy_type */
2558 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2559 		pt_low = BIT_ULL(index);
2560 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2561 
2562 		if (link_speeds_bitmap & speed)
2563 			*phy_type_low |= BIT_ULL(index);
2564 	}
2565 
2566 	/* We then check with high part of phy_type */
2567 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2568 		pt_high = BIT_ULL(index);
2569 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2570 
2571 		if (link_speeds_bitmap & speed)
2572 			*phy_type_high |= BIT_ULL(index);
2573 	}
2574 }
2575 
2576 /**
2577  * ice_aq_set_phy_cfg
2578  * @hw: pointer to the HW struct
2579  * @pi: port info structure of the interested logical port
2580  * @cfg: structure with PHY configuration data to be set
2581  * @cd: pointer to command details structure or NULL
2582  *
2583  * Set the various PHY configuration parameters supported on the Port.
2584  * One or more of the Set PHY config parameters may be ignored in an MFP
2585  * mode as the PF may not have the privilege to set some of the PHY Config
2586  * parameters. This status will be indicated by the command response (0x0601).
2587  */
2588 enum ice_status
2589 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2590 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2591 {
2592 	struct ice_aq_desc desc;
2593 	enum ice_status status;
2594 
2595 	if (!cfg)
2596 		return ICE_ERR_PARAM;
2597 
2598 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2599 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2600 		ice_debug(hw, ICE_DBG_PHY,
2601 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2602 			  cfg->caps);
2603 
2604 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2605 	}
2606 
2607 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2608 	desc.params.set_phy.lport_num = pi->lport;
2609 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2610 
2611 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2612 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2613 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2614 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2615 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2616 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2617 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2618 		  cfg->low_power_ctrl_an);
2619 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2620 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2621 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2622 		  cfg->link_fec_opt);
2623 
2624 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2625 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2626 		status = 0;
2627 
2628 	if (!status)
2629 		pi->phy.curr_user_phy_cfg = *cfg;
2630 
2631 	return status;
2632 }
2633 
2634 /**
2635  * ice_update_link_info - update status of the HW network link
2636  * @pi: port info structure of the interested logical port
2637  */
2638 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2639 {
2640 	struct ice_link_status *li;
2641 	enum ice_status status;
2642 
2643 	if (!pi)
2644 		return ICE_ERR_PARAM;
2645 
2646 	li = &pi->phy.link_info;
2647 
2648 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2649 	if (status)
2650 		return status;
2651 
2652 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2653 		struct ice_aqc_get_phy_caps_data *pcaps;
2654 		struct ice_hw *hw;
2655 
2656 		hw = pi->hw;
2657 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2658 				     GFP_KERNEL);
2659 		if (!pcaps)
2660 			return ICE_ERR_NO_MEMORY;
2661 
2662 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2663 					     pcaps, NULL);
2664 
2665 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2666 	}
2667 
2668 	return status;
2669 }
2670 
2671 /**
2672  * ice_cache_phy_user_req
2673  * @pi: port information structure
2674  * @cache_data: PHY logging data
2675  * @cache_mode: PHY logging mode
2676  *
2677  * Log the user request on (FC, FEC, SPEED) for later use.
2678  */
2679 static void
2680 ice_cache_phy_user_req(struct ice_port_info *pi,
2681 		       struct ice_phy_cache_mode_data cache_data,
2682 		       enum ice_phy_cache_mode cache_mode)
2683 {
2684 	if (!pi)
2685 		return;
2686 
2687 	switch (cache_mode) {
2688 	case ICE_FC_MODE:
2689 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2690 		break;
2691 	case ICE_SPEED_MODE:
2692 		pi->phy.curr_user_speed_req =
2693 			cache_data.data.curr_user_speed_req;
2694 		break;
2695 	case ICE_FEC_MODE:
2696 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2697 		break;
2698 	default:
2699 		break;
2700 	}
2701 }
2702 
2703 /**
2704  * ice_caps_to_fc_mode
2705  * @caps: PHY capabilities
2706  *
2707  * Convert PHY FC capabilities to ice FC mode
2708  */
2709 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2710 {
2711 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2712 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2713 		return ICE_FC_FULL;
2714 
2715 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2716 		return ICE_FC_TX_PAUSE;
2717 
2718 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2719 		return ICE_FC_RX_PAUSE;
2720 
2721 	return ICE_FC_NONE;
2722 }
2723 
2724 /**
2725  * ice_caps_to_fec_mode
2726  * @caps: PHY capabilities
2727  * @fec_options: Link FEC options
2728  *
2729  * Convert PHY FEC capabilities to ice FEC mode
2730  */
2731 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2732 {
2733 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2734 		return ICE_FEC_AUTO;
2735 
2736 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2737 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2738 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2739 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2740 		return ICE_FEC_BASER;
2741 
2742 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2743 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2744 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2745 		return ICE_FEC_RS;
2746 
2747 	return ICE_FEC_NONE;
2748 }
2749 
2750 /**
2751  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2752  * @pi: port information structure
2753  * @cfg: PHY configuration data to set FC mode
2754  * @req_mode: FC mode to configure
2755  */
2756 enum ice_status
2757 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2758 	       enum ice_fc_mode req_mode)
2759 {
2760 	struct ice_phy_cache_mode_data cache_data;
2761 	u8 pause_mask = 0x0;
2762 
2763 	if (!pi || !cfg)
2764 		return ICE_ERR_BAD_PTR;
2765 
2766 	switch (req_mode) {
2767 	case ICE_FC_FULL:
2768 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2769 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2770 		break;
2771 	case ICE_FC_RX_PAUSE:
2772 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2773 		break;
2774 	case ICE_FC_TX_PAUSE:
2775 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2776 		break;
2777 	default:
2778 		break;
2779 	}
2780 
2781 	/* clear the old pause settings */
2782 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2783 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2784 
2785 	/* set the new capabilities */
2786 	cfg->caps |= pause_mask;
2787 
2788 	/* Cache user FC request */
2789 	cache_data.data.curr_user_fc_req = req_mode;
2790 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  * ice_set_fc
2797  * @pi: port information structure
2798  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2799  * @ena_auto_link_update: enable automatic link update
2800  *
2801  * Set the requested flow control mode.
