1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
22 
23 	switch (hw->device_id) {
24 	case ICE_DEV_ID_E810C_BACKPLANE:
25 	case ICE_DEV_ID_E810C_QSFP:
26 	case ICE_DEV_ID_E810C_SFP:
27 	case ICE_DEV_ID_E810_XXV_SFP:
28 		hw->mac_type = ICE_MAC_E810;
29 		break;
30 	case ICE_DEV_ID_E823C_10G_BASE_T:
31 	case ICE_DEV_ID_E823C_BACKPLANE:
32 	case ICE_DEV_ID_E823C_QSFP:
33 	case ICE_DEV_ID_E823C_SFP:
34 	case ICE_DEV_ID_E823C_SGMII:
35 	case ICE_DEV_ID_E822C_10G_BASE_T:
36 	case ICE_DEV_ID_E822C_BACKPLANE:
37 	case ICE_DEV_ID_E822C_QSFP:
38 	case ICE_DEV_ID_E822C_SFP:
39 	case ICE_DEV_ID_E822C_SGMII:
40 	case ICE_DEV_ID_E822L_10G_BASE_T:
41 	case ICE_DEV_ID_E822L_BACKPLANE:
42 	case ICE_DEV_ID_E822L_SFP:
43 	case ICE_DEV_ID_E822L_SGMII:
44 	case ICE_DEV_ID_E823L_10G_BASE_T:
45 	case ICE_DEV_ID_E823L_1GBE:
46 	case ICE_DEV_ID_E823L_BACKPLANE:
47 	case ICE_DEV_ID_E823L_QSFP:
48 	case ICE_DEV_ID_E823L_SFP:
49 		hw->mac_type = ICE_MAC_GENERIC;
50 		break;
51 	default:
52 		hw->mac_type = ICE_MAC_UNKNOWN;
53 		break;
54 	}
55 
56 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
57 	return 0;
58 }
59 
60 /**
61  * ice_clear_pf_cfg - Clear PF configuration
62  * @hw: pointer to the hardware structure
63  *
64  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
65  * configuration, flow director filters, etc.).
66  */
67 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
68 {
69 	struct ice_aq_desc desc;
70 
71 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
72 
73 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
74 }
75 
76 /**
77  * ice_aq_manage_mac_read - manage MAC address read command
78  * @hw: pointer to the HW struct
79  * @buf: a virtual buffer to hold the manage MAC read response
80  * @buf_size: Size of the virtual buffer
81  * @cd: pointer to command details structure or NULL
82  *
83  * This function is used to return per PF station MAC address (0x0107).
84  * NOTE: Upon successful completion of this command, MAC address information
85  * is returned in user specified buffer. Please interpret user specified
86  * buffer as "manage_mac_read" response.
87  * Response such as various MAC addresses are stored in HW struct (port.mac)
88  * ice_discover_dev_caps is expected to be called before this function is
89  * called.
90  */
91 static enum ice_status
92 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
93 		       struct ice_sq_cd *cd)
94 {
95 	struct ice_aqc_manage_mac_read_resp *resp;
96 	struct ice_aqc_manage_mac_read *cmd;
97 	struct ice_aq_desc desc;
98 	enum ice_status status;
99 	u16 flags;
100 	u8 i;
101 
102 	cmd = &desc.params.mac_read;
103 
104 	if (buf_size < sizeof(*resp))
105 		return ICE_ERR_BUF_TOO_SHORT;
106 
107 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
108 
109 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
110 	if (status)
111 		return status;
112 
113 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
114 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
115 
116 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
117 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
118 		return ICE_ERR_CFG;
119 	}
120 
121 	/* A single port can report up to two (LAN and WoL) addresses */
122 	for (i = 0; i < cmd->num_addr; i++)
123 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
124 			ether_addr_copy(hw->port_info->mac.lan_addr,
125 					resp[i].mac_addr);
126 			ether_addr_copy(hw->port_info->mac.perm_addr,
127 					resp[i].mac_addr);
128 			break;
129 		}
130 
131 	return 0;
132 }
133 
134 /**
135  * ice_aq_get_phy_caps - returns PHY capabilities
136  * @pi: port information structure
137  * @qual_mods: report qualified modules
138  * @report_mode: report mode capabilities
139  * @pcaps: structure for PHY capabilities to be filled
140  * @cd: pointer to command details structure or NULL
141  *
142  * Returns the various PHY capabilities supported on the Port (0x0600)
143  */
144 enum ice_status
145 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
146 		    struct ice_aqc_get_phy_caps_data *pcaps,
147 		    struct ice_sq_cd *cd)
148 {
149 	struct ice_aqc_get_phy_caps *cmd;
150 	u16 pcaps_size = sizeof(*pcaps);
151 	struct ice_aq_desc desc;
152 	enum ice_status status;
153 	struct ice_hw *hw;
154 
155 	cmd = &desc.params.get_phy;
156 
157 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 		return ICE_ERR_PARAM;
159 	hw = pi->hw;
160 
161 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
162 
163 	if (qual_mods)
164 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
165 
166 	cmd->param0 |= cpu_to_le16(report_mode);
167 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
168 
169 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
170 		  report_mode);
171 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
172 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
173 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
174 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
175 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
176 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
177 		  pcaps->low_power_ctrl_an);
178 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
179 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
180 		  pcaps->eeer_value);
181 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
182 		  pcaps->link_fec_options);
183 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
184 		  pcaps->module_compliance_enforcement);
185 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
186 		  pcaps->extended_compliance_code);
187 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
188 		  pcaps->module_type[0]);
189 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
190 		  pcaps->module_type[1]);
191 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
192 		  pcaps->module_type[2]);
193 
194 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
195 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
196 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
197 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
198 		       sizeof(pi->phy.link_info.module_type));
199 	}
200 
201 	return status;
202 }
203 
204 /**
205  * ice_aq_get_link_topo_handle - get link topology node return status
206  * @pi: port information structure
207  * @node_type: requested node type
208  * @cd: pointer to command details structure or NULL
209  *
210  * Get link topology node return status for specified node type (0x06E0)
211  *
212  * Node type cage can be used to determine if cage is present. If AQC
213  * returns error (ENOENT), then no cage present. If no cage present, then
214  * connection type is backplane or BASE-T.
215  */
216 static enum ice_status
217 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
218 			    struct ice_sq_cd *cd)
219 {
220 	struct ice_aqc_get_link_topo *cmd;
221 	struct ice_aq_desc desc;
222 
223 	cmd = &desc.params.get_link_topo;
224 
225 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
226 
227 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
228 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
229 
230 	/* set node type */
231 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
232 
233 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
234 }
235 
236 /**
237  * ice_is_media_cage_present
238  * @pi: port information structure
239  *
240  * Returns true if media cage is present, else false. If no cage, then
241  * media type is backplane or BASE-T.
242  */
243 static bool ice_is_media_cage_present(struct ice_port_info *pi)
244 {
245 	/* Node type cage can be used to determine if cage is present. If AQC
246 	 * returns error (ENOENT), then no cage present. If no cage present then
247 	 * connection type is backplane or BASE-T.
248 	 */
249 	return !ice_aq_get_link_topo_handle(pi,
250 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
251 					    NULL);
252 }
253 
254 /**
255  * ice_get_media_type - Gets media type
256  * @pi: port information structure
257  */
258 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
259 {
260 	struct ice_link_status *hw_link_info;
261 
262 	if (!pi)
263 		return ICE_MEDIA_UNKNOWN;
264 
265 	hw_link_info = &pi->phy.link_info;
266 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
267 		/* If more than one media type is selected, report unknown */
268 		return ICE_MEDIA_UNKNOWN;
269 
270 	if (hw_link_info->phy_type_low) {
271 		/* 1G SGMII is a special case where some DA cable PHYs
272 		 * may show this as an option when it really shouldn't
273 		 * be since SGMII is meant to be between a MAC and a PHY
274 		 * in a backplane. Try to detect this case and handle it
275 		 */
276 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
277 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
278 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
279 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
280 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
281 			return ICE_MEDIA_DA;
282 
283 		switch (hw_link_info->phy_type_low) {
284 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
285 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
286 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
287 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
288 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
289 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
290 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
291 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
292 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
293 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
294 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
295 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
296 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
297 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
298 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
299 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
300 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
301 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
302 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
303 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
304 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
305 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
306 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
307 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
308 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
309 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
310 			return ICE_MEDIA_FIBER;
311 		case ICE_PHY_TYPE_LOW_100BASE_TX:
312 		case ICE_PHY_TYPE_LOW_1000BASE_T:
313 		case ICE_PHY_TYPE_LOW_2500BASE_T:
314 		case ICE_PHY_TYPE_LOW_5GBASE_T:
315 		case ICE_PHY_TYPE_LOW_10GBASE_T:
316 		case ICE_PHY_TYPE_LOW_25GBASE_T:
317 			return ICE_MEDIA_BASET;
318 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
319 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
320 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
321 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
322 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
323 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
324 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
325 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
326 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
327 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
328 			return ICE_MEDIA_DA;
329 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
330 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
331 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
332 		case ICE_PHY_TYPE_LOW_50G_AUI2:
333 		case ICE_PHY_TYPE_LOW_50G_AUI1:
334 		case ICE_PHY_TYPE_LOW_100G_AUI4:
335 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
336 			if (ice_is_media_cage_present(pi))
337 				return ICE_MEDIA_DA;
338 			fallthrough;
339 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
340 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
341 		case ICE_PHY_TYPE_LOW_2500BASE_X:
342 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
343 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
344 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
345 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
346 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
347 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
348 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
349 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
350 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
351 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
352 			return ICE_MEDIA_BACKPLANE;
353 		}
354 	} else {
355 		switch (hw_link_info->phy_type_high) {
356 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
357 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
358 			if (ice_is_media_cage_present(pi))
359 				return ICE_MEDIA_DA;
360 			fallthrough;
361 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
362 			return ICE_MEDIA_BACKPLANE;
363 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
364 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
365 			return ICE_MEDIA_FIBER;
366 		}
367 	}
368 	return ICE_MEDIA_UNKNOWN;
369 }
370 
371 /**
372  * ice_aq_get_link_info
373  * @pi: port information structure
374  * @ena_lse: enable/disable LinkStatusEvent reporting
375  * @link: pointer to link status structure - optional
376  * @cd: pointer to command details structure or NULL
377  *
378  * Get Link Status (0x607). Returns the link status of the adapter.
379  */
380 enum ice_status
381 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
382 		     struct ice_link_status *link, struct ice_sq_cd *cd)
383 {
384 	struct ice_aqc_get_link_status_data link_data = { 0 };
385 	struct ice_aqc_get_link_status *resp;
386 	struct ice_link_status *li_old, *li;
387 	enum ice_media_type *hw_media_type;
388 	struct ice_fc_info *hw_fc_info;
389 	bool tx_pause, rx_pause;
390 	struct ice_aq_desc desc;
391 	enum ice_status status;
392 	struct ice_hw *hw;
393 	u16 cmd_flags;
394 
395 	if (!pi)
396 		return ICE_ERR_PARAM;
397 	hw = pi->hw;
398 	li_old = &pi->phy.link_info_old;
399 	hw_media_type = &pi->phy.media_type;
400 	li = &pi->phy.link_info;
401 	hw_fc_info = &pi->fc;
402 
403 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
404 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
405 	resp = &desc.params.get_link_status;
406 	resp->cmd_flags = cpu_to_le16(cmd_flags);
407 	resp->lport_num = pi->lport;
408 
409 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
410 
411 	if (status)
412 		return status;
413 
414 	/* save off old link status information */
415 	*li_old = *li;
416 
417 	/* update current link status information */
418 	li->link_speed = le16_to_cpu(link_data.link_speed);
419 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
420 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
421 	*hw_media_type = ice_get_media_type(pi);
422 	li->link_info = link_data.link_info;
423 	li->an_info = link_data.an_info;
424 	li->ext_info = link_data.ext_info;
425 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
426 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
427 	li->topo_media_conflict = link_data.topo_media_conflict;
428 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
429 				      ICE_AQ_CFG_PACING_TYPE_M);
430 
431 	/* update fc info */
432 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
433 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
434 	if (tx_pause && rx_pause)
435 		hw_fc_info->current_mode = ICE_FC_FULL;
436 	else if (tx_pause)
437 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
438 	else if (rx_pause)
439 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
440 	else
441 		hw_fc_info->current_mode = ICE_FC_NONE;
442 
443 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
444 
445 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
446 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
447 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
448 		  (unsigned long long)li->phy_type_low);
449 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
450 		  (unsigned long long)li->phy_type_high);
451 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
452 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
453 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
454 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
455 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
456 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
457 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
458 		  li->max_frame_size);
459 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
460 
461 	/* save link status information */
462 	if (link)
463 		*link = *li;
464 
465 	/* flag cleared so calling functions don't call AQ again */
466 	pi->phy.get_link_info = false;
467 
468 	return 0;
469 }
470 
471 /**
472  * ice_fill_tx_timer_and_fc_thresh
473  * @hw: pointer to the HW struct
474  * @cmd: pointer to MAC cfg structure
475  *
476  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
477  * descriptor
478  */
479 static void
480 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
481 				struct ice_aqc_set_mac_cfg *cmd)
482 {
483 	u16 fc_thres_val, tx_timer_val;
484 	u32 val;
485 
486 	/* We read back the transmit timer and FC threshold value of
487 	 * LFC. Thus, we will use index =
488 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
489 	 *
490 	 * Also, because we are operating on transmit timer and FC
491 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
492 	 */
493 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
494 
495 	/* Retrieve the transmit timer */
496 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
497 	tx_timer_val = val &
498 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
499 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
500 
501 	/* Retrieve the FC threshold */
502 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
503 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
504 
505 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
506 }
507 
508 /**
509  * ice_aq_set_mac_cfg
510  * @hw: pointer to the HW struct
511  * @max_frame_size: Maximum Frame Size to be supported
512  * @cd: pointer to command details structure or NULL
513  *
514  * Set MAC configuration (0x0603)
515  */
516 enum ice_status
517 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
518 {
519 	struct ice_aqc_set_mac_cfg *cmd;
520 	struct ice_aq_desc desc;
521 
522 	cmd = &desc.params.set_mac_cfg;
523 
524 	if (max_frame_size == 0)
525 		return ICE_ERR_PARAM;
526 
527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
528 
529 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
530 
531 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
532 
533 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
534 }
535 
536 /**
537  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
538  * @hw: pointer to the HW struct
539  */
540 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
541 {
542 	struct ice_switch_info *sw;
543 	enum ice_status status;
544 
545 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
546 				       sizeof(*hw->switch_info), GFP_KERNEL);
547 	sw = hw->switch_info;
548 
549 	if (!sw)
550 		return ICE_ERR_NO_MEMORY;
551 
552 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
553 
554 	status = ice_init_def_sw_recp(hw);
555 	if (status) {
556 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
557 		return status;
558 	}
559 	return 0;
560 }
561 
562 /**
563  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
564  * @hw: pointer to the HW struct
565  */
566 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
567 {
568 	struct ice_switch_info *sw = hw->switch_info;
569 	struct ice_vsi_list_map_info *v_pos_map;
570 	struct ice_vsi_list_map_info *v_tmp_map;
571 	struct ice_sw_recipe *recps;
572 	u8 i;
573 
574 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
575 				 list_entry) {
576 		list_del(&v_pos_map->list_entry);
577 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
578 	}
579 	recps = hw->switch_info->recp_list;
580 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
581 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
582 
583 		recps[i].root_rid = i;
584 		mutex_destroy(&recps[i].filt_rule_lock);
585 		list_for_each_entry_safe(lst_itr, tmp_entry,
586 					 &recps[i].filt_rules, list_entry) {
587 			list_del(&lst_itr->list_entry);
588 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
589 		}
590 	}
591 	ice_rm_all_sw_replay_rule_info(hw);
592 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
593 	devm_kfree(ice_hw_to_dev(hw), sw);
594 }
595 
596 /**
597  * ice_get_fw_log_cfg - get FW logging configuration
598  * @hw: pointer to the HW struct
599  */
600 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
601 {
602 	struct ice_aq_desc desc;
603 	enum ice_status status;
604 	__le16 *config;
605 	u16 size;
606 
607 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
608 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
609 	if (!config)
610 		return ICE_ERR_NO_MEMORY;
611 
612 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
613 
614 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
615 	if (!status) {
616 		u16 i;
617 
618 		/* Save FW logging information into the HW structure */
619 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
620 			u16 v, m, flgs;
621 
622 			v = le16_to_cpu(config[i]);
623 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
624 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
625 
626 			if (m < ICE_AQC_FW_LOG_ID_MAX)
627 				hw->fw_log.evnts[m].cur = flgs;
628 		}
629 	}
630 
631 	devm_kfree(ice_hw_to_dev(hw), config);
632 
633 	return status;
634 }
635 
636 /**
637  * ice_cfg_fw_log - configure FW logging
638  * @hw: pointer to the HW struct
639  * @enable: enable certain FW logging events if true, disable all if false
640  *
641  * This function enables/disables the FW logging via Rx CQ events and a UART
642  * port based on predetermined configurations. FW logging via the Rx CQ can be
643  * enabled/disabled for individual PF's. However, FW logging via the UART can
644  * only be enabled/disabled for all PFs on the same device.
