1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
18 static int ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return -ENODEV;
22 
23 	switch (hw->device_id) {
24 	case ICE_DEV_ID_E810C_BACKPLANE:
25 	case ICE_DEV_ID_E810C_QSFP:
26 	case ICE_DEV_ID_E810C_SFP:
27 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
28 	case ICE_DEV_ID_E810_XXV_QSFP:
29 	case ICE_DEV_ID_E810_XXV_SFP:
30 		hw->mac_type = ICE_MAC_E810;
31 		break;
32 	case ICE_DEV_ID_E823C_10G_BASE_T:
33 	case ICE_DEV_ID_E823C_BACKPLANE:
34 	case ICE_DEV_ID_E823C_QSFP:
35 	case ICE_DEV_ID_E823C_SFP:
36 	case ICE_DEV_ID_E823C_SGMII:
37 	case ICE_DEV_ID_E822C_10G_BASE_T:
38 	case ICE_DEV_ID_E822C_BACKPLANE:
39 	case ICE_DEV_ID_E822C_QSFP:
40 	case ICE_DEV_ID_E822C_SFP:
41 	case ICE_DEV_ID_E822C_SGMII:
42 	case ICE_DEV_ID_E822L_10G_BASE_T:
43 	case ICE_DEV_ID_E822L_BACKPLANE:
44 	case ICE_DEV_ID_E822L_SFP:
45 	case ICE_DEV_ID_E822L_SGMII:
46 	case ICE_DEV_ID_E823L_10G_BASE_T:
47 	case ICE_DEV_ID_E823L_1GBE:
48 	case ICE_DEV_ID_E823L_BACKPLANE:
49 	case ICE_DEV_ID_E823L_QSFP:
50 	case ICE_DEV_ID_E823L_SFP:
51 		hw->mac_type = ICE_MAC_GENERIC;
52 		break;
53 	default:
54 		hw->mac_type = ICE_MAC_UNKNOWN;
55 		break;
56 	}
57 
58 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
59 	return 0;
60 }
61 
62 /**
63  * ice_is_e810
64  * @hw: pointer to the hardware structure
65  *
66  * returns true if the device is E810 based, false if not.
67  */
68 bool ice_is_e810(struct ice_hw *hw)
69 {
70 	return hw->mac_type == ICE_MAC_E810;
71 }
72 
73 /**
74  * ice_is_e810t
75  * @hw: pointer to the hardware structure
76  *
77  * returns true if the device is E810T based, false if not.
78  */
79 bool ice_is_e810t(struct ice_hw *hw)
80 {
81 	switch (hw->device_id) {
82 	case ICE_DEV_ID_E810C_SFP:
83 		if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
84 		    hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
85 			return true;
86 		break;
87 	default:
88 		break;
89 	}
90 
91 	return false;
92 }
93 
94 /**
95  * ice_clear_pf_cfg - Clear PF configuration
96  * @hw: pointer to the hardware structure
97  *
98  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
99  * configuration, flow director filters, etc.).
100  */
101 int ice_clear_pf_cfg(struct ice_hw *hw)
102 {
103 	struct ice_aq_desc desc;
104 
105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
106 
107 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
108 }
109 
110 /**
111  * ice_aq_manage_mac_read - manage MAC address read command
112  * @hw: pointer to the HW struct
113  * @buf: a virtual buffer to hold the manage MAC read response
114  * @buf_size: Size of the virtual buffer
115  * @cd: pointer to command details structure or NULL
116  *
117  * This function is used to return per PF station MAC address (0x0107).
118  * NOTE: Upon successful completion of this command, MAC address information
119  * is returned in user specified buffer. Please interpret user specified
120  * buffer as "manage_mac_read" response.
121  * Response such as various MAC addresses are stored in HW struct (port.mac)
122  * ice_discover_dev_caps is expected to be called before this function is
123  * called.
124  */
125 static int
126 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
127 		       struct ice_sq_cd *cd)
128 {
129 	struct ice_aqc_manage_mac_read_resp *resp;
130 	struct ice_aqc_manage_mac_read *cmd;
131 	struct ice_aq_desc desc;
132 	int status;
133 	u16 flags;
134 	u8 i;
135 
136 	cmd = &desc.params.mac_read;
137 
138 	if (buf_size < sizeof(*resp))
139 		return -EINVAL;
140 
141 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
142 
143 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
144 	if (status)
145 		return status;
146 
147 	resp = buf;
148 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
149 
150 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
151 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
152 		return -EIO;
153 	}
154 
155 	/* A single port can report up to two (LAN and WoL) addresses */
156 	for (i = 0; i < cmd->num_addr; i++)
157 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
158 			ether_addr_copy(hw->port_info->mac.lan_addr,
159 					resp[i].mac_addr);
160 			ether_addr_copy(hw->port_info->mac.perm_addr,
161 					resp[i].mac_addr);
162 			break;
163 		}
164 
165 	return 0;
166 }
167 
168 /**
169  * ice_aq_get_phy_caps - returns PHY capabilities
170  * @pi: port information structure
171  * @qual_mods: report qualified modules
172  * @report_mode: report mode capabilities
173  * @pcaps: structure for PHY capabilities to be filled
174  * @cd: pointer to command details structure or NULL
175  *
176  * Returns the various PHY capabilities supported on the Port (0x0600)
177  */
178 int
179 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
180 		    struct ice_aqc_get_phy_caps_data *pcaps,
181 		    struct ice_sq_cd *cd)
182 {
183 	struct ice_aqc_get_phy_caps *cmd;
184 	u16 pcaps_size = sizeof(*pcaps);
185 	struct ice_aq_desc desc;
186 	struct ice_hw *hw;
187 	int status;
188 
189 	cmd = &desc.params.get_phy;
190 
191 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
192 		return -EINVAL;
193 	hw = pi->hw;
194 
195 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
196 	    !ice_fw_supports_report_dflt_cfg(hw))
197 		return -EINVAL;
198 
199 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
200 
201 	if (qual_mods)
202 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
203 
204 	cmd->param0 |= cpu_to_le16(report_mode);
205 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
206 
207 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
208 		  report_mode);
209 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
210 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
211 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
212 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
213 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
214 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
215 		  pcaps->low_power_ctrl_an);
216 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
217 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
218 		  pcaps->eeer_value);
219 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
220 		  pcaps->link_fec_options);
221 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
222 		  pcaps->module_compliance_enforcement);
223 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
224 		  pcaps->extended_compliance_code);
225 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
226 		  pcaps->module_type[0]);
227 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
228 		  pcaps->module_type[1]);
229 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
230 		  pcaps->module_type[2]);
231 
232 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
233 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
234 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
235 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
236 		       sizeof(pi->phy.link_info.module_type));
237 	}
238 
239 	return status;
240 }
241 
242 /**
243  * ice_aq_get_link_topo_handle - get link topology node return status
244  * @pi: port information structure
245  * @node_type: requested node type
246  * @cd: pointer to command details structure or NULL
247  *
248  * Get link topology node return status for specified node type (0x06E0)
249  *
250  * Node type cage can be used to determine if cage is present. If AQC
251  * returns error (ENOENT), then no cage present. If no cage present, then
252  * connection type is backplane or BASE-T.
