xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 static const char * const ice_link_mode_str_low[] = {
12 	[0] = "100BASE_TX",
13 	[1] = "100M_SGMII",
14 	[2] = "1000BASE_T",
15 	[3] = "1000BASE_SX",
16 	[4] = "1000BASE_LX",
17 	[5] = "1000BASE_KX",
18 	[6] = "1G_SGMII",
19 	[7] = "2500BASE_T",
20 	[8] = "2500BASE_X",
21 	[9] = "2500BASE_KX",
22 	[10] = "5GBASE_T",
23 	[11] = "5GBASE_KR",
24 	[12] = "10GBASE_T",
25 	[13] = "10G_SFI_DA",
26 	[14] = "10GBASE_SR",
27 	[15] = "10GBASE_LR",
28 	[16] = "10GBASE_KR_CR1",
29 	[17] = "10G_SFI_AOC_ACC",
30 	[18] = "10G_SFI_C2C",
31 	[19] = "25GBASE_T",
32 	[20] = "25GBASE_CR",
33 	[21] = "25GBASE_CR_S",
34 	[22] = "25GBASE_CR1",
35 	[23] = "25GBASE_SR",
36 	[24] = "25GBASE_LR",
37 	[25] = "25GBASE_KR",
38 	[26] = "25GBASE_KR_S",
39 	[27] = "25GBASE_KR1",
40 	[28] = "25G_AUI_AOC_ACC",
41 	[29] = "25G_AUI_C2C",
42 	[30] = "40GBASE_CR4",
43 	[31] = "40GBASE_SR4",
44 	[32] = "40GBASE_LR4",
45 	[33] = "40GBASE_KR4",
46 	[34] = "40G_XLAUI_AOC_ACC",
47 	[35] = "40G_XLAUI",
48 	[36] = "50GBASE_CR2",
49 	[37] = "50GBASE_SR2",
50 	[38] = "50GBASE_LR2",
51 	[39] = "50GBASE_KR2",
52 	[40] = "50G_LAUI2_AOC_ACC",
53 	[41] = "50G_LAUI2",
54 	[42] = "50G_AUI2_AOC_ACC",
55 	[43] = "50G_AUI2",
56 	[44] = "50GBASE_CP",
57 	[45] = "50GBASE_SR",
58 	[46] = "50GBASE_FR",
59 	[47] = "50GBASE_LR",
60 	[48] = "50GBASE_KR_PAM4",
61 	[49] = "50G_AUI1_AOC_ACC",
62 	[50] = "50G_AUI1",
63 	[51] = "100GBASE_CR4",
64 	[52] = "100GBASE_SR4",
65 	[53] = "100GBASE_LR4",
66 	[54] = "100GBASE_KR4",
67 	[55] = "100G_CAUI4_AOC_ACC",
68 	[56] = "100G_CAUI4",
69 	[57] = "100G_AUI4_AOC_ACC",
70 	[58] = "100G_AUI4",
71 	[59] = "100GBASE_CR_PAM4",
72 	[60] = "100GBASE_KR_PAM4",
73 	[61] = "100GBASE_CP2",
74 	[62] = "100GBASE_SR2",
75 	[63] = "100GBASE_DR",
76 };
77 
78 static const char * const ice_link_mode_str_high[] = {
79 	[0] = "100GBASE_KR2_PAM4",
80 	[1] = "100G_CAUI2_AOC_ACC",
81 	[2] = "100G_CAUI2",
82 	[3] = "100G_AUI2_AOC_ACC",
83 	[4] = "100G_AUI2",
84 };
85 
86 /**
87  * ice_dump_phy_type - helper function to dump phy_type
88  * @hw: pointer to the HW structure
89  * @low: 64 bit value for phy_type_low
90  * @high: 64 bit value for phy_type_high
91  * @prefix: prefix string to differentiate multiple dumps
92  */
93 static void
94 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
95 {
96 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
97 
98 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
99 		if (low & BIT_ULL(i))
100 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
101 				  prefix, i, ice_link_mode_str_low[i]);
102 	}
103 
104 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
105 
106 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
107 		if (high & BIT_ULL(i))
108 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
109 				  prefix, i, ice_link_mode_str_high[i]);
110 	}
111 }
112 
113 /**
114  * ice_set_mac_type - Sets MAC type
115  * @hw: pointer to the HW structure
116  *
117  * This function sets the MAC type of the adapter based on the
118  * vendor ID and device ID stored in the HW structure.
119  */
120 static int ice_set_mac_type(struct ice_hw *hw)
121 {
122 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
123 		return -ENODEV;
124 
125 	switch (hw->device_id) {
126 	case ICE_DEV_ID_E810C_BACKPLANE:
127 	case ICE_DEV_ID_E810C_QSFP:
128 	case ICE_DEV_ID_E810C_SFP:
129 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
130 	case ICE_DEV_ID_E810_XXV_QSFP:
131 	case ICE_DEV_ID_E810_XXV_SFP:
132 		hw->mac_type = ICE_MAC_E810;
133 		break;
134 	case ICE_DEV_ID_E823C_10G_BASE_T:
135 	case ICE_DEV_ID_E823C_BACKPLANE:
136 	case ICE_DEV_ID_E823C_QSFP:
137 	case ICE_DEV_ID_E823C_SFP:
138 	case ICE_DEV_ID_E823C_SGMII:
139 	case ICE_DEV_ID_E822C_10G_BASE_T:
140 	case ICE_DEV_ID_E822C_BACKPLANE:
141 	case ICE_DEV_ID_E822C_QSFP:
142 	case ICE_DEV_ID_E822C_SFP:
143 	case ICE_DEV_ID_E822C_SGMII:
144 	case ICE_DEV_ID_E822L_10G_BASE_T:
145 	case ICE_DEV_ID_E822L_BACKPLANE:
146 	case ICE_DEV_ID_E822L_SFP:
147 	case ICE_DEV_ID_E822L_SGMII:
148 	case ICE_DEV_ID_E823L_10G_BASE_T:
149 	case ICE_DEV_ID_E823L_1GBE:
150 	case ICE_DEV_ID_E823L_BACKPLANE:
151 	case ICE_DEV_ID_E823L_QSFP:
152 	case ICE_DEV_ID_E823L_SFP:
153 		hw->mac_type = ICE_MAC_GENERIC;
154 		break;
155 	default:
156 		hw->mac_type = ICE_MAC_UNKNOWN;
157 		break;
158 	}
159 
160 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
161 	return 0;
162 }
163 
164 /**
165  * ice_is_e810
166  * @hw: pointer to the hardware structure
167  *
168  * returns true if the device is E810 based, false if not.
169  */
170 bool ice_is_e810(struct ice_hw *hw)
171 {
172 	return hw->mac_type == ICE_MAC_E810;
173 }
174 
175 /**
176  * ice_is_e810t
177  * @hw: pointer to the hardware structure
178  *
179  * returns true if the device is E810T based, false if not.
180  */
181 bool ice_is_e810t(struct ice_hw *hw)
182 {
183 	switch (hw->device_id) {
184 	case ICE_DEV_ID_E810C_SFP:
185 		switch (hw->subsystem_device_id) {
186 		case ICE_SUBDEV_ID_E810T:
187 		case ICE_SUBDEV_ID_E810T2:
188 		case ICE_SUBDEV_ID_E810T3:
189 		case ICE_SUBDEV_ID_E810T4:
190 		case ICE_SUBDEV_ID_E810T6:
191 		case ICE_SUBDEV_ID_E810T7:
192 			return true;
193 		}
194 		break;
195 	case ICE_DEV_ID_E810C_QSFP:
196 		switch (hw->subsystem_device_id) {
197 		case ICE_SUBDEV_ID_E810T2:
198 		case ICE_SUBDEV_ID_E810T3:
199 		case ICE_SUBDEV_ID_E810T5:
200 			return true;
201 		}
202 		break;
203 	default:
204 		break;
205 	}
206 
207 	return false;
208 }
209 
210 /**
211  * ice_is_e823
212  * @hw: pointer to the hardware structure
213  *
214  * returns true if the device is E823-L or E823-C based, false if not.
215  */
216 bool ice_is_e823(struct ice_hw *hw)
217 {
218 	switch (hw->device_id) {
219 	case ICE_DEV_ID_E823L_BACKPLANE:
220 	case ICE_DEV_ID_E823L_SFP:
221 	case ICE_DEV_ID_E823L_10G_BASE_T:
222 	case ICE_DEV_ID_E823L_1GBE:
223 	case ICE_DEV_ID_E823L_QSFP:
224 	case ICE_DEV_ID_E823C_BACKPLANE:
225 	case ICE_DEV_ID_E823C_QSFP:
226 	case ICE_DEV_ID_E823C_SFP:
227 	case ICE_DEV_ID_E823C_10G_BASE_T:
228 	case ICE_DEV_ID_E823C_SGMII:
229 		return true;
230 	default:
231 		return false;
232 	}
233 }
234 
235 /**
236  * ice_clear_pf_cfg - Clear PF configuration
237  * @hw: pointer to the hardware structure
238  *
239  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
240  * configuration, flow director filters, etc.).
241  */
242 int ice_clear_pf_cfg(struct ice_hw *hw)
243 {
244 	struct ice_aq_desc desc;
245 
246 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
247 
248 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
249 }
250 
251 /**
252  * ice_aq_manage_mac_read - manage MAC address read command
253  * @hw: pointer to the HW struct
254  * @buf: a virtual buffer to hold the manage MAC read response
255  * @buf_size: Size of the virtual buffer
256  * @cd: pointer to command details structure or NULL
257  *
258  * This function is used to return per PF station MAC address (0x0107).
259  * NOTE: Upon successful completion of this command, MAC address information
260  * is returned in user specified buffer. Please interpret user specified
261  * buffer as "manage_mac_read" response.
262  * Response such as various MAC addresses are stored in HW struct (port.mac)
263  * ice_discover_dev_caps is expected to be called before this function is
264  * called.
265  */
266 static int
267 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
268 		       struct ice_sq_cd *cd)
269 {
270 	struct ice_aqc_manage_mac_read_resp *resp;
271 	struct ice_aqc_manage_mac_read *cmd;
272 	struct ice_aq_desc desc;
273 	int status;
274 	u16 flags;
275 	u8 i;
276 
277 	cmd = &desc.params.mac_read;
278 
279 	if (buf_size < sizeof(*resp))
280 		return -EINVAL;
281 
282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
283 
284 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
285 	if (status)
286 		return status;
287 
288 	resp = buf;
289 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
290 
291 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
292 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
293 		return -EIO;
294 	}
295 
296 	/* A single port can report up to two (LAN and WoL) addresses */
297 	for (i = 0; i < cmd->num_addr; i++)
298 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
299 			ether_addr_copy(hw->port_info->mac.lan_addr,
300 					resp[i].mac_addr);
301 			ether_addr_copy(hw->port_info->mac.perm_addr,
302 					resp[i].mac_addr);
303 			break;
304 		}
305 
306 	return 0;
307 }
308 
309 /**
310  * ice_aq_get_phy_caps - returns PHY capabilities
311  * @pi: port information structure
312  * @qual_mods: report qualified modules
313  * @report_mode: report mode capabilities
314  * @pcaps: structure for PHY capabilities to be filled
315  * @cd: pointer to command details structure or NULL
316  *
317  * Returns the various PHY capabilities supported on the Port (0x0600)
318  */
319 int
320 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
321 		    struct ice_aqc_get_phy_caps_data *pcaps,
322 		    struct ice_sq_cd *cd)
323 {
324 	struct ice_aqc_get_phy_caps *cmd;
325 	u16 pcaps_size = sizeof(*pcaps);
326 	struct ice_aq_desc desc;
327 	const char *prefix;
328 	struct ice_hw *hw;
329 	int status;
330 
331 	cmd = &desc.params.get_phy;
332 
333 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
334 		return -EINVAL;
335 	hw = pi->hw;
336 
337 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
338 	    !ice_fw_supports_report_dflt_cfg(hw))
339 		return -EINVAL;
340 
341 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
342 
343 	if (qual_mods)
344 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
345 
346 	cmd->param0 |= cpu_to_le16(report_mode);
347 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
348 
349 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
350 
351 	switch (report_mode) {
352 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
353 		prefix = "phy_caps_media";
354 		break;
355 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
356 		prefix = "phy_caps_no_media";
357 		break;
358 	case ICE_AQC_REPORT_ACTIVE_CFG:
359 		prefix = "phy_caps_active";
360 		break;
361 	case ICE_AQC_REPORT_DFLT_CFG:
362 		prefix = "phy_caps_default";
363 		break;
364 	default:
365 		prefix = "phy_caps_invalid";
366 	}
367 
368 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
369 			  le64_to_cpu(pcaps->phy_type_high), prefix);
370 
371 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
372 		  prefix, report_mode);
373 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
374 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
375 		  pcaps->low_power_ctrl_an);
376 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
377 		  pcaps->eee_cap);
378 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
379 		  pcaps->eeer_value);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
381 		  pcaps->link_fec_options);
382 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
383 		  prefix, pcaps->module_compliance_enforcement);
384 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
385 		  prefix, pcaps->extended_compliance_code);
386 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
387 		  pcaps->module_type[0]);
388 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
389 		  pcaps->module_type[1]);
390 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
391 		  pcaps->module_type[2]);
392 
393 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
394 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
395 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
396 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
397 		       sizeof(pi->phy.link_info.module_type));
398 	}
399 
400 	return status;
401 }
402 
403 /**
404  * ice_aq_get_link_topo_handle - get link topology node return status
405  * @pi: port information structure
406  * @node_type: requested node type
407  * @cd: pointer to command details structure or NULL
408  *
409  * Get link topology node return status for specified node type (0x06E0)
410  *
411  * Node type cage can be used to determine if cage is present. If AQC
412  * returns error (ENOENT), then no cage present. If no cage present, then
413  * connection type is backplane or BASE-T.
414  */
415 static int
416 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
417 			    struct ice_sq_cd *cd)
418 {
419 	struct ice_aqc_get_link_topo *cmd;
420 	struct ice_aq_desc desc;
421 
422 	cmd = &desc.params.get_link_topo;
423 
424 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
425 
426 	cmd->addr.topo_params.node_type_ctx =
427 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
428 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
429 
430 	/* set node type */
431 	cmd->addr.topo_params.node_type_ctx |=
432 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
433 
434 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
435 }
436 
437 /**
438  * ice_is_media_cage_present
439  * @pi: port information structure
440  *
441  * Returns true if media cage is present, else false. If no cage, then
442  * media type is backplane or BASE-T.
443  */
444 static bool ice_is_media_cage_present(struct ice_port_info *pi)
445 {
446 	/* Node type cage can be used to determine if cage is present. If AQC
447 	 * returns error (ENOENT), then no cage present. If no cage present then
448 	 * connection type is backplane or BASE-T.
449 	 */
450 	return !ice_aq_get_link_topo_handle(pi,
451 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
452 					    NULL);
453 }
454 
455 /**
456  * ice_get_media_type - Gets media type
457  * @pi: port information structure
458  */
459 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
460 {
461 	struct ice_link_status *hw_link_info;
462 
463 	if (!pi)
464 		return ICE_MEDIA_UNKNOWN;
465 
466 	hw_link_info = &pi->phy.link_info;
467 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
468 		/* If more than one media type is selected, report unknown */
469 		return ICE_MEDIA_UNKNOWN;
470 
471 	if (hw_link_info->phy_type_low) {
472 		/* 1G SGMII is a special case where some DA cable PHYs
473 		 * may show this as an option when it really shouldn't
474 		 * be since SGMII is meant to be between a MAC and a PHY
475 		 * in a backplane. Try to detect this case and handle it
476 		 */
477 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
478 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
479 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
480 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
481 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
482 			return ICE_MEDIA_DA;
483 
484 		switch (hw_link_info->phy_type_low) {
485 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
486 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
487 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
488 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
489 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
490 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
491 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
492 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
493 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
494 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
495 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
496 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
497 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
498 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
499 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
500 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
501 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
502 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
503 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
504 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
505 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
506 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
507 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
508 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
509 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
510 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
511 			return ICE_MEDIA_FIBER;
512 		case ICE_PHY_TYPE_LOW_100BASE_TX:
513 		case ICE_PHY_TYPE_LOW_1000BASE_T:
514 		case ICE_PHY_TYPE_LOW_2500BASE_T:
515 		case ICE_PHY_TYPE_LOW_5GBASE_T:
516 		case ICE_PHY_TYPE_LOW_10GBASE_T:
517 		case ICE_PHY_TYPE_LOW_25GBASE_T:
518 			return ICE_MEDIA_BASET;
519 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
520 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
521 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
522 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
523 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
524 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
525 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
526 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
527 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
528 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
529 			return ICE_MEDIA_DA;
530 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
531 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
532 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
533 		case ICE_PHY_TYPE_LOW_50G_AUI2:
534 		case ICE_PHY_TYPE_LOW_50G_AUI1:
535 		case ICE_PHY_TYPE_LOW_100G_AUI4:
536 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
537 			if (ice_is_media_cage_present(pi))
538 				return ICE_MEDIA_DA;
539 			fallthrough;
540 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
541 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
542 		case ICE_PHY_TYPE_LOW_2500BASE_X:
543 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
544 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
545 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
546 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
547 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
548 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
549 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
550 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
551 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
552 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
553 			return ICE_MEDIA_BACKPLANE;
554 		}
555 	} else {
556 		switch (hw_link_info->phy_type_high) {
557 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
558 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
559 			if (ice_is_media_cage_present(pi))
560 				return ICE_MEDIA_DA;
561 			fallthrough;
562 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
563 			return ICE_MEDIA_BACKPLANE;
564 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
565 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
566 			return ICE_MEDIA_FIBER;
567 		}
568 	}
569 	return ICE_MEDIA_UNKNOWN;
570 }
571 
572 /**
573  * ice_aq_get_link_info
574  * @pi: port information structure
575  * @ena_lse: enable/disable LinkStatusEvent reporting
576  * @link: pointer to link status structure - optional
577  * @cd: pointer to command details structure or NULL
578  *
579  * Get Link Status (0x607). Returns the link status of the adapter.
