1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 static const char * const ice_link_mode_str_low[] = {
12 	[0] = "100BASE_TX",
13 	[1] = "100M_SGMII",
14 	[2] = "1000BASE_T",
15 	[3] = "1000BASE_SX",
16 	[4] = "1000BASE_LX",
17 	[5] = "1000BASE_KX",
18 	[6] = "1G_SGMII",
19 	[7] = "2500BASE_T",
20 	[8] = "2500BASE_X",
21 	[9] = "2500BASE_KX",
22 	[10] = "5GBASE_T",
23 	[11] = "5GBASE_KR",
24 	[12] = "10GBASE_T",
25 	[13] = "10G_SFI_DA",
26 	[14] = "10GBASE_SR",
27 	[15] = "10GBASE_LR",
28 	[16] = "10GBASE_KR_CR1",
29 	[17] = "10G_SFI_AOC_ACC",
30 	[18] = "10G_SFI_C2C",
31 	[19] = "25GBASE_T",
32 	[20] = "25GBASE_CR",
33 	[21] = "25GBASE_CR_S",
34 	[22] = "25GBASE_CR1",
35 	[23] = "25GBASE_SR",
36 	[24] = "25GBASE_LR",
37 	[25] = "25GBASE_KR",
38 	[26] = "25GBASE_KR_S",
39 	[27] = "25GBASE_KR1",
40 	[28] = "25G_AUI_AOC_ACC",
41 	[29] = "25G_AUI_C2C",
42 	[30] = "40GBASE_CR4",
43 	[31] = "40GBASE_SR4",
44 	[32] = "40GBASE_LR4",
45 	[33] = "40GBASE_KR4",
46 	[34] = "40G_XLAUI_AOC_ACC",
47 	[35] = "40G_XLAUI",
48 	[36] = "50GBASE_CR2",
49 	[37] = "50GBASE_SR2",
50 	[38] = "50GBASE_LR2",
51 	[39] = "50GBASE_KR2",
52 	[40] = "50G_LAUI2_AOC_ACC",
53 	[41] = "50G_LAUI2",
54 	[42] = "50G_AUI2_AOC_ACC",
55 	[43] = "50G_AUI2",
56 	[44] = "50GBASE_CP",
57 	[45] = "50GBASE_SR",
58 	[46] = "50GBASE_FR",
59 	[47] = "50GBASE_LR",
60 	[48] = "50GBASE_KR_PAM4",
61 	[49] = "50G_AUI1_AOC_ACC",
62 	[50] = "50G_AUI1",
63 	[51] = "100GBASE_CR4",
64 	[52] = "100GBASE_SR4",
65 	[53] = "100GBASE_LR4",
66 	[54] = "100GBASE_KR4",
67 	[55] = "100G_CAUI4_AOC_ACC",
68 	[56] = "100G_CAUI4",
69 	[57] = "100G_AUI4_AOC_ACC",
70 	[58] = "100G_AUI4",
71 	[59] = "100GBASE_CR_PAM4",
72 	[60] = "100GBASE_KR_PAM4",
73 	[61] = "100GBASE_CP2",
74 	[62] = "100GBASE_SR2",
75 	[63] = "100GBASE_DR",
76 };
77 
78 static const char * const ice_link_mode_str_high[] = {
79 	[0] = "100GBASE_KR2_PAM4",
80 	[1] = "100G_CAUI2_AOC_ACC",
81 	[2] = "100G_CAUI2",
82 	[3] = "100G_AUI2_AOC_ACC",
83 	[4] = "100G_AUI2",
84 };
85 
86 /**
87  * ice_dump_phy_type - helper function to dump phy_type
88  * @hw: pointer to the HW structure
89  * @low: 64 bit value for phy_type_low
90  * @high: 64 bit value for phy_type_high
91  * @prefix: prefix string to differentiate multiple dumps
92  */
93 static void
94 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
95 {
96 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
97 
98 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
99 		if (low & BIT_ULL(i))
100 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
101 				  prefix, i, ice_link_mode_str_low[i]);
102 	}
103 
104 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
105 
106 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
107 		if (high & BIT_ULL(i))
108 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
109 				  prefix, i, ice_link_mode_str_high[i]);
110 	}
111 }
112 
113 /**
114  * ice_set_mac_type - Sets MAC type
115  * @hw: pointer to the HW structure
116  *
117  * This function sets the MAC type of the adapter based on the
118  * vendor ID and device ID stored in the HW structure.
119  */
120 static int ice_set_mac_type(struct ice_hw *hw)
121 {
122 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
123 		return -ENODEV;
124 
125 	switch (hw->device_id) {
126 	case ICE_DEV_ID_E810C_BACKPLANE:
127 	case ICE_DEV_ID_E810C_QSFP:
128 	case ICE_DEV_ID_E810C_SFP:
129 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
130 	case ICE_DEV_ID_E810_XXV_QSFP:
131 	case ICE_DEV_ID_E810_XXV_SFP:
132 		hw->mac_type = ICE_MAC_E810;
133 		break;
134 	case ICE_DEV_ID_E823C_10G_BASE_T:
135 	case ICE_DEV_ID_E823C_BACKPLANE:
136 	case ICE_DEV_ID_E823C_QSFP:
137 	case ICE_DEV_ID_E823C_SFP:
138 	case ICE_DEV_ID_E823C_SGMII:
139 	case ICE_DEV_ID_E822C_10G_BASE_T:
140 	case ICE_DEV_ID_E822C_BACKPLANE:
141 	case ICE_DEV_ID_E822C_QSFP:
142 	case ICE_DEV_ID_E822C_SFP:
143 	case ICE_DEV_ID_E822C_SGMII:
144 	case ICE_DEV_ID_E822L_10G_BASE_T:
145 	case ICE_DEV_ID_E822L_BACKPLANE:
146 	case ICE_DEV_ID_E822L_SFP:
147 	case ICE_DEV_ID_E822L_SGMII:
148 	case ICE_DEV_ID_E823L_10G_BASE_T:
149 	case ICE_DEV_ID_E823L_1GBE:
150 	case ICE_DEV_ID_E823L_BACKPLANE:
151 	case ICE_DEV_ID_E823L_QSFP:
152 	case ICE_DEV_ID_E823L_SFP:
153 		hw->mac_type = ICE_MAC_GENERIC;
154 		break;
155 	default:
156 		hw->mac_type = ICE_MAC_UNKNOWN;
157 		break;
158 	}
159 
160 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
161 	return 0;
162 }
163 
164 /**
165  * ice_is_e810
166  * @hw: pointer to the hardware structure
167  *
168  * returns true if the device is E810 based, false if not.
169  */
170 bool ice_is_e810(struct ice_hw *hw)
171 {
172 	return hw->mac_type == ICE_MAC_E810;
173 }
174 
175 /**
176  * ice_is_e810t
177  * @hw: pointer to the hardware structure
178  *
179  * returns true if the device is E810T based, false if not.
180  */
181 bool ice_is_e810t(struct ice_hw *hw)
182 {
183 	switch (hw->device_id) {
184 	case ICE_DEV_ID_E810C_SFP:
185 		switch (hw->subsystem_device_id) {
186 		case ICE_SUBDEV_ID_E810T:
187 		case ICE_SUBDEV_ID_E810T2:
188 		case ICE_SUBDEV_ID_E810T3:
189 		case ICE_SUBDEV_ID_E810T4:
190 		case ICE_SUBDEV_ID_E810T6:
191 		case ICE_SUBDEV_ID_E810T7:
192 			return true;
193 		}
194 		break;
195 	case ICE_DEV_ID_E810C_QSFP:
196 		switch (hw->subsystem_device_id) {
197 		case ICE_SUBDEV_ID_E810T2:
198 		case ICE_SUBDEV_ID_E810T3:
199 		case ICE_SUBDEV_ID_E810T5:
200 			return true;
201 		}
202 		break;
203 	default:
204 		break;
205 	}
206 
207 	return false;
208 }
209 
210 /**
211  * ice_clear_pf_cfg - Clear PF configuration
212  * @hw: pointer to the hardware structure
213  *
214  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
215  * configuration, flow director filters, etc.).
216  */
217 int ice_clear_pf_cfg(struct ice_hw *hw)
218 {
219 	struct ice_aq_desc desc;
220 
221 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
222 
223 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
224 }
225 
226 /**
227  * ice_aq_manage_mac_read - manage MAC address read command
228  * @hw: pointer to the HW struct
229  * @buf: a virtual buffer to hold the manage MAC read response
230  * @buf_size: Size of the virtual buffer
231  * @cd: pointer to command details structure or NULL
232  *
233  * This function is used to return per PF station MAC address (0x0107).
234  * NOTE: Upon successful completion of this command, MAC address information
235  * is returned in user specified buffer. Please interpret user specified
236  * buffer as "manage_mac_read" response.
237  * Response such as various MAC addresses are stored in HW struct (port.mac)
238  * ice_discover_dev_caps is expected to be called before this function is
239  * called.
240  */
241 static int
242 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
243 		       struct ice_sq_cd *cd)
244 {
245 	struct ice_aqc_manage_mac_read_resp *resp;
246 	struct ice_aqc_manage_mac_read *cmd;
247 	struct ice_aq_desc desc;
248 	int status;
249 	u16 flags;
250 	u8 i;
251 
252 	cmd = &desc.params.mac_read;
253 
254 	if (buf_size < sizeof(*resp))
255 		return -EINVAL;
256 
257 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
258 
259 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
260 	if (status)
261 		return status;
262 
263 	resp = buf;
264 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
265 
266 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
267 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
268 		return -EIO;
269 	}
270 
271 	/* A single port can report up to two (LAN and WoL) addresses */
272 	for (i = 0; i < cmd->num_addr; i++)
273 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
274 			ether_addr_copy(hw->port_info->mac.lan_addr,
275 					resp[i].mac_addr);
276 			ether_addr_copy(hw->port_info->mac.perm_addr,
277 					resp[i].mac_addr);
278 			break;
279 		}
280 
281 	return 0;
282 }
283 
284 /**
285  * ice_aq_get_phy_caps - returns PHY capabilities
286  * @pi: port information structure
287  * @qual_mods: report qualified modules
288  * @report_mode: report mode capabilities
289  * @pcaps: structure for PHY capabilities to be filled
290  * @cd: pointer to command details structure or NULL
291  *
292  * Returns the various PHY capabilities supported on the Port (0x0600)
293  */
294 int
295 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
296 		    struct ice_aqc_get_phy_caps_data *pcaps,
297 		    struct ice_sq_cd *cd)
298 {
299 	struct ice_aqc_get_phy_caps *cmd;
300 	u16 pcaps_size = sizeof(*pcaps);
301 	struct ice_aq_desc desc;
302 	const char *prefix;
303 	struct ice_hw *hw;
304 	int status;
305 
306 	cmd = &desc.params.get_phy;
307 
308 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
309 		return -EINVAL;
310 	hw = pi->hw;
311 
312 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
313 	    !ice_fw_supports_report_dflt_cfg(hw))
314 		return -EINVAL;
315 
316 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
317 
318 	if (qual_mods)
319 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
320 
321 	cmd->param0 |= cpu_to_le16(report_mode);
322 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
323 
324 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
325 
326 	switch (report_mode) {
327 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
328 		prefix = "phy_caps_media";
329 		break;
330 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
331 		prefix = "phy_caps_no_media";
332 		break;
333 	case ICE_AQC_REPORT_ACTIVE_CFG:
334 		prefix = "phy_caps_active";
335 		break;
336 	case ICE_AQC_REPORT_DFLT_CFG:
337 		prefix = "phy_caps_default";
338 		break;
339 	default:
340 		prefix = "phy_caps_invalid";
341 	}
342 
343 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
344 			  le64_to_cpu(pcaps->phy_type_high), prefix);
345 
346 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
347 		  prefix, report_mode);
348 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
349 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
350 		  pcaps->low_power_ctrl_an);
351 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
352 		  pcaps->eee_cap);
353 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
354 		  pcaps->eeer_value);
355 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
356 		  pcaps->link_fec_options);
357 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
358 		  prefix, pcaps->module_compliance_enforcement);
359 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
360 		  prefix, pcaps->extended_compliance_code);
361 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
362 		  pcaps->module_type[0]);
363 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
364 		  pcaps->module_type[1]);
365 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
366 		  pcaps->module_type[2]);
367 
368 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
369 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
370 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
371 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
372 		       sizeof(pi->phy.link_info.module_type));
373 	}
374 
375 	return status;
376 }
377 
378 /**
379  * ice_aq_get_link_topo_handle - get link topology node return status
380  * @pi: port information structure
381  * @node_type: requested node type
382  * @cd: pointer to command details structure or NULL
383  *
384  * Get link topology node return status for specified node type (0x06E0)
385  *
386  * Node type cage can be used to determine if cage is present. If AQC
387  * returns error (ENOENT), then no cage present. If no cage present, then
388  * connection type is backplane or BASE-T.
389  */
390 static int
391 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
392 			    struct ice_sq_cd *cd)
393 {
394 	struct ice_aqc_get_link_topo *cmd;
395 	struct ice_aq_desc desc;
396 
397 	cmd = &desc.params.get_link_topo;
398 
399 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
400 
401 	cmd->addr.topo_params.node_type_ctx =
402 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
403 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
404 
405 	/* set node type */
406 	cmd->addr.topo_params.node_type_ctx |=
407 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
408 
409 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
410 }
411 
412 /**
413  * ice_is_media_cage_present
414  * @pi: port information structure
415  *
416  * Returns true if media cage is present, else false. If no cage, then
417  * media type is backplane or BASE-T.
418  */
419 static bool ice_is_media_cage_present(struct ice_port_info *pi)
420 {
421 	/* Node type cage can be used to determine if cage is present. If AQC
422 	 * returns error (ENOENT), then no cage present. If no cage present then
423 	 * connection type is backplane or BASE-T.
424 	 */
425 	return !ice_aq_get_link_topo_handle(pi,
426 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
427 					    NULL);
428 }
429 
430 /**
431  * ice_get_media_type - Gets media type
432  * @pi: port information structure
433  */
434 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
435 {
436 	struct ice_link_status *hw_link_info;
437 
438 	if (!pi)
439 		return ICE_MEDIA_UNKNOWN;
440 
441 	hw_link_info = &pi->phy.link_info;
442 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
443 		/* If more than one media type is selected, report unknown */
444 		return ICE_MEDIA_UNKNOWN;
445 
446 	if (hw_link_info->phy_type_low) {
447 		/* 1G SGMII is a special case where some DA cable PHYs
448 		 * may show this as an option when it really shouldn't
449 		 * be since SGMII is meant to be between a MAC and a PHY
450 		 * in a backplane. Try to detect this case and handle it
451 		 */
452 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
453 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
454 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
455 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
456 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
457 			return ICE_MEDIA_DA;
458 
459 		switch (hw_link_info->phy_type_low) {
460 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
461 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
462 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
463 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
464 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
465 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
466 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
467 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
468 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
469 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
470 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
471 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
472 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
473 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
474 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
475 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
476 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
477 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
478 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
479 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
480 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
481 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
482 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
483 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
484 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
485 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
486 			return ICE_MEDIA_FIBER;
487 		case ICE_PHY_TYPE_LOW_100BASE_TX:
488 		case ICE_PHY_TYPE_LOW_1000BASE_T:
489 		case ICE_PHY_TYPE_LOW_2500BASE_T:
490 		case ICE_PHY_TYPE_LOW_5GBASE_T:
491 		case ICE_PHY_TYPE_LOW_10GBASE_T:
492 		case ICE_PHY_TYPE_LOW_25GBASE_T:
493 			return ICE_MEDIA_BASET;
494 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
495 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
496 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
497 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
498 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
499 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
500 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
501 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
502 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
503 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
504 			return ICE_MEDIA_DA;
505 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
506 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
507 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
508 		case ICE_PHY_TYPE_LOW_50G_AUI2:
509 		case ICE_PHY_TYPE_LOW_50G_AUI1:
510 		case ICE_PHY_TYPE_LOW_100G_AUI4:
511 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
512 			if (ice_is_media_cage_present(pi))
513 				return ICE_MEDIA_DA;
514 			fallthrough;
515 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
516 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
517 		case ICE_PHY_TYPE_LOW_2500BASE_X:
518 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
519 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
520 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
521 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
522 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
523 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
524 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
525 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
526 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
527 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
528 			return ICE_MEDIA_BACKPLANE;
529 		}
530 	} else {
531 		switch (hw_link_info->phy_type_high) {
532 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
533 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
534 			if (ice_is_media_cage_present(pi))
535 				return ICE_MEDIA_DA;
536 			fallthrough;
537 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
538 			return ICE_MEDIA_BACKPLANE;
539 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
540 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
541 			return ICE_MEDIA_FIBER;
542 		}
543 	}
544 	return ICE_MEDIA_UNKNOWN;
545 }
546 
547 /**
548  * ice_aq_get_link_info
549  * @pi: port information structure
550  * @ena_lse: enable/disable LinkStatusEvent reporting
551  * @link: pointer to link status structure - optional
552  * @cd: pointer to command details structure or NULL
553  *
554  * Get Link Status (0x607). Returns the link status of the adapter.