253  */
254 static int
255 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
256 			    struct ice_sq_cd *cd)
257 {
258 	struct ice_aqc_get_link_topo *cmd;
259 	struct ice_aq_desc desc;
260 
261 	cmd = &desc.params.get_link_topo;
262 
263 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
264 
265 	cmd->addr.topo_params.node_type_ctx =
266 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
267 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
268 
269 	/* set node type */
270 	cmd->addr.topo_params.node_type_ctx |=
271 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
272 
273 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
274 }
275 
276 /**
277  * ice_is_media_cage_present
278  * @pi: port information structure
279  *
280  * Returns true if media cage is present, else false. If no cage, then
281  * media type is backplane or BASE-T.
282  */
283 static bool ice_is_media_cage_present(struct ice_port_info *pi)
284 {
285 	/* Node type cage can be used to determine if cage is present. If AQC
286 	 * returns error (ENOENT), then no cage present. If no cage present then
287 	 * connection type is backplane or BASE-T.
288 	 */
289 	return !ice_aq_get_link_topo_handle(pi,
290 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
291 					    NULL);
292 }
293 
294 /**
295  * ice_get_media_type - Gets media type
296  * @pi: port information structure
297  */
298 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
299 {
300 	struct ice_link_status *hw_link_info;
301 
302 	if (!pi)
303 		return ICE_MEDIA_UNKNOWN;
304 
305 	hw_link_info = &pi->phy.link_info;
306 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
307 		/* If more than one media type is selected, report unknown */
308 		return ICE_MEDIA_UNKNOWN;
309 
310 	if (hw_link_info->phy_type_low) {
311 		/* 1G SGMII is a special case where some DA cable PHYs
312 		 * may show this as an option when it really shouldn't
313 		 * be since SGMII is meant to be between a MAC and a PHY
314 		 * in a backplane. Try to detect this case and handle it
315 		 */
316 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
317 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
318 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
319 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
320 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
321 			return ICE_MEDIA_DA;
322 
323 		switch (hw_link_info->phy_type_low) {
324 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
325 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
326 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
327 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
328 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
329 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
330 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
331 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
332 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
333 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
334 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
335 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
336 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
337 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
338 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
339 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
340 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
341 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
342 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
343 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
344 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
345 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
346 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
347 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
348 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
349 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
350 			return ICE_MEDIA_FIBER;
351 		case ICE_PHY_TYPE_LOW_100BASE_TX:
352 		case ICE_PHY_TYPE_LOW_1000BASE_T:
353 		case ICE_PHY_TYPE_LOW_2500BASE_T:
354 		case ICE_PHY_TYPE_LOW_5GBASE_T:
355 		case ICE_PHY_TYPE_LOW_10GBASE_T:
356 		case ICE_PHY_TYPE_LOW_25GBASE_T:
357 			return ICE_MEDIA_BASET;
358 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
359 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
360 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
361 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
362 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
363 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
364 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
365 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
366 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
367 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
368 			return ICE_MEDIA_DA;
369 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
370 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
371 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
372 		case ICE_PHY_TYPE_LOW_50G_AUI2:
373 		case ICE_PHY_TYPE_LOW_50G_AUI1:
374 		case ICE_PHY_TYPE_LOW_100G_AUI4:
375 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
376 			if (ice_is_media_cage_present(pi))
377 				return ICE_MEDIA_DA;
378 			fallthrough;
379 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
380 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
381 		case ICE_PHY_TYPE_LOW_2500BASE_X:
382 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
383 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
384 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
385 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
386 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
387 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
388 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
389 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
390 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
391 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
392 			return ICE_MEDIA_BACKPLANE;
393 		}
394 	} else {
395 		switch (hw_link_info->phy_type_high) {
396 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
397 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
398 			if (ice_is_media_cage_present(pi))
399 				return ICE_MEDIA_DA;
400 			fallthrough;
401 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
402 			return ICE_MEDIA_BACKPLANE;
403 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
404 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
405 			return ICE_MEDIA_FIBER;
406 		}
407 	}
408 	return ICE_MEDIA_UNKNOWN;
409 }
410 
411 /**
412  * ice_aq_get_link_info
413  * @pi: port information structure
414  * @ena_lse: enable/disable LinkStatusEvent reporting
415  * @link: pointer to link status structure - optional
416  * @cd: pointer to command details structure or NULL
417  *
418  * Get Link Status (0x607). Returns the link status of the adapter.
419  */
420 int
421 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
422 		     struct ice_link_status *link, struct ice_sq_cd *cd)
423 {
424 	struct ice_aqc_get_link_status_data link_data = { 0 };
425 	struct ice_aqc_get_link_status *resp;
426 	struct ice_link_status *li_old, *li;
427 	enum ice_media_type *hw_media_type;
428 	struct ice_fc_info *hw_fc_info;
429 	bool tx_pause, rx_pause;
430 	struct ice_aq_desc desc;
431 	struct ice_hw *hw;
432 	u16 cmd_flags;
433 	int status;
434 
435 	if (!pi)
436 		return -EINVAL;
437 	hw = pi->hw;
438 	li_old = &pi->phy.link_info_old;
439 	hw_media_type = &pi->phy.media_type;
440 	li = &pi->phy.link_info;
441 	hw_fc_info = &pi->fc;
442 
443 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
444 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
445 	resp = &desc.params.get_link_status;
446 	resp->cmd_flags = cpu_to_le16(cmd_flags);
447 	resp->lport_num = pi->lport;
448 
449 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
450 
451 	if (status)
452 		return status;
453 
454 	/* save off old link status information */
455 	*li_old = *li;
456 
457 	/* update current link status information */
458 	li->link_speed = le16_to_cpu(link_data.link_speed);
459 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
460 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
461 	*hw_media_type = ice_get_media_type(pi);
462 	li->link_info = link_data.link_info;
463 	li->link_cfg_err = link_data.link_cfg_err;
464 	li->an_info = link_data.an_info;
465 	li->ext_info = link_data.ext_info;
466 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
467 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
468 	li->topo_media_conflict = link_data.topo_media_conflict;
469 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
470 				      ICE_AQ_CFG_PACING_TYPE_M);
471 
472 	/* update fc info */
473 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
474 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
475 	if (tx_pause && rx_pause)
476 		hw_fc_info->current_mode = ICE_FC_FULL;
477 	else if (tx_pause)
478 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
479 	else if (rx_pause)
480 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
481 	else
482 		hw_fc_info->current_mode = ICE_FC_NONE;
483 
484 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
485 
486 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
487 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
488 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
489 		  (unsigned long long)li->phy_type_low);
490 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
491 		  (unsigned long long)li->phy_type_high);
492 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
493 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
494 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
495 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
496 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
497 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