580  */
581 int
582 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
583 		     struct ice_link_status *link, struct ice_sq_cd *cd)
584 {
585 	struct ice_aqc_get_link_status_data link_data = { 0 };
586 	struct ice_aqc_get_link_status *resp;
587 	struct ice_link_status *li_old, *li;
588 	enum ice_media_type *hw_media_type;
589 	struct ice_fc_info *hw_fc_info;
590 	bool tx_pause, rx_pause;
591 	struct ice_aq_desc desc;
592 	struct ice_hw *hw;
593 	u16 cmd_flags;
594 	int status;
595 
596 	if (!pi)
597 		return -EINVAL;
598 	hw = pi->hw;
599 	li_old = &pi->phy.link_info_old;
600 	hw_media_type = &pi->phy.media_type;
601 	li = &pi->phy.link_info;
602 	hw_fc_info = &pi->fc;
603 
604 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
605 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
606 	resp = &desc.params.get_link_status;
607 	resp->cmd_flags = cpu_to_le16(cmd_flags);
608 	resp->lport_num = pi->lport;
609 
610 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
611 
612 	if (status)
613 		return status;
614 
615 	/* save off old link status information */
616 	*li_old = *li;
617 
618 	/* update current link status information */
619 	li->link_speed = le16_to_cpu(link_data.link_speed);
620 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
621 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
622 	*hw_media_type = ice_get_media_type(pi);
623 	li->link_info = link_data.link_info;
624 	li->link_cfg_err = link_data.link_cfg_err;
625 	li->an_info = link_data.an_info;
626 	li->ext_info = link_data.ext_info;
627 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
628 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
629 	li->topo_media_conflict = link_data.topo_media_conflict;
630 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
631 				      ICE_AQ_CFG_PACING_TYPE_M);
632 
633 	/* update fc info */
634 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
635 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
636 	if (tx_pause && rx_pause)
637 		hw_fc_info->current_mode = ICE_FC_FULL;
638 	else if (tx_pause)
639 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
640 	else if (rx_pause)
641 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
642 	else
643 		hw_fc_info->current_mode = ICE_FC_NONE;
644 
645 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
646 
647 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
648 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
649 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
650 		  (unsigned long long)li->phy_type_low);
651 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
652 		  (unsigned long long)li->phy_type_high);
653 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
654 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
655 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
656 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
657 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
658 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
659 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
660 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
661 		  li->max_frame_size);
662 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
663 
664 	/* save link status information */
665 	if (link)
666 		*link = *li;
667 
668 	/* flag cleared so calling functions don't call AQ again */
669 	pi->phy.get_link_info = false;
670 
671 	return 0;
672 }
673 
674 /**
675  * ice_fill_tx_timer_and_fc_thresh
676  * @hw: pointer to the HW struct
677  * @cmd: pointer to MAC cfg structure
678  *
679  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
680  * descriptor
681  */
682 static void
683 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
684 				struct ice_aqc_set_mac_cfg *cmd)
685 {
686 	u16 fc_thres_val, tx_timer_val;
687 	u32 val;
688 
689 	/* We read back the transmit timer and FC threshold value of
690 	 * LFC. Thus, we will use index =
691 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
692 	 *
693 	 * Also, because we are operating on transmit timer and FC
694 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
695 	 */
696 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
697 
698 	/* Retrieve the transmit timer */
699 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
700 	tx_timer_val = val &
701 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
702 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
703 
704 	/* Retrieve the FC threshold */
705 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
706 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
707 
708 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
709 }
710 
711 /**
712  * ice_aq_set_mac_cfg
713  * @hw: pointer to the HW struct
714  * @max_frame_size: Maximum Frame Size to be supported
715  * @cd: pointer to command details structure or NULL
716  *
717  * Set MAC configuration (0x0603)
718  */
719 int
720 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_set_mac_cfg *cmd;
723 	struct ice_aq_desc desc;
724 
725 	cmd = &desc.params.set_mac_cfg;
726 
727 	if (max_frame_size == 0)
728 		return -EINVAL;
729 
730 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
731 
732 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
733 
734 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
735 
736 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
737 }
738 
739 /**
740  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
741  * @hw: pointer to the HW struct
742  */
743 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
744 {
745 	struct ice_switch_info *sw;
746 	int status;
747 
748 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
749 				       sizeof(*hw->switch_info), GFP_KERNEL);
750 	sw = hw->switch_info;
751 
752 	if (!sw)
753 		return -ENOMEM;
754 
755 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
756 	sw->prof_res_bm_init = 0;
757 
758 	status = ice_init_def_sw_recp(hw);
759 	if (status) {
760 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
761 		return status;
762 	}
763 	return 0;
764 }
765 
766 /**
767  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
768  * @hw: pointer to the HW struct
769  */
770 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
771 {
772 	struct ice_switch_info *sw = hw->switch_info;
773 	struct ice_vsi_list_map_info *v_pos_map;
774 	struct ice_vsi_list_map_info *v_tmp_map;
775 	struct ice_sw_recipe *recps;
776 	u8 i;
777 
778 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
779 				 list_entry) {
780 		list_del(&v_pos_map->list_entry);
781 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
782 	}
783 	recps = sw->recp_list;
784 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
785 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
786 
787 		recps[i].root_rid = i;
788 		list_for_each_entry_safe(rg_entry, tmprg_entry,
789 					 &recps[i].rg_list, l_entry) {
790 			list_del(&rg_entry->l_entry);
791 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
792 		}
793 
794 		if (recps[i].adv_rule) {
795 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
796 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
797 
798 			mutex_destroy(&recps[i].filt_rule_lock);
799 			list_for_each_entry_safe(lst_itr, tmp_entry,
800 						 &recps[i].filt_rules,
801 						 list_entry) {
802 				list_del(&lst_itr->list_entry);
803 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
804 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
805 			}
806 		} else {
807 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
808 
809 			mutex_destroy(&recps[i].filt_rule_lock);
810 			list_for_each_entry_safe(lst_itr, tmp_entry,
811 						 &recps[i].filt_rules,
812 						 list_entry) {
813 				list_del(&lst_itr->list_entry);
814 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
815 			}
816 		}
817 		if (recps[i].root_buf)
818 			devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
819 	}
820 	ice_rm_all_sw_replay_rule_info(hw);
821 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
822 	devm_kfree(ice_hw_to_dev(hw), sw);
823 }
824 
825 /**
826  * ice_get_fw_log_cfg - get FW logging configuration
827  * @hw: pointer to the HW struct
828  */
829 static int ice_get_fw_log_cfg(struct ice_hw *hw)
830 {
831 	struct ice_aq_desc desc;
832 	__le16 *config;
833 	int status;
834 	u16 size;
835 
836 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
837 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
838 	if (!config)
839 		return -ENOMEM;
840 
841 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
842 
843 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
844 	if (!status) {
845 		u16 i;
846 
847 		/* Save FW logging information into the HW structure */
848 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
849 			u16 v, m, flgs;
850 
851 			v = le16_to_cpu(config[i]);
852 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
853 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
854 
855 			if (m < ICE_AQC_FW_LOG_ID_MAX)
856 				hw->fw_log.evnts[m].cur = flgs;
857 		}
858 	}
859 
860 	devm_kfree(ice_hw_to_dev(hw), config);
861 
862 	return status;
863 }
864 
865 /**
866  * ice_cfg_fw_log - configure FW logging
867  * @hw: pointer to the HW struct
868  * @enable: enable certain FW logging events if true, disable all if false
869  *
870  * This function enables/disables the FW logging via Rx CQ events and a UART
871  * port based on predetermined configurations. FW logging via the Rx CQ can be
872  * enabled/disabled for individual PF's. However, FW logging via the UART can
873  * only be enabled/disabled for all PFs on the same device.
874  *
875  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
876  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
877  * before initializing the device.
878  *
879  * When re/configuring FW logging, callers need to update the "cfg" elements of
880  * the hw->fw_log.evnts array with the desired logging event configurations for
881  * modules of interest. When disabling FW logging completely, the callers can
882  * just pass false in the "enable" parameter. On completion, the function will
883  * update the "cur" element of the hw->fw_log.evnts array with the resulting
884  * logging event configurations of the modules that are being re/configured. FW
885  * logging modules that are not part of a reconfiguration operation retain their
886  * previous states.
887  *
888  * Before resetting the device, it is recommended that the driver disables FW
889  * logging before shutting down the control queue. When disabling FW logging
890  * ("enable" = false), the latest configurations of FW logging events stored in
891  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
892  * a device reset.
893  *
894  * When enabling FW logging to emit log messages via the Rx CQ during the
895  * device's initialization phase, a mechanism alternative to interrupt handlers
896  * needs to be used to extract FW log messages from the Rx CQ periodically and
897  * to prevent the Rx CQ from being full and stalling other types of control
898  * messages from FW to SW. Interrupts are typically disabled during the device's
899  * initialization phase.
900  */
901 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
902 {
903 	struct ice_aqc_fw_logging *cmd;
904 	u16 i, chgs = 0, len = 0;
905 	struct ice_aq_desc desc;
906 	__le16 *data = NULL;
907 	u8 actv_evnts = 0;
908 	void *buf = NULL;
909 	int status = 0;
910 
911 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
912 		return 0;
913 
914 	/* Disable FW logging only when the control queue is still responsive */
915 	if (!enable &&
916 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
917 		return 0;
918 
919 	/* Get current FW log settings */
920 	status = ice_get_fw_log_cfg(hw);
921 	if (status)
922 		return status;
923 
924 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
925 	cmd = &desc.params.fw_logging;
926 
927 	/* Indicate which controls are valid */
928 	if (hw->fw_log.cq_en)
929 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
930 
931 	if (hw->fw_log.uart_en)
932 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
933 
934 	if (enable) {
935 		/* Fill in an array of entries with FW logging modules and
936 		 * logging events being reconfigured.
937 		 */
938 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
939 			u16 val;
940 
941 			/* Keep track of enabled event types */
942 			actv_evnts |= hw->fw_log.evnts[i].cfg;
943 
944 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
945 				continue;
946 
947 			if (!data) {
948 				data = devm_kcalloc(ice_hw_to_dev(hw),
949 						    ICE_AQC_FW_LOG_ID_MAX,
950 						    sizeof(*data),
951 						    GFP_KERNEL);
952 				if (!data)
953 					return -ENOMEM;
954 			}
955 
956 			val = i << ICE_AQC_FW_LOG_ID_S;
957 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
958 			data[chgs++] = cpu_to_le16(val);
959 		}
960 
961 		/* Only enable FW logging if at least one module is specified.
962 		 * If FW logging is currently enabled but all modules are not
963 		 * enabled to emit log messages, disable FW logging altogether.
964 		 */
965 		if (actv_evnts) {
966 			/* Leave if there is effectively no change */
967 			if (!chgs)
968 				goto out;
969 
970 			if (hw->fw_log.cq_en)
971 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
972 
973 			if (hw->fw_log.uart_en)
974 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
975 
976 			buf = data;
977 			len = sizeof(*data) * chgs;
978 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
979 		}
980 	}
981 
982 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
983 	if (!status) {
984 		/* Update the current configuration to reflect events enabled.
985 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
986 		 * logging mode is enabled for the device. They do not reflect
987 		 * actual modules being enabled to emit log messages. So, their
988 		 * values remain unchanged even when all modules are disabled.
989 		 */
990 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
991 
992 		hw->fw_log.actv_evnts = actv_evnts;
993 		for (i = 0; i < cnt; i++) {
994 			u16 v, m;
995 
996 			if (!enable) {
997 				/* When disabling all FW logging events as part
998 				 * of device's de-initialization, the original
999 				 * configurations are retained, and can be used
1000 				 * to reconfigure FW logging later if the device
1001 				 * is re-initialized.
1002 				 */
1003 				hw->fw_log.evnts[i].cur = 0;
1004 				continue;
1005 			}
1006 
1007 			v = le16_to_cpu(data[i]);
1008 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1009 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1010 		}
1011 	}
1012 
1013 out:
1014 	if (data)
1015 		devm_kfree(ice_hw_to_dev(hw), data);
1016 
1017 	return status;
1018 }
1019 
1020 /**
1021  * ice_output_fw_log
1022  * @hw: pointer to the HW struct
1023  * @desc: pointer to the AQ message descriptor
1024  * @buf: pointer to the buffer accompanying the AQ message
1025  *
1026  * Formats a FW Log message and outputs it via the standard driver logs.
1027  */
1028 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1029 {
1030 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1031 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1032 			le16_to_cpu(desc->datalen));
1033 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1034 }
1035 
1036 /**
1037  * ice_get_itr_intrl_gran
1038  * @hw: pointer to the HW struct
1039  *
1040  * Determines the ITR/INTRL granularities based on the maximum aggregate
1041  * bandwidth according to the device's configuration during power-on.
1042  */
1043 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1044 {
1045 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1046 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1047 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1048 
1049 	switch (max_agg_bw) {
1050 	case ICE_MAX_AGG_BW_200G:
1051 	case ICE_MAX_AGG_BW_100G:
1052 	case ICE_MAX_AGG_BW_50G:
1053 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1054 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1055 		break;
1056 	case ICE_MAX_AGG_BW_25G:
1057 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1058 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1059 		break;
1060 	}
1061 }
1062 
1063 /**
1064  * ice_init_hw - main hardware initialization routine
1065  * @hw: pointer to the hardware structure
1066  */
1067 int ice_init_hw(struct ice_hw *hw)
1068 {
1069 	struct ice_aqc_get_phy_caps_data *pcaps;
1070 	u16 mac_buf_len;
1071 	void *mac_buf;
1072 	int status;
1073 
1074 	/* Set MAC type based on DeviceID */
1075 	status = ice_set_mac_type(hw);
1076 	if (status)
1077 		return status;
1078 
1079 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1080 			 PF_FUNC_RID_FUNC_NUM_M) >>
1081 		PF_FUNC_RID_FUNC_NUM_S;
1082 
1083 	status = ice_reset(hw, ICE_RESET_PFR);
1084 	if (status)
1085 		return status;
1086 
1087 	ice_get_itr_intrl_gran(hw);
1088 
1089 	status = ice_create_all_ctrlq(hw);
1090 	if (status)
1091 		goto err_unroll_cqinit;
1092 
1093 	/* Enable FW logging. Not fatal if this fails. */
1094 	status = ice_cfg_fw_log(hw, true);
1095 	if (status)
1096 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1097 
1098 	status = ice_clear_pf_cfg(hw);
1099 	if (status)
1100 		goto err_unroll_cqinit;
1101 
1102 	/* Set bit to enable Flow Director filters */
1103 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1104 	INIT_LIST_HEAD(&hw->fdir_list_head);
1105 
1106 	ice_clear_pxe_mode(hw);
1107 
1108 	status = ice_init_nvm(hw);
1109 	if (status)
1110 		goto err_unroll_cqinit;
1111 
1112 	status = ice_get_caps(hw);
1113 	if (status)
1114 		goto err_unroll_cqinit;
1115 
1116 	if (!hw->port_info)
1117 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1118 					     sizeof(*hw->port_info),
1119 					     GFP_KERNEL);
1120 	if (!hw->port_info) {
1121 		status = -ENOMEM;
1122 		goto err_unroll_cqinit;
1123 	}
1124 
1125 	/* set the back pointer to HW */
1126 	hw->port_info->hw = hw;
1127 
1128 	/* Initialize port_info struct with switch configuration data */
1129 	status = ice_get_initial_sw_cfg(hw);
1130 	if (status)
1131 		goto err_unroll_alloc;
1132 
1133 	hw->evb_veb = true;
1134 
1135 	/* init xarray for identifying scheduling nodes uniquely */
1136 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1137 
1138 	/* Query the allocated resources for Tx scheduler */
1139 	status = ice_sched_query_res_alloc(hw);
1140 	if (status) {
1141 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1142 		goto err_unroll_alloc;
1143 	}
1144 	ice_sched_get_psm_clk_freq(hw);
1145 
1146 	/* Initialize port_info struct with scheduler data */
1147 	status = ice_sched_init_port(hw->port_info);
1148 	if (status)
1149 		goto err_unroll_sched;
1150 
1151 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1152 	if (!pcaps) {
1153 		status = -ENOMEM;
1154 		goto err_unroll_sched;
1155 	}
1156 
1157 	/* Initialize port_info struct with PHY capabilities */
1158 	status = ice_aq_get_phy_caps(hw->port_info, false,
1159 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1160 				     NULL);
1161 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1162 	if (status)
1163 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1164 			 status);
1165 
1166 	/* Initialize port_info struct with link information */
1167 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1168 	if (status)
1169 		goto err_unroll_sched;
1170 
1171 	/* need a valid SW entry point to build a Tx tree */
1172 	if (!hw->sw_entry_point_layer) {
1173 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1174 		status = -EIO;
1175 		goto err_unroll_sched;
1176 	}
1177 	INIT_LIST_HEAD(&hw->agg_list);
1178 	/* Initialize max burst size */
1179 	if (!hw->max_burst_size)
1180 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1181 
1182 	status = ice_init_fltr_mgmt_struct(hw);
1183 	if (status)
1184 		goto err_unroll_sched;
1185 
1186 	/* Get MAC information */
1187 	/* A single port can report up to two (LAN and WoL) addresses */
1188 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1189 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1190 			       GFP_KERNEL);
1191 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1192 
1193 	if (!mac_buf) {
1194 		status = -ENOMEM;
1195 		goto err_unroll_fltr_mgmt_struct;
1196 	}
1197 
1198 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1199 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1200 
1201 	if (status)
1202 		goto err_unroll_fltr_mgmt_struct;
1203 	/* enable jumbo frame support at MAC level */
1204 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1205 	if (status)
1206 		goto err_unroll_fltr_mgmt_struct;
1207 	/* Obtain counter base index which would be used by flow director */
1208 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1209 	if (status)
1210 		goto err_unroll_fltr_mgmt_struct;
1211 	status = ice_init_hw_tbls(hw);
1212 	if (status)
1213 		goto err_unroll_fltr_mgmt_struct;
1214 	mutex_init(&hw->tnl_lock);
1215 	return 0;
1216 
1217 err_unroll_fltr_mgmt_struct:
1218 	ice_cleanup_fltr_mgmt_struct(hw);
1219 err_unroll_sched:
1220 	ice_sched_cleanup_all(hw);
1221 err_unroll_alloc:
1222 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1223 err_unroll_cqinit:
1224 	ice_destroy_all_ctrlq(hw);
1225 	return status;
1226 }
1227 
1228 /**
1229  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1230  * @hw: pointer to the hardware structure
1231  *
1232  * This should be called only during nominal operation, not as a result of
1233  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1234  * applicable initializations if it fails for any reason.
1235  */
1236 void ice_deinit_hw(struct ice_hw *hw)
1237 {
1238 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1239 	ice_cleanup_fltr_mgmt_struct(hw);
1240 
1241 	ice_sched_cleanup_all(hw);
1242 	ice_sched_clear_agg(hw);
1243 	ice_free_seg(hw);
1244 	ice_free_hw_tbls(hw);
1245 	mutex_destroy(&hw->tnl_lock);
1246 
1247 	/* Attempt to disable FW logging before shutting down control queues */
1248 	ice_cfg_fw_log(hw, false);
1249 	ice_destroy_all_ctrlq(hw);
1250 
1251 	/* Clear VSI contexts if not already cleared */
1252 	ice_clear_all_vsi_ctx(hw);
1253 }
1254 
1255 /**
1256  * ice_check_reset - Check to see if a global reset is complete
1257  * @hw: pointer to the hardware structure
1258  */
1259 int ice_check_reset(struct ice_hw *hw)
1260 {
1261 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1262 
1263 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1264 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1265 	 * Add 1sec for outstanding AQ commands that can take a long time.
1266 	 */
1267 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1268 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1269 
1270 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1271 		mdelay(100);
1272 		reg = rd32(hw, GLGEN_RSTAT);
1273 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1274 			break;
1275 	}
1276 
1277 	if (cnt == grst_timeout) {
1278 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1279 		return -EIO;
1280 	}
1281 
1282 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1283 				 GLNVM_ULD_PCIER_DONE_1_M |\
1284 				 GLNVM_ULD_CORER_DONE_M |\
1285 				 GLNVM_ULD_GLOBR_DONE_M |\
1286 				 GLNVM_ULD_POR_DONE_M |\
1287 				 GLNVM_ULD_POR_DONE_1_M |\
1288 				 GLNVM_ULD_PCIER_DONE_2_M)
1289 
1290 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1291 					  GLNVM_ULD_PE_DONE_M : 0);
1292 
1293 	/* Device is Active; check Global Reset processes are done */
1294 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1295 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1296 		if (reg == uld_mask) {
1297 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1298 			break;
1299 		}
1300 		mdelay(10);
1301 	}
1302 
1303 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1304 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1305 			  reg);
1306 		return -EIO;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 /**
1313  * ice_pf_reset - Reset the PF
1314  * @hw: pointer to the hardware structure
1315  *
1316  * If a global reset has been triggered, this function checks
1317  * for its completion and then issues the PF reset
1318  */
1319 static int ice_pf_reset(struct ice_hw *hw)
1320 {
1321 	u32 cnt, reg;
1322 
1323 	/* If at function entry a global reset was already in progress, i.e.