645  *
646  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
647  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
648  * before initializing the device.
649  *
650  * When re/configuring FW logging, callers need to update the "cfg" elements of
651  * the hw->fw_log.evnts array with the desired logging event configurations for
652  * modules of interest. When disabling FW logging completely, the callers can
653  * just pass false in the "enable" parameter. On completion, the function will
654  * update the "cur" element of the hw->fw_log.evnts array with the resulting
655  * logging event configurations of the modules that are being re/configured. FW
656  * logging modules that are not part of a reconfiguration operation retain their
657  * previous states.
658  *
659  * Before resetting the device, it is recommended that the driver disables FW
660  * logging before shutting down the control queue. When disabling FW logging
661  * ("enable" = false), the latest configurations of FW logging events stored in
662  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
663  * a device reset.
664  *
665  * When enabling FW logging to emit log messages via the Rx CQ during the
666  * device's initialization phase, a mechanism alternative to interrupt handlers
667  * needs to be used to extract FW log messages from the Rx CQ periodically and
668  * to prevent the Rx CQ from being full and stalling other types of control
669  * messages from FW to SW. Interrupts are typically disabled during the device's
670  * initialization phase.
671  */
672 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
673 {
674 	struct ice_aqc_fw_logging *cmd;
675 	enum ice_status status = 0;
676 	u16 i, chgs = 0, len = 0;
677 	struct ice_aq_desc desc;
678 	__le16 *data = NULL;
679 	u8 actv_evnts = 0;
680 	void *buf = NULL;
681 
682 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
683 		return 0;
684 
685 	/* Disable FW logging only when the control queue is still responsive */
686 	if (!enable &&
687 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
688 		return 0;
689 
690 	/* Get current FW log settings */
691 	status = ice_get_fw_log_cfg(hw);
692 	if (status)
693 		return status;
694 
695 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
696 	cmd = &desc.params.fw_logging;
697 
698 	/* Indicate which controls are valid */
699 	if (hw->fw_log.cq_en)
700 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
701 
702 	if (hw->fw_log.uart_en)
703 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
704 
705 	if (enable) {
706 		/* Fill in an array of entries with FW logging modules and
707 		 * logging events being reconfigured.
708 		 */
709 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
710 			u16 val;
711 
712 			/* Keep track of enabled event types */
713 			actv_evnts |= hw->fw_log.evnts[i].cfg;
714 
715 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
716 				continue;
717 
718 			if (!data) {
719 				data = devm_kcalloc(ice_hw_to_dev(hw),
720 						    sizeof(*data),
721 						    ICE_AQC_FW_LOG_ID_MAX,
722 						    GFP_KERNEL);
723 				if (!data)
724 					return ICE_ERR_NO_MEMORY;
725 			}
726 
727 			val = i << ICE_AQC_FW_LOG_ID_S;
728 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
729 			data[chgs++] = cpu_to_le16(val);
730 		}
731 
732 		/* Only enable FW logging if at least one module is specified.
733 		 * If FW logging is currently enabled but all modules are not
734 		 * enabled to emit log messages, disable FW logging altogether.
735 		 */
736 		if (actv_evnts) {
737 			/* Leave if there is effectively no change */
738 			if (!chgs)
739 				goto out;
740 
741 			if (hw->fw_log.cq_en)
742 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
743 
744 			if (hw->fw_log.uart_en)
745 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
746 
747 			buf = data;
748 			len = sizeof(*data) * chgs;
749 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
750 		}
751 	}
752 
753 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
754 	if (!status) {
755 		/* Update the current configuration to reflect events enabled.
756 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
757 		 * logging mode is enabled for the device. They do not reflect
758 		 * actual modules being enabled to emit log messages. So, their
759 		 * values remain unchanged even when all modules are disabled.
760 		 */
761 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
762 
763 		hw->fw_log.actv_evnts = actv_evnts;
764 		for (i = 0; i < cnt; i++) {
765 			u16 v, m;
766 
767 			if (!enable) {
768 				/* When disabling all FW logging events as part
769 				 * of device's de-initialization, the original
770 				 * configurations are retained, and can be used
771 				 * to reconfigure FW logging later if the device
772 				 * is re-initialized.
773 				 */
774 				hw->fw_log.evnts[i].cur = 0;
775 				continue;
776 			}
777 
778 			v = le16_to_cpu(data[i]);
779 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
780 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
781 		}
782 	}
783 
784 out:
785 	if (data)
786 		devm_kfree(ice_hw_to_dev(hw), data);
787 
788 	return status;
789 }
790 
791 /**
792  * ice_output_fw_log
793  * @hw: pointer to the HW struct
794  * @desc: pointer to the AQ message descriptor
795  * @buf: pointer to the buffer accompanying the AQ message
796  *
797  * Formats a FW Log message and outputs it via the standard driver logs.
798  */
799 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
800 {
801 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
802 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
803 			le16_to_cpu(desc->datalen));
804 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
805 }
806 
807 /**
808  * ice_get_itr_intrl_gran
809  * @hw: pointer to the HW struct
810  *
811  * Determines the ITR/INTRL granularities based on the maximum aggregate
812  * bandwidth according to the device's configuration during power-on.
813  */
814 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
815 {
816 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
817 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
818 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
819 
820 	switch (max_agg_bw) {
821 	case ICE_MAX_AGG_BW_200G:
822 	case ICE_MAX_AGG_BW_100G:
823 	case ICE_MAX_AGG_BW_50G:
824 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
825 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
826 		break;
827 	case ICE_MAX_AGG_BW_25G:
828 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
829 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
830 		break;
831 	}
832 }
833 
834 /**
835  * ice_init_hw - main hardware initialization routine
836  * @hw: pointer to the hardware structure
837  */
838 enum ice_status ice_init_hw(struct ice_hw *hw)
839 {
840 	struct ice_aqc_get_phy_caps_data *pcaps;
841 	enum ice_status status;
842 	u16 mac_buf_len;
843 	void *mac_buf;
844 
845 	/* Set MAC type based on DeviceID */
846 	status = ice_set_mac_type(hw);
847 	if (status)
848 		return status;
849 
850 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
851 			 PF_FUNC_RID_FUNC_NUM_M) >>
852 		PF_FUNC_RID_FUNC_NUM_S;
853 
854 	status = ice_reset(hw, ICE_RESET_PFR);
855 	if (status)
856 		return status;
857 
858 	ice_get_itr_intrl_gran(hw);
859 
860 	status = ice_create_all_ctrlq(hw);
861 	if (status)
862 		goto err_unroll_cqinit;
863 
864 	/* Enable FW logging. Not fatal if this fails. */
865 	status = ice_cfg_fw_log(hw, true);
866 	if (status)
867 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
868 
869 	status = ice_clear_pf_cfg(hw);
870 	if (status)
871 		goto err_unroll_cqinit;
872 
873 	/* Set bit to enable Flow Director filters */
874 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
875 	INIT_LIST_HEAD(&hw->fdir_list_head);
876 
877 	ice_clear_pxe_mode(hw);
878 
879 	status = ice_init_nvm(hw);
880 	if (status)
881 		goto err_unroll_cqinit;
882 
883 	status = ice_get_caps(hw);
884 	if (status)
885 		goto err_unroll_cqinit;
886 
887 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
888 				     sizeof(*hw->port_info), GFP_KERNEL);
889 	if (!hw->port_info) {
890 		status = ICE_ERR_NO_MEMORY;
891 		goto err_unroll_cqinit;
892 	}
893 
894 	/* set the back pointer to HW */
895 	hw->port_info->hw = hw;
896 
897 	/* Initialize port_info struct with switch configuration data */
898 	status = ice_get_initial_sw_cfg(hw);
899 	if (status)
900 		goto err_unroll_alloc;
901 
902 	hw->evb_veb = true;
903 
904 	/* Query the allocated resources for Tx scheduler */
905 	status = ice_sched_query_res_alloc(hw);
906 	if (status) {
907 		ice_debug(hw, ICE_DBG_SCHED,
908 			  "Failed to get scheduler allocated resources\n");
909 		goto err_unroll_alloc;
910 	}
911 
912 	/* Initialize port_info struct with scheduler data */
913 	status = ice_sched_init_port(hw->port_info);
914 	if (status)
915 		goto err_unroll_sched;
916 
917 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
918 	if (!pcaps) {
919 		status = ICE_ERR_NO_MEMORY;
920 		goto err_unroll_sched;
921 	}
922 
923 	/* Initialize port_info struct with PHY capabilities */
924 	status = ice_aq_get_phy_caps(hw->port_info, false,
925 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
926 	devm_kfree(ice_hw_to_dev(hw), pcaps);
927 	if (status)
928 		goto err_unroll_sched;
929 
930 	/* Initialize port_info struct with link information */
931 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
932 	if (status)
933 		goto err_unroll_sched;
934 
935 	/* need a valid SW entry point to build a Tx tree */
936 	if (!hw->sw_entry_point_layer) {
937 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
938 		status = ICE_ERR_CFG;
939 		goto err_unroll_sched;
940 	}
941 	INIT_LIST_HEAD(&hw->agg_list);
942 	/* Initialize max burst size */
943 	if (!hw->max_burst_size)
944 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
945 
946 	status = ice_init_fltr_mgmt_struct(hw);
947 	if (status)
948 		goto err_unroll_sched;
949 
950 	/* Get MAC information */
951 	/* A single port can report up to two (LAN and WoL) addresses */
952 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
953 			       sizeof(struct ice_aqc_manage_mac_read_resp),
954 			       GFP_KERNEL);
955 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
956 
957 	if (!mac_buf) {
958 		status = ICE_ERR_NO_MEMORY;
959 		goto err_unroll_fltr_mgmt_struct;
960 	}
961 
962 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
963 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
964 
965 	if (status)
966 		goto err_unroll_fltr_mgmt_struct;
967 	/* enable jumbo frame support at MAC level */
968 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
969 	if (status)
970 		goto err_unroll_fltr_mgmt_struct;
971 	/* Obtain counter base index which would be used by flow director */
972 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
973 	if (status)
974 		goto err_unroll_fltr_mgmt_struct;
975 	status = ice_init_hw_tbls(hw);
976 	if (status)
977 		goto err_unroll_fltr_mgmt_struct;
978 	mutex_init(&hw->tnl_lock);
979 	return 0;
980 
981 err_unroll_fltr_mgmt_struct:
982 	ice_cleanup_fltr_mgmt_struct(hw);
983 err_unroll_sched:
984 	ice_sched_cleanup_all(hw);
985 err_unroll_alloc:
986 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
987 err_unroll_cqinit:
988 	ice_destroy_all_ctrlq(hw);
989 	return status;
990 }
991 
992 /**
993  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
994  * @hw: pointer to the hardware structure
995  *
996  * This should be called only during nominal operation, not as a result of
997  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
998  * applicable initializations if it fails for any reason.
999  */
1000 void ice_deinit_hw(struct ice_hw *hw)
1001 {
1002 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1003 	ice_cleanup_fltr_mgmt_struct(hw);
1004 
1005 	ice_sched_cleanup_all(hw);
1006 	ice_sched_clear_agg(hw);
1007 	ice_free_seg(hw);
1008 	ice_free_hw_tbls(hw);
1009 	mutex_destroy(&hw->tnl_lock);
1010 
1011 	if (hw->port_info) {
1012 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1013 		hw->port_info = NULL;
1014 	}
1015 
1016 	/* Attempt to disable FW logging before shutting down control queues */
1017 	ice_cfg_fw_log(hw, false);
1018 	ice_destroy_all_ctrlq(hw);
1019 
1020 	/* Clear VSI contexts if not already cleared */
1021 	ice_clear_all_vsi_ctx(hw);
1022 }
1023 
1024 /**
1025  * ice_check_reset - Check to see if a global reset is complete
1026  * @hw: pointer to the hardware structure
1027  */
1028 enum ice_status ice_check_reset(struct ice_hw *hw)
1029 {
1030 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1031 
1032 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1033 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1034 	 * Add 1sec for outstanding AQ commands that can take a long time.
1035 	 */
1036 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1037 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1038 
1039 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1040 		mdelay(100);
1041 		reg = rd32(hw, GLGEN_RSTAT);
1042 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1043 			break;
1044 	}
1045 
1046 	if (cnt == grst_timeout) {
1047 		ice_debug(hw, ICE_DBG_INIT,
1048 			  "Global reset polling failed to complete.\n");
1049 		return ICE_ERR_RESET_FAILED;
1050 	}
1051 
1052 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1053 				 GLNVM_ULD_PCIER_DONE_1_M |\
1054 				 GLNVM_ULD_CORER_DONE_M |\
1055 				 GLNVM_ULD_GLOBR_DONE_M |\
1056 				 GLNVM_ULD_POR_DONE_M |\
1057 				 GLNVM_ULD_POR_DONE_1_M |\
1058 				 GLNVM_ULD_PCIER_DONE_2_M)
1059 
1060 	uld_mask = ICE_RESET_DONE_MASK;
1061 
1062 	/* Device is Active; check Global Reset processes are done */
1063 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1064 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1065 		if (reg == uld_mask) {
1066 			ice_debug(hw, ICE_DBG_INIT,
1067 				  "Global reset processes done. %d\n", cnt);
1068 			break;
1069 		}
1070 		mdelay(10);
1071 	}
1072 
1073 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1074 		ice_debug(hw, ICE_DBG_INIT,
1075 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1076 			  reg);
1077 		return ICE_ERR_RESET_FAILED;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 /**
1084  * ice_pf_reset - Reset the PF
1085  * @hw: pointer to the hardware structure
1086  *
1087  * If a global reset has been triggered, this function checks
1088  * for its completion and then issues the PF reset
1089  */
1090 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1091 {
1092 	u32 cnt, reg;
1093 
1094 	/* If at function entry a global reset was already in progress, i.e.
1095 	 * state is not 'device active' or any of the reset done bits are not
1096 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1097 	 * global reset is done.
1098 	 */
1099 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1100 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1101 		/* poll on global reset currently in progress until done */
1102 		if (ice_check_reset(hw))
1103 			return ICE_ERR_RESET_FAILED;
1104 
1105 		return 0;
1106 	}
1107 
1108 	/* Reset the PF */
1109 	reg = rd32(hw, PFGEN_CTRL);
1110 
1111 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1112 
1113 	/* Wait for the PFR to complete. The wait time is the global config lock
1114 	 * timeout plus the PFR timeout which will account for a possible reset
1115 	 * that is occurring during a download package operation.
