xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 
8 #define ICE_PF_RESET_WAIT_COUNT	200
9 
10 #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 	     ((ICE_RX_OPC_MDID << \
13 	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17 
18 #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28 
29 /**
30  * ice_set_mac_type - Sets MAC type
31  * @hw: pointer to the HW structure
32  *
33  * This function sets the MAC type of the adapter based on the
34  * vendor ID and device ID stored in the HW structure.
35  */
36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37 {
38 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
40 
41 	hw->mac_type = ICE_MAC_GENERIC;
42 	return 0;
43 }
44 
45 /**
46  * ice_dev_onetime_setup - Temporary HW/FW workarounds
47  * @hw: pointer to the HW structure
48  *
49  * This function provides temporary workarounds for certain issues
50  * that are expected to be fixed in the HW/FW.
51  */
52 void ice_dev_onetime_setup(struct ice_hw *hw)
53 {
54 	/* configure Rx - set non pxe mode */
55 	wr32(hw, GLLAN_RCTL_0, 0x1);
56 
57 #define MBX_PF_VT_PFALLOC	0x00231E80
58 	/* set VFs per PF */
59 	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
60 }
61 
62 /**
63  * ice_clear_pf_cfg - Clear PF configuration
64  * @hw: pointer to the hardware structure
65  *
66  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
67  * configuration, flow director filters, etc.).
68  */
69 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
70 {
71 	struct ice_aq_desc desc;
72 
73 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
74 
75 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
76 }
77 
78 /**
79  * ice_aq_manage_mac_read - manage MAC address read command
80  * @hw: pointer to the HW struct
81  * @buf: a virtual buffer to hold the manage MAC read response
82  * @buf_size: Size of the virtual buffer
83  * @cd: pointer to command details structure or NULL
84  *
85  * This function is used to return per PF station MAC address (0x0107).
86  * NOTE: Upon successful completion of this command, MAC address information
87  * is returned in user specified buffer. Please interpret user specified
88  * buffer as "manage_mac_read" response.
89  * Response such as various MAC addresses are stored in HW struct (port.mac)
90  * ice_aq_discover_caps is expected to be called before this function is called.
91  */
92 static enum ice_status
93 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
94 		       struct ice_sq_cd *cd)
95 {
96 	struct ice_aqc_manage_mac_read_resp *resp;
97 	struct ice_aqc_manage_mac_read *cmd;
98 	struct ice_aq_desc desc;
99 	enum ice_status status;
100 	u16 flags;
101 	u8 i;
102 
103 	cmd = &desc.params.mac_read;
104 
105 	if (buf_size < sizeof(*resp))
106 		return ICE_ERR_BUF_TOO_SHORT;
107 
108 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
109 
110 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
111 	if (status)
112 		return status;
113 
114 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
115 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
116 
117 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
118 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
119 		return ICE_ERR_CFG;
120 	}
121 
122 	/* A single port can report up to two (LAN and WoL) addresses */
123 	for (i = 0; i < cmd->num_addr; i++)
124 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
125 			ether_addr_copy(hw->port_info->mac.lan_addr,
126 					resp[i].mac_addr);
127 			ether_addr_copy(hw->port_info->mac.perm_addr,
128 					resp[i].mac_addr);
129 			break;
130 		}
131 
132 	return 0;
133 }
134 
135 /**
136  * ice_aq_get_phy_caps - returns PHY capabilities
137  * @pi: port information structure
138  * @qual_mods: report qualified modules
139  * @report_mode: report mode capabilities
140  * @pcaps: structure for PHY capabilities to be filled
141  * @cd: pointer to command details structure or NULL
142  *
143  * Returns the various PHY capabilities supported on the Port (0x0600)
144  */
145 enum ice_status
146 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
147 		    struct ice_aqc_get_phy_caps_data *pcaps,
148 		    struct ice_sq_cd *cd)
149 {
150 	struct ice_aqc_get_phy_caps *cmd;
151 	u16 pcaps_size = sizeof(*pcaps);
152 	struct ice_aq_desc desc;
153 	enum ice_status status;
154 
155 	cmd = &desc.params.get_phy;
156 
157 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 		return ICE_ERR_PARAM;
159 
160 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
161 
162 	if (qual_mods)
163 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
164 
165 	cmd->param0 |= cpu_to_le16(report_mode);
166 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
167 
168 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
169 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
170 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
171 	}
172 
173 	return status;
174 }
175 
176 /**
177  * ice_get_media_type - Gets media type
178  * @pi: port information structure
179  */
180 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
181 {
182 	struct ice_link_status *hw_link_info;
183 
184 	if (!pi)
185 		return ICE_MEDIA_UNKNOWN;
186 
187 	hw_link_info = &pi->phy.link_info;
188 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
189 		/* If more than one media type is selected, report unknown */
190 		return ICE_MEDIA_UNKNOWN;
191 
192 	if (hw_link_info->phy_type_low) {
193 		switch (hw_link_info->phy_type_low) {
194 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
195 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
196 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
197 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
198 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
199 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
200 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
201 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
202 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
203 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
204 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
205 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
206 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
207 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
208 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
209 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
210 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
211 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
212 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
213 			return ICE_MEDIA_FIBER;
214 		case ICE_PHY_TYPE_LOW_100BASE_TX:
215 		case ICE_PHY_TYPE_LOW_1000BASE_T:
216 		case ICE_PHY_TYPE_LOW_2500BASE_T:
217 		case ICE_PHY_TYPE_LOW_5GBASE_T:
218 		case ICE_PHY_TYPE_LOW_10GBASE_T:
219 		case ICE_PHY_TYPE_LOW_25GBASE_T:
220 			return ICE_MEDIA_BASET;
221 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
222 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
223 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
224 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
225 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
226 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
227 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
228 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
229 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
230 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
231 			return ICE_MEDIA_DA;
232 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
233 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
234 		case ICE_PHY_TYPE_LOW_2500BASE_X:
235 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
236 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
237 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
238 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
239 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
240 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
241 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
242 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
243 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
244 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
245 			return ICE_MEDIA_BACKPLANE;
246 		}
247 	} else {
248 		switch (hw_link_info->phy_type_high) {
249 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
250 			return ICE_MEDIA_BACKPLANE;
251 		}
252 	}
253 	return ICE_MEDIA_UNKNOWN;
254 }
255 
256 /**
257  * ice_aq_get_link_info
258  * @pi: port information structure
259  * @ena_lse: enable/disable LinkStatusEvent reporting
260  * @link: pointer to link status structure - optional
261  * @cd: pointer to command details structure or NULL
262  *
263  * Get Link Status (0x607). Returns the link status of the adapter.
264  */
265 enum ice_status
266 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
267 		     struct ice_link_status *link, struct ice_sq_cd *cd)
268 {
269 	struct ice_link_status *hw_link_info_old, *hw_link_info;
270 	struct ice_aqc_get_link_status_data link_data = { 0 };
271 	struct ice_aqc_get_link_status *resp;
272 	enum ice_media_type *hw_media_type;
273 	struct ice_fc_info *hw_fc_info;
274 	bool tx_pause, rx_pause;
275 	struct ice_aq_desc desc;
276 	enum ice_status status;
277 	u16 cmd_flags;
278 
279 	if (!pi)
280 		return ICE_ERR_PARAM;
281 	hw_link_info_old = &pi->phy.link_info_old;
282 	hw_media_type = &pi->phy.media_type;
283 	hw_link_info = &pi->phy.link_info;
284 	hw_fc_info = &pi->fc;
285 
286 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
287 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
288 	resp = &desc.params.get_link_status;
289 	resp->cmd_flags = cpu_to_le16(cmd_flags);
290 	resp->lport_num = pi->lport;
291 
292 	status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
293 				 cd);
294 
295 	if (status)
296 		return status;
297 
298 	/* save off old link status information */
299 	*hw_link_info_old = *hw_link_info;
300 
301 	/* update current link status information */
302 	hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
303 	hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
304 	hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high);
305 	*hw_media_type = ice_get_media_type(pi);
306 	hw_link_info->link_info = link_data.link_info;
307 	hw_link_info->an_info = link_data.an_info;
308 	hw_link_info->ext_info = link_data.ext_info;
309 	hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
310 	hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
311 
312 	/* update fc info */
313 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
314 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
315 	if (tx_pause && rx_pause)
316 		hw_fc_info->current_mode = ICE_FC_FULL;
317 	else if (tx_pause)
318 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
319 	else if (rx_pause)
320 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
321 	else
322 		hw_fc_info->current_mode = ICE_FC_NONE;
323 
324 	hw_link_info->lse_ena =
325 		!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
326 
327 	/* save link status information */
328 	if (link)
329 		*link = *hw_link_info;
330 
331 	/* flag cleared so calling functions don't call AQ again */
332 	pi->phy.get_link_info = false;
333 
334 	return 0;
335 }
336 
337 /**
338  * ice_init_flex_flags
339  * @hw: pointer to the hardware structure
340  * @prof_id: Rx Descriptor Builder profile ID
341  *
342  * Function to initialize Rx flex flags
343  */
344 static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
345 {
346 	u8 idx = 0;
347 
348 	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
349 	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
350 	 * flexiflags1[3:0] - Not used for flag programming
351 	 * flexiflags2[7:0] - Tunnel and VLAN types
352 	 * 2 invalid fields in last index
353 	 */
354 	switch (prof_id) {
355 	/* Rx flex flags are currently programmed for the NIC profiles only.
356 	 * Different flag bit programming configurations can be added per
357 	 * profile as needed.
358 	 */
359 	case ICE_RXDID_FLEX_NIC:
360 	case ICE_RXDID_FLEX_NIC_2:
361 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
362 				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
363 				   ICE_FLG_FIN, idx++);
364 		/* flex flag 1 is not used for flexi-flag programming, skipping
365 		 * these four FLG64 bits.
366 		 */
367 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
368 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
369 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
370 				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
371 				   ICE_FLG_EVLAN_x9100, idx++);
372 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
373 				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
374 				   ICE_FLG_TNL0, idx++);
375 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
376 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
377 		break;
378 
379 	default:
380 		ice_debug(hw, ICE_DBG_INIT,
381 			  "Flag programming for profile ID %d not supported\n",
382 			  prof_id);
383 	}
384 }
385 
386 /**
387  * ice_init_flex_flds
388  * @hw: pointer to the hardware structure
389  * @prof_id: Rx Descriptor Builder profile ID
390  *
391  * Function to initialize flex descriptors
392  */
393 static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
394 {
395 	enum ice_flex_rx_mdid mdid;
396 
397 	switch (prof_id) {
398 	case ICE_RXDID_FLEX_NIC:
399 	case ICE_RXDID_FLEX_NIC_2:
400 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
401 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
402 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
403 
404 		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
405 			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
406 
407 		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
408 
409 		ice_init_flex_flags(hw, prof_id);
410 		break;
411 
412 	default:
413 		ice_debug(hw, ICE_DBG_INIT,
414 			  "Field init for profile ID %d not supported\n",
415 			  prof_id);
416 	}
417 }
418 
419 /**
420  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
421  * @hw: pointer to the HW struct
422  */
423 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
424 {
425 	struct ice_switch_info *sw;
426 
427 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
428 				       sizeof(*hw->switch_info), GFP_KERNEL);
429 	sw = hw->switch_info;
430 
431 	if (!sw)
432 		return ICE_ERR_NO_MEMORY;
433 
434 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
435 
436 	return ice_init_def_sw_recp(hw);
437 }
438 
439 /**
440  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
441  * @hw: pointer to the HW struct
442  */
443 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
444 {
445 	struct ice_switch_info *sw = hw->switch_info;
446 	struct ice_vsi_list_map_info *v_pos_map;
447 	struct ice_vsi_list_map_info *v_tmp_map;
448 	struct ice_sw_recipe *recps;
449 	u8 i;
450 
451 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
452 				 list_entry) {
453 		list_del(&v_pos_map->list_entry);
454 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
455 	}
456 	recps = hw->switch_info->recp_list;
457 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
458 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
459 
460 		recps[i].root_rid = i;
461 		mutex_destroy(&recps[i].filt_rule_lock);
462 		list_for_each_entry_safe(lst_itr, tmp_entry,
463 					 &recps[i].filt_rules, list_entry) {
464 			list_del(&lst_itr->list_entry);
465 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
466 		}
467 	}
468 	ice_rm_all_sw_replay_rule_info(hw);
469 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
470 	devm_kfree(ice_hw_to_dev(hw), sw);
471 }
472 
473 #define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
474 	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
475 #define ICE_FW_LOG_DESC_SIZE_MAX	\
476 	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
477 
478 /**
479  * ice_cfg_fw_log - configure FW logging
480  * @hw: pointer to the HW struct
481  * @enable: enable certain FW logging events if true, disable all if false
482  *
483  * This function enables/disables the FW logging via Rx CQ events and a UART
484  * port based on predetermined configurations. FW logging via the Rx CQ can be
485  * enabled/disabled for individual PF's. However, FW logging via the UART can
486  * only be enabled/disabled for all PFs on the same device.