498 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
499 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
500 		  li->max_frame_size);
501 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
502 
503 	/* save link status information */
504 	if (link)
505 		*link = *li;
506 
507 	/* flag cleared so calling functions don't call AQ again */
508 	pi->phy.get_link_info = false;
509 
510 	return 0;
511 }
512 
513 /**
514  * ice_fill_tx_timer_and_fc_thresh
515  * @hw: pointer to the HW struct
516  * @cmd: pointer to MAC cfg structure
517  *
518  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
519  * descriptor
520  */
521 static void
522 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
523 				struct ice_aqc_set_mac_cfg *cmd)
524 {
525 	u16 fc_thres_val, tx_timer_val;
526 	u32 val;
527 
528 	/* We read back the transmit timer and FC threshold value of
529 	 * LFC. Thus, we will use index =
530 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
531 	 *
532 	 * Also, because we are operating on transmit timer and FC
533 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
534 	 */
535 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
536 
537 	/* Retrieve the transmit timer */
538 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
539 	tx_timer_val = val &
540 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
541 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
542 
543 	/* Retrieve the FC threshold */
544 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
545 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
546 
547 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
548 }
549 
550 /**
551  * ice_aq_set_mac_cfg
552  * @hw: pointer to the HW struct
553  * @max_frame_size: Maximum Frame Size to be supported
554  * @cd: pointer to command details structure or NULL
555  *
556  * Set MAC configuration (0x0603)
557  */
558 int
559 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
560 {
561 	struct ice_aqc_set_mac_cfg *cmd;
562 	struct ice_aq_desc desc;
563 
564 	cmd = &desc.params.set_mac_cfg;
565 
566 	if (max_frame_size == 0)
567 		return -EINVAL;
568 
569 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
570 
571 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
572 
573 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
574 
575 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
576 }
577 
578 /**
579  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
580  * @hw: pointer to the HW struct
581  */
582 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
583 {
584 	struct ice_switch_info *sw;
585 	int status;
586 
587 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
588 				       sizeof(*hw->switch_info), GFP_KERNEL);
589 	sw = hw->switch_info;
590 
591 	if (!sw)
592 		return -ENOMEM;
593 
594 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
595 	sw->prof_res_bm_init = 0;
596 
597 	status = ice_init_def_sw_recp(hw);
598 	if (status) {
599 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
600 		return status;
601 	}
602 	return 0;
603 }
604 
605 /**
606  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
607  * @hw: pointer to the HW struct
608  */
609 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
610 {
611 	struct ice_switch_info *sw = hw->switch_info;
612 	struct ice_vsi_list_map_info *v_pos_map;
613 	struct ice_vsi_list_map_info *v_tmp_map;
614 	struct ice_sw_recipe *recps;
615 	u8 i;
616 
617 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
618 				 list_entry) {
619 		list_del(&v_pos_map->list_entry);
620 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
621 	}
622 	recps = sw->recp_list;
623 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
624 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
625 
626 		recps[i].root_rid = i;
627 		list_for_each_entry_safe(rg_entry, tmprg_entry,
628 					 &recps[i].rg_list, l_entry) {
629 			list_del(&rg_entry->l_entry);
630 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
631 		}
632 
633 		if (recps[i].adv_rule) {
634 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
635 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
636 
637 			mutex_destroy(&recps[i].filt_rule_lock);
638 			list_for_each_entry_safe(lst_itr, tmp_entry,
639 						 &recps[i].filt_rules,
640 						 list_entry) {
641 				list_del(&lst_itr->list_entry);
642 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
643 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
644 			}
645 		} else {
646 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
647 
648 			mutex_destroy(&recps[i].filt_rule_lock);
649 			list_for_each_entry_safe(lst_itr, tmp_entry,
650 						 &recps[i].filt_rules,
651 						 list_entry) {
652 				list_del(&lst_itr->list_entry);
653 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
654 			}
655 		}
656 		if (recps[i].root_buf)
657 			devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
658 	}
659 	ice_rm_all_sw_replay_rule_info(hw);
660 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
661 	devm_kfree(ice_hw_to_dev(hw), sw);
662 }
663 
664 /**
665  * ice_get_fw_log_cfg - get FW logging configuration
666  * @hw: pointer to the HW struct
667  */
668 static int ice_get_fw_log_cfg(struct ice_hw *hw)
669 {
670 	struct ice_aq_desc desc;
671 	__le16 *config;
672 	int status;
673 	u16 size;
674 
675 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
676 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
677 	if (!config)
678 		return -ENOMEM;
679 
680 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
681 
682 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
683 	if (!status) {
684 		u16 i;
685 
686 		/* Save FW logging information into the HW structure */
687 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
688 			u16 v, m, flgs;
689 
690 			v = le16_to_cpu(config[i]);
691 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
692 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
693 
694 			if (m < ICE_AQC_FW_LOG_ID_MAX)
695 				hw->fw_log.evnts[m].cur = flgs;
696 		}
697 	}
698 
699 	devm_kfree(ice_hw_to_dev(hw), config);
700 
701 	return status;
702 }
703 
704 /**
705  * ice_cfg_fw_log - configure FW logging
706  * @hw: pointer to the HW struct
707  * @enable: enable certain FW logging events if true, disable all if false
708  *
709  * This function enables/disables the FW logging via Rx CQ events and a UART
710  * port based on predetermined configurations. FW logging via the Rx CQ can be
711  * enabled/disabled for individual PF's. However, FW logging via the UART can
712  * only be enabled/disabled for all PFs on the same device.
713  *
714  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
715  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
716  * before initializing the device.
717  *
718  * When re/configuring FW logging, callers need to update the "cfg" elements of
719  * the hw->fw_log.evnts array with the desired logging event configurations for
720  * modules of interest. When disabling FW logging completely, the callers can
721  * just pass false in the "enable" parameter. On completion, the function will
722  * update the "cur" element of the hw->fw_log.evnts array with the resulting
723  * logging event configurations of the modules that are being re/configured. FW
724  * logging modules that are not part of a reconfiguration operation retain their
725  * previous states.
726  *
727  * Before resetting the device, it is recommended that the driver disables FW
728  * logging before shutting down the control queue. When disabling FW logging
729  * ("enable" = false), the latest configurations of FW logging events stored in
730  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
731  * a device reset.
732  *
733  * When enabling FW logging to emit log messages via the Rx CQ during the
734  * device's initialization phase, a mechanism alternative to interrupt handlers
735  * needs to be used to extract FW log messages from the Rx CQ periodically and
736  * to prevent the Rx CQ from being full and stalling other types of control
737  * messages from FW to SW. Interrupts are typically disabled during the device's
738  * initialization phase.
739  */
740 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
741 {
742 	struct ice_aqc_fw_logging *cmd;
743 	u16 i, chgs = 0, len = 0;
744 	struct ice_aq_desc desc;
745 	__le16 *data = NULL;
746 	u8 actv_evnts = 0;
747 	void *buf = NULL;
748 	int status = 0;
749 
750 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
751 		return 0;
752 
753 	/* Disable FW logging only when the control queue is still responsive */
754 	if (!enable &&
755 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
756 		return 0;
757 
758 	/* Get current FW log settings */
759 	status = ice_get_fw_log_cfg(hw);
760 	if (status)
761 		return status;
762 
763 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
764 	cmd = &desc.params.fw_logging;
765 
766 	/* Indicate which controls are valid */
767 	if (hw->fw_log.cq_en)
768 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
769 
770 	if (hw->fw_log.uart_en)
771 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
772 
773 	if (enable) {
774 		/* Fill in an array of entries with FW logging modules and
775 		 * logging events being reconfigured.
776 		 */
777 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
778 			u16 val;
779 
780 			/* Keep track of enabled event types */
781 			actv_evnts |= hw->fw_log.evnts[i].cfg;
782 
783 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
784 				continue;
785 
786 			if (!data) {
787 				data = devm_kcalloc(ice_hw_to_dev(hw),
788 						    ICE_AQC_FW_LOG_ID_MAX,
789 						    sizeof(*data),
790 						    GFP_KERNEL);
791 				if (!data)
792 					return -ENOMEM;
793 			}
794 
795 			val = i << ICE_AQC_FW_LOG_ID_S;
796 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
797 			data[chgs++] = cpu_to_le16(val);
798 		}
799 
800 		/* Only enable FW logging if at least one module is specified.