2802  */
2803 enum ice_status
2804 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2805 {
2806 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2807 	struct ice_aqc_get_phy_caps_data *pcaps;
2808 	enum ice_status status;
2809 	struct ice_hw *hw;
2810 
2811 	if (!pi || !aq_failures)
2812 		return ICE_ERR_BAD_PTR;
2813 
2814 	*aq_failures = 0;
2815 	hw = pi->hw;
2816 
2817 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2818 	if (!pcaps)
2819 		return ICE_ERR_NO_MEMORY;
2820 
2821 	/* Get the current PHY config */
2822 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2823 				     NULL);
2824 	if (status) {
2825 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2826 		goto out;
2827 	}
2828 
2829 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2830 
2831 	/* Configure the set PHY data */
2832 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2833 	if (status)
2834 		goto out;
2835 
2836 	/* If the capabilities have changed, then set the new config */
2837 	if (cfg.caps != pcaps->caps) {
2838 		int retry_count, retry_max = 10;
2839 
2840 		/* Auto restart link so settings take effect */
2841 		if (ena_auto_link_update)
2842 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2843 
2844 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2845 		if (status) {
2846 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2847 			goto out;
2848 		}
2849 
2850 		/* Update the link info
2851 		 * It sometimes takes a really long time for link to
2852 		 * come back from the atomic reset. Thus, we wait a
2853 		 * little bit.
2854 		 */
2855 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2856 			status = ice_update_link_info(pi);
2857 
2858 			if (!status)
2859 				break;
2860 
2861 			mdelay(100);
2862 		}
2863 
2864 		if (status)
2865 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2866 	}
2867 
2868 out:
2869 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2870 	return status;
2871 }
2872 
2873 /**
2874  * ice_phy_caps_equals_cfg
2875  * @phy_caps: PHY capabilities
2876  * @phy_cfg: PHY configuration
2877  *
2878  * Helper function to determine if PHY capabilities matches PHY
2879  * configuration
2880  */
2881 bool
2882 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2883 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
2884 {
2885 	u8 caps_mask, cfg_mask;
2886 
2887 	if (!phy_caps || !phy_cfg)
2888 		return false;
2889 
2890 	/* These bits are not common between capabilities and configuration.
2891 	 * Do not use them to determine equality.
2892 	 */
2893 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2894 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
2895 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2896 
2897 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2898 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2899 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2900 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2901 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
2902 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
2903 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2904 		return false;
2905 
2906 	return true;
2907 }
2908 
2909 /**
2910  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2911  * @pi: port information structure
2912  * @caps: PHY ability structure to copy date from
2913  * @cfg: PHY configuration structure to copy data to
2914  *
2915  * Helper function to copy AQC PHY get ability data to PHY set configuration
2916  * data structure
2917  */
2918 void
2919 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
2920 			 struct ice_aqc_get_phy_caps_data *caps,
2921 			 struct ice_aqc_set_phy_cfg_data *cfg)
2922 {
2923 	if (!pi || !caps || !cfg)
2924 		return;
2925 
2926 	memset(cfg, 0, sizeof(*cfg));
2927 	cfg->phy_type_low = caps->phy_type_low;
2928 	cfg->phy_type_high = caps->phy_type_high;
2929 	cfg->caps = caps->caps;
2930 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
2931 	cfg->eee_cap = caps->eee_cap;
2932 	cfg->eeer_value = caps->eeer_value;
2933 	cfg->link_fec_opt = caps->link_fec_options;
2934 	cfg->module_compliance_enforcement =
2935 		caps->module_compliance_enforcement;
2936 
2937 	if (ice_fw_supports_link_override(pi->hw)) {
2938 		struct ice_link_default_override_tlv tlv;
2939 
2940 		if (ice_get_link_default_override(&tlv, pi))
2941 			return;
2942 
2943 		if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
2944 			cfg->module_compliance_enforcement |=
2945 				ICE_LINK_OVERRIDE_STRICT_MODE;
2946 	}
2947 }
2948 
2949 /**
2950  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2951  * @pi: port information structure
2952  * @cfg: PHY configuration data to set FEC mode
2953  * @fec: FEC mode to configure
2954  */
2955 enum ice_status
2956 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2957 		enum ice_fec_mode fec)
2958 {
2959 	struct ice_aqc_get_phy_caps_data *pcaps;
2960 	enum ice_status status;
2961 
2962 	if (!pi || !cfg)
2963 		return ICE_ERR_BAD_PTR;
2964 
2965 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2966 	if (!pcaps)
2967 		return ICE_ERR_NO_MEMORY;
2968 
2969 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
2970 				     NULL);
2971 	if (status)
2972 		goto out;
2973 
2974 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2975 	cfg->link_fec_opt = pcaps->link_fec_options;
2976 
2977 	switch (fec) {
2978 	case ICE_FEC_BASER:
2979 		/* Clear RS bits, and AND BASE-R ability
2980 		 * bits and OR request bits.
2981 		 */
2982 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2983 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2984 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2985 			ICE_AQC_PHY_FEC_25G_KR_REQ;
2986 		break;
2987 	case ICE_FEC_RS:
2988 		/* Clear BASE-R bits, and AND RS ability
2989 		 * bits and OR request bits.
2990 		 */
2991 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2992 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2993 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2994 		break;
2995 	case ICE_FEC_NONE:
2996 		/* Clear all FEC option bits. */
2997 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2998 		break;
2999 	case ICE_FEC_AUTO:
3000 		/* AND auto FEC bit, and all caps bits. */
3001 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3002 		cfg->link_fec_opt |= pcaps->link_fec_options;
3003 		break;
3004 	default:
3005 		status = ICE_ERR_PARAM;
3006 		break;
3007 	}
3008 
3009 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3010 		struct ice_link_default_override_tlv tlv;
3011 
3012 		if (ice_get_link_default_override(&tlv, pi))
3013 			goto out;
3014 
3015 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3016 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3017 			cfg->link_fec_opt = tlv.fec_options;
3018 	}
3019 
3020 out:
3021 	kfree(pcaps);
3022 
3023 	return status;
3024 }
3025 
3026 /**
3027  * ice_get_link_status - get status of the HW network link
3028  * @pi: port information structure
3029  * @link_up: pointer to bool (true/false = linkup/linkdown)
3030  *
3031  * Variable link_up is true if link is up, false if link is down.