487  *
488  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
489  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
490  * before initializing the device.
491  *
492  * When re/configuring FW logging, callers need to update the "cfg" elements of
493  * the hw->fw_log.evnts array with the desired logging event configurations for
494  * modules of interest. When disabling FW logging completely, the callers can
495  * just pass false in the "enable" parameter. On completion, the function will
496  * update the "cur" element of the hw->fw_log.evnts array with the resulting
497  * logging event configurations of the modules that are being re/configured. FW
498  * logging modules that are not part of a reconfiguration operation retain their
499  * previous states.
500  *
501  * Before resetting the device, it is recommended that the driver disables FW
502  * logging before shutting down the control queue. When disabling FW logging
503  * ("enable" = false), the latest configurations of FW logging events stored in
504  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
505  * a device reset.
506  *
507  * When enabling FW logging to emit log messages via the Rx CQ during the
508  * device's initialization phase, a mechanism alternative to interrupt handlers
509  * needs to be used to extract FW log messages from the Rx CQ periodically and
510  * to prevent the Rx CQ from being full and stalling other types of control
511  * messages from FW to SW. Interrupts are typically disabled during the device's
512  * initialization phase.
513  */
514 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
515 {
516 	struct ice_aqc_fw_logging_data *data = NULL;
517 	struct ice_aqc_fw_logging *cmd;
518 	enum ice_status status = 0;
519 	u16 i, chgs = 0, len = 0;
520 	struct ice_aq_desc desc;
521 	u8 actv_evnts = 0;
522 	void *buf = NULL;
523 
524 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
525 		return 0;
526 
527 	/* Disable FW logging only when the control queue is still responsive */
528 	if (!enable &&
529 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
530 		return 0;
531 
532 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
533 	cmd = &desc.params.fw_logging;
534 
535 	/* Indicate which controls are valid */
536 	if (hw->fw_log.cq_en)
537 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
538 
539 	if (hw->fw_log.uart_en)
540 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
541 
542 	if (enable) {
543 		/* Fill in an array of entries with FW logging modules and
544 		 * logging events being reconfigured.
545 		 */
546 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
547 			u16 val;
548 
549 			/* Keep track of enabled event types */
550 			actv_evnts |= hw->fw_log.evnts[i].cfg;
551 
552 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
553 				continue;
554 
555 			if (!data) {
556 				data = devm_kzalloc(ice_hw_to_dev(hw),
557 						    ICE_FW_LOG_DESC_SIZE_MAX,
558 						    GFP_KERNEL);
559 				if (!data)
560 					return ICE_ERR_NO_MEMORY;
561 			}
562 
563 			val = i << ICE_AQC_FW_LOG_ID_S;
564 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
565 			data->entry[chgs++] = cpu_to_le16(val);
566 		}
567 
568 		/* Only enable FW logging if at least one module is specified.
569 		 * If FW logging is currently enabled but all modules are not
570 		 * enabled to emit log messages, disable FW logging altogether.
571 		 */
572 		if (actv_evnts) {
573 			/* Leave if there is effectively no change */
574 			if (!chgs)
575 				goto out;
576 
577 			if (hw->fw_log.cq_en)
578 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
579 
580 			if (hw->fw_log.uart_en)
581 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
582 
583 			buf = data;
584 			len = ICE_FW_LOG_DESC_SIZE(chgs);
585 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
586 		}
587 	}
588 
589 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
590 	if (!status) {
591 		/* Update the current configuration to reflect events enabled.
592 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
593 		 * logging mode is enabled for the device. They do not reflect
594 		 * actual modules being enabled to emit log messages. So, their
595 		 * values remain unchanged even when all modules are disabled.
596 		 */
597 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
598 
599 		hw->fw_log.actv_evnts = actv_evnts;
600 		for (i = 0; i < cnt; i++) {
601 			u16 v, m;
602 
603 			if (!enable) {
604 				/* When disabling all FW logging events as part
605 				 * of device's de-initialization, the original
606 				 * configurations are retained, and can be used
607 				 * to reconfigure FW logging later if the device
608 				 * is re-initialized.
609 				 */
610 				hw->fw_log.evnts[i].cur = 0;
611 				continue;
612 			}
613 
614 			v = le16_to_cpu(data->entry[i]);
615 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
616 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
617 		}
618 	}
619 
620 out:
621 	if (data)
622 		devm_kfree(ice_hw_to_dev(hw), data);
623 
624 	return status;
625 }
626 
627 /**
628  * ice_output_fw_log
629  * @hw: pointer to the HW struct
630  * @desc: pointer to the AQ message descriptor
631  * @buf: pointer to the buffer accompanying the AQ message
632  *
633  * Formats a FW Log message and outputs it via the standard driver logs.
634  */
635 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
636 {
637 	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
638 	ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
639 			le16_to_cpu(desc->datalen));
640 	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
641 }
642 
643 /**
644  * ice_get_itr_intrl_gran - determine int/intrl granularity
645  * @hw: pointer to the HW struct
646  *
647  * Determines the itr/intrl granularities based on the maximum aggregate
648  * bandwidth according to the device's configuration during power-on.
649  */
650 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
651 {
652 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
653 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
654 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
655 
656 	switch (max_agg_bw) {
657 	case ICE_MAX_AGG_BW_200G:
658 	case ICE_MAX_AGG_BW_100G:
659 	case ICE_MAX_AGG_BW_50G:
660 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
661 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
662 		break;
663 	case ICE_MAX_AGG_BW_25G:
664 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
665 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
666 		break;
667 	}
668 }
669 
670 /**
671  * ice_init_hw - main hardware initialization routine
672  * @hw: pointer to the hardware structure
673  */
674 enum ice_status ice_init_hw(struct ice_hw *hw)
675 {
676 	struct ice_aqc_get_phy_caps_data *pcaps;
677 	enum ice_status status;
678 	u16 mac_buf_len;
679 	void *mac_buf;
680 
681 	/* Set MAC type based on DeviceID */
682 	status = ice_set_mac_type(hw);
683 	if (status)
684 		return status;
685 
686 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
687 			 PF_FUNC_RID_FUNC_NUM_M) >>
688 		PF_FUNC_RID_FUNC_NUM_S;
689 
690 	status = ice_reset(hw, ICE_RESET_PFR);
691 	if (status)
692 		return status;
693 
694 	ice_get_itr_intrl_gran(hw);
695 
696 	status = ice_init_all_ctrlq(hw);
697 	if (status)
698 		goto err_unroll_cqinit;
699 
700 	/* Enable FW logging. Not fatal if this fails. */
701 	status = ice_cfg_fw_log(hw, true);
702 	if (status)
703 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
704 
705 	status = ice_clear_pf_cfg(hw);
706 	if (status)
707 		goto err_unroll_cqinit;
708 
709 	ice_clear_pxe_mode(hw);
710 
711 	status = ice_init_nvm(hw);
712 	if (status)
713 		goto err_unroll_cqinit;
714 
715 	status = ice_get_caps(hw);
716 	if (status)
717 		goto err_unroll_cqinit;
718 
719 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
720 				     sizeof(*hw->port_info), GFP_KERNEL);
721 	if (!hw->port_info) {
722 		status = ICE_ERR_NO_MEMORY;
723 		goto err_unroll_cqinit;
724 	}
725 
726 	/* set the back pointer to HW */
727 	hw->port_info->hw = hw;
728 
729 	/* Initialize port_info struct with switch configuration data */
730 	status = ice_get_initial_sw_cfg(hw);
731 	if (status)
732 		goto err_unroll_alloc;
733 
734 	hw->evb_veb = true;
735 
736 	/* Query the allocated resources for Tx scheduler */
737 	status = ice_sched_query_res_alloc(hw);
738 	if (status) {
739 		ice_debug(hw, ICE_DBG_SCHED,
740 			  "Failed to get scheduler allocated resources\n");
741 		goto err_unroll_alloc;
742 	}
743 
744 	/* Initialize port_info struct with scheduler data */
745 	status = ice_sched_init_port(hw->port_info);
746 	if (status)
747 		goto err_unroll_sched;
748 
749 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
750 	if (!pcaps) {
751 		status = ICE_ERR_NO_MEMORY;
752 		goto err_unroll_sched;
753 	}
754 
755 	/* Initialize port_info struct with PHY capabilities */
756 	status = ice_aq_get_phy_caps(hw->port_info, false,
757 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
758 	devm_kfree(ice_hw_to_dev(hw), pcaps);
759 	if (status)
760 		goto err_unroll_sched;
761 
762 	/* Initialize port_info struct with link information */
763 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
764 	if (status)
765 		goto err_unroll_sched;
766 
767 	/* need a valid SW entry point to build a Tx tree */
768 	if (!hw->sw_entry_point_layer) {
769 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
770 		status = ICE_ERR_CFG;
771 		goto err_unroll_sched;
772 	}
773 	INIT_LIST_HEAD(&hw->agg_list);
774 
775 	status = ice_init_fltr_mgmt_struct(hw);
776 	if (status)
777 		goto err_unroll_sched;
778 
779 	ice_dev_onetime_setup(hw);
780 
781 	/* Get MAC information */
782 	/* A single port can report up to two (LAN and WoL) addresses */
783 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
784 			       sizeof(struct ice_aqc_manage_mac_read_resp),
785 			       GFP_KERNEL);
786 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
787 
788 	if (!mac_buf) {
789 		status = ICE_ERR_NO_MEMORY;
790 		goto err_unroll_fltr_mgmt_struct;
791 	}
792 
793 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
794 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
795 
796 	if (status)
797 		goto err_unroll_fltr_mgmt_struct;
798 
799 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
800 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
801 
802 	return 0;
803 
804 err_unroll_fltr_mgmt_struct:
805 	ice_cleanup_fltr_mgmt_struct(hw);
806 err_unroll_sched:
807 	ice_sched_cleanup_all(hw);
808 err_unroll_alloc:
809 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
810 err_unroll_cqinit:
811 	ice_shutdown_all_ctrlq(hw);
812 	return status;
813 }
814 
815 /**
816  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
817  * @hw: pointer to the hardware structure
818  */
819 void ice_deinit_hw(struct ice_hw *hw)
820 {
821 	ice_cleanup_fltr_mgmt_struct(hw);
822 
823 	ice_sched_cleanup_all(hw);
824 	ice_sched_clear_agg(hw);
825 
826 	if (hw->port_info) {
827 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
828 		hw->port_info = NULL;
829 	}
830 
831 	/* Attempt to disable FW logging before shutting down control queues */
832 	ice_cfg_fw_log(hw, false);
833 	ice_shutdown_all_ctrlq(hw);
834 
835 	/* Clear VSI contexts if not already cleared */
836 	ice_clear_all_vsi_ctx(hw);
837 }
838 
839 /**
840  * ice_check_reset - Check to see if a global reset is complete
841  * @hw: pointer to the hardware structure
842  */
843 enum ice_status ice_check_reset(struct ice_hw *hw)
844 {
845 	u32 cnt, reg = 0, grst_delay;
846 
847 	/* Poll for Device Active state in case a recent CORER, GLOBR,
848 	 * or EMPR has occurred. The grst delay value is in 100ms units.