1324 	 * state is not 'device active' or any of the reset done bits are not
1325 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1326 	 * global reset is done.
1327 	 */
1328 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1329 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1330 		/* poll on global reset currently in progress until done */
1331 		if (ice_check_reset(hw))
1332 			return -EIO;
1333 
1334 		return 0;
1335 	}
1336 
1337 	/* Reset the PF */
1338 	reg = rd32(hw, PFGEN_CTRL);
1339 
1340 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1341 
1342 	/* Wait for the PFR to complete. The wait time is the global config lock
1343 	 * timeout plus the PFR timeout which will account for a possible reset
1344 	 * that is occurring during a download package operation.
1345 	 */
1346 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1347 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1348 		reg = rd32(hw, PFGEN_CTRL);
1349 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1350 			break;
1351 
1352 		mdelay(1);
1353 	}
1354 
1355 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1356 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1357 		return -EIO;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  * ice_reset - Perform different types of reset
1365  * @hw: pointer to the hardware structure
1366  * @req: reset request
1367  *
1368  * This function triggers a reset as specified by the req parameter.
1369  *
1370  * Note:
1371  * If anything other than a PF reset is triggered, PXE mode is restored.
1372  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1373  * interface has been restored in the rebuild flow.
1374  */
1375 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1376 {
1377 	u32 val = 0;
1378 
1379 	switch (req) {
1380 	case ICE_RESET_PFR:
1381 		return ice_pf_reset(hw);
1382 	case ICE_RESET_CORER:
1383 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1384 		val = GLGEN_RTRIG_CORER_M;
1385 		break;
1386 	case ICE_RESET_GLOBR:
1387 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1388 		val = GLGEN_RTRIG_GLOBR_M;
1389 		break;
1390 	default:
1391 		return -EINVAL;
1392 	}
1393 
1394 	val |= rd32(hw, GLGEN_RTRIG);
1395 	wr32(hw, GLGEN_RTRIG, val);
1396 	ice_flush(hw);
1397 
1398 	/* wait for the FW to be ready */
1399 	return ice_check_reset(hw);
1400 }
1401 
1402 /**
1403  * ice_copy_rxq_ctx_to_hw
1404  * @hw: pointer to the hardware structure
1405  * @ice_rxq_ctx: pointer to the rxq context
1406  * @rxq_index: the index of the Rx queue
1407  *
1408  * Copies rxq context from dense structure to HW register space
1409  */
1410 static int
1411 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1412 {
1413 	u8 i;
1414 
1415 	if (!ice_rxq_ctx)
1416 		return -EINVAL;
1417 
1418 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1419 		return -EINVAL;
1420 
1421 	/* Copy each dword separately to HW */
1422 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1423 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1424 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1425 
1426 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1427 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /* LAN Rx Queue Context */
1434 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1435 	/* Field		Width	LSB */
1436 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1437 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1438 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1439 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1440 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1441 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1442 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1443 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1444 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1445 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1446 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1447 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1448 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1449 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1450 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1451 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1452 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1453 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1454 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1455 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1456 	{ 0 }
1457 };
1458 
1459 /**
1460  * ice_write_rxq_ctx
1461  * @hw: pointer to the hardware structure
1462  * @rlan_ctx: pointer to the rxq context
1463  * @rxq_index: the index of the Rx queue
1464  *
1465  * Converts rxq context from sparse to dense structure and then writes
1466  * it to HW register space and enables the hardware to prefetch descriptors
1467  * instead of only fetching them on demand
1468  */
1469 int
1470 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1471 		  u32 rxq_index)
1472 {
1473 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1474 
1475 	if (!rlan_ctx)
1476 		return -EINVAL;
1477 
1478 	rlan_ctx->prefena = 1;
1479 
1480 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1481 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1482 }
1483 
1484 /* LAN Tx Queue Context */
1485 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1486 				    /* Field			Width	LSB */
1487 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1488 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1489 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1490 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1491 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1492 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1493 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1494 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1495 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1496 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1497 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1498 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1499 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1500 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1501 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1502 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1503 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1504 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1505 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1506 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1507 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1508 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1509 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1510 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1511 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1512 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1513 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1514 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1515 	{ 0 }
1516 };
1517 
1518 /* Sideband Queue command wrappers */
1519 
1520 /**
1521  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1522  * @hw: pointer to the HW struct
1523  * @desc: descriptor describing the command
1524  * @buf: buffer to use for indirect commands (NULL for direct commands)
1525  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1526  * @cd: pointer to command details structure
1527  */
1528 static int
1529 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1530 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1531 {
1532 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1533 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1534 }
1535 
1536 /**
1537  * ice_sbq_rw_reg - Fill Sideband Queue command
1538  * @hw: pointer to the HW struct
1539  * @in: message info to be filled in descriptor
1540  */
1541 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1542 {
1543 	struct ice_sbq_cmd_desc desc = {0};
1544 	struct ice_sbq_msg_req msg = {0};
1545 	u16 msg_len;
1546 	int status;
1547 
1548 	msg_len = sizeof(msg);
1549 
1550 	msg.dest_dev = in->dest_dev;
1551 	msg.opcode = in->opcode;
1552 	msg.flags = ICE_SBQ_MSG_FLAGS;
1553 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1554 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1555 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1556 
1557 	if (in->opcode)
1558 		msg.data = cpu_to_le32(in->data);
1559 	else
1560 		/* data read comes back in completion, so shorten the struct by
1561 		 * sizeof(msg.data)
1562 		 */
1563 		msg_len -= sizeof(msg.data);
1564 
1565 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1566 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1567 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1568 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1569 	if (!status && !in->opcode)
1570 		in->data = le32_to_cpu
1571 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1572 	return status;
1573 }
1574 
1575 /* FW Admin Queue command wrappers */
1576 
1577 /* Software lock/mutex that is meant to be held while the Global Config Lock
1578  * in firmware is acquired by the software to prevent most (but not all) types
1579  * of AQ commands from being sent to FW
1580  */
1581 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1582 
1583 /**
1584  * ice_should_retry_sq_send_cmd
1585  * @opcode: AQ opcode
1586  *
1587  * Decide if we should retry the send command routine for the ATQ, depending
1588  * on the opcode.
1589  */
1590 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1591 {
1592 	switch (opcode) {
1593 	case ice_aqc_opc_get_link_topo:
1594 	case ice_aqc_opc_lldp_stop:
1595 	case ice_aqc_opc_lldp_start:
1596 	case ice_aqc_opc_lldp_filter_ctrl:
1597 		return true;
1598 	}
1599 
1600 	return false;
1601 }
1602 
1603 /**
1604  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1605  * @hw: pointer to the HW struct
1606  * @cq: pointer to the specific Control queue
1607  * @desc: prefilled descriptor describing the command
1608  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1609  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1610  * @cd: pointer to command details structure
1611  *
1612  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1613  * Queue if the EBUSY AQ error is returned.
1614  */
1615 static int
1616 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1617 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1618 		      struct ice_sq_cd *cd)
1619 {
1620 	struct ice_aq_desc desc_cpy;
1621 	bool is_cmd_for_retry;
1622 	u8 *buf_cpy = NULL;
1623 	u8 idx = 0;
1624 	u16 opcode;
1625 	int status;
1626 
1627 	opcode = le16_to_cpu(desc->opcode);
1628 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1629 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1630 
1631 	if (is_cmd_for_retry) {
1632 		if (buf) {
1633 			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1634 			if (!buf_cpy)
1635 				return -ENOMEM;
1636 		}
1637 
1638 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1639 	}
1640 
1641 	do {
1642 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1643 
1644 		if (!is_cmd_for_retry || !status ||
1645 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1646 			break;
1647 
1648 		if (buf_cpy)
1649 			memcpy(buf, buf_cpy, buf_size);
1650 
1651 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1652 
1653 		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1654 
1655 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1656 
1657 	kfree(buf_cpy);
1658 
1659 	return status;
1660 }
1661 
1662 /**
1663  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1664  * @hw: pointer to the HW struct
1665  * @desc: descriptor describing the command
1666  * @buf: buffer to use for indirect commands (NULL for direct commands)
1667  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1668  * @cd: pointer to command details structure
1669  *
1670  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1671  */
1672 int
1673 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1674 		u16 buf_size, struct ice_sq_cd *cd)
1675 {
1676 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1677 	bool lock_acquired = false;
1678 	int status;
1679 
1680 	/* When a package download is in process (i.e. when the firmware's
1681 	 * Global Configuration Lock resource is held), only the Download
1682 	 * Package, Get Version, Get Package Info List, Upload Section,
1683 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1684 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1685 	 * Recipes to Profile Association, and Release Resource (with resource
1686 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1687 	 * must block until the package download completes and the Global Config
1688 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1689 	 */
1690 	switch (le16_to_cpu(desc->opcode)) {
1691 	case ice_aqc_opc_download_pkg:
1692 	case ice_aqc_opc_get_pkg_info_list:
1693 	case ice_aqc_opc_get_ver:
1694 	case ice_aqc_opc_upload_section:
1695 	case ice_aqc_opc_update_pkg:
1696 	case ice_aqc_opc_set_port_params:
1697 	case ice_aqc_opc_get_vlan_mode_parameters:
1698 	case ice_aqc_opc_set_vlan_mode_parameters:
1699 	case ice_aqc_opc_add_recipe:
1700 	case ice_aqc_opc_recipe_to_profile:
1701 	case ice_aqc_opc_get_recipe:
1702 	case ice_aqc_opc_get_recipe_to_profile:
1703 		break;
1704 	case ice_aqc_opc_release_res:
1705 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1706 			break;
1707 		fallthrough;
1708 	default:
1709 		mutex_lock(&ice_global_cfg_lock_sw);
1710 		lock_acquired = true;
1711 		break;
1712 	}
1713 
1714 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1715 	if (lock_acquired)
1716 		mutex_unlock(&ice_global_cfg_lock_sw);
1717 
1718 	return status;
1719 }
1720 
1721 /**
1722  * ice_aq_get_fw_ver
1723  * @hw: pointer to the HW struct
1724  * @cd: pointer to command details structure or NULL
1725  *
1726  * Get the firmware version (0x0001) from the admin queue commands
1727  */
1728 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1729 {
1730 	struct ice_aqc_get_ver *resp;
1731 	struct ice_aq_desc desc;
1732 	int status;
1733 
1734 	resp = &desc.params.get_ver;
1735 
1736 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1737 
1738 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1739 
1740 	if (!status) {
1741 		hw->fw_branch = resp->fw_branch;
1742 		hw->fw_maj_ver = resp->fw_major;
1743 		hw->fw_min_ver = resp->fw_minor;
1744 		hw->fw_patch = resp->fw_patch;
1745 		hw->fw_build = le32_to_cpu(resp->fw_build);
1746 		hw->api_branch = resp->api_branch;
1747 		hw->api_maj_ver = resp->api_major;
1748 		hw->api_min_ver = resp->api_minor;
1749 		hw->api_patch = resp->api_patch;
1750 	}
1751 
1752 	return status;
1753 }
1754 
1755 /**
1756  * ice_aq_send_driver_ver
1757  * @hw: pointer to the HW struct
1758  * @dv: driver's major, minor version
1759  * @cd: pointer to command details structure or NULL
1760  *
1761  * Send the driver version (0x0002) to the firmware
1762  */
1763 int
1764 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1765 		       struct ice_sq_cd *cd)
1766 {
1767 	struct ice_aqc_driver_ver *cmd;
1768 	struct ice_aq_desc desc;
1769 	u16 len;
1770 
1771 	cmd = &desc.params.driver_ver;
1772 
1773 	if (!dv)
1774 		return -EINVAL;
1775 
1776 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1777 
1778 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1779 	cmd->major_ver = dv->major_ver;
1780 	cmd->minor_ver = dv->minor_ver;
1781 	cmd->build_ver = dv->build_ver;
1782 	cmd->subbuild_ver = dv->subbuild_ver;
1783 
1784 	len = 0;
1785 	while (len < sizeof(dv->driver_string) &&
1786 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1787 		len++;
1788 
1789 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1790 }
1791 
1792 /**
1793  * ice_aq_q_shutdown
1794  * @hw: pointer to the HW struct
1795  * @unloading: is the driver unloading itself
1796  *
1797  * Tell the Firmware that we're shutting down the AdminQ and whether
1798  * or not the driver is unloading as well (0x0003).
1799  */
1800 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1801 {
1802 	struct ice_aqc_q_shutdown *cmd;
1803 	struct ice_aq_desc desc;
1804 
1805 	cmd = &desc.params.q_shutdown;
1806 
1807 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1808 
1809 	if (unloading)
1810 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1811 
1812 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1813 }
1814 
1815 /**
1816  * ice_aq_req_res
1817  * @hw: pointer to the HW struct
1818  * @res: resource ID
1819  * @access: access type
1820  * @sdp_number: resource number
1821  * @timeout: the maximum time in ms that the driver may hold the resource
1822  * @cd: pointer to command details structure or NULL
1823  *
1824  * Requests common resource using the admin queue commands (0x0008).
1825  * When attempting to acquire the Global Config Lock, the driver can
1826  * learn of three states:
1827  *  1) 0 -         acquired lock, and can perform download package
1828  *  2) -EIO -      did not get lock, driver should fail to load
1829  *  3) -EALREADY - did not get lock, but another driver has
1830  *                 successfully downloaded the package; the driver does
1831  *                 not have to download the package and can continue
1832  *                 loading
1833  *
1834  * Note that if the caller is in an acquire lock, perform action, release lock
1835  * phase of operation, it is possible that the FW may detect a timeout and issue
1836  * a CORER. In this case, the driver will receive a CORER interrupt and will
1837  * have to determine its cause. The calling thread that is handling this flow
1838  * will likely get an error propagated back to it indicating the Download
1839  * Package, Update Package or the Release Resource AQ commands timed out.
1840  */
1841 static int
1842 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1843 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1844 	       struct ice_sq_cd *cd)
1845 {
1846 	struct ice_aqc_req_res *cmd_resp;
1847 	struct ice_aq_desc desc;
1848 	int status;
1849 
1850 	cmd_resp = &desc.params.res_owner;
1851 
1852 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1853 
1854 	cmd_resp->res_id = cpu_to_le16(res);
1855 	cmd_resp->access_type = cpu_to_le16(access);
1856 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1857 	cmd_resp->timeout = cpu_to_le32(*timeout);
1858 	*timeout = 0;
1859 
1860 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1861 
1862 	/* The completion specifies the maximum time in ms that the driver
1863 	 * may hold the resource in the Timeout field.
1864 	 */
1865 
1866 	/* Global config lock response utilizes an additional status field.
1867 	 *
1868 	 * If the Global config lock resource is held by some other driver, the
1869 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1870 	 * and the timeout field indicates the maximum time the current owner
1871 	 * of the resource has to free it.
1872 	 */
1873 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1874 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1875 			*timeout = le32_to_cpu(cmd_resp->timeout);
1876 			return 0;
1877 		} else if (le16_to_cpu(cmd_resp->status) ==
1878 			   ICE_AQ_RES_GLBL_IN_PROG) {
1879 			*timeout = le32_to_cpu(cmd_resp->timeout);
1880 			return -EIO;
1881 		} else if (le16_to_cpu(cmd_resp->status) ==
1882 			   ICE_AQ_RES_GLBL_DONE) {
1883 			return -EALREADY;
1884 		}
1885 
1886 		/* invalid FW response, force a timeout immediately */
1887 		*timeout = 0;
1888 		return -EIO;
1889 	}
1890 
1891 	/* If the resource is held by some other driver, the command completes
1892 	 * with a busy return value and the timeout field indicates the maximum
1893 	 * time the current owner of the resource has to free it.
1894 	 */
1895 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1896 		*timeout = le32_to_cpu(cmd_resp->timeout);
1897 
1898 	return status;
1899 }
1900 
1901 /**
1902  * ice_aq_release_res
1903  * @hw: pointer to the HW struct
1904  * @res: resource ID
1905  * @sdp_number: resource number
1906  * @cd: pointer to command details structure or NULL
1907  *
1908  * release common resource using the admin queue commands (0x0009)
1909  */
1910 static int
1911 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1912 		   struct ice_sq_cd *cd)
1913 {
1914 	struct ice_aqc_req_res *cmd;
1915 	struct ice_aq_desc desc;
1916 
1917 	cmd = &desc.params.res_owner;
1918 
1919 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1920 
1921 	cmd->res_id = cpu_to_le16(res);
1922 	cmd->res_number = cpu_to_le32(sdp_number);
1923 
1924 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1925 }
1926 
1927 /**
1928  * ice_acquire_res
1929  * @hw: pointer to the HW structure
1930  * @res: resource ID
1931  * @access: access type (read or write)
1932  * @timeout: timeout in milliseconds
1933  *
1934  * This function will attempt to acquire the ownership of a resource.
1935  */
1936 int
1937 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1938 		enum ice_aq_res_access_type access, u32 timeout)
1939 {
1940 #define ICE_RES_POLLING_DELAY_MS	10
1941 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1942 	u32 time_left = timeout;
1943 	int status;
1944 
1945 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1946 
1947 	/* A return code of -EALREADY means that another driver has
1948 	 * previously acquired the resource and performed any necessary updates;
1949 	 * in this case the caller does not obtain the resource and has no
1950 	 * further work to do.
1951 	 */
1952 	if (status == -EALREADY)
1953 		goto ice_acquire_res_exit;
1954 
1955 	if (status)
1956 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1957 
1958 	/* If necessary, poll until the current lock owner timeouts */
1959 	timeout = time_left;
1960 	while (status && timeout && time_left) {
1961 		mdelay(delay);
1962 		timeout = (timeout > delay) ? timeout - delay : 0;
1963 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1964 
1965 		if (status == -EALREADY)
1966 			/* lock free, but no work to do */
1967 			break;
1968 
1969 		if (!status)
1970 			/* lock acquired */
1971 			break;
1972 	}
1973 	if (status && status != -EALREADY)
1974 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1975 
1976 ice_acquire_res_exit:
1977 	if (status == -EALREADY) {
1978 		if (access == ICE_RES_WRITE)
1979 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1980 		else
1981 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1982 	}
1983 	return status;
1984 }
1985 
1986 /**
1987  * ice_release_res
1988  * @hw: pointer to the HW structure
1989  * @res: resource ID
1990  *
1991  * This function will release a resource using the proper Admin Command.