3032  * The variable link_up is invalid if status is non zero. As a
3033  * result of this call, link status reporting becomes enabled
3034  */
3035 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3036 {
3037 	struct ice_phy_info *phy_info;
3038 	enum ice_status status = 0;
3039 
3040 	if (!pi || !link_up)
3041 		return ICE_ERR_PARAM;
3042 
3043 	phy_info = &pi->phy;
3044 
3045 	if (phy_info->get_link_info) {
3046 		status = ice_update_link_info(pi);
3047 
3048 		if (status)
3049 			ice_debug(pi->hw, ICE_DBG_LINK,
3050 				  "get link status error, status = %d\n",
3051 				  status);
3052 	}
3053 
3054 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3055 
3056 	return status;
3057 }
3058 
3059 /**
3060  * ice_aq_set_link_restart_an
3061  * @pi: pointer to the port information structure
3062  * @ena_link: if true: enable link, if false: disable link
3063  * @cd: pointer to command details structure or NULL
3064  *
3065  * Sets up the link and restarts the Auto-Negotiation over the link.
3066  */
3067 enum ice_status
3068 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3069 			   struct ice_sq_cd *cd)
3070 {
3071 	struct ice_aqc_restart_an *cmd;
3072 	struct ice_aq_desc desc;
3073 
3074 	cmd = &desc.params.restart_an;
3075 
3076 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3077 
3078 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3079 	cmd->lport_num = pi->lport;
3080 	if (ena_link)
3081 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3082 	else
3083 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3084 
3085 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3086 }
3087 
3088 /**
3089  * ice_aq_set_event_mask
3090  * @hw: pointer to the HW struct
3091  * @port_num: port number of the physical function
3092  * @mask: event mask to be set
3093  * @cd: pointer to command details structure or NULL
3094  *
3095  * Set event mask (0x0613)
3096  */
3097 enum ice_status
3098 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3099 		      struct ice_sq_cd *cd)
3100 {
3101 	struct ice_aqc_set_event_mask *cmd;
3102 	struct ice_aq_desc desc;
3103 
3104 	cmd = &desc.params.set_event_mask;
3105 
3106 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3107 
3108 	cmd->lport_num = port_num;
3109 
3110 	cmd->event_mask = cpu_to_le16(mask);
3111 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3112 }
3113 
3114 /**
3115  * ice_aq_set_mac_loopback
3116  * @hw: pointer to the HW struct
3117  * @ena_lpbk: Enable or Disable loopback
3118  * @cd: pointer to command details structure or NULL
3119  *
3120  * Enable/disable loopback on a given port
3121  */
3122 enum ice_status
3123 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3124 {
3125 	struct ice_aqc_set_mac_lb *cmd;
3126 	struct ice_aq_desc desc;
3127 
3128 	cmd = &desc.params.set_mac_lb;
3129 
3130 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3131 	if (ena_lpbk)
3132 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3133 
3134 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3135 }
3136 
3137 /**
3138  * ice_aq_set_port_id_led
3139  * @pi: pointer to the port information
3140  * @is_orig_mode: is this LED set to original mode (by the net-list)
3141  * @cd: pointer to command details structure or NULL
3142  *
3143  * Set LED value for the given port (0x06e9)
3144  */
3145 enum ice_status
3146 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3147 		       struct ice_sq_cd *cd)
3148 {
3149 	struct ice_aqc_set_port_id_led *cmd;
3150 	struct ice_hw *hw = pi->hw;
3151 	struct ice_aq_desc desc;
3152 
3153 	cmd = &desc.params.set_port_id_led;
3154 
3155 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3156 
3157 	if (is_orig_mode)
3158 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3159 	else
3160 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3161 
3162 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3163 }
3164 
3165 /**
3166  * ice_aq_sff_eeprom
3167  * @hw: pointer to the HW struct
3168  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3169  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3170  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3171  * @page: QSFP page
3172  * @set_page: set or ignore the page
3173  * @data: pointer to data buffer to be read/written to the I2C device.
3174  * @length: 1-16 for read, 1 for write.
3175  * @write: 0 read, 1 for write.
3176  * @cd: pointer to command details structure or NULL
3177  *
3178  * Read/Write SFF EEPROM (0x06EE)
3179  */
3180 enum ice_status
3181 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3182 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3183 		  bool write, struct ice_sq_cd *cd)
3184 {
3185 	struct ice_aqc_sff_eeprom *cmd;
3186 	struct ice_aq_desc desc;
3187 	enum ice_status status;
3188 
3189 	if (!data || (mem_addr & 0xff00))
3190 		return ICE_ERR_PARAM;
3191 
3192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3193 	cmd = &desc.params.read_write_sff_param;
3194 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3195 	cmd->lport_num = (u8)(lport & 0xff);
3196 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3197 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3198 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3199 					((set_page <<
3200 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3201 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3202 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3203 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3204 	if (write)
3205 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3206 
3207 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3208 	return status;
3209 }
3210 
3211 /**
3212  * __ice_aq_get_set_rss_lut
3213  * @hw: pointer to the hardware structure
3214  * @vsi_id: VSI FW index
3215  * @lut_type: LUT table type
3216  * @lut: pointer to the LUT buffer provided by the caller
3217  * @lut_size: size of the LUT buffer
3218  * @glob_lut_idx: global LUT index
3219  * @set: set true to set the table, false to get the table
3220  *
3221  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3222  */
3223 static enum ice_status
3224 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3225 			 u16 lut_size, u8 glob_lut_idx, bool set)
3226 {
3227 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3228 	struct ice_aq_desc desc;
3229 	enum ice_status status;
3230 	u16 flags = 0;
3231 
3232 	cmd_resp = &desc.params.get_set_rss_lut;
3233 
3234 	if (set) {
3235 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3236 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3237 	} else {
3238 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3239 	}
3240 
3241 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3242 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3243 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3244 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3245 
3246 	switch (lut_type) {
3247 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3248 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3249 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3250 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3251 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3252 		break;
3253 	default:
3254 		status = ICE_ERR_PARAM;
3255 		goto ice_aq_get_set_rss_lut_exit;
3256 	}
3257 
3258 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3259 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3260 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3261 
3262 		if (!set)
3263 			goto ice_aq_get_set_rss_lut_send;
3264 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3265 		if (!set)
3266 			goto ice_aq_get_set_rss_lut_send;
3267 	} else {
3268 		goto ice_aq_get_set_rss_lut_send;
3269 	}
3270 
3271 	/* LUT size is only valid for Global and PF table types */
3272 	switch (lut_size) {
3273 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3274 		break;