555  */
556 int
557 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
558 		     struct ice_link_status *link, struct ice_sq_cd *cd)
559 {
560 	struct ice_aqc_get_link_status_data link_data = { 0 };
561 	struct ice_aqc_get_link_status *resp;
562 	struct ice_link_status *li_old, *li;
563 	enum ice_media_type *hw_media_type;
564 	struct ice_fc_info *hw_fc_info;
565 	bool tx_pause, rx_pause;
566 	struct ice_aq_desc desc;
567 	struct ice_hw *hw;
568 	u16 cmd_flags;
569 	int status;
570 
571 	if (!pi)
572 		return -EINVAL;
573 	hw = pi->hw;
574 	li_old = &pi->phy.link_info_old;
575 	hw_media_type = &pi->phy.media_type;
576 	li = &pi->phy.link_info;
577 	hw_fc_info = &pi->fc;
578 
579 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
580 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
581 	resp = &desc.params.get_link_status;
582 	resp->cmd_flags = cpu_to_le16(cmd_flags);
583 	resp->lport_num = pi->lport;
584 
585 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
586 
587 	if (status)
588 		return status;
589 
590 	/* save off old link status information */
591 	*li_old = *li;
592 
593 	/* update current link status information */
594 	li->link_speed = le16_to_cpu(link_data.link_speed);
595 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
596 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
597 	*hw_media_type = ice_get_media_type(pi);
598 	li->link_info = link_data.link_info;
599 	li->link_cfg_err = link_data.link_cfg_err;
600 	li->an_info = link_data.an_info;
601 	li->ext_info = link_data.ext_info;
602 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
603 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
604 	li->topo_media_conflict = link_data.topo_media_conflict;
605 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
606 				      ICE_AQ_CFG_PACING_TYPE_M);
607 
608 	/* update fc info */
609 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
610 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
611 	if (tx_pause && rx_pause)
612 		hw_fc_info->current_mode = ICE_FC_FULL;
613 	else if (tx_pause)
614 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
615 	else if (rx_pause)
616 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
617 	else
618 		hw_fc_info->current_mode = ICE_FC_NONE;
619 
620 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
621 
622 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
623 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
624 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
625 		  (unsigned long long)li->phy_type_low);
626 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
627 		  (unsigned long long)li->phy_type_high);
628 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
629 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
630 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
631 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
632 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
633 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
634 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
635 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
636 		  li->max_frame_size);
637 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
638 
639 	/* save link status information */
640 	if (link)
641 		*link = *li;
642 
643 	/* flag cleared so calling functions don't call AQ again */
644 	pi->phy.get_link_info = false;
645 
646 	return 0;
647 }
648 
649 /**
650  * ice_fill_tx_timer_and_fc_thresh
651  * @hw: pointer to the HW struct
652  * @cmd: pointer to MAC cfg structure
653  *
654  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
655  * descriptor
656  */
657 static void
658 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
659 				struct ice_aqc_set_mac_cfg *cmd)
660 {
661 	u16 fc_thres_val, tx_timer_val;
662 	u32 val;
663 
664 	/* We read back the transmit timer and FC threshold value of
665 	 * LFC. Thus, we will use index =
666 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
667 	 *
668 	 * Also, because we are operating on transmit timer and FC
669 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
670 	 */
671 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
672 
673 	/* Retrieve the transmit timer */
674 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
675 	tx_timer_val = val &
676 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
677 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
678 
679 	/* Retrieve the FC threshold */
680 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
681 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
682 
683 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
684 }
685 
686 /**
687  * ice_aq_set_mac_cfg
688  * @hw: pointer to the HW struct
689  * @max_frame_size: Maximum Frame Size to be supported
690  * @cd: pointer to command details structure or NULL
691  *
692  * Set MAC configuration (0x0603)
693  */
694 int
695 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
696 {
697 	struct ice_aqc_set_mac_cfg *cmd;
698 	struct ice_aq_desc desc;
699 
700 	cmd = &desc.params.set_mac_cfg;
701 
702 	if (max_frame_size == 0)
703 		return -EINVAL;
704 
705 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
706 
707 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
708 
709 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
710 
711 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
712 }
713 
714 /**
715  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
716  * @hw: pointer to the HW struct
717  */
718 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
719 {
720 	struct ice_switch_info *sw;
721 	int status;
722 
723 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
724 				       sizeof(*hw->switch_info), GFP_KERNEL);
725 	sw = hw->switch_info;
726 
727 	if (!sw)
728 		return -ENOMEM;
729 
730 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
731 	sw->prof_res_bm_init = 0;
732 
733 	status = ice_init_def_sw_recp(hw);
734 	if (status) {
735 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
736 		return status;
737 	}
738 	return 0;
739 }
740 
741 /**
742  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
743  * @hw: pointer to the HW struct
744  */
745 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
746 {
747 	struct ice_switch_info *sw = hw->switch_info;
748 	struct ice_vsi_list_map_info *v_pos_map;
749 	struct ice_vsi_list_map_info *v_tmp_map;
750 	struct ice_sw_recipe *recps;
751 	u8 i;
752 
753 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
754 				 list_entry) {
755 		list_del(&v_pos_map->list_entry);
756 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
757 	}
758 	recps = sw->recp_list;
759 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
760 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
761 
762 		recps[i].root_rid = i;
763 		list_for_each_entry_safe(rg_entry, tmprg_entry,
764 					 &recps[i].rg_list, l_entry) {
765 			list_del(&rg_entry->l_entry);
766 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
767 		}
768 
769 		if (recps[i].adv_rule) {
770 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
771 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
772 
773 			mutex_destroy(&recps[i].filt_rule_lock);
774 			list_for_each_entry_safe(lst_itr, tmp_entry,
775 						 &recps[i].filt_rules,
776 						 list_entry) {
777 				list_del(&lst_itr->list_entry);
778 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
779 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
780 			}
781 		} else {
782 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
783 
784 			mutex_destroy(&recps[i].filt_rule_lock);
785 			list_for_each_entry_safe(lst_itr, tmp_entry,
786 						 &recps[i].filt_rules,
787 						 list_entry) {
788 				list_del(&lst_itr->list_entry);
789 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
790 			}
791 		}
792 		if (recps[i].root_buf)
793 			devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
794 	}
795 	ice_rm_all_sw_replay_rule_info(hw);
796 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
797 	devm_kfree(ice_hw_to_dev(hw), sw);
798 }
799 
800 /**
801  * ice_get_fw_log_cfg - get FW logging configuration
802  * @hw: pointer to the HW struct
803  */
804 static int ice_get_fw_log_cfg(struct ice_hw *hw)
805 {
806 	struct ice_aq_desc desc;
807 	__le16 *config;
808 	int status;
809 	u16 size;
810 
811 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
812 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
813 	if (!config)
814 		return -ENOMEM;
815 
816 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
817 
818 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
819 	if (!status) {
820 		u16 i;
821 
822 		/* Save FW logging information into the HW structure */
823 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
824 			u16 v, m, flgs;
825 
826 			v = le16_to_cpu(config[i]);
827 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
828 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
829 
830 			if (m < ICE_AQC_FW_LOG_ID_MAX)
831 				hw->fw_log.evnts[m].cur = flgs;
832 		}
833 	}
834 
835 	devm_kfree(ice_hw_to_dev(hw), config);
836 
837 	return status;
838 }
839 
840 /**
841  * ice_cfg_fw_log - configure FW logging
842  * @hw: pointer to the HW struct
843  * @enable: enable certain FW logging events if true, disable all if false
844  *
845  * This function enables/disables the FW logging via Rx CQ events and a UART
846  * port based on predetermined configurations. FW logging via the Rx CQ can be
847  * enabled/disabled for individual PF's. However, FW logging via the UART can
848  * only be enabled/disabled for all PFs on the same device.
849  *
850  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
851  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
852  * before initializing the device.
853  *
854  * When re/configuring FW logging, callers need to update the "cfg" elements of
855  * the hw->fw_log.evnts array with the desired logging event configurations for
856  * modules of interest. When disabling FW logging completely, the callers can
857  * just pass false in the "enable" parameter. On completion, the function will
858  * update the "cur" element of the hw->fw_log.evnts array with the resulting
859  * logging event configurations of the modules that are being re/configured. FW
860  * logging modules that are not part of a reconfiguration operation retain their
861  * previous states.
862  *
863  * Before resetting the device, it is recommended that the driver disables FW
864  * logging before shutting down the control queue. When disabling FW logging
865  * ("enable" = false), the latest configurations of FW logging events stored in
866  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
867  * a device reset.
868  *
869  * When enabling FW logging to emit log messages via the Rx CQ during the
870  * device's initialization phase, a mechanism alternative to interrupt handlers
871  * needs to be used to extract FW log messages from the Rx CQ periodically and
872  * to prevent the Rx CQ from being full and stalling other types of control
873  * messages from FW to SW. Interrupts are typically disabled during the device's
874  * initialization phase.
875  */
876 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
877 {
878 	struct ice_aqc_fw_logging *cmd;
879 	u16 i, chgs = 0, len = 0;
880 	struct ice_aq_desc desc;
881 	__le16 *data = NULL;
882 	u8 actv_evnts = 0;
883 	void *buf = NULL;
884 	int status = 0;
885 
886 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
887 		return 0;
888 
889 	/* Disable FW logging only when the control queue is still responsive */
890 	if (!enable &&
891 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
892 		return 0;
893 
894 	/* Get current FW log settings */
895 	status = ice_get_fw_log_cfg(hw);
896 	if (status)
897 		return status;
898 
899 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
900 	cmd = &desc.params.fw_logging;
901 
902 	/* Indicate which controls are valid */
903 	if (hw->fw_log.cq_en)
904 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
905 
906 	if (hw->fw_log.uart_en)
907 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
908 
909 	if (enable) {
910 		/* Fill in an array of entries with FW logging modules and
911 		 * logging events being reconfigured.
912 		 */
913 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
914 			u16 val;
915 
916 			/* Keep track of enabled event types */
917 			actv_evnts |= hw->fw_log.evnts[i].cfg;
918 
919 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
920 				continue;
921 
922 			if (!data) {
923 				data = devm_kcalloc(ice_hw_to_dev(hw),
924 						    ICE_AQC_FW_LOG_ID_MAX,
925 						    sizeof(*data),
926 						    GFP_KERNEL);
927 				if (!data)
928 					return -ENOMEM;
929 			}
930 
931 			val = i << ICE_AQC_FW_LOG_ID_S;
932 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
933 			data[chgs++] = cpu_to_le16(val);
934 		}
935 
936 		/* Only enable FW logging if at least one module is specified.
937 		 * If FW logging is currently enabled but all modules are not
938 		 * enabled to emit log messages, disable FW logging altogether.
939 		 */
940 		if (actv_evnts) {
941 			/* Leave if there is effectively no change */
942 			if (!chgs)
943 				goto out;
944 
945 			if (hw->fw_log.cq_en)
946 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
947 
948 			if (hw->fw_log.uart_en)
949 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
950 
951 			buf = data;
952 			len = sizeof(*data) * chgs;
953 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
954 		}
955 	}
956 
957 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
958 	if (!status) {
959 		/* Update the current configuration to reflect events enabled.
960 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
961 		 * logging mode is enabled for the device. They do not reflect
962 		 * actual modules being enabled to emit log messages. So, their
963 		 * values remain unchanged even when all modules are disabled.
964 		 */
965 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
966 
967 		hw->fw_log.actv_evnts = actv_evnts;
968 		for (i = 0; i < cnt; i++) {
969 			u16 v, m;
970 
971 			if (!enable) {
972 				/* When disabling all FW logging events as part
973 				 * of device's de-initialization, the original
974 				 * configurations are retained, and can be used
975 				 * to reconfigure FW logging later if the device
976 				 * is re-initialized.
977 				 */
978 				hw->fw_log.evnts[i].cur = 0;
979 				continue;
980 			}
981 
982 			v = le16_to_cpu(data[i]);
983 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
984 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
985 		}
986 	}
987 
988 out:
989 	if (data)
990 		devm_kfree(ice_hw_to_dev(hw), data);
991 
992 	return status;
993 }
994 
995 /**
996  * ice_output_fw_log
997  * @hw: pointer to the HW struct
998  * @desc: pointer to the AQ message descriptor
999  * @buf: pointer to the buffer accompanying the AQ message
1000  *
1001  * Formats a FW Log message and outputs it via the standard driver logs.
1002  */
1003 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1004 {
1005 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1006 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1007 			le16_to_cpu(desc->datalen));
1008 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1009 }
1010 
1011 /**
1012  * ice_get_itr_intrl_gran
1013  * @hw: pointer to the HW struct
1014  *
1015  * Determines the ITR/INTRL granularities based on the maximum aggregate
1016  * bandwidth according to the device's configuration during power-on.
1017  */
1018 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1019 {
1020 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1021 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1022 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1023 
1024 	switch (max_agg_bw) {
1025 	case ICE_MAX_AGG_BW_200G:
1026 	case ICE_MAX_AGG_BW_100G:
1027 	case ICE_MAX_AGG_BW_50G:
1028 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1029 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1030 		break;
1031 	case ICE_MAX_AGG_BW_25G:
1032 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1033 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1034 		break;
1035 	}
1036 }
1037 
1038 /**
1039  * ice_init_hw - main hardware initialization routine
1040  * @hw: pointer to the hardware structure
1041  */
1042 int ice_init_hw(struct ice_hw *hw)
1043 {
1044 	struct ice_aqc_get_phy_caps_data *pcaps;
1045 	u16 mac_buf_len;
1046 	void *mac_buf;
1047 	int status;
1048 
1049 	/* Set MAC type based on DeviceID */
1050 	status = ice_set_mac_type(hw);
1051 	if (status)
1052 		return status;
1053 
1054 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1055 			 PF_FUNC_RID_FUNC_NUM_M) >>
1056 		PF_FUNC_RID_FUNC_NUM_S;
1057 
1058 	status = ice_reset(hw, ICE_RESET_PFR);
1059 	if (status)
1060 		return status;
1061 
1062 	ice_get_itr_intrl_gran(hw);
1063 
1064 	status = ice_create_all_ctrlq(hw);
1065 	if (status)
1066 		goto err_unroll_cqinit;
1067 
1068 	/* Enable FW logging. Not fatal if this fails. */
1069 	status = ice_cfg_fw_log(hw, true);
1070 	if (status)
1071 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1072 
1073 	status = ice_clear_pf_cfg(hw);
1074 	if (status)
1075 		goto err_unroll_cqinit;
1076 
1077 	/* Set bit to enable Flow Director filters */
1078 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1079 	INIT_LIST_HEAD(&hw->fdir_list_head);
1080 
1081 	ice_clear_pxe_mode(hw);
1082 
1083 	status = ice_init_nvm(hw);
1084 	if (status)
1085 		goto err_unroll_cqinit;
1086 
1087 	status = ice_get_caps(hw);
1088 	if (status)
1089 		goto err_unroll_cqinit;
1090 
1091 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1092 				     sizeof(*hw->port_info), GFP_KERNEL);
1093 	if (!hw->port_info) {
1094 		status = -ENOMEM;
1095 		goto err_unroll_cqinit;
1096 	}
1097 
1098 	/* set the back pointer to HW */
1099 	hw->port_info->hw = hw;
1100 
1101 	/* Initialize port_info struct with switch configuration data */
1102 	status = ice_get_initial_sw_cfg(hw);
1103 	if (status)
1104 		goto err_unroll_alloc;
1105 
1106 	hw->evb_veb = true;
1107 
1108 	/* init xarray for identifying scheduling nodes uniquely */
1109 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1110 
1111 	/* Query the allocated resources for Tx scheduler */
1112 	status = ice_sched_query_res_alloc(hw);
1113 	if (status) {
1114 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1115 		goto err_unroll_alloc;
1116 	}
1117 	ice_sched_get_psm_clk_freq(hw);
1118 
1119 	/* Initialize port_info struct with scheduler data */
1120 	status = ice_sched_init_port(hw->port_info);
1121 	if (status)
1122 		goto err_unroll_sched;
1123 
1124 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1125 	if (!pcaps) {
1126 		status = -ENOMEM;
1127 		goto err_unroll_sched;
1128 	}
1129 
1130 	/* Initialize port_info struct with PHY capabilities */
1131 	status = ice_aq_get_phy_caps(hw->port_info, false,
1132 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1133 				     NULL);
1134 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1135 	if (status)
1136 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1137 			 status);
1138 
1139 	/* Initialize port_info struct with link information */
1140 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1141 	if (status)
1142 		goto err_unroll_sched;
1143 
1144 	/* need a valid SW entry point to build a Tx tree */
1145 	if (!hw->sw_entry_point_layer) {
1146 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1147 		status = -EIO;
1148 		goto err_unroll_sched;
1149 	}
1150 	INIT_LIST_HEAD(&hw->agg_list);
1151 	/* Initialize max burst size */
1152 	if (!hw->max_burst_size)
1153 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1154 
1155 	status = ice_init_fltr_mgmt_struct(hw);
1156 	if (status)
1157 		goto err_unroll_sched;
1158 
1159 	/* Get MAC information */
1160 	/* A single port can report up to two (LAN and WoL) addresses */
1161 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1162 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1163 			       GFP_KERNEL);
1164 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1165 
1166 	if (!mac_buf) {
1167 		status = -ENOMEM;
1168 		goto err_unroll_fltr_mgmt_struct;
1169 	}
1170 
1171 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1172 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1173 
1174 	if (status)
1175 		goto err_unroll_fltr_mgmt_struct;
1176 	/* enable jumbo frame support at MAC level */
1177 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1178 	if (status)
1179 		goto err_unroll_fltr_mgmt_struct;
1180 	/* Obtain counter base index which would be used by flow director */
1181 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1182 	if (status)
1183 		goto err_unroll_fltr_mgmt_struct;
1184 	status = ice_init_hw_tbls(hw);
1185 	if (status)
1186 		goto err_unroll_fltr_mgmt_struct;
1187 	mutex_init(&hw->tnl_lock);
1188 	return 0;
1189 
1190 err_unroll_fltr_mgmt_struct:
1191 	ice_cleanup_fltr_mgmt_struct(hw);
1192 err_unroll_sched:
1193 	ice_sched_cleanup_all(hw);
1194 err_unroll_alloc:
1195 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1196 err_unroll_cqinit:
1197 	ice_destroy_all_ctrlq(hw);
1198 	return status;
1199 }
1200 
1201 /**
1202  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1203  * @hw: pointer to the hardware structure
1204  *
1205  * This should be called only during nominal operation, not as a result of
1206  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1207  * applicable initializations if it fails for any reason.
1208  */
1209 void ice_deinit_hw(struct ice_hw *hw)
1210 {
1211 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1212 	ice_cleanup_fltr_mgmt_struct(hw);
1213 
1214 	ice_sched_cleanup_all(hw);
1215 	ice_sched_clear_agg(hw);
1216 	ice_free_seg(hw);
1217 	ice_free_hw_tbls(hw);
1218 	mutex_destroy(&hw->tnl_lock);
1219 
1220 	if (hw->port_info) {
1221 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1222 		hw->port_info = NULL;
1223 	}
1224 
1225 	/* Attempt to disable FW logging before shutting down control queues */
1226 	ice_cfg_fw_log(hw, false);
1227 	ice_destroy_all_ctrlq(hw);
1228 
1229 	/* Clear VSI contexts if not already cleared */
1230 	ice_clear_all_vsi_ctx(hw);
1231 }
1232 
1233 /**
1234  * ice_check_reset - Check to see if a global reset is complete
1235  * @hw: pointer to the hardware structure
1236  */
1237 int ice_check_reset(struct ice_hw *hw)
1238 {
1239 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1240 
1241 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1242 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1243 	 * Add 1sec for outstanding AQ commands that can take a long time.
1244 	 */
1245 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1246 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1247 
1248 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1249 		mdelay(100);
1250 		reg = rd32(hw, GLGEN_RSTAT);
1251 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1252 			break;
1253 	}
1254 
1255 	if (cnt == grst_timeout) {
1256 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1257 		return -EIO;
1258 	}
1259 
1260 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1261 				 GLNVM_ULD_PCIER_DONE_1_M |\
1262 				 GLNVM_ULD_CORER_DONE_M |\
1263 				 GLNVM_ULD_GLOBR_DONE_M |\
1264 				 GLNVM_ULD_POR_DONE_M |\
1265 				 GLNVM_ULD_POR_DONE_1_M |\
1266 				 GLNVM_ULD_PCIER_DONE_2_M)
1267 
1268 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1269 					  GLNVM_ULD_PE_DONE_M : 0);
1270 
1271 	/* Device is Active; check Global Reset processes are done */
1272 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1273 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1274 		if (reg == uld_mask) {
1275 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1276 			break;
1277 		}
1278 		mdelay(10);
1279 	}
1280 
1281 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1282 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1283 			  reg);
1284 		return -EIO;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /**
1291  * ice_pf_reset - Reset the PF
1292  * @hw: pointer to the hardware structure
1293  *
1294  * If a global reset has been triggered, this function checks
1295  * for its completion and then issues the PF reset
1296  */
1297 static int ice_pf_reset(struct ice_hw *hw)
1298 {
1299 	u32 cnt, reg;
1300 
1301 	/* If at function entry a global reset was already in progress, i.e.
1302 	 * state is not 'device active' or any of the reset done bits are not
1303 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1304 	 * global reset is done.
1305 	 */
1306 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1307 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1308 		/* poll on global reset currently in progress until done */
1309 		if (ice_check_reset(hw))
1310 			return -EIO;
1311 
1312 		return 0;
1313 	}
1314 
1315 	/* Reset the PF */
1316 	reg = rd32(hw, PFGEN_CTRL);
1317 
1318 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1319 
1320 	/* Wait for the PFR to complete. The wait time is the global config lock
1321 	 * timeout plus the PFR timeout which will account for a possible reset
1322 	 * that is occurring during a download package operation.