801 		 * If FW logging is currently enabled but all modules are not
802 		 * enabled to emit log messages, disable FW logging altogether.
803 		 */
804 		if (actv_evnts) {
805 			/* Leave if there is effectively no change */
806 			if (!chgs)
807 				goto out;
808 
809 			if (hw->fw_log.cq_en)
810 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
811 
812 			if (hw->fw_log.uart_en)
813 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
814 
815 			buf = data;
816 			len = sizeof(*data) * chgs;
817 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
818 		}
819 	}
820 
821 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
822 	if (!status) {
823 		/* Update the current configuration to reflect events enabled.
824 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
825 		 * logging mode is enabled for the device. They do not reflect
826 		 * actual modules being enabled to emit log messages. So, their
827 		 * values remain unchanged even when all modules are disabled.
828 		 */
829 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
830 
831 		hw->fw_log.actv_evnts = actv_evnts;
832 		for (i = 0; i < cnt; i++) {
833 			u16 v, m;
834 
835 			if (!enable) {
836 				/* When disabling all FW logging events as part
837 				 * of device's de-initialization, the original
838 				 * configurations are retained, and can be used
839 				 * to reconfigure FW logging later if the device
840 				 * is re-initialized.
841 				 */
842 				hw->fw_log.evnts[i].cur = 0;
843 				continue;
844 			}
845 
846 			v = le16_to_cpu(data[i]);
847 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
848 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
849 		}
850 	}
851 
852 out:
853 	if (data)
854 		devm_kfree(ice_hw_to_dev(hw), data);
855 
856 	return status;
857 }
858 
859 /**
860  * ice_output_fw_log
861  * @hw: pointer to the HW struct
862  * @desc: pointer to the AQ message descriptor
863  * @buf: pointer to the buffer accompanying the AQ message
864  *
865  * Formats a FW Log message and outputs it via the standard driver logs.
866  */
867 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
868 {
869 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
870 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
871 			le16_to_cpu(desc->datalen));
872 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
873 }
874 
875 /**
876  * ice_get_itr_intrl_gran
877  * @hw: pointer to the HW struct
878  *
879  * Determines the ITR/INTRL granularities based on the maximum aggregate
880  * bandwidth according to the device's configuration during power-on.
881  */
882 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
883 {
884 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
885 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
886 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
887 
888 	switch (max_agg_bw) {
889 	case ICE_MAX_AGG_BW_200G:
890 	case ICE_MAX_AGG_BW_100G:
891 	case ICE_MAX_AGG_BW_50G:
892 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
893 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
894 		break;
895 	case ICE_MAX_AGG_BW_25G:
896 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
897 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
898 		break;
899 	}
900 }
901 
902 /**
903  * ice_init_hw - main hardware initialization routine
904  * @hw: pointer to the hardware structure
905  */
906 int ice_init_hw(struct ice_hw *hw)
907 {
908 	struct ice_aqc_get_phy_caps_data *pcaps;
909 	u16 mac_buf_len;
910 	void *mac_buf;
911 	int status;
912 
913 	/* Set MAC type based on DeviceID */
914 	status = ice_set_mac_type(hw);
915 	if (status)
916 		return status;
917 
918 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
919 			 PF_FUNC_RID_FUNC_NUM_M) >>
920 		PF_FUNC_RID_FUNC_NUM_S;
921 
922 	status = ice_reset(hw, ICE_RESET_PFR);
923 	if (status)
924 		return status;
925 
926 	ice_get_itr_intrl_gran(hw);
927 
928 	status = ice_create_all_ctrlq(hw);
929 	if (status)
930 		goto err_unroll_cqinit;
931 
932 	/* Enable FW logging. Not fatal if this fails. */
933 	status = ice_cfg_fw_log(hw, true);
934 	if (status)
935 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
936 
937 	status = ice_clear_pf_cfg(hw);
938 	if (status)
939 		goto err_unroll_cqinit;
940 
941 	/* Set bit to enable Flow Director filters */
942 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
943 	INIT_LIST_HEAD(&hw->fdir_list_head);
944 
945 	ice_clear_pxe_mode(hw);
946 
947 	status = ice_init_nvm(hw);
948 	if (status)
949 		goto err_unroll_cqinit;
950 
951 	status = ice_get_caps(hw);
952 	if (status)
953 		goto err_unroll_cqinit;
954 
955 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
956 				     sizeof(*hw->port_info), GFP_KERNEL);
957 	if (!hw->port_info) {
958 		status = -ENOMEM;
959 		goto err_unroll_cqinit;
960 	}
961 
962 	/* set the back pointer to HW */
963 	hw->port_info->hw = hw;
964 
965 	/* Initialize port_info struct with switch configuration data */
966 	status = ice_get_initial_sw_cfg(hw);
967 	if (status)
968 		goto err_unroll_alloc;
969 
970 	hw->evb_veb = true;
971 
972 	/* Query the allocated resources for Tx scheduler */
973 	status = ice_sched_query_res_alloc(hw);
974 	if (status) {
975 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
976 		goto err_unroll_alloc;
977 	}
978 	ice_sched_get_psm_clk_freq(hw);
979 
980 	/* Initialize port_info struct with scheduler data */
981 	status = ice_sched_init_port(hw->port_info);
982 	if (status)
983 		goto err_unroll_sched;
984 
985 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
986 	if (!pcaps) {
987 		status = -ENOMEM;
988 		goto err_unroll_sched;
989 	}
990 
991 	/* Initialize port_info struct with PHY capabilities */
992 	status = ice_aq_get_phy_caps(hw->port_info, false,
993 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
994 				     NULL);
995 	devm_kfree(ice_hw_to_dev(hw), pcaps);
996 	if (status)
997 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
998 			 status);
999 
1000 	/* Initialize port_info struct with link information */
1001 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1002 	if (status)
1003 		goto err_unroll_sched;
1004 
1005 	/* need a valid SW entry point to build a Tx tree */
1006 	if (!hw->sw_entry_point_layer) {
1007 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1008 		status = -EIO;
1009 		goto err_unroll_sched;
1010 	}
1011 	INIT_LIST_HEAD(&hw->agg_list);
1012 	/* Initialize max burst size */
1013 	if (!hw->max_burst_size)
1014 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1015 
1016 	status = ice_init_fltr_mgmt_struct(hw);
1017 	if (status)
1018 		goto err_unroll_sched;
1019 
1020 	/* Get MAC information */
1021 	/* A single port can report up to two (LAN and WoL) addresses */
1022 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1023 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1024 			       GFP_KERNEL);
1025 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1026 
1027 	if (!mac_buf) {
1028 		status = -ENOMEM;
1029 		goto err_unroll_fltr_mgmt_struct;
1030 	}
1031 
1032 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1033 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1034 
1035 	if (status)
1036 		goto err_unroll_fltr_mgmt_struct;
1037 	/* enable jumbo frame support at MAC level */
1038 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1039 	if (status)
1040 		goto err_unroll_fltr_mgmt_struct;
1041 	/* Obtain counter base index which would be used by flow director */
1042 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1043 	if (status)
1044 		goto err_unroll_fltr_mgmt_struct;
1045 	status = ice_init_hw_tbls(hw);
1046 	if (status)
1047 		goto err_unroll_fltr_mgmt_struct;
1048 	mutex_init(&hw->tnl_lock);
1049 	return 0;
1050 
1051 err_unroll_fltr_mgmt_struct:
1052 	ice_cleanup_fltr_mgmt_struct(hw);
1053 err_unroll_sched:
1054 	ice_sched_cleanup_all(hw);
1055 err_unroll_alloc:
1056 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1057 err_unroll_cqinit:
1058 	ice_destroy_all_ctrlq(hw);
1059 	return status;
1060 }
1061 
1062 /**
1063  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1064  * @hw: pointer to the hardware structure
1065  *
1066  * This should be called only during nominal operation, not as a result of
1067  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1068  * applicable initializations if it fails for any reason.