849 	 * Add 1sec for outstanding AQ commands that can take a long time.
850 	 */
851 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
852 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
853 
854 	for (cnt = 0; cnt < grst_delay; cnt++) {
855 		mdelay(100);
856 		reg = rd32(hw, GLGEN_RSTAT);
857 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
858 			break;
859 	}
860 
861 	if (cnt == grst_delay) {
862 		ice_debug(hw, ICE_DBG_INIT,
863 			  "Global reset polling failed to complete.\n");
864 		return ICE_ERR_RESET_FAILED;
865 	}
866 
867 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
868 				 GLNVM_ULD_GLOBR_DONE_M)
869 
870 	/* Device is Active; check Global Reset processes are done */
871 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
872 		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
873 		if (reg == ICE_RESET_DONE_MASK) {
874 			ice_debug(hw, ICE_DBG_INIT,
875 				  "Global reset processes done. %d\n", cnt);
876 			break;
877 		}
878 		mdelay(10);
879 	}
880 
881 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
882 		ice_debug(hw, ICE_DBG_INIT,
883 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
884 			  reg);
885 		return ICE_ERR_RESET_FAILED;
886 	}
887 
888 	return 0;
889 }
890 
891 /**
892  * ice_pf_reset - Reset the PF
893  * @hw: pointer to the hardware structure
894  *
895  * If a global reset has been triggered, this function checks
896  * for its completion and then issues the PF reset
897  */
898 static enum ice_status ice_pf_reset(struct ice_hw *hw)
899 {
900 	u32 cnt, reg;
901 
902 	/* If at function entry a global reset was already in progress, i.e.
903 	 * state is not 'device active' or any of the reset done bits are not
904 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
905 	 * global reset is done.
906 	 */
907 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
908 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
909 		/* poll on global reset currently in progress until done */
910 		if (ice_check_reset(hw))
911 			return ICE_ERR_RESET_FAILED;
912 
913 		return 0;
914 	}
915 
916 	/* Reset the PF */
917 	reg = rd32(hw, PFGEN_CTRL);
918 
919 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
920 
921 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
922 		reg = rd32(hw, PFGEN_CTRL);
923 		if (!(reg & PFGEN_CTRL_PFSWR_M))
924 			break;
925 
926 		mdelay(1);
927 	}
928 
929 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
930 		ice_debug(hw, ICE_DBG_INIT,
931 			  "PF reset polling failed to complete.\n");
932 		return ICE_ERR_RESET_FAILED;
933 	}
934 
935 	return 0;
936 }
937 
938 /**
939  * ice_reset - Perform different types of reset
940  * @hw: pointer to the hardware structure
941  * @req: reset request
942  *
943  * This function triggers a reset as specified by the req parameter.
944  *
945  * Note:
946  * If anything other than a PF reset is triggered, PXE mode is restored.
947  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
948  * interface has been restored in the rebuild flow.
949  */
950 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
951 {
952 	u32 val = 0;
953 
954 	switch (req) {
955 	case ICE_RESET_PFR:
956 		return ice_pf_reset(hw);
957 	case ICE_RESET_CORER:
958 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
959 		val = GLGEN_RTRIG_CORER_M;
960 		break;
961 	case ICE_RESET_GLOBR:
962 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
963 		val = GLGEN_RTRIG_GLOBR_M;
964 		break;
965 	default:
966 		return ICE_ERR_PARAM;
967 	}
968 
969 	val |= rd32(hw, GLGEN_RTRIG);
970 	wr32(hw, GLGEN_RTRIG, val);
971 	ice_flush(hw);
972 
973 	/* wait for the FW to be ready */
974 	return ice_check_reset(hw);
975 }
976 
977 /**
978  * ice_copy_rxq_ctx_to_hw
979  * @hw: pointer to the hardware structure
980  * @ice_rxq_ctx: pointer to the rxq context
981  * @rxq_index: the index of the Rx queue
982  *
983  * Copies rxq context from dense structure to HW register space
984  */
985 static enum ice_status
986 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
987 {
988 	u8 i;
989 
990 	if (!ice_rxq_ctx)
991 		return ICE_ERR_BAD_PTR;
992 
993 	if (rxq_index > QRX_CTRL_MAX_INDEX)
994 		return ICE_ERR_PARAM;
995 
996 	/* Copy each dword separately to HW */
997 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
998 		wr32(hw, QRX_CONTEXT(i, rxq_index),
999 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1000 
1001 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1002 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 /* LAN Rx Queue Context */
1009 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1010 	/* Field		Width	LSB */
1011 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1012 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1013 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1014 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1015 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1016 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1017 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1018 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1019 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1020 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1021 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1022 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1023 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1024 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1025 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1026 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1027 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1028 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1029 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1030 	{ 0 }
1031 };
1032 
1033 /**
1034  * ice_write_rxq_ctx
1035  * @hw: pointer to the hardware structure
1036  * @rlan_ctx: pointer to the rxq context
1037  * @rxq_index: the index of the Rx queue
1038  *
1039  * Converts rxq context from sparse to dense structure and then writes
1040  * it to HW register space
1041  */
1042 enum ice_status
1043 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1044 		  u32 rxq_index)
1045 {
1046 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1047 
1048 	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1049 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1050 }
1051 
1052 /* LAN Tx Queue Context */
1053 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1054 				    /* Field			Width	LSB */
1055 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1056 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1057 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1058 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1059 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1060 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1061 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1062 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1063 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1064 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1065 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1066 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1067 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1068 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1069 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1070 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1071 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1072 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1073 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1074 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1075 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1076 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1077 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1078 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1079 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1080 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1081 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		110,	171),
1082 	{ 0 }
1083 };
1084 
1085 /**
1086  * ice_debug_cq
1087  * @hw: pointer to the hardware structure
1088  * @mask: debug mask
1089  * @desc: pointer to control queue descriptor
1090  * @buf: pointer to command buffer
1091  * @buf_len: max length of buf
1092  *
1093  * Dumps debug log about control command with descriptor contents.
1094  */
1095 void
1096 ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1097 	     u16 buf_len)
1098 {
1099 	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1100 	u16 len;
1101 
1102 #ifndef CONFIG_DYNAMIC_DEBUG
1103 	if (!(mask & hw->debug_mask))
1104 		return;
1105 #endif
1106 
1107 	if (!desc)
1108 		return;
1109 
1110 	len = le16_to_cpu(cq_desc->datalen);
1111 
1112 	ice_debug(hw, mask,
1113 		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1114 		  le16_to_cpu(cq_desc->opcode),
1115 		  le16_to_cpu(cq_desc->flags),
1116 		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1117 	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1118 		  le32_to_cpu(cq_desc->cookie_high),
1119 		  le32_to_cpu(cq_desc->cookie_low));
1120 	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1121 		  le32_to_cpu(cq_desc->params.generic.param0),
1122 		  le32_to_cpu(cq_desc->params.generic.param1));
1123 	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1124 		  le32_to_cpu(cq_desc->params.generic.addr_high),
1125 		  le32_to_cpu(cq_desc->params.generic.addr_low));
1126 	if (buf && cq_desc->datalen != 0) {
1127 		ice_debug(hw, mask, "Buffer:\n");
1128 		if (buf_len < len)
1129 			len = buf_len;
1130 
1131 		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1132 	}
1133 }
1134 
1135 /* FW Admin Queue command wrappers */
1136 
1137 /**
1138  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1139  * @hw: pointer to the HW struct
1140  * @desc: descriptor describing the command
1141  * @buf: buffer to use for indirect commands (NULL for direct commands)
1142  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1143  * @cd: pointer to command details structure
1144  *
1145  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1146  */
1147 enum ice_status
1148 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1149 		u16 buf_size, struct ice_sq_cd *cd)
1150 {
1151 	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1152 }
1153 
1154 /**
1155  * ice_aq_get_fw_ver
1156  * @hw: pointer to the HW struct
1157  * @cd: pointer to command details structure or NULL
1158  *
1159  * Get the firmware version (0x0001) from the admin queue commands
1160  */
1161 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1162 {
1163 	struct ice_aqc_get_ver *resp;
1164 	struct ice_aq_desc desc;
1165 	enum ice_status status;
1166 
1167 	resp = &desc.params.get_ver;
1168 
1169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1170 
1171 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1172 
1173 	if (!status) {
1174 		hw->fw_branch = resp->fw_branch;
1175 		hw->fw_maj_ver = resp->fw_major;
1176 		hw->fw_min_ver = resp->fw_minor;
1177 		hw->fw_patch = resp->fw_patch;
1178 		hw->fw_build = le32_to_cpu(resp->fw_build);
1179 		hw->api_branch = resp->api_branch;
1180 		hw->api_maj_ver = resp->api_major;
1181 		hw->api_min_ver = resp->api_minor;
1182 		hw->api_patch = resp->api_patch;
1183 	}
1184 
1185 	return status;
1186 }
1187 
1188 /**
1189  * ice_aq_q_shutdown
1190  * @hw: pointer to the HW struct
1191  * @unloading: is the driver unloading itself
1192  *
1193  * Tell the Firmware that we're shutting down the AdminQ and whether
1194  * or not the driver is unloading as well (0x0003).
1195  */
1196 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1197 {
1198 	struct ice_aqc_q_shutdown *cmd;
1199 	struct ice_aq_desc desc;
1200 
1201 	cmd = &desc.params.q_shutdown;
1202 
1203 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1204 
1205 	if (unloading)
1206 		cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1207 
1208 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1209 }
1210 
1211 /**
1212  * ice_aq_req_res
1213  * @hw: pointer to the HW struct
1214  * @res: resource ID
1215  * @access: access type
1216  * @sdp_number: resource number
1217  * @timeout: the maximum time in ms that the driver may hold the resource
1218  * @cd: pointer to command details structure or NULL
1219  *
1220  * Requests common resource using the admin queue commands (0x0008).
1221  * When attempting to acquire the Global Config Lock, the driver can
1222  * learn of three states:
1223  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1224  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1225  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1226  *                          successfully downloaded the package; the driver does
1227  *                          not have to download the package and can continue
1228  *                          loading
1229  *
1230  * Note that if the caller is in an acquire lock, perform action, release lock
1231  * phase of operation, it is possible that the FW may detect a timeout and issue
1232  * a CORER. In this case, the driver will receive a CORER interrupt and will
1233  * have to determine its cause. The calling thread that is handling this flow
1234  * will likely get an error propagated back to it indicating the Download
1235  * Package, Update Package or the Release Resource AQ commands timed out.
1236  */
1237 static enum ice_status
1238 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1239 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1240 	       struct ice_sq_cd *cd)
1241 {
1242 	struct ice_aqc_req_res *cmd_resp;
1243 	struct ice_aq_desc desc;
1244 	enum ice_status status;
1245 
1246 	cmd_resp = &desc.params.res_owner;
1247 
1248 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1249 
1250 	cmd_resp->res_id = cpu_to_le16(res);
1251 	cmd_resp->access_type = cpu_to_le16(access);
1252 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1253 	cmd_resp->timeout = cpu_to_le32(*timeout);
1254 	*timeout = 0;
1255 
1256 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1257 
1258 	/* The completion specifies the maximum time in ms that the driver
1259 	 * may hold the resource in the Timeout field.