1116 	 */
1117 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1118 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1119 		reg = rd32(hw, PFGEN_CTRL);
1120 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1121 			break;
1122 
1123 		mdelay(1);
1124 	}
1125 
1126 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1127 		ice_debug(hw, ICE_DBG_INIT,
1128 			  "PF reset polling failed to complete.\n");
1129 		return ICE_ERR_RESET_FAILED;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * ice_reset - Perform different types of reset
1137  * @hw: pointer to the hardware structure
1138  * @req: reset request
1139  *
1140  * This function triggers a reset as specified by the req parameter.
1141  *
1142  * Note:
1143  * If anything other than a PF reset is triggered, PXE mode is restored.
1144  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1145  * interface has been restored in the rebuild flow.
1146  */
1147 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1148 {
1149 	u32 val = 0;
1150 
1151 	switch (req) {
1152 	case ICE_RESET_PFR:
1153 		return ice_pf_reset(hw);
1154 	case ICE_RESET_CORER:
1155 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1156 		val = GLGEN_RTRIG_CORER_M;
1157 		break;
1158 	case ICE_RESET_GLOBR:
1159 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1160 		val = GLGEN_RTRIG_GLOBR_M;
1161 		break;
1162 	default:
1163 		return ICE_ERR_PARAM;
1164 	}
1165 
1166 	val |= rd32(hw, GLGEN_RTRIG);
1167 	wr32(hw, GLGEN_RTRIG, val);
1168 	ice_flush(hw);
1169 
1170 	/* wait for the FW to be ready */
1171 	return ice_check_reset(hw);
1172 }
1173 
1174 /**
1175  * ice_copy_rxq_ctx_to_hw
1176  * @hw: pointer to the hardware structure
1177  * @ice_rxq_ctx: pointer to the rxq context
1178  * @rxq_index: the index of the Rx queue
1179  *
1180  * Copies rxq context from dense structure to HW register space
1181  */
1182 static enum ice_status
1183 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1184 {
1185 	u8 i;
1186 
1187 	if (!ice_rxq_ctx)
1188 		return ICE_ERR_BAD_PTR;
1189 
1190 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1191 		return ICE_ERR_PARAM;
1192 
1193 	/* Copy each dword separately to HW */
1194 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1195 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1196 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1197 
1198 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1199 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /* LAN Rx Queue Context */
1206 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1207 	/* Field		Width	LSB */
1208 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1209 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1210 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1211 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1212 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1213 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1214 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1215 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1216 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1217 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1218 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1219 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1220 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1221 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1222 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1223 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1224 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1225 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1226 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1227 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1228 	{ 0 }
1229 };
1230 
1231 /**
1232  * ice_write_rxq_ctx
1233  * @hw: pointer to the hardware structure
1234  * @rlan_ctx: pointer to the rxq context
1235  * @rxq_index: the index of the Rx queue
1236  *
1237  * Converts rxq context from sparse to dense structure and then writes
1238  * it to HW register space and enables the hardware to prefetch descriptors
1239  * instead of only fetching them on demand
1240  */
1241 enum ice_status
1242 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1243 		  u32 rxq_index)
1244 {
1245 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1246 
1247 	if (!rlan_ctx)
1248 		return ICE_ERR_BAD_PTR;
1249 
1250 	rlan_ctx->prefena = 1;
1251 
1252 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1253 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1254 }
1255 
1256 /* LAN Tx Queue Context */
1257 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1258 				    /* Field			Width	LSB */
1259 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1260 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1261 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1262 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1263 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1264 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1265 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1266 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1267 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1268 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1269 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1270 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1271 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1272 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1273 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1274 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1275 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1276 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1277 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1278 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1279 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1280 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1281 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1282 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1283 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1284 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1285 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1286 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1287 	{ 0 }
1288 };
1289 
1290 /* FW Admin Queue command wrappers */
1291 
1292 /* Software lock/mutex that is meant to be held while the Global Config Lock
1293  * in firmware is acquired by the software to prevent most (but not all) types
1294  * of AQ commands from being sent to FW
1295  */
1296 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1297 
1298 /**
1299  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1300  * @hw: pointer to the HW struct
1301  * @desc: descriptor describing the command
1302  * @buf: buffer to use for indirect commands (NULL for direct commands)
1303  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1304  * @cd: pointer to command details structure
1305  *
1306  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1307  */
1308 enum ice_status
1309 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1310 		u16 buf_size, struct ice_sq_cd *cd)
1311 {
1312 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1313 	bool lock_acquired = false;
1314 	enum ice_status status;
1315 
1316 	/* When a package download is in process (i.e. when the firmware's
1317 	 * Global Configuration Lock resource is held), only the Download
1318 	 * Package, Get Version, Get Package Info List and Release Resource
1319 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1320 	 * allowed; all others must block until the package download completes
1321 	 * and the Global Config Lock is released.  See also
1322 	 * ice_acquire_global_cfg_lock().
1323 	 */
1324 	switch (le16_to_cpu(desc->opcode)) {
1325 	case ice_aqc_opc_download_pkg:
1326 	case ice_aqc_opc_get_pkg_info_list:
1327 	case ice_aqc_opc_get_ver:
1328 		break;
1329 	case ice_aqc_opc_release_res:
1330 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1331 			break;
1332 		fallthrough;
1333 	default:
1334 		mutex_lock(&ice_global_cfg_lock_sw);
1335 		lock_acquired = true;
1336 		break;
1337 	}
1338 
1339 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1340 	if (lock_acquired)
1341 		mutex_unlock(&ice_global_cfg_lock_sw);
1342 
1343 	return status;
1344 }
1345 
1346 /**
1347  * ice_aq_get_fw_ver
1348  * @hw: pointer to the HW struct
1349  * @cd: pointer to command details structure or NULL
1350  *
1351  * Get the firmware version (0x0001) from the admin queue commands
1352  */
1353 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1354 {
1355 	struct ice_aqc_get_ver *resp;
1356 	struct ice_aq_desc desc;
1357 	enum ice_status status;
1358 
1359 	resp = &desc.params.get_ver;
1360 
1361 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1362 
1363 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1364 
1365 	if (!status) {
1366 		hw->fw_branch = resp->fw_branch;
1367 		hw->fw_maj_ver = resp->fw_major;
1368 		hw->fw_min_ver = resp->fw_minor;
1369 		hw->fw_patch = resp->fw_patch;
1370 		hw->fw_build = le32_to_cpu(resp->fw_build);
1371 		hw->api_branch = resp->api_branch;
1372 		hw->api_maj_ver = resp->api_major;
1373 		hw->api_min_ver = resp->api_minor;
1374 		hw->api_patch = resp->api_patch;
1375 	}
1376 
1377 	return status;
1378 }
1379 
1380 /**
1381  * ice_aq_send_driver_ver
1382  * @hw: pointer to the HW struct
1383  * @dv: driver's major, minor version
1384  * @cd: pointer to command details structure or NULL
1385  *
1386  * Send the driver version (0x0002) to the firmware
1387  */
1388 enum ice_status
1389 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1390 		       struct ice_sq_cd *cd)
1391 {
1392 	struct ice_aqc_driver_ver *cmd;
1393 	struct ice_aq_desc desc;
1394 	u16 len;
1395 
1396 	cmd = &desc.params.driver_ver;
1397 
1398 	if (!dv)
1399 		return ICE_ERR_PARAM;
1400 
1401 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1402 
1403 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1404 	cmd->major_ver = dv->major_ver;
1405 	cmd->minor_ver = dv->minor_ver;
1406 	cmd->build_ver = dv->build_ver;
1407 	cmd->subbuild_ver = dv->subbuild_ver;
1408 
1409 	len = 0;
1410 	while (len < sizeof(dv->driver_string) &&
1411 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1412 		len++;
1413 
1414 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1415 }
1416 
1417 /**
1418  * ice_aq_q_shutdown
1419  * @hw: pointer to the HW struct
1420  * @unloading: is the driver unloading itself
1421  *
1422  * Tell the Firmware that we're shutting down the AdminQ and whether
1423  * or not the driver is unloading as well (0x0003).
1424  */
1425 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1426 {
1427 	struct ice_aqc_q_shutdown *cmd;
1428 	struct ice_aq_desc desc;
1429 
1430 	cmd = &desc.params.q_shutdown;
1431 
1432 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1433 
1434 	if (unloading)
1435 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1436 
1437 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1438 }
1439 
1440 /**
1441  * ice_aq_req_res
1442  * @hw: pointer to the HW struct
1443  * @res: resource ID
1444  * @access: access type
1445  * @sdp_number: resource number
1446  * @timeout: the maximum time in ms that the driver may hold the resource
1447  * @cd: pointer to command details structure or NULL
1448  *
1449  * Requests common resource using the admin queue commands (0x0008).
1450  * When attempting to acquire the Global Config Lock, the driver can
1451  * learn of three states:
1452  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1453  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1454  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1455  *                          successfully downloaded the package; the driver does
1456  *                          not have to download the package and can continue
1457  *                          loading
1458  *
1459  * Note that if the caller is in an acquire lock, perform action, release lock
1460  * phase of operation, it is possible that the FW may detect a timeout and issue
1461  * a CORER. In this case, the driver will receive a CORER interrupt and will
1462  * have to determine its cause. The calling thread that is handling this flow
1463  * will likely get an error propagated back to it indicating the Download
1464  * Package, Update Package or the Release Resource AQ commands timed out.
1465  */
1466 static enum ice_status
1467 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1468 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1469 	       struct ice_sq_cd *cd)
1470 {
1471 	struct ice_aqc_req_res *cmd_resp;
1472 	struct ice_aq_desc desc;
1473 	enum ice_status status;
1474 
1475 	cmd_resp = &desc.params.res_owner;
1476 
1477 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1478 
1479 	cmd_resp->res_id = cpu_to_le16(res);
1480 	cmd_resp->access_type = cpu_to_le16(access);
1481 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1482 	cmd_resp->timeout = cpu_to_le32(*timeout);
1483 	*timeout = 0;
1484 
1485 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1486 
1487 	/* The completion specifies the maximum time in ms that the driver
1488 	 * may hold the resource in the Timeout field.
1489 	 */
1490 
1491 	/* Global config lock response utilizes an additional status field.
1492 	 *
1493 	 * If the Global config lock resource is held by some other driver, the
1494 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1495 	 * and the timeout field indicates the maximum time the current owner
1496 	 * of the resource has to free it.
1497 	 */
1498 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1499 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1500 			*timeout = le32_to_cpu(cmd_resp->timeout);
1501 			return 0;
1502 		} else if (le16_to_cpu(cmd_resp->status) ==
1503 			   ICE_AQ_RES_GLBL_IN_PROG) {
1504 			*timeout = le32_to_cpu(cmd_resp->timeout);
1505 			return ICE_ERR_AQ_ERROR;
1506 		} else if (le16_to_cpu(cmd_resp->status) ==
1507 			   ICE_AQ_RES_GLBL_DONE) {
1508 			return ICE_ERR_AQ_NO_WORK;
1509 		}
1510 
1511 		/* invalid FW response, force a timeout immediately */
1512 		*timeout = 0;
1513 		return ICE_ERR_AQ_ERROR;
1514 	}
1515 
1516 	/* If the resource is held by some other driver, the command completes
1517 	 * with a busy return value and the timeout field indicates the maximum
1518 	 * time the current owner of the resource has to free it.
1519 	 */
1520 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1521 		*timeout = le32_to_cpu(cmd_resp->timeout);
1522 
1523 	return status;
1524 }
1525 
1526 /**
1527  * ice_aq_release_res
1528  * @hw: pointer to the HW struct
1529  * @res: resource ID
1530  * @sdp_number: resource number
1531  * @cd: pointer to command details structure or NULL
1532  *
1533  * release common resource using the admin queue commands (0x0009)
1534  */
1535 static enum ice_status
1536 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1537 		   struct ice_sq_cd *cd)
1538 {
1539 	struct ice_aqc_req_res *cmd;
1540 	struct ice_aq_desc desc;
1541 
1542 	cmd = &desc.params.res_owner;
1543 
1544 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1545 
1546 	cmd->res_id = cpu_to_le16(res);
1547 	cmd->res_number = cpu_to_le32(sdp_number);
1548 
1549 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1550 }
1551 
1552 /**
1553  * ice_acquire_res
1554  * @hw: pointer to the HW structure
1555  * @res: resource ID
1556  * @access: access type (read or write)
1557  * @timeout: timeout in milliseconds
1558  *
1559  * This function will attempt to acquire the ownership of a resource.
1560  */
1561 enum ice_status
1562 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1563 		enum ice_aq_res_access_type access, u32 timeout)
1564 {
1565 #define ICE_RES_POLLING_DELAY_MS	10
1566 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1567 	u32 time_left = timeout;
1568 	enum ice_status status;
1569 
1570 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1571 
1572 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1573 	 * previously acquired the resource and performed any necessary updates;
1574 	 * in this case the caller does not obtain the resource and has no
1575 	 * further work to do.
1576 	 */
1577 	if (status == ICE_ERR_AQ_NO_WORK)
1578 		goto ice_acquire_res_exit;
1579 
1580 	if (status)
1581 		ice_debug(hw, ICE_DBG_RES,
1582 			  "resource %d acquire type %d failed.\n", res, access);
1583 
1584 	/* If necessary, poll until the current lock owner timeouts */
1585 	timeout = time_left;
1586 	while (status && timeout && time_left) {
1587 		mdelay(delay);
1588 		timeout = (timeout > delay) ? timeout - delay : 0;
1589 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1590 
1591 		if (status == ICE_ERR_AQ_NO_WORK)
1592 			/* lock free, but no work to do */
1593 			break;
1594 
1595 		if (!status)
1596 			/* lock acquired */
1597 			break;
1598 	}
1599 	if (status && status != ICE_ERR_AQ_NO_WORK)
1600 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1601 
1602 ice_acquire_res_exit:
1603 	if (status == ICE_ERR_AQ_NO_WORK) {
1604 		if (access == ICE_RES_WRITE)
1605 			ice_debug(hw, ICE_DBG_RES,
1606 				  "resource indicates no work to do.\n");
1607 		else
1608 			ice_debug(hw, ICE_DBG_RES,
1609 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1610 	}
1611 	return status;
1612 }
1613 
1614 /**
1615  * ice_release_res
1616  * @hw: pointer to the HW structure
1617  * @res: resource ID
1618  *
1619  * This function will release a resource using the proper Admin Command.