1323 	 */
1324 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1325 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1326 		reg = rd32(hw, PFGEN_CTRL);
1327 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1328 			break;
1329 
1330 		mdelay(1);
1331 	}
1332 
1333 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1334 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1335 		return -EIO;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * ice_reset - Perform different types of reset
1343  * @hw: pointer to the hardware structure
1344  * @req: reset request
1345  *
1346  * This function triggers a reset as specified by the req parameter.
1347  *
1348  * Note:
1349  * If anything other than a PF reset is triggered, PXE mode is restored.
1350  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1351  * interface has been restored in the rebuild flow.
1352  */
1353 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1354 {
1355 	u32 val = 0;
1356 
1357 	switch (req) {
1358 	case ICE_RESET_PFR:
1359 		return ice_pf_reset(hw);
1360 	case ICE_RESET_CORER:
1361 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1362 		val = GLGEN_RTRIG_CORER_M;
1363 		break;
1364 	case ICE_RESET_GLOBR:
1365 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1366 		val = GLGEN_RTRIG_GLOBR_M;
1367 		break;
1368 	default:
1369 		return -EINVAL;
1370 	}
1371 
1372 	val |= rd32(hw, GLGEN_RTRIG);
1373 	wr32(hw, GLGEN_RTRIG, val);
1374 	ice_flush(hw);
1375 
1376 	/* wait for the FW to be ready */
1377 	return ice_check_reset(hw);
1378 }
1379 
1380 /**
1381  * ice_copy_rxq_ctx_to_hw
1382  * @hw: pointer to the hardware structure
1383  * @ice_rxq_ctx: pointer to the rxq context
1384  * @rxq_index: the index of the Rx queue
1385  *
1386  * Copies rxq context from dense structure to HW register space
1387  */
1388 static int
1389 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1390 {
1391 	u8 i;
1392 
1393 	if (!ice_rxq_ctx)
1394 		return -EINVAL;
1395 
1396 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1397 		return -EINVAL;
1398 
1399 	/* Copy each dword separately to HW */
1400 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1401 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1402 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1403 
1404 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1405 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 /* LAN Rx Queue Context */
1412 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1413 	/* Field		Width	LSB */
1414 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1415 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1416 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1417 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1418 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1419 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1420 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1421 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1422 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1423 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1424 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1425 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1426 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1427 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1428 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1429 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1430 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1431 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1432 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1433 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1434 	{ 0 }
1435 };
1436 
1437 /**
1438  * ice_write_rxq_ctx
1439  * @hw: pointer to the hardware structure
1440  * @rlan_ctx: pointer to the rxq context
1441  * @rxq_index: the index of the Rx queue
1442  *
1443  * Converts rxq context from sparse to dense structure and then writes
1444  * it to HW register space and enables the hardware to prefetch descriptors
1445  * instead of only fetching them on demand
1446  */
1447 int
1448 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1449 		  u32 rxq_index)
1450 {
1451 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1452 
1453 	if (!rlan_ctx)
1454 		return -EINVAL;
1455 
1456 	rlan_ctx->prefena = 1;
1457 
1458 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1459 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1460 }
1461 
1462 /* LAN Tx Queue Context */
1463 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1464 				    /* Field			Width	LSB */
1465 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1466 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1467 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1468 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1469 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1470 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1471 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1472 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1473 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1474 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1475 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1476 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1477 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1478 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1479 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1480 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1481 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1482 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1483 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1484 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1485 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1486 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1487 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1488 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1489 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1490 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1491 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1492 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1493 	{ 0 }
1494 };
1495 
1496 /* Sideband Queue command wrappers */
1497 
1498 /**
1499  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1500  * @hw: pointer to the HW struct
1501  * @desc: descriptor describing the command
1502  * @buf: buffer to use for indirect commands (NULL for direct commands)
1503  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1504  * @cd: pointer to command details structure
1505  */
1506 static int
1507 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1508 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1509 {
1510 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1511 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1512 }
1513 
1514 /**
1515  * ice_sbq_rw_reg - Fill Sideband Queue command
1516  * @hw: pointer to the HW struct
1517  * @in: message info to be filled in descriptor
1518  */
1519 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1520 {
1521 	struct ice_sbq_cmd_desc desc = {0};
1522 	struct ice_sbq_msg_req msg = {0};
1523 	u16 msg_len;
1524 	int status;
1525 
1526 	msg_len = sizeof(msg);
1527 
1528 	msg.dest_dev = in->dest_dev;
1529 	msg.opcode = in->opcode;
1530 	msg.flags = ICE_SBQ_MSG_FLAGS;
1531 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1532 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1533 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1534 
1535 	if (in->opcode)
1536 		msg.data = cpu_to_le32(in->data);
1537 	else
1538 		/* data read comes back in completion, so shorten the struct by
1539 		 * sizeof(msg.data)
1540 		 */
1541 		msg_len -= sizeof(msg.data);
1542 
1543 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1544 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1545 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1546 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1547 	if (!status && !in->opcode)
1548 		in->data = le32_to_cpu
1549 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1550 	return status;
1551 }
1552 
1553 /* FW Admin Queue command wrappers */
1554 
1555 /* Software lock/mutex that is meant to be held while the Global Config Lock
1556  * in firmware is acquired by the software to prevent most (but not all) types
1557  * of AQ commands from being sent to FW
1558  */
1559 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1560 
1561 /**
1562  * ice_should_retry_sq_send_cmd
1563  * @opcode: AQ opcode
1564  *
1565  * Decide if we should retry the send command routine for the ATQ, depending
1566  * on the opcode.
1567  */
1568 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1569 {
1570 	switch (opcode) {
1571 	case ice_aqc_opc_get_link_topo:
1572 	case ice_aqc_opc_lldp_stop:
1573 	case ice_aqc_opc_lldp_start:
1574 	case ice_aqc_opc_lldp_filter_ctrl:
1575 		return true;
1576 	}
1577 
1578 	return false;
1579 }
1580 
1581 /**
1582  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1583  * @hw: pointer to the HW struct
1584  * @cq: pointer to the specific Control queue
1585  * @desc: prefilled descriptor describing the command
1586  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1587  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1588  * @cd: pointer to command details structure
1589  *
1590  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1591  * Queue if the EBUSY AQ error is returned.
1592  */
1593 static int
1594 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1595 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1596 		      struct ice_sq_cd *cd)
1597 {
1598 	struct ice_aq_desc desc_cpy;
1599 	bool is_cmd_for_retry;
1600 	u8 *buf_cpy = NULL;
1601 	u8 idx = 0;
1602 	u16 opcode;
1603 	int status;
1604 
1605 	opcode = le16_to_cpu(desc->opcode);
1606 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1607 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1608 
1609 	if (is_cmd_for_retry) {
1610 		if (buf) {
1611 			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1612 			if (!buf_cpy)
1613 				return -ENOMEM;
1614 		}
1615 
1616 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1617 	}
1618 
1619 	do {
1620 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1621 
1622 		if (!is_cmd_for_retry || !status ||
1623 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1624 			break;
1625 
1626 		if (buf_cpy)
1627 			memcpy(buf, buf_cpy, buf_size);
1628 
1629 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1630 
1631 		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1632 
1633 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1634 
1635 	kfree(buf_cpy);
1636 
1637 	return status;
1638 }
1639 
1640 /**
1641  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1642  * @hw: pointer to the HW struct
1643  * @desc: descriptor describing the command
1644  * @buf: buffer to use for indirect commands (NULL for direct commands)
1645  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1646  * @cd: pointer to command details structure
1647  *
1648  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1649  */
1650 int
1651 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1652 		u16 buf_size, struct ice_sq_cd *cd)
1653 {
1654 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1655 	bool lock_acquired = false;
1656 	int status;
1657 
1658 	/* When a package download is in process (i.e. when the firmware's
1659 	 * Global Configuration Lock resource is held), only the Download
1660 	 * Package, Get Version, Get Package Info List, Upload Section,
1661 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1662 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1663 	 * Recipes to Profile Association, and Release Resource (with resource
1664 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1665 	 * must block until the package download completes and the Global Config
1666 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1667 	 */
1668 	switch (le16_to_cpu(desc->opcode)) {
1669 	case ice_aqc_opc_download_pkg:
1670 	case ice_aqc_opc_get_pkg_info_list:
1671 	case ice_aqc_opc_get_ver:
1672 	case ice_aqc_opc_upload_section:
1673 	case ice_aqc_opc_update_pkg:
1674 	case ice_aqc_opc_set_port_params:
1675 	case ice_aqc_opc_get_vlan_mode_parameters:
1676 	case ice_aqc_opc_set_vlan_mode_parameters:
1677 	case ice_aqc_opc_add_recipe:
1678 	case ice_aqc_opc_recipe_to_profile:
1679 	case ice_aqc_opc_get_recipe:
1680 	case ice_aqc_opc_get_recipe_to_profile:
1681 		break;
1682 	case ice_aqc_opc_release_res:
1683 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1684 			break;
1685 		fallthrough;
1686 	default:
1687 		mutex_lock(&ice_global_cfg_lock_sw);
1688 		lock_acquired = true;
1689 		break;
1690 	}
1691 
1692 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1693 	if (lock_acquired)
1694 		mutex_unlock(&ice_global_cfg_lock_sw);
1695 
1696 	return status;
1697 }
1698 
1699 /**
1700  * ice_aq_get_fw_ver
1701  * @hw: pointer to the HW struct
1702  * @cd: pointer to command details structure or NULL
1703  *
1704  * Get the firmware version (0x0001) from the admin queue commands
1705  */
1706 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1707 {
1708 	struct ice_aqc_get_ver *resp;
1709 	struct ice_aq_desc desc;
1710 	int status;
1711 
1712 	resp = &desc.params.get_ver;
1713 
1714 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1715 
1716 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1717 
1718 	if (!status) {
1719 		hw->fw_branch = resp->fw_branch;
1720 		hw->fw_maj_ver = resp->fw_major;
1721 		hw->fw_min_ver = resp->fw_minor;
1722 		hw->fw_patch = resp->fw_patch;
1723 		hw->fw_build = le32_to_cpu(resp->fw_build);
1724 		hw->api_branch = resp->api_branch;
1725 		hw->api_maj_ver = resp->api_major;
1726 		hw->api_min_ver = resp->api_minor;
1727 		hw->api_patch = resp->api_patch;
1728 	}
1729 
1730 	return status;
1731 }
1732 
1733 /**
1734  * ice_aq_send_driver_ver
1735  * @hw: pointer to the HW struct
1736  * @dv: driver's major, minor version
1737  * @cd: pointer to command details structure or NULL
1738  *
1739  * Send the driver version (0x0002) to the firmware
1740  */
1741 int
1742 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1743 		       struct ice_sq_cd *cd)
1744 {
1745 	struct ice_aqc_driver_ver *cmd;
1746 	struct ice_aq_desc desc;
1747 	u16 len;
1748 
1749 	cmd = &desc.params.driver_ver;
1750 
1751 	if (!dv)
1752 		return -EINVAL;
1753 
1754 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1755 
1756 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1757 	cmd->major_ver = dv->major_ver;
1758 	cmd->minor_ver = dv->minor_ver;
1759 	cmd->build_ver = dv->build_ver;
1760 	cmd->subbuild_ver = dv->subbuild_ver;
1761 
1762 	len = 0;
1763 	while (len < sizeof(dv->driver_string) &&
1764 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1765 		len++;
1766 
1767 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1768 }
1769 
1770 /**
1771  * ice_aq_q_shutdown
1772  * @hw: pointer to the HW struct
1773  * @unloading: is the driver unloading itself
1774  *
1775  * Tell the Firmware that we're shutting down the AdminQ and whether
1776  * or not the driver is unloading as well (0x0003).
1777  */
1778 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1779 {
1780 	struct ice_aqc_q_shutdown *cmd;
1781 	struct ice_aq_desc desc;
1782 
1783 	cmd = &desc.params.q_shutdown;
1784 
1785 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1786 
1787 	if (unloading)
1788 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1789 
1790 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1791 }
1792 
1793 /**
1794  * ice_aq_req_res
1795  * @hw: pointer to the HW struct
1796  * @res: resource ID
1797  * @access: access type
1798  * @sdp_number: resource number
1799  * @timeout: the maximum time in ms that the driver may hold the resource
1800  * @cd: pointer to command details structure or NULL
1801  *
1802  * Requests common resource using the admin queue commands (0x0008).
1803  * When attempting to acquire the Global Config Lock, the driver can
1804  * learn of three states:
1805  *  1) 0 -         acquired lock, and can perform download package
1806  *  2) -EIO -      did not get lock, driver should fail to load
1807  *  3) -EALREADY - did not get lock, but another driver has
1808  *                 successfully downloaded the package; the driver does
1809  *                 not have to download the package and can continue
1810  *                 loading
1811  *
1812  * Note that if the caller is in an acquire lock, perform action, release lock
1813  * phase of operation, it is possible that the FW may detect a timeout and issue
1814  * a CORER. In this case, the driver will receive a CORER interrupt and will
1815  * have to determine its cause. The calling thread that is handling this flow
1816  * will likely get an error propagated back to it indicating the Download
1817  * Package, Update Package or the Release Resource AQ commands timed out.
1818  */
1819 static int
1820 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1821 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1822 	       struct ice_sq_cd *cd)
1823 {
1824 	struct ice_aqc_req_res *cmd_resp;
1825 	struct ice_aq_desc desc;
1826 	int status;
1827 
1828 	cmd_resp = &desc.params.res_owner;
1829 
1830 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1831 
1832 	cmd_resp->res_id = cpu_to_le16(res);
1833 	cmd_resp->access_type = cpu_to_le16(access);
1834 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1835 	cmd_resp->timeout = cpu_to_le32(*timeout);
1836 	*timeout = 0;
1837 
1838 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1839 
1840 	/* The completion specifies the maximum time in ms that the driver
1841 	 * may hold the resource in the Timeout field.
1842 	 */
1843 
1844 	/* Global config lock response utilizes an additional status field.
1845 	 *
1846 	 * If the Global config lock resource is held by some other driver, the
1847 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1848 	 * and the timeout field indicates the maximum time the current owner
1849 	 * of the resource has to free it.
1850 	 */
1851 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1852 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1853 			*timeout = le32_to_cpu(cmd_resp->timeout);
1854 			return 0;
1855 		} else if (le16_to_cpu(cmd_resp->status) ==
1856 			   ICE_AQ_RES_GLBL_IN_PROG) {
1857 			*timeout = le32_to_cpu(cmd_resp->timeout);
1858 			return -EIO;
1859 		} else if (le16_to_cpu(cmd_resp->status) ==
1860 			   ICE_AQ_RES_GLBL_DONE) {
1861 			return -EALREADY;
1862 		}
1863 
1864 		/* invalid FW response, force a timeout immediately */
1865 		*timeout = 0;
1866 		return -EIO;
1867 	}
1868 
1869 	/* If the resource is held by some other driver, the command completes
1870 	 * with a busy return value and the timeout field indicates the maximum
1871 	 * time the current owner of the resource has to free it.
1872 	 */
1873 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1874 		*timeout = le32_to_cpu(cmd_resp->timeout);
1875 
1876 	return status;
1877 }
1878 
1879 /**
1880  * ice_aq_release_res
1881  * @hw: pointer to the HW struct
1882  * @res: resource ID
1883  * @sdp_number: resource number
1884  * @cd: pointer to command details structure or NULL
1885  *
1886  * release common resource using the admin queue commands (0x0009)
1887  */
1888 static int
1889 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1890 		   struct ice_sq_cd *cd)
1891 {
1892 	struct ice_aqc_req_res *cmd;
1893 	struct ice_aq_desc desc;
1894 
1895 	cmd = &desc.params.res_owner;
1896 
1897 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1898 
1899 	cmd->res_id = cpu_to_le16(res);
1900 	cmd->res_number = cpu_to_le32(sdp_number);
1901 
1902 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1903 }
1904 
1905 /**
1906  * ice_acquire_res
1907  * @hw: pointer to the HW structure
1908  * @res: resource ID
1909  * @access: access type (read or write)
1910  * @timeout: timeout in milliseconds
1911  *
1912  * This function will attempt to acquire the ownership of a resource.
1913  */
1914 int
1915 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1916 		enum ice_aq_res_access_type access, u32 timeout)
1917 {
1918 #define ICE_RES_POLLING_DELAY_MS	10
1919 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1920 	u32 time_left = timeout;
1921 	int status;
1922 
1923 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1924 
1925 	/* A return code of -EALREADY means that another driver has
1926 	 * previously acquired the resource and performed any necessary updates;
1927 	 * in this case the caller does not obtain the resource and has no
1928 	 * further work to do.
1929 	 */
1930 	if (status == -EALREADY)
1931 		goto ice_acquire_res_exit;
1932 
1933 	if (status)
1934 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1935 
1936 	/* If necessary, poll until the current lock owner timeouts */
1937 	timeout = time_left;
1938 	while (status && timeout && time_left) {
1939 		mdelay(delay);
1940 		timeout = (timeout > delay) ? timeout - delay : 0;
1941 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1942 
1943 		if (status == -EALREADY)
1944 			/* lock free, but no work to do */
1945 			break;
1946 
1947 		if (!status)
1948 			/* lock acquired */
1949 			break;
1950 	}
1951 	if (status && status != -EALREADY)
1952 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1953 
1954 ice_acquire_res_exit:
1955 	if (status == -EALREADY) {
1956 		if (access == ICE_RES_WRITE)
1957 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1958 		else
1959 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1960 	}
1961 	return status;
1962 }
1963 
1964 /**
1965  * ice_release_res
1966  * @hw: pointer to the HW structure
1967  * @res: resource ID
1968  *
1969  * This function will release a resource using the proper Admin Command.