1260 	 */
1261 
1262 	/* Global config lock response utilizes an additional status field.
1263 	 *
1264 	 * If the Global config lock resource is held by some other driver, the
1265 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1266 	 * and the timeout field indicates the maximum time the current owner
1267 	 * of the resource has to free it.
1268 	 */
1269 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1270 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1271 			*timeout = le32_to_cpu(cmd_resp->timeout);
1272 			return 0;
1273 		} else if (le16_to_cpu(cmd_resp->status) ==
1274 			   ICE_AQ_RES_GLBL_IN_PROG) {
1275 			*timeout = le32_to_cpu(cmd_resp->timeout);
1276 			return ICE_ERR_AQ_ERROR;
1277 		} else if (le16_to_cpu(cmd_resp->status) ==
1278 			   ICE_AQ_RES_GLBL_DONE) {
1279 			return ICE_ERR_AQ_NO_WORK;
1280 		}
1281 
1282 		/* invalid FW response, force a timeout immediately */
1283 		*timeout = 0;
1284 		return ICE_ERR_AQ_ERROR;
1285 	}
1286 
1287 	/* If the resource is held by some other driver, the command completes
1288 	 * with a busy return value and the timeout field indicates the maximum
1289 	 * time the current owner of the resource has to free it.
1290 	 */
1291 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1292 		*timeout = le32_to_cpu(cmd_resp->timeout);
1293 
1294 	return status;
1295 }
1296 
1297 /**
1298  * ice_aq_release_res
1299  * @hw: pointer to the HW struct
1300  * @res: resource ID
1301  * @sdp_number: resource number
1302  * @cd: pointer to command details structure or NULL
1303  *
1304  * release common resource using the admin queue commands (0x0009)
1305  */
1306 static enum ice_status
1307 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1308 		   struct ice_sq_cd *cd)
1309 {
1310 	struct ice_aqc_req_res *cmd;
1311 	struct ice_aq_desc desc;
1312 
1313 	cmd = &desc.params.res_owner;
1314 
1315 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1316 
1317 	cmd->res_id = cpu_to_le16(res);
1318 	cmd->res_number = cpu_to_le32(sdp_number);
1319 
1320 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1321 }
1322 
1323 /**
1324  * ice_acquire_res
1325  * @hw: pointer to the HW structure
1326  * @res: resource ID
1327  * @access: access type (read or write)
1328  * @timeout: timeout in milliseconds
1329  *
1330  * This function will attempt to acquire the ownership of a resource.
1331  */
1332 enum ice_status
1333 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1334 		enum ice_aq_res_access_type access, u32 timeout)
1335 {
1336 #define ICE_RES_POLLING_DELAY_MS	10
1337 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1338 	u32 time_left = timeout;
1339 	enum ice_status status;
1340 
1341 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1342 
1343 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1344 	 * previously acquired the resource and performed any necessary updates;
1345 	 * in this case the caller does not obtain the resource and has no
1346 	 * further work to do.
1347 	 */
1348 	if (status == ICE_ERR_AQ_NO_WORK)
1349 		goto ice_acquire_res_exit;
1350 
1351 	if (status)
1352 		ice_debug(hw, ICE_DBG_RES,
1353 			  "resource %d acquire type %d failed.\n", res, access);
1354 
1355 	/* If necessary, poll until the current lock owner timeouts */
1356 	timeout = time_left;
1357 	while (status && timeout && time_left) {
1358 		mdelay(delay);
1359 		timeout = (timeout > delay) ? timeout - delay : 0;
1360 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1361 
1362 		if (status == ICE_ERR_AQ_NO_WORK)
1363 			/* lock free, but no work to do */
1364 			break;
1365 
1366 		if (!status)
1367 			/* lock acquired */
1368 			break;
1369 	}
1370 	if (status && status != ICE_ERR_AQ_NO_WORK)
1371 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1372 
1373 ice_acquire_res_exit:
1374 	if (status == ICE_ERR_AQ_NO_WORK) {
1375 		if (access == ICE_RES_WRITE)
1376 			ice_debug(hw, ICE_DBG_RES,
1377 				  "resource indicates no work to do.\n");
1378 		else
1379 			ice_debug(hw, ICE_DBG_RES,
1380 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1381 	}
1382 	return status;
1383 }
1384 
1385 /**
1386  * ice_release_res
1387  * @hw: pointer to the HW structure
1388  * @res: resource ID
1389  *
1390  * This function will release a resource using the proper Admin Command.
1391  */
1392 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1393 {
1394 	enum ice_status status;
1395 	u32 total_delay = 0;
1396 
1397 	status = ice_aq_release_res(hw, res, 0, NULL);
1398 
1399 	/* there are some rare cases when trying to release the resource
1400 	 * results in an admin queue timeout, so handle them correctly
1401 	 */
1402 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1403 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1404 		mdelay(1);
1405 		status = ice_aq_release_res(hw, res, 0, NULL);
1406 		total_delay++;
1407 	}
1408 }
1409 
1410 /**
1411  * ice_get_num_per_func - determine number of resources per PF
1412  * @hw: pointer to the HW structure
1413  * @max: value to be evenly split between each PF
1414  *
1415  * Determine the number of valid functions by going through the bitmap returned
1416  * from parsing capabilities and use this to calculate the number of resources
1417  * per PF based on the max value passed in.
1418  */
1419 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1420 {
1421 	u8 funcs;
1422 
1423 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1424 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1425 			 ICE_CAPS_VALID_FUNCS_M);
1426 
1427 	if (!funcs)
1428 		return 0;
1429 
1430 	return max / funcs;
1431 }
1432 
1433 /**
1434  * ice_parse_caps - parse function/device capabilities
1435  * @hw: pointer to the HW struct
1436  * @buf: pointer to a buffer containing function/device capability records
1437  * @cap_count: number of capability records in the list
1438  * @opc: type of capabilities list to parse
1439  *
1440  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1441  */
1442 static void
1443 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1444 	       enum ice_adminq_opc opc)
1445 {
1446 	struct ice_aqc_list_caps_elem *cap_resp;
1447 	struct ice_hw_func_caps *func_p = NULL;
1448 	struct ice_hw_dev_caps *dev_p = NULL;
1449 	struct ice_hw_common_caps *caps;
1450 	u32 i;
1451 
1452 	if (!buf)
1453 		return;
1454 
1455 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1456 
1457 	if (opc == ice_aqc_opc_list_dev_caps) {
1458 		dev_p = &hw->dev_caps;
1459 		caps = &dev_p->common_cap;
1460 	} else if (opc == ice_aqc_opc_list_func_caps) {
1461 		func_p = &hw->func_caps;
1462 		caps = &func_p->common_cap;
1463 	} else {
1464 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1465 		return;
1466 	}
1467 
1468 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1469 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1470 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1471 		u32 number = le32_to_cpu(cap_resp->number);
1472 		u16 cap = le16_to_cpu(cap_resp->cap);
1473 
1474 		switch (cap) {
1475 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1476 			caps->valid_functions = number;
1477 			ice_debug(hw, ICE_DBG_INIT,
1478 				  "HW caps: Valid Functions = %d\n",
1479 				  caps->valid_functions);
1480 			break;
1481 		case ICE_AQC_CAPS_SRIOV:
1482 			caps->sr_iov_1_1 = (number == 1);
1483 			ice_debug(hw, ICE_DBG_INIT,
1484 				  "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
1485 			break;
1486 		case ICE_AQC_CAPS_VF:
1487 			if (dev_p) {
1488 				dev_p->num_vfs_exposed = number;
1489 				ice_debug(hw, ICE_DBG_INIT,
1490 					  "HW caps: VFs exposed = %d\n",
1491 					  dev_p->num_vfs_exposed);
1492 			} else if (func_p) {
1493 				func_p->num_allocd_vfs = number;
1494 				func_p->vf_base_id = logical_id;
1495 				ice_debug(hw, ICE_DBG_INIT,
1496 					  "HW caps: VFs allocated = %d\n",
1497 					  func_p->num_allocd_vfs);
1498 				ice_debug(hw, ICE_DBG_INIT,
1499 					  "HW caps: VF base_id = %d\n",
1500 					  func_p->vf_base_id);
1501 			}
1502 			break;
1503 		case ICE_AQC_CAPS_VSI:
1504 			if (dev_p) {
1505 				dev_p->num_vsi_allocd_to_host = number;
1506 				ice_debug(hw, ICE_DBG_INIT,
1507 					  "HW caps: Dev.VSI cnt = %d\n",
1508 					  dev_p->num_vsi_allocd_to_host);
1509 			} else if (func_p) {
1510 				func_p->guar_num_vsi =
1511 					ice_get_num_per_func(hw, ICE_MAX_VSI);
1512 				ice_debug(hw, ICE_DBG_INIT,
1513 					  "HW caps: Func.VSI cnt = %d\n",
1514 					  number);
1515 			}
1516 			break;
1517 		case ICE_AQC_CAPS_RSS:
1518 			caps->rss_table_size = number;
1519 			caps->rss_table_entry_width = logical_id;
1520 			ice_debug(hw, ICE_DBG_INIT,
1521 				  "HW caps: RSS table size = %d\n",
1522 				  caps->rss_table_size);
1523 			ice_debug(hw, ICE_DBG_INIT,
1524 				  "HW caps: RSS table width = %d\n",
1525 				  caps->rss_table_entry_width);
1526 			break;
1527 		case ICE_AQC_CAPS_RXQS:
1528 			caps->num_rxq = number;
1529 			caps->rxq_first_id = phys_id;
1530 			ice_debug(hw, ICE_DBG_INIT,
1531 				  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1532 			ice_debug(hw, ICE_DBG_INIT,
1533 				  "HW caps: Rx first queue ID = %d\n",
1534 				  caps->rxq_first_id);
1535 			break;
1536 		case ICE_AQC_CAPS_TXQS:
1537 			caps->num_txq = number;
1538 			caps->txq_first_id = phys_id;
1539 			ice_debug(hw, ICE_DBG_INIT,
1540 				  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1541 			ice_debug(hw, ICE_DBG_INIT,
1542 				  "HW caps: Tx first queue ID = %d\n",
1543 				  caps->txq_first_id);
1544 			break;
1545 		case ICE_AQC_CAPS_MSIX:
1546 			caps->num_msix_vectors = number;
1547 			caps->msix_vector_first_id = phys_id;
1548 			ice_debug(hw, ICE_DBG_INIT,
1549 				  "HW caps: MSIX vector count = %d\n",
1550 				  caps->num_msix_vectors);
1551 			ice_debug(hw, ICE_DBG_INIT,
1552 				  "HW caps: MSIX first vector index = %d\n",
1553 				  caps->msix_vector_first_id);
1554 			break;
1555 		case ICE_AQC_CAPS_MAX_MTU:
1556 			caps->max_mtu = number;
1557 			if (dev_p)
1558 				ice_debug(hw, ICE_DBG_INIT,
1559 					  "HW caps: Dev.MaxMTU = %d\n",
1560 					  caps->max_mtu);
1561 			else if (func_p)
1562 				ice_debug(hw, ICE_DBG_INIT,
1563 					  "HW caps: func.MaxMTU = %d\n",
1564 					  caps->max_mtu);
1565 			break;
1566 		default:
1567 			ice_debug(hw, ICE_DBG_INIT,
1568 				  "HW caps: Unknown capability[%d]: 0x%x\n", i,
1569 				  cap);
1570 			break;
1571 		}
1572 	}
1573 }
1574 
1575 /**
1576  * ice_aq_discover_caps - query function/device capabilities
1577  * @hw: pointer to the HW struct
1578  * @buf: a virtual buffer to hold the capabilities
1579  * @buf_size: Size of the virtual buffer
1580  * @cap_count: cap count needed if AQ err==ENOMEM
1581  * @opc: capabilities type to discover - pass in the command opcode
1582  * @cd: pointer to command details structure or NULL
1583  *
1584  * Get the function(0x000a)/device(0x000b) capabilities description from
1585  * the firmware.