1620  */
1621 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1622 {
1623 	enum ice_status status;
1624 	u32 total_delay = 0;
1625 
1626 	status = ice_aq_release_res(hw, res, 0, NULL);
1627 
1628 	/* there are some rare cases when trying to release the resource
1629 	 * results in an admin queue timeout, so handle them correctly
1630 	 */
1631 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1632 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1633 		mdelay(1);
1634 		status = ice_aq_release_res(hw, res, 0, NULL);
1635 		total_delay++;
1636 	}
1637 }
1638 
1639 /**
1640  * ice_aq_alloc_free_res - command to allocate/free resources
1641  * @hw: pointer to the HW struct
1642  * @num_entries: number of resource entries in buffer
1643  * @buf: Indirect buffer to hold data parameters and response
1644  * @buf_size: size of buffer for indirect commands
1645  * @opc: pass in the command opcode
1646  * @cd: pointer to command details structure or NULL
1647  *
1648  * Helper function to allocate/free resources using the admin queue commands
1649  */
1650 enum ice_status
1651 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1652 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1653 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1654 {
1655 	struct ice_aqc_alloc_free_res_cmd *cmd;
1656 	struct ice_aq_desc desc;
1657 
1658 	cmd = &desc.params.sw_res_ctrl;
1659 
1660 	if (!buf)
1661 		return ICE_ERR_PARAM;
1662 
1663 	if (buf_size < (num_entries * sizeof(buf->elem[0])))
1664 		return ICE_ERR_PARAM;
1665 
1666 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1667 
1668 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1669 
1670 	cmd->num_entries = cpu_to_le16(num_entries);
1671 
1672 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1673 }
1674 
1675 /**
1676  * ice_alloc_hw_res - allocate resource
1677  * @hw: pointer to the HW struct
1678  * @type: type of resource
1679  * @num: number of resources to allocate
1680  * @btm: allocate from bottom
1681  * @res: pointer to array that will receive the resources
1682  */
1683 enum ice_status
1684 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1685 {
1686 	struct ice_aqc_alloc_free_res_elem *buf;
1687 	enum ice_status status;
1688 	u16 buf_len;
1689 
1690 	buf_len = struct_size(buf, elem, num);
1691 	buf = kzalloc(buf_len, GFP_KERNEL);
1692 	if (!buf)
1693 		return ICE_ERR_NO_MEMORY;
1694 
1695 	/* Prepare buffer to allocate resource. */
1696 	buf->num_elems = cpu_to_le16(num);
1697 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1698 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1699 	if (btm)
1700 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1701 
1702 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1703 				       ice_aqc_opc_alloc_res, NULL);
1704 	if (status)
1705 		goto ice_alloc_res_exit;
1706 
1707 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1708 
1709 ice_alloc_res_exit:
1710 	kfree(buf);
1711 	return status;
1712 }
1713 
1714 /**
1715  * ice_free_hw_res - free allocated HW resource
1716  * @hw: pointer to the HW struct
1717  * @type: type of resource to free
1718  * @num: number of resources
1719  * @res: pointer to array that contains the resources to free
1720  */
1721 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1722 {
1723 	struct ice_aqc_alloc_free_res_elem *buf;
1724 	enum ice_status status;
1725 	u16 buf_len;
1726 
1727 	buf_len = struct_size(buf, elem, num);
1728 	buf = kzalloc(buf_len, GFP_KERNEL);
1729 	if (!buf)
1730 		return ICE_ERR_NO_MEMORY;
1731 
1732 	/* Prepare buffer to free resource. */
1733 	buf->num_elems = cpu_to_le16(num);
1734 	buf->res_type = cpu_to_le16(type);
1735 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1736 
1737 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1738 				       ice_aqc_opc_free_res, NULL);
1739 	if (status)
1740 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1741 
1742 	kfree(buf);
1743 	return status;
1744 }
1745 
1746 /**
1747  * ice_get_num_per_func - determine number of resources per PF
1748  * @hw: pointer to the HW structure
1749  * @max: value to be evenly split between each PF
1750  *
1751  * Determine the number of valid functions by going through the bitmap returned
1752  * from parsing capabilities and use this to calculate the number of resources
1753  * per PF based on the max value passed in.
1754  */
1755 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1756 {
1757 	u8 funcs;
1758 
1759 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1760 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1761 			 ICE_CAPS_VALID_FUNCS_M);
1762 
1763 	if (!funcs)
1764 		return 0;
1765 
1766 	return max / funcs;
1767 }
1768 
1769 /**
1770  * ice_parse_common_caps - parse common device/function capabilities
1771  * @hw: pointer to the HW struct
1772  * @caps: pointer to common capabilities structure
1773  * @elem: the capability element to parse
1774  * @prefix: message prefix for tracing capabilities
1775  *
1776  * Given a capability element, extract relevant details into the common
1777  * capability structure.
1778  *
1779  * Returns: true if the capability matches one of the common capability ids,
1780  * false otherwise.
1781  */
1782 static bool
1783 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1784 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1785 {
1786 	u32 logical_id = le32_to_cpu(elem->logical_id);
1787 	u32 phys_id = le32_to_cpu(elem->phys_id);
1788 	u32 number = le32_to_cpu(elem->number);
1789 	u16 cap = le16_to_cpu(elem->cap);
1790 	bool found = true;
1791 
1792 	switch (cap) {
1793 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1794 		caps->valid_functions = number;
1795 		ice_debug(hw, ICE_DBG_INIT,
1796 			  "%s: valid_functions (bitmap) = %d\n", prefix,
1797 			  caps->valid_functions);
1798 		break;
1799 	case ICE_AQC_CAPS_SRIOV:
1800 		caps->sr_iov_1_1 = (number == 1);
1801 		ice_debug(hw, ICE_DBG_INIT,
1802 			  "%s: sr_iov_1_1 = %d\n", prefix,
1803 			  caps->sr_iov_1_1);
1804 		break;
1805 	case ICE_AQC_CAPS_DCB:
1806 		caps->dcb = (number == 1);
1807 		caps->active_tc_bitmap = logical_id;
1808 		caps->maxtc = phys_id;
1809 		ice_debug(hw, ICE_DBG_INIT,
1810 			  "%s: dcb = %d\n", prefix, caps->dcb);
1811 		ice_debug(hw, ICE_DBG_INIT,
1812 			  "%s: active_tc_bitmap = %d\n", prefix,
1813 			  caps->active_tc_bitmap);
1814 		ice_debug(hw, ICE_DBG_INIT,
1815 			  "%s: maxtc = %d\n", prefix, caps->maxtc);
1816 		break;
1817 	case ICE_AQC_CAPS_RSS:
1818 		caps->rss_table_size = number;
1819 		caps->rss_table_entry_width = logical_id;
1820 		ice_debug(hw, ICE_DBG_INIT,
1821 			  "%s: rss_table_size = %d\n", prefix,
1822 			  caps->rss_table_size);
1823 		ice_debug(hw, ICE_DBG_INIT,
1824 			  "%s: rss_table_entry_width = %d\n", prefix,
1825 			  caps->rss_table_entry_width);
1826 		break;
1827 	case ICE_AQC_CAPS_RXQS:
1828 		caps->num_rxq = number;
1829 		caps->rxq_first_id = phys_id;
1830 		ice_debug(hw, ICE_DBG_INIT,
1831 			  "%s: num_rxq = %d\n", prefix,
1832 			  caps->num_rxq);
1833 		ice_debug(hw, ICE_DBG_INIT,
1834 			  "%s: rxq_first_id = %d\n", prefix,
1835 			  caps->rxq_first_id);
1836 		break;
1837 	case ICE_AQC_CAPS_TXQS:
1838 		caps->num_txq = number;
1839 		caps->txq_first_id = phys_id;
1840 		ice_debug(hw, ICE_DBG_INIT,
1841 			  "%s: num_txq = %d\n", prefix,
1842 			  caps->num_txq);
1843 		ice_debug(hw, ICE_DBG_INIT,
1844 			  "%s: txq_first_id = %d\n", prefix,
1845 			  caps->txq_first_id);
1846 		break;
1847 	case ICE_AQC_CAPS_MSIX:
1848 		caps->num_msix_vectors = number;
1849 		caps->msix_vector_first_id = phys_id;
1850 		ice_debug(hw, ICE_DBG_INIT,
1851 			  "%s: num_msix_vectors = %d\n", prefix,
1852 			  caps->num_msix_vectors);
1853 		ice_debug(hw, ICE_DBG_INIT,
1854 			  "%s: msix_vector_first_id = %d\n", prefix,
1855 			  caps->msix_vector_first_id);
1856 		break;
1857 	case ICE_AQC_CAPS_PENDING_NVM_VER:
1858 		caps->nvm_update_pending_nvm = true;
1859 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1860 		break;
1861 	case ICE_AQC_CAPS_PENDING_OROM_VER:
1862 		caps->nvm_update_pending_orom = true;
1863 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
1864 		break;
1865 	case ICE_AQC_CAPS_PENDING_NET_VER:
1866 		caps->nvm_update_pending_netlist = true;
1867 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
1868 		break;
1869 	case ICE_AQC_CAPS_NVM_MGMT:
1870 		caps->nvm_unified_update =
1871 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1872 			true : false;
1873 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1874 			  caps->nvm_unified_update);
1875 		break;
1876 	case ICE_AQC_CAPS_MAX_MTU:
1877 		caps->max_mtu = number;
1878 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1879 			  prefix, caps->max_mtu);
1880 		break;
1881 	default:
1882 		/* Not one of the recognized common capabilities */
1883 		found = false;
1884 	}
1885 
1886 	return found;
1887 }
1888 
1889 /**
1890  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1891  * @hw: pointer to the HW structure
1892  * @caps: pointer to capabilities structure to fix
1893  *
1894  * Re-calculate the capabilities that are dependent on the number of physical
1895  * ports; i.e. some features are not supported or function differently on
1896  * devices with more than 4 ports.
1897  */
1898 static void
1899 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1900 {
1901 	/* This assumes device capabilities are always scanned before function
1902 	 * capabilities during the initialization flow.
1903 	 */
1904 	if (hw->dev_caps.num_funcs > 4) {
1905 		/* Max 4 TCs per port */
1906 		caps->maxtc = 4;
1907 		ice_debug(hw, ICE_DBG_INIT,
1908 			  "reducing maxtc to %d (based on #ports)\n",
1909 			  caps->maxtc);
1910 	}
1911 }
1912 
1913 /**
1914  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1915  * @hw: pointer to the HW struct
1916  * @func_p: pointer to function capabilities structure
1917  * @cap: pointer to the capability element to parse
1918  *
1919  * Extract function capabilities for ICE_AQC_CAPS_VF.
1920  */
1921 static void
1922 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1923 		       struct ice_aqc_list_caps_elem *cap)
1924 {
1925 	u32 logical_id = le32_to_cpu(cap->logical_id);
1926 	u32 number = le32_to_cpu(cap->number);
1927 
1928 	func_p->num_allocd_vfs = number;
1929 	func_p->vf_base_id = logical_id;
1930 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1931 		  func_p->num_allocd_vfs);
1932 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1933 		  func_p->vf_base_id);
1934 }
1935 
1936 /**
1937  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
1938  * @hw: pointer to the HW struct
1939  * @func_p: pointer to function capabilities structure
1940  * @cap: pointer to the capability element to parse
1941  *
1942  * Extract function capabilities for ICE_AQC_CAPS_VSI.
1943  */
1944 static void
1945 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1946 			struct ice_aqc_list_caps_elem *cap)
1947 {
1948 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
1949 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
1950 		  le32_to_cpu(cap->number));
1951 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
1952 		  func_p->guar_num_vsi);
1953 }
1954 
1955 /**
1956  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
1957  * @hw: pointer to the HW struct
1958  * @func_p: pointer to function capabilities structure
1959  *
1960  * Extract function capabilities for ICE_AQC_CAPS_FD.
1961  */
1962 static void
1963 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
1964 {
1965 	u32 reg_val, val;
1966 
1967 	reg_val = rd32(hw, GLQF_FD_SIZE);
1968 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1969 		GLQF_FD_SIZE_FD_GSIZE_S;
1970 	func_p->fd_fltr_guar =
1971 		ice_get_num_per_func(hw, val);
1972 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1973 		GLQF_FD_SIZE_FD_BSIZE_S;
1974 	func_p->fd_fltr_best_effort = val;
1975 
1976 	ice_debug(hw, ICE_DBG_INIT,
1977 		  "func caps: fd_fltr_guar = %d\n",
1978 		  func_p->fd_fltr_guar);
1979 	ice_debug(hw, ICE_DBG_INIT,
1980 		  "func caps: fd_fltr_best_effort = %d\n",
1981 		  func_p->fd_fltr_best_effort);
1982 }
1983 
1984 /**
1985  * ice_parse_func_caps - Parse function capabilities
1986  * @hw: pointer to the HW struct
1987  * @func_p: pointer to function capabilities structure
1988  * @buf: buffer containing the function capability records
1989  * @cap_count: the number of capabilities
1990  *
1991  * Helper function to parse function (0x000A) capabilities list. For
1992  * capabilities shared between device and function, this relies on
1993  * ice_parse_common_caps.
1994  *
1995  * Loop through the list of provided capabilities and extract the relevant
1996  * data into the function capabilities structured.
1997  */
1998 static void
1999 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2000 		    void *buf, u32 cap_count)
2001 {
2002 	struct ice_aqc_list_caps_elem *cap_resp;
2003 	u32 i;
2004 
2005 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2006 
2007 	memset(func_p, 0, sizeof(*func_p));
2008 
2009 	for (i = 0; i < cap_count; i++) {
2010 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2011 		bool found;
2012 
2013 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2014 					      &cap_resp[i], "func caps");
2015 
2016 		switch (cap) {
2017 		case ICE_AQC_CAPS_VF:
2018 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2019 			break;
2020 		case ICE_AQC_CAPS_VSI:
2021 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2022 			break;
2023 		case ICE_AQC_CAPS_FD:
2024 			ice_parse_fdir_func_caps(hw, func_p);
2025 			break;
2026 		default:
2027 			/* Don't list common capabilities as unknown */
2028 			if (!found)
2029 				ice_debug(hw, ICE_DBG_INIT,
2030 					  "func caps: unknown capability[%d]: 0x%x\n",
2031 					  i, cap);
2032 			break;
2033 		}
2034 	}
2035 
2036 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2037 }
2038 
2039 /**
2040  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2041  * @hw: pointer to the HW struct
2042  * @dev_p: pointer to device capabilities structure
2043  * @cap: capability element to parse
2044  *
2045  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2046  */
2047 static void
2048 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2049 			      struct ice_aqc_list_caps_elem *cap)
2050 {
2051 	u32 number = le32_to_cpu(cap->number);
2052 
2053 	dev_p->num_funcs = hweight32(number);
2054 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2055 		  dev_p->num_funcs);
2056 }
2057 
2058 /**
2059  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2060  * @hw: pointer to the HW struct
2061  * @dev_p: pointer to device capabilities structure
2062  * @cap: capability element to parse
2063  *
2064  * Parse ICE_AQC_CAPS_VF for device capabilities.
2065  */
2066 static void
2067 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2068 		      struct ice_aqc_list_caps_elem *cap)
2069 {
2070 	u32 number = le32_to_cpu(cap->number);
2071 
2072 	dev_p->num_vfs_exposed = number;
2073 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2074 		  dev_p->num_vfs_exposed);
2075 }
2076 
2077 /**
2078  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2079  * @hw: pointer to the HW struct
2080  * @dev_p: pointer to device capabilities structure
2081  * @cap: capability element to parse
2082  *
2083  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2084  */
2085 static void
2086 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2087 		       struct ice_aqc_list_caps_elem *cap)
2088 {
2089 	u32 number = le32_to_cpu(cap->number);
2090 
2091 	dev_p->num_vsi_allocd_to_host = number;
2092 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2093 		  dev_p->num_vsi_allocd_to_host);
2094 }
2095 
2096 /**
2097  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2098  * @hw: pointer to the HW struct
2099  * @dev_p: pointer to device capabilities structure
2100  * @cap: capability element to parse
2101  *
2102  * Parse ICE_AQC_CAPS_FD for device capabilities.
2103  */
2104 static void
2105 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2106 			struct ice_aqc_list_caps_elem *cap)
2107 {
2108 	u32 number = le32_to_cpu(cap->number);
2109 
2110 	dev_p->num_flow_director_fltr = number;
2111 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2112 		  dev_p->num_flow_director_fltr);
2113 }
2114 
2115 /**
2116  * ice_parse_dev_caps - Parse device capabilities
2117  * @hw: pointer to the HW struct
2118  * @dev_p: pointer to device capabilities structure
2119  * @buf: buffer containing the device capability records
2120  * @cap_count: the number of capabilities
2121  *
2122  * Helper device to parse device (0x000B) capabilities list. For
2123  * capabilities shared between device and function, this relies on
2124  * ice_parse_common_caps.
2125  *
2126  * Loop through the list of provided capabilities and extract the relevant
2127  * data into the device capabilities structured.