1992  */
1993 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1994 {
1995 	u32 total_delay = 0;
1996 	int status;
1997 
1998 	status = ice_aq_release_res(hw, res, 0, NULL);
1999 
2000 	/* there are some rare cases when trying to release the resource
2001 	 * results in an admin queue timeout, so handle them correctly
2002 	 */
2003 	while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
2004 		mdelay(1);
2005 		status = ice_aq_release_res(hw, res, 0, NULL);
2006 		total_delay++;
2007 	}
2008 }
2009 
2010 /**
2011  * ice_aq_alloc_free_res - command to allocate/free resources
2012  * @hw: pointer to the HW struct
2013  * @num_entries: number of resource entries in buffer
2014  * @buf: Indirect buffer to hold data parameters and response
2015  * @buf_size: size of buffer for indirect commands
2016  * @opc: pass in the command opcode
2017  * @cd: pointer to command details structure or NULL
2018  *
2019  * Helper function to allocate/free resources using the admin queue commands
2020  */
2021 int
2022 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2023 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2024 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2025 {
2026 	struct ice_aqc_alloc_free_res_cmd *cmd;
2027 	struct ice_aq_desc desc;
2028 
2029 	cmd = &desc.params.sw_res_ctrl;
2030 
2031 	if (!buf)
2032 		return -EINVAL;
2033 
2034 	if (buf_size < flex_array_size(buf, elem, num_entries))
2035 		return -EINVAL;
2036 
2037 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2038 
2039 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2040 
2041 	cmd->num_entries = cpu_to_le16(num_entries);
2042 
2043 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2044 }
2045 
2046 /**
2047  * ice_alloc_hw_res - allocate resource
2048  * @hw: pointer to the HW struct
2049  * @type: type of resource
2050  * @num: number of resources to allocate
2051  * @btm: allocate from bottom
2052  * @res: pointer to array that will receive the resources
2053  */
2054 int
2055 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2056 {
2057 	struct ice_aqc_alloc_free_res_elem *buf;
2058 	u16 buf_len;
2059 	int status;
2060 
2061 	buf_len = struct_size(buf, elem, num);
2062 	buf = kzalloc(buf_len, GFP_KERNEL);
2063 	if (!buf)
2064 		return -ENOMEM;
2065 
2066 	/* Prepare buffer to allocate resource. */
2067 	buf->num_elems = cpu_to_le16(num);
2068 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2069 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2070 	if (btm)
2071 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2072 
2073 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2074 				       ice_aqc_opc_alloc_res, NULL);
2075 	if (status)
2076 		goto ice_alloc_res_exit;
2077 
2078 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2079 
2080 ice_alloc_res_exit:
2081 	kfree(buf);
2082 	return status;
2083 }
2084 
2085 /**
2086  * ice_free_hw_res - free allocated HW resource
2087  * @hw: pointer to the HW struct
2088  * @type: type of resource to free
2089  * @num: number of resources
2090  * @res: pointer to array that contains the resources to free
2091  */
2092 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2093 {
2094 	struct ice_aqc_alloc_free_res_elem *buf;
2095 	u16 buf_len;
2096 	int status;
2097 
2098 	buf_len = struct_size(buf, elem, num);
2099 	buf = kzalloc(buf_len, GFP_KERNEL);
2100 	if (!buf)
2101 		return -ENOMEM;
2102 
2103 	/* Prepare buffer to free resource. */
2104 	buf->num_elems = cpu_to_le16(num);
2105 	buf->res_type = cpu_to_le16(type);
2106 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2107 
2108 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2109 				       ice_aqc_opc_free_res, NULL);
2110 	if (status)
2111 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2112 
2113 	kfree(buf);
2114 	return status;
2115 }
2116 
2117 /**
2118  * ice_get_num_per_func - determine number of resources per PF
2119  * @hw: pointer to the HW structure
2120  * @max: value to be evenly split between each PF
2121  *
2122  * Determine the number of valid functions by going through the bitmap returned
2123  * from parsing capabilities and use this to calculate the number of resources
2124  * per PF based on the max value passed in.
2125  */
2126 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2127 {
2128 	u8 funcs;
2129 
2130 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2131 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2132 			 ICE_CAPS_VALID_FUNCS_M);
2133 
2134 	if (!funcs)
2135 		return 0;
2136 
2137 	return max / funcs;
2138 }
2139 
2140 /**
2141  * ice_parse_common_caps - parse common device/function capabilities
2142  * @hw: pointer to the HW struct
2143  * @caps: pointer to common capabilities structure
2144  * @elem: the capability element to parse
2145  * @prefix: message prefix for tracing capabilities
2146  *
2147  * Given a capability element, extract relevant details into the common
2148  * capability structure.
2149  *
2150  * Returns: true if the capability matches one of the common capability ids,
2151  * false otherwise.
2152  */
2153 static bool
2154 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2155 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2156 {
2157 	u32 logical_id = le32_to_cpu(elem->logical_id);
2158 	u32 phys_id = le32_to_cpu(elem->phys_id);
2159 	u32 number = le32_to_cpu(elem->number);
2160 	u16 cap = le16_to_cpu(elem->cap);
2161 	bool found = true;
2162 
2163 	switch (cap) {
2164 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2165 		caps->valid_functions = number;
2166 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2167 			  caps->valid_functions);
2168 		break;
2169 	case ICE_AQC_CAPS_SRIOV:
2170 		caps->sr_iov_1_1 = (number == 1);
2171 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2172 			  caps->sr_iov_1_1);
2173 		break;
2174 	case ICE_AQC_CAPS_DCB:
2175 		caps->dcb = (number == 1);
2176 		caps->active_tc_bitmap = logical_id;
2177 		caps->maxtc = phys_id;
2178 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2179 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2180 			  caps->active_tc_bitmap);
2181 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2182 		break;
2183 	case ICE_AQC_CAPS_RSS:
2184 		caps->rss_table_size = number;
2185 		caps->rss_table_entry_width = logical_id;
2186 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2187 			  caps->rss_table_size);
2188 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2189 			  caps->rss_table_entry_width);
2190 		break;
2191 	case ICE_AQC_CAPS_RXQS:
2192 		caps->num_rxq = number;
2193 		caps->rxq_first_id = phys_id;
2194 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2195 			  caps->num_rxq);
2196 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2197 			  caps->rxq_first_id);
2198 		break;
2199 	case ICE_AQC_CAPS_TXQS:
2200 		caps->num_txq = number;
2201 		caps->txq_first_id = phys_id;
2202 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2203 			  caps->num_txq);
2204 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2205 			  caps->txq_first_id);
2206 		break;
2207 	case ICE_AQC_CAPS_MSIX:
2208 		caps->num_msix_vectors = number;
2209 		caps->msix_vector_first_id = phys_id;
2210 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2211 			  caps->num_msix_vectors);
2212 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2213 			  caps->msix_vector_first_id);
2214 		break;
2215 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2216 		caps->nvm_update_pending_nvm = true;
2217 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2218 		break;
2219 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2220 		caps->nvm_update_pending_orom = true;
2221 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2222 		break;
2223 	case ICE_AQC_CAPS_PENDING_NET_VER:
2224 		caps->nvm_update_pending_netlist = true;
2225 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2226 		break;
2227 	case ICE_AQC_CAPS_NVM_MGMT:
2228 		caps->nvm_unified_update =
2229 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2230 			true : false;
2231 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2232 			  caps->nvm_unified_update);
2233 		break;
2234 	case ICE_AQC_CAPS_RDMA:
2235 		caps->rdma = (number == 1);
2236 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2237 		break;
2238 	case ICE_AQC_CAPS_MAX_MTU:
2239 		caps->max_mtu = number;
2240 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2241 			  prefix, caps->max_mtu);
2242 		break;
2243 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2244 		caps->pcie_reset_avoidance = (number > 0);
2245 		ice_debug(hw, ICE_DBG_INIT,
2246 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2247 			  caps->pcie_reset_avoidance);
2248 		break;
2249 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2250 		caps->reset_restrict_support = (number == 1);
2251 		ice_debug(hw, ICE_DBG_INIT,
2252 			  "%s: reset_restrict_support = %d\n", prefix,
2253 			  caps->reset_restrict_support);
2254 		break;
2255 	default:
2256 		/* Not one of the recognized common capabilities */
2257 		found = false;
2258 	}
2259 
2260 	return found;
2261 }
2262 
2263 /**
2264  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2265  * @hw: pointer to the HW structure
2266  * @caps: pointer to capabilities structure to fix
2267  *
2268  * Re-calculate the capabilities that are dependent on the number of physical
2269  * ports; i.e. some features are not supported or function differently on
2270  * devices with more than 4 ports.
2271  */
2272 static void
2273 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2274 {
2275 	/* This assumes device capabilities are always scanned before function
2276 	 * capabilities during the initialization flow.
2277 	 */
2278 	if (hw->dev_caps.num_funcs > 4) {
2279 		/* Max 4 TCs per port */
2280 		caps->maxtc = 4;
2281 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2282 			  caps->maxtc);
2283 		if (caps->rdma) {
2284 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2285 			caps->rdma = 0;
2286 		}
2287 
2288 		/* print message only when processing device capabilities
2289 		 * during initialization.
2290 		 */
2291 		if (caps == &hw->dev_caps.common_cap)
2292 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2293 	}
2294 }
2295 
2296 /**
2297  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2298  * @hw: pointer to the HW struct
2299  * @func_p: pointer to function capabilities structure
2300  * @cap: pointer to the capability element to parse
2301  *
2302  * Extract function capabilities for ICE_AQC_CAPS_VF.
2303  */
2304 static void
2305 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2306 		       struct ice_aqc_list_caps_elem *cap)
2307 {
2308 	u32 logical_id = le32_to_cpu(cap->logical_id);
2309 	u32 number = le32_to_cpu(cap->number);
2310 
2311 	func_p->num_allocd_vfs = number;
2312 	func_p->vf_base_id = logical_id;
2313 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2314 		  func_p->num_allocd_vfs);
2315 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2316 		  func_p->vf_base_id);
2317 }
2318 
2319 /**
2320  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2321  * @hw: pointer to the HW struct
2322  * @func_p: pointer to function capabilities structure
2323  * @cap: pointer to the capability element to parse
2324  *
2325  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2326  */
2327 static void
2328 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2329 			struct ice_aqc_list_caps_elem *cap)
2330 {
2331 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2332 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2333 		  le32_to_cpu(cap->number));
2334 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2335 		  func_p->guar_num_vsi);
2336 }
2337 
2338 /**
2339  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2340  * @hw: pointer to the HW struct
2341  * @func_p: pointer to function capabilities structure
2342  * @cap: pointer to the capability element to parse
2343  *
2344  * Extract function capabilities for ICE_AQC_CAPS_1588.
2345  */
2346 static void
2347 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2348 			 struct ice_aqc_list_caps_elem *cap)
2349 {
2350 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2351 	u32 number = le32_to_cpu(cap->number);
2352 
2353 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2354 	func_p->common_cap.ieee_1588 = info->ena;
2355 
2356 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2357 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2358 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2359 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2360 
2361 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2362 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2363 
2364 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2365 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2366 	} else {
2367 		/* Unknown clock frequency, so assume a (probably incorrect)
2368 		 * default to avoid out-of-bounds look ups of frequency
2369 		 * related information.
2370 		 */
2371 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2372 			  info->clk_freq);
2373 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2374 	}
2375 
2376 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2377 		  func_p->common_cap.ieee_1588);
2378 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2379 		  info->src_tmr_owned);
2380 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2381 		  info->tmr_ena);
2382 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2383 		  info->tmr_index_owned);
2384 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2385 		  info->tmr_index_assoc);
2386 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2387 		  info->clk_freq);
2388 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2389 		  info->clk_src);
2390 }
2391 
2392 /**
2393  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2394  * @hw: pointer to the HW struct
2395  * @func_p: pointer to function capabilities structure
2396  *
2397  * Extract function capabilities for ICE_AQC_CAPS_FD.
2398  */
2399 static void
2400 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2401 {
2402 	u32 reg_val, val;
2403 
2404 	reg_val = rd32(hw, GLQF_FD_SIZE);
2405 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2406 		GLQF_FD_SIZE_FD_GSIZE_S;
2407 	func_p->fd_fltr_guar =
2408 		ice_get_num_per_func(hw, val);
2409 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2410 		GLQF_FD_SIZE_FD_BSIZE_S;
2411 	func_p->fd_fltr_best_effort = val;
2412 
2413 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2414 		  func_p->fd_fltr_guar);
2415 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2416 		  func_p->fd_fltr_best_effort);
2417 }
2418 
2419 /**
2420  * ice_parse_func_caps - Parse function capabilities
2421  * @hw: pointer to the HW struct
2422  * @func_p: pointer to function capabilities structure
2423  * @buf: buffer containing the function capability records
2424  * @cap_count: the number of capabilities
2425  *
2426  * Helper function to parse function (0x000A) capabilities list. For
2427  * capabilities shared between device and function, this relies on
2428  * ice_parse_common_caps.
2429  *
2430  * Loop through the list of provided capabilities and extract the relevant
2431  * data into the function capabilities structured.
2432  */
2433 static void
2434 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2435 		    void *buf, u32 cap_count)
2436 {
2437 	struct ice_aqc_list_caps_elem *cap_resp;
2438 	u32 i;
2439 
2440 	cap_resp = buf;
2441 
2442 	memset(func_p, 0, sizeof(*func_p));
2443 
2444 	for (i = 0; i < cap_count; i++) {
2445 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2446 		bool found;
2447 
2448 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2449 					      &cap_resp[i], "func caps");
2450 
2451 		switch (cap) {
2452 		case ICE_AQC_CAPS_VF:
2453 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2454 			break;
2455 		case ICE_AQC_CAPS_VSI:
2456 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2457 			break;
2458 		case ICE_AQC_CAPS_1588:
2459 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2460 			break;
2461 		case ICE_AQC_CAPS_FD:
2462 			ice_parse_fdir_func_caps(hw, func_p);
2463 			break;
2464 		default:
2465 			/* Don't list common capabilities as unknown */
2466 			if (!found)
2467 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2468 					  i, cap);
2469 			break;
2470 		}
2471 	}
2472 
2473 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2474 }
2475 
2476 /**
2477  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2478  * @hw: pointer to the HW struct
2479  * @dev_p: pointer to device capabilities structure
2480  * @cap: capability element to parse
2481  *
2482  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2483  */
2484 static void
2485 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2486 			      struct ice_aqc_list_caps_elem *cap)
2487 {
2488 	u32 number = le32_to_cpu(cap->number);
2489 
2490 	dev_p->num_funcs = hweight32(number);
2491 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2492 		  dev_p->num_funcs);
2493 }
2494 
2495 /**
2496  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2497  * @hw: pointer to the HW struct
2498  * @dev_p: pointer to device capabilities structure
2499  * @cap: capability element to parse
2500  *
2501  * Parse ICE_AQC_CAPS_VF for device capabilities.
2502  */
2503 static void
2504 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2505 		      struct ice_aqc_list_caps_elem *cap)
2506 {
2507 	u32 number = le32_to_cpu(cap->number);
2508 
2509 	dev_p->num_vfs_exposed = number;
2510 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2511 		  dev_p->num_vfs_exposed);
2512 }
2513 
2514 /**
2515  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2516  * @hw: pointer to the HW struct
2517  * @dev_p: pointer to device capabilities structure
2518  * @cap: capability element to parse
2519  *
2520  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2521  */
2522 static void
2523 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2524 		       struct ice_aqc_list_caps_elem *cap)
2525 {
2526 	u32 number = le32_to_cpu(cap->number);
2527 
2528 	dev_p->num_vsi_allocd_to_host = number;
2529 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2530 		  dev_p->num_vsi_allocd_to_host);
2531 }
2532 
2533 /**
2534  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2535  * @hw: pointer to the HW struct
2536  * @dev_p: pointer to device capabilities structure
2537  * @cap: capability element to parse
2538  *
2539  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2540  */
2541 static void
2542 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2543 			struct ice_aqc_list_caps_elem *cap)
2544 {
2545 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2546 	u32 logical_id = le32_to_cpu(cap->logical_id);
2547 	u32 phys_id = le32_to_cpu(cap->phys_id);
2548 	u32 number = le32_to_cpu(cap->number);
2549 
2550 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2551 	dev_p->common_cap.ieee_1588 = info->ena;
2552 
2553 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2554 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2555 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2556 
2557 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2558 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2559 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2560 
2561 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2562 
2563 	info->ena_ports = logical_id;
2564 	info->tmr_own_map = phys_id;
2565 
2566 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2567 		  dev_p->common_cap.ieee_1588);
2568 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2569 		  info->tmr0_owner);
2570 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2571 		  info->tmr0_owned);
2572 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2573 		  info->tmr0_ena);
2574 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2575 		  info->tmr1_owner);
2576 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2577 		  info->tmr1_owned);
2578 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2579 		  info->tmr1_ena);
2580 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2581 		  info->ts_ll_read);
2582 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2583 		  info->ena_ports);
2584 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2585 		  info->tmr_own_map);
2586 }
2587 
2588 /**
2589  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2590  * @hw: pointer to the HW struct
2591  * @dev_p: pointer to device capabilities structure
2592  * @cap: capability element to parse
2593  *
2594  * Parse ICE_AQC_CAPS_FD for device capabilities.
2595  */
2596 static void
2597 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2598 			struct ice_aqc_list_caps_elem *cap)
2599 {
2600 	u32 number = le32_to_cpu(cap->number);
2601 
2602 	dev_p->num_flow_director_fltr = number;
2603 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2604 		  dev_p->num_flow_director_fltr);
2605 }
2606 
2607 /**
2608  * ice_parse_dev_caps - Parse device capabilities
2609  * @hw: pointer to the HW struct
2610  * @dev_p: pointer to device capabilities structure
2611  * @buf: buffer containing the device capability records
2612  * @cap_count: the number of capabilities
2613  *
2614  * Helper device to parse device (0x000B) capabilities list. For
2615  * capabilities shared between device and function, this relies on
2616  * ice_parse_common_caps.
2617  *
2618  * Loop through the list of provided capabilities and extract the relevant
2619  * data into the device capabilities structured.
2620  */
2621 static void
2622 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2623 		   void *buf, u32 cap_count)
2624 {
2625 	struct ice_aqc_list_caps_elem *cap_resp;
2626 	u32 i;
2627 
2628 	cap_resp = buf;
2629 
2630 	memset(dev_p, 0, sizeof(*dev_p));
2631 
2632 	for (i = 0; i < cap_count; i++) {
2633 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2634 		bool found;
2635 
2636 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2637 					      &cap_resp[i], "dev caps");
2638 
2639 		switch (cap) {
2640 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2641 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2642 			break;
2643 		case ICE_AQC_CAPS_VF:
2644 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2645 			break;
2646 		case ICE_AQC_CAPS_VSI:
2647 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2648 			break;
2649 		case ICE_AQC_CAPS_1588:
2650 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2651 			break;
2652 		case  ICE_AQC_CAPS_FD:
2653 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2654 			break;
2655 		default:
2656 			/* Don't list common capabilities as unknown */
2657 			if (!found)
2658 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2659 					  i, cap);
2660 			break;
2661 		}
2662 	}
2663 
2664 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2665 }
2666 
2667 /**
2668  * ice_aq_list_caps - query function/device capabilities
2669  * @hw: pointer to the HW struct
2670  * @buf: a buffer to hold the capabilities
2671  * @buf_size: size of the buffer
2672  * @cap_count: if not NULL, set to the number of capabilities reported
2673  * @opc: capabilities type to discover, device or function
2674  * @cd: pointer to command details structure or NULL
2675  *
2676  * Get the function (0x000A) or device (0x000B) capabilities description from
2677  * firmware and store it in the buffer.
2678  *
2679  * If the cap_count pointer is not NULL, then it is set to the number of
2680  * capabilities firmware will report. Note that if the buffer size is too
2681  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2682  * cap_count will still be updated in this case. It is recommended that the
2683  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2684  * firmware could return) to avoid this.
2685  */
2686 int
2687 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2688 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2689 {
2690 	struct ice_aqc_list_caps *cmd;
2691 	struct ice_aq_desc desc;
2692 	int status;
2693 
2694 	cmd = &desc.params.get_cap;
2695 
2696 	if (opc != ice_aqc_opc_list_func_caps &&
2697 	    opc != ice_aqc_opc_list_dev_caps)
2698 		return -EINVAL;
2699 
2700 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2701 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2702 
2703 	if (cap_count)
2704 		*cap_count = le32_to_cpu(cmd->count);
2705 
2706 	return status;
2707 }
2708 
2709 /**
2710  * ice_discover_dev_caps - Read and extract device capabilities
2711  * @hw: pointer to the hardware structure
2712  * @dev_caps: pointer to device capabilities structure
2713  *
2714  * Read the device capabilities and extract them into the dev_caps structure
2715  * for later use.