1586  */
1587 static enum ice_status
1588 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1589 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1590 {
1591 	struct ice_aqc_list_caps *cmd;
1592 	struct ice_aq_desc desc;
1593 	enum ice_status status;
1594 
1595 	cmd = &desc.params.get_cap;
1596 
1597 	if (opc != ice_aqc_opc_list_func_caps &&
1598 	    opc != ice_aqc_opc_list_dev_caps)
1599 		return ICE_ERR_PARAM;
1600 
1601 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1602 
1603 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1604 	if (!status)
1605 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1606 	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1607 		*cap_count = le32_to_cpu(cmd->count);
1608 	return status;
1609 }
1610 
1611 /**
1612  * ice_discover_caps - get info about the HW
1613  * @hw: pointer to the hardware structure
1614  * @opc: capabilities type to discover - pass in the command opcode
1615  */
1616 static enum ice_status
1617 ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1618 {
1619 	enum ice_status status;
1620 	u32 cap_count;
1621 	u16 cbuf_len;
1622 	u8 retries;
1623 
1624 	/* The driver doesn't know how many capabilities the device will return
1625 	 * so the buffer size required isn't known ahead of time. The driver
1626 	 * starts with cbuf_len and if this turns out to be insufficient, the
1627 	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1628 	 * The driver then allocates the buffer based on the count and retries
1629 	 * the operation. So it follows that the retry count is 2.
1630 	 */
1631 #define ICE_GET_CAP_BUF_COUNT	40
1632 #define ICE_GET_CAP_RETRY_COUNT	2
1633 
1634 	cap_count = ICE_GET_CAP_BUF_COUNT;
1635 	retries = ICE_GET_CAP_RETRY_COUNT;
1636 
1637 	do {
1638 		void *cbuf;
1639 
1640 		cbuf_len = (u16)(cap_count *
1641 				 sizeof(struct ice_aqc_list_caps_elem));
1642 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1643 		if (!cbuf)
1644 			return ICE_ERR_NO_MEMORY;
1645 
1646 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1647 					      opc, NULL);
1648 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1649 
1650 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1651 			break;
1652 
1653 		/* If ENOMEM is returned, try again with bigger buffer */
1654 	} while (--retries);
1655 
1656 	return status;
1657 }
1658 
1659 /**
1660  * ice_get_caps - get info about the HW
1661  * @hw: pointer to the hardware structure
1662  */
1663 enum ice_status ice_get_caps(struct ice_hw *hw)
1664 {
1665 	enum ice_status status;
1666 
1667 	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1668 	if (!status)
1669 		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1670 
1671 	return status;
1672 }
1673 
1674 /**
1675  * ice_aq_manage_mac_write - manage MAC address write command
1676  * @hw: pointer to the HW struct
1677  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1678  * @flags: flags to control write behavior
1679  * @cd: pointer to command details structure or NULL
1680  *
1681  * This function is used to write MAC address to the NVM (0x0108).
1682  */
1683 enum ice_status
1684 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1685 			struct ice_sq_cd *cd)
1686 {
1687 	struct ice_aqc_manage_mac_write *cmd;
1688 	struct ice_aq_desc desc;
1689 
1690 	cmd = &desc.params.mac_write;
1691 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1692 
1693 	cmd->flags = flags;
1694 
1695 	/* Prep values for flags, sah, sal */
1696 	cmd->sah = htons(*((const u16 *)mac_addr));
1697 	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1698 
1699 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1700 }
1701 
1702 /**
1703  * ice_aq_clear_pxe_mode
1704  * @hw: pointer to the HW struct
1705  *
1706  * Tell the firmware that the driver is taking over from PXE (0x0110).
1707  */
1708 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1709 {
1710 	struct ice_aq_desc desc;
1711 
1712 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1713 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1714 
1715 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1716 }
1717 
1718 /**
1719  * ice_clear_pxe_mode - clear pxe operations mode
1720  * @hw: pointer to the HW struct
1721  *
1722  * Make sure all PXE mode settings are cleared, including things
1723  * like descriptor fetch/write-back mode.
1724  */
1725 void ice_clear_pxe_mode(struct ice_hw *hw)
1726 {
1727 	if (ice_check_sq_alive(hw, &hw->adminq))
1728 		ice_aq_clear_pxe_mode(hw);
1729 }
1730 
1731 /**
1732  * ice_get_link_speed_based_on_phy_type - returns link speed
1733  * @phy_type_low: lower part of phy_type
1734  * @phy_type_high: higher part of phy_type
1735  *
1736  * This helper function will convert an entry in PHY type structure
1737  * [phy_type_low, phy_type_high] to its corresponding link speed.
1738  * Note: In the structure of [phy_type_low, phy_type_high], there should
1739  * be one bit set, as this function will convert one PHY type to its
1740  * speed.
1741  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1742  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1743  */
1744 static u16
1745 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
1746 {
1747 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1748 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1749 
1750 	switch (phy_type_low) {
1751 	case ICE_PHY_TYPE_LOW_100BASE_TX:
1752 	case ICE_PHY_TYPE_LOW_100M_SGMII:
1753 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1754 		break;
1755 	case ICE_PHY_TYPE_LOW_1000BASE_T:
1756 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
1757 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
1758 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
1759 	case ICE_PHY_TYPE_LOW_1G_SGMII:
1760 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1761 		break;
1762 	case ICE_PHY_TYPE_LOW_2500BASE_T:
1763 	case ICE_PHY_TYPE_LOW_2500BASE_X:
1764 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
1765 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1766 		break;
1767 	case ICE_PHY_TYPE_LOW_5GBASE_T:
1768 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
1769 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1770 		break;
1771 	case ICE_PHY_TYPE_LOW_10GBASE_T:
1772 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1773 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
1774 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
1775 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1776 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1777 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1778 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1779 		break;
1780 	case ICE_PHY_TYPE_LOW_25GBASE_T:
1781 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
1782 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1783 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1784 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
1785 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
1786 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
1787 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1788 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1789 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1790 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1791 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1792 		break;
1793 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1794 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1795 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1796 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1797 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1798 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
1799 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1800 		break;
1801 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
1802 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
1803 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
1804 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
1805 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
1806 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
1807 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
1808 	case ICE_PHY_TYPE_LOW_50G_AUI2:
1809 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
1810 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
1811 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
1812 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
1813 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1814 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1815 	case ICE_PHY_TYPE_LOW_50G_AUI1:
1816 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
1817 		break;
1818 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
1819 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
1820 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
1821 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
1822 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
1823 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
1824 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
1825 	case ICE_PHY_TYPE_LOW_100G_AUI4:
1826 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
1827 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
1828 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
1829 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
1830 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
1831 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
1832 		break;
1833 	default:
1834 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1835 		break;
1836 	}
1837 
1838 	switch (phy_type_high) {
1839 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
1840 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
1841 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
1842 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
1843 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
1844 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
1845 		break;
1846 	default:
1847 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1848 		break;
1849 	}
1850 
1851 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
1852 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1853 		return ICE_AQ_LINK_SPEED_UNKNOWN;
1854 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1855 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
1856 		return ICE_AQ_LINK_SPEED_UNKNOWN;
1857 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1858 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1859 		return speed_phy_type_low;
1860 	else
1861 		return speed_phy_type_high;
1862 }
1863 
1864 /**
1865  * ice_update_phy_type
1866  * @phy_type_low: pointer to the lower part of phy_type
1867  * @phy_type_high: pointer to the higher part of phy_type
1868  * @link_speeds_bitmap: targeted link speeds bitmap
1869  *
1870  * Note: For the link_speeds_bitmap structure, you can check it at
1871  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1872  * link_speeds_bitmap include multiple speeds.
1873  *
1874  * Each entry in this [phy_type_low, phy_type_high] structure will
1875  * present a certain link speed. This helper function will turn on bits
1876  * in [phy_type_low, phy_type_high] structure based on the value of
1877  * link_speeds_bitmap input parameter.
1878  */
1879 void
1880 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
1881 		    u16 link_speeds_bitmap)
1882 {
1883 	u64 pt_high;
1884 	u64 pt_low;
1885 	int index;
1886 	u16 speed;
1887 
1888 	/* We first check with low part of phy_type */
1889 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1890 		pt_low = BIT_ULL(index);
1891 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
1892 
1893 		if (link_speeds_bitmap & speed)
1894 			*phy_type_low |= BIT_ULL(index);
1895 	}
1896 
1897 	/* We then check with high part of phy_type */
1898 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
1899 		pt_high = BIT_ULL(index);
1900 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
1901 
1902 		if (link_speeds_bitmap & speed)
1903 			*phy_type_high |= BIT_ULL(index);
1904 	}
1905 }
1906 
1907 /**
1908  * ice_aq_set_phy_cfg
1909  * @hw: pointer to the HW struct
1910  * @lport: logical port number
1911  * @cfg: structure with PHY configuration data to be set
1912  * @cd: pointer to command details structure or NULL
1913  *
1914  * Set the various PHY configuration parameters supported on the Port.
1915  * One or more of the Set PHY config parameters may be ignored in an MFP
1916  * mode as the PF may not have the privilege to set some of the PHY Config
1917  * parameters. This status will be indicated by the command response (0x0601).
1918  */
1919 enum ice_status
1920 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1921 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1922 {
1923 	struct ice_aq_desc desc;
1924 
1925 	if (!cfg)
1926 		return ICE_ERR_PARAM;
1927 
1928 	/* Ensure that only valid bits of cfg->caps can be turned on. */
1929 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
1930 		ice_debug(hw, ICE_DBG_PHY,
1931 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
1932 			  cfg->caps);
1933 
1934 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
1935 	}
1936 
1937 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1938 	desc.params.set_phy.lport_num = lport;
1939 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1940 
1941 	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1942 }
1943 
1944 /**
1945  * ice_update_link_info - update status of the HW network link
1946  * @pi: port info structure of the interested logical port
1947  */
1948 enum ice_status ice_update_link_info(struct ice_port_info *pi)
1949 {
1950 	struct ice_aqc_get_phy_caps_data *pcaps;
1951 	struct ice_phy_info *phy_info;
1952 	enum ice_status status;
1953 	struct ice_hw *hw;
1954 
1955 	if (!pi)
1956 		return ICE_ERR_PARAM;
1957 
1958 	hw = pi->hw;
1959 
1960 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1961 	if (!pcaps)
1962 		return ICE_ERR_NO_MEMORY;
1963 
1964 	phy_info = &pi->phy;
1965 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
1966 	if (status)
1967 		goto out;
1968 
1969 	if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1970 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1971 					     pcaps, NULL);
1972 		if (status)
1973 			goto out;
1974 
1975 		memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1976 		       sizeof(phy_info->link_info.module_type));
1977 	}
1978 out:
1979 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1980 	return status;
1981 }
1982 
1983 /**
1984  * ice_set_fc
1985  * @pi: port information structure
1986  * @aq_failures: pointer to status code, specific to ice_set_fc routine
1987  * @ena_auto_link_update: enable automatic link update
1988  *
1989  * Set the requested flow control mode.