3275 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3276 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3277 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3278 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3279 		break;
3280 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3281 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3282 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3283 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3284 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3285 			break;
3286 		}
3287 		fallthrough;
3288 	default:
3289 		status = ICE_ERR_PARAM;
3290 		goto ice_aq_get_set_rss_lut_exit;
3291 	}
3292 
3293 ice_aq_get_set_rss_lut_send:
3294 	cmd_resp->flags = cpu_to_le16(flags);
3295 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3296 
3297 ice_aq_get_set_rss_lut_exit:
3298 	return status;
3299 }
3300 
3301 /**
3302  * ice_aq_get_rss_lut
3303  * @hw: pointer to the hardware structure
3304  * @vsi_handle: software VSI handle
3305  * @lut_type: LUT table type
3306  * @lut: pointer to the LUT buffer provided by the caller
3307  * @lut_size: size of the LUT buffer
3308  *
3309  * get the RSS lookup table, PF or VSI type
3310  */
3311 enum ice_status
3312 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3313 		   u8 *lut, u16 lut_size)
3314 {
3315 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3316 		return ICE_ERR_PARAM;
3317 
3318 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3319 					lut_type, lut, lut_size, 0, false);
3320 }
3321 
3322 /**
3323  * ice_aq_set_rss_lut
3324  * @hw: pointer to the hardware structure
3325  * @vsi_handle: software VSI handle
3326  * @lut_type: LUT table type
3327  * @lut: pointer to the LUT buffer provided by the caller
3328  * @lut_size: size of the LUT buffer
3329  *
3330  * set the RSS lookup table, PF or VSI type
3331  */
3332 enum ice_status
3333 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3334 		   u8 *lut, u16 lut_size)
3335 {
3336 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3337 		return ICE_ERR_PARAM;
3338 
3339 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3340 					lut_type, lut, lut_size, 0, true);
3341 }
3342 
3343 /**
3344  * __ice_aq_get_set_rss_key
3345  * @hw: pointer to the HW struct
3346  * @vsi_id: VSI FW index
3347  * @key: pointer to key info struct
3348  * @set: set true to set the key, false to get the key
3349  *
3350  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3351  */
3352 static enum
3353 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3354 				    struct ice_aqc_get_set_rss_keys *key,
3355 				    bool set)
3356 {
3357 	struct ice_aqc_get_set_rss_key *cmd_resp;
3358 	u16 key_size = sizeof(*key);
3359 	struct ice_aq_desc desc;
3360 
3361 	cmd_resp = &desc.params.get_set_rss_key;
3362 
3363 	if (set) {
3364 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3365 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3366 	} else {
3367 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3368 	}
3369 
3370 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3371 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3372 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3373 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3374 
3375 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3376 }
3377 
3378 /**
3379  * ice_aq_get_rss_key
3380  * @hw: pointer to the HW struct
3381  * @vsi_handle: software VSI handle
3382  * @key: pointer to key info struct
3383  *
3384  * get the RSS key per VSI
3385  */
3386 enum ice_status
3387 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3388 		   struct ice_aqc_get_set_rss_keys *key)
3389 {
3390 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3391 		return ICE_ERR_PARAM;
3392 
3393 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3394 					key, false);
3395 }
3396 
3397 /**
3398  * ice_aq_set_rss_key
3399  * @hw: pointer to the HW struct
3400  * @vsi_handle: software VSI handle
3401  * @keys: pointer to key info struct
3402  *
3403  * set the RSS key per VSI
3404  */
3405 enum ice_status
3406 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3407 		   struct ice_aqc_get_set_rss_keys *keys)
3408 {
3409 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3410 		return ICE_ERR_PARAM;
3411 
3412 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3413 					keys, true);
3414 }
3415 
3416 /**
3417  * ice_aq_add_lan_txq
3418  * @hw: pointer to the hardware structure
3419  * @num_qgrps: Number of added queue groups
3420  * @qg_list: list of queue groups to be added
3421  * @buf_size: size of buffer for indirect command
3422  * @cd: pointer to command details structure or NULL
3423  *
3424  * Add Tx LAN queue (0x0C30)
3425  *
3426  * NOTE:
3427  * Prior to calling add Tx LAN queue:
3428  * Initialize the following as part of the Tx queue context:
3429  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3430  * Cache profile and Packet shaper profile.
3431  *
3432  * After add Tx LAN queue AQ command is completed:
3433  * Interrupts should be associated with specific queues,
3434  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3435  * flow.
3436  */
3437 static enum ice_status
3438 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3439 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3440 		   struct ice_sq_cd *cd)
3441 {
3442 	struct ice_aqc_add_tx_qgrp *list;
3443 	struct ice_aqc_add_txqs *cmd;
3444 	struct ice_aq_desc desc;
3445 	u16 i, sum_size = 0;
3446 
3447 	cmd = &desc.params.add_txqs;
3448 
3449 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3450 
3451 	if (!qg_list)
3452 		return ICE_ERR_PARAM;
3453 
3454 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3455 		return ICE_ERR_PARAM;
3456 
3457 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3458 		sum_size += struct_size(list, txqs, list->num_txqs);
3459 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3460 						      list->num_txqs);
3461 	}
3462 
3463 	if (buf_size != sum_size)
3464 		return ICE_ERR_PARAM;
3465 
3466 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3467 
3468 	cmd->num_qgrps = num_qgrps;
3469 
3470 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3471 }
3472 
3473 /**
3474  * ice_aq_dis_lan_txq
3475  * @hw: pointer to the hardware structure
3476  * @num_qgrps: number of groups in the list
3477  * @qg_list: the list of groups to disable
3478  * @buf_size: the total size of the qg_list buffer in bytes
3479  * @rst_src: if called due to reset, specifies the reset source
3480  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3481  * @cd: pointer to command details structure or NULL
3482  *
3483  * Disable LAN Tx queue (0x0C31)
3484  */
3485 static enum ice_status
3486 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3487 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3488 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3489 		   struct ice_sq_cd *cd)
3490 {
3491 	struct ice_aqc_dis_txq_item *item;
3492 	struct ice_aqc_dis_txqs *cmd;
3493 	struct ice_aq_desc desc;
3494 	enum ice_status status;
3495 	u16 i, sz = 0;
3496 
3497 	cmd = &desc.params.dis_txqs;
3498 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3499 
3500 	/* qg_list can be NULL only in VM/VF reset flow */
3501 	if (!qg_list && !rst_src)
3502 		return ICE_ERR_PARAM;
3503 
3504 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3505 		return ICE_ERR_PARAM;
3506 
3507 	cmd->num_entries = num_qgrps;
3508 
3509 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3510 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3511 
3512 	switch (rst_src) {
3513 	case ICE_VM_RESET:
3514 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3515 		cmd->vmvf_and_timeout |=
3516 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3517 		break;
3518 	case ICE_VF_RESET:
3519 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3520 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3521 		cmd->vmvf_and_timeout |=