2128  */
2129 static void
2130 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2131 		   void *buf, u32 cap_count)
2132 {
2133 	struct ice_aqc_list_caps_elem *cap_resp;
2134 	u32 i;
2135 
2136 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2137 
2138 	memset(dev_p, 0, sizeof(*dev_p));
2139 
2140 	for (i = 0; i < cap_count; i++) {
2141 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2142 		bool found;
2143 
2144 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2145 					      &cap_resp[i], "dev caps");
2146 
2147 		switch (cap) {
2148 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2149 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2150 			break;
2151 		case ICE_AQC_CAPS_VF:
2152 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2153 			break;
2154 		case ICE_AQC_CAPS_VSI:
2155 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2156 			break;
2157 		case  ICE_AQC_CAPS_FD:
2158 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2159 			break;
2160 		default:
2161 			/* Don't list common capabilities as unknown */
2162 			if (!found)
2163 				ice_debug(hw, ICE_DBG_INIT,
2164 					  "dev caps: unknown capability[%d]: 0x%x\n",
2165 					  i, cap);
2166 			break;
2167 		}
2168 	}
2169 
2170 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2171 }
2172 
2173 /**
2174  * ice_aq_list_caps - query function/device capabilities
2175  * @hw: pointer to the HW struct
2176  * @buf: a buffer to hold the capabilities
2177  * @buf_size: size of the buffer
2178  * @cap_count: if not NULL, set to the number of capabilities reported
2179  * @opc: capabilities type to discover, device or function
2180  * @cd: pointer to command details structure or NULL
2181  *
2182  * Get the function (0x000A) or device (0x000B) capabilities description from
2183  * firmware and store it in the buffer.
2184  *
2185  * If the cap_count pointer is not NULL, then it is set to the number of
2186  * capabilities firmware will report. Note that if the buffer size is too
2187  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2188  * cap_count will still be updated in this case. It is recommended that the
2189  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2190  * firmware could return) to avoid this.
2191  */
2192 enum ice_status
2193 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2194 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2195 {
2196 	struct ice_aqc_list_caps *cmd;
2197 	struct ice_aq_desc desc;
2198 	enum ice_status status;
2199 
2200 	cmd = &desc.params.get_cap;
2201 
2202 	if (opc != ice_aqc_opc_list_func_caps &&
2203 	    opc != ice_aqc_opc_list_dev_caps)
2204 		return ICE_ERR_PARAM;
2205 
2206 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2207 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2208 
2209 	if (cap_count)
2210 		*cap_count = le32_to_cpu(cmd->count);
2211 
2212 	return status;
2213 }
2214 
2215 /**
2216  * ice_discover_dev_caps - Read and extract device capabilities
2217  * @hw: pointer to the hardware structure
2218  * @dev_caps: pointer to device capabilities structure
2219  *
2220  * Read the device capabilities and extract them into the dev_caps structure
2221  * for later use.
2222  */
2223 enum ice_status
2224 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2225 {
2226 	enum ice_status status;
2227 	u32 cap_count = 0;
2228 	void *cbuf;
2229 
2230 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2231 	if (!cbuf)
2232 		return ICE_ERR_NO_MEMORY;
2233 
2234 	/* Although the driver doesn't know the number of capabilities the
2235 	 * device will return, we can simply send a 4KB buffer, the maximum
2236 	 * possible size that firmware can return.
2237 	 */
2238 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2239 
2240 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2241 				  ice_aqc_opc_list_dev_caps, NULL);
2242 	if (!status)
2243 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2244 	kfree(cbuf);
2245 
2246 	return status;
2247 }
2248 
2249 /**
2250  * ice_discover_func_caps - Read and extract function capabilities
2251  * @hw: pointer to the hardware structure
2252  * @func_caps: pointer to function capabilities structure
2253  *
2254  * Read the function capabilities and extract them into the func_caps structure
2255  * for later use.
2256  */
2257 static enum ice_status
2258 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2259 {
2260 	enum ice_status status;
2261 	u32 cap_count = 0;
2262 	void *cbuf;
2263 
2264 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2265 	if (!cbuf)
2266 		return ICE_ERR_NO_MEMORY;
2267 
2268 	/* Although the driver doesn't know the number of capabilities the
2269 	 * device will return, we can simply send a 4KB buffer, the maximum
2270 	 * possible size that firmware can return.
2271 	 */
2272 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2273 
2274 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2275 				  ice_aqc_opc_list_func_caps, NULL);
2276 	if (!status)
2277 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2278 	kfree(cbuf);
2279 
2280 	return status;
2281 }
2282 
2283 /**
2284  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2285  * @hw: pointer to the hardware structure
2286  */
2287 void ice_set_safe_mode_caps(struct ice_hw *hw)
2288 {
2289 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2290 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2291 	u32 valid_func, rxq_first_id, txq_first_id;
2292 	u32 msix_vector_first_id, max_mtu;
2293 	u32 num_funcs;
2294 
2295 	/* cache some func_caps values that should be restored after memset */
2296 	valid_func = func_caps->common_cap.valid_functions;
2297 	txq_first_id = func_caps->common_cap.txq_first_id;
2298 	rxq_first_id = func_caps->common_cap.rxq_first_id;
2299 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
2300 	max_mtu = func_caps->common_cap.max_mtu;
2301 
2302 	/* unset func capabilities */
2303 	memset(func_caps, 0, sizeof(*func_caps));
2304 
2305 	/* restore cached values */
2306 	func_caps->common_cap.valid_functions = valid_func;
2307 	func_caps->common_cap.txq_first_id = txq_first_id;
2308 	func_caps->common_cap.rxq_first_id = rxq_first_id;
2309 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2310 	func_caps->common_cap.max_mtu = max_mtu;
2311 
2312 	/* one Tx and one Rx queue in safe mode */
2313 	func_caps->common_cap.num_rxq = 1;
2314 	func_caps->common_cap.num_txq = 1;
2315 
2316 	/* two MSIX vectors, one for traffic and one for misc causes */
2317 	func_caps->common_cap.num_msix_vectors = 2;
2318 	func_caps->guar_num_vsi = 1;
2319 
2320 	/* cache some dev_caps values that should be restored after memset */
2321 	valid_func = dev_caps->common_cap.valid_functions;
2322 	txq_first_id = dev_caps->common_cap.txq_first_id;
2323 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
2324 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
2325 	max_mtu = dev_caps->common_cap.max_mtu;
2326 	num_funcs = dev_caps->num_funcs;
2327 
2328 	/* unset dev capabilities */
2329 	memset(dev_caps, 0, sizeof(*dev_caps));
2330 
2331 	/* restore cached values */
2332 	dev_caps->common_cap.valid_functions = valid_func;
2333 	dev_caps->common_cap.txq_first_id = txq_first_id;
2334 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
2335 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
2336 	dev_caps->common_cap.max_mtu = max_mtu;
2337 	dev_caps->num_funcs = num_funcs;
2338 
2339 	/* one Tx and one Rx queue per function in safe mode */
2340 	dev_caps->common_cap.num_rxq = num_funcs;
2341 	dev_caps->common_cap.num_txq = num_funcs;
2342 
2343 	/* two MSIX vectors per function */
2344 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2345 }
2346 
2347 /**
2348  * ice_get_caps - get info about the HW
2349  * @hw: pointer to the hardware structure
2350  */
2351 enum ice_status ice_get_caps(struct ice_hw *hw)
2352 {
2353 	enum ice_status status;
2354 
2355 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2356 	if (status)
2357 		return status;
2358 
2359 	return ice_discover_func_caps(hw, &hw->func_caps);
2360 }
2361 
2362 /**
2363  * ice_aq_manage_mac_write - manage MAC address write command
2364  * @hw: pointer to the HW struct
2365  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2366  * @flags: flags to control write behavior
2367  * @cd: pointer to command details structure or NULL
2368  *
2369  * This function is used to write MAC address to the NVM (0x0108).
2370  */
2371 enum ice_status
2372 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2373 			struct ice_sq_cd *cd)
2374 {
2375 	struct ice_aqc_manage_mac_write *cmd;
2376 	struct ice_aq_desc desc;
2377 
2378 	cmd = &desc.params.mac_write;
2379 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2380 
2381 	cmd->flags = flags;
2382 	ether_addr_copy(cmd->mac_addr, mac_addr);
2383 
2384 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2385 }
2386 
2387 /**
2388  * ice_aq_clear_pxe_mode
2389  * @hw: pointer to the HW struct
2390  *
2391  * Tell the firmware that the driver is taking over from PXE (0x0110).
2392  */
2393 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2394 {
2395 	struct ice_aq_desc desc;
2396 
2397 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2398 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2399 
2400 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2401 }
2402 
2403 /**
2404  * ice_clear_pxe_mode - clear pxe operations mode
2405  * @hw: pointer to the HW struct
2406  *
2407  * Make sure all PXE mode settings are cleared, including things
2408  * like descriptor fetch/write-back mode.
2409  */
2410 void ice_clear_pxe_mode(struct ice_hw *hw)
2411 {
2412 	if (ice_check_sq_alive(hw, &hw->adminq))
2413 		ice_aq_clear_pxe_mode(hw);
2414 }
2415 
2416 /**
2417  * ice_get_link_speed_based_on_phy_type - returns link speed
2418  * @phy_type_low: lower part of phy_type
2419  * @phy_type_high: higher part of phy_type
2420  *
2421  * This helper function will convert an entry in PHY type structure
2422  * [phy_type_low, phy_type_high] to its corresponding link speed.
2423  * Note: In the structure of [phy_type_low, phy_type_high], there should
2424  * be one bit set, as this function will convert one PHY type to its
2425  * speed.
2426  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2427  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2428  */
2429 static u16
2430 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2431 {
2432 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2433 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2434 
2435 	switch (phy_type_low) {
2436 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2437 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2438 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2439 		break;
2440 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2441 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2442 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2443 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2444 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2445 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2446 		break;
2447 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2448 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2449 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2450 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2451 		break;
2452 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2453 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2454 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2455 		break;
2456 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2457 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2458 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2459 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2460 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2461 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2462 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2463 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2464 		break;
2465 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2466 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2467 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2468 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2469 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2470 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2471 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2472 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2473 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2474 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2475 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2476 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2477 		break;
2478 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2479 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2480 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2481 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2482 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2483 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2484 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2485 		break;
2486 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2487 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2488 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2489 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2490 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2491 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2492 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2493 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2494 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2495 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2496 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2497 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2498 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2499 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2500 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2501 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2502 		break;
2503 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2504 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2505 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2506 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2507 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2508 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2509 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2510 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2511 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2512 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2513 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2514 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2515 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2516 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2517 		break;
2518 	default:
2519 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2520 		break;
2521 	}
2522 
2523 	switch (phy_type_high) {
2524 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2525 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2526 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2527 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2528 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2529 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2530 		break;
2531 	default:
2532 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2533 		break;
2534 	}
2535 
2536 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2537 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2538 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2539 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2540 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2541 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2542 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2543 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2544 		return speed_phy_type_low;
2545 	else
2546 		return speed_phy_type_high;
2547 }
2548 
2549 /**
2550  * ice_update_phy_type
2551  * @phy_type_low: pointer to the lower part of phy_type
2552  * @phy_type_high: pointer to the higher part of phy_type
2553  * @link_speeds_bitmap: targeted link speeds bitmap
2554  *
2555  * Note: For the link_speeds_bitmap structure, you can check it at
2556  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2557  * link_speeds_bitmap include multiple speeds.
2558  *
2559  * Each entry in this [phy_type_low, phy_type_high] structure will
2560  * present a certain link speed. This helper function will turn on bits
2561  * in [phy_type_low, phy_type_high] structure based on the value of
2562  * link_speeds_bitmap input parameter.
2563  */
2564 void
2565 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2566 		    u16 link_speeds_bitmap)
2567 {
2568 	u64 pt_high;
2569 	u64 pt_low;
2570 	int index;
2571 	u16 speed;
2572 
2573 	/* We first check with low part of phy_type */
2574 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2575 		pt_low = BIT_ULL(index);
2576 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2577 
2578 		if (link_speeds_bitmap & speed)
2579 			*phy_type_low |= BIT_ULL(index);
2580 	}
2581 
2582 	/* We then check with high part of phy_type */
2583 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2584 		pt_high = BIT_ULL(index);
2585 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2586 
2587 		if (link_speeds_bitmap & speed)
2588 			*phy_type_high |= BIT_ULL(index);
2589 	}
2590 }
2591 
2592 /**
2593  * ice_aq_set_phy_cfg
2594  * @hw: pointer to the HW struct
2595  * @pi: port info structure of the interested logical port
2596  * @cfg: structure with PHY configuration data to be set
2597  * @cd: pointer to command details structure or NULL
2598  *
2599  * Set the various PHY configuration parameters supported on the Port.
2600  * One or more of the Set PHY config parameters may be ignored in an MFP
2601  * mode as the PF may not have the privilege to set some of the PHY Config
2602  * parameters. This status will be indicated by the command response (0x0601).
2603  */
2604 enum ice_status
2605 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2606 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2607 {
2608 	struct ice_aq_desc desc;
2609 	enum ice_status status;
2610 
2611 	if (!cfg)
2612 		return ICE_ERR_PARAM;
2613 
2614 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2615 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2616 		ice_debug(hw, ICE_DBG_PHY,
2617 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2618 			  cfg->caps);
2619 
2620 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2621 	}
2622 
2623 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2624 	desc.params.set_phy.lport_num = pi->lport;
2625 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2626 
2627 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2628 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2629 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2630 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2631 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2632 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2633 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2634 		  cfg->low_power_ctrl_an);
2635 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2636 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2637 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2638 		  cfg->link_fec_opt);
2639 
2640 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2641 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2642 		status = 0;
2643 
2644 	if (!status)
2645 		pi->phy.curr_user_phy_cfg = *cfg;
2646 
2647 	return status;
2648 }
2649 
2650 /**
2651  * ice_update_link_info - update status of the HW network link
2652  * @pi: port info structure of the interested logical port
2653  */
2654 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2655 {
2656 	struct ice_link_status *li;
2657 	enum ice_status status;
2658 
2659 	if (!pi)
2660 		return ICE_ERR_PARAM;
2661 
2662 	li = &pi->phy.link_info;
2663 
2664 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2665 	if (status)
2666 		return status;
2667 
2668 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2669 		struct ice_aqc_get_phy_caps_data *pcaps;
2670 		struct ice_hw *hw;
2671 
2672 		hw = pi->hw;
2673 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2674 				     GFP_KERNEL);
2675 		if (!pcaps)
2676 			return ICE_ERR_NO_MEMORY;
2677 
2678 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2679 					     pcaps, NULL);
2680 
2681 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2682 	}
2683 
2684 	return status;
2685 }
2686 
2687 /**
2688  * ice_cache_phy_user_req
2689  * @pi: port information structure
2690  * @cache_data: PHY logging data
2691  * @cache_mode: PHY logging mode
2692  *
2693  * Log the user request on (FC, FEC, SPEED) for later use.