2716  */
2717 int
2718 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2719 {
2720 	u32 cap_count = 0;
2721 	void *cbuf;
2722 	int status;
2723 
2724 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2725 	if (!cbuf)
2726 		return -ENOMEM;
2727 
2728 	/* Although the driver doesn't know the number of capabilities the
2729 	 * device will return, we can simply send a 4KB buffer, the maximum
2730 	 * possible size that firmware can return.
2731 	 */
2732 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2733 
2734 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2735 				  ice_aqc_opc_list_dev_caps, NULL);
2736 	if (!status)
2737 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2738 	kfree(cbuf);
2739 
2740 	return status;
2741 }
2742 
2743 /**
2744  * ice_discover_func_caps - Read and extract function capabilities
2745  * @hw: pointer to the hardware structure
2746  * @func_caps: pointer to function capabilities structure
2747  *
2748  * Read the function capabilities and extract them into the func_caps structure
2749  * for later use.
2750  */
2751 static int
2752 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2753 {
2754 	u32 cap_count = 0;
2755 	void *cbuf;
2756 	int status;
2757 
2758 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2759 	if (!cbuf)
2760 		return -ENOMEM;
2761 
2762 	/* Although the driver doesn't know the number of capabilities the
2763 	 * device will return, we can simply send a 4KB buffer, the maximum
2764 	 * possible size that firmware can return.
2765 	 */
2766 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2767 
2768 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2769 				  ice_aqc_opc_list_func_caps, NULL);
2770 	if (!status)
2771 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2772 	kfree(cbuf);
2773 
2774 	return status;
2775 }
2776 
2777 /**
2778  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2779  * @hw: pointer to the hardware structure
2780  */
2781 void ice_set_safe_mode_caps(struct ice_hw *hw)
2782 {
2783 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2784 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2785 	struct ice_hw_common_caps cached_caps;
2786 	u32 num_funcs;
2787 
2788 	/* cache some func_caps values that should be restored after memset */
2789 	cached_caps = func_caps->common_cap;
2790 
2791 	/* unset func capabilities */
2792 	memset(func_caps, 0, sizeof(*func_caps));
2793 
2794 #define ICE_RESTORE_FUNC_CAP(name) \
2795 	func_caps->common_cap.name = cached_caps.name
2796 
2797 	/* restore cached values */
2798 	ICE_RESTORE_FUNC_CAP(valid_functions);
2799 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2800 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2801 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2802 	ICE_RESTORE_FUNC_CAP(max_mtu);
2803 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2804 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2805 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2806 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2807 
2808 	/* one Tx and one Rx queue in safe mode */
2809 	func_caps->common_cap.num_rxq = 1;
2810 	func_caps->common_cap.num_txq = 1;
2811 
2812 	/* two MSIX vectors, one for traffic and one for misc causes */
2813 	func_caps->common_cap.num_msix_vectors = 2;
2814 	func_caps->guar_num_vsi = 1;
2815 
2816 	/* cache some dev_caps values that should be restored after memset */
2817 	cached_caps = dev_caps->common_cap;
2818 	num_funcs = dev_caps->num_funcs;
2819 
2820 	/* unset dev capabilities */
2821 	memset(dev_caps, 0, sizeof(*dev_caps));
2822 
2823 #define ICE_RESTORE_DEV_CAP(name) \
2824 	dev_caps->common_cap.name = cached_caps.name
2825 
2826 	/* restore cached values */
2827 	ICE_RESTORE_DEV_CAP(valid_functions);
2828 	ICE_RESTORE_DEV_CAP(txq_first_id);
2829 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2830 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2831 	ICE_RESTORE_DEV_CAP(max_mtu);
2832 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2833 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2834 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2835 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2836 	dev_caps->num_funcs = num_funcs;
2837 
2838 	/* one Tx and one Rx queue per function in safe mode */
2839 	dev_caps->common_cap.num_rxq = num_funcs;
2840 	dev_caps->common_cap.num_txq = num_funcs;
2841 
2842 	/* two MSIX vectors per function */
2843 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2844 }
2845 
2846 /**
2847  * ice_get_caps - get info about the HW
2848  * @hw: pointer to the hardware structure
2849  */
2850 int ice_get_caps(struct ice_hw *hw)
2851 {
2852 	int status;
2853 
2854 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2855 	if (status)
2856 		return status;
2857 
2858 	return ice_discover_func_caps(hw, &hw->func_caps);
2859 }
2860 
2861 /**
2862  * ice_aq_manage_mac_write - manage MAC address write command
2863  * @hw: pointer to the HW struct
2864  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2865  * @flags: flags to control write behavior
2866  * @cd: pointer to command details structure or NULL
2867  *
2868  * This function is used to write MAC address to the NVM (0x0108).
2869  */
2870 int
2871 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2872 			struct ice_sq_cd *cd)
2873 {
2874 	struct ice_aqc_manage_mac_write *cmd;
2875 	struct ice_aq_desc desc;
2876 
2877 	cmd = &desc.params.mac_write;
2878 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2879 
2880 	cmd->flags = flags;
2881 	ether_addr_copy(cmd->mac_addr, mac_addr);
2882 
2883 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2884 }
2885 
2886 /**
2887  * ice_aq_clear_pxe_mode
2888  * @hw: pointer to the HW struct
2889  *
2890  * Tell the firmware that the driver is taking over from PXE (0x0110).
2891  */
2892 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2893 {
2894 	struct ice_aq_desc desc;
2895 
2896 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2897 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2898 
2899 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2900 }
2901 
2902 /**
2903  * ice_clear_pxe_mode - clear pxe operations mode
2904  * @hw: pointer to the HW struct
2905  *
2906  * Make sure all PXE mode settings are cleared, including things
2907  * like descriptor fetch/write-back mode.
2908  */
2909 void ice_clear_pxe_mode(struct ice_hw *hw)
2910 {
2911 	if (ice_check_sq_alive(hw, &hw->adminq))
2912 		ice_aq_clear_pxe_mode(hw);
2913 }
2914 
2915 /**
2916  * ice_aq_set_port_params - set physical port parameters.
2917  * @pi: pointer to the port info struct
2918  * @double_vlan: if set double VLAN is enabled
2919  * @cd: pointer to command details structure or NULL
2920  *
2921  * Set Physical port parameters (0x0203)
2922  */
2923 int
2924 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2925 		       struct ice_sq_cd *cd)
2926 
2927 {
2928 	struct ice_aqc_set_port_params *cmd;
2929 	struct ice_hw *hw = pi->hw;
2930 	struct ice_aq_desc desc;
2931 	u16 cmd_flags = 0;
2932 
2933 	cmd = &desc.params.set_port_params;
2934 
2935 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2936 	if (double_vlan)
2937 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2938 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2939 
2940 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2941 }
2942 
2943 /**
2944  * ice_is_100m_speed_supported
2945  * @hw: pointer to the HW struct
2946  *
2947  * returns true if 100M speeds are supported by the device,
2948  * false otherwise.
2949  */
2950 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2951 {
2952 	switch (hw->device_id) {
2953 	case ICE_DEV_ID_E822C_SGMII:
2954 	case ICE_DEV_ID_E822L_SGMII:
2955 	case ICE_DEV_ID_E823L_1GBE:
2956 	case ICE_DEV_ID_E823C_SGMII:
2957 		return true;
2958 	default:
2959 		return false;
2960 	}
2961 }
2962 
2963 /**
2964  * ice_get_link_speed_based_on_phy_type - returns link speed
2965  * @phy_type_low: lower part of phy_type
2966  * @phy_type_high: higher part of phy_type
2967  *
2968  * This helper function will convert an entry in PHY type structure
2969  * [phy_type_low, phy_type_high] to its corresponding link speed.
2970  * Note: In the structure of [phy_type_low, phy_type_high], there should
2971  * be one bit set, as this function will convert one PHY type to its
2972  * speed.
2973  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2974  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
2975  */
2976 static u16
2977 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2978 {
2979 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2980 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2981 
2982 	switch (phy_type_low) {
2983 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2984 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2985 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2986 		break;
2987 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2988 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2989 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2990 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2991 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2992 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2993 		break;
2994 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2995 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2996 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2997 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2998 		break;
2999 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3000 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3001 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3002 		break;
3003 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3004 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3005 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3006 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3007 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3008 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3009 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3010 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3011 		break;
3012 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3013 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3014 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3015 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3016 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3017 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3018 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3019 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3020 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3021 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3022 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3023 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3024 		break;
3025 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3026 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3027 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3028 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3029 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3030 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3031 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3032 		break;
3033 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3034 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3035 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3036 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3037 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3038 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3039 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3040 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3041 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3042 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3043 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3044 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3045 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3046 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3047 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3048 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3049 		break;
3050 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3051 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3052 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3053 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3054 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3055 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3056 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3057 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3058 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3059 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3060 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3061 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3062 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3063 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3064 		break;
3065 	default:
3066 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3067 		break;
3068 	}
3069 
3070 	switch (phy_type_high) {
3071 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3072 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3073 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3074 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3075 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3076 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3077 		break;
3078 	default:
3079 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3080 		break;
3081 	}
3082 
3083 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3084 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3085 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3086 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3087 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3088 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3089 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3090 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3091 		return speed_phy_type_low;
3092 	else
3093 		return speed_phy_type_high;
3094 }
3095 
3096 /**
3097  * ice_update_phy_type
3098  * @phy_type_low: pointer to the lower part of phy_type
3099  * @phy_type_high: pointer to the higher part of phy_type
3100  * @link_speeds_bitmap: targeted link speeds bitmap
3101  *
3102  * Note: For the link_speeds_bitmap structure, you can check it at
3103  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3104  * link_speeds_bitmap include multiple speeds.
3105  *
3106  * Each entry in this [phy_type_low, phy_type_high] structure will
3107  * present a certain link speed. This helper function will turn on bits
3108  * in [phy_type_low, phy_type_high] structure based on the value of
3109  * link_speeds_bitmap input parameter.
3110  */
3111 void
3112 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3113 		    u16 link_speeds_bitmap)
3114 {
3115 	u64 pt_high;
3116 	u64 pt_low;
3117 	int index;
3118 	u16 speed;
3119 
3120 	/* We first check with low part of phy_type */
3121 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3122 		pt_low = BIT_ULL(index);
3123 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3124 
3125 		if (link_speeds_bitmap & speed)
3126 			*phy_type_low |= BIT_ULL(index);
3127 	}
3128 
3129 	/* We then check with high part of phy_type */
3130 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3131 		pt_high = BIT_ULL(index);
3132 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3133 
3134 		if (link_speeds_bitmap & speed)
3135 			*phy_type_high |= BIT_ULL(index);
3136 	}
3137 }
3138 
3139 /**
3140  * ice_aq_set_phy_cfg
3141  * @hw: pointer to the HW struct
3142  * @pi: port info structure of the interested logical port
3143  * @cfg: structure with PHY configuration data to be set
3144  * @cd: pointer to command details structure or NULL
3145  *
3146  * Set the various PHY configuration parameters supported on the Port.
3147  * One or more of the Set PHY config parameters may be ignored in an MFP
3148  * mode as the PF may not have the privilege to set some of the PHY Config
3149  * parameters. This status will be indicated by the command response (0x0601).
3150  */
3151 int
3152 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3153 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3154 {
3155 	struct ice_aq_desc desc;
3156 	int status;
3157 
3158 	if (!cfg)
3159 		return -EINVAL;
3160 
3161 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3162 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3163 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3164 			  cfg->caps);
3165 
3166 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3167 	}
3168 
3169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3170 	desc.params.set_phy.lport_num = pi->lport;
3171 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3172 
3173 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3174 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3175 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3176 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3177 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3178 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3179 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3180 		  cfg->low_power_ctrl_an);
3181 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3182 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3183 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3184 		  cfg->link_fec_opt);
3185 
3186 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3187 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3188 		status = 0;
3189 
3190 	if (!status)
3191 		pi->phy.curr_user_phy_cfg = *cfg;
3192 
3193 	return status;
3194 }
3195 
3196 /**
3197  * ice_update_link_info - update status of the HW network link
3198  * @pi: port info structure of the interested logical port
3199  */
3200 int ice_update_link_info(struct ice_port_info *pi)
3201 {
3202 	struct ice_link_status *li;
3203 	int status;
3204 
3205 	if (!pi)
3206 		return -EINVAL;
3207 
3208 	li = &pi->phy.link_info;
3209 
3210 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3211 	if (status)
3212 		return status;
3213 
3214 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3215 		struct ice_aqc_get_phy_caps_data *pcaps;
3216 		struct ice_hw *hw;
3217 
3218 		hw = pi->hw;
3219 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3220 				     GFP_KERNEL);
3221 		if (!pcaps)
3222 			return -ENOMEM;
3223 
3224 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3225 					     pcaps, NULL);
3226 
3227 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3228 	}
3229 
3230 	return status;
3231 }
3232 
3233 /**
3234  * ice_cache_phy_user_req
3235  * @pi: port information structure
3236  * @cache_data: PHY logging data
3237  * @cache_mode: PHY logging mode
3238  *
3239  * Log the user request on (FC, FEC, SPEED) for later use.
3240  */
3241 static void
3242 ice_cache_phy_user_req(struct ice_port_info *pi,
3243 		       struct ice_phy_cache_mode_data cache_data,
3244 		       enum ice_phy_cache_mode cache_mode)
3245 {
3246 	if (!pi)
3247 		return;
3248 
3249 	switch (cache_mode) {
3250 	case ICE_FC_MODE:
3251 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3252 		break;
3253 	case ICE_SPEED_MODE:
3254 		pi->phy.curr_user_speed_req =
3255 			cache_data.data.curr_user_speed_req;
3256 		break;
3257 	case ICE_FEC_MODE:
3258 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3259 		break;
3260 	default:
3261 		break;
3262 	}
3263 }
3264 
3265 /**
3266  * ice_caps_to_fc_mode
3267  * @caps: PHY capabilities
3268  *
3269  * Convert PHY FC capabilities to ice FC mode
3270  */
3271 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3272 {
3273 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3274 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3275 		return ICE_FC_FULL;
3276 
3277 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3278 		return ICE_FC_TX_PAUSE;
3279 
3280 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3281 		return ICE_FC_RX_PAUSE;
3282 
3283 	return ICE_FC_NONE;
3284 }
3285 
3286 /**
3287  * ice_caps_to_fec_mode
3288  * @caps: PHY capabilities
3289  * @fec_options: Link FEC options
3290  *
3291  * Convert PHY FEC capabilities to ice FEC mode
3292  */
3293 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3294 {
3295 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3296 		return ICE_FEC_AUTO;
3297 
3298 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3299 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3300 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3301 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3302 		return ICE_FEC_BASER;
3303 
3304 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3305 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3306 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3307 		return ICE_FEC_RS;
3308 
3309 	return ICE_FEC_NONE;
3310 }
3311 
3312 /**
3313  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3314  * @pi: port information structure
3315  * @cfg: PHY configuration data to set FC mode
3316  * @req_mode: FC mode to configure
3317  */
3318 int
3319 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3320 	       enum ice_fc_mode req_mode)
3321 {
3322 	struct ice_phy_cache_mode_data cache_data;
3323 	u8 pause_mask = 0x0;
3324 
3325 	if (!pi || !cfg)
3326 		return -EINVAL;
3327 
3328 	switch (req_mode) {
3329 	case ICE_FC_FULL:
3330 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3331 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3332 		break;
3333 	case ICE_FC_RX_PAUSE:
3334 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3335 		break;
3336 	case ICE_FC_TX_PAUSE:
3337 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3338 		break;
3339 	default:
3340 		break;
3341 	}
3342 
3343 	/* clear the old pause settings */
3344 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3345 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3346 
3347 	/* set the new capabilities */
3348 	cfg->caps |= pause_mask;
3349 
3350 	/* Cache user FC request */
3351 	cache_data.data.curr_user_fc_req = req_mode;
3352 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3353 
3354 	return 0;
3355 }
3356 
3357 /**
3358  * ice_set_fc
3359  * @pi: port information structure
3360  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3361  * @ena_auto_link_update: enable automatic link update
3362  *
3363  * Set the requested flow control mode.
3364  */
3365 int
3366 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3367 {
3368 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3369 	struct ice_aqc_get_phy_caps_data *pcaps;
3370 	struct ice_hw *hw;
3371 	int status;
3372 
3373 	if (!pi || !aq_failures)
3374 		return -EINVAL;
3375 
3376 	*aq_failures = 0;
3377 	hw = pi->hw;
3378 
3379 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3380 	if (!pcaps)
3381 		return -ENOMEM;
3382 
3383 	/* Get the current PHY config */
3384 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3385 				     pcaps, NULL);
3386 	if (status) {
3387 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3388 		goto out;
3389 	}
3390 
3391 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3392 
3393 	/* Configure the set PHY data */
3394 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3395 	if (status)
3396 		goto out;
3397 
3398 	/* If the capabilities have changed, then set the new config */
3399 	if (cfg.caps != pcaps->caps) {
3400 		int retry_count, retry_max = 10;
3401 
3402 		/* Auto restart link so settings take effect */
3403 		if (ena_auto_link_update)
3404 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3405 
3406 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3407 		if (status) {
3408 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3409 			goto out;
3410 		}
3411 
3412 		/* Update the link info
3413 		 * It sometimes takes a really long time for link to
3414 		 * come back from the atomic reset. Thus, we wait a
3415 		 * little bit.
3416 		 */
3417 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3418 			status = ice_update_link_info(pi);
3419 
3420 			if (!status)
3421 				break;
3422 
3423 			mdelay(100);
3424 		}
3425 
3426 		if (status)
3427 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3428 	}
3429 
3430 out:
3431 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3432 	return status;
3433 }
3434 
3435 /**
3436  * ice_phy_caps_equals_cfg
3437  * @phy_caps: PHY capabilities
3438  * @phy_cfg: PHY configuration
3439  *
3440  * Helper function to determine if PHY capabilities matches PHY
3441  * configuration
3442  */
3443 bool
3444 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3445 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3446 {
3447 	u8 caps_mask, cfg_mask;
3448 
3449 	if (!phy_caps || !phy_cfg)
3450 		return false;
3451 
3452 	/* These bits are not common between capabilities and configuration.
3453 	 * Do not use them to determine equality.