1970  */
1971 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1972 {
1973 	u32 total_delay = 0;
1974 	int status;
1975 
1976 	status = ice_aq_release_res(hw, res, 0, NULL);
1977 
1978 	/* there are some rare cases when trying to release the resource
1979 	 * results in an admin queue timeout, so handle them correctly
1980 	 */
1981 	while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1982 		mdelay(1);
1983 		status = ice_aq_release_res(hw, res, 0, NULL);
1984 		total_delay++;
1985 	}
1986 }
1987 
1988 /**
1989  * ice_aq_alloc_free_res - command to allocate/free resources
1990  * @hw: pointer to the HW struct
1991  * @num_entries: number of resource entries in buffer
1992  * @buf: Indirect buffer to hold data parameters and response
1993  * @buf_size: size of buffer for indirect commands
1994  * @opc: pass in the command opcode
1995  * @cd: pointer to command details structure or NULL
1996  *
1997  * Helper function to allocate/free resources using the admin queue commands
1998  */
1999 int
2000 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2001 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2002 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2003 {
2004 	struct ice_aqc_alloc_free_res_cmd *cmd;
2005 	struct ice_aq_desc desc;
2006 
2007 	cmd = &desc.params.sw_res_ctrl;
2008 
2009 	if (!buf)
2010 		return -EINVAL;
2011 
2012 	if (buf_size < flex_array_size(buf, elem, num_entries))
2013 		return -EINVAL;
2014 
2015 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2016 
2017 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2018 
2019 	cmd->num_entries = cpu_to_le16(num_entries);
2020 
2021 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2022 }
2023 
2024 /**
2025  * ice_alloc_hw_res - allocate resource
2026  * @hw: pointer to the HW struct
2027  * @type: type of resource
2028  * @num: number of resources to allocate
2029  * @btm: allocate from bottom
2030  * @res: pointer to array that will receive the resources
2031  */
2032 int
2033 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2034 {
2035 	struct ice_aqc_alloc_free_res_elem *buf;
2036 	u16 buf_len;
2037 	int status;
2038 
2039 	buf_len = struct_size(buf, elem, num);
2040 	buf = kzalloc(buf_len, GFP_KERNEL);
2041 	if (!buf)
2042 		return -ENOMEM;
2043 
2044 	/* Prepare buffer to allocate resource. */
2045 	buf->num_elems = cpu_to_le16(num);
2046 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2047 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2048 	if (btm)
2049 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2050 
2051 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2052 				       ice_aqc_opc_alloc_res, NULL);
2053 	if (status)
2054 		goto ice_alloc_res_exit;
2055 
2056 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2057 
2058 ice_alloc_res_exit:
2059 	kfree(buf);
2060 	return status;
2061 }
2062 
2063 /**
2064  * ice_free_hw_res - free allocated HW resource
2065  * @hw: pointer to the HW struct
2066  * @type: type of resource to free
2067  * @num: number of resources
2068  * @res: pointer to array that contains the resources to free
2069  */
2070 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2071 {
2072 	struct ice_aqc_alloc_free_res_elem *buf;
2073 	u16 buf_len;
2074 	int status;
2075 
2076 	buf_len = struct_size(buf, elem, num);
2077 	buf = kzalloc(buf_len, GFP_KERNEL);
2078 	if (!buf)
2079 		return -ENOMEM;
2080 
2081 	/* Prepare buffer to free resource. */
2082 	buf->num_elems = cpu_to_le16(num);
2083 	buf->res_type = cpu_to_le16(type);
2084 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2085 
2086 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2087 				       ice_aqc_opc_free_res, NULL);
2088 	if (status)
2089 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2090 
2091 	kfree(buf);
2092 	return status;
2093 }
2094 
2095 /**
2096  * ice_get_num_per_func - determine number of resources per PF
2097  * @hw: pointer to the HW structure
2098  * @max: value to be evenly split between each PF
2099  *
2100  * Determine the number of valid functions by going through the bitmap returned
2101  * from parsing capabilities and use this to calculate the number of resources
2102  * per PF based on the max value passed in.
2103  */
2104 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2105 {
2106 	u8 funcs;
2107 
2108 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2109 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2110 			 ICE_CAPS_VALID_FUNCS_M);
2111 
2112 	if (!funcs)
2113 		return 0;
2114 
2115 	return max / funcs;
2116 }
2117 
2118 /**
2119  * ice_parse_common_caps - parse common device/function capabilities
2120  * @hw: pointer to the HW struct
2121  * @caps: pointer to common capabilities structure
2122  * @elem: the capability element to parse
2123  * @prefix: message prefix for tracing capabilities
2124  *
2125  * Given a capability element, extract relevant details into the common
2126  * capability structure.
2127  *
2128  * Returns: true if the capability matches one of the common capability ids,
2129  * false otherwise.
2130  */
2131 static bool
2132 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2133 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2134 {
2135 	u32 logical_id = le32_to_cpu(elem->logical_id);
2136 	u32 phys_id = le32_to_cpu(elem->phys_id);
2137 	u32 number = le32_to_cpu(elem->number);
2138 	u16 cap = le16_to_cpu(elem->cap);
2139 	bool found = true;
2140 
2141 	switch (cap) {
2142 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2143 		caps->valid_functions = number;
2144 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2145 			  caps->valid_functions);
2146 		break;
2147 	case ICE_AQC_CAPS_SRIOV:
2148 		caps->sr_iov_1_1 = (number == 1);
2149 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2150 			  caps->sr_iov_1_1);
2151 		break;
2152 	case ICE_AQC_CAPS_DCB:
2153 		caps->dcb = (number == 1);
2154 		caps->active_tc_bitmap = logical_id;
2155 		caps->maxtc = phys_id;
2156 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2157 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2158 			  caps->active_tc_bitmap);
2159 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2160 		break;
2161 	case ICE_AQC_CAPS_RSS:
2162 		caps->rss_table_size = number;
2163 		caps->rss_table_entry_width = logical_id;
2164 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2165 			  caps->rss_table_size);
2166 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2167 			  caps->rss_table_entry_width);
2168 		break;
2169 	case ICE_AQC_CAPS_RXQS:
2170 		caps->num_rxq = number;
2171 		caps->rxq_first_id = phys_id;
2172 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2173 			  caps->num_rxq);
2174 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2175 			  caps->rxq_first_id);
2176 		break;
2177 	case ICE_AQC_CAPS_TXQS:
2178 		caps->num_txq = number;
2179 		caps->txq_first_id = phys_id;
2180 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2181 			  caps->num_txq);
2182 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2183 			  caps->txq_first_id);
2184 		break;
2185 	case ICE_AQC_CAPS_MSIX:
2186 		caps->num_msix_vectors = number;
2187 		caps->msix_vector_first_id = phys_id;
2188 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2189 			  caps->num_msix_vectors);
2190 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2191 			  caps->msix_vector_first_id);
2192 		break;
2193 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2194 		caps->nvm_update_pending_nvm = true;
2195 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2196 		break;
2197 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2198 		caps->nvm_update_pending_orom = true;
2199 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2200 		break;
2201 	case ICE_AQC_CAPS_PENDING_NET_VER:
2202 		caps->nvm_update_pending_netlist = true;
2203 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2204 		break;
2205 	case ICE_AQC_CAPS_NVM_MGMT:
2206 		caps->nvm_unified_update =
2207 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2208 			true : false;
2209 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2210 			  caps->nvm_unified_update);
2211 		break;
2212 	case ICE_AQC_CAPS_RDMA:
2213 		caps->rdma = (number == 1);
2214 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2215 		break;
2216 	case ICE_AQC_CAPS_MAX_MTU:
2217 		caps->max_mtu = number;
2218 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2219 			  prefix, caps->max_mtu);
2220 		break;
2221 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2222 		caps->pcie_reset_avoidance = (number > 0);
2223 		ice_debug(hw, ICE_DBG_INIT,
2224 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2225 			  caps->pcie_reset_avoidance);
2226 		break;
2227 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2228 		caps->reset_restrict_support = (number == 1);
2229 		ice_debug(hw, ICE_DBG_INIT,
2230 			  "%s: reset_restrict_support = %d\n", prefix,
2231 			  caps->reset_restrict_support);
2232 		break;
2233 	default:
2234 		/* Not one of the recognized common capabilities */
2235 		found = false;
2236 	}
2237 
2238 	return found;
2239 }
2240 
2241 /**
2242  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2243  * @hw: pointer to the HW structure
2244  * @caps: pointer to capabilities structure to fix
2245  *
2246  * Re-calculate the capabilities that are dependent on the number of physical
2247  * ports; i.e. some features are not supported or function differently on
2248  * devices with more than 4 ports.
2249  */
2250 static void
2251 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2252 {
2253 	/* This assumes device capabilities are always scanned before function
2254 	 * capabilities during the initialization flow.
2255 	 */
2256 	if (hw->dev_caps.num_funcs > 4) {
2257 		/* Max 4 TCs per port */
2258 		caps->maxtc = 4;
2259 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2260 			  caps->maxtc);
2261 		if (caps->rdma) {
2262 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2263 			caps->rdma = 0;
2264 		}
2265 
2266 		/* print message only when processing device capabilities
2267 		 * during initialization.
2268 		 */
2269 		if (caps == &hw->dev_caps.common_cap)
2270 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2271 	}
2272 }
2273 
2274 /**
2275  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2276  * @hw: pointer to the HW struct
2277  * @func_p: pointer to function capabilities structure
2278  * @cap: pointer to the capability element to parse
2279  *
2280  * Extract function capabilities for ICE_AQC_CAPS_VF.
2281  */
2282 static void
2283 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2284 		       struct ice_aqc_list_caps_elem *cap)
2285 {
2286 	u32 logical_id = le32_to_cpu(cap->logical_id);
2287 	u32 number = le32_to_cpu(cap->number);
2288 
2289 	func_p->num_allocd_vfs = number;
2290 	func_p->vf_base_id = logical_id;
2291 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2292 		  func_p->num_allocd_vfs);
2293 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2294 		  func_p->vf_base_id);
2295 }
2296 
2297 /**
2298  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2299  * @hw: pointer to the HW struct
2300  * @func_p: pointer to function capabilities structure
2301  * @cap: pointer to the capability element to parse
2302  *
2303  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2304  */
2305 static void
2306 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2307 			struct ice_aqc_list_caps_elem *cap)
2308 {
2309 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2310 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2311 		  le32_to_cpu(cap->number));
2312 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2313 		  func_p->guar_num_vsi);
2314 }
2315 
2316 /**
2317  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2318  * @hw: pointer to the HW struct
2319  * @func_p: pointer to function capabilities structure
2320  * @cap: pointer to the capability element to parse
2321  *
2322  * Extract function capabilities for ICE_AQC_CAPS_1588.
2323  */
2324 static void
2325 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2326 			 struct ice_aqc_list_caps_elem *cap)
2327 {
2328 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2329 	u32 number = le32_to_cpu(cap->number);
2330 
2331 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2332 	func_p->common_cap.ieee_1588 = info->ena;
2333 
2334 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2335 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2336 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2337 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2338 
2339 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2340 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2341 
2342 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2343 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2344 	} else {
2345 		/* Unknown clock frequency, so assume a (probably incorrect)
2346 		 * default to avoid out-of-bounds look ups of frequency
2347 		 * related information.
2348 		 */
2349 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2350 			  info->clk_freq);
2351 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2352 	}
2353 
2354 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2355 		  func_p->common_cap.ieee_1588);
2356 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2357 		  info->src_tmr_owned);
2358 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2359 		  info->tmr_ena);
2360 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2361 		  info->tmr_index_owned);
2362 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2363 		  info->tmr_index_assoc);
2364 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2365 		  info->clk_freq);
2366 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2367 		  info->clk_src);
2368 }
2369 
2370 /**
2371  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2372  * @hw: pointer to the HW struct
2373  * @func_p: pointer to function capabilities structure
2374  *
2375  * Extract function capabilities for ICE_AQC_CAPS_FD.
2376  */
2377 static void
2378 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2379 {
2380 	u32 reg_val, val;
2381 
2382 	reg_val = rd32(hw, GLQF_FD_SIZE);
2383 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2384 		GLQF_FD_SIZE_FD_GSIZE_S;
2385 	func_p->fd_fltr_guar =
2386 		ice_get_num_per_func(hw, val);
2387 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2388 		GLQF_FD_SIZE_FD_BSIZE_S;
2389 	func_p->fd_fltr_best_effort = val;
2390 
2391 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2392 		  func_p->fd_fltr_guar);
2393 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2394 		  func_p->fd_fltr_best_effort);
2395 }
2396 
2397 /**
2398  * ice_parse_func_caps - Parse function capabilities
2399  * @hw: pointer to the HW struct
2400  * @func_p: pointer to function capabilities structure
2401  * @buf: buffer containing the function capability records
2402  * @cap_count: the number of capabilities
2403  *
2404  * Helper function to parse function (0x000A) capabilities list. For
2405  * capabilities shared between device and function, this relies on
2406  * ice_parse_common_caps.
2407  *
2408  * Loop through the list of provided capabilities and extract the relevant
2409  * data into the function capabilities structured.
2410  */
2411 static void
2412 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2413 		    void *buf, u32 cap_count)
2414 {
2415 	struct ice_aqc_list_caps_elem *cap_resp;
2416 	u32 i;
2417 
2418 	cap_resp = buf;
2419 
2420 	memset(func_p, 0, sizeof(*func_p));
2421 
2422 	for (i = 0; i < cap_count; i++) {
2423 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2424 		bool found;
2425 
2426 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2427 					      &cap_resp[i], "func caps");
2428 
2429 		switch (cap) {
2430 		case ICE_AQC_CAPS_VF:
2431 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2432 			break;
2433 		case ICE_AQC_CAPS_VSI:
2434 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2435 			break;
2436 		case ICE_AQC_CAPS_1588:
2437 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2438 			break;
2439 		case ICE_AQC_CAPS_FD:
2440 			ice_parse_fdir_func_caps(hw, func_p);
2441 			break;
2442 		default:
2443 			/* Don't list common capabilities as unknown */
2444 			if (!found)
2445 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2446 					  i, cap);
2447 			break;
2448 		}
2449 	}
2450 
2451 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2452 }
2453 
2454 /**
2455  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2456  * @hw: pointer to the HW struct
2457  * @dev_p: pointer to device capabilities structure
2458  * @cap: capability element to parse
2459  *
2460  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2461  */
2462 static void
2463 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2464 			      struct ice_aqc_list_caps_elem *cap)
2465 {
2466 	u32 number = le32_to_cpu(cap->number);
2467 
2468 	dev_p->num_funcs = hweight32(number);
2469 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2470 		  dev_p->num_funcs);
2471 }
2472 
2473 /**
2474  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2475  * @hw: pointer to the HW struct
2476  * @dev_p: pointer to device capabilities structure
2477  * @cap: capability element to parse
2478  *
2479  * Parse ICE_AQC_CAPS_VF for device capabilities.
2480  */
2481 static void
2482 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2483 		      struct ice_aqc_list_caps_elem *cap)
2484 {
2485 	u32 number = le32_to_cpu(cap->number);
2486 
2487 	dev_p->num_vfs_exposed = number;
2488 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2489 		  dev_p->num_vfs_exposed);
2490 }
2491 
2492 /**
2493  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2494  * @hw: pointer to the HW struct
2495  * @dev_p: pointer to device capabilities structure
2496  * @cap: capability element to parse
2497  *
2498  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2499  */
2500 static void
2501 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2502 		       struct ice_aqc_list_caps_elem *cap)
2503 {
2504 	u32 number = le32_to_cpu(cap->number);
2505 
2506 	dev_p->num_vsi_allocd_to_host = number;
2507 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2508 		  dev_p->num_vsi_allocd_to_host);
2509 }
2510 
2511 /**
2512  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2513  * @hw: pointer to the HW struct
2514  * @dev_p: pointer to device capabilities structure
2515  * @cap: capability element to parse
2516  *
2517  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2518  */
2519 static void
2520 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2521 			struct ice_aqc_list_caps_elem *cap)
2522 {
2523 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2524 	u32 logical_id = le32_to_cpu(cap->logical_id);
2525 	u32 phys_id = le32_to_cpu(cap->phys_id);
2526 	u32 number = le32_to_cpu(cap->number);
2527 
2528 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2529 	dev_p->common_cap.ieee_1588 = info->ena;
2530 
2531 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2532 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2533 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2534 
2535 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2536 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2537 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2538 
2539 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2540 
2541 	info->ena_ports = logical_id;
2542 	info->tmr_own_map = phys_id;
2543 
2544 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2545 		  dev_p->common_cap.ieee_1588);
2546 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2547 		  info->tmr0_owner);
2548 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2549 		  info->tmr0_owned);
2550 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2551 		  info->tmr0_ena);
2552 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2553 		  info->tmr1_owner);
2554 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2555 		  info->tmr1_owned);
2556 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2557 		  info->tmr1_ena);
2558 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2559 		  info->ts_ll_read);
2560 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2561 		  info->ena_ports);
2562 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2563 		  info->tmr_own_map);
2564 }
2565 
2566 /**
2567  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2568  * @hw: pointer to the HW struct
2569  * @dev_p: pointer to device capabilities structure
2570  * @cap: capability element to parse
2571  *
2572  * Parse ICE_AQC_CAPS_FD for device capabilities.
2573  */
2574 static void
2575 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2576 			struct ice_aqc_list_caps_elem *cap)
2577 {
2578 	u32 number = le32_to_cpu(cap->number);
2579 
2580 	dev_p->num_flow_director_fltr = number;
2581 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2582 		  dev_p->num_flow_director_fltr);
2583 }
2584 
2585 /**
2586  * ice_parse_dev_caps - Parse device capabilities
2587  * @hw: pointer to the HW struct
2588  * @dev_p: pointer to device capabilities structure
2589  * @buf: buffer containing the device capability records
2590  * @cap_count: the number of capabilities
2591  *
2592  * Helper device to parse device (0x000B) capabilities list. For
2593  * capabilities shared between device and function, this relies on
2594  * ice_parse_common_caps.
2595  *
2596  * Loop through the list of provided capabilities and extract the relevant
2597  * data into the device capabilities structured.
2598  */
2599 static void
2600 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2601 		   void *buf, u32 cap_count)
2602 {
2603 	struct ice_aqc_list_caps_elem *cap_resp;
2604 	u32 i;
2605 
2606 	cap_resp = buf;
2607 
2608 	memset(dev_p, 0, sizeof(*dev_p));
2609 
2610 	for (i = 0; i < cap_count; i++) {
2611 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2612 		bool found;
2613 
2614 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2615 					      &cap_resp[i], "dev caps");
2616 
2617 		switch (cap) {
2618 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2619 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2620 			break;
2621 		case ICE_AQC_CAPS_VF:
2622 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2623 			break;
2624 		case ICE_AQC_CAPS_VSI:
2625 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2626 			break;
2627 		case ICE_AQC_CAPS_1588:
2628 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2629 			break;
2630 		case  ICE_AQC_CAPS_FD:
2631 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2632 			break;
2633 		default:
2634 			/* Don't list common capabilities as unknown */
2635 			if (!found)
2636 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2637 					  i, cap);
2638 			break;
2639 		}
2640 	}
2641 
2642 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2643 }
2644 
2645 /**
2646  * ice_aq_list_caps - query function/device capabilities
2647  * @hw: pointer to the HW struct
2648  * @buf: a buffer to hold the capabilities
2649  * @buf_size: size of the buffer
2650  * @cap_count: if not NULL, set to the number of capabilities reported
2651  * @opc: capabilities type to discover, device or function
2652  * @cd: pointer to command details structure or NULL
2653  *
2654  * Get the function (0x000A) or device (0x000B) capabilities description from
2655  * firmware and store it in the buffer.
2656  *
2657  * If the cap_count pointer is not NULL, then it is set to the number of
2658  * capabilities firmware will report. Note that if the buffer size is too
2659  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2660  * cap_count will still be updated in this case. It is recommended that the
2661  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2662  * firmware could return) to avoid this.
2663  */
2664 int
2665 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2666 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2667 {
2668 	struct ice_aqc_list_caps *cmd;
2669 	struct ice_aq_desc desc;
2670 	int status;
2671 
2672 	cmd = &desc.params.get_cap;
2673 
2674 	if (opc != ice_aqc_opc_list_func_caps &&
2675 	    opc != ice_aqc_opc_list_dev_caps)
2676 		return -EINVAL;
2677 
2678 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2679 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2680 
2681 	if (cap_count)
2682 		*cap_count = le32_to_cpu(cmd->count);
2683 
2684 	return status;
2685 }
2686 
2687 /**
2688  * ice_discover_dev_caps - Read and extract device capabilities
2689  * @hw: pointer to the hardware structure
2690  * @dev_caps: pointer to device capabilities structure
2691  *
2692  * Read the device capabilities and extract them into the dev_caps structure
2693  * for later use.