3522 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3523 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3524 		break;
3525 	case ICE_NO_RESET:
3526 	default:
3527 		break;
3528 	}
3529 
3530 	/* flush pipe on time out */
3531 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3532 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3533 	if (!qg_list)
3534 		goto do_aq;
3535 
3536 	/* set RD bit to indicate that command buffer is provided by the driver
3537 	 * and it needs to be read by the firmware
3538 	 */
3539 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3540 
3541 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3542 		u16 item_size = struct_size(item, q_id, item->num_qs);
3543 
3544 		/* If the num of queues is even, add 2 bytes of padding */
3545 		if ((item->num_qs % 2) == 0)
3546 			item_size += 2;
3547 
3548 		sz += item_size;
3549 
3550 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3551 	}
3552 
3553 	if (buf_size != sz)
3554 		return ICE_ERR_PARAM;
3555 
3556 do_aq:
3557 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3558 	if (status) {
3559 		if (!qg_list)
3560 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3561 				  vmvf_num, hw->adminq.sq_last_status);
3562 		else
3563 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3564 				  le16_to_cpu(qg_list[0].q_id[0]),
3565 				  hw->adminq.sq_last_status);
3566 	}
3567 	return status;
3568 }
3569 
3570 /* End of FW Admin Queue command wrappers */
3571 
3572 /**
3573  * ice_write_byte - write a byte to a packed context structure
3574  * @src_ctx:  the context structure to read from
3575  * @dest_ctx: the context to be written to
3576  * @ce_info:  a description of the struct to be filled
3577  */
3578 static void
3579 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3580 {
3581 	u8 src_byte, dest_byte, mask;
3582 	u8 *from, *dest;
3583 	u16 shift_width;
3584 
3585 	/* copy from the next struct field */
3586 	from = src_ctx + ce_info->offset;
3587 
3588 	/* prepare the bits and mask */
3589 	shift_width = ce_info->lsb % 8;
3590 	mask = (u8)(BIT(ce_info->width) - 1);
3591 
3592 	src_byte = *from;
3593 	src_byte &= mask;
3594 
3595 	/* shift to correct alignment */
3596 	mask <<= shift_width;
3597 	src_byte <<= shift_width;
3598 
3599 	/* get the current bits from the target bit string */
3600 	dest = dest_ctx + (ce_info->lsb / 8);
3601 
3602 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3603 
3604 	dest_byte &= ~mask;	/* get the bits not changing */
3605 	dest_byte |= src_byte;	/* add in the new bits */
3606 
3607 	/* put it all back */
3608 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3609 }
3610 
3611 /**
3612  * ice_write_word - write a word to a packed context structure
3613  * @src_ctx:  the context structure to read from
3614  * @dest_ctx: the context to be written to
3615  * @ce_info:  a description of the struct to be filled
3616  */
3617 static void
3618 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3619 {
3620 	u16 src_word, mask;
3621 	__le16 dest_word;
3622 	u8 *from, *dest;
3623 	u16 shift_width;
3624 
3625 	/* copy from the next struct field */
3626 	from = src_ctx + ce_info->offset;
3627 
3628 	/* prepare the bits and mask */
3629 	shift_width = ce_info->lsb % 8;
3630 	mask = BIT(ce_info->width) - 1;
3631 
3632 	/* don't swizzle the bits until after the mask because the mask bits
3633 	 * will be in a different bit position on big endian machines
3634 	 */
3635 	src_word = *(u16 *)from;
3636 	src_word &= mask;
3637 
3638 	/* shift to correct alignment */
3639 	mask <<= shift_width;
3640 	src_word <<= shift_width;
3641 
3642 	/* get the current bits from the target bit string */
3643 	dest = dest_ctx + (ce_info->lsb / 8);
3644 
3645 	memcpy(&dest_word, dest, sizeof(dest_word));
3646 
3647 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3648 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3649 
3650 	/* put it all back */
3651 	memcpy(dest, &dest_word, sizeof(dest_word));
3652 }
3653 
3654 /**
3655  * ice_write_dword - write a dword to a packed context structure
3656  * @src_ctx:  the context structure to read from
3657  * @dest_ctx: the context to be written to
3658  * @ce_info:  a description of the struct to be filled
3659  */
3660 static void
3661 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3662 {
3663 	u32 src_dword, mask;
3664 	__le32 dest_dword;
3665 	u8 *from, *dest;
3666 	u16 shift_width;
3667 
3668 	/* copy from the next struct field */
3669 	from = src_ctx + ce_info->offset;
3670 
3671 	/* prepare the bits and mask */
3672 	shift_width = ce_info->lsb % 8;
3673 
3674 	/* if the field width is exactly 32 on an x86 machine, then the shift
3675 	 * operation will not work because the SHL instructions count is masked
3676 	 * to 5 bits so the shift will do nothing
3677 	 */
3678 	if (ce_info->width < 32)
3679 		mask = BIT(ce_info->width) - 1;
3680 	else
3681 		mask = (u32)~0;
3682 
3683 	/* don't swizzle the bits until after the mask because the mask bits
3684 	 * will be in a different bit position on big endian machines
3685 	 */
3686 	src_dword = *(u32 *)from;
3687 	src_dword &= mask;
3688 
3689 	/* shift to correct alignment */
3690 	mask <<= shift_width;
3691 	src_dword <<= shift_width;
3692 
3693 	/* get the current bits from the target bit string */
3694 	dest = dest_ctx + (ce_info->lsb / 8);
3695 
3696 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3697 
3698 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3699 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3700 
3701 	/* put it all back */
3702 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3703 }
3704 
3705 /**
3706  * ice_write_qword - write a qword to a packed context structure
3707  * @src_ctx:  the context structure to read from
3708  * @dest_ctx: the context to be written to
3709  * @ce_info:  a description of the struct to be filled
3710  */
3711 static void
3712 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3713 {
3714 	u64 src_qword, mask;
3715 	__le64 dest_qword;
3716 	u8 *from, *dest;
3717 	u16 shift_width;
3718 
3719 	/* copy from the next struct field */
3720 	from = src_ctx + ce_info->offset;
3721 
3722 	/* prepare the bits and mask */
3723 	shift_width = ce_info->lsb % 8;
3724 
3725 	/* if the field width is exactly 64 on an x86 machine, then the shift
3726 	 * operation will not work because the SHL instructions count is masked
3727 	 * to 6 bits so the shift will do nothing
3728 	 */
3729 	if (ce_info->width < 64)
3730 		mask = BIT_ULL(ce_info->width) - 1;
3731 	else
3732 		mask = (u64)~0;
3733 
3734 	/* don't swizzle the bits until after the mask because the mask bits
3735 	 * will be in a different bit position on big endian machines
3736 	 */
3737 	src_qword = *(u64 *)from;
3738 	src_qword &= mask;
3739 
3740 	/* shift to correct alignment */
3741 	mask <<= shift_width;
3742 	src_qword <<= shift_width;
3743 
3744 	/* get the current bits from the target bit string */
3745 	dest = dest_ctx + (ce_info->lsb / 8);
3746 
3747 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3748 
3749 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3750 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3751 
3752 	/* put it all back */
3753 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3754 }
3755 
3756 /**
3757  * ice_set_ctx - set context bits in packed structure
3758  * @hw: pointer to the hardware structure
3759  * @src_ctx:  pointer to a generic non-packed context structure
3760  * @dest_ctx: pointer to memory for the packed structure
3761  * @ce_info:  a description of the structure to be transformed
3762  */
3763 enum ice_status
3764 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3765 	    const struct ice_ctx_ele *ce_info)
3766 {
3767 	int f;
3768 
3769 	for (f = 0; ce_info[f].width; f++) {
3770 		/* We have to deal with each element of the FW response
3771 		 * using the correct size so that we are correct regardless
3772 		 * of the endianness of the machine.