3454 	 */
3455 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3456 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3457 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3458 
3459 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3460 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3461 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3462 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3463 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3464 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3465 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3466 		return false;
3467 
3468 	return true;
3469 }
3470 
3471 /**
3472  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3473  * @pi: port information structure
3474  * @caps: PHY ability structure to copy date from
3475  * @cfg: PHY configuration structure to copy data to
3476  *
3477  * Helper function to copy AQC PHY get ability data to PHY set configuration
3478  * data structure
3479  */
3480 void
3481 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3482 			 struct ice_aqc_get_phy_caps_data *caps,
3483 			 struct ice_aqc_set_phy_cfg_data *cfg)
3484 {
3485 	if (!pi || !caps || !cfg)
3486 		return;
3487 
3488 	memset(cfg, 0, sizeof(*cfg));
3489 	cfg->phy_type_low = caps->phy_type_low;
3490 	cfg->phy_type_high = caps->phy_type_high;
3491 	cfg->caps = caps->caps;
3492 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3493 	cfg->eee_cap = caps->eee_cap;
3494 	cfg->eeer_value = caps->eeer_value;
3495 	cfg->link_fec_opt = caps->link_fec_options;
3496 	cfg->module_compliance_enforcement =
3497 		caps->module_compliance_enforcement;
3498 }
3499 
3500 /**
3501  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3502  * @pi: port information structure
3503  * @cfg: PHY configuration data to set FEC mode
3504  * @fec: FEC mode to configure
3505  */
3506 int
3507 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3508 		enum ice_fec_mode fec)
3509 {
3510 	struct ice_aqc_get_phy_caps_data *pcaps;
3511 	struct ice_hw *hw;
3512 	int status;
3513 
3514 	if (!pi || !cfg)
3515 		return -EINVAL;
3516 
3517 	hw = pi->hw;
3518 
3519 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3520 	if (!pcaps)
3521 		return -ENOMEM;
3522 
3523 	status = ice_aq_get_phy_caps(pi, false,
3524 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3525 				      ICE_AQC_REPORT_DFLT_CFG :
3526 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3527 	if (status)
3528 		goto out;
3529 
3530 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3531 	cfg->link_fec_opt = pcaps->link_fec_options;
3532 
3533 	switch (fec) {
3534 	case ICE_FEC_BASER:
3535 		/* Clear RS bits, and AND BASE-R ability
3536 		 * bits and OR request bits.
3537 		 */
3538 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3539 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3540 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3541 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3542 		break;
3543 	case ICE_FEC_RS:
3544 		/* Clear BASE-R bits, and AND RS ability
3545 		 * bits and OR request bits.
3546 		 */
3547 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3548 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3549 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3550 		break;
3551 	case ICE_FEC_NONE:
3552 		/* Clear all FEC option bits. */
3553 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3554 		break;
3555 	case ICE_FEC_AUTO:
3556 		/* AND auto FEC bit, and all caps bits. */
3557 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3558 		cfg->link_fec_opt |= pcaps->link_fec_options;
3559 		break;
3560 	default:
3561 		status = -EINVAL;
3562 		break;
3563 	}
3564 
3565 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3566 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3567 		struct ice_link_default_override_tlv tlv = { 0 };
3568 
3569 		status = ice_get_link_default_override(&tlv, pi);
3570 		if (status)
3571 			goto out;
3572 
3573 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3574 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3575 			cfg->link_fec_opt = tlv.fec_options;
3576 	}
3577 
3578 out:
3579 	kfree(pcaps);
3580 
3581 	return status;
3582 }
3583 
3584 /**
3585  * ice_get_link_status - get status of the HW network link
3586  * @pi: port information structure
3587  * @link_up: pointer to bool (true/false = linkup/linkdown)
3588  *
3589  * Variable link_up is true if link is up, false if link is down.
3590  * The variable link_up is invalid if status is non zero. As a
3591  * result of this call, link status reporting becomes enabled
3592  */
3593 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3594 {
3595 	struct ice_phy_info *phy_info;
3596 	int status = 0;
3597 
3598 	if (!pi || !link_up)
3599 		return -EINVAL;
3600 
3601 	phy_info = &pi->phy;
3602 
3603 	if (phy_info->get_link_info) {
3604 		status = ice_update_link_info(pi);
3605 
3606 		if (status)
3607 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3608 				  status);
3609 	}
3610 
3611 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3612 
3613 	return status;
3614 }
3615 
3616 /**
3617  * ice_aq_set_link_restart_an
3618  * @pi: pointer to the port information structure
3619  * @ena_link: if true: enable link, if false: disable link
3620  * @cd: pointer to command details structure or NULL
3621  *
3622  * Sets up the link and restarts the Auto-Negotiation over the link.
3623  */
3624 int
3625 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3626 			   struct ice_sq_cd *cd)
3627 {
3628 	struct ice_aqc_restart_an *cmd;
3629 	struct ice_aq_desc desc;
3630 
3631 	cmd = &desc.params.restart_an;
3632 
3633 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3634 
3635 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3636 	cmd->lport_num = pi->lport;
3637 	if (ena_link)
3638 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3639 	else
3640 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3641 
3642 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3643 }
3644 
3645 /**
3646  * ice_aq_set_event_mask
3647  * @hw: pointer to the HW struct
3648  * @port_num: port number of the physical function
3649  * @mask: event mask to be set
3650  * @cd: pointer to command details structure or NULL
3651  *
3652  * Set event mask (0x0613)
3653  */
3654 int
3655 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3656 		      struct ice_sq_cd *cd)
3657 {
3658 	struct ice_aqc_set_event_mask *cmd;
3659 	struct ice_aq_desc desc;
3660 
3661 	cmd = &desc.params.set_event_mask;
3662 
3663 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3664 
3665 	cmd->lport_num = port_num;
3666 
3667 	cmd->event_mask = cpu_to_le16(mask);
3668 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3669 }
3670 
3671 /**
3672  * ice_aq_set_mac_loopback
3673  * @hw: pointer to the HW struct
3674  * @ena_lpbk: Enable or Disable loopback
3675  * @cd: pointer to command details structure or NULL
3676  *
3677  * Enable/disable loopback on a given port
3678  */
3679 int
3680 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3681 {
3682 	struct ice_aqc_set_mac_lb *cmd;
3683 	struct ice_aq_desc desc;
3684 
3685 	cmd = &desc.params.set_mac_lb;
3686 
3687 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3688 	if (ena_lpbk)
3689 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3690 
3691 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3692 }
3693 
3694 /**
3695  * ice_aq_set_port_id_led
3696  * @pi: pointer to the port information
3697  * @is_orig_mode: is this LED set to original mode (by the net-list)
3698  * @cd: pointer to command details structure or NULL
3699  *
3700  * Set LED value for the given port (0x06e9)
3701  */
3702 int
3703 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3704 		       struct ice_sq_cd *cd)
3705 {
3706 	struct ice_aqc_set_port_id_led *cmd;
3707 	struct ice_hw *hw = pi->hw;
3708 	struct ice_aq_desc desc;
3709 
3710 	cmd = &desc.params.set_port_id_led;
3711 
3712 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3713 
3714 	if (is_orig_mode)
3715 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3716 	else
3717 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3718 
3719 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3720 }
3721 
3722 /**
3723  * ice_aq_get_port_options
3724  * @hw: pointer to the HW struct
3725  * @options: buffer for the resultant port options
3726  * @option_count: input - size of the buffer in port options structures,
3727  *                output - number of returned port options
3728  * @lport: logical port to call the command with (optional)
3729  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3730  *               when PF owns more than 1 port it must be true
3731  * @active_option_idx: index of active port option in returned buffer
3732  * @active_option_valid: active option in returned buffer is valid
3733  * @pending_option_idx: index of pending port option in returned buffer
3734  * @pending_option_valid: pending option in returned buffer is valid
3735  *
3736  * Calls Get Port Options AQC (0x06ea) and verifies result.
3737  */
3738 int
3739 ice_aq_get_port_options(struct ice_hw *hw,
3740 			struct ice_aqc_get_port_options_elem *options,
3741 			u8 *option_count, u8 lport, bool lport_valid,
3742 			u8 *active_option_idx, bool *active_option_valid,
3743 			u8 *pending_option_idx, bool *pending_option_valid)
3744 {
3745 	struct ice_aqc_get_port_options *cmd;
3746 	struct ice_aq_desc desc;
3747 	int status;
3748 	u8 i;
3749 
3750 	/* options buffer shall be able to hold max returned options */
3751 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3752 		return -EINVAL;
3753 
3754 	cmd = &desc.params.get_port_options;
3755 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3756 
3757 	if (lport_valid)
3758 		cmd->lport_num = lport;
3759 	cmd->lport_num_valid = lport_valid;
3760 
3761 	status = ice_aq_send_cmd(hw, &desc, options,
3762 				 *option_count * sizeof(*options), NULL);
3763 	if (status)
3764 		return status;
3765 
3766 	/* verify direct FW response & set output parameters */
3767 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3768 				  cmd->port_options_count);
3769 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3770 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3771 					 cmd->port_options);
3772 	if (*active_option_valid) {
3773 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3774 					       cmd->port_options);
3775 		if (*active_option_idx > (*option_count - 1))
3776 			return -EIO;
3777 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3778 			  *active_option_idx);
3779 	}
3780 
3781 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3782 					  cmd->pending_port_option_status);
3783 	if (*pending_option_valid) {
3784 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3785 						cmd->pending_port_option_status);
3786 		if (*pending_option_idx > (*option_count - 1))
3787 			return -EIO;
3788 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3789 			  *pending_option_idx);
3790 	}
3791 
3792 	/* mask output options fields */
3793 	for (i = 0; i < *option_count; i++) {
3794 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3795 					   options[i].pmd);
3796 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3797 						      options[i].max_lane_speed);
3798 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3799 			  options[i].pmd, options[i].max_lane_speed);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 /**
3806  * ice_aq_set_port_option
3807  * @hw: pointer to the HW struct
3808  * @lport: logical port to call the command with
3809  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3810  *               when PF owns more than 1 port it must be true
3811  * @new_option: new port option to be written
3812  *
3813  * Calls Set Port Options AQC (0x06eb).
3814  */
3815 int
3816 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3817 		       u8 new_option)
3818 {
3819 	struct ice_aqc_set_port_option *cmd;
3820 	struct ice_aq_desc desc;
3821 
3822 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3823 		return -EINVAL;
3824 
3825 	cmd = &desc.params.set_port_option;
3826 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3827 
3828 	if (lport_valid)
3829 		cmd->lport_num = lport;
3830 
3831 	cmd->lport_num_valid = lport_valid;
3832 	cmd->selected_port_option = new_option;
3833 
3834 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3835 }
3836 
3837 /**
3838  * ice_aq_sff_eeprom
3839  * @hw: pointer to the HW struct
3840  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3841  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3842  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3843  * @page: QSFP page
3844  * @set_page: set or ignore the page
3845  * @data: pointer to data buffer to be read/written to the I2C device.
3846  * @length: 1-16 for read, 1 for write.
3847  * @write: 0 read, 1 for write.
3848  * @cd: pointer to command details structure or NULL
3849  *
3850  * Read/Write SFF EEPROM (0x06EE)
3851  */
3852 int
3853 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3854 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3855 		  bool write, struct ice_sq_cd *cd)
3856 {
3857 	struct ice_aqc_sff_eeprom *cmd;
3858 	struct ice_aq_desc desc;
3859 	int status;
3860 
3861 	if (!data || (mem_addr & 0xff00))
3862 		return -EINVAL;
3863 
3864 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3865 	cmd = &desc.params.read_write_sff_param;
3866 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3867 	cmd->lport_num = (u8)(lport & 0xff);
3868 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3869 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3870 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3871 					((set_page <<
3872 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3873 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3874 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3875 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3876 	if (write)
3877 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3878 
3879 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3880 	return status;
3881 }
3882 
3883 /**
3884  * __ice_aq_get_set_rss_lut
3885  * @hw: pointer to the hardware structure
3886  * @params: RSS LUT parameters
3887  * @set: set true to set the table, false to get the table
3888  *
3889  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3890  */
3891 static int
3892 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3893 {
3894 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3895 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3896 	struct ice_aq_desc desc;
3897 	int status;
3898 	u8 *lut;
3899 
3900 	if (!params)
3901 		return -EINVAL;
3902 
3903 	vsi_handle = params->vsi_handle;
3904 	lut = params->lut;
3905 
3906 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3907 		return -EINVAL;
3908 
3909 	lut_size = params->lut_size;
3910 	lut_type = params->lut_type;
3911 	glob_lut_idx = params->global_lut_id;
3912 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3913 
3914 	cmd_resp = &desc.params.get_set_rss_lut;
3915 
3916 	if (set) {
3917 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3918 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3919 	} else {
3920 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3921 	}
3922 
3923 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3924 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3925 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3926 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3927 
3928 	switch (lut_type) {
3929 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3930 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3931 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3932 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3933 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3934 		break;
3935 	default:
3936 		status = -EINVAL;
3937 		goto ice_aq_get_set_rss_lut_exit;
3938 	}
3939 
3940 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3941 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3942 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3943 
3944 		if (!set)
3945 			goto ice_aq_get_set_rss_lut_send;
3946 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3947 		if (!set)
3948 			goto ice_aq_get_set_rss_lut_send;
3949 	} else {
3950 		goto ice_aq_get_set_rss_lut_send;
3951 	}
3952 
3953 	/* LUT size is only valid for Global and PF table types */
3954 	switch (lut_size) {
3955 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3956 		break;
3957 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3958 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3959 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3960 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3961 		break;
3962 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3963 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3964 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3965 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3966 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3967 			break;
3968 		}
3969 		fallthrough;
3970 	default:
3971 		status = -EINVAL;
3972 		goto ice_aq_get_set_rss_lut_exit;
3973 	}
3974 
3975 ice_aq_get_set_rss_lut_send:
3976 	cmd_resp->flags = cpu_to_le16(flags);
3977 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3978 
3979 ice_aq_get_set_rss_lut_exit:
3980 	return status;
3981 }
3982 
3983 /**
3984  * ice_aq_get_rss_lut
3985  * @hw: pointer to the hardware structure
3986  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3987  *
3988  * get the RSS lookup table, PF or VSI type
3989  */
3990 int
3991 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3992 {
3993 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3994 }
3995 
3996 /**
3997  * ice_aq_set_rss_lut
3998  * @hw: pointer to the hardware structure
3999  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4000  *
4001  * set the RSS lookup table, PF or VSI type
4002  */
4003 int
4004 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4005 {
4006 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4007 }
4008 
4009 /**
4010  * __ice_aq_get_set_rss_key
4011  * @hw: pointer to the HW struct
4012  * @vsi_id: VSI FW index
4013  * @key: pointer to key info struct
4014  * @set: set true to set the key, false to get the key
4015  *
4016  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4017  */
4018 static int
4019 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4020 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4021 {
4022 	struct ice_aqc_get_set_rss_key *cmd_resp;
4023 	u16 key_size = sizeof(*key);
4024 	struct ice_aq_desc desc;
4025 
4026 	cmd_resp = &desc.params.get_set_rss_key;
4027 
4028 	if (set) {
4029 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4030 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4031 	} else {
4032 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4033 	}
4034 
4035 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
4036 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4037 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4038 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4039 
4040 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4041 }
4042 
4043 /**
4044  * ice_aq_get_rss_key
4045  * @hw: pointer to the HW struct
4046  * @vsi_handle: software VSI handle
4047  * @key: pointer to key info struct
4048  *
4049  * get the RSS key per VSI
4050  */
4051 int
4052 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4053 		   struct ice_aqc_get_set_rss_keys *key)
4054 {
4055 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4056 		return -EINVAL;
4057 
4058 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4059 					key, false);
4060 }
4061 
4062 /**
4063  * ice_aq_set_rss_key
4064  * @hw: pointer to the HW struct
4065  * @vsi_handle: software VSI handle
4066  * @keys: pointer to key info struct
4067  *
4068  * set the RSS key per VSI
4069  */
4070 int
4071 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4072 		   struct ice_aqc_get_set_rss_keys *keys)
4073 {
4074 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4075 		return -EINVAL;
4076 
4077 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4078 					keys, true);
4079 }
4080 
4081 /**
4082  * ice_aq_add_lan_txq
4083  * @hw: pointer to the hardware structure
4084  * @num_qgrps: Number of added queue groups
4085  * @qg_list: list of queue groups to be added
4086  * @buf_size: size of buffer for indirect command
4087  * @cd: pointer to command details structure or NULL
4088  *
4089  * Add Tx LAN queue (0x0C30)
4090  *
4091  * NOTE:
4092  * Prior to calling add Tx LAN queue:
4093  * Initialize the following as part of the Tx queue context:
4094  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4095  * Cache profile and Packet shaper profile.
4096  *
4097  * After add Tx LAN queue AQ command is completed:
4098  * Interrupts should be associated with specific queues,
4099  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4100  * flow.