1069  */
1070 void ice_deinit_hw(struct ice_hw *hw)
1071 {
1072 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1073 	ice_cleanup_fltr_mgmt_struct(hw);
1074 
1075 	ice_sched_cleanup_all(hw);
1076 	ice_sched_clear_agg(hw);
1077 	ice_free_seg(hw);
1078 	ice_free_hw_tbls(hw);
1079 	mutex_destroy(&hw->tnl_lock);
1080 
1081 	if (hw->port_info) {
1082 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1083 		hw->port_info = NULL;
1084 	}
1085 
1086 	/* Attempt to disable FW logging before shutting down control queues */
1087 	ice_cfg_fw_log(hw, false);
1088 	ice_destroy_all_ctrlq(hw);
1089 
1090 	/* Clear VSI contexts if not already cleared */
1091 	ice_clear_all_vsi_ctx(hw);
1092 }
1093 
1094 /**
1095  * ice_check_reset - Check to see if a global reset is complete
1096  * @hw: pointer to the hardware structure
1097  */
1098 int ice_check_reset(struct ice_hw *hw)
1099 {
1100 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1101 
1102 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1103 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1104 	 * Add 1sec for outstanding AQ commands that can take a long time.
1105 	 */
1106 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1107 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1108 
1109 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1110 		mdelay(100);
1111 		reg = rd32(hw, GLGEN_RSTAT);
1112 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1113 			break;
1114 	}
1115 
1116 	if (cnt == grst_timeout) {
1117 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1118 		return -EIO;
1119 	}
1120 
1121 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1122 				 GLNVM_ULD_PCIER_DONE_1_M |\
1123 				 GLNVM_ULD_CORER_DONE_M |\
1124 				 GLNVM_ULD_GLOBR_DONE_M |\
1125 				 GLNVM_ULD_POR_DONE_M |\
1126 				 GLNVM_ULD_POR_DONE_1_M |\
1127 				 GLNVM_ULD_PCIER_DONE_2_M)
1128 
1129 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1130 					  GLNVM_ULD_PE_DONE_M : 0);
1131 
1132 	/* Device is Active; check Global Reset processes are done */
1133 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1134 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1135 		if (reg == uld_mask) {
1136 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1137 			break;
1138 		}
1139 		mdelay(10);
1140 	}
1141 
1142 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1143 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1144 			  reg);
1145 		return -EIO;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  * ice_pf_reset - Reset the PF
1153  * @hw: pointer to the hardware structure
1154  *
1155  * If a global reset has been triggered, this function checks
1156  * for its completion and then issues the PF reset
1157  */
1158 static int ice_pf_reset(struct ice_hw *hw)
1159 {
1160 	u32 cnt, reg;
1161 
1162 	/* If at function entry a global reset was already in progress, i.e.
1163 	 * state is not 'device active' or any of the reset done bits are not
1164 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1165 	 * global reset is done.
1166 	 */
1167 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1168 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1169 		/* poll on global reset currently in progress until done */
1170 		if (ice_check_reset(hw))
1171 			return -EIO;
1172 
1173 		return 0;
1174 	}
1175 
1176 	/* Reset the PF */
1177 	reg = rd32(hw, PFGEN_CTRL);
1178 
1179 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1180 
1181 	/* Wait for the PFR to complete. The wait time is the global config lock
1182 	 * timeout plus the PFR timeout which will account for a possible reset
1183 	 * that is occurring during a download package operation.
1184 	 */
1185 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1186 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1187 		reg = rd32(hw, PFGEN_CTRL);
1188 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1189 			break;
1190 
1191 		mdelay(1);
1192 	}
1193 
1194 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1195 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1196 		return -EIO;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /**
1203  * ice_reset - Perform different types of reset
1204  * @hw: pointer to the hardware structure
1205  * @req: reset request
1206  *
1207  * This function triggers a reset as specified by the req parameter.
1208  *
1209  * Note:
1210  * If anything other than a PF reset is triggered, PXE mode is restored.
1211  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1212  * interface has been restored in the rebuild flow.
1213  */
1214 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1215 {
1216 	u32 val = 0;
1217 
1218 	switch (req) {
1219 	case ICE_RESET_PFR:
1220 		return ice_pf_reset(hw);
1221 	case ICE_RESET_CORER:
1222 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1223 		val = GLGEN_RTRIG_CORER_M;
1224 		break;
1225 	case ICE_RESET_GLOBR:
1226 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1227 		val = GLGEN_RTRIG_GLOBR_M;
1228 		break;
1229 	default:
1230 		return -EINVAL;
1231 	}
1232 
1233 	val |= rd32(hw, GLGEN_RTRIG);
1234 	wr32(hw, GLGEN_RTRIG, val);
1235 	ice_flush(hw);
1236 
1237 	/* wait for the FW to be ready */
1238 	return ice_check_reset(hw);
1239 }
1240 
1241 /**
1242  * ice_copy_rxq_ctx_to_hw
1243  * @hw: pointer to the hardware structure
1244  * @ice_rxq_ctx: pointer to the rxq context
1245  * @rxq_index: the index of the Rx queue
1246  *
1247  * Copies rxq context from dense structure to HW register space
1248  */
1249 static int
1250 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1251 {
1252 	u8 i;
1253 
1254 	if (!ice_rxq_ctx)
1255 		return -EINVAL;
1256 
1257 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1258 		return -EINVAL;
1259 
1260 	/* Copy each dword separately to HW */
1261 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1262 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1263 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1264 
1265 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1266 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /* LAN Rx Queue Context */
1273 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1274 	/* Field		Width	LSB */
1275 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1276 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1277 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1278 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1279 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1280 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1281 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1282 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1283 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1284 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1285 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1286 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1287 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1288 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1289 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1290 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1291 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1292 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1293 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1294 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1295 	{ 0 }
1296 };
1297 
1298 /**
1299  * ice_write_rxq_ctx
1300  * @hw: pointer to the hardware structure
1301  * @rlan_ctx: pointer to the rxq context
1302  * @rxq_index: the index of the Rx queue
1303  *
1304  * Converts rxq context from sparse to dense structure and then writes
1305  * it to HW register space and enables the hardware to prefetch descriptors
1306  * instead of only fetching them on demand
1307  */
1308 int
1309 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1310 		  u32 rxq_index)
1311 {
1312 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1313 
1314 	if (!rlan_ctx)
1315 		return -EINVAL;
1316 
1317 	rlan_ctx->prefena = 1;
1318 
1319 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1320 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1321 }
1322 
1323 /* LAN Tx Queue Context */
1324 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1325 				    /* Field			Width	LSB */
1326 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1327 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1328 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1329 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1330 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1331 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1332 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1333 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1334 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1335 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1336 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1337 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1338 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1339 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1340 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1341 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1342 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1343 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1344 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1345 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1346 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1347 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1348 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1349 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1350 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1351 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1352 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1353 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1354 	{ 0 }
1355 };
1356 
1357 /* Sideband Queue command wrappers */
1358 
1359 /**
1360  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1361  * @hw: pointer to the HW struct
1362  * @desc: descriptor describing the command
1363  * @buf: buffer to use for indirect commands (NULL for direct commands)
1364  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1365  * @cd: pointer to command details structure
1366  */
1367 static int
1368 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1369 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1370 {
1371 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1372 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1373 }
1374 
1375 /**
1376  * ice_sbq_rw_reg - Fill Sideband Queue command
1377  * @hw: pointer to the HW struct
1378  * @in: message info to be filled in descriptor
1379  */
1380 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1381 {
1382 	struct ice_sbq_cmd_desc desc = {0};
1383 	struct ice_sbq_msg_req msg = {0};
1384 	u16 msg_len;
1385 	int status;
1386 
1387 	msg_len = sizeof(msg);
1388 
1389 	msg.dest_dev = in->dest_dev;
1390 	msg.opcode = in->opcode;
1391 	msg.flags = ICE_SBQ_MSG_FLAGS;
1392 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1393 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1394 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1395 
1396 	if (in->opcode)
1397 		msg.data = cpu_to_le32(in->data);
1398 	else
1399 		/* data read comes back in completion, so shorten the struct by
1400 		 * sizeof(msg.data)
1401 		 */
1402 		msg_len -= sizeof(msg.data);
1403 
1404 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1405 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1406 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1407 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1408 	if (!status && !in->opcode)
1409 		in->data = le32_to_cpu
1410 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1411 	return status;
1412 }
1413 
1414 /* FW Admin Queue command wrappers */
1415 
1416 /* Software lock/mutex that is meant to be held while the Global Config Lock
1417  * in firmware is acquired by the software to prevent most (but not all) types
1418  * of AQ commands from being sent to FW
1419  */
1420 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1421 
1422 /**
1423  * ice_should_retry_sq_send_cmd
1424  * @opcode: AQ opcode
1425  *
1426  * Decide if we should retry the send command routine for the ATQ, depending
1427  * on the opcode.