2694  */
2695 int
2696 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2697 {
2698 	u32 cap_count = 0;
2699 	void *cbuf;
2700 	int status;
2701 
2702 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2703 	if (!cbuf)
2704 		return -ENOMEM;
2705 
2706 	/* Although the driver doesn't know the number of capabilities the
2707 	 * device will return, we can simply send a 4KB buffer, the maximum
2708 	 * possible size that firmware can return.
2709 	 */
2710 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2711 
2712 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2713 				  ice_aqc_opc_list_dev_caps, NULL);
2714 	if (!status)
2715 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2716 	kfree(cbuf);
2717 
2718 	return status;
2719 }
2720 
2721 /**
2722  * ice_discover_func_caps - Read and extract function capabilities
2723  * @hw: pointer to the hardware structure
2724  * @func_caps: pointer to function capabilities structure
2725  *
2726  * Read the function capabilities and extract them into the func_caps structure
2727  * for later use.
2728  */
2729 static int
2730 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2731 {
2732 	u32 cap_count = 0;
2733 	void *cbuf;
2734 	int status;
2735 
2736 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2737 	if (!cbuf)
2738 		return -ENOMEM;
2739 
2740 	/* Although the driver doesn't know the number of capabilities the
2741 	 * device will return, we can simply send a 4KB buffer, the maximum
2742 	 * possible size that firmware can return.
2743 	 */
2744 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2745 
2746 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2747 				  ice_aqc_opc_list_func_caps, NULL);
2748 	if (!status)
2749 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2750 	kfree(cbuf);
2751 
2752 	return status;
2753 }
2754 
2755 /**
2756  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2757  * @hw: pointer to the hardware structure
2758  */
2759 void ice_set_safe_mode_caps(struct ice_hw *hw)
2760 {
2761 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2762 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2763 	struct ice_hw_common_caps cached_caps;
2764 	u32 num_funcs;
2765 
2766 	/* cache some func_caps values that should be restored after memset */
2767 	cached_caps = func_caps->common_cap;
2768 
2769 	/* unset func capabilities */
2770 	memset(func_caps, 0, sizeof(*func_caps));
2771 
2772 #define ICE_RESTORE_FUNC_CAP(name) \
2773 	func_caps->common_cap.name = cached_caps.name
2774 
2775 	/* restore cached values */
2776 	ICE_RESTORE_FUNC_CAP(valid_functions);
2777 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2778 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2779 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2780 	ICE_RESTORE_FUNC_CAP(max_mtu);
2781 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2782 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2783 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2784 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2785 
2786 	/* one Tx and one Rx queue in safe mode */
2787 	func_caps->common_cap.num_rxq = 1;
2788 	func_caps->common_cap.num_txq = 1;
2789 
2790 	/* two MSIX vectors, one for traffic and one for misc causes */
2791 	func_caps->common_cap.num_msix_vectors = 2;
2792 	func_caps->guar_num_vsi = 1;
2793 
2794 	/* cache some dev_caps values that should be restored after memset */
2795 	cached_caps = dev_caps->common_cap;
2796 	num_funcs = dev_caps->num_funcs;
2797 
2798 	/* unset dev capabilities */
2799 	memset(dev_caps, 0, sizeof(*dev_caps));
2800 
2801 #define ICE_RESTORE_DEV_CAP(name) \
2802 	dev_caps->common_cap.name = cached_caps.name
2803 
2804 	/* restore cached values */
2805 	ICE_RESTORE_DEV_CAP(valid_functions);
2806 	ICE_RESTORE_DEV_CAP(txq_first_id);
2807 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2808 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2809 	ICE_RESTORE_DEV_CAP(max_mtu);
2810 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2811 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2812 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2813 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2814 	dev_caps->num_funcs = num_funcs;
2815 
2816 	/* one Tx and one Rx queue per function in safe mode */
2817 	dev_caps->common_cap.num_rxq = num_funcs;
2818 	dev_caps->common_cap.num_txq = num_funcs;
2819 
2820 	/* two MSIX vectors per function */
2821 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2822 }
2823 
2824 /**
2825  * ice_get_caps - get info about the HW
2826  * @hw: pointer to the hardware structure
2827  */
2828 int ice_get_caps(struct ice_hw *hw)
2829 {
2830 	int status;
2831 
2832 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2833 	if (status)
2834 		return status;
2835 
2836 	return ice_discover_func_caps(hw, &hw->func_caps);
2837 }
2838 
2839 /**
2840  * ice_aq_manage_mac_write - manage MAC address write command
2841  * @hw: pointer to the HW struct
2842  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2843  * @flags: flags to control write behavior
2844  * @cd: pointer to command details structure or NULL
2845  *
2846  * This function is used to write MAC address to the NVM (0x0108).
2847  */
2848 int
2849 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2850 			struct ice_sq_cd *cd)
2851 {
2852 	struct ice_aqc_manage_mac_write *cmd;
2853 	struct ice_aq_desc desc;
2854 
2855 	cmd = &desc.params.mac_write;
2856 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2857 
2858 	cmd->flags = flags;
2859 	ether_addr_copy(cmd->mac_addr, mac_addr);
2860 
2861 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2862 }
2863 
2864 /**
2865  * ice_aq_clear_pxe_mode
2866  * @hw: pointer to the HW struct
2867  *
2868  * Tell the firmware that the driver is taking over from PXE (0x0110).
2869  */
2870 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2871 {
2872 	struct ice_aq_desc desc;
2873 
2874 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2875 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2876 
2877 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2878 }
2879 
2880 /**
2881  * ice_clear_pxe_mode - clear pxe operations mode
2882  * @hw: pointer to the HW struct
2883  *
2884  * Make sure all PXE mode settings are cleared, including things
2885  * like descriptor fetch/write-back mode.
2886  */
2887 void ice_clear_pxe_mode(struct ice_hw *hw)
2888 {
2889 	if (ice_check_sq_alive(hw, &hw->adminq))
2890 		ice_aq_clear_pxe_mode(hw);
2891 }
2892 
2893 /**
2894  * ice_aq_set_port_params - set physical port parameters.
2895  * @pi: pointer to the port info struct
2896  * @double_vlan: if set double VLAN is enabled
2897  * @cd: pointer to command details structure or NULL
2898  *
2899  * Set Physical port parameters (0x0203)
2900  */
2901 int
2902 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2903 		       struct ice_sq_cd *cd)
2904 
2905 {
2906 	struct ice_aqc_set_port_params *cmd;
2907 	struct ice_hw *hw = pi->hw;
2908 	struct ice_aq_desc desc;
2909 	u16 cmd_flags = 0;
2910 
2911 	cmd = &desc.params.set_port_params;
2912 
2913 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2914 	if (double_vlan)
2915 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2916 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2917 
2918 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2919 }
2920 
2921 /**
2922  * ice_is_100m_speed_supported
2923  * @hw: pointer to the HW struct
2924  *
2925  * returns true if 100M speeds are supported by the device,
2926  * false otherwise.
2927  */
2928 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2929 {
2930 	switch (hw->device_id) {
2931 	case ICE_DEV_ID_E822C_SGMII:
2932 	case ICE_DEV_ID_E822L_SGMII:
2933 	case ICE_DEV_ID_E823L_1GBE:
2934 	case ICE_DEV_ID_E823C_SGMII:
2935 		return true;
2936 	default:
2937 		return false;
2938 	}
2939 }
2940 
2941 /**
2942  * ice_get_link_speed_based_on_phy_type - returns link speed
2943  * @phy_type_low: lower part of phy_type
2944  * @phy_type_high: higher part of phy_type
2945  *
2946  * This helper function will convert an entry in PHY type structure
2947  * [phy_type_low, phy_type_high] to its corresponding link speed.
2948  * Note: In the structure of [phy_type_low, phy_type_high], there should
2949  * be one bit set, as this function will convert one PHY type to its
2950  * speed.
2951  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2952  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2953  */
2954 static u16
2955 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2956 {
2957 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2958 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2959 
2960 	switch (phy_type_low) {
2961 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2962 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2963 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2964 		break;
2965 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2966 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2967 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2968 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2969 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2970 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2971 		break;
2972 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2973 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2974 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2975 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2976 		break;
2977 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2978 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2979 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2980 		break;
2981 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2982 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2983 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2984 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2985 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2986 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2987 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2988 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2989 		break;
2990 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2991 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2992 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2993 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2994 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2995 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2996 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2997 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2998 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2999 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3000 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3001 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3002 		break;
3003 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3004 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3005 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3006 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3007 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3008 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3009 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3010 		break;
3011 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3012 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3013 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3014 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3015 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3016 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3017 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3018 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3019 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3020 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3021 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3022 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3023 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3024 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3025 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3026 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3027 		break;
3028 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3029 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3030 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3031 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3032 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3033 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3034 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3035 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3036 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3037 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3038 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3039 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3040 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3041 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3042 		break;
3043 	default:
3044 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3045 		break;
3046 	}
3047 
3048 	switch (phy_type_high) {
3049 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3050 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3051 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3052 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3053 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3054 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3055 		break;
3056 	default:
3057 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3058 		break;
3059 	}
3060 
3061 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3062 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3063 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3064 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3065 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3066 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3067 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3068 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3069 		return speed_phy_type_low;
3070 	else
3071 		return speed_phy_type_high;
3072 }
3073 
3074 /**
3075  * ice_update_phy_type
3076  * @phy_type_low: pointer to the lower part of phy_type
3077  * @phy_type_high: pointer to the higher part of phy_type
3078  * @link_speeds_bitmap: targeted link speeds bitmap
3079  *
3080  * Note: For the link_speeds_bitmap structure, you can check it at
3081  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3082  * link_speeds_bitmap include multiple speeds.
3083  *
3084  * Each entry in this [phy_type_low, phy_type_high] structure will
3085  * present a certain link speed. This helper function will turn on bits
3086  * in [phy_type_low, phy_type_high] structure based on the value of
3087  * link_speeds_bitmap input parameter.
3088  */
3089 void
3090 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3091 		    u16 link_speeds_bitmap)
3092 {
3093 	u64 pt_high;
3094 	u64 pt_low;
3095 	int index;
3096 	u16 speed;
3097 
3098 	/* We first check with low part of phy_type */
3099 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3100 		pt_low = BIT_ULL(index);
3101 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3102 
3103 		if (link_speeds_bitmap & speed)
3104 			*phy_type_low |= BIT_ULL(index);
3105 	}
3106 
3107 	/* We then check with high part of phy_type */
3108 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3109 		pt_high = BIT_ULL(index);
3110 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3111 
3112 		if (link_speeds_bitmap & speed)
3113 			*phy_type_high |= BIT_ULL(index);
3114 	}
3115 }
3116 
3117 /**
3118  * ice_aq_set_phy_cfg
3119  * @hw: pointer to the HW struct
3120  * @pi: port info structure of the interested logical port
3121  * @cfg: structure with PHY configuration data to be set
3122  * @cd: pointer to command details structure or NULL
3123  *
3124  * Set the various PHY configuration parameters supported on the Port.
3125  * One or more of the Set PHY config parameters may be ignored in an MFP
3126  * mode as the PF may not have the privilege to set some of the PHY Config
3127  * parameters. This status will be indicated by the command response (0x0601).
3128  */
3129 int
3130 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3131 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3132 {
3133 	struct ice_aq_desc desc;
3134 	int status;
3135 
3136 	if (!cfg)
3137 		return -EINVAL;
3138 
3139 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3140 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3141 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3142 			  cfg->caps);
3143 
3144 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3145 	}
3146 
3147 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3148 	desc.params.set_phy.lport_num = pi->lport;
3149 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3150 
3151 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3152 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3153 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3154 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3155 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3156 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3157 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3158 		  cfg->low_power_ctrl_an);
3159 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3160 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3161 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3162 		  cfg->link_fec_opt);
3163 
3164 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3165 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3166 		status = 0;
3167 
3168 	if (!status)
3169 		pi->phy.curr_user_phy_cfg = *cfg;
3170 
3171 	return status;
3172 }
3173 
3174 /**
3175  * ice_update_link_info - update status of the HW network link
3176  * @pi: port info structure of the interested logical port
3177  */
3178 int ice_update_link_info(struct ice_port_info *pi)
3179 {
3180 	struct ice_link_status *li;
3181 	int status;
3182 
3183 	if (!pi)
3184 		return -EINVAL;
3185 
3186 	li = &pi->phy.link_info;
3187 
3188 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3189 	if (status)
3190 		return status;
3191 
3192 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3193 		struct ice_aqc_get_phy_caps_data *pcaps;
3194 		struct ice_hw *hw;
3195 
3196 		hw = pi->hw;
3197 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3198 				     GFP_KERNEL);
3199 		if (!pcaps)
3200 			return -ENOMEM;
3201 
3202 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3203 					     pcaps, NULL);
3204 
3205 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3206 	}
3207 
3208 	return status;
3209 }
3210 
3211 /**
3212  * ice_cache_phy_user_req
3213  * @pi: port information structure
3214  * @cache_data: PHY logging data
3215  * @cache_mode: PHY logging mode
3216  *
3217  * Log the user request on (FC, FEC, SPEED) for later use.
3218  */
3219 static void
3220 ice_cache_phy_user_req(struct ice_port_info *pi,
3221 		       struct ice_phy_cache_mode_data cache_data,
3222 		       enum ice_phy_cache_mode cache_mode)
3223 {
3224 	if (!pi)
3225 		return;
3226 
3227 	switch (cache_mode) {
3228 	case ICE_FC_MODE:
3229 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3230 		break;
3231 	case ICE_SPEED_MODE:
3232 		pi->phy.curr_user_speed_req =
3233 			cache_data.data.curr_user_speed_req;
3234 		break;
3235 	case ICE_FEC_MODE:
3236 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3237 		break;
3238 	default:
3239 		break;
3240 	}
3241 }
3242 
3243 /**
3244  * ice_caps_to_fc_mode
3245  * @caps: PHY capabilities
3246  *
3247  * Convert PHY FC capabilities to ice FC mode
3248  */
3249 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3250 {
3251 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3252 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3253 		return ICE_FC_FULL;
3254 
3255 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3256 		return ICE_FC_TX_PAUSE;
3257 
3258 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3259 		return ICE_FC_RX_PAUSE;
3260 
3261 	return ICE_FC_NONE;
3262 }
3263 
3264 /**
3265  * ice_caps_to_fec_mode
3266  * @caps: PHY capabilities
3267  * @fec_options: Link FEC options
3268  *
3269  * Convert PHY FEC capabilities to ice FEC mode
3270  */
3271 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3272 {
3273 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3274 		return ICE_FEC_AUTO;
3275 
3276 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3277 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3278 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3279 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3280 		return ICE_FEC_BASER;
3281 
3282 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3283 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3284 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3285 		return ICE_FEC_RS;
3286 
3287 	return ICE_FEC_NONE;
3288 }
3289 
3290 /**
3291  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3292  * @pi: port information structure
3293  * @cfg: PHY configuration data to set FC mode
3294  * @req_mode: FC mode to configure
3295  */
3296 int
3297 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3298 	       enum ice_fc_mode req_mode)
3299 {
3300 	struct ice_phy_cache_mode_data cache_data;
3301 	u8 pause_mask = 0x0;
3302 
3303 	if (!pi || !cfg)
3304 		return -EINVAL;
3305 
3306 	switch (req_mode) {
3307 	case ICE_FC_FULL:
3308 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3309 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3310 		break;
3311 	case ICE_FC_RX_PAUSE:
3312 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3313 		break;
3314 	case ICE_FC_TX_PAUSE:
3315 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3316 		break;
3317 	default:
3318 		break;
3319 	}
3320 
3321 	/* clear the old pause settings */
3322 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3323 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3324 
3325 	/* set the new capabilities */
3326 	cfg->caps |= pause_mask;
3327 
3328 	/* Cache user FC request */
3329 	cache_data.data.curr_user_fc_req = req_mode;
3330 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3331 
3332 	return 0;
3333 }
3334 
3335 /**
3336  * ice_set_fc
3337  * @pi: port information structure
3338  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3339  * @ena_auto_link_update: enable automatic link update
3340  *
3341  * Set the requested flow control mode.
3342  */
3343 int
3344 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3345 {
3346 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3347 	struct ice_aqc_get_phy_caps_data *pcaps;
3348 	struct ice_hw *hw;
3349 	int status;
3350 
3351 	if (!pi || !aq_failures)
3352 		return -EINVAL;
3353 
3354 	*aq_failures = 0;
3355 	hw = pi->hw;
3356 
3357 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3358 	if (!pcaps)
3359 		return -ENOMEM;
3360 
3361 	/* Get the current PHY config */
3362 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3363 				     pcaps, NULL);
3364 	if (status) {
3365 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3366 		goto out;
3367 	}
3368 
3369 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3370 
3371 	/* Configure the set PHY data */
3372 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3373 	if (status)
3374 		goto out;
3375 
3376 	/* If the capabilities have changed, then set the new config */
3377 	if (cfg.caps != pcaps->caps) {
3378 		int retry_count, retry_max = 10;
3379 
3380 		/* Auto restart link so settings take effect */
3381 		if (ena_auto_link_update)
3382 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3383 
3384 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3385 		if (status) {
3386 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3387 			goto out;
3388 		}
3389 
3390 		/* Update the link info
3391 		 * It sometimes takes a really long time for link to
3392 		 * come back from the atomic reset. Thus, we wait a
3393 		 * little bit.
3394 		 */
3395 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3396 			status = ice_update_link_info(pi);
3397 
3398 			if (!status)
3399 				break;
3400 
3401 			mdelay(100);
3402 		}
3403 
3404 		if (status)
3405 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3406 	}
3407 
3408 out:
3409 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3410 	return status;
3411 }
3412 
3413 /**
3414  * ice_phy_caps_equals_cfg
3415  * @phy_caps: PHY capabilities
3416  * @phy_cfg: PHY configuration
3417  *
3418  * Helper function to determine if PHY capabilities matches PHY
3419  * configuration
3420  */
3421 bool
3422 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3423 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3424 {
3425 	u8 caps_mask, cfg_mask;
3426 
3427 	if (!phy_caps || !phy_cfg)
3428 		return false;
3429 
3430 	/* These bits are not common between capabilities and configuration.
3431 	 * Do not use them to determine equality.
3432 	 */
3433 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3434 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3435 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3436 
3437 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3438 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3439 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3440 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3441 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3442 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3443 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3444 		return false;
3445 
3446 	return true;
3447 }
3448 
3449 /**
3450  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3451  * @pi: port information structure
3452  * @caps: PHY ability structure to copy date from
3453  * @cfg: PHY configuration structure to copy data to
3454  *
3455  * Helper function to copy AQC PHY get ability data to PHY set configuration
3456  * data structure
3457  */
3458 void
3459 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3460 			 struct ice_aqc_get_phy_caps_data *caps,
3461 			 struct ice_aqc_set_phy_cfg_data *cfg)
3462 {
3463 	if (!pi || !caps || !cfg)
3464 		return;
3465 
3466 	memset(cfg, 0, sizeof(*cfg));
3467 	cfg->phy_type_low = caps->phy_type_low;
3468 	cfg->phy_type_high = caps->phy_type_high;
3469 	cfg->caps = caps->caps;
3470 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3471 	cfg->eee_cap = caps->eee_cap;
3472 	cfg->eeer_value = caps->eeer_value;
3473 	cfg->link_fec_opt = caps->link_fec_options;
3474 	cfg->module_compliance_enforcement =
3475 		caps->module_compliance_enforcement;
3476 }
3477 
3478 /**
3479  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3480  * @pi: port information structure
3481  * @cfg: PHY configuration data to set FEC mode
3482  * @fec: FEC mode to configure
3483  */
3484 int
3485 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3486 		enum ice_fec_mode fec)
3487 {
3488 	struct ice_aqc_get_phy_caps_data *pcaps;
3489 	struct ice_hw *hw;
3490 	int status;
3491 
3492 	if (!pi || !cfg)
3493 		return -EINVAL;
3494 
3495 	hw = pi->hw;
3496 
3497 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3498 	if (!pcaps)
3499 		return -ENOMEM;
3500 
3501 	status = ice_aq_get_phy_caps(pi, false,
3502 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3503 				      ICE_AQC_REPORT_DFLT_CFG :
3504 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3505 	if (status)
3506 		goto out;
3507 
3508 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3509 	cfg->link_fec_opt = pcaps->link_fec_options;
3510 
3511 	switch (fec) {
3512 	case ICE_FEC_BASER:
3513 		/* Clear RS bits, and AND BASE-R ability
3514 		 * bits and OR request bits.