2694  */
2695 static void
2696 ice_cache_phy_user_req(struct ice_port_info *pi,
2697 		       struct ice_phy_cache_mode_data cache_data,
2698 		       enum ice_phy_cache_mode cache_mode)
2699 {
2700 	if (!pi)
2701 		return;
2702 
2703 	switch (cache_mode) {
2704 	case ICE_FC_MODE:
2705 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2706 		break;
2707 	case ICE_SPEED_MODE:
2708 		pi->phy.curr_user_speed_req =
2709 			cache_data.data.curr_user_speed_req;
2710 		break;
2711 	case ICE_FEC_MODE:
2712 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2713 		break;
2714 	default:
2715 		break;
2716 	}
2717 }
2718 
2719 /**
2720  * ice_caps_to_fc_mode
2721  * @caps: PHY capabilities
2722  *
2723  * Convert PHY FC capabilities to ice FC mode
2724  */
2725 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2726 {
2727 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2728 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2729 		return ICE_FC_FULL;
2730 
2731 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2732 		return ICE_FC_TX_PAUSE;
2733 
2734 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2735 		return ICE_FC_RX_PAUSE;
2736 
2737 	return ICE_FC_NONE;
2738 }
2739 
2740 /**
2741  * ice_caps_to_fec_mode
2742  * @caps: PHY capabilities
2743  * @fec_options: Link FEC options
2744  *
2745  * Convert PHY FEC capabilities to ice FEC mode
2746  */
2747 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2748 {
2749 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2750 		return ICE_FEC_AUTO;
2751 
2752 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2753 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2754 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2755 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2756 		return ICE_FEC_BASER;
2757 
2758 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2759 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2760 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2761 		return ICE_FEC_RS;
2762 
2763 	return ICE_FEC_NONE;
2764 }
2765 
2766 /**
2767  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2768  * @pi: port information structure
2769  * @cfg: PHY configuration data to set FC mode
2770  * @req_mode: FC mode to configure
2771  */
2772 enum ice_status
2773 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2774 	       enum ice_fc_mode req_mode)
2775 {
2776 	struct ice_phy_cache_mode_data cache_data;
2777 	u8 pause_mask = 0x0;
2778 
2779 	if (!pi || !cfg)
2780 		return ICE_ERR_BAD_PTR;
2781 
2782 	switch (req_mode) {
2783 	case ICE_FC_FULL:
2784 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2785 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2786 		break;
2787 	case ICE_FC_RX_PAUSE:
2788 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2789 		break;
2790 	case ICE_FC_TX_PAUSE:
2791 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2792 		break;
2793 	default:
2794 		break;
2795 	}
2796 
2797 	/* clear the old pause settings */
2798 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2799 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2800 
2801 	/* set the new capabilities */
2802 	cfg->caps |= pause_mask;
2803 
2804 	/* Cache user FC request */
2805 	cache_data.data.curr_user_fc_req = req_mode;
2806 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2807 
2808 	return 0;
2809 }
2810 
2811 /**
2812  * ice_set_fc
2813  * @pi: port information structure
2814  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2815  * @ena_auto_link_update: enable automatic link update
2816  *
2817  * Set the requested flow control mode.
2818  */
2819 enum ice_status
2820 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2821 {
2822 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2823 	struct ice_aqc_get_phy_caps_data *pcaps;
2824 	enum ice_status status;
2825 	struct ice_hw *hw;
2826 
2827 	if (!pi || !aq_failures)
2828 		return ICE_ERR_BAD_PTR;
2829 
2830 	*aq_failures = 0;
2831 	hw = pi->hw;
2832 
2833 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2834 	if (!pcaps)
2835 		return ICE_ERR_NO_MEMORY;
2836 
2837 	/* Get the current PHY config */
2838 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2839 				     NULL);
2840 	if (status) {
2841 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2842 		goto out;
2843 	}
2844 
2845 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2846 
2847 	/* Configure the set PHY data */
2848 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2849 	if (status)
2850 		goto out;
2851 
2852 	/* If the capabilities have changed, then set the new config */
2853 	if (cfg.caps != pcaps->caps) {
2854 		int retry_count, retry_max = 10;
2855 
2856 		/* Auto restart link so settings take effect */
2857 		if (ena_auto_link_update)
2858 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2859 
2860 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2861 		if (status) {
2862 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2863 			goto out;
2864 		}
2865 
2866 		/* Update the link info
2867 		 * It sometimes takes a really long time for link to
2868 		 * come back from the atomic reset. Thus, we wait a
2869 		 * little bit.
2870 		 */
2871 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2872 			status = ice_update_link_info(pi);
2873 
2874 			if (!status)
2875 				break;
2876 
2877 			mdelay(100);
2878 		}
2879 
2880 		if (status)
2881 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2882 	}
2883 
2884 out:
2885 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2886 	return status;
2887 }
2888 
2889 /**
2890  * ice_phy_caps_equals_cfg
2891  * @phy_caps: PHY capabilities
2892  * @phy_cfg: PHY configuration
2893  *
2894  * Helper function to determine if PHY capabilities matches PHY
2895  * configuration
2896  */
2897 bool
2898 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2899 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
2900 {
2901 	u8 caps_mask, cfg_mask;
2902 
2903 	if (!phy_caps || !phy_cfg)
2904 		return false;
2905 
2906 	/* These bits are not common between capabilities and configuration.
2907 	 * Do not use them to determine equality.
2908 	 */
2909 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2910 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
2911 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2912 
2913 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2914 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2915 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2916 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2917 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
2918 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
2919 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2920 		return false;
2921 
2922 	return true;
2923 }
2924 
2925 /**
2926  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2927  * @pi: port information structure
2928  * @caps: PHY ability structure to copy date from
2929  * @cfg: PHY configuration structure to copy data to
2930  *
2931  * Helper function to copy AQC PHY get ability data to PHY set configuration
2932  * data structure
2933  */
2934 void
2935 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
2936 			 struct ice_aqc_get_phy_caps_data *caps,
2937 			 struct ice_aqc_set_phy_cfg_data *cfg)
2938 {
2939 	if (!pi || !caps || !cfg)
2940 		return;
2941 
2942 	memset(cfg, 0, sizeof(*cfg));
2943 	cfg->phy_type_low = caps->phy_type_low;
2944 	cfg->phy_type_high = caps->phy_type_high;
2945 	cfg->caps = caps->caps;
2946 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
2947 	cfg->eee_cap = caps->eee_cap;
2948 	cfg->eeer_value = caps->eeer_value;
2949 	cfg->link_fec_opt = caps->link_fec_options;
2950 	cfg->module_compliance_enforcement =
2951 		caps->module_compliance_enforcement;
2952 
2953 	if (ice_fw_supports_link_override(pi->hw)) {
2954 		struct ice_link_default_override_tlv tlv;
2955 
2956 		if (ice_get_link_default_override(&tlv, pi))
2957 			return;
2958 
2959 		if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
2960 			cfg->module_compliance_enforcement |=
2961 				ICE_LINK_OVERRIDE_STRICT_MODE;
2962 	}
2963 }
2964 
2965 /**
2966  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2967  * @pi: port information structure
2968  * @cfg: PHY configuration data to set FEC mode
2969  * @fec: FEC mode to configure
2970  */
2971 enum ice_status
2972 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2973 		enum ice_fec_mode fec)
2974 {
2975 	struct ice_aqc_get_phy_caps_data *pcaps;
2976 	enum ice_status status;
2977 
2978 	if (!pi || !cfg)
2979 		return ICE_ERR_BAD_PTR;
2980 
2981 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2982 	if (!pcaps)
2983 		return ICE_ERR_NO_MEMORY;
2984 
2985 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
2986 				     NULL);
2987 	if (status)
2988 		goto out;
2989 
2990 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2991 	cfg->link_fec_opt = pcaps->link_fec_options;
2992 
2993 	switch (fec) {
2994 	case ICE_FEC_BASER:
2995 		/* Clear RS bits, and AND BASE-R ability
2996 		 * bits and OR request bits.
2997 		 */
2998 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2999 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3000 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3001 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3002 		break;
3003 	case ICE_FEC_RS:
3004 		/* Clear BASE-R bits, and AND RS ability
3005 		 * bits and OR request bits.
3006 		 */
3007 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3008 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3009 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3010 		break;
3011 	case ICE_FEC_NONE:
3012 		/* Clear all FEC option bits. */
3013 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3014 		break;
3015 	case ICE_FEC_AUTO:
3016 		/* AND auto FEC bit, and all caps bits. */
3017 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3018 		cfg->link_fec_opt |= pcaps->link_fec_options;
3019 		break;
3020 	default:
3021 		status = ICE_ERR_PARAM;
3022 		break;
3023 	}
3024 
3025 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3026 		struct ice_link_default_override_tlv tlv;
3027 
3028 		if (ice_get_link_default_override(&tlv, pi))
3029 			goto out;
3030 
3031 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3032 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3033 			cfg->link_fec_opt = tlv.fec_options;
3034 	}
3035 
3036 out:
3037 	kfree(pcaps);
3038 
3039 	return status;
3040 }
3041 
3042 /**
3043  * ice_get_link_status - get status of the HW network link
3044  * @pi: port information structure
3045  * @link_up: pointer to bool (true/false = linkup/linkdown)
3046  *
3047  * Variable link_up is true if link is up, false if link is down.
3048  * The variable link_up is invalid if status is non zero. As a
3049  * result of this call, link status reporting becomes enabled
3050  */
3051 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3052 {
3053 	struct ice_phy_info *phy_info;
3054 	enum ice_status status = 0;
3055 
3056 	if (!pi || !link_up)
3057 		return ICE_ERR_PARAM;
3058 
3059 	phy_info = &pi->phy;
3060 
3061 	if (phy_info->get_link_info) {
3062 		status = ice_update_link_info(pi);
3063 
3064 		if (status)
3065 			ice_debug(pi->hw, ICE_DBG_LINK,
3066 				  "get link status error, status = %d\n",
3067 				  status);
3068 	}
3069 
3070 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3071 
3072 	return status;
3073 }
3074 
3075 /**
3076  * ice_aq_set_link_restart_an
3077  * @pi: pointer to the port information structure
3078  * @ena_link: if true: enable link, if false: disable link
3079  * @cd: pointer to command details structure or NULL
3080  *
3081  * Sets up the link and restarts the Auto-Negotiation over the link.
3082  */
3083 enum ice_status
3084 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3085 			   struct ice_sq_cd *cd)
3086 {
3087 	struct ice_aqc_restart_an *cmd;
3088 	struct ice_aq_desc desc;
3089 
3090 	cmd = &desc.params.restart_an;
3091 
3092 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3093 
3094 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3095 	cmd->lport_num = pi->lport;
3096 	if (ena_link)
3097 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3098 	else
3099 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3100 
3101 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3102 }
3103 
3104 /**
3105  * ice_aq_set_event_mask
3106  * @hw: pointer to the HW struct
3107  * @port_num: port number of the physical function
3108  * @mask: event mask to be set
3109  * @cd: pointer to command details structure or NULL
3110  *
3111  * Set event mask (0x0613)
3112  */
3113 enum ice_status
3114 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3115 		      struct ice_sq_cd *cd)
3116 {
3117 	struct ice_aqc_set_event_mask *cmd;
3118 	struct ice_aq_desc desc;
3119 
3120 	cmd = &desc.params.set_event_mask;
3121 
3122 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3123 
3124 	cmd->lport_num = port_num;
3125 
3126 	cmd->event_mask = cpu_to_le16(mask);
3127 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3128 }
3129 
3130 /**
3131  * ice_aq_set_mac_loopback
3132  * @hw: pointer to the HW struct
3133  * @ena_lpbk: Enable or Disable loopback
3134  * @cd: pointer to command details structure or NULL
3135  *
3136  * Enable/disable loopback on a given port
3137  */
3138 enum ice_status
3139 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3140 {
3141 	struct ice_aqc_set_mac_lb *cmd;
3142 	struct ice_aq_desc desc;
3143 
3144 	cmd = &desc.params.set_mac_lb;
3145 
3146 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3147 	if (ena_lpbk)
3148 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3149 
3150 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3151 }
3152 
3153 /**
3154  * ice_aq_set_port_id_led
3155  * @pi: pointer to the port information
3156  * @is_orig_mode: is this LED set to original mode (by the net-list)
3157  * @cd: pointer to command details structure or NULL
3158  *
3159  * Set LED value for the given port (0x06e9)
3160  */
3161 enum ice_status
3162 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3163 		       struct ice_sq_cd *cd)
3164 {
3165 	struct ice_aqc_set_port_id_led *cmd;
3166 	struct ice_hw *hw = pi->hw;
3167 	struct ice_aq_desc desc;
3168 
3169 	cmd = &desc.params.set_port_id_led;
3170 
3171 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3172 
3173 	if (is_orig_mode)
3174 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3175 	else
3176 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3177 
3178 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3179 }
3180 
3181 /**
3182  * ice_aq_sff_eeprom
3183  * @hw: pointer to the HW struct
3184  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3185  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3186  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3187  * @page: QSFP page
3188  * @set_page: set or ignore the page
3189  * @data: pointer to data buffer to be read/written to the I2C device.
3190  * @length: 1-16 for read, 1 for write.
3191  * @write: 0 read, 1 for write.
3192  * @cd: pointer to command details structure or NULL
3193  *
3194  * Read/Write SFF EEPROM (0x06EE)
3195  */
3196 enum ice_status
3197 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3198 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3199 		  bool write, struct ice_sq_cd *cd)
3200 {
3201 	struct ice_aqc_sff_eeprom *cmd;
3202 	struct ice_aq_desc desc;
3203 	enum ice_status status;
3204 
3205 	if (!data || (mem_addr & 0xff00))
3206 		return ICE_ERR_PARAM;
3207 
3208 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3209 	cmd = &desc.params.read_write_sff_param;
3210 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3211 	cmd->lport_num = (u8)(lport & 0xff);
3212 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3213 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3214 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3215 					((set_page <<
3216 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3217 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3218 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3219 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3220 	if (write)
3221 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3222 
3223 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3224 	return status;
3225 }
3226 
3227 /**
3228  * __ice_aq_get_set_rss_lut
3229  * @hw: pointer to the hardware structure
3230  * @vsi_id: VSI FW index
3231  * @lut_type: LUT table type
3232  * @lut: pointer to the LUT buffer provided by the caller
3233  * @lut_size: size of the LUT buffer
3234  * @glob_lut_idx: global LUT index
3235  * @set: set true to set the table, false to get the table
3236  *
3237  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3238  */
3239 static enum ice_status
3240 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3241 			 u16 lut_size, u8 glob_lut_idx, bool set)
3242 {
3243 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3244 	struct ice_aq_desc desc;
3245 	enum ice_status status;
3246 	u16 flags = 0;
3247 
3248 	cmd_resp = &desc.params.get_set_rss_lut;
3249 
3250 	if (set) {
3251 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3252 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3253 	} else {
3254 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3255 	}
3256 
3257 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3258 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3259 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3260 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3261 
3262 	switch (lut_type) {
3263 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3264 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3265 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3266 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3267 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3268 		break;
3269 	default:
3270 		status = ICE_ERR_PARAM;
3271 		goto ice_aq_get_set_rss_lut_exit;
3272 	}
3273 
3274 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3275 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3276 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3277 
3278 		if (!set)
3279 			goto ice_aq_get_set_rss_lut_send;
3280 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3281 		if (!set)
3282 			goto ice_aq_get_set_rss_lut_send;
3283 	} else {
3284 		goto ice_aq_get_set_rss_lut_send;
3285 	}
3286 
3287 	/* LUT size is only valid for Global and PF table types */
3288 	switch (lut_size) {
3289 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3290 		break;
3291 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3292 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3293 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3294 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3295 		break;
3296 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3297 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3298 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3299 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3300 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3301 			break;
3302 		}
3303 		fallthrough;
3304 	default:
3305 		status = ICE_ERR_PARAM;
3306 		goto ice_aq_get_set_rss_lut_exit;
3307 	}
3308 
3309 ice_aq_get_set_rss_lut_send:
3310 	cmd_resp->flags = cpu_to_le16(flags);
3311 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3312 
3313 ice_aq_get_set_rss_lut_exit:
3314 	return status;
3315 }
3316 
3317 /**
3318  * ice_aq_get_rss_lut
3319  * @hw: pointer to the hardware structure
3320  * @vsi_handle: software VSI handle
3321  * @lut_type: LUT table type
3322  * @lut: pointer to the LUT buffer provided by the caller
3323  * @lut_size: size of the LUT buffer
3324  *
3325  * get the RSS lookup table, PF or VSI type
3326  */
3327 enum ice_status
3328 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3329 		   u8 *lut, u16 lut_size)
3330 {
3331 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3332 		return ICE_ERR_PARAM;
3333 
3334 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3335 					lut_type, lut, lut_size, 0, false);
3336 }
3337 
3338 /**
3339  * ice_aq_set_rss_lut
3340  * @hw: pointer to the hardware structure
3341  * @vsi_handle: software VSI handle
3342  * @lut_type: LUT table type
3343  * @lut: pointer to the LUT buffer provided by the caller
3344  * @lut_size: size of the LUT buffer
3345  *
3346  * set the RSS lookup table, PF or VSI type
3347  */
3348 enum ice_status
3349 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3350 		   u8 *lut, u16 lut_size)
3351 {
3352 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3353 		return ICE_ERR_PARAM;
3354 
3355 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3356 					lut_type, lut, lut_size, 0, true);
3357 }
3358 
3359 /**
3360  * __ice_aq_get_set_rss_key
3361  * @hw: pointer to the HW struct
3362  * @vsi_id: VSI FW index
3363  * @key: pointer to key info struct
3364  * @set: set true to set the key, false to get the key
3365  *
3366  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3367  */
3368 static enum
3369 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3370 				    struct ice_aqc_get_set_rss_keys *key,
3371 				    bool set)
3372 {
3373 	struct ice_aqc_get_set_rss_key *cmd_resp;
3374 	u16 key_size = sizeof(*key);
3375 	struct ice_aq_desc desc;
3376 
3377 	cmd_resp = &desc.params.get_set_rss_key;
3378 
3379 	if (set) {
3380 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3381 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3382 	} else {
3383 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3384 	}
3385 
3386 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3387 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3388 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3389 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3390 
3391 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3392 }
3393 
3394 /**
3395  * ice_aq_get_rss_key
3396  * @hw: pointer to the HW struct
3397  * @vsi_handle: software VSI handle
3398  * @key: pointer to key info struct
3399  *
3400  * get the RSS key per VSI
3401  */
3402 enum ice_status
3403 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3404 		   struct ice_aqc_get_set_rss_keys *key)
3405 {
3406 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3407 		return ICE_ERR_PARAM;
3408 
3409 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3410 					key, false);
3411 }
3412 
3413 /**
3414  * ice_aq_set_rss_key
3415  * @hw: pointer to the HW struct
3416  * @vsi_handle: software VSI handle
3417  * @keys: pointer to key info struct
3418  *
3419  * set the RSS key per VSI
3420  */
3421 enum ice_status
3422 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3423 		   struct ice_aqc_get_set_rss_keys *keys)
3424 {
3425 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3426 		return ICE_ERR_PARAM;
3427 
3428 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3429 					keys, true);
3430 }
3431 
3432 /**
3433  * ice_aq_add_lan_txq
3434  * @hw: pointer to the hardware structure
3435  * @num_qgrps: Number of added queue groups
3436  * @qg_list: list of queue groups to be added
3437  * @buf_size: size of buffer for indirect command
3438  * @cd: pointer to command details structure or NULL
3439  *
3440  * Add Tx LAN queue (0x0C30)
3441  *
3442  * NOTE:
3443  * Prior to calling add Tx LAN queue:
3444  * Initialize the following as part of the Tx queue context:
3445  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3446  * Cache profile and Packet shaper profile.