1990  */
1991 enum ice_status
1992 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
1993 {
1994 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1995 	struct ice_aqc_get_phy_caps_data *pcaps;
1996 	enum ice_status status;
1997 	u8 pause_mask = 0x0;
1998 	struct ice_hw *hw;
1999 
2000 	if (!pi)
2001 		return ICE_ERR_PARAM;
2002 	hw = pi->hw;
2003 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2004 
2005 	switch (pi->fc.req_mode) {
2006 	case ICE_FC_FULL:
2007 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2008 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2009 		break;
2010 	case ICE_FC_RX_PAUSE:
2011 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2012 		break;
2013 	case ICE_FC_TX_PAUSE:
2014 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2015 		break;
2016 	default:
2017 		break;
2018 	}
2019 
2020 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2021 	if (!pcaps)
2022 		return ICE_ERR_NO_MEMORY;
2023 
2024 	/* Get the current PHY config */
2025 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2026 				     NULL);
2027 	if (status) {
2028 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2029 		goto out;
2030 	}
2031 
2032 	/* clear the old pause settings */
2033 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2034 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2035 
2036 	/* set the new capabilities */
2037 	cfg.caps |= pause_mask;
2038 
2039 	/* If the capabilities have changed, then set the new config */
2040 	if (cfg.caps != pcaps->caps) {
2041 		int retry_count, retry_max = 10;
2042 
2043 		/* Auto restart link so settings take effect */
2044 		if (ena_auto_link_update)
2045 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2046 		/* Copy over all the old settings */
2047 		cfg.phy_type_high = pcaps->phy_type_high;
2048 		cfg.phy_type_low = pcaps->phy_type_low;
2049 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2050 		cfg.eee_cap = pcaps->eee_cap;
2051 		cfg.eeer_value = pcaps->eeer_value;
2052 		cfg.link_fec_opt = pcaps->link_fec_options;
2053 
2054 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2055 		if (status) {
2056 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2057 			goto out;
2058 		}
2059 
2060 		/* Update the link info
2061 		 * It sometimes takes a really long time for link to
2062 		 * come back from the atomic reset. Thus, we wait a
2063 		 * little bit.
2064 		 */
2065 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2066 			status = ice_update_link_info(pi);
2067 
2068 			if (!status)
2069 				break;
2070 
2071 			mdelay(100);
2072 		}
2073 
2074 		if (status)
2075 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2076 	}
2077 
2078 out:
2079 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2080 	return status;
2081 }
2082 
2083 /**
2084  * ice_get_link_status - get status of the HW network link
2085  * @pi: port information structure
2086  * @link_up: pointer to bool (true/false = linkup/linkdown)
2087  *
2088  * Variable link_up is true if link is up, false if link is down.
2089  * The variable link_up is invalid if status is non zero. As a
2090  * result of this call, link status reporting becomes enabled
2091  */
2092 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2093 {
2094 	struct ice_phy_info *phy_info;
2095 	enum ice_status status = 0;
2096 
2097 	if (!pi || !link_up)
2098 		return ICE_ERR_PARAM;
2099 
2100 	phy_info = &pi->phy;
2101 
2102 	if (phy_info->get_link_info) {
2103 		status = ice_update_link_info(pi);
2104 
2105 		if (status)
2106 			ice_debug(pi->hw, ICE_DBG_LINK,
2107 				  "get link status error, status = %d\n",
2108 				  status);
2109 	}
2110 
2111 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2112 
2113 	return status;
2114 }
2115 
2116 /**
2117  * ice_aq_set_link_restart_an
2118  * @pi: pointer to the port information structure
2119  * @ena_link: if true: enable link, if false: disable link
2120  * @cd: pointer to command details structure or NULL
2121  *
2122  * Sets up the link and restarts the Auto-Negotiation over the link.
2123  */
2124 enum ice_status
2125 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2126 			   struct ice_sq_cd *cd)
2127 {
2128 	struct ice_aqc_restart_an *cmd;
2129 	struct ice_aq_desc desc;
2130 
2131 	cmd = &desc.params.restart_an;
2132 
2133 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2134 
2135 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2136 	cmd->lport_num = pi->lport;
2137 	if (ena_link)
2138 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2139 	else
2140 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2141 
2142 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2143 }
2144 
2145 /**
2146  * ice_aq_set_event_mask
2147  * @hw: pointer to the HW struct
2148  * @port_num: port number of the physical function
2149  * @mask: event mask to be set
2150  * @cd: pointer to command details structure or NULL
2151  *
2152  * Set event mask (0x0613)
2153  */
2154 enum ice_status
2155 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2156 		      struct ice_sq_cd *cd)
2157 {
2158 	struct ice_aqc_set_event_mask *cmd;
2159 	struct ice_aq_desc desc;
2160 
2161 	cmd = &desc.params.set_event_mask;
2162 
2163 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2164 
2165 	cmd->lport_num = port_num;
2166 
2167 	cmd->event_mask = cpu_to_le16(mask);
2168 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2169 }
2170 
2171 /**
2172  * ice_aq_set_port_id_led
2173  * @pi: pointer to the port information
2174  * @is_orig_mode: is this LED set to original mode (by the net-list)
2175  * @cd: pointer to command details structure or NULL
2176  *
2177  * Set LED value for the given port (0x06e9)
2178  */
2179 enum ice_status
2180 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2181 		       struct ice_sq_cd *cd)
2182 {
2183 	struct ice_aqc_set_port_id_led *cmd;
2184 	struct ice_hw *hw = pi->hw;
2185 	struct ice_aq_desc desc;
2186 
2187 	cmd = &desc.params.set_port_id_led;
2188 
2189 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2190 
2191 	if (is_orig_mode)
2192 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2193 	else
2194 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2195 
2196 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2197 }
2198 
2199 /**
2200  * __ice_aq_get_set_rss_lut
2201  * @hw: pointer to the hardware structure
2202  * @vsi_id: VSI FW index
2203  * @lut_type: LUT table type
2204  * @lut: pointer to the LUT buffer provided by the caller
2205  * @lut_size: size of the LUT buffer
2206  * @glob_lut_idx: global LUT index
2207  * @set: set true to set the table, false to get the table
2208  *
2209  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2210  */
2211 static enum ice_status
2212 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2213 			 u16 lut_size, u8 glob_lut_idx, bool set)
2214 {
2215 	struct ice_aqc_get_set_rss_lut *cmd_resp;
2216 	struct ice_aq_desc desc;
2217 	enum ice_status status;
2218 	u16 flags = 0;
2219 
2220 	cmd_resp = &desc.params.get_set_rss_lut;
2221 
2222 	if (set) {
2223 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2224 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2225 	} else {
2226 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2227 	}
2228 
2229 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2230 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2231 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2232 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2233 
2234 	switch (lut_type) {
2235 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2236 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2237 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2238 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2239 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2240 		break;
2241 	default:
2242 		status = ICE_ERR_PARAM;
2243 		goto ice_aq_get_set_rss_lut_exit;
2244 	}
2245 
2246 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2247 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2248 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2249 
2250 		if (!set)
2251 			goto ice_aq_get_set_rss_lut_send;
2252 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2253 		if (!set)
2254 			goto ice_aq_get_set_rss_lut_send;
2255 	} else {
2256 		goto ice_aq_get_set_rss_lut_send;
2257 	}
2258 
2259 	/* LUT size is only valid for Global and PF table types */
2260 	switch (lut_size) {
2261 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2262 		break;
2263 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2264 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2265 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2266 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2267 		break;
2268 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2269 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2270 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2271 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2272 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2273 			break;
2274 		}
2275 		/* fall-through */
2276 	default:
2277 		status = ICE_ERR_PARAM;
2278 		goto ice_aq_get_set_rss_lut_exit;
2279 	}
2280 
2281 ice_aq_get_set_rss_lut_send:
2282 	cmd_resp->flags = cpu_to_le16(flags);
2283 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2284 
2285 ice_aq_get_set_rss_lut_exit:
2286 	return status;
2287 }
2288 
2289 /**
2290  * ice_aq_get_rss_lut
2291  * @hw: pointer to the hardware structure
2292  * @vsi_handle: software VSI handle
2293  * @lut_type: LUT table type
2294  * @lut: pointer to the LUT buffer provided by the caller
2295  * @lut_size: size of the LUT buffer
2296  *
2297  * get the RSS lookup table, PF or VSI type
2298  */
2299 enum ice_status
2300 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2301 		   u8 *lut, u16 lut_size)
2302 {
2303 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2304 		return ICE_ERR_PARAM;
2305 
2306 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2307 					lut_type, lut, lut_size, 0, false);
2308 }
2309 
2310 /**
2311  * ice_aq_set_rss_lut
2312  * @hw: pointer to the hardware structure
2313  * @vsi_handle: software VSI handle
2314  * @lut_type: LUT table type
2315  * @lut: pointer to the LUT buffer provided by the caller
2316  * @lut_size: size of the LUT buffer
2317  *
2318  * set the RSS lookup table, PF or VSI type
2319  */
2320 enum ice_status
2321 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2322 		   u8 *lut, u16 lut_size)
2323 {
2324 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2325 		return ICE_ERR_PARAM;
2326 
2327 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2328 					lut_type, lut, lut_size, 0, true);
2329 }
2330 
2331 /**
2332  * __ice_aq_get_set_rss_key
2333  * @hw: pointer to the HW struct
2334  * @vsi_id: VSI FW index
2335  * @key: pointer to key info struct
2336  * @set: set true to set the key, false to get the key
2337  *
2338  * get (0x0B04) or set (0x0B02) the RSS key per VSI
2339  */
2340 static enum
2341 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2342 				    struct ice_aqc_get_set_rss_keys *key,
2343 				    bool set)
2344 {
2345 	struct ice_aqc_get_set_rss_key *cmd_resp;
2346 	u16 key_size = sizeof(*key);
2347 	struct ice_aq_desc desc;
2348 
2349 	cmd_resp = &desc.params.get_set_rss_key;
2350 
2351 	if (set) {
2352 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2353 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2354 	} else {
2355 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2356 	}
2357 
2358 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2359 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2360 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2361 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2362 
2363 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2364 }
2365 
2366 /**
2367  * ice_aq_get_rss_key
2368  * @hw: pointer to the HW struct
2369  * @vsi_handle: software VSI handle
2370  * @key: pointer to key info struct
2371  *
2372  * get the RSS key per VSI
2373  */
2374 enum ice_status
2375 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2376 		   struct ice_aqc_get_set_rss_keys *key)
2377 {
2378 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2379 		return ICE_ERR_PARAM;
2380 
2381 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2382 					key, false);
2383 }
2384 
2385 /**
2386  * ice_aq_set_rss_key
2387  * @hw: pointer to the HW struct
2388  * @vsi_handle: software VSI handle
2389  * @keys: pointer to key info struct
2390  *
2391  * set the RSS key per VSI
2392  */
2393 enum ice_status
2394 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2395 		   struct ice_aqc_get_set_rss_keys *keys)
2396 {
2397 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2398 		return ICE_ERR_PARAM;
2399 
2400 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2401 					keys, true);
2402 }
2403 
2404 /**
2405  * ice_aq_add_lan_txq
2406  * @hw: pointer to the hardware structure
2407  * @num_qgrps: Number of added queue groups
2408  * @qg_list: list of queue groups to be added
2409  * @buf_size: size of buffer for indirect command
2410  * @cd: pointer to command details structure or NULL
2411  *
2412  * Add Tx LAN queue (0x0C30)
2413  *
2414  * NOTE:
2415  * Prior to calling add Tx LAN queue:
2416  * Initialize the following as part of the Tx queue context:
2417  * Completion queue ID if the queue uses Completion queue, Quanta profile,
2418  * Cache profile and Packet shaper profile.
2419  *
2420  * After add Tx LAN queue AQ command is completed:
2421  * Interrupts should be associated with specific queues,
2422  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2423  * flow.