4101  */
4102 static int
4103 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4104 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4105 		   struct ice_sq_cd *cd)
4106 {
4107 	struct ice_aqc_add_tx_qgrp *list;
4108 	struct ice_aqc_add_txqs *cmd;
4109 	struct ice_aq_desc desc;
4110 	u16 i, sum_size = 0;
4111 
4112 	cmd = &desc.params.add_txqs;
4113 
4114 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4115 
4116 	if (!qg_list)
4117 		return -EINVAL;
4118 
4119 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4120 		return -EINVAL;
4121 
4122 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4123 		sum_size += struct_size(list, txqs, list->num_txqs);
4124 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4125 						      list->num_txqs);
4126 	}
4127 
4128 	if (buf_size != sum_size)
4129 		return -EINVAL;
4130 
4131 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4132 
4133 	cmd->num_qgrps = num_qgrps;
4134 
4135 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4136 }
4137 
4138 /**
4139  * ice_aq_dis_lan_txq
4140  * @hw: pointer to the hardware structure
4141  * @num_qgrps: number of groups in the list
4142  * @qg_list: the list of groups to disable
4143  * @buf_size: the total size of the qg_list buffer in bytes
4144  * @rst_src: if called due to reset, specifies the reset source
4145  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4146  * @cd: pointer to command details structure or NULL
4147  *
4148  * Disable LAN Tx queue (0x0C31)
4149  */
4150 static int
4151 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4152 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4153 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4154 		   struct ice_sq_cd *cd)
4155 {
4156 	struct ice_aqc_dis_txq_item *item;
4157 	struct ice_aqc_dis_txqs *cmd;
4158 	struct ice_aq_desc desc;
4159 	u16 i, sz = 0;
4160 	int status;
4161 
4162 	cmd = &desc.params.dis_txqs;
4163 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4164 
4165 	/* qg_list can be NULL only in VM/VF reset flow */
4166 	if (!qg_list && !rst_src)
4167 		return -EINVAL;
4168 
4169 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4170 		return -EINVAL;
4171 
4172 	cmd->num_entries = num_qgrps;
4173 
4174 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4175 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4176 
4177 	switch (rst_src) {
4178 	case ICE_VM_RESET:
4179 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4180 		cmd->vmvf_and_timeout |=
4181 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4182 		break;
4183 	case ICE_VF_RESET:
4184 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4185 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4186 		cmd->vmvf_and_timeout |=
4187 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4188 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4189 		break;
4190 	case ICE_NO_RESET:
4191 	default:
4192 		break;
4193 	}
4194 
4195 	/* flush pipe on time out */
4196 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4197 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4198 	if (!qg_list)
4199 		goto do_aq;
4200 
4201 	/* set RD bit to indicate that command buffer is provided by the driver
4202 	 * and it needs to be read by the firmware
4203 	 */
4204 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4205 
4206 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4207 		u16 item_size = struct_size(item, q_id, item->num_qs);
4208 
4209 		/* If the num of queues is even, add 2 bytes of padding */
4210 		if ((item->num_qs % 2) == 0)
4211 			item_size += 2;
4212 
4213 		sz += item_size;
4214 
4215 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4216 	}
4217 
4218 	if (buf_size != sz)
4219 		return -EINVAL;
4220 
4221 do_aq:
4222 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4223 	if (status) {
4224 		if (!qg_list)
4225 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4226 				  vmvf_num, hw->adminq.sq_last_status);
4227 		else
4228 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4229 				  le16_to_cpu(qg_list[0].q_id[0]),
4230 				  hw->adminq.sq_last_status);
4231 	}
4232 	return status;
4233 }
4234 
4235 /**
4236  * ice_aq_add_rdma_qsets
4237  * @hw: pointer to the hardware structure
4238  * @num_qset_grps: Number of RDMA Qset groups
4239  * @qset_list: list of Qset groups to be added
4240  * @buf_size: size of buffer for indirect command
4241  * @cd: pointer to command details structure or NULL
4242  *
4243  * Add Tx RDMA Qsets (0x0C33)
4244  */
4245 static int
4246 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4247 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4248 		      u16 buf_size, struct ice_sq_cd *cd)
4249 {
4250 	struct ice_aqc_add_rdma_qset_data *list;
4251 	struct ice_aqc_add_rdma_qset *cmd;
4252 	struct ice_aq_desc desc;
4253 	u16 i, sum_size = 0;
4254 
4255 	cmd = &desc.params.add_rdma_qset;
4256 
4257 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4258 
4259 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4260 		return -EINVAL;
4261 
4262 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4263 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4264 
4265 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4266 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4267 							     num_qsets);
4268 	}
4269 
4270 	if (buf_size != sum_size)
4271 		return -EINVAL;
4272 
4273 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4274 
4275 	cmd->num_qset_grps = num_qset_grps;
4276 
4277 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4278 }
4279 
4280 /* End of FW Admin Queue command wrappers */
4281 
4282 /**
4283  * ice_write_byte - write a byte to a packed context structure
4284  * @src_ctx:  the context structure to read from
4285  * @dest_ctx: the context to be written to
4286  * @ce_info:  a description of the struct to be filled
4287  */
4288 static void
4289 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4290 {
4291 	u8 src_byte, dest_byte, mask;
4292 	u8 *from, *dest;
4293 	u16 shift_width;
4294 
4295 	/* copy from the next struct field */
4296 	from = src_ctx + ce_info->offset;
4297 
4298 	/* prepare the bits and mask */
4299 	shift_width = ce_info->lsb % 8;
4300 	mask = (u8)(BIT(ce_info->width) - 1);
4301 
4302 	src_byte = *from;
4303 	src_byte &= mask;
4304 
4305 	/* shift to correct alignment */
4306 	mask <<= shift_width;
4307 	src_byte <<= shift_width;
4308 
4309 	/* get the current bits from the target bit string */
4310 	dest = dest_ctx + (ce_info->lsb / 8);
4311 
4312 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4313 
4314 	dest_byte &= ~mask;	/* get the bits not changing */
4315 	dest_byte |= src_byte;	/* add in the new bits */
4316 
4317 	/* put it all back */
4318 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4319 }
4320 
4321 /**
4322  * ice_write_word - write a word to a packed context structure
4323  * @src_ctx:  the context structure to read from
4324  * @dest_ctx: the context to be written to
4325  * @ce_info:  a description of the struct to be filled
4326  */
4327 static void
4328 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4329 {
4330 	u16 src_word, mask;
4331 	__le16 dest_word;
4332 	u8 *from, *dest;
4333 	u16 shift_width;
4334 
4335 	/* copy from the next struct field */
4336 	from = src_ctx + ce_info->offset;
4337 
4338 	/* prepare the bits and mask */
4339 	shift_width = ce_info->lsb % 8;
4340 	mask = BIT(ce_info->width) - 1;
4341 
4342 	/* don't swizzle the bits until after the mask because the mask bits
4343 	 * will be in a different bit position on big endian machines
4344 	 */
4345 	src_word = *(u16 *)from;
4346 	src_word &= mask;
4347 
4348 	/* shift to correct alignment */
4349 	mask <<= shift_width;
4350 	src_word <<= shift_width;
4351 
4352 	/* get the current bits from the target bit string */
4353 	dest = dest_ctx + (ce_info->lsb / 8);
4354 
4355 	memcpy(&dest_word, dest, sizeof(dest_word));
4356 
4357 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4358 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4359 
4360 	/* put it all back */
4361 	memcpy(dest, &dest_word, sizeof(dest_word));
4362 }
4363 
4364 /**
4365  * ice_write_dword - write a dword to a packed context structure
4366  * @src_ctx:  the context structure to read from
4367  * @dest_ctx: the context to be written to
4368  * @ce_info:  a description of the struct to be filled
4369  */
4370 static void
4371 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4372 {
4373 	u32 src_dword, mask;
4374 	__le32 dest_dword;
4375 	u8 *from, *dest;
4376 	u16 shift_width;
4377 
4378 	/* copy from the next struct field */
4379 	from = src_ctx + ce_info->offset;
4380 
4381 	/* prepare the bits and mask */
4382 	shift_width = ce_info->lsb % 8;
4383 
4384 	/* if the field width is exactly 32 on an x86 machine, then the shift
4385 	 * operation will not work because the SHL instructions count is masked
4386 	 * to 5 bits so the shift will do nothing
4387 	 */
4388 	if (ce_info->width < 32)
4389 		mask = BIT(ce_info->width) - 1;
4390 	else
4391 		mask = (u32)~0;
4392 
4393 	/* don't swizzle the bits until after the mask because the mask bits
4394 	 * will be in a different bit position on big endian machines
4395 	 */
4396 	src_dword = *(u32 *)from;
4397 	src_dword &= mask;
4398 
4399 	/* shift to correct alignment */
4400 	mask <<= shift_width;
4401 	src_dword <<= shift_width;
4402 
4403 	/* get the current bits from the target bit string */
4404 	dest = dest_ctx + (ce_info->lsb / 8);
4405 
4406 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4407 
4408 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4409 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4410 
4411 	/* put it all back */
4412 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4413 }
4414 
4415 /**
4416  * ice_write_qword - write a qword to a packed context structure
4417  * @src_ctx:  the context structure to read from
4418  * @dest_ctx: the context to be written to
4419  * @ce_info:  a description of the struct to be filled
4420  */
4421 static void
4422 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4423 {
4424 	u64 src_qword, mask;
4425 	__le64 dest_qword;
4426 	u8 *from, *dest;
4427 	u16 shift_width;
4428 
4429 	/* copy from the next struct field */
4430 	from = src_ctx + ce_info->offset;
4431 
4432 	/* prepare the bits and mask */
4433 	shift_width = ce_info->lsb % 8;
4434 
4435 	/* if the field width is exactly 64 on an x86 machine, then the shift
4436 	 * operation will not work because the SHL instructions count is masked
4437 	 * to 6 bits so the shift will do nothing
4438 	 */
4439 	if (ce_info->width < 64)
4440 		mask = BIT_ULL(ce_info->width) - 1;
4441 	else
4442 		mask = (u64)~0;
4443 
4444 	/* don't swizzle the bits until after the mask because the mask bits
4445 	 * will be in a different bit position on big endian machines
4446 	 */
4447 	src_qword = *(u64 *)from;
4448 	src_qword &= mask;
4449 
4450 	/* shift to correct alignment */
4451 	mask <<= shift_width;
4452 	src_qword <<= shift_width;
4453 
4454 	/* get the current bits from the target bit string */
4455 	dest = dest_ctx + (ce_info->lsb / 8);
4456 
4457 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4458 
4459 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4460 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4461 
4462 	/* put it all back */
4463 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4464 }
4465 
4466 /**
4467  * ice_set_ctx - set context bits in packed structure
4468  * @hw: pointer to the hardware structure
4469  * @src_ctx:  pointer to a generic non-packed context structure
4470  * @dest_ctx: pointer to memory for the packed structure
4471  * @ce_info:  a description of the structure to be transformed
4472  */
4473 int
4474 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4475 	    const struct ice_ctx_ele *ce_info)
4476 {
4477 	int f;
4478 
4479 	for (f = 0; ce_info[f].width; f++) {
4480 		/* We have to deal with each element of the FW response
4481 		 * using the correct size so that we are correct regardless
4482 		 * of the endianness of the machine.
4483 		 */
4484 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4485 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4486 				  f, ce_info[f].width, ce_info[f].size_of);
4487 			continue;
4488 		}
4489 		switch (ce_info[f].size_of) {
4490 		case sizeof(u8):
4491 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4492 			break;
4493 		case sizeof(u16):
4494 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4495 			break;
4496 		case sizeof(u32):
4497 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4498 			break;
4499 		case sizeof(u64):
4500 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4501 			break;
4502 		default:
4503 			return -EINVAL;
4504 		}
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 /**
4511  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4512  * @hw: pointer to the HW struct
4513  * @vsi_handle: software VSI handle
4514  * @tc: TC number
4515  * @q_handle: software queue handle
4516  */
4517 struct ice_q_ctx *
4518 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4519 {
4520 	struct ice_vsi_ctx *vsi;
4521 	struct ice_q_ctx *q_ctx;
4522 
4523 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4524 	if (!vsi)
4525 		return NULL;
4526 	if (q_handle >= vsi->num_lan_q_entries[tc])
4527 		return NULL;
4528 	if (!vsi->lan_q_ctx[tc])
4529 		return NULL;
4530 	q_ctx = vsi->lan_q_ctx[tc];
4531 	return &q_ctx[q_handle];
4532 }
4533 
4534 /**
4535  * ice_ena_vsi_txq
4536  * @pi: port information structure
4537  * @vsi_handle: software VSI handle
4538  * @tc: TC number
4539  * @q_handle: software queue handle
4540  * @num_qgrps: Number of added queue groups
4541  * @buf: list of queue groups to be added
4542  * @buf_size: size of buffer for indirect command
4543  * @cd: pointer to command details structure or NULL
4544  *
4545  * This function adds one LAN queue
4546  */
4547 int
4548 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4549 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4550 		struct ice_sq_cd *cd)
4551 {
4552 	struct ice_aqc_txsched_elem_data node = { 0 };
4553 	struct ice_sched_node *parent;
4554 	struct ice_q_ctx *q_ctx;
4555 	struct ice_hw *hw;
4556 	int status;
4557 
4558 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4559 		return -EIO;
4560 
4561 	if (num_qgrps > 1 || buf->num_txqs > 1)
4562 		return -ENOSPC;
4563 
4564 	hw = pi->hw;
4565 
4566 	if (!ice_is_vsi_valid(hw, vsi_handle))
4567 		return -EINVAL;
4568 
4569 	mutex_lock(&pi->sched_lock);
4570 
4571 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4572 	if (!q_ctx) {
4573 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4574 			  q_handle);
4575 		status = -EINVAL;
4576 		goto ena_txq_exit;
4577 	}
4578 
4579 	/* find a parent node */
4580 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4581 					    ICE_SCHED_NODE_OWNER_LAN);
4582 	if (!parent) {
4583 		status = -EINVAL;
4584 		goto ena_txq_exit;
4585 	}
4586 
4587 	buf->parent_teid = parent->info.node_teid;
4588 	node.parent_teid = parent->info.node_teid;
4589 	/* Mark that the values in the "generic" section as valid. The default
4590 	 * value in the "generic" section is zero. This means that :
4591 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4592 	 * - 0 priority among siblings, indicated by Bit 1-3.
4593 	 * - WFQ, indicated by Bit 4.
4594 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4595 	 * Bit 5-6.
4596 	 * - Bit 7 is reserved.
4597 	 * Without setting the generic section as valid in valid_sections, the
4598 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4599 	 */
4600 	buf->txqs[0].info.valid_sections =
4601 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4602 		ICE_AQC_ELEM_VALID_EIR;
4603 	buf->txqs[0].info.generic = 0;
4604 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4605 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4606 	buf->txqs[0].info.cir_bw.bw_alloc =
4607 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4608 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4609 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4610 	buf->txqs[0].info.eir_bw.bw_alloc =
4611 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4612 
4613 	/* add the LAN queue */
4614 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4615 	if (status) {
4616 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4617 			  le16_to_cpu(buf->txqs[0].txq_id),
4618 			  hw->adminq.sq_last_status);
4619 		goto ena_txq_exit;
4620 	}
4621 
4622 	node.node_teid = buf->txqs[0].q_teid;
4623 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4624 	q_ctx->q_handle = q_handle;
4625 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4626 
4627 	/* add a leaf node into scheduler tree queue layer */
4628 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4629 	if (!status)
4630 		status = ice_sched_replay_q_bw(pi, q_ctx);
4631 
4632 ena_txq_exit:
4633 	mutex_unlock(&pi->sched_lock);
4634 	return status;
4635 }
4636 
4637 /**
4638  * ice_dis_vsi_txq
4639  * @pi: port information structure
4640  * @vsi_handle: software VSI handle
4641  * @tc: TC number
4642  * @num_queues: number of queues
4643  * @q_handles: pointer to software queue handle array
4644  * @q_ids: pointer to the q_id array
4645  * @q_teids: pointer to queue node teids
4646  * @rst_src: if called due to reset, specifies the reset source
4647  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4648  * @cd: pointer to command details structure or NULL
4649  *
4650  * This function removes queues and their corresponding nodes in SW DB
4651  */
4652 int
4653 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4654 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4655 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4656 		struct ice_sq_cd *cd)
4657 {
4658 	struct ice_aqc_dis_txq_item *qg_list;
4659 	struct ice_q_ctx *q_ctx;
4660 	int status = -ENOENT;
4661 	struct ice_hw *hw;
4662 	u16 i, buf_size;
4663 
4664 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4665 		return -EIO;
4666 
4667 	hw = pi->hw;
4668 
4669 	if (!num_queues) {
4670 		/* if queue is disabled already yet the disable queue command
4671 		 * has to be sent to complete the VF reset, then call
4672 		 * ice_aq_dis_lan_txq without any queue information
4673 		 */
4674 		if (rst_src)
4675 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4676 						  vmvf_num, NULL);
4677 		return -EIO;
4678 	}
4679 
4680 	buf_size = struct_size(qg_list, q_id, 1);
4681 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4682 	if (!qg_list)
4683 		return -ENOMEM;
4684 
4685 	mutex_lock(&pi->sched_lock);
4686 
4687 	for (i = 0; i < num_queues; i++) {
4688 		struct ice_sched_node *node;
4689 
4690 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4691 		if (!node)
4692 			continue;
4693 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4694 		if (!q_ctx) {
4695 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4696 				  q_handles[i]);
4697 			continue;
4698 		}
4699 		if (q_ctx->q_handle != q_handles[i]) {
4700 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4701 				  q_ctx->q_handle, q_handles[i]);
4702 			continue;
4703 		}
4704 		qg_list->parent_teid = node->info.parent_teid;
4705 		qg_list->num_qs = 1;
4706 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4707 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4708 					    vmvf_num, cd);
4709 
4710 		if (status)
4711 			break;
4712 		ice_free_sched_node(pi, node);
4713 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4714 	}
4715 	mutex_unlock(&pi->sched_lock);
4716 	kfree(qg_list);
4717 	return status;
4718 }
4719 
4720 /**
4721  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4722  * @pi: port information structure
4723  * @vsi_handle: software VSI handle
4724  * @tc_bitmap: TC bitmap
4725  * @maxqs: max queues array per TC
4726  * @owner: LAN or RDMA
4727  *
4728  * This function adds/updates the VSI queues per TC.
4729  */
4730 static int
4731 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4732 	       u16 *maxqs, u8 owner)
4733 {
4734 	int status = 0;
4735 	u8 i;
4736 
4737 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4738 		return -EIO;
4739 
4740 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4741 		return -EINVAL;
4742 
4743 	mutex_lock(&pi->sched_lock);
4744 
4745 	ice_for_each_traffic_class(i) {
4746 		/* configuration is possible only if TC node is present */
4747 		if (!ice_sched_get_tc_node(pi, i))
4748 			continue;
4749 
4750 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4751 					   ice_is_tc_ena(tc_bitmap, i));
4752 		if (status)
4753 			break;
4754 	}
4755 
4756 	mutex_unlock(&pi->sched_lock);
4757 	return status;
4758 }
4759 
4760 /**
4761  * ice_cfg_vsi_lan - configure VSI LAN queues
4762  * @pi: port information structure
4763  * @vsi_handle: software VSI handle
4764  * @tc_bitmap: TC bitmap
4765  * @max_lanqs: max LAN queues array per TC
4766  *
4767  * This function adds/updates the VSI LAN queues per TC.
4768  */
4769 int
4770 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4771 		u16 *max_lanqs)
4772 {
4773 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4774 			      ICE_SCHED_NODE_OWNER_LAN);
4775 }
4776 
4777 /**
4778  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4779  * @pi: port information structure
4780  * @vsi_handle: software VSI handle
4781  * @tc_bitmap: TC bitmap
4782  * @max_rdmaqs: max RDMA queues array per TC
4783  *
4784  * This function adds/updates the VSI RDMA queues per TC.
4785  */
4786 int
4787 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4788 		 u16 *max_rdmaqs)
4789 {
4790 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4791 			      ICE_SCHED_NODE_OWNER_RDMA);
4792 }
4793 
4794 /**
4795  * ice_ena_vsi_rdma_qset
4796  * @pi: port information structure
4797  * @vsi_handle: software VSI handle
4798  * @tc: TC number
4799  * @rdma_qset: pointer to RDMA Qset
4800  * @num_qsets: number of RDMA Qsets
4801  * @qset_teid: pointer to Qset node TEIDs
4802  *
4803  * This function adds RDMA Qset
4804  */
4805 int
4806 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4807 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4808 {
4809 	struct ice_aqc_txsched_elem_data node = { 0 };
4810 	struct ice_aqc_add_rdma_qset_data *buf;
4811 	struct ice_sched_node *parent;
4812 	struct ice_hw *hw;
4813 	u16 i, buf_size;
4814 	int ret;
4815 
4816 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4817 		return -EIO;
4818 	hw = pi->hw;
4819 
4820 	if (!ice_is_vsi_valid(hw, vsi_handle))
4821 		return -EINVAL;
4822 
4823 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4824 	buf = kzalloc(buf_size, GFP_KERNEL);
4825 	if (!buf)
4826 		return -ENOMEM;
4827 	mutex_lock(&pi->sched_lock);
4828 
4829 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4830 					    ICE_SCHED_NODE_OWNER_RDMA);
4831 	if (!parent) {
4832 		ret = -EINVAL;
4833 		goto rdma_error_exit;
4834 	}
4835 	buf->parent_teid = parent->info.node_teid;
4836 	node.parent_teid = parent->info.node_teid;
4837 
4838 	buf->num_qsets = cpu_to_le16(num_qsets);
4839 	for (i = 0; i < num_qsets; i++) {
4840 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4841 		buf->rdma_qsets[i].info.valid_sections =
4842 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4843 			ICE_AQC_ELEM_VALID_EIR;
4844 		buf->rdma_qsets[i].info.generic = 0;
4845 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4846 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4847 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4848 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4849 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4850 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4851 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4852 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4853 	}
4854 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4855 	if (ret) {
4856 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4857 		goto rdma_error_exit;
4858 	}
4859 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4860 	for (i = 0; i < num_qsets; i++) {
4861 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4862 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4863 					 &node, NULL);
4864 		if (ret)
4865 			break;
4866 		qset_teid[i] = le32_to_cpu(node.node_teid);
4867 	}
4868 rdma_error_exit:
4869 	mutex_unlock(&pi->sched_lock);
4870 	kfree(buf);
4871 	return ret;
4872 }
4873 
4874 /**
4875  * ice_dis_vsi_rdma_qset - free RDMA resources
4876  * @pi: port_info struct
4877  * @count: number of RDMA Qsets to free
4878  * @qset_teid: TEID of Qset node
4879  * @q_id: list of queue IDs being disabled
4880  */
4881 int
4882 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4883 		      u16 *q_id)
4884 {
4885 	struct ice_aqc_dis_txq_item *qg_list;
4886 	struct ice_hw *hw;
4887 	int status = 0;
4888 	u16 qg_size;
4889 	int i;
4890 
4891 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4892 		return -EIO;
4893 
4894 	hw = pi->hw;
4895 
4896 	qg_size = struct_size(qg_list, q_id, 1);
4897 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4898 	if (!qg_list)
4899 		return -ENOMEM;
4900 
4901 	mutex_lock(&pi->sched_lock);
4902 
4903 	for (i = 0; i < count; i++) {
4904 		struct ice_sched_node *node;
4905 
4906 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4907 		if (!node)
4908 			continue;
4909 
4910 		qg_list->parent_teid = node->info.parent_teid;
4911 		qg_list->num_qs = 1;
4912 		qg_list->q_id[0] =
4913 			cpu_to_le16(q_id[i] |
4914 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4915 
4916 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4917 					    ICE_NO_RESET, 0, NULL);
4918 		if (status)
4919 			break;
4920 
4921 		ice_free_sched_node(pi, node);
4922 	}
4923 
4924 	mutex_unlock(&pi->sched_lock);
4925 	kfree(qg_list);
4926 	return status;
4927 }
4928 
4929 /**
4930  * ice_replay_pre_init - replay pre initialization
4931  * @hw: pointer to the HW struct
4932  *
4933  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4934  */
4935 static int ice_replay_pre_init(struct ice_hw *hw)
4936 {
4937 	struct ice_switch_info *sw = hw->switch_info;
4938 	u8 i;
4939 
4940 	/* Delete old entries from replay filter list head if there is any */
4941 	ice_rm_all_sw_replay_rule_info(hw);
4942 	/* In start of replay, move entries into replay_rules list, it
4943 	 * will allow adding rules entries back to filt_rules list,
4944 	 * which is operational list.