3515 		 */
3516 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3517 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3518 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3519 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3520 		break;
3521 	case ICE_FEC_RS:
3522 		/* Clear BASE-R bits, and AND RS ability
3523 		 * bits and OR request bits.
3524 		 */
3525 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3526 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3527 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3528 		break;
3529 	case ICE_FEC_NONE:
3530 		/* Clear all FEC option bits. */
3531 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3532 		break;
3533 	case ICE_FEC_AUTO:
3534 		/* AND auto FEC bit, and all caps bits. */
3535 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3536 		cfg->link_fec_opt |= pcaps->link_fec_options;
3537 		break;
3538 	default:
3539 		status = -EINVAL;
3540 		break;
3541 	}
3542 
3543 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3544 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3545 		struct ice_link_default_override_tlv tlv = { 0 };
3546 
3547 		status = ice_get_link_default_override(&tlv, pi);
3548 		if (status)
3549 			goto out;
3550 
3551 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3552 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3553 			cfg->link_fec_opt = tlv.fec_options;
3554 	}
3555 
3556 out:
3557 	kfree(pcaps);
3558 
3559 	return status;
3560 }
3561 
3562 /**
3563  * ice_get_link_status - get status of the HW network link
3564  * @pi: port information structure
3565  * @link_up: pointer to bool (true/false = linkup/linkdown)
3566  *
3567  * Variable link_up is true if link is up, false if link is down.
3568  * The variable link_up is invalid if status is non zero. As a
3569  * result of this call, link status reporting becomes enabled
3570  */
3571 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3572 {
3573 	struct ice_phy_info *phy_info;
3574 	int status = 0;
3575 
3576 	if (!pi || !link_up)
3577 		return -EINVAL;
3578 
3579 	phy_info = &pi->phy;
3580 
3581 	if (phy_info->get_link_info) {
3582 		status = ice_update_link_info(pi);
3583 
3584 		if (status)
3585 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3586 				  status);
3587 	}
3588 
3589 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3590 
3591 	return status;
3592 }
3593 
3594 /**
3595  * ice_aq_set_link_restart_an
3596  * @pi: pointer to the port information structure
3597  * @ena_link: if true: enable link, if false: disable link
3598  * @cd: pointer to command details structure or NULL
3599  *
3600  * Sets up the link and restarts the Auto-Negotiation over the link.
3601  */
3602 int
3603 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3604 			   struct ice_sq_cd *cd)
3605 {
3606 	struct ice_aqc_restart_an *cmd;
3607 	struct ice_aq_desc desc;
3608 
3609 	cmd = &desc.params.restart_an;
3610 
3611 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3612 
3613 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3614 	cmd->lport_num = pi->lport;
3615 	if (ena_link)
3616 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3617 	else
3618 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3619 
3620 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3621 }
3622 
3623 /**
3624  * ice_aq_set_event_mask
3625  * @hw: pointer to the HW struct
3626  * @port_num: port number of the physical function
3627  * @mask: event mask to be set
3628  * @cd: pointer to command details structure or NULL
3629  *
3630  * Set event mask (0x0613)
3631  */
3632 int
3633 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3634 		      struct ice_sq_cd *cd)
3635 {
3636 	struct ice_aqc_set_event_mask *cmd;
3637 	struct ice_aq_desc desc;
3638 
3639 	cmd = &desc.params.set_event_mask;
3640 
3641 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3642 
3643 	cmd->lport_num = port_num;
3644 
3645 	cmd->event_mask = cpu_to_le16(mask);
3646 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3647 }
3648 
3649 /**
3650  * ice_aq_set_mac_loopback
3651  * @hw: pointer to the HW struct
3652  * @ena_lpbk: Enable or Disable loopback
3653  * @cd: pointer to command details structure or NULL
3654  *
3655  * Enable/disable loopback on a given port
3656  */
3657 int
3658 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3659 {
3660 	struct ice_aqc_set_mac_lb *cmd;
3661 	struct ice_aq_desc desc;
3662 
3663 	cmd = &desc.params.set_mac_lb;
3664 
3665 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3666 	if (ena_lpbk)
3667 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3668 
3669 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3670 }
3671 
3672 /**
3673  * ice_aq_set_port_id_led
3674  * @pi: pointer to the port information
3675  * @is_orig_mode: is this LED set to original mode (by the net-list)
3676  * @cd: pointer to command details structure or NULL
3677  *
3678  * Set LED value for the given port (0x06e9)
3679  */
3680 int
3681 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3682 		       struct ice_sq_cd *cd)
3683 {
3684 	struct ice_aqc_set_port_id_led *cmd;
3685 	struct ice_hw *hw = pi->hw;
3686 	struct ice_aq_desc desc;
3687 
3688 	cmd = &desc.params.set_port_id_led;
3689 
3690 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3691 
3692 	if (is_orig_mode)
3693 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3694 	else
3695 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3696 
3697 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3698 }
3699 
3700 /**
3701  * ice_aq_get_port_options
3702  * @hw: pointer to the HW struct
3703  * @options: buffer for the resultant port options
3704  * @option_count: input - size of the buffer in port options structures,
3705  *                output - number of returned port options
3706  * @lport: logical port to call the command with (optional)
3707  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3708  *               when PF owns more than 1 port it must be true
3709  * @active_option_idx: index of active port option in returned buffer
3710  * @active_option_valid: active option in returned buffer is valid
3711  * @pending_option_idx: index of pending port option in returned buffer
3712  * @pending_option_valid: pending option in returned buffer is valid
3713  *
3714  * Calls Get Port Options AQC (0x06ea) and verifies result.
3715  */
3716 int
3717 ice_aq_get_port_options(struct ice_hw *hw,
3718 			struct ice_aqc_get_port_options_elem *options,
3719 			u8 *option_count, u8 lport, bool lport_valid,
3720 			u8 *active_option_idx, bool *active_option_valid,
3721 			u8 *pending_option_idx, bool *pending_option_valid)
3722 {
3723 	struct ice_aqc_get_port_options *cmd;
3724 	struct ice_aq_desc desc;
3725 	int status;
3726 	u8 i;
3727 
3728 	/* options buffer shall be able to hold max returned options */
3729 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3730 		return -EINVAL;
3731 
3732 	cmd = &desc.params.get_port_options;
3733 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3734 
3735 	if (lport_valid)
3736 		cmd->lport_num = lport;
3737 	cmd->lport_num_valid = lport_valid;
3738 
3739 	status = ice_aq_send_cmd(hw, &desc, options,
3740 				 *option_count * sizeof(*options), NULL);
3741 	if (status)
3742 		return status;
3743 
3744 	/* verify direct FW response & set output parameters */
3745 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3746 				  cmd->port_options_count);
3747 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3748 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3749 					 cmd->port_options);
3750 	if (*active_option_valid) {
3751 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3752 					       cmd->port_options);
3753 		if (*active_option_idx > (*option_count - 1))
3754 			return -EIO;
3755 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3756 			  *active_option_idx);
3757 	}
3758 
3759 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3760 					  cmd->pending_port_option_status);
3761 	if (*pending_option_valid) {
3762 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3763 						cmd->pending_port_option_status);
3764 		if (*pending_option_idx > (*option_count - 1))
3765 			return -EIO;
3766 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3767 			  *pending_option_idx);
3768 	}
3769 
3770 	/* mask output options fields */
3771 	for (i = 0; i < *option_count; i++) {
3772 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3773 					   options[i].pmd);
3774 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3775 						      options[i].max_lane_speed);
3776 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3777 			  options[i].pmd, options[i].max_lane_speed);
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 /**
3784  * ice_aq_set_port_option
3785  * @hw: pointer to the HW struct
3786  * @lport: logical port to call the command with
3787  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3788  *               when PF owns more than 1 port it must be true
3789  * @new_option: new port option to be written
3790  *
3791  * Calls Set Port Options AQC (0x06eb).
3792  */
3793 int
3794 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3795 		       u8 new_option)
3796 {
3797 	struct ice_aqc_set_port_option *cmd;
3798 	struct ice_aq_desc desc;
3799 
3800 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3801 		return -EINVAL;
3802 
3803 	cmd = &desc.params.set_port_option;
3804 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3805 
3806 	if (lport_valid)
3807 		cmd->lport_num = lport;
3808 
3809 	cmd->lport_num_valid = lport_valid;
3810 	cmd->selected_port_option = new_option;
3811 
3812 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3813 }
3814 
3815 /**
3816  * ice_aq_sff_eeprom
3817  * @hw: pointer to the HW struct
3818  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3819  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3820  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3821  * @page: QSFP page
3822  * @set_page: set or ignore the page
3823  * @data: pointer to data buffer to be read/written to the I2C device.
3824  * @length: 1-16 for read, 1 for write.
3825  * @write: 0 read, 1 for write.
3826  * @cd: pointer to command details structure or NULL
3827  *
3828  * Read/Write SFF EEPROM (0x06EE)
3829  */
3830 int
3831 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3832 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3833 		  bool write, struct ice_sq_cd *cd)
3834 {
3835 	struct ice_aqc_sff_eeprom *cmd;
3836 	struct ice_aq_desc desc;
3837 	int status;
3838 
3839 	if (!data || (mem_addr & 0xff00))
3840 		return -EINVAL;
3841 
3842 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3843 	cmd = &desc.params.read_write_sff_param;
3844 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3845 	cmd->lport_num = (u8)(lport & 0xff);
3846 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3847 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3848 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3849 					((set_page <<
3850 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3851 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3852 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3853 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3854 	if (write)
3855 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3856 
3857 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3858 	return status;
3859 }
3860 
3861 /**
3862  * __ice_aq_get_set_rss_lut
3863  * @hw: pointer to the hardware structure
3864  * @params: RSS LUT parameters
3865  * @set: set true to set the table, false to get the table
3866  *
3867  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3868  */
3869 static int
3870 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3871 {
3872 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3873 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3874 	struct ice_aq_desc desc;
3875 	int status;
3876 	u8 *lut;
3877 
3878 	if (!params)
3879 		return -EINVAL;
3880 
3881 	vsi_handle = params->vsi_handle;
3882 	lut = params->lut;
3883 
3884 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3885 		return -EINVAL;
3886 
3887 	lut_size = params->lut_size;
3888 	lut_type = params->lut_type;
3889 	glob_lut_idx = params->global_lut_id;
3890 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3891 
3892 	cmd_resp = &desc.params.get_set_rss_lut;
3893 
3894 	if (set) {
3895 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3896 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3897 	} else {
3898 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3899 	}
3900 
3901 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3902 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3903 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3904 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3905 
3906 	switch (lut_type) {
3907 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3908 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3909 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3910 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3911 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3912 		break;
3913 	default:
3914 		status = -EINVAL;
3915 		goto ice_aq_get_set_rss_lut_exit;
3916 	}
3917 
3918 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3919 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3920 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3921 
3922 		if (!set)
3923 			goto ice_aq_get_set_rss_lut_send;
3924 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3925 		if (!set)
3926 			goto ice_aq_get_set_rss_lut_send;
3927 	} else {
3928 		goto ice_aq_get_set_rss_lut_send;
3929 	}
3930 
3931 	/* LUT size is only valid for Global and PF table types */
3932 	switch (lut_size) {
3933 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3934 		break;
3935 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3936 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3937 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3938 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3939 		break;
3940 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3941 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3942 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3943 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3944 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3945 			break;
3946 		}
3947 		fallthrough;
3948 	default:
3949 		status = -EINVAL;
3950 		goto ice_aq_get_set_rss_lut_exit;
3951 	}
3952 
3953 ice_aq_get_set_rss_lut_send:
3954 	cmd_resp->flags = cpu_to_le16(flags);
3955 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3956 
3957 ice_aq_get_set_rss_lut_exit:
3958 	return status;
3959 }
3960 
3961 /**
3962  * ice_aq_get_rss_lut
3963  * @hw: pointer to the hardware structure
3964  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3965  *
3966  * get the RSS lookup table, PF or VSI type
3967  */
3968 int
3969 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3970 {
3971 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3972 }
3973 
3974 /**
3975  * ice_aq_set_rss_lut
3976  * @hw: pointer to the hardware structure
3977  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3978  *
3979  * set the RSS lookup table, PF or VSI type
3980  */
3981 int
3982 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3983 {
3984 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3985 }
3986 
3987 /**
3988  * __ice_aq_get_set_rss_key
3989  * @hw: pointer to the HW struct
3990  * @vsi_id: VSI FW index
3991  * @key: pointer to key info struct
3992  * @set: set true to set the key, false to get the key
3993  *
3994  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3995  */
3996 static int
3997 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3998 			 struct ice_aqc_get_set_rss_keys *key, bool set)
3999 {
4000 	struct ice_aqc_get_set_rss_key *cmd_resp;
4001 	u16 key_size = sizeof(*key);
4002 	struct ice_aq_desc desc;
4003 
4004 	cmd_resp = &desc.params.get_set_rss_key;
4005 
4006 	if (set) {
4007 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4008 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4009 	} else {
4010 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4011 	}
4012 
4013 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4014 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4015 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4016 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4017 
4018 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4019 }
4020 
4021 /**
4022  * ice_aq_get_rss_key
4023  * @hw: pointer to the HW struct
4024  * @vsi_handle: software VSI handle
4025  * @key: pointer to key info struct
4026  *
4027  * get the RSS key per VSI
4028  */
4029 int
4030 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4031 		   struct ice_aqc_get_set_rss_keys *key)
4032 {
4033 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4034 		return -EINVAL;
4035 
4036 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4037 					key, false);
4038 }
4039 
4040 /**
4041  * ice_aq_set_rss_key
4042  * @hw: pointer to the HW struct
4043  * @vsi_handle: software VSI handle
4044  * @keys: pointer to key info struct
4045  *
4046  * set the RSS key per VSI
4047  */
4048 int
4049 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4050 		   struct ice_aqc_get_set_rss_keys *keys)
4051 {
4052 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4053 		return -EINVAL;
4054 
4055 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4056 					keys, true);
4057 }
4058 
4059 /**
4060  * ice_aq_add_lan_txq
4061  * @hw: pointer to the hardware structure
4062  * @num_qgrps: Number of added queue groups
4063  * @qg_list: list of queue groups to be added
4064  * @buf_size: size of buffer for indirect command
4065  * @cd: pointer to command details structure or NULL
4066  *
4067  * Add Tx LAN queue (0x0C30)
4068  *
4069  * NOTE:
4070  * Prior to calling add Tx LAN queue:
4071  * Initialize the following as part of the Tx queue context:
4072  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4073  * Cache profile and Packet shaper profile.
4074  *
4075  * After add Tx LAN queue AQ command is completed:
4076  * Interrupts should be associated with specific queues,
4077  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4078  * flow.