2424  */
2425 static enum ice_status
2426 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2427 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2428 		   struct ice_sq_cd *cd)
2429 {
2430 	u16 i, sum_header_size, sum_q_size = 0;
2431 	struct ice_aqc_add_tx_qgrp *list;
2432 	struct ice_aqc_add_txqs *cmd;
2433 	struct ice_aq_desc desc;
2434 
2435 	cmd = &desc.params.add_txqs;
2436 
2437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2438 
2439 	if (!qg_list)
2440 		return ICE_ERR_PARAM;
2441 
2442 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2443 		return ICE_ERR_PARAM;
2444 
2445 	sum_header_size = num_qgrps *
2446 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2447 
2448 	list = qg_list;
2449 	for (i = 0; i < num_qgrps; i++) {
2450 		struct ice_aqc_add_txqs_perq *q = list->txqs;
2451 
2452 		sum_q_size += list->num_txqs * sizeof(*q);
2453 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2454 	}
2455 
2456 	if (buf_size != (sum_header_size + sum_q_size))
2457 		return ICE_ERR_PARAM;
2458 
2459 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2460 
2461 	cmd->num_qgrps = num_qgrps;
2462 
2463 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2464 }
2465 
2466 /**
2467  * ice_aq_dis_lan_txq
2468  * @hw: pointer to the hardware structure
2469  * @num_qgrps: number of groups in the list
2470  * @qg_list: the list of groups to disable
2471  * @buf_size: the total size of the qg_list buffer in bytes
2472  * @rst_src: if called due to reset, specifies the reset source
2473  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2474  * @cd: pointer to command details structure or NULL
2475  *
2476  * Disable LAN Tx queue (0x0C31)
2477  */
2478 static enum ice_status
2479 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2480 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2481 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2482 		   struct ice_sq_cd *cd)
2483 {
2484 	struct ice_aqc_dis_txqs *cmd;
2485 	struct ice_aq_desc desc;
2486 	enum ice_status status;
2487 	u16 i, sz = 0;
2488 
2489 	cmd = &desc.params.dis_txqs;
2490 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2491 
2492 	/* qg_list can be NULL only in VM/VF reset flow */
2493 	if (!qg_list && !rst_src)
2494 		return ICE_ERR_PARAM;
2495 
2496 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2497 		return ICE_ERR_PARAM;
2498 
2499 	cmd->num_entries = num_qgrps;
2500 
2501 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2502 					    ICE_AQC_Q_DIS_TIMEOUT_M);
2503 
2504 	switch (rst_src) {
2505 	case ICE_VM_RESET:
2506 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2507 		cmd->vmvf_and_timeout |=
2508 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2509 		break;
2510 	case ICE_VF_RESET:
2511 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2512 		/* In this case, FW expects vmvf_num to be absolute VF ID */
2513 		cmd->vmvf_and_timeout |=
2514 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2515 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2516 		break;
2517 	case ICE_NO_RESET:
2518 	default:
2519 		break;
2520 	}
2521 
2522 	/* flush pipe on time out */
2523 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2524 	/* If no queue group info, we are in a reset flow. Issue the AQ */
2525 	if (!qg_list)
2526 		goto do_aq;
2527 
2528 	/* set RD bit to indicate that command buffer is provided by the driver
2529 	 * and it needs to be read by the firmware
2530 	 */
2531 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2532 
2533 	for (i = 0; i < num_qgrps; ++i) {
2534 		/* Calculate the size taken up by the queue IDs in this group */
2535 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2536 
2537 		/* Add the size of the group header */
2538 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2539 
2540 		/* If the num of queues is even, add 2 bytes of padding */
2541 		if ((qg_list[i].num_qs % 2) == 0)
2542 			sz += 2;
2543 	}
2544 
2545 	if (buf_size != sz)
2546 		return ICE_ERR_PARAM;
2547 
2548 do_aq:
2549 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2550 	if (status) {
2551 		if (!qg_list)
2552 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2553 				  vmvf_num, hw->adminq.sq_last_status);
2554 		else
2555 			ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n",
2556 				  le16_to_cpu(qg_list[0].q_id[0]),
2557 				  hw->adminq.sq_last_status);
2558 	}
2559 	return status;
2560 }
2561 
2562 /* End of FW Admin Queue command wrappers */
2563 
2564 /**
2565  * ice_write_byte - write a byte to a packed context structure
2566  * @src_ctx:  the context structure to read from
2567  * @dest_ctx: the context to be written to
2568  * @ce_info:  a description of the struct to be filled
2569  */
2570 static void
2571 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2572 {
2573 	u8 src_byte, dest_byte, mask;
2574 	u8 *from, *dest;
2575 	u16 shift_width;
2576 
2577 	/* copy from the next struct field */
2578 	from = src_ctx + ce_info->offset;
2579 
2580 	/* prepare the bits and mask */
2581 	shift_width = ce_info->lsb % 8;
2582 	mask = (u8)(BIT(ce_info->width) - 1);
2583 
2584 	src_byte = *from;
2585 	src_byte &= mask;
2586 
2587 	/* shift to correct alignment */
2588 	mask <<= shift_width;
2589 	src_byte <<= shift_width;
2590 
2591 	/* get the current bits from the target bit string */
2592 	dest = dest_ctx + (ce_info->lsb / 8);
2593 
2594 	memcpy(&dest_byte, dest, sizeof(dest_byte));
2595 
2596 	dest_byte &= ~mask;	/* get the bits not changing */
2597 	dest_byte |= src_byte;	/* add in the new bits */
2598 
2599 	/* put it all back */
2600 	memcpy(dest, &dest_byte, sizeof(dest_byte));
2601 }
2602 
2603 /**
2604  * ice_write_word - write a word to a packed context structure
2605  * @src_ctx:  the context structure to read from
2606  * @dest_ctx: the context to be written to
2607  * @ce_info:  a description of the struct to be filled
2608  */
2609 static void
2610 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2611 {
2612 	u16 src_word, mask;
2613 	__le16 dest_word;
2614 	u8 *from, *dest;
2615 	u16 shift_width;
2616 
2617 	/* copy from the next struct field */
2618 	from = src_ctx + ce_info->offset;
2619 
2620 	/* prepare the bits and mask */
2621 	shift_width = ce_info->lsb % 8;
2622 	mask = BIT(ce_info->width) - 1;
2623 
2624 	/* don't swizzle the bits until after the mask because the mask bits
2625 	 * will be in a different bit position on big endian machines
2626 	 */
2627 	src_word = *(u16 *)from;
2628 	src_word &= mask;
2629 
2630 	/* shift to correct alignment */
2631 	mask <<= shift_width;
2632 	src_word <<= shift_width;
2633 
2634 	/* get the current bits from the target bit string */
2635 	dest = dest_ctx + (ce_info->lsb / 8);
2636 
2637 	memcpy(&dest_word, dest, sizeof(dest_word));
2638 
2639 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2640 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
2641 
2642 	/* put it all back */
2643 	memcpy(dest, &dest_word, sizeof(dest_word));
2644 }
2645 
2646 /**
2647  * ice_write_dword - write a dword to a packed context structure
2648  * @src_ctx:  the context structure to read from
2649  * @dest_ctx: the context to be written to
2650  * @ce_info:  a description of the struct to be filled
2651  */
2652 static void
2653 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2654 {
2655 	u32 src_dword, mask;
2656 	__le32 dest_dword;
2657 	u8 *from, *dest;
2658 	u16 shift_width;
2659 
2660 	/* copy from the next struct field */
2661 	from = src_ctx + ce_info->offset;
2662 
2663 	/* prepare the bits and mask */
2664 	shift_width = ce_info->lsb % 8;
2665 
2666 	/* if the field width is exactly 32 on an x86 machine, then the shift
2667 	 * operation will not work because the SHL instructions count is masked
2668 	 * to 5 bits so the shift will do nothing
2669 	 */
2670 	if (ce_info->width < 32)
2671 		mask = BIT(ce_info->width) - 1;
2672 	else
2673 		mask = (u32)~0;
2674 
2675 	/* don't swizzle the bits until after the mask because the mask bits
2676 	 * will be in a different bit position on big endian machines
2677 	 */
2678 	src_dword = *(u32 *)from;
2679 	src_dword &= mask;
2680 
2681 	/* shift to correct alignment */
2682 	mask <<= shift_width;
2683 	src_dword <<= shift_width;
2684 
2685 	/* get the current bits from the target bit string */
2686 	dest = dest_ctx + (ce_info->lsb / 8);
2687 
2688 	memcpy(&dest_dword, dest, sizeof(dest_dword));
2689 
2690 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
2691 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
2692 
2693 	/* put it all back */
2694 	memcpy(dest, &dest_dword, sizeof(dest_dword));
2695 }
2696 
2697 /**
2698  * ice_write_qword - write a qword to a packed context structure
2699  * @src_ctx:  the context structure to read from
2700  * @dest_ctx: the context to be written to
2701  * @ce_info:  a description of the struct to be filled
2702  */
2703 static void
2704 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2705 {
2706 	u64 src_qword, mask;
2707 	__le64 dest_qword;
2708 	u8 *from, *dest;
2709 	u16 shift_width;
2710 
2711 	/* copy from the next struct field */
2712 	from = src_ctx + ce_info->offset;
2713 
2714 	/* prepare the bits and mask */
2715 	shift_width = ce_info->lsb % 8;
2716 
2717 	/* if the field width is exactly 64 on an x86 machine, then the shift
2718 	 * operation will not work because the SHL instructions count is masked
2719 	 * to 6 bits so the shift will do nothing
2720 	 */
2721 	if (ce_info->width < 64)
2722 		mask = BIT_ULL(ce_info->width) - 1;
2723 	else
2724 		mask = (u64)~0;
2725 
2726 	/* don't swizzle the bits until after the mask because the mask bits
2727 	 * will be in a different bit position on big endian machines
2728 	 */
2729 	src_qword = *(u64 *)from;
2730 	src_qword &= mask;
2731 
2732 	/* shift to correct alignment */
2733 	mask <<= shift_width;
2734 	src_qword <<= shift_width;
2735 
2736 	/* get the current bits from the target bit string */
2737 	dest = dest_ctx + (ce_info->lsb / 8);
2738 
2739 	memcpy(&dest_qword, dest, sizeof(dest_qword));
2740 
2741 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
2742 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
2743 
2744 	/* put it all back */
2745 	memcpy(dest, &dest_qword, sizeof(dest_qword));
2746 }
2747 
2748 /**
2749  * ice_set_ctx - set context bits in packed structure
2750  * @src_ctx:  pointer to a generic non-packed context structure
2751  * @dest_ctx: pointer to memory for the packed structure
2752  * @ce_info:  a description of the structure to be transformed
2753  */
2754 enum ice_status
2755 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2756 {
2757 	int f;
2758 
2759 	for (f = 0; ce_info[f].width; f++) {
2760 		/* We have to deal with each element of the FW response
2761 		 * using the correct size so that we are correct regardless
2762 		 * of the endianness of the machine.