3447  *
3448  * After add Tx LAN queue AQ command is completed:
3449  * Interrupts should be associated with specific queues,
3450  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3451  * flow.
3452  */
3453 static enum ice_status
3454 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3455 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3456 		   struct ice_sq_cd *cd)
3457 {
3458 	struct ice_aqc_add_tx_qgrp *list;
3459 	struct ice_aqc_add_txqs *cmd;
3460 	struct ice_aq_desc desc;
3461 	u16 i, sum_size = 0;
3462 
3463 	cmd = &desc.params.add_txqs;
3464 
3465 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3466 
3467 	if (!qg_list)
3468 		return ICE_ERR_PARAM;
3469 
3470 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3471 		return ICE_ERR_PARAM;
3472 
3473 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3474 		sum_size += struct_size(list, txqs, list->num_txqs);
3475 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3476 						      list->num_txqs);
3477 	}
3478 
3479 	if (buf_size != sum_size)
3480 		return ICE_ERR_PARAM;
3481 
3482 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3483 
3484 	cmd->num_qgrps = num_qgrps;
3485 
3486 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3487 }
3488 
3489 /**
3490  * ice_aq_dis_lan_txq
3491  * @hw: pointer to the hardware structure
3492  * @num_qgrps: number of groups in the list
3493  * @qg_list: the list of groups to disable
3494  * @buf_size: the total size of the qg_list buffer in bytes
3495  * @rst_src: if called due to reset, specifies the reset source
3496  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3497  * @cd: pointer to command details structure or NULL
3498  *
3499  * Disable LAN Tx queue (0x0C31)
3500  */
3501 static enum ice_status
3502 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3503 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3504 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3505 		   struct ice_sq_cd *cd)
3506 {
3507 	struct ice_aqc_dis_txq_item *item;
3508 	struct ice_aqc_dis_txqs *cmd;
3509 	struct ice_aq_desc desc;
3510 	enum ice_status status;
3511 	u16 i, sz = 0;
3512 
3513 	cmd = &desc.params.dis_txqs;
3514 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3515 
3516 	/* qg_list can be NULL only in VM/VF reset flow */
3517 	if (!qg_list && !rst_src)
3518 		return ICE_ERR_PARAM;
3519 
3520 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3521 		return ICE_ERR_PARAM;
3522 
3523 	cmd->num_entries = num_qgrps;
3524 
3525 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3526 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3527 
3528 	switch (rst_src) {
3529 	case ICE_VM_RESET:
3530 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3531 		cmd->vmvf_and_timeout |=
3532 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3533 		break;
3534 	case ICE_VF_RESET:
3535 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3536 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3537 		cmd->vmvf_and_timeout |=
3538 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3539 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3540 		break;
3541 	case ICE_NO_RESET:
3542 	default:
3543 		break;
3544 	}
3545 
3546 	/* flush pipe on time out */
3547 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3548 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3549 	if (!qg_list)
3550 		goto do_aq;
3551 
3552 	/* set RD bit to indicate that command buffer is provided by the driver
3553 	 * and it needs to be read by the firmware
3554 	 */
3555 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3556 
3557 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3558 		u16 item_size = struct_size(item, q_id, item->num_qs);
3559 
3560 		/* If the num of queues is even, add 2 bytes of padding */
3561 		if ((item->num_qs % 2) == 0)
3562 			item_size += 2;
3563 
3564 		sz += item_size;
3565 
3566 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3567 	}
3568 
3569 	if (buf_size != sz)
3570 		return ICE_ERR_PARAM;
3571 
3572 do_aq:
3573 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3574 	if (status) {
3575 		if (!qg_list)
3576 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3577 				  vmvf_num, hw->adminq.sq_last_status);
3578 		else
3579 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3580 				  le16_to_cpu(qg_list[0].q_id[0]),
3581 				  hw->adminq.sq_last_status);
3582 	}
3583 	return status;
3584 }
3585 
3586 /* End of FW Admin Queue command wrappers */
3587 
3588 /**
3589  * ice_write_byte - write a byte to a packed context structure
3590  * @src_ctx:  the context structure to read from
3591  * @dest_ctx: the context to be written to
3592  * @ce_info:  a description of the struct to be filled
3593  */
3594 static void
3595 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3596 {
3597 	u8 src_byte, dest_byte, mask;
3598 	u8 *from, *dest;
3599 	u16 shift_width;
3600 
3601 	/* copy from the next struct field */
3602 	from = src_ctx + ce_info->offset;
3603 
3604 	/* prepare the bits and mask */
3605 	shift_width = ce_info->lsb % 8;
3606 	mask = (u8)(BIT(ce_info->width) - 1);
3607 
3608 	src_byte = *from;
3609 	src_byte &= mask;
3610 
3611 	/* shift to correct alignment */
3612 	mask <<= shift_width;
3613 	src_byte <<= shift_width;
3614 
3615 	/* get the current bits from the target bit string */
3616 	dest = dest_ctx + (ce_info->lsb / 8);
3617 
3618 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3619 
3620 	dest_byte &= ~mask;	/* get the bits not changing */
3621 	dest_byte |= src_byte;	/* add in the new bits */
3622 
3623 	/* put it all back */
3624 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3625 }
3626 
3627 /**
3628  * ice_write_word - write a word to a packed context structure
3629  * @src_ctx:  the context structure to read from
3630  * @dest_ctx: the context to be written to
3631  * @ce_info:  a description of the struct to be filled
3632  */
3633 static void
3634 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3635 {
3636 	u16 src_word, mask;
3637 	__le16 dest_word;
3638 	u8 *from, *dest;
3639 	u16 shift_width;
3640 
3641 	/* copy from the next struct field */
3642 	from = src_ctx + ce_info->offset;
3643 
3644 	/* prepare the bits and mask */
3645 	shift_width = ce_info->lsb % 8;
3646 	mask = BIT(ce_info->width) - 1;
3647 
3648 	/* don't swizzle the bits until after the mask because the mask bits
3649 	 * will be in a different bit position on big endian machines
3650 	 */
3651 	src_word = *(u16 *)from;
3652 	src_word &= mask;
3653 
3654 	/* shift to correct alignment */
3655 	mask <<= shift_width;
3656 	src_word <<= shift_width;
3657 
3658 	/* get the current bits from the target bit string */
3659 	dest = dest_ctx + (ce_info->lsb / 8);
3660 
3661 	memcpy(&dest_word, dest, sizeof(dest_word));
3662 
3663 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3664 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3665 
3666 	/* put it all back */
3667 	memcpy(dest, &dest_word, sizeof(dest_word));
3668 }
3669 
3670 /**
3671  * ice_write_dword - write a dword to a packed context structure
3672  * @src_ctx:  the context structure to read from
3673  * @dest_ctx: the context to be written to
3674  * @ce_info:  a description of the struct to be filled
3675  */
3676 static void
3677 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3678 {
3679 	u32 src_dword, mask;
3680 	__le32 dest_dword;
3681 	u8 *from, *dest;
3682 	u16 shift_width;
3683 
3684 	/* copy from the next struct field */
3685 	from = src_ctx + ce_info->offset;
3686 
3687 	/* prepare the bits and mask */
3688 	shift_width = ce_info->lsb % 8;
3689 
3690 	/* if the field width is exactly 32 on an x86 machine, then the shift
3691 	 * operation will not work because the SHL instructions count is masked
3692 	 * to 5 bits so the shift will do nothing
3693 	 */
3694 	if (ce_info->width < 32)
3695 		mask = BIT(ce_info->width) - 1;
3696 	else
3697 		mask = (u32)~0;
3698 
3699 	/* don't swizzle the bits until after the mask because the mask bits
3700 	 * will be in a different bit position on big endian machines
3701 	 */
3702 	src_dword = *(u32 *)from;
3703 	src_dword &= mask;
3704 
3705 	/* shift to correct alignment */
3706 	mask <<= shift_width;
3707 	src_dword <<= shift_width;
3708 
3709 	/* get the current bits from the target bit string */
3710 	dest = dest_ctx + (ce_info->lsb / 8);
3711 
3712 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3713 
3714 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3715 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3716 
3717 	/* put it all back */
3718 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3719 }
3720 
3721 /**
3722  * ice_write_qword - write a qword to a packed context structure
3723  * @src_ctx:  the context structure to read from
3724  * @dest_ctx: the context to be written to
3725  * @ce_info:  a description of the struct to be filled
3726  */
3727 static void
3728 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3729 {
3730 	u64 src_qword, mask;
3731 	__le64 dest_qword;
3732 	u8 *from, *dest;
3733 	u16 shift_width;
3734 
3735 	/* copy from the next struct field */
3736 	from = src_ctx + ce_info->offset;
3737 
3738 	/* prepare the bits and mask */
3739 	shift_width = ce_info->lsb % 8;
3740 
3741 	/* if the field width is exactly 64 on an x86 machine, then the shift
3742 	 * operation will not work because the SHL instructions count is masked
3743 	 * to 6 bits so the shift will do nothing
3744 	 */
3745 	if (ce_info->width < 64)
3746 		mask = BIT_ULL(ce_info->width) - 1;
3747 	else
3748 		mask = (u64)~0;
3749 
3750 	/* don't swizzle the bits until after the mask because the mask bits
3751 	 * will be in a different bit position on big endian machines
3752 	 */
3753 	src_qword = *(u64 *)from;
3754 	src_qword &= mask;
3755 
3756 	/* shift to correct alignment */
3757 	mask <<= shift_width;
3758 	src_qword <<= shift_width;
3759 
3760 	/* get the current bits from the target bit string */
3761 	dest = dest_ctx + (ce_info->lsb / 8);
3762 
3763 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3764 
3765 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3766 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3767 
3768 	/* put it all back */
3769 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3770 }
3771 
3772 /**
3773  * ice_set_ctx - set context bits in packed structure
3774  * @hw: pointer to the hardware structure
3775  * @src_ctx:  pointer to a generic non-packed context structure
3776  * @dest_ctx: pointer to memory for the packed structure
3777  * @ce_info:  a description of the structure to be transformed
3778  */
3779 enum ice_status
3780 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3781 	    const struct ice_ctx_ele *ce_info)
3782 {
3783 	int f;
3784 
3785 	for (f = 0; ce_info[f].width; f++) {
3786 		/* We have to deal with each element of the FW response
3787 		 * using the correct size so that we are correct regardless
3788 		 * of the endianness of the machine.
3789 		 */
3790 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3791 			ice_debug(hw, ICE_DBG_QCTX,
3792 				  "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3793 				  f, ce_info[f].width, ce_info[f].size_of);
3794 			continue;
3795 		}
3796 		switch (ce_info[f].size_of) {
3797 		case sizeof(u8):
3798 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3799 			break;
3800 		case sizeof(u16):
3801 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3802 			break;
3803 		case sizeof(u32):
3804 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3805 			break;
3806 		case sizeof(u64):
3807 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3808 			break;
3809 		default:
3810 			return ICE_ERR_INVAL_SIZE;
3811 		}
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 /**
3818  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3819  * @hw: pointer to the HW struct
3820  * @vsi_handle: software VSI handle
3821  * @tc: TC number
3822  * @q_handle: software queue handle
3823  */
3824 struct ice_q_ctx *
3825 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3826 {
3827 	struct ice_vsi_ctx *vsi;
3828 	struct ice_q_ctx *q_ctx;
3829 
3830 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3831 	if (!vsi)
3832 		return NULL;
3833 	if (q_handle >= vsi->num_lan_q_entries[tc])
3834 		return NULL;
3835 	if (!vsi->lan_q_ctx[tc])
3836 		return NULL;
3837 	q_ctx = vsi->lan_q_ctx[tc];
3838 	return &q_ctx[q_handle];
3839 }
3840 
3841 /**
3842  * ice_ena_vsi_txq
3843  * @pi: port information structure
3844  * @vsi_handle: software VSI handle
3845  * @tc: TC number
3846  * @q_handle: software queue handle
3847  * @num_qgrps: Number of added queue groups
3848  * @buf: list of queue groups to be added
3849  * @buf_size: size of buffer for indirect command
3850  * @cd: pointer to command details structure or NULL
3851  *
3852  * This function adds one LAN queue
3853  */
3854 enum ice_status
3855 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3856 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3857 		struct ice_sq_cd *cd)
3858 {
3859 	struct ice_aqc_txsched_elem_data node = { 0 };
3860 	struct ice_sched_node *parent;
3861 	struct ice_q_ctx *q_ctx;
3862 	enum ice_status status;
3863 	struct ice_hw *hw;
3864 
3865 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3866 		return ICE_ERR_CFG;
3867 
3868 	if (num_qgrps > 1 || buf->num_txqs > 1)
3869 		return ICE_ERR_MAX_LIMIT;
3870 
3871 	hw = pi->hw;
3872 
3873 	if (!ice_is_vsi_valid(hw, vsi_handle))
3874 		return ICE_ERR_PARAM;
3875 
3876 	mutex_lock(&pi->sched_lock);
3877 
3878 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3879 	if (!q_ctx) {
3880 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3881 			  q_handle);
3882 		status = ICE_ERR_PARAM;
3883 		goto ena_txq_exit;
3884 	}
3885 
3886 	/* find a parent node */
3887 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3888 					    ICE_SCHED_NODE_OWNER_LAN);
3889 	if (!parent) {
3890 		status = ICE_ERR_PARAM;
3891 		goto ena_txq_exit;
3892 	}
3893 
3894 	buf->parent_teid = parent->info.node_teid;
3895 	node.parent_teid = parent->info.node_teid;
3896 	/* Mark that the values in the "generic" section as valid. The default
3897 	 * value in the "generic" section is zero. This means that :
3898 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3899 	 * - 0 priority among siblings, indicated by Bit 1-3.