4079  */
4080 static int
4081 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4082 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4083 		   struct ice_sq_cd *cd)
4084 {
4085 	struct ice_aqc_add_tx_qgrp *list;
4086 	struct ice_aqc_add_txqs *cmd;
4087 	struct ice_aq_desc desc;
4088 	u16 i, sum_size = 0;
4089 
4090 	cmd = &desc.params.add_txqs;
4091 
4092 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4093 
4094 	if (!qg_list)
4095 		return -EINVAL;
4096 
4097 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4098 		return -EINVAL;
4099 
4100 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4101 		sum_size += struct_size(list, txqs, list->num_txqs);
4102 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4103 						      list->num_txqs);
4104 	}
4105 
4106 	if (buf_size != sum_size)
4107 		return -EINVAL;
4108 
4109 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4110 
4111 	cmd->num_qgrps = num_qgrps;
4112 
4113 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4114 }
4115 
4116 /**
4117  * ice_aq_dis_lan_txq
4118  * @hw: pointer to the hardware structure
4119  * @num_qgrps: number of groups in the list
4120  * @qg_list: the list of groups to disable
4121  * @buf_size: the total size of the qg_list buffer in bytes
4122  * @rst_src: if called due to reset, specifies the reset source
4123  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4124  * @cd: pointer to command details structure or NULL
4125  *
4126  * Disable LAN Tx queue (0x0C31)
4127  */
4128 static int
4129 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4130 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4131 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4132 		   struct ice_sq_cd *cd)
4133 {
4134 	struct ice_aqc_dis_txq_item *item;
4135 	struct ice_aqc_dis_txqs *cmd;
4136 	struct ice_aq_desc desc;
4137 	u16 i, sz = 0;
4138 	int status;
4139 
4140 	cmd = &desc.params.dis_txqs;
4141 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4142 
4143 	/* qg_list can be NULL only in VM/VF reset flow */
4144 	if (!qg_list && !rst_src)
4145 		return -EINVAL;
4146 
4147 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4148 		return -EINVAL;
4149 
4150 	cmd->num_entries = num_qgrps;
4151 
4152 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4153 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4154 
4155 	switch (rst_src) {
4156 	case ICE_VM_RESET:
4157 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4158 		cmd->vmvf_and_timeout |=
4159 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4160 		break;
4161 	case ICE_VF_RESET:
4162 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4163 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4164 		cmd->vmvf_and_timeout |=
4165 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4166 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4167 		break;
4168 	case ICE_NO_RESET:
4169 	default:
4170 		break;
4171 	}
4172 
4173 	/* flush pipe on time out */
4174 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4175 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4176 	if (!qg_list)
4177 		goto do_aq;
4178 
4179 	/* set RD bit to indicate that command buffer is provided by the driver
4180 	 * and it needs to be read by the firmware
4181 	 */
4182 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4183 
4184 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4185 		u16 item_size = struct_size(item, q_id, item->num_qs);
4186 
4187 		/* If the num of queues is even, add 2 bytes of padding */
4188 		if ((item->num_qs % 2) == 0)
4189 			item_size += 2;
4190 
4191 		sz += item_size;
4192 
4193 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4194 	}
4195 
4196 	if (buf_size != sz)
4197 		return -EINVAL;
4198 
4199 do_aq:
4200 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4201 	if (status) {
4202 		if (!qg_list)
4203 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4204 				  vmvf_num, hw->adminq.sq_last_status);
4205 		else
4206 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4207 				  le16_to_cpu(qg_list[0].q_id[0]),
4208 				  hw->adminq.sq_last_status);
4209 	}
4210 	return status;
4211 }
4212 
4213 /**
4214  * ice_aq_add_rdma_qsets
4215  * @hw: pointer to the hardware structure
4216  * @num_qset_grps: Number of RDMA Qset groups
4217  * @qset_list: list of Qset groups to be added
4218  * @buf_size: size of buffer for indirect command
4219  * @cd: pointer to command details structure or NULL
4220  *
4221  * Add Tx RDMA Qsets (0x0C33)
4222  */
4223 static int
4224 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4225 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4226 		      u16 buf_size, struct ice_sq_cd *cd)
4227 {
4228 	struct ice_aqc_add_rdma_qset_data *list;
4229 	struct ice_aqc_add_rdma_qset *cmd;
4230 	struct ice_aq_desc desc;
4231 	u16 i, sum_size = 0;
4232 
4233 	cmd = &desc.params.add_rdma_qset;
4234 
4235 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4236 
4237 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4238 		return -EINVAL;
4239 
4240 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4241 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4242 
4243 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4244 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4245 							     num_qsets);
4246 	}
4247 
4248 	if (buf_size != sum_size)
4249 		return -EINVAL;
4250 
4251 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4252 
4253 	cmd->num_qset_grps = num_qset_grps;
4254 
4255 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4256 }
4257 
4258 /* End of FW Admin Queue command wrappers */
4259 
4260 /**
4261  * ice_write_byte - write a byte to a packed context structure
4262  * @src_ctx:  the context structure to read from
4263  * @dest_ctx: the context to be written to
4264  * @ce_info:  a description of the struct to be filled
4265  */
4266 static void
4267 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4268 {
4269 	u8 src_byte, dest_byte, mask;
4270 	u8 *from, *dest;
4271 	u16 shift_width;
4272 
4273 	/* copy from the next struct field */
4274 	from = src_ctx + ce_info->offset;
4275 
4276 	/* prepare the bits and mask */
4277 	shift_width = ce_info->lsb % 8;
4278 	mask = (u8)(BIT(ce_info->width) - 1);
4279 
4280 	src_byte = *from;
4281 	src_byte &= mask;
4282 
4283 	/* shift to correct alignment */
4284 	mask <<= shift_width;
4285 	src_byte <<= shift_width;
4286 
4287 	/* get the current bits from the target bit string */
4288 	dest = dest_ctx + (ce_info->lsb / 8);
4289 
4290 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4291 
4292 	dest_byte &= ~mask;	/* get the bits not changing */
4293 	dest_byte |= src_byte;	/* add in the new bits */
4294 
4295 	/* put it all back */
4296 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4297 }
4298 
4299 /**
4300  * ice_write_word - write a word to a packed context structure
4301  * @src_ctx:  the context structure to read from
4302  * @dest_ctx: the context to be written to
4303  * @ce_info:  a description of the struct to be filled
4304  */
4305 static void
4306 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4307 {
4308 	u16 src_word, mask;
4309 	__le16 dest_word;
4310 	u8 *from, *dest;
4311 	u16 shift_width;
4312 
4313 	/* copy from the next struct field */
4314 	from = src_ctx + ce_info->offset;
4315 
4316 	/* prepare the bits and mask */
4317 	shift_width = ce_info->lsb % 8;
4318 	mask = BIT(ce_info->width) - 1;
4319 
4320 	/* don't swizzle the bits until after the mask because the mask bits
4321 	 * will be in a different bit position on big endian machines
4322 	 */
4323 	src_word = *(u16 *)from;
4324 	src_word &= mask;
4325 
4326 	/* shift to correct alignment */
4327 	mask <<= shift_width;
4328 	src_word <<= shift_width;
4329 
4330 	/* get the current bits from the target bit string */
4331 	dest = dest_ctx + (ce_info->lsb / 8);
4332 
4333 	memcpy(&dest_word, dest, sizeof(dest_word));
4334 
4335 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4336 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4337 
4338 	/* put it all back */
4339 	memcpy(dest, &dest_word, sizeof(dest_word));
4340 }
4341 
4342 /**
4343  * ice_write_dword - write a dword to a packed context structure
4344  * @src_ctx:  the context structure to read from
4345  * @dest_ctx: the context to be written to
4346  * @ce_info:  a description of the struct to be filled
4347  */
4348 static void
4349 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4350 {
4351 	u32 src_dword, mask;
4352 	__le32 dest_dword;
4353 	u8 *from, *dest;
4354 	u16 shift_width;
4355 
4356 	/* copy from the next struct field */
4357 	from = src_ctx + ce_info->offset;
4358 
4359 	/* prepare the bits and mask */
4360 	shift_width = ce_info->lsb % 8;
4361 
4362 	/* if the field width is exactly 32 on an x86 machine, then the shift
4363 	 * operation will not work because the SHL instructions count is masked
4364 	 * to 5 bits so the shift will do nothing
4365 	 */
4366 	if (ce_info->width < 32)
4367 		mask = BIT(ce_info->width) - 1;
4368 	else
4369 		mask = (u32)~0;
4370 
4371 	/* don't swizzle the bits until after the mask because the mask bits
4372 	 * will be in a different bit position on big endian machines
4373 	 */
4374 	src_dword = *(u32 *)from;
4375 	src_dword &= mask;
4376 
4377 	/* shift to correct alignment */
4378 	mask <<= shift_width;
4379 	src_dword <<= shift_width;
4380 
4381 	/* get the current bits from the target bit string */
4382 	dest = dest_ctx + (ce_info->lsb / 8);
4383 
4384 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4385 
4386 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4387 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4388 
4389 	/* put it all back */
4390 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4391 }
4392 
4393 /**
4394  * ice_write_qword - write a qword to a packed context structure
4395  * @src_ctx:  the context structure to read from
4396  * @dest_ctx: the context to be written to
4397  * @ce_info:  a description of the struct to be filled
4398  */
4399 static void
4400 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4401 {
4402 	u64 src_qword, mask;
4403 	__le64 dest_qword;
4404 	u8 *from, *dest;
4405 	u16 shift_width;
4406 
4407 	/* copy from the next struct field */
4408 	from = src_ctx + ce_info->offset;
4409 
4410 	/* prepare the bits and mask */
4411 	shift_width = ce_info->lsb % 8;
4412 
4413 	/* if the field width is exactly 64 on an x86 machine, then the shift
4414 	 * operation will not work because the SHL instructions count is masked
4415 	 * to 6 bits so the shift will do nothing
4416 	 */
4417 	if (ce_info->width < 64)
4418 		mask = BIT_ULL(ce_info->width) - 1;
4419 	else
4420 		mask = (u64)~0;
4421 
4422 	/* don't swizzle the bits until after the mask because the mask bits
4423 	 * will be in a different bit position on big endian machines
4424 	 */
4425 	src_qword = *(u64 *)from;
4426 	src_qword &= mask;
4427 
4428 	/* shift to correct alignment */
4429 	mask <<= shift_width;
4430 	src_qword <<= shift_width;
4431 
4432 	/* get the current bits from the target bit string */
4433 	dest = dest_ctx + (ce_info->lsb / 8);
4434 
4435 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4436 
4437 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4438 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4439 
4440 	/* put it all back */
4441 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4442 }
4443 
4444 /**
4445  * ice_set_ctx - set context bits in packed structure
4446  * @hw: pointer to the hardware structure
4447  * @src_ctx:  pointer to a generic non-packed context structure
4448  * @dest_ctx: pointer to memory for the packed structure
4449  * @ce_info:  a description of the structure to be transformed
4450  */
4451 int
4452 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4453 	    const struct ice_ctx_ele *ce_info)
4454 {
4455 	int f;
4456 
4457 	for (f = 0; ce_info[f].width; f++) {
4458 		/* We have to deal with each element of the FW response
4459 		 * using the correct size so that we are correct regardless
4460 		 * of the endianness of the machine.
4461 		 */
4462 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4463 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4464 				  f, ce_info[f].width, ce_info[f].size_of);
4465 			continue;
4466 		}
4467 		switch (ce_info[f].size_of) {
4468 		case sizeof(u8):
4469 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4470 			break;
4471 		case sizeof(u16):
4472 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4473 			break;
4474 		case sizeof(u32):
4475 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4476 			break;
4477 		case sizeof(u64):
4478 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4479 			break;
4480 		default:
4481 			return -EINVAL;
4482 		}
4483 	}
4484 
4485 	return 0;
4486 }
4487 
4488 /**
4489  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4490  * @hw: pointer to the HW struct
4491  * @vsi_handle: software VSI handle
4492  * @tc: TC number
4493  * @q_handle: software queue handle
4494  */
4495 struct ice_q_ctx *
4496 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4497 {
4498 	struct ice_vsi_ctx *vsi;
4499 	struct ice_q_ctx *q_ctx;
4500 
4501 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4502 	if (!vsi)
4503 		return NULL;
4504 	if (q_handle >= vsi->num_lan_q_entries[tc])
4505 		return NULL;
4506 	if (!vsi->lan_q_ctx[tc])
4507 		return NULL;
4508 	q_ctx = vsi->lan_q_ctx[tc];
4509 	return &q_ctx[q_handle];
4510 }
4511 
4512 /**
4513  * ice_ena_vsi_txq
4514  * @pi: port information structure
4515  * @vsi_handle: software VSI handle
4516  * @tc: TC number
4517  * @q_handle: software queue handle
4518  * @num_qgrps: Number of added queue groups
4519  * @buf: list of queue groups to be added
4520  * @buf_size: size of buffer for indirect command
4521  * @cd: pointer to command details structure or NULL
4522  *
4523  * This function adds one LAN queue
4524  */
4525 int
4526 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4527 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4528 		struct ice_sq_cd *cd)
4529 {
4530 	struct ice_aqc_txsched_elem_data node = { 0 };
4531 	struct ice_sched_node *parent;
4532 	struct ice_q_ctx *q_ctx;
4533 	struct ice_hw *hw;
4534 	int status;
4535 
4536 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4537 		return -EIO;
4538 
4539 	if (num_qgrps > 1 || buf->num_txqs > 1)
4540 		return -ENOSPC;
4541 
4542 	hw = pi->hw;
4543 
4544 	if (!ice_is_vsi_valid(hw, vsi_handle))
4545 		return -EINVAL;
4546 
4547 	mutex_lock(&pi->sched_lock);
4548 
4549 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4550 	if (!q_ctx) {
4551 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4552 			  q_handle);
4553 		status = -EINVAL;
4554 		goto ena_txq_exit;
4555 	}
4556 
4557 	/* find a parent node */
4558 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4559 					    ICE_SCHED_NODE_OWNER_LAN);
4560 	if (!parent) {
4561 		status = -EINVAL;
4562 		goto ena_txq_exit;
4563 	}
4564 
4565 	buf->parent_teid = parent->info.node_teid;
4566 	node.parent_teid = parent->info.node_teid;
4567 	/* Mark that the values in the "generic" section as valid. The default
4568 	 * value in the "generic" section is zero. This means that :
4569 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4570 	 * - 0 priority among siblings, indicated by Bit 1-3.
4571 	 * - WFQ, indicated by Bit 4.
4572 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4573 	 * Bit 5-6.
4574 	 * - Bit 7 is reserved.
4575 	 * Without setting the generic section as valid in valid_sections, the
4576 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4577 	 */
4578 	buf->txqs[0].info.valid_sections =
4579 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4580 		ICE_AQC_ELEM_VALID_EIR;
4581 	buf->txqs[0].info.generic = 0;
4582 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4583 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4584 	buf->txqs[0].info.cir_bw.bw_alloc =
4585 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4586 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4587 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4588 	buf->txqs[0].info.eir_bw.bw_alloc =
4589 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4590 
4591 	/* add the LAN queue */
4592 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4593 	if (status) {
4594 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4595 			  le16_to_cpu(buf->txqs[0].txq_id),
4596 			  hw->adminq.sq_last_status);
4597 		goto ena_txq_exit;
4598 	}
4599 
4600 	node.node_teid = buf->txqs[0].q_teid;
4601 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4602 	q_ctx->q_handle = q_handle;
4603 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4604 
4605 	/* add a leaf node into scheduler tree queue layer */
4606 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4607 	if (!status)
4608 		status = ice_sched_replay_q_bw(pi, q_ctx);
4609 
4610 ena_txq_exit:
4611 	mutex_unlock(&pi->sched_lock);
4612 	return status;
4613 }
4614 
4615 /**
4616  * ice_dis_vsi_txq
4617  * @pi: port information structure
4618  * @vsi_handle: software VSI handle
4619  * @tc: TC number
4620  * @num_queues: number of queues
4621  * @q_handles: pointer to software queue handle array
4622  * @q_ids: pointer to the q_id array
4623  * @q_teids: pointer to queue node teids
4624  * @rst_src: if called due to reset, specifies the reset source
4625  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4626  * @cd: pointer to command details structure or NULL
4627  *
4628  * This function removes queues and their corresponding nodes in SW DB
4629  */
4630 int
4631 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4632 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4633 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4634 		struct ice_sq_cd *cd)
4635 {
4636 	struct ice_aqc_dis_txq_item *qg_list;
4637 	struct ice_q_ctx *q_ctx;
4638 	int status = -ENOENT;
4639 	struct ice_hw *hw;
4640 	u16 i, buf_size;
4641 
4642 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4643 		return -EIO;
4644 
4645 	hw = pi->hw;
4646 
4647 	if (!num_queues) {
4648 		/* if queue is disabled already yet the disable queue command
4649 		 * has to be sent to complete the VF reset, then call
4650 		 * ice_aq_dis_lan_txq without any queue information
4651 		 */
4652 		if (rst_src)
4653 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4654 						  vmvf_num, NULL);
4655 		return -EIO;
4656 	}
4657 
4658 	buf_size = struct_size(qg_list, q_id, 1);
4659 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4660 	if (!qg_list)
4661 		return -ENOMEM;
4662 
4663 	mutex_lock(&pi->sched_lock);
4664 
4665 	for (i = 0; i < num_queues; i++) {
4666 		struct ice_sched_node *node;
4667 
4668 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4669 		if (!node)
4670 			continue;
4671 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4672 		if (!q_ctx) {
4673 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4674 				  q_handles[i]);
4675 			continue;
4676 		}
4677 		if (q_ctx->q_handle != q_handles[i]) {
4678 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4679 				  q_ctx->q_handle, q_handles[i]);
4680 			continue;
4681 		}
4682 		qg_list->parent_teid = node->info.parent_teid;
4683 		qg_list->num_qs = 1;
4684 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4685 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4686 					    vmvf_num, cd);
4687 
4688 		if (status)
4689 			break;
4690 		ice_free_sched_node(pi, node);
4691 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4692 	}
4693 	mutex_unlock(&pi->sched_lock);
4694 	kfree(qg_list);
4695 	return status;
4696 }
4697 
4698 /**
4699  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4700  * @pi: port information structure
4701  * @vsi_handle: software VSI handle
4702  * @tc_bitmap: TC bitmap
4703  * @maxqs: max queues array per TC
4704  * @owner: LAN or RDMA
4705  *
4706  * This function adds/updates the VSI queues per TC.
4707  */
4708 static int
4709 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4710 	       u16 *maxqs, u8 owner)
4711 {
4712 	int status = 0;
4713 	u8 i;
4714 
4715 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4716 		return -EIO;
4717 
4718 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4719 		return -EINVAL;
4720 
4721 	mutex_lock(&pi->sched_lock);
4722 
4723 	ice_for_each_traffic_class(i) {
4724 		/* configuration is possible only if TC node is present */
4725 		if (!ice_sched_get_tc_node(pi, i))
4726 			continue;
4727 
4728 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4729 					   ice_is_tc_ena(tc_bitmap, i));
4730 		if (status)
4731 			break;
4732 	}
4733 
4734 	mutex_unlock(&pi->sched_lock);
4735 	return status;
4736 }
4737 
4738 /**
4739  * ice_cfg_vsi_lan - configure VSI LAN queues
4740  * @pi: port information structure
4741  * @vsi_handle: software VSI handle
4742  * @tc_bitmap: TC bitmap
4743  * @max_lanqs: max LAN queues array per TC
4744  *
4745  * This function adds/updates the VSI LAN queues per TC.
4746  */
4747 int
4748 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4749 		u16 *max_lanqs)
4750 {
4751 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4752 			      ICE_SCHED_NODE_OWNER_LAN);
4753 }
4754 
4755 /**
4756  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4757  * @pi: port information structure
4758  * @vsi_handle: software VSI handle
4759  * @tc_bitmap: TC bitmap
4760  * @max_rdmaqs: max RDMA queues array per TC
4761  *
4762  * This function adds/updates the VSI RDMA queues per TC.
4763  */
4764 int
4765 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4766 		 u16 *max_rdmaqs)
4767 {
4768 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4769 			      ICE_SCHED_NODE_OWNER_RDMA);
4770 }
4771 
4772 /**
4773  * ice_ena_vsi_rdma_qset
4774  * @pi: port information structure
4775  * @vsi_handle: software VSI handle
4776  * @tc: TC number
4777  * @rdma_qset: pointer to RDMA Qset
4778  * @num_qsets: number of RDMA Qsets
4779  * @qset_teid: pointer to Qset node TEIDs
4780  *
4781  * This function adds RDMA Qset
4782  */
4783 int
4784 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4785 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4786 {
4787 	struct ice_aqc_txsched_elem_data node = { 0 };
4788 	struct ice_aqc_add_rdma_qset_data *buf;
4789 	struct ice_sched_node *parent;
4790 	struct ice_hw *hw;
4791 	u16 i, buf_size;
4792 	int ret;
4793 
4794 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4795 		return -EIO;
4796 	hw = pi->hw;
4797 
4798 	if (!ice_is_vsi_valid(hw, vsi_handle))
4799 		return -EINVAL;
4800 
4801 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4802 	buf = kzalloc(buf_size, GFP_KERNEL);
4803 	if (!buf)
4804 		return -ENOMEM;
4805 	mutex_lock(&pi->sched_lock);
4806 
4807 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4808 					    ICE_SCHED_NODE_OWNER_RDMA);
4809 	if (!parent) {
4810 		ret = -EINVAL;
4811 		goto rdma_error_exit;
4812 	}
4813 	buf->parent_teid = parent->info.node_teid;
4814 	node.parent_teid = parent->info.node_teid;
4815 
4816 	buf->num_qsets = cpu_to_le16(num_qsets);
4817 	for (i = 0; i < num_qsets; i++) {
4818 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4819 		buf->rdma_qsets[i].info.valid_sections =
4820 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4821 			ICE_AQC_ELEM_VALID_EIR;
4822 		buf->rdma_qsets[i].info.generic = 0;
4823 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4824 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4825 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4826 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4827 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4828 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4829 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4830 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4831 	}
4832 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4833 	if (ret) {
4834 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4835 		goto rdma_error_exit;
4836 	}
4837 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4838 	for (i = 0; i < num_qsets; i++) {
4839 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4840 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4841 					 &node, NULL);
4842 		if (ret)
4843 			break;
4844 		qset_teid[i] = le32_to_cpu(node.node_teid);
4845 	}
4846 rdma_error_exit:
4847 	mutex_unlock(&pi->sched_lock);
4848 	kfree(buf);
4849 	return ret;
4850 }
4851 
4852 /**
4853  * ice_dis_vsi_rdma_qset - free RDMA resources
4854  * @pi: port_info struct
4855  * @count: number of RDMA Qsets to free
4856  * @qset_teid: TEID of Qset node
4857  * @q_id: list of queue IDs being disabled
4858  */
4859 int
4860 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4861 		      u16 *q_id)
4862 {
4863 	struct ice_aqc_dis_txq_item *qg_list;
4864 	struct ice_hw *hw;
4865 	int status = 0;
4866 	u16 qg_size;
4867 	int i;
4868 
4869 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4870 		return -EIO;
4871 
4872 	hw = pi->hw;
4873 
4874 	qg_size = struct_size(qg_list, q_id, 1);
4875 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4876 	if (!qg_list)
4877 		return -ENOMEM;
4878 
4879 	mutex_lock(&pi->sched_lock);
4880 
4881 	for (i = 0; i < count; i++) {
4882 		struct ice_sched_node *node;
4883 
4884 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4885 		if (!node)
4886 			continue;
4887 
4888 		qg_list->parent_teid = node->info.parent_teid;
4889 		qg_list->num_qs = 1;
4890 		qg_list->q_id[0] =
4891 			cpu_to_le16(q_id[i] |
4892 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4893 
4894 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4895 					    ICE_NO_RESET, 0, NULL);
4896 		if (status)
4897 			break;
4898 
4899 		ice_free_sched_node(pi, node);
4900 	}
4901 
4902 	mutex_unlock(&pi->sched_lock);
4903 	kfree(qg_list);
4904 	return status;
4905 }
4906 
4907 /**
4908  * ice_replay_pre_init - replay pre initialization
4909  * @hw: pointer to the HW struct
4910  *
4911  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4912  */
4913 static int ice_replay_pre_init(struct ice_hw *hw)
4914 {
4915 	struct ice_switch_info *sw = hw->switch_info;
4916 	u8 i;
4917 
4918 	/* Delete old entries from replay filter list head if there is any */
4919 	ice_rm_all_sw_replay_rule_info(hw);
4920 	/* In start of replay, move entries into replay_rules list, it
4921 	 * will allow adding rules entries back to filt_rules list,
4922 	 * which is operational list.