1428  */
1429 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1430 {
1431 	switch (opcode) {
1432 	case ice_aqc_opc_get_link_topo:
1433 	case ice_aqc_opc_lldp_stop:
1434 	case ice_aqc_opc_lldp_start:
1435 	case ice_aqc_opc_lldp_filter_ctrl:
1436 		return true;
1437 	}
1438 
1439 	return false;
1440 }
1441 
1442 /**
1443  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1444  * @hw: pointer to the HW struct
1445  * @cq: pointer to the specific Control queue
1446  * @desc: prefilled descriptor describing the command
1447  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1448  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1449  * @cd: pointer to command details structure
1450  *
1451  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1452  * Queue if the EBUSY AQ error is returned.
1453  */
1454 static int
1455 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1456 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1457 		      struct ice_sq_cd *cd)
1458 {
1459 	struct ice_aq_desc desc_cpy;
1460 	bool is_cmd_for_retry;
1461 	u8 *buf_cpy = NULL;
1462 	u8 idx = 0;
1463 	u16 opcode;
1464 	int status;
1465 
1466 	opcode = le16_to_cpu(desc->opcode);
1467 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1468 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1469 
1470 	if (is_cmd_for_retry) {
1471 		if (buf) {
1472 			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1473 			if (!buf_cpy)
1474 				return -ENOMEM;
1475 		}
1476 
1477 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1478 	}
1479 
1480 	do {
1481 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1482 
1483 		if (!is_cmd_for_retry || !status ||
1484 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1485 			break;
1486 
1487 		if (buf_cpy)
1488 			memcpy(buf, buf_cpy, buf_size);
1489 
1490 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1491 
1492 		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1493 
1494 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1495 
1496 	kfree(buf_cpy);
1497 
1498 	return status;
1499 }
1500 
1501 /**
1502  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1503  * @hw: pointer to the HW struct
1504  * @desc: descriptor describing the command
1505  * @buf: buffer to use for indirect commands (NULL for direct commands)
1506  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1507  * @cd: pointer to command details structure
1508  *
1509  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1510  */
1511 int
1512 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1513 		u16 buf_size, struct ice_sq_cd *cd)
1514 {
1515 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1516 	bool lock_acquired = false;
1517 	int status;
1518 
1519 	/* When a package download is in process (i.e. when the firmware's
1520 	 * Global Configuration Lock resource is held), only the Download
1521 	 * Package, Get Version, Get Package Info List, Upload Section,
1522 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1523 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1524 	 * Recipes to Profile Association, and Release Resource (with resource
1525 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1526 	 * must block until the package download completes and the Global Config
1527 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1528 	 */
1529 	switch (le16_to_cpu(desc->opcode)) {
1530 	case ice_aqc_opc_download_pkg:
1531 	case ice_aqc_opc_get_pkg_info_list:
1532 	case ice_aqc_opc_get_ver:
1533 	case ice_aqc_opc_upload_section:
1534 	case ice_aqc_opc_update_pkg:
1535 	case ice_aqc_opc_set_port_params:
1536 	case ice_aqc_opc_get_vlan_mode_parameters:
1537 	case ice_aqc_opc_set_vlan_mode_parameters:
1538 	case ice_aqc_opc_add_recipe:
1539 	case ice_aqc_opc_recipe_to_profile:
1540 	case ice_aqc_opc_get_recipe:
1541 	case ice_aqc_opc_get_recipe_to_profile:
1542 		break;
1543 	case ice_aqc_opc_release_res:
1544 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1545 			break;
1546 		fallthrough;
1547 	default:
1548 		mutex_lock(&ice_global_cfg_lock_sw);
1549 		lock_acquired = true;
1550 		break;
1551 	}
1552 
1553 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1554 	if (lock_acquired)
1555 		mutex_unlock(&ice_global_cfg_lock_sw);
1556 
1557 	return status;
1558 }
1559 
1560 /**
1561  * ice_aq_get_fw_ver
1562  * @hw: pointer to the HW struct
1563  * @cd: pointer to command details structure or NULL
1564  *
1565  * Get the firmware version (0x0001) from the admin queue commands
1566  */
1567 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1568 {
1569 	struct ice_aqc_get_ver *resp;
1570 	struct ice_aq_desc desc;
1571 	int status;
1572 
1573 	resp = &desc.params.get_ver;
1574 
1575 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1576 
1577 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1578 
1579 	if (!status) {
1580 		hw->fw_branch = resp->fw_branch;
1581 		hw->fw_maj_ver = resp->fw_major;
1582 		hw->fw_min_ver = resp->fw_minor;
1583 		hw->fw_patch = resp->fw_patch;
1584 		hw->fw_build = le32_to_cpu(resp->fw_build);
1585 		hw->api_branch = resp->api_branch;
1586 		hw->api_maj_ver = resp->api_major;
1587 		hw->api_min_ver = resp->api_minor;
1588 		hw->api_patch = resp->api_patch;
1589 	}
1590 
1591 	return status;
1592 }
1593 
1594 /**
1595  * ice_aq_send_driver_ver
1596  * @hw: pointer to the HW struct
1597  * @dv: driver's major, minor version
1598  * @cd: pointer to command details structure or NULL
1599  *
1600  * Send the driver version (0x0002) to the firmware
1601  */
1602 int
1603 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1604 		       struct ice_sq_cd *cd)
1605 {
1606 	struct ice_aqc_driver_ver *cmd;
1607 	struct ice_aq_desc desc;
1608 	u16 len;
1609 
1610 	cmd = &desc.params.driver_ver;
1611 
1612 	if (!dv)
1613 		return -EINVAL;
1614 
1615 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1616 
1617 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1618 	cmd->major_ver = dv->major_ver;
1619 	cmd->minor_ver = dv->minor_ver;
1620 	cmd->build_ver = dv->build_ver;
1621 	cmd->subbuild_ver = dv->subbuild_ver;
1622 
1623 	len = 0;
1624 	while (len < sizeof(dv->driver_string) &&
1625 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1626 		len++;
1627 
1628 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1629 }
1630 
1631 /**
1632  * ice_aq_q_shutdown
1633  * @hw: pointer to the HW struct
1634  * @unloading: is the driver unloading itself
1635  *
1636  * Tell the Firmware that we're shutting down the AdminQ and whether
1637  * or not the driver is unloading as well (0x0003).