3773 		 */
3774 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3775 			ice_debug(hw, ICE_DBG_QCTX,
3776 				  "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3777 				  f, ce_info[f].width, ce_info[f].size_of);
3778 			continue;
3779 		}
3780 		switch (ce_info[f].size_of) {
3781 		case sizeof(u8):
3782 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3783 			break;
3784 		case sizeof(u16):
3785 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3786 			break;
3787 		case sizeof(u32):
3788 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3789 			break;
3790 		case sizeof(u64):
3791 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3792 			break;
3793 		default:
3794 			return ICE_ERR_INVAL_SIZE;
3795 		}
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 /**
3802  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3803  * @hw: pointer to the HW struct
3804  * @vsi_handle: software VSI handle
3805  * @tc: TC number
3806  * @q_handle: software queue handle
3807  */
3808 struct ice_q_ctx *
3809 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3810 {
3811 	struct ice_vsi_ctx *vsi;
3812 	struct ice_q_ctx *q_ctx;
3813 
3814 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3815 	if (!vsi)
3816 		return NULL;
3817 	if (q_handle >= vsi->num_lan_q_entries[tc])
3818 		return NULL;
3819 	if (!vsi->lan_q_ctx[tc])
3820 		return NULL;
3821 	q_ctx = vsi->lan_q_ctx[tc];
3822 	return &q_ctx[q_handle];
3823 }
3824 
3825 /**
3826  * ice_ena_vsi_txq
3827  * @pi: port information structure
3828  * @vsi_handle: software VSI handle
3829  * @tc: TC number
3830  * @q_handle: software queue handle
3831  * @num_qgrps: Number of added queue groups
3832  * @buf: list of queue groups to be added
3833  * @buf_size: size of buffer for indirect command
3834  * @cd: pointer to command details structure or NULL
3835  *
3836  * This function adds one LAN queue
3837  */
3838 enum ice_status
3839 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3840 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3841 		struct ice_sq_cd *cd)
3842 {
3843 	struct ice_aqc_txsched_elem_data node = { 0 };
3844 	struct ice_sched_node *parent;
3845 	struct ice_q_ctx *q_ctx;
3846 	enum ice_status status;
3847 	struct ice_hw *hw;
3848 
3849 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3850 		return ICE_ERR_CFG;
3851 
3852 	if (num_qgrps > 1 || buf->num_txqs > 1)
3853 		return ICE_ERR_MAX_LIMIT;
3854 
3855 	hw = pi->hw;
3856 
3857 	if (!ice_is_vsi_valid(hw, vsi_handle))
3858 		return ICE_ERR_PARAM;
3859 
3860 	mutex_lock(&pi->sched_lock);
3861 
3862 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3863 	if (!q_ctx) {
3864 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3865 			  q_handle);
3866 		status = ICE_ERR_PARAM;
3867 		goto ena_txq_exit;
3868 	}
3869 
3870 	/* find a parent node */
3871 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3872 					    ICE_SCHED_NODE_OWNER_LAN);
3873 	if (!parent) {
3874 		status = ICE_ERR_PARAM;
3875 		goto ena_txq_exit;
3876 	}
3877 
3878 	buf->parent_teid = parent->info.node_teid;
3879 	node.parent_teid = parent->info.node_teid;
3880 	/* Mark that the values in the "generic" section as valid. The default
3881 	 * value in the "generic" section is zero. This means that :
3882 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3883 	 * - 0 priority among siblings, indicated by Bit 1-3.
3884 	 * - WFQ, indicated by Bit 4.
3885 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3886 	 * Bit 5-6.
3887 	 * - Bit 7 is reserved.