4923 	 */
4924 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4925 		list_replace_init(&sw->recp_list[i].filt_rules,
4926 				  &sw->recp_list[i].filt_replay_rules);
4927 	ice_sched_replay_agg_vsi_preinit(hw);
4928 
4929 	return 0;
4930 }
4931 
4932 /**
4933  * ice_replay_vsi - replay VSI configuration
4934  * @hw: pointer to the HW struct
4935  * @vsi_handle: driver VSI handle
4936  *
4937  * Restore all VSI configuration after reset. It is required to call this
4938  * function with main VSI first.
4939  */
4940 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4941 {
4942 	int status;
4943 
4944 	if (!ice_is_vsi_valid(hw, vsi_handle))
4945 		return -EINVAL;
4946 
4947 	/* Replay pre-initialization if there is any */
4948 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4949 		status = ice_replay_pre_init(hw);
4950 		if (status)
4951 			return status;
4952 	}
4953 	/* Replay per VSI all RSS configurations */
4954 	status = ice_replay_rss_cfg(hw, vsi_handle);
4955 	if (status)
4956 		return status;
4957 	/* Replay per VSI all filters */
4958 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4959 	if (!status)
4960 		status = ice_replay_vsi_agg(hw, vsi_handle);
4961 	return status;
4962 }
4963 
4964 /**
4965  * ice_replay_post - post replay configuration cleanup
4966  * @hw: pointer to the HW struct
4967  *
4968  * Post replay cleanup.
4969  */
4970 void ice_replay_post(struct ice_hw *hw)
4971 {
4972 	/* Delete old entries from replay filter list head */
4973 	ice_rm_all_sw_replay_rule_info(hw);
4974 	ice_sched_replay_agg(hw);
4975 }
4976 
4977 /**
4978  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4979  * @hw: ptr to the hardware info
4980  * @reg: offset of 64 bit HW register to read from
4981  * @prev_stat_loaded: bool to specify if previous stats are loaded
4982  * @prev_stat: ptr to previous loaded stat value
4983  * @cur_stat: ptr to current stat value
4984  */
4985 void
4986 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4987 		  u64 *prev_stat, u64 *cur_stat)
4988 {
4989 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4990 
4991 	/* device stats are not reset at PFR, they likely will not be zeroed
4992 	 * when the driver starts. Thus, save the value from the first read
4993 	 * without adding to the statistic value so that we report stats which
4994 	 * count up from zero.
4995 	 */
4996 	if (!prev_stat_loaded) {
4997 		*prev_stat = new_data;
4998 		return;
4999 	}
5000 
5001 	/* Calculate the difference between the new and old values, and then
5002 	 * add it to the software stat value.
5003 	 */
5004 	if (new_data >= *prev_stat)
5005 		*cur_stat += new_data - *prev_stat;
5006 	else
5007 		/* to manage the potential roll-over */
5008 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5009 
5010 	/* Update the previously stored value to prepare for next read */
5011 	*prev_stat = new_data;
5012 }
5013 
5014 /**
5015  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5016  * @hw: ptr to the hardware info
5017  * @reg: offset of HW register to read from
5018  * @prev_stat_loaded: bool to specify if previous stats are loaded
5019  * @prev_stat: ptr to previous loaded stat value
5020  * @cur_stat: ptr to current stat value
5021  */
5022 void
5023 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5024 		  u64 *prev_stat, u64 *cur_stat)
5025 {
5026 	u32 new_data;
5027 
5028 	new_data = rd32(hw, reg);
5029 
5030 	/* device stats are not reset at PFR, they likely will not be zeroed
5031 	 * when the driver starts. Thus, save the value from the first read
5032 	 * without adding to the statistic value so that we report stats which
5033 	 * count up from zero.
5034 	 */
5035 	if (!prev_stat_loaded) {
5036 		*prev_stat = new_data;
5037 		return;
5038 	}
5039 
5040 	/* Calculate the difference between the new and old values, and then
5041 	 * add it to the software stat value.
5042 	 */
5043 	if (new_data >= *prev_stat)
5044 		*cur_stat += new_data - *prev_stat;
5045 	else
5046 		/* to manage the potential roll-over */
5047 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5048 
5049 	/* Update the previously stored value to prepare for next read */
5050 	*prev_stat = new_data;
5051 }
5052 
5053 /**
5054  * ice_sched_query_elem - query element information from HW
5055  * @hw: pointer to the HW struct
5056  * @node_teid: node TEID to be queried
5057  * @buf: buffer to element information
5058  *
5059  * This function queries HW element information
5060  */
5061 int
5062 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5063 		     struct ice_aqc_txsched_elem_data *buf)
5064 {
5065 	u16 buf_size, num_elem_ret = 0;
5066 	int status;
5067 
5068 	buf_size = sizeof(*buf);
5069 	memset(buf, 0, buf_size);
5070 	buf->node_teid = cpu_to_le32(node_teid);
5071 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5072 					  NULL);
5073 	if (status || num_elem_ret != 1)
5074 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5075 	return status;
5076 }
5077 
5078 /**
5079  * ice_aq_read_i2c
5080  * @hw: pointer to the hw struct
5081  * @topo_addr: topology address for a device to communicate with
5082  * @bus_addr: 7-bit I2C bus address
5083  * @addr: I2C memory address (I2C offset) with up to 16 bits
5084  * @params: I2C parameters: bit [7] - Repeated start,
5085  *			    bits [6:5] data offset size,
5086  *			    bit [4] - I2C address type,
5087  *			    bits [3:0] - data size to read (0-16 bytes)
5088  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5089  * @cd: pointer to command details structure or NULL
5090  *
5091  * Read I2C (0x06E2)
5092  */
5093 int
5094 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5095 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5096 		struct ice_sq_cd *cd)
5097 {
5098 	struct ice_aq_desc desc = { 0 };
5099 	struct ice_aqc_i2c *cmd;
5100 	u8 data_size;
5101 	int status;
5102 
5103 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5104 	cmd = &desc.params.read_write_i2c;
5105 
5106 	if (!data)
5107 		return -EINVAL;
5108 
5109 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5110 
5111 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5112 	cmd->topo_addr = topo_addr;
5113 	cmd->i2c_params = params;
5114 	cmd->i2c_addr = addr;
5115 
5116 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5117 	if (!status) {
5118 		struct ice_aqc_read_i2c_resp *resp;
5119 		u8 i;
5120 
5121 		resp = &desc.params.read_i2c_resp;
5122 		for (i = 0; i < data_size; i++) {
5123 			*data = resp->i2c_data[i];
5124 			data++;
5125 		}
5126 	}
5127 
5128 	return status;
5129 }
5130 
5131 /**
5132  * ice_aq_write_i2c
5133  * @hw: pointer to the hw struct
5134  * @topo_addr: topology address for a device to communicate with
5135  * @bus_addr: 7-bit I2C bus address
5136  * @addr: I2C memory address (I2C offset) with up to 16 bits
5137  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5138  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5139  * @cd: pointer to command details structure or NULL
5140  *
5141  * Write I2C (0x06E3)
5142  *
5143  * * Return:
5144  * * 0             - Successful write to the i2c device
5145  * * -EINVAL       - Data size greater than 4 bytes
5146  * * -EIO          - FW error
5147  */
5148 int
5149 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5150 		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5151 		 struct ice_sq_cd *cd)
5152 {
5153 	struct ice_aq_desc desc = { 0 };
5154 	struct ice_aqc_i2c *cmd;
5155 	u8 data_size;
5156 
5157 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5158 	cmd = &desc.params.read_write_i2c;
5159 
5160 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5161 
5162 	/* data_size limited to 4 */
5163 	if (data_size > 4)
5164 		return -EINVAL;
5165 
5166 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5167 	cmd->topo_addr = topo_addr;
5168 	cmd->i2c_params = params;
5169 	cmd->i2c_addr = addr;
5170 
5171 	memcpy(cmd->i2c_data, data, data_size);
5172 
5173 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5174 }
5175 
5176 /**
5177  * ice_aq_set_driver_param - Set driver parameter to share via firmware
5178  * @hw: pointer to the HW struct
5179  * @idx: parameter index to set
5180  * @value: the value to set the parameter to
5181  * @cd: pointer to command details structure or NULL
5182  *
5183  * Set the value of one of the software defined parameters. All PFs connected
5184  * to this device can read the value using ice_aq_get_driver_param.
5185  *
5186  * Note that firmware provides no synchronization or locking, and will not
5187  * save the parameter value during a device reset. It is expected that
5188  * a single PF will write the parameter value, while all other PFs will only
5189  * read it.
5190  */
5191 int
5192 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5193 			u32 value, struct ice_sq_cd *cd)
5194 {
5195 	struct ice_aqc_driver_shared_params *cmd;
5196 	struct ice_aq_desc desc;
5197 
5198 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5199 		return -EIO;
5200 
5201 	cmd = &desc.params.drv_shared_params;
5202 
5203 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5204 
5205 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5206 	cmd->param_indx = idx;
5207 	cmd->param_val = cpu_to_le32(value);
5208 
5209 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5210 }
5211 
5212 /**
5213  * ice_aq_get_driver_param - Get driver parameter shared via firmware
5214  * @hw: pointer to the HW struct
5215  * @idx: parameter index to set
5216  * @value: storage to return the shared parameter
5217  * @cd: pointer to command details structure or NULL
5218  *
5219  * Get the value of one of the software defined parameters.
5220  *
5221  * Note that firmware provides no synchronization or locking. It is expected
5222  * that only a single PF will write a given parameter.
5223  */
5224 int
5225 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5226 			u32 *value, struct ice_sq_cd *cd)
5227 {
5228 	struct ice_aqc_driver_shared_params *cmd;
5229 	struct ice_aq_desc desc;
5230 	int status;
5231 
5232 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5233 		return -EIO;
5234 
5235 	cmd = &desc.params.drv_shared_params;
5236 
5237 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5238 
5239 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5240 	cmd->param_indx = idx;
5241 
5242 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5243 	if (status)
5244 		return status;
5245 
5246 	*value = le32_to_cpu(cmd->param_val);
5247 
5248 	return 0;
5249 }
5250 
5251 /**
5252  * ice_aq_set_gpio
5253  * @hw: pointer to the hw struct
5254  * @gpio_ctrl_handle: GPIO controller node handle
5255  * @pin_idx: IO Number of the GPIO that needs to be set
5256  * @value: SW provide IO value to set in the LSB
5257  * @cd: pointer to command details structure or NULL
5258  *
5259  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5260  */
5261 int
5262 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5263 		struct ice_sq_cd *cd)
5264 {
5265 	struct ice_aqc_gpio *cmd;
5266 	struct ice_aq_desc desc;
5267 
5268 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5269 	cmd = &desc.params.read_write_gpio;
5270 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5271 	cmd->gpio_num = pin_idx;
5272 	cmd->gpio_val = value ? 1 : 0;
5273 
5274 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5275 }
5276 
5277 /**
5278  * ice_aq_get_gpio
5279  * @hw: pointer to the hw struct
5280  * @gpio_ctrl_handle: GPIO controller node handle
5281  * @pin_idx: IO Number of the GPIO that needs to be set
5282  * @value: IO value read
5283  * @cd: pointer to command details structure or NULL
5284  *
5285  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5286  * the topology
5287  */
5288 int
5289 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5290 		bool *value, struct ice_sq_cd *cd)
5291 {
5292 	struct ice_aqc_gpio *cmd;
5293 	struct ice_aq_desc desc;
5294 	int status;
5295 
5296 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5297 	cmd = &desc.params.read_write_gpio;
5298 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5299 	cmd->gpio_num = pin_idx;
5300 
5301 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5302 	if (status)
5303 		return status;
5304 
5305 	*value = !!cmd->gpio_val;
5306 	return 0;
5307 }
5308 
5309 /**
5310  * ice_is_fw_api_min_ver
5311  * @hw: pointer to the hardware structure
5312  * @maj: major version
5313  * @min: minor version
5314  * @patch: patch version
5315  *
5316  * Checks if the firmware API is minimum version
5317  */
5318 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5319 {
5320 	if (hw->api_maj_ver == maj) {
5321 		if (hw->api_min_ver > min)
5322 			return true;
5323 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5324 			return true;
5325 	} else if (hw->api_maj_ver > maj) {
5326 		return true;
5327 	}
5328 
5329 	return false;
5330 }
5331 
5332 /**
5333  * ice_fw_supports_link_override
5334  * @hw: pointer to the hardware structure
5335  *
5336  * Checks if the firmware supports link override
5337  */
5338 bool ice_fw_supports_link_override(struct ice_hw *hw)
5339 {
5340 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5341 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5342 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5343 }
5344 
5345 /**
5346  * ice_get_link_default_override
5347  * @ldo: pointer to the link default override struct
5348  * @pi: pointer to the port info struct
5349  *
5350  * Gets the link default override for a port
5351  */
5352 int
5353 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5354 			      struct ice_port_info *pi)
5355 {
5356 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5357 	struct ice_hw *hw = pi->hw;
5358 	int status;
5359 
5360 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5361 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5362 	if (status) {
5363 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5364 		return status;
5365 	}
5366 
5367 	/* Each port has its own config; calculate for our port */
5368 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5369 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5370 
5371 	/* link options first */
5372 	status = ice_read_sr_word(hw, tlv_start, &buf);
5373 	if (status) {
5374 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5375 		return status;
5376 	}
5377 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5378 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5379 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5380 
5381 	/* link PHY config */
5382 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5383 	status = ice_read_sr_word(hw, offset, &buf);
5384 	if (status) {
5385 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5386 		return status;
5387 	}
5388 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5389 
5390 	/* PHY types low */
5391 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5392 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5393 		status = ice_read_sr_word(hw, (offset + i), &buf);
5394 		if (status) {
5395 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5396 			return status;
5397 		}
5398 		/* shift 16 bits at a time to fill 64 bits */
5399 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5400 	}
5401 
5402 	/* PHY types high */
5403 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5404 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5405 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5406 		status = ice_read_sr_word(hw, (offset + i), &buf);
5407 		if (status) {
5408 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5409 			return status;
5410 		}
5411 		/* shift 16 bits at a time to fill 64 bits */
5412 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5413 	}
5414 
5415 	return status;
5416 }
5417 
5418 /**
5419  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5420  * @caps: get PHY capability data
5421  */
5422 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5423 {
5424 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5425 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5426 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5427 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5428 		return true;
5429 
5430 	return false;
5431 }
5432 
5433 /**
5434  * ice_aq_set_lldp_mib - Set the LLDP MIB
5435  * @hw: pointer to the HW struct
5436  * @mib_type: Local, Remote or both Local and Remote MIBs
5437  * @buf: pointer to the caller-supplied buffer to store the MIB block
5438  * @buf_size: size of the buffer (in bytes)
5439  * @cd: pointer to command details structure or NULL
5440  *
5441  * Set the LLDP MIB. (0x0A08)
5442  */
5443 int
5444 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5445 		    struct ice_sq_cd *cd)
5446 {
5447 	struct ice_aqc_lldp_set_local_mib *cmd;
5448 	struct ice_aq_desc desc;
5449 
5450 	cmd = &desc.params.lldp_set_mib;
5451 
5452 	if (buf_size == 0 || !buf)
5453 		return -EINVAL;
5454 
5455 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5456 
5457 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5458 	desc.datalen = cpu_to_le16(buf_size);
5459 
5460 	cmd->type = mib_type;
5461 	cmd->length = cpu_to_le16(buf_size);
5462 
5463 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5464 }
5465 
5466 /**
5467  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5468  * @hw: pointer to HW struct
5469  */
5470 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5471 {
5472 	if (hw->mac_type != ICE_MAC_E810)
5473 		return false;
5474 
5475 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5476 				     ICE_FW_API_LLDP_FLTR_MIN,
5477 				     ICE_FW_API_LLDP_FLTR_PATCH);
5478 }
5479 
5480 /**
5481  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5482  * @hw: pointer to HW struct
5483  * @vsi_num: absolute HW index for VSI
5484  * @add: boolean for if adding or removing a filter
5485  */
5486 int
5487 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5488 {
5489 	struct ice_aqc_lldp_filter_ctrl *cmd;
5490 	struct ice_aq_desc desc;
5491 
5492 	cmd = &desc.params.lldp_filter_ctrl;
5493 
5494 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5495 
5496 	if (add)
5497 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5498 	else
5499 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5500 
5501 	cmd->vsi_num = cpu_to_le16(vsi_num);
5502 
5503 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5504 }
5505 
5506 /**
5507  * ice_fw_supports_report_dflt_cfg
5508  * @hw: pointer to the hardware structure
5509  *
5510  * Checks if the firmware supports report default configuration
5511  */
5512 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5513 {
5514 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5515 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5516 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5517 }
5518 
5519 /* each of the indexes into the following array match the speed of a return
5520  * value from the list of AQ returned speeds like the range:
5521  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5522  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5523  * array. The array is defined as 15 elements long because the link_speed
5524  * returned by the firmware is a 16 bit * value, but is indexed
5525  * by [fls(speed) - 1]
5526  */
5527 static const u32 ice_aq_to_link_speed[15] = {
5528 	SPEED_10,	/* BIT(0) */
5529 	SPEED_100,
5530 	SPEED_1000,
5531 	SPEED_2500,
5532 	SPEED_5000,
5533 	SPEED_10000,
5534 	SPEED_20000,
5535 	SPEED_25000,
5536 	SPEED_40000,
5537 	SPEED_50000,
5538 	SPEED_100000,	/* BIT(10) */
5539 	0,
5540 	0,
5541 	0,
5542 	0		/* BIT(14) */
5543 };
5544 
5545 /**
5546  * ice_get_link_speed - get integer speed from table
5547  * @index: array index from fls(aq speed) - 1
5548  *
5549  * Returns: u32 value containing integer speed
5550  */
5551 u32 ice_get_link_speed(u16 index)
5552 {
5553 	return ice_aq_to_link_speed[index];
5554 }
5555