1638  */
1639 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1640 {
1641 	struct ice_aqc_q_shutdown *cmd;
1642 	struct ice_aq_desc desc;
1643 
1644 	cmd = &desc.params.q_shutdown;
1645 
1646 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1647 
1648 	if (unloading)
1649 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1650 
1651 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1652 }
1653 
1654 /**
1655  * ice_aq_req_res
1656  * @hw: pointer to the HW struct
1657  * @res: resource ID
1658  * @access: access type
1659  * @sdp_number: resource number
1660  * @timeout: the maximum time in ms that the driver may hold the resource
1661  * @cd: pointer to command details structure or NULL
1662  *
1663  * Requests common resource using the admin queue commands (0x0008).
1664  * When attempting to acquire the Global Config Lock, the driver can
1665  * learn of three states:
1666  *  1) 0 -         acquired lock, and can perform download package
1667  *  2) -EIO -      did not get lock, driver should fail to load
1668  *  3) -EALREADY - did not get lock, but another driver has
1669  *                 successfully downloaded the package; the driver does
1670  *                 not have to download the package and can continue
1671  *                 loading
1672  *
1673  * Note that if the caller is in an acquire lock, perform action, release lock
1674  * phase of operation, it is possible that the FW may detect a timeout and issue
1675  * a CORER. In this case, the driver will receive a CORER interrupt and will
1676  * have to determine its cause. The calling thread that is handling this flow
1677  * will likely get an error propagated back to it indicating the Download
1678  * Package, Update Package or the Release Resource AQ commands timed out.
1679  */
1680 static int
1681 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1682 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1683 	       struct ice_sq_cd *cd)
1684 {
1685 	struct ice_aqc_req_res *cmd_resp;
1686 	struct ice_aq_desc desc;
1687 	int status;
1688 
1689 	cmd_resp = &desc.params.res_owner;
1690 
1691 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1692 
1693 	cmd_resp->res_id = cpu_to_le16(res);
1694 	cmd_resp->access_type = cpu_to_le16(access);
1695 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1696 	cmd_resp->timeout = cpu_to_le32(*timeout);
1697 	*timeout = 0;
1698 
1699 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1700 
1701 	/* The completion specifies the maximum time in ms that the driver
1702 	 * may hold the resource in the Timeout field.
1703 	 */
1704 
1705 	/* Global config lock response utilizes an additional status field.
1706 	 *
1707 	 * If the Global config lock resource is held by some other driver, the
1708 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1709 	 * and the timeout field indicates the maximum time the current owner
1710 	 * of the resource has to free it.
1711 	 */
1712 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1713 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1714 			*timeout = le32_to_cpu(cmd_resp->timeout);
1715 			return 0;
1716 		} else if (le16_to_cpu(cmd_resp->status) ==
1717 			   ICE_AQ_RES_GLBL_IN_PROG) {
1718 			*timeout = le32_to_cpu(cmd_resp->timeout);
1719 			return -EIO;
1720 		} else if (le16_to_cpu(cmd_resp->status) ==
1721 			   ICE_AQ_RES_GLBL_DONE) {
1722 			return -EALREADY;
1723 		}
1724 
1725 		/* invalid FW response, force a timeout immediately */
1726 		*timeout = 0;
1727 		return -EIO;
1728 	}
1729 
1730 	/* If the resource is held by some other driver, the command completes
1731 	 * with a busy return value and the timeout field indicates the maximum
1732 	 * time the current owner of the resource has to free it.
1733 	 */
1734 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1735 		*timeout = le32_to_cpu(cmd_resp->timeout);
1736 
1737 	return status;
1738 }
1739 
1740 /**
1741  * ice_aq_release_res
1742  * @hw: pointer to the HW struct
1743  * @res: resource ID
1744  * @sdp_number: resource number
1745  * @cd: pointer to command details structure or NULL
1746  *
1747  * release common resource using the admin queue commands (0x0009)
1748  */
1749 static int
1750 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1751 		   struct ice_sq_cd *cd)
1752 {
1753 	struct ice_aqc_req_res *cmd;
1754 	struct ice_aq_desc desc;
1755 
1756 	cmd = &desc.params.res_owner;
1757 
1758 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1759 
1760 	cmd->res_id = cpu_to_le16(res);
1761 	cmd->res_number = cpu_to_le32(sdp_number);
1762 
1763 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1764 }
1765 
1766 /**
1767  * ice_acquire_res
1768  * @hw: pointer to the HW structure
1769  * @res: resource ID
1770  * @access: access type (read or write)
1771  * @timeout: timeout in milliseconds
1772  *
1773  * This function will attempt to acquire the ownership of a resource.
1774  */
1775 int
1776 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1777 		enum ice_aq_res_access_type access, u32 timeout)
1778 {
1779 #define ICE_RES_POLLING_DELAY_MS	10
1780 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1781 	u32 time_left = timeout;
1782 	int status;
1783 
1784 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1785 
1786 	/* A return code of -EALREADY means that another driver has
1787 	 * previously acquired the resource and performed any necessary updates;
1788 	 * in this case the caller does not obtain the resource and has no
1789 	 * further work to do.
1790 	 */
1791 	if (status == -EALREADY)
1792 		goto ice_acquire_res_exit;
1793 
1794 	if (status)
1795 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1796 
1797 	/* If necessary, poll until the current lock owner timeouts */
1798 	timeout = time_left;
1799 	while (status && timeout && time_left) {
1800 		mdelay(delay);
1801 		timeout = (timeout > delay) ? timeout - delay : 0;
1802 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1803 
1804 		if (status == -EALREADY)
1805 			/* lock free, but no work to do */
1806 			break;
1807 
1808 		if (!status)
1809 			/* lock acquired */
1810 			break;
1811 	}
1812 	if (status && status != -EALREADY)
1813 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1814 
1815 ice_acquire_res_exit:
1816 	if (status == -EALREADY) {
1817 		if (access == ICE_RES_WRITE)
1818 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1819 		else
1820 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1821 	}
1822 	return status;
1823 }
1824 
1825 /**
1826  * ice_release_res
1827  * @hw: pointer to the HW structure
1828  * @res: resource ID
1829  *
1830  * This function will release a resource using the proper Admin Command.