3888 	 * Without setting the generic section as valid in valid_sections, the
3889 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3890 	 */
3891 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3892 
3893 	/* add the LAN queue */
3894 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3895 	if (status) {
3896 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3897 			  le16_to_cpu(buf->txqs[0].txq_id),
3898 			  hw->adminq.sq_last_status);
3899 		goto ena_txq_exit;
3900 	}
3901 
3902 	node.node_teid = buf->txqs[0].q_teid;
3903 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3904 	q_ctx->q_handle = q_handle;
3905 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3906 
3907 	/* add a leaf node into scheduler tree queue layer */
3908 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3909 	if (!status)
3910 		status = ice_sched_replay_q_bw(pi, q_ctx);
3911 
3912 ena_txq_exit:
3913 	mutex_unlock(&pi->sched_lock);
3914 	return status;
3915 }
3916 
3917 /**
3918  * ice_dis_vsi_txq
3919  * @pi: port information structure
3920  * @vsi_handle: software VSI handle
3921  * @tc: TC number
3922  * @num_queues: number of queues
3923  * @q_handles: pointer to software queue handle array
3924  * @q_ids: pointer to the q_id array
3925  * @q_teids: pointer to queue node teids
3926  * @rst_src: if called due to reset, specifies the reset source
3927  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3928  * @cd: pointer to command details structure or NULL
3929  *
3930  * This function removes queues and their corresponding nodes in SW DB
3931  */
3932 enum ice_status
3933 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3934 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3935 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3936 		struct ice_sq_cd *cd)
3937 {
3938 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3939 	struct ice_aqc_dis_txq_item *qg_list;
3940 	struct ice_q_ctx *q_ctx;
3941 	struct ice_hw *hw;
3942 	u16 i, buf_size;
3943 
3944 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3945 		return ICE_ERR_CFG;
3946 
3947 	hw = pi->hw;
3948 
3949 	if (!num_queues) {
3950 		/* if queue is disabled already yet the disable queue command
3951 		 * has to be sent to complete the VF reset, then call
3952 		 * ice_aq_dis_lan_txq without any queue information
3953 		 */
3954 		if (rst_src)
3955 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
3956 						  vmvf_num, NULL);
3957 		return ICE_ERR_CFG;
3958 	}
3959 
3960 	buf_size = struct_size(qg_list, q_id, 1);
3961 	qg_list = kzalloc(buf_size, GFP_KERNEL);
3962 	if (!qg_list)
3963 		return ICE_ERR_NO_MEMORY;
3964 
3965 	mutex_lock(&pi->sched_lock);
3966 
3967 	for (i = 0; i < num_queues; i++) {
3968 		struct ice_sched_node *node;
3969 
3970 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3971 		if (!node)
3972 			continue;
3973 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
3974 		if (!q_ctx) {
3975 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3976 				  q_handles[i]);
3977 			continue;
3978 		}
3979 		if (q_ctx->q_handle != q_handles[i]) {
3980 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3981 				  q_ctx->q_handle, q_handles[i]);
3982 			continue;
3983 		}
3984 		qg_list->parent_teid = node->info.parent_teid;
3985 		qg_list->num_qs = 1;
3986 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
3987 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
3988 					    vmvf_num, cd);
3989 
3990 		if (status)
3991 			break;
3992 		ice_free_sched_node(pi, node);
3993 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3994 	}
3995 	mutex_unlock(&pi->sched_lock);
3996 	kfree(qg_list);
3997 	return status;
3998 }
3999 
4000 /**
4001  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4002  * @pi: port information structure
4003  * @vsi_handle: software VSI handle
4004  * @tc_bitmap: TC bitmap
4005  * @maxqs: max queues array per TC
4006  * @owner: LAN or RDMA
4007  *
4008  * This function adds/updates the VSI queues per TC.
4009  */
4010 static enum ice_status
4011 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4012 	       u16 *maxqs, u8 owner)
4013 {
4014 	enum ice_status status = 0;
4015 	u8 i;
4016 
4017 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4018 		return ICE_ERR_CFG;
4019 
4020 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4021 		return ICE_ERR_PARAM;
4022 
4023 	mutex_lock(&pi->sched_lock);
4024 
4025 	ice_for_each_traffic_class(i) {
4026 		/* configuration is possible only if TC node is present */
4027 		if (!ice_sched_get_tc_node(pi, i))
4028 			continue;
4029 
4030 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4031 					   ice_is_tc_ena(tc_bitmap, i));
4032 		if (status)
4033 			break;
4034 	}
4035 
4036 	mutex_unlock(&pi->sched_lock);
4037 	return status;
4038 }
4039 
4040 /**
4041  * ice_cfg_vsi_lan - configure VSI LAN queues
4042  * @pi: port information structure
4043  * @vsi_handle: software VSI handle
4044  * @tc_bitmap: TC bitmap
4045  * @max_lanqs: max LAN queues array per TC
4046  *
4047  * This function adds/updates the VSI LAN queues per TC.
4048  */
4049 enum ice_status
4050 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4051 		u16 *max_lanqs)
4052 {
4053 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4054 			      ICE_SCHED_NODE_OWNER_LAN);
4055 }
4056 
4057 /**
4058  * ice_replay_pre_init - replay pre initialization
4059  * @hw: pointer to the HW struct
4060  *
4061  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4062  */
4063 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4064 {
4065 	struct ice_switch_info *sw = hw->switch_info;
4066 	u8 i;
4067 
4068 	/* Delete old entries from replay filter list head if there is any */
4069 	ice_rm_all_sw_replay_rule_info(hw);
4070 	/* In start of replay, move entries into replay_rules list, it
4071 	 * will allow adding rules entries back to filt_rules list,
4072 	 * which is operational list.
4073 	 */
4074 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4075 		list_replace_init(&sw->recp_list[i].filt_rules,
4076 				  &sw->recp_list[i].filt_replay_rules);
4077 
4078 	return 0;
4079 }
4080 
4081 /**
4082  * ice_replay_vsi - replay VSI configuration
4083  * @hw: pointer to the HW struct
4084  * @vsi_handle: driver VSI handle
4085  *
4086  * Restore all VSI configuration after reset. It is required to call this
4087  * function with main VSI first.
4088  */
4089 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4090 {
4091 	enum ice_status status;
4092 
4093 	if (!ice_is_vsi_valid(hw, vsi_handle))
4094 		return ICE_ERR_PARAM;
4095 
4096 	/* Replay pre-initialization if there is any */
4097 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4098 		status = ice_replay_pre_init(hw);
4099 		if (status)
4100 			return status;
4101 	}
4102 	/* Replay per VSI all RSS configurations */
4103 	status = ice_replay_rss_cfg(hw, vsi_handle);
4104 	if (status)
4105 		return status;
4106 	/* Replay per VSI all filters */
4107 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4108 	return status;
4109 }
4110 
4111 /**
4112  * ice_replay_post - post replay configuration cleanup
4113  * @hw: pointer to the HW struct
4114  *
4115  * Post replay cleanup.