3900 	 * - WFQ, indicated by Bit 4.
3901 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3902 	 * Bit 5-6.
3903 	 * - Bit 7 is reserved.
3904 	 * Without setting the generic section as valid in valid_sections, the
3905 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3906 	 */
3907 	buf->txqs[0].info.valid_sections =
3908 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
3909 		ICE_AQC_ELEM_VALID_EIR;
3910 	buf->txqs[0].info.generic = 0;
3911 	buf->txqs[0].info.cir_bw.bw_profile_idx =
3912 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3913 	buf->txqs[0].info.cir_bw.bw_alloc =
3914 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3915 	buf->txqs[0].info.eir_bw.bw_profile_idx =
3916 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3917 	buf->txqs[0].info.eir_bw.bw_alloc =
3918 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3919 
3920 	/* add the LAN queue */
3921 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3922 	if (status) {
3923 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3924 			  le16_to_cpu(buf->txqs[0].txq_id),
3925 			  hw->adminq.sq_last_status);
3926 		goto ena_txq_exit;
3927 	}
3928 
3929 	node.node_teid = buf->txqs[0].q_teid;
3930 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3931 	q_ctx->q_handle = q_handle;
3932 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3933 
3934 	/* add a leaf node into scheduler tree queue layer */
3935 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3936 	if (!status)
3937 		status = ice_sched_replay_q_bw(pi, q_ctx);
3938 
3939 ena_txq_exit:
3940 	mutex_unlock(&pi->sched_lock);
3941 	return status;
3942 }
3943 
3944 /**
3945  * ice_dis_vsi_txq
3946  * @pi: port information structure
3947  * @vsi_handle: software VSI handle
3948  * @tc: TC number
3949  * @num_queues: number of queues
3950  * @q_handles: pointer to software queue handle array
3951  * @q_ids: pointer to the q_id array
3952  * @q_teids: pointer to queue node teids
3953  * @rst_src: if called due to reset, specifies the reset source
3954  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3955  * @cd: pointer to command details structure or NULL
3956  *
3957  * This function removes queues and their corresponding nodes in SW DB
3958  */
3959 enum ice_status
3960 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3961 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3962 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3963 		struct ice_sq_cd *cd)
3964 {
3965 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3966 	struct ice_aqc_dis_txq_item *qg_list;
3967 	struct ice_q_ctx *q_ctx;
3968 	struct ice_hw *hw;
3969 	u16 i, buf_size;
3970 
3971 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3972 		return ICE_ERR_CFG;
3973 
3974 	hw = pi->hw;
3975 
3976 	if (!num_queues) {
3977 		/* if queue is disabled already yet the disable queue command
3978 		 * has to be sent to complete the VF reset, then call
3979 		 * ice_aq_dis_lan_txq without any queue information
3980 		 */
3981 		if (rst_src)
3982 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
3983 						  vmvf_num, NULL);
3984 		return ICE_ERR_CFG;
3985 	}
3986 
3987 	buf_size = struct_size(qg_list, q_id, 1);
3988 	qg_list = kzalloc(buf_size, GFP_KERNEL);
3989 	if (!qg_list)
3990 		return ICE_ERR_NO_MEMORY;
3991 
3992 	mutex_lock(&pi->sched_lock);
3993 
3994 	for (i = 0; i < num_queues; i++) {
3995 		struct ice_sched_node *node;
3996 
3997 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3998 		if (!node)
3999 			continue;
4000 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4001 		if (!q_ctx) {
4002 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4003 				  q_handles[i]);
4004 			continue;
4005 		}
4006 		if (q_ctx->q_handle != q_handles[i]) {
4007 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4008 				  q_ctx->q_handle, q_handles[i]);
4009 			continue;
4010 		}
4011 		qg_list->parent_teid = node->info.parent_teid;
4012 		qg_list->num_qs = 1;
4013 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4014 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4015 					    vmvf_num, cd);
4016 
4017 		if (status)
4018 			break;
4019 		ice_free_sched_node(pi, node);
4020 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4021 	}
4022 	mutex_unlock(&pi->sched_lock);
4023 	kfree(qg_list);
4024 	return status;
4025 }
4026 
4027 /**
4028  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4029  * @pi: port information structure
4030  * @vsi_handle: software VSI handle
4031  * @tc_bitmap: TC bitmap
4032  * @maxqs: max queues array per TC
4033  * @owner: LAN or RDMA
4034  *
4035  * This function adds/updates the VSI queues per TC.
4036  */
4037 static enum ice_status
4038 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4039 	       u16 *maxqs, u8 owner)
4040 {
4041 	enum ice_status status = 0;
4042 	u8 i;
4043 
4044 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4045 		return ICE_ERR_CFG;
4046 
4047 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4048 		return ICE_ERR_PARAM;
4049 
4050 	mutex_lock(&pi->sched_lock);
4051 
4052 	ice_for_each_traffic_class(i) {
4053 		/* configuration is possible only if TC node is present */
4054 		if (!ice_sched_get_tc_node(pi, i))
4055 			continue;
4056 
4057 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4058 					   ice_is_tc_ena(tc_bitmap, i));
4059 		if (status)
4060 			break;
4061 	}
4062 
4063 	mutex_unlock(&pi->sched_lock);
4064 	return status;
4065 }
4066 
4067 /**
4068  * ice_cfg_vsi_lan - configure VSI LAN queues
4069  * @pi: port information structure
4070  * @vsi_handle: software VSI handle
4071  * @tc_bitmap: TC bitmap
4072  * @max_lanqs: max LAN queues array per TC
4073  *
4074  * This function adds/updates the VSI LAN queues per TC.
4075  */
4076 enum ice_status
4077 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4078 		u16 *max_lanqs)
4079 {
4080 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4081 			      ICE_SCHED_NODE_OWNER_LAN);
4082 }
4083 
4084 /**
4085  * ice_replay_pre_init - replay pre initialization
4086  * @hw: pointer to the HW struct
4087  *
4088  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4089  */
4090 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4091 {
4092 	struct ice_switch_info *sw = hw->switch_info;
4093 	u8 i;
4094 
4095 	/* Delete old entries from replay filter list head if there is any */
4096 	ice_rm_all_sw_replay_rule_info(hw);
4097 	/* In start of replay, move entries into replay_rules list, it
4098 	 * will allow adding rules entries back to filt_rules list,
4099 	 * which is operational list.
4100 	 */
4101 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4102 		list_replace_init(&sw->recp_list[i].filt_rules,
4103 				  &sw->recp_list[i].filt_replay_rules);
4104 
4105 	return 0;
4106 }
4107 
4108 /**
4109  * ice_replay_vsi - replay VSI configuration
4110  * @hw: pointer to the HW struct
4111  * @vsi_handle: driver VSI handle
4112  *
4113  * Restore all VSI configuration after reset. It is required to call this
4114  * function with main VSI first.
4115  */
4116 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4117 {
4118 	enum ice_status status;
4119 
4120 	if (!ice_is_vsi_valid(hw, vsi_handle))
4121 		return ICE_ERR_PARAM;
4122 
4123 	/* Replay pre-initialization if there is any */
4124 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4125 		status = ice_replay_pre_init(hw);
4126 		if (status)
4127 			return status;
4128 	}
4129 	/* Replay per VSI all RSS configurations */
4130 	status = ice_replay_rss_cfg(hw, vsi_handle);
4131 	if (status)
4132 		return status;
4133 	/* Replay per VSI all filters */
4134 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4135 	return status;
4136 }
4137 
4138 /**
4139  * ice_replay_post - post replay configuration cleanup
4140  * @hw: pointer to the HW struct
4141  *
4142  * Post replay cleanup.
4143  */
4144 void ice_replay_post(struct ice_hw *hw)
4145 {
4146 	/* Delete old entries from replay filter list head */
4147 	ice_rm_all_sw_replay_rule_info(hw);
4148 }
4149 
4150 /**
4151  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4152  * @hw: ptr to the hardware info
4153  * @reg: offset of 64 bit HW register to read from
4154  * @prev_stat_loaded: bool to specify if previous stats are loaded
4155  * @prev_stat: ptr to previous loaded stat value
4156  * @cur_stat: ptr to current stat value
4157  */
4158 void
4159 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4160 		  u64 *prev_stat, u64 *cur_stat)
4161 {
4162 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4163 
4164 	/* device stats are not reset at PFR, they likely will not be zeroed
4165 	 * when the driver starts. Thus, save the value from the first read
4166 	 * without adding to the statistic value so that we report stats which
4167 	 * count up from zero.
4168 	 */
4169 	if (!prev_stat_loaded) {
4170 		*prev_stat = new_data;
4171 		return;
4172 	}
4173 
4174 	/* Calculate the difference between the new and old values, and then
4175 	 * add it to the software stat value.
4176 	 */
4177 	if (new_data >= *prev_stat)
4178 		*cur_stat += new_data - *prev_stat;
4179 	else
4180 		/* to manage the potential roll-over */
4181 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4182 
4183 	/* Update the previously stored value to prepare for next read */
4184 	*prev_stat = new_data;
4185 }
4186 
4187 /**
4188  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4189  * @hw: ptr to the hardware info
4190  * @reg: offset of HW register to read from
4191  * @prev_stat_loaded: bool to specify if previous stats are loaded
4192  * @prev_stat: ptr to previous loaded stat value
4193  * @cur_stat: ptr to current stat value
4194  */
4195 void
4196 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4197 		  u64 *prev_stat, u64 *cur_stat)
4198 {
4199 	u32 new_data;
4200 
4201 	new_data = rd32(hw, reg);
4202 
4203 	/* device stats are not reset at PFR, they likely will not be zeroed
4204 	 * when the driver starts. Thus, save the value from the first read
4205 	 * without adding to the statistic value so that we report stats which
4206 	 * count up from zero.
4207 	 */
4208 	if (!prev_stat_loaded) {
4209 		*prev_stat = new_data;
4210 		return;
4211 	}
4212 
4213 	/* Calculate the difference between the new and old values, and then
4214 	 * add it to the software stat value.
4215 	 */
4216 	if (new_data >= *prev_stat)
4217 		*cur_stat += new_data - *prev_stat;
4218 	else
4219 		/* to manage the potential roll-over */
4220 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4221 
4222 	/* Update the previously stored value to prepare for next read */
4223 	*prev_stat = new_data;
4224 }
4225 
4226 /**
4227  * ice_sched_query_elem - query element information from HW
4228  * @hw: pointer to the HW struct
4229  * @node_teid: node TEID to be queried
4230  * @buf: buffer to element information
4231  *
4232  * This function queries HW element information
4233  */
4234 enum ice_status
4235 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4236 		     struct ice_aqc_txsched_elem_data *buf)
4237 {
4238 	u16 buf_size, num_elem_ret = 0;
4239 	enum ice_status status;
4240 
4241 	buf_size = sizeof(*buf);
4242 	memset(buf, 0, buf_size);
4243 	buf->node_teid = cpu_to_le32(node_teid);
4244 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4245 					  NULL);
4246 	if (status || num_elem_ret != 1)
4247 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4248 	return status;
4249 }
4250 
4251 /**
4252  * ice_fw_supports_link_override
4253  * @hw: pointer to the hardware structure
4254  *
4255  * Checks if the firmware supports link override
4256  */
4257 bool ice_fw_supports_link_override(struct ice_hw *hw)
4258 {
4259 	/* Currently, only supported for E810 devices */
4260 	if (hw->mac_type != ICE_MAC_E810)
4261 		return false;
4262 
4263 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4264 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4265 			return true;
4266 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4267 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4268 			return true;
4269 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4270 		return true;
4271 	}
4272 
4273 	return false;
4274 }
4275 
4276 /**
4277  * ice_get_link_default_override
4278  * @ldo: pointer to the link default override struct
4279  * @pi: pointer to the port info struct
4280  *
4281  * Gets the link default override for a port
4282  */
4283 enum ice_status
4284 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4285 			      struct ice_port_info *pi)
4286 {
4287 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4288 	struct ice_hw *hw = pi->hw;
4289 	enum ice_status status;
4290 
4291 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4292 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4293 	if (status) {
4294 		ice_debug(hw, ICE_DBG_INIT,
4295 			  "Failed to read link override TLV.\n");
4296 		return status;
4297 	}
4298 
4299 	/* Each port has its own config; calculate for our port */
4300 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4301 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4302 
4303 	/* link options first */
4304 	status = ice_read_sr_word(hw, tlv_start, &buf);
4305 	if (status) {
4306 		ice_debug(hw, ICE_DBG_INIT,
4307 			  "Failed to read override link options.\n");
4308 		return status;
4309 	}
4310 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4311 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4312 		ICE_LINK_OVERRIDE_PHY_CFG_S;
4313 
4314 	/* link PHY config */
4315 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4316 	status = ice_read_sr_word(hw, offset, &buf);
4317 	if (status) {
4318 		ice_debug(hw, ICE_DBG_INIT,
4319 			  "Failed to read override phy config.\n");
4320 		return status;
4321 	}
4322 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4323 
4324 	/* PHY types low */
4325 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4326 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4327 		status = ice_read_sr_word(hw, (offset + i), &buf);
4328 		if (status) {
4329 			ice_debug(hw, ICE_DBG_INIT,
4330 				  "Failed to read override link options.\n");
4331 			return status;
4332 		}
4333 		/* shift 16 bits at a time to fill 64 bits */
4334 		ldo->phy_type_low |= ((u64)buf << (i * 16));
4335 	}
4336 
4337 	/* PHY types high */
4338 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4339 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4340 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4341 		status = ice_read_sr_word(hw, (offset + i), &buf);
4342 		if (status) {
4343 			ice_debug(hw, ICE_DBG_INIT,
4344 				  "Failed to read override link options.\n");
4345 			return status;
4346 		}
4347 		/* shift 16 bits at a time to fill 64 bits */
4348 		ldo->phy_type_high |= ((u64)buf << (i * 16));
4349 	}
4350 
4351 	return status;
4352 }
4353 
4354 /**
4355  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4356  * @caps: get PHY capability data
4357  */
4358 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4359 {
4360 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4361 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4362 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4363 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4364 		return true;
4365 
4366 	return false;
4367 }
4368 
4369 /**
4370  * ice_aq_set_lldp_mib - Set the LLDP MIB
4371  * @hw: pointer to the HW struct
4372  * @mib_type: Local, Remote or both Local and Remote MIBs
4373  * @buf: pointer to the caller-supplied buffer to store the MIB block
4374  * @buf_size: size of the buffer (in bytes)
4375  * @cd: pointer to command details structure or NULL
4376  *
4377  * Set the LLDP MIB. (0x0A08)
4378  */
4379 enum ice_status
4380 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4381 		    struct ice_sq_cd *cd)
4382 {
4383 	struct ice_aqc_lldp_set_local_mib *cmd;
4384 	struct ice_aq_desc desc;
4385 
4386 	cmd = &desc.params.lldp_set_mib;
4387 
4388 	if (buf_size == 0 || !buf)
4389 		return ICE_ERR_PARAM;
4390 
4391 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4392 
4393 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4394 	desc.datalen = cpu_to_le16(buf_size);
4395 
4396 	cmd->type = mib_type;
4397 	cmd->length = cpu_to_le16(buf_size);
4398 
4399 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4400 }
4401