2763 		 */
2764 		switch (ce_info[f].size_of) {
2765 		case sizeof(u8):
2766 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2767 			break;
2768 		case sizeof(u16):
2769 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2770 			break;
2771 		case sizeof(u32):
2772 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2773 			break;
2774 		case sizeof(u64):
2775 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2776 			break;
2777 		default:
2778 			return ICE_ERR_INVAL_SIZE;
2779 		}
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 /**
2786  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
2787  * @hw: pointer to the HW struct
2788  * @vsi_handle: software VSI handle
2789  * @tc: TC number
2790  * @q_handle: software queue handle
2791  */
2792 static struct ice_q_ctx *
2793 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
2794 {
2795 	struct ice_vsi_ctx *vsi;
2796 	struct ice_q_ctx *q_ctx;
2797 
2798 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
2799 	if (!vsi)
2800 		return NULL;
2801 	if (q_handle >= vsi->num_lan_q_entries[tc])
2802 		return NULL;
2803 	if (!vsi->lan_q_ctx[tc])
2804 		return NULL;
2805 	q_ctx = vsi->lan_q_ctx[tc];
2806 	return &q_ctx[q_handle];
2807 }
2808 
2809 /**
2810  * ice_ena_vsi_txq
2811  * @pi: port information structure
2812  * @vsi_handle: software VSI handle
2813  * @tc: TC number
2814  * @q_handle: software queue handle
2815  * @num_qgrps: Number of added queue groups
2816  * @buf: list of queue groups to be added
2817  * @buf_size: size of buffer for indirect command
2818  * @cd: pointer to command details structure or NULL
2819  *
2820  * This function adds one LAN queue
2821  */
2822 enum ice_status
2823 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
2824 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2825 		struct ice_sq_cd *cd)
2826 {
2827 	struct ice_aqc_txsched_elem_data node = { 0 };
2828 	struct ice_sched_node *parent;
2829 	struct ice_q_ctx *q_ctx;
2830 	enum ice_status status;
2831 	struct ice_hw *hw;
2832 
2833 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2834 		return ICE_ERR_CFG;
2835 
2836 	if (num_qgrps > 1 || buf->num_txqs > 1)
2837 		return ICE_ERR_MAX_LIMIT;
2838 
2839 	hw = pi->hw;
2840 
2841 	if (!ice_is_vsi_valid(hw, vsi_handle))
2842 		return ICE_ERR_PARAM;
2843 
2844 	mutex_lock(&pi->sched_lock);
2845 
2846 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
2847 	if (!q_ctx) {
2848 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
2849 			  q_handle);
2850 		status = ICE_ERR_PARAM;
2851 		goto ena_txq_exit;
2852 	}
2853 
2854 	/* find a parent node */
2855 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
2856 					    ICE_SCHED_NODE_OWNER_LAN);
2857 	if (!parent) {
2858 		status = ICE_ERR_PARAM;
2859 		goto ena_txq_exit;
2860 	}
2861 
2862 	buf->parent_teid = parent->info.node_teid;
2863 	node.parent_teid = parent->info.node_teid;
2864 	/* Mark that the values in the "generic" section as valid. The default
2865 	 * value in the "generic" section is zero. This means that :
2866 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2867 	 * - 0 priority among siblings, indicated by Bit 1-3.
2868 	 * - WFQ, indicated by Bit 4.
2869 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2870 	 * Bit 5-6.
2871 	 * - Bit 7 is reserved.
2872 	 * Without setting the generic section as valid in valid_sections, the
2873 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
2874 	 */
2875 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2876 
2877 	/* add the LAN queue */
2878 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2879 	if (status) {
2880 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
2881 			  le16_to_cpu(buf->txqs[0].txq_id),
2882 			  hw->adminq.sq_last_status);
2883 		goto ena_txq_exit;
2884 	}
2885 
2886 	node.node_teid = buf->txqs[0].q_teid;
2887 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2888 	q_ctx->q_handle = q_handle;
2889 
2890 	/* add a leaf node into schduler tree queue layer */
2891 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2892 
2893 ena_txq_exit:
2894 	mutex_unlock(&pi->sched_lock);
2895 	return status;
2896 }
2897 
2898 /**
2899  * ice_dis_vsi_txq
2900  * @pi: port information structure
2901  * @vsi_handle: software VSI handle
2902  * @tc: TC number
2903  * @num_queues: number of queues
2904  * @q_handles: pointer to software queue handle array
2905  * @q_ids: pointer to the q_id array
2906  * @q_teids: pointer to queue node teids
2907  * @rst_src: if called due to reset, specifies the reset source
2908  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2909  * @cd: pointer to command details structure or NULL
2910  *
2911  * This function removes queues and their corresponding nodes in SW DB
2912  */
2913 enum ice_status
2914 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
2915 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
2916 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
2917 		struct ice_sq_cd *cd)
2918 {
2919 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2920 	struct ice_aqc_dis_txq_item qg_list;
2921 	struct ice_q_ctx *q_ctx;
2922 	u16 i;
2923 
2924 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2925 		return ICE_ERR_CFG;
2926 
2927 
2928 	if (!num_queues) {
2929 		/* if queue is disabled already yet the disable queue command
2930 		 * has to be sent to complete the VF reset, then call
2931 		 * ice_aq_dis_lan_txq without any queue information
2932 		 */
2933 		if (rst_src)
2934 			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
2935 						  vmvf_num, NULL);
2936 		return ICE_ERR_CFG;
2937 	}
2938 
2939 	mutex_lock(&pi->sched_lock);
2940 
2941 	for (i = 0; i < num_queues; i++) {
2942 		struct ice_sched_node *node;
2943 
2944 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2945 		if (!node)
2946 			continue;
2947 		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
2948 		if (!q_ctx) {
2949 			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
2950 				  q_handles[i]);
2951 			continue;
2952 		}
2953 		if (q_ctx->q_handle != q_handles[i]) {
2954 			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
2955 				  q_ctx->q_handle, q_handles[i]);
2956 			continue;
2957 		}
2958 		qg_list.parent_teid = node->info.parent_teid;
2959 		qg_list.num_qs = 1;
2960 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2961 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2962 					    sizeof(qg_list), rst_src, vmvf_num,
2963 					    cd);
2964 
2965 		if (status)
2966 			break;
2967 		ice_free_sched_node(pi, node);
2968 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
2969 	}
2970 	mutex_unlock(&pi->sched_lock);
2971 	return status;
2972 }
2973 
2974 /**
2975  * ice_cfg_vsi_qs - configure the new/existing VSI queues
2976  * @pi: port information structure
2977  * @vsi_handle: software VSI handle
2978  * @tc_bitmap: TC bitmap
2979  * @maxqs: max queues array per TC
2980  * @owner: LAN or RDMA
2981  *
2982  * This function adds/updates the VSI queues per TC.
2983  */
2984 static enum ice_status
2985 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2986 	       u16 *maxqs, u8 owner)
2987 {
2988 	enum ice_status status = 0;
2989 	u8 i;
2990 
2991 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2992 		return ICE_ERR_CFG;
2993 
2994 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2995 		return ICE_ERR_PARAM;
2996 
2997 	mutex_lock(&pi->sched_lock);
2998 
2999 	ice_for_each_traffic_class(i) {
3000 		/* configuration is possible only if TC node is present */
3001 		if (!ice_sched_get_tc_node(pi, i))
3002 			continue;
3003 
3004 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3005 					   ice_is_tc_ena(tc_bitmap, i));
3006 		if (status)
3007 			break;
3008 	}
3009 
3010 	mutex_unlock(&pi->sched_lock);
3011 	return status;
3012 }
3013 
3014 /**
3015  * ice_cfg_vsi_lan - configure VSI LAN queues
3016  * @pi: port information structure
3017  * @vsi_handle: software VSI handle
3018  * @tc_bitmap: TC bitmap
3019  * @max_lanqs: max LAN queues array per TC
3020  *
3021  * This function adds/updates the VSI LAN queues per TC.
3022  */
3023 enum ice_status
3024 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3025 		u16 *max_lanqs)
3026 {
3027 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3028 			      ICE_SCHED_NODE_OWNER_LAN);
3029 }
3030 
3031 /**
3032  * ice_replay_pre_init - replay pre initialization
3033  * @hw: pointer to the HW struct
3034  *
3035  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3036  */
3037 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3038 {
3039 	struct ice_switch_info *sw = hw->switch_info;
3040 	u8 i;
3041 
3042 	/* Delete old entries from replay filter list head if there is any */
3043 	ice_rm_all_sw_replay_rule_info(hw);
3044 	/* In start of replay, move entries into replay_rules list, it
3045 	 * will allow adding rules entries back to filt_rules list,
3046 	 * which is operational list.
3047 	 */
3048 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3049 		list_replace_init(&sw->recp_list[i].filt_rules,
3050 				  &sw->recp_list[i].filt_replay_rules);
3051 
3052 	return 0;
3053 }
3054 
3055 /**
3056  * ice_replay_vsi - replay VSI configuration
3057  * @hw: pointer to the HW struct
3058  * @vsi_handle: driver VSI handle
3059  *
3060  * Restore all VSI configuration after reset. It is required to call this
3061  * function with main VSI first.
3062  */
3063 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3064 {
3065 	enum ice_status status;
3066 
3067 	if (!ice_is_vsi_valid(hw, vsi_handle))
3068 		return ICE_ERR_PARAM;
3069 
3070 	/* Replay pre-initialization if there is any */
3071 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3072 		status = ice_replay_pre_init(hw);
3073 		if (status)
3074 			return status;
3075 	}
3076 
3077 	/* Replay per VSI all filters */
3078 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3079 	return status;
3080 }
3081 
3082 /**
3083  * ice_replay_post - post replay configuration cleanup
3084  * @hw: pointer to the HW struct
3085  *
3086  * Post replay cleanup.
3087  */
3088 void ice_replay_post(struct ice_hw *hw)
3089 {
3090 	/* Delete old entries from replay filter list head */
3091 	ice_rm_all_sw_replay_rule_info(hw);
3092 }
3093 
3094 /**
3095  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3096  * @hw: ptr to the hardware info
3097  * @hireg: high 32 bit HW register to read from
3098  * @loreg: low 32 bit HW register to read from
3099  * @prev_stat_loaded: bool to specify if previous stats are loaded
3100  * @prev_stat: ptr to previous loaded stat value
3101  * @cur_stat: ptr to current stat value
3102  */
3103 void
3104 ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
3105 		  bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
3106 {
3107 	u64 new_data;
3108 
3109 	new_data = rd32(hw, loreg);
3110 	new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
3111 
3112 	/* device stats are not reset at PFR, they likely will not be zeroed
3113 	 * when the driver starts. So save the first values read and use them as
3114 	 * offsets to be subtracted from the raw values in order to report stats
3115 	 * that count from zero.
3116 	 */
3117 	if (!prev_stat_loaded)
3118 		*prev_stat = new_data;
3119 	if (new_data >= *prev_stat)
3120 		*cur_stat = new_data - *prev_stat;
3121 	else
3122 		/* to manage the potential roll-over */
3123 		*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
3124 	*cur_stat &= 0xFFFFFFFFFFULL;
3125 }
3126 
3127 /**
3128  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3129  * @hw: ptr to the hardware info
3130  * @reg: HW register to read from
3131  * @prev_stat_loaded: bool to specify if previous stats are loaded
3132  * @prev_stat: ptr to previous loaded stat value
3133  * @cur_stat: ptr to current stat value
3134  */
3135 void
3136 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3137 		  u64 *prev_stat, u64 *cur_stat)
3138 {
3139 	u32 new_data;
3140 
3141 	new_data = rd32(hw, reg);
3142 
3143 	/* device stats are not reset at PFR, they likely will not be zeroed
3144 	 * when the driver starts. So save the first values read and use them as
3145 	 * offsets to be subtracted from the raw values in order to report stats
3146 	 * that count from zero.
3147 	 */
3148 	if (!prev_stat_loaded)
3149 		*prev_stat = new_data;
3150 	if (new_data >= *prev_stat)
3151 		*cur_stat = new_data - *prev_stat;
3152 	else
3153 		/* to manage the potential roll-over */
3154 		*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
3155 }
3156 
3157 /**
3158  * ice_sched_query_elem - query element information from HW
3159  * @hw: pointer to the HW struct
3160  * @node_teid: node TEID to be queried
3161  * @buf: buffer to element information
3162  *
3163  * This function queries HW element information
3164  */
3165 enum ice_status
3166 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3167 		     struct ice_aqc_get_elem *buf)
3168 {
3169 	u16 buf_size, num_elem_ret = 0;
3170 	enum ice_status status;
3171 
3172 	buf_size = sizeof(*buf);
3173 	memset(buf, 0, buf_size);
3174 	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3175 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3176 					  NULL);
3177 	if (status || num_elem_ret != 1)
3178 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3179 	return status;
3180 }
3181