4945 	 */
4946 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4947 		list_replace_init(&sw->recp_list[i].filt_rules,
4948 				  &sw->recp_list[i].filt_replay_rules);
4949 	ice_sched_replay_agg_vsi_preinit(hw);
4950 
4951 	return 0;
4952 }
4953 
4954 /**
4955  * ice_replay_vsi - replay VSI configuration
4956  * @hw: pointer to the HW struct
4957  * @vsi_handle: driver VSI handle
4958  *
4959  * Restore all VSI configuration after reset. It is required to call this
4960  * function with main VSI first.
4961  */
4962 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4963 {
4964 	int status;
4965 
4966 	if (!ice_is_vsi_valid(hw, vsi_handle))
4967 		return -EINVAL;
4968 
4969 	/* Replay pre-initialization if there is any */
4970 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4971 		status = ice_replay_pre_init(hw);
4972 		if (status)
4973 			return status;
4974 	}
4975 	/* Replay per VSI all RSS configurations */
4976 	status = ice_replay_rss_cfg(hw, vsi_handle);
4977 	if (status)
4978 		return status;
4979 	/* Replay per VSI all filters */
4980 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4981 	if (!status)
4982 		status = ice_replay_vsi_agg(hw, vsi_handle);
4983 	return status;
4984 }
4985 
4986 /**
4987  * ice_replay_post - post replay configuration cleanup
4988  * @hw: pointer to the HW struct
4989  *
4990  * Post replay cleanup.
4991  */
4992 void ice_replay_post(struct ice_hw *hw)
4993 {
4994 	/* Delete old entries from replay filter list head */
4995 	ice_rm_all_sw_replay_rule_info(hw);
4996 	ice_sched_replay_agg(hw);
4997 }
4998 
4999 /**
5000  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5001  * @hw: ptr to the hardware info
5002  * @reg: offset of 64 bit HW register to read from
5003  * @prev_stat_loaded: bool to specify if previous stats are loaded
5004  * @prev_stat: ptr to previous loaded stat value
5005  * @cur_stat: ptr to current stat value
5006  */
5007 void
5008 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5009 		  u64 *prev_stat, u64 *cur_stat)
5010 {
5011 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5012 
5013 	/* device stats are not reset at PFR, they likely will not be zeroed
5014 	 * when the driver starts. Thus, save the value from the first read
5015 	 * without adding to the statistic value so that we report stats which
5016 	 * count up from zero.
5017 	 */
5018 	if (!prev_stat_loaded) {
5019 		*prev_stat = new_data;
5020 		return;
5021 	}
5022 
5023 	/* Calculate the difference between the new and old values, and then
5024 	 * add it to the software stat value.
5025 	 */
5026 	if (new_data >= *prev_stat)
5027 		*cur_stat += new_data - *prev_stat;
5028 	else
5029 		/* to manage the potential roll-over */
5030 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5031 
5032 	/* Update the previously stored value to prepare for next read */
5033 	*prev_stat = new_data;
5034 }
5035 
5036 /**
5037  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5038  * @hw: ptr to the hardware info
5039  * @reg: offset of HW register to read from
5040  * @prev_stat_loaded: bool to specify if previous stats are loaded
5041  * @prev_stat: ptr to previous loaded stat value
5042  * @cur_stat: ptr to current stat value
5043  */
5044 void
5045 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5046 		  u64 *prev_stat, u64 *cur_stat)
5047 {
5048 	u32 new_data;
5049 
5050 	new_data = rd32(hw, reg);
5051 
5052 	/* device stats are not reset at PFR, they likely will not be zeroed
5053 	 * when the driver starts. Thus, save the value from the first read
5054 	 * without adding to the statistic value so that we report stats which
5055 	 * count up from zero.
5056 	 */
5057 	if (!prev_stat_loaded) {
5058 		*prev_stat = new_data;
5059 		return;
5060 	}
5061 
5062 	/* Calculate the difference between the new and old values, and then
5063 	 * add it to the software stat value.
5064 	 */
5065 	if (new_data >= *prev_stat)
5066 		*cur_stat += new_data - *prev_stat;
5067 	else
5068 		/* to manage the potential roll-over */
5069 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5070 
5071 	/* Update the previously stored value to prepare for next read */
5072 	*prev_stat = new_data;
5073 }
5074 
5075 /**
5076  * ice_sched_query_elem - query element information from HW
5077  * @hw: pointer to the HW struct
5078  * @node_teid: node TEID to be queried
5079  * @buf: buffer to element information
5080  *
5081  * This function queries HW element information
5082  */
5083 int
5084 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5085 		     struct ice_aqc_txsched_elem_data *buf)
5086 {
5087 	u16 buf_size, num_elem_ret = 0;
5088 	int status;
5089 
5090 	buf_size = sizeof(*buf);
5091 	memset(buf, 0, buf_size);
5092 	buf->node_teid = cpu_to_le32(node_teid);
5093 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5094 					  NULL);
5095 	if (status || num_elem_ret != 1)
5096 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5097 	return status;
5098 }
5099 
5100 /**
5101  * ice_aq_read_i2c
5102  * @hw: pointer to the hw struct
5103  * @topo_addr: topology address for a device to communicate with
5104  * @bus_addr: 7-bit I2C bus address
5105  * @addr: I2C memory address (I2C offset) with up to 16 bits
5106  * @params: I2C parameters: bit [7] - Repeated start,
5107  *			    bits [6:5] data offset size,
5108  *			    bit [4] - I2C address type,
5109  *			    bits [3:0] - data size to read (0-16 bytes)
5110  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5111  * @cd: pointer to command details structure or NULL
5112  *
5113  * Read I2C (0x06E2)
5114  */
5115 int
5116 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5117 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5118 		struct ice_sq_cd *cd)
5119 {
5120 	struct ice_aq_desc desc = { 0 };
5121 	struct ice_aqc_i2c *cmd;
5122 	u8 data_size;
5123 	int status;
5124 
5125 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5126 	cmd = &desc.params.read_write_i2c;
5127 
5128 	if (!data)
5129 		return -EINVAL;
5130 
5131 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5132 
5133 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5134 	cmd->topo_addr = topo_addr;
5135 	cmd->i2c_params = params;
5136 	cmd->i2c_addr = addr;
5137 
5138 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5139 	if (!status) {
5140 		struct ice_aqc_read_i2c_resp *resp;
5141 		u8 i;
5142 
5143 		resp = &desc.params.read_i2c_resp;
5144 		for (i = 0; i < data_size; i++) {
5145 			*data = resp->i2c_data[i];
5146 			data++;
5147 		}
5148 	}
5149 
5150 	return status;
5151 }
5152 
5153 /**
5154  * ice_aq_write_i2c
5155  * @hw: pointer to the hw struct
5156  * @topo_addr: topology address for a device to communicate with
5157  * @bus_addr: 7-bit I2C bus address
5158  * @addr: I2C memory address (I2C offset) with up to 16 bits
5159  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5160  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5161  * @cd: pointer to command details structure or NULL
5162  *
5163  * Write I2C (0x06E3)
5164  *
5165  * * Return:
5166  * * 0             - Successful write to the i2c device
5167  * * -EINVAL       - Data size greater than 4 bytes
5168  * * -EIO          - FW error
5169  */
5170 int
5171 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5172 		 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5173 		 struct ice_sq_cd *cd)
5174 {
5175 	struct ice_aq_desc desc = { 0 };
5176 	struct ice_aqc_i2c *cmd;
5177 	u8 data_size;
5178 
5179 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5180 	cmd = &desc.params.read_write_i2c;
5181 
5182 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5183 
5184 	/* data_size limited to 4 */
5185 	if (data_size > 4)
5186 		return -EINVAL;
5187 
5188 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5189 	cmd->topo_addr = topo_addr;
5190 	cmd->i2c_params = params;
5191 	cmd->i2c_addr = addr;
5192 
5193 	memcpy(cmd->i2c_data, data, data_size);
5194 
5195 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5196 }
5197 
5198 /**
5199  * ice_aq_set_driver_param - Set driver parameter to share via firmware
5200  * @hw: pointer to the HW struct
5201  * @idx: parameter index to set
5202  * @value: the value to set the parameter to
5203  * @cd: pointer to command details structure or NULL
5204  *
5205  * Set the value of one of the software defined parameters. All PFs connected
5206  * to this device can read the value using ice_aq_get_driver_param.
5207  *
5208  * Note that firmware provides no synchronization or locking, and will not
5209  * save the parameter value during a device reset. It is expected that
5210  * a single PF will write the parameter value, while all other PFs will only
5211  * read it.
5212  */
5213 int
5214 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5215 			u32 value, struct ice_sq_cd *cd)
5216 {
5217 	struct ice_aqc_driver_shared_params *cmd;
5218 	struct ice_aq_desc desc;
5219 
5220 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5221 		return -EIO;
5222 
5223 	cmd = &desc.params.drv_shared_params;
5224 
5225 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5226 
5227 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5228 	cmd->param_indx = idx;
5229 	cmd->param_val = cpu_to_le32(value);
5230 
5231 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5232 }
5233 
5234 /**
5235  * ice_aq_get_driver_param - Get driver parameter shared via firmware
5236  * @hw: pointer to the HW struct
5237  * @idx: parameter index to set
5238  * @value: storage to return the shared parameter
5239  * @cd: pointer to command details structure or NULL
5240  *
5241  * Get the value of one of the software defined parameters.
5242  *
5243  * Note that firmware provides no synchronization or locking. It is expected
5244  * that only a single PF will write a given parameter.
5245  */
5246 int
5247 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5248 			u32 *value, struct ice_sq_cd *cd)
5249 {
5250 	struct ice_aqc_driver_shared_params *cmd;
5251 	struct ice_aq_desc desc;
5252 	int status;
5253 
5254 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5255 		return -EIO;
5256 
5257 	cmd = &desc.params.drv_shared_params;
5258 
5259 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5260 
5261 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5262 	cmd->param_indx = idx;
5263 
5264 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5265 	if (status)
5266 		return status;
5267 
5268 	*value = le32_to_cpu(cmd->param_val);
5269 
5270 	return 0;
5271 }
5272 
5273 /**
5274  * ice_aq_set_gpio
5275  * @hw: pointer to the hw struct
5276  * @gpio_ctrl_handle: GPIO controller node handle
5277  * @pin_idx: IO Number of the GPIO that needs to be set
5278  * @value: SW provide IO value to set in the LSB
5279  * @cd: pointer to command details structure or NULL
5280  *
5281  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5282  */
5283 int
5284 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5285 		struct ice_sq_cd *cd)
5286 {
5287 	struct ice_aqc_gpio *cmd;
5288 	struct ice_aq_desc desc;
5289 
5290 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5291 	cmd = &desc.params.read_write_gpio;
5292 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5293 	cmd->gpio_num = pin_idx;
5294 	cmd->gpio_val = value ? 1 : 0;
5295 
5296 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5297 }
5298 
5299 /**
5300  * ice_aq_get_gpio
5301  * @hw: pointer to the hw struct
5302  * @gpio_ctrl_handle: GPIO controller node handle
5303  * @pin_idx: IO Number of the GPIO that needs to be set
5304  * @value: IO value read
5305  * @cd: pointer to command details structure or NULL
5306  *
5307  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5308  * the topology
5309  */
5310 int
5311 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5312 		bool *value, struct ice_sq_cd *cd)
5313 {
5314 	struct ice_aqc_gpio *cmd;
5315 	struct ice_aq_desc desc;
5316 	int status;
5317 
5318 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5319 	cmd = &desc.params.read_write_gpio;
5320 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5321 	cmd->gpio_num = pin_idx;
5322 
5323 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5324 	if (status)
5325 		return status;
5326 
5327 	*value = !!cmd->gpio_val;
5328 	return 0;
5329 }
5330 
5331 /**
5332  * ice_is_fw_api_min_ver
5333  * @hw: pointer to the hardware structure
5334  * @maj: major version
5335  * @min: minor version
5336  * @patch: patch version
5337  *
5338  * Checks if the firmware API is minimum version
5339  */
5340 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5341 {
5342 	if (hw->api_maj_ver == maj) {
5343 		if (hw->api_min_ver > min)
5344 			return true;
5345 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5346 			return true;
5347 	} else if (hw->api_maj_ver > maj) {
5348 		return true;
5349 	}
5350 
5351 	return false;
5352 }
5353 
5354 /**
5355  * ice_fw_supports_link_override
5356  * @hw: pointer to the hardware structure
5357  *
5358  * Checks if the firmware supports link override
5359  */
5360 bool ice_fw_supports_link_override(struct ice_hw *hw)
5361 {
5362 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5363 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5364 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5365 }
5366 
5367 /**
5368  * ice_get_link_default_override
5369  * @ldo: pointer to the link default override struct
5370  * @pi: pointer to the port info struct
5371  *
5372  * Gets the link default override for a port
5373  */
5374 int
5375 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5376 			      struct ice_port_info *pi)
5377 {
5378 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5379 	struct ice_hw *hw = pi->hw;
5380 	int status;
5381 
5382 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5383 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5384 	if (status) {
5385 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5386 		return status;
5387 	}
5388 
5389 	/* Each port has its own config; calculate for our port */
5390 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5391 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5392 
5393 	/* link options first */
5394 	status = ice_read_sr_word(hw, tlv_start, &buf);
5395 	if (status) {
5396 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5397 		return status;
5398 	}
5399 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5400 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5401 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5402 
5403 	/* link PHY config */
5404 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5405 	status = ice_read_sr_word(hw, offset, &buf);
5406 	if (status) {
5407 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5408 		return status;
5409 	}
5410 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5411 
5412 	/* PHY types low */
5413 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5414 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5415 		status = ice_read_sr_word(hw, (offset + i), &buf);
5416 		if (status) {
5417 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5418 			return status;
5419 		}
5420 		/* shift 16 bits at a time to fill 64 bits */
5421 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5422 	}
5423 
5424 	/* PHY types high */
5425 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5426 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5427 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5428 		status = ice_read_sr_word(hw, (offset + i), &buf);
5429 		if (status) {
5430 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5431 			return status;
5432 		}
5433 		/* shift 16 bits at a time to fill 64 bits */
5434 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5435 	}
5436 
5437 	return status;
5438 }
5439 
5440 /**
5441  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5442  * @caps: get PHY capability data
5443  */
5444 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5445 {
5446 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5447 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5448 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5449 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5450 		return true;
5451 
5452 	return false;
5453 }
5454 
5455 /**
5456  * ice_aq_set_lldp_mib - Set the LLDP MIB
5457  * @hw: pointer to the HW struct
5458  * @mib_type: Local, Remote or both Local and Remote MIBs
5459  * @buf: pointer to the caller-supplied buffer to store the MIB block
5460  * @buf_size: size of the buffer (in bytes)
5461  * @cd: pointer to command details structure or NULL
5462  *
5463  * Set the LLDP MIB. (0x0A08)
5464  */
5465 int
5466 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5467 		    struct ice_sq_cd *cd)
5468 {
5469 	struct ice_aqc_lldp_set_local_mib *cmd;
5470 	struct ice_aq_desc desc;
5471 
5472 	cmd = &desc.params.lldp_set_mib;
5473 
5474 	if (buf_size == 0 || !buf)
5475 		return -EINVAL;
5476 
5477 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5478 
5479 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5480 	desc.datalen = cpu_to_le16(buf_size);
5481 
5482 	cmd->type = mib_type;
5483 	cmd->length = cpu_to_le16(buf_size);
5484 
5485 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5486 }
5487 
5488 /**
5489  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5490  * @hw: pointer to HW struct
5491  */
5492 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5493 {
5494 	if (hw->mac_type != ICE_MAC_E810)
5495 		return false;
5496 
5497 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5498 				     ICE_FW_API_LLDP_FLTR_MIN,
5499 				     ICE_FW_API_LLDP_FLTR_PATCH);
5500 }
5501 
5502 /**
5503  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5504  * @hw: pointer to HW struct
5505  * @vsi_num: absolute HW index for VSI
5506  * @add: boolean for if adding or removing a filter
5507  */
5508 int
5509 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5510 {
5511 	struct ice_aqc_lldp_filter_ctrl *cmd;
5512 	struct ice_aq_desc desc;
5513 
5514 	cmd = &desc.params.lldp_filter_ctrl;
5515 
5516 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5517 
5518 	if (add)
5519 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5520 	else
5521 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5522 
5523 	cmd->vsi_num = cpu_to_le16(vsi_num);
5524 
5525 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5526 }
5527 
5528 /**
5529  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5530  * @hw: pointer to HW struct
5531  */
5532 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5533 {
5534 	struct ice_aq_desc desc;
5535 
5536 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5537 
5538 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5539 }
5540 
5541 /**
5542  * ice_fw_supports_report_dflt_cfg
5543  * @hw: pointer to the hardware structure
5544  *
5545  * Checks if the firmware supports report default configuration
5546  */
5547 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5548 {
5549 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5550 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5551 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5552 }
5553 
5554 /* each of the indexes into the following array match the speed of a return
5555  * value from the list of AQ returned speeds like the range:
5556  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5557  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5558  * array. The array is defined as 15 elements long because the link_speed
5559  * returned by the firmware is a 16 bit * value, but is indexed
5560  * by [fls(speed) - 1]
5561  */
5562 static const u32 ice_aq_to_link_speed[] = {
5563 	SPEED_10,	/* BIT(0) */
5564 	SPEED_100,
5565 	SPEED_1000,
5566 	SPEED_2500,
5567 	SPEED_5000,
5568 	SPEED_10000,
5569 	SPEED_20000,
5570 	SPEED_25000,
5571 	SPEED_40000,
5572 	SPEED_50000,
5573 	SPEED_100000,	/* BIT(10) */
5574 };
5575 
5576 /**
5577  * ice_get_link_speed - get integer speed from table
5578  * @index: array index from fls(aq speed) - 1
5579  *
5580  * Returns: u32 value containing integer speed
5581  */
5582 u32 ice_get_link_speed(u16 index)
5583 {
5584 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5585 		return 0;
5586 
5587 	return ice_aq_to_link_speed[index];
5588 }
5589