4116  */
4117 void ice_replay_post(struct ice_hw *hw)
4118 {
4119 	/* Delete old entries from replay filter list head */
4120 	ice_rm_all_sw_replay_rule_info(hw);
4121 }
4122 
4123 /**
4124  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4125  * @hw: ptr to the hardware info
4126  * @reg: offset of 64 bit HW register to read from
4127  * @prev_stat_loaded: bool to specify if previous stats are loaded
4128  * @prev_stat: ptr to previous loaded stat value
4129  * @cur_stat: ptr to current stat value
4130  */
4131 void
4132 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4133 		  u64 *prev_stat, u64 *cur_stat)
4134 {
4135 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4136 
4137 	/* device stats are not reset at PFR, they likely will not be zeroed
4138 	 * when the driver starts. Thus, save the value from the first read
4139 	 * without adding to the statistic value so that we report stats which
4140 	 * count up from zero.
4141 	 */
4142 	if (!prev_stat_loaded) {
4143 		*prev_stat = new_data;
4144 		return;
4145 	}
4146 
4147 	/* Calculate the difference between the new and old values, and then
4148 	 * add it to the software stat value.
4149 	 */
4150 	if (new_data >= *prev_stat)
4151 		*cur_stat += new_data - *prev_stat;
4152 	else
4153 		/* to manage the potential roll-over */
4154 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4155 
4156 	/* Update the previously stored value to prepare for next read */
4157 	*prev_stat = new_data;
4158 }
4159 
4160 /**
4161  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4162  * @hw: ptr to the hardware info
4163  * @reg: offset of HW register to read from
4164  * @prev_stat_loaded: bool to specify if previous stats are loaded
4165  * @prev_stat: ptr to previous loaded stat value
4166  * @cur_stat: ptr to current stat value
4167  */
4168 void
4169 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4170 		  u64 *prev_stat, u64 *cur_stat)
4171 {
4172 	u32 new_data;
4173 
4174 	new_data = rd32(hw, reg);
4175 
4176 	/* device stats are not reset at PFR, they likely will not be zeroed
4177 	 * when the driver starts. Thus, save the value from the first read
4178 	 * without adding to the statistic value so that we report stats which
4179 	 * count up from zero.
4180 	 */
4181 	if (!prev_stat_loaded) {
4182 		*prev_stat = new_data;
4183 		return;
4184 	}
4185 
4186 	/* Calculate the difference between the new and old values, and then
4187 	 * add it to the software stat value.
4188 	 */
4189 	if (new_data >= *prev_stat)
4190 		*cur_stat += new_data - *prev_stat;
4191 	else
4192 		/* to manage the potential roll-over */
4193 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4194 
4195 	/* Update the previously stored value to prepare for next read */
4196 	*prev_stat = new_data;
4197 }
4198 
4199 /**
4200  * ice_sched_query_elem - query element information from HW
4201  * @hw: pointer to the HW struct
4202  * @node_teid: node TEID to be queried
4203  * @buf: buffer to element information
4204  *
4205  * This function queries HW element information
4206  */
4207 enum ice_status
4208 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4209 		     struct ice_aqc_txsched_elem_data *buf)
4210 {
4211 	u16 buf_size, num_elem_ret = 0;
4212 	enum ice_status status;
4213 
4214 	buf_size = sizeof(*buf);
4215 	memset(buf, 0, buf_size);
4216 	buf->node_teid = cpu_to_le32(node_teid);
4217 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4218 					  NULL);
4219 	if (status || num_elem_ret != 1)
4220 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4221 	return status;
4222 }
4223 
4224 /**
4225  * ice_fw_supports_link_override
4226  * @hw: pointer to the hardware structure
4227  *
4228  * Checks if the firmware supports link override
4229  */
4230 bool ice_fw_supports_link_override(struct ice_hw *hw)
4231 {
4232 	/* Currently, only supported for E810 devices */
4233 	if (hw->mac_type != ICE_MAC_E810)
4234 		return false;
4235 
4236 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4237 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4238 			return true;
4239 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4240 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4241 			return true;
4242 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4243 		return true;
4244 	}
4245 
4246 	return false;
4247 }
4248 
4249 /**
4250  * ice_get_link_default_override
4251  * @ldo: pointer to the link default override struct
4252  * @pi: pointer to the port info struct
4253  *
4254  * Gets the link default override for a port
4255  */
4256 enum ice_status
4257 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4258 			      struct ice_port_info *pi)
4259 {
4260 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4261 	struct ice_hw *hw = pi->hw;
4262 	enum ice_status status;
4263 
4264 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4265 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4266 	if (status) {
4267 		ice_debug(hw, ICE_DBG_INIT,
4268 			  "Failed to read link override TLV.\n");
4269 		return status;
4270 	}
4271 
4272 	/* Each port has its own config; calculate for our port */
4273 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4274 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4275 
4276 	/* link options first */
4277 	status = ice_read_sr_word(hw, tlv_start, &buf);
4278 	if (status) {
4279 		ice_debug(hw, ICE_DBG_INIT,
4280 			  "Failed to read override link options.\n");
4281 		return status;
4282 	}
4283 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4284 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4285 		ICE_LINK_OVERRIDE_PHY_CFG_S;
4286 
4287 	/* link PHY config */
4288 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4289 	status = ice_read_sr_word(hw, offset, &buf);
4290 	if (status) {
4291 		ice_debug(hw, ICE_DBG_INIT,
4292 			  "Failed to read override phy config.\n");
4293 		return status;
4294 	}
4295 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4296 
4297 	/* PHY types low */
4298 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4299 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4300 		status = ice_read_sr_word(hw, (offset + i), &buf);
4301 		if (status) {
4302 			ice_debug(hw, ICE_DBG_INIT,
4303 				  "Failed to read override link options.\n");
4304 			return status;
4305 		}
4306 		/* shift 16 bits at a time to fill 64 bits */
4307 		ldo->phy_type_low |= ((u64)buf << (i * 16));
4308 	}
4309 
4310 	/* PHY types high */
4311 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4312 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4313 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4314 		status = ice_read_sr_word(hw, (offset + i), &buf);
4315 		if (status) {
4316 			ice_debug(hw, ICE_DBG_INIT,
4317 				  "Failed to read override link options.\n");
4318 			return status;
4319 		}
4320 		/* shift 16 bits at a time to fill 64 bits */
4321 		ldo->phy_type_high |= ((u64)buf << (i * 16));
4322 	}
4323 
4324 	return status;
4325 }
4326 
4327 /**
4328  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4329  * @caps: get PHY capability data
4330  */
4331 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4332 {
4333 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4334 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4335 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4336 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4337 		return true;
4338 
4339 	return false;
4340 }
4341