1831  */
1832 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1833 {
1834 	u32 total_delay = 0;
1835 	int status;
1836 
1837 	status = ice_aq_release_res(hw, res, 0, NULL);
1838 
1839 	/* there are some rare cases when trying to release the resource
1840 	 * results in an admin queue timeout, so handle them correctly
1841 	 */
1842 	while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1843 		mdelay(1);
1844 		status = ice_aq_release_res(hw, res, 0, NULL);
1845 		total_delay++;
1846 	}
1847 }
1848 
1849 /**
1850  * ice_aq_alloc_free_res - command to allocate/free resources
1851  * @hw: pointer to the HW struct
1852  * @num_entries: number of resource entries in buffer
1853  * @buf: Indirect buffer to hold data parameters and response
1854  * @buf_size: size of buffer for indirect commands
1855  * @opc: pass in the command opcode
1856  * @cd: pointer to command details structure or NULL
1857  *
1858  * Helper function to allocate/free resources using the admin queue commands
1859  */
1860 int
1861 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1862 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1863 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1864 {
1865 	struct ice_aqc_alloc_free_res_cmd *cmd;
1866 	struct ice_aq_desc desc;
1867 
1868 	cmd = &desc.params.sw_res_ctrl;
1869 
1870 	if (!buf)
1871 		return -EINVAL;
1872 
1873 	if (buf_size < flex_array_size(buf, elem, num_entries))
1874 		return -EINVAL;
1875 
1876 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1877 
1878 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1879 
1880 	cmd->num_entries = cpu_to_le16(num_entries);
1881 
1882 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1883 }
1884 
1885 /**
1886  * ice_alloc_hw_res - allocate resource
1887  * @hw: pointer to the HW struct
1888  * @type: type of resource
1889  * @num: number of resources to allocate
1890  * @btm: allocate from bottom
1891  * @res: pointer to array that will receive the resources
1892  */
1893 int
1894 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1895 {
1896 	struct ice_aqc_alloc_free_res_elem *buf;
1897 	u16 buf_len;
1898 	int status;
1899 
1900 	buf_len = struct_size(buf, elem, num);
1901 	buf = kzalloc(buf_len, GFP_KERNEL);
1902 	if (!buf)
1903 		return -ENOMEM;
1904 
1905 	/* Prepare buffer to allocate resource. */
1906 	buf->num_elems = cpu_to_le16(num);
1907 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1908 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1909 	if (btm)
1910 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1911 
1912 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1913 				       ice_aqc_opc_alloc_res, NULL);
1914 	if (status)
1915 		goto ice_alloc_res_exit;
1916 
1917 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1918 
1919 ice_alloc_res_exit:
1920 	kfree(buf);
1921 	return status;
1922 }
1923 
1924 /**
1925  * ice_free_hw_res - free allocated HW resource
1926  * @hw: pointer to the HW struct
1927  * @type: type of resource to free
1928  * @num: number of resources
1929  * @res: pointer to array that contains the resources to free
1930  */
1931 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1932 {
1933 	struct ice_aqc_alloc_free_res_elem *buf;
1934 	u16 buf_len;
1935 	int status;
1936 
1937 	buf_len = struct_size(buf, elem, num);
1938 	buf = kzalloc(buf_len, GFP_KERNEL);
1939 	if (!buf)
1940 		return -ENOMEM;
1941 
1942 	/* Prepare buffer to free resource. */
1943 	buf->num_elems = cpu_to_le16(num);
1944 	buf->res_type = cpu_to_le16(type);
1945 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1946 
1947 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1948 				       ice_aqc_opc_free_res, NULL);
1949 	if (status)
1950 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1951 
1952 	kfree(buf);
1953 	return status;
1954 }
1955 
1956 /**
1957  * ice_get_num_per_func - determine number of resources per PF
1958  * @hw: pointer to the HW structure
1959  * @max: value to be evenly split between each PF
1960  *
1961  * Determine the number of valid functions by going through the bitmap returned
1962  * from parsing capabilities and use this to calculate the number of resources
1963  * per PF based on the max value passed in.
1964  */
1965 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1966 {
1967 	u8 funcs;
1968 
1969 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1970 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1971 			 ICE_CAPS_VALID_FUNCS_M);
1972 
1973 	if (!funcs)
1974 		return 0;
1975 
1976 	return max / funcs;
1977 }
1978 
1979 /**
1980  * ice_parse_common_caps - parse common device/function capabilities
1981  * @hw: pointer to the HW struct
1982  * @caps: pointer to common capabilities structure
1983  * @elem: the capability element to parse
1984  * @prefix: message prefix for tracing capabilities
1985  *
1986  * Given a capability element, extract relevant details into the common
1987  * capability structure.
1988  *
1989  * Returns: true if the capability matches one of the common capability ids,
1990  * false otherwise.
1991  */
1992 static bool
1993 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1994 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1995 {
1996 	u32 logical_id = le32_to_cpu(elem->logical_id);
1997 	u32 phys_id = le32_to_cpu(elem->phys_id);
1998 	u32 number = le32_to_cpu(elem->number);
1999 	u16 cap = le16_to_cpu(elem->cap);
2000 	bool found = true;
2001 
2002 	switch (cap) {
2003 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2004 		caps->valid_functions = number;
2005 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2006 			  caps->valid_functions);
2007 		break;
2008 	case ICE_AQC_CAPS_SRIOV:
2009 		caps->sr_iov_1_1 = (number == 1);
2010 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2011 			  caps->sr_iov_1_1);
2012 		break;
2013 	case ICE_AQC_CAPS_DCB:
2014 		caps->dcb = (number == 1);
2015 		caps->active_tc_bitmap = logical_id;
2016 		caps->maxtc = phys_id;
2017 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2018 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2019 			  caps->active_tc_bitmap);
2020 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2021 		break;
2022 	case ICE_AQC_CAPS_RSS:
2023 		caps->rss_table_size = number;
2024 		caps->rss_table_entry_width = logical_id;
2025 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2026 			  caps->rss_table_size);
2027 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2028 			  caps->rss_table_entry_width);
2029 		break;
2030 	case ICE_AQC_CAPS_RXQS:
2031 		caps->num_rxq = number;
2032 		caps->rxq_first_id = phys_id;
2033 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2034 			  caps->num_rxq);
2035 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2036 			  caps->rxq_first_id);
2037 		break;
2038 	case ICE_AQC_CAPS_TXQS:
2039 		caps->num_txq = number;
2040 		caps->txq_first_id = phys_id;
2041 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2042 			  caps->num_txq);
2043 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2044 			  caps->txq_first_id);
2045 		break;
2046 	case ICE_AQC_CAPS_MSIX:
2047 		caps->num_msix_vectors = number;
2048 		caps->msix_vector_first_id = phys_id;
2049 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2050 			  caps->num_msix_vectors);
2051 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2052 			  caps->msix_vector_first_id);
2053 		break;
2054 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2055 		caps->nvm_update_pending_nvm = true;
2056 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2057 		break;
2058 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2059 		caps->nvm_update_pending_orom = true;
2060 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2061 		break;
2062 	case ICE_AQC_CAPS_PENDING_NET_VER:
2063 		caps->nvm_update_pending_netlist = true;
2064 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2065 		break;
2066 	case ICE_AQC_CAPS_NVM_MGMT:
2067 		caps->nvm_unified_update =
2068 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2069 			true : false;
2070 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2071 			  caps->nvm_unified_update);
2072 		break;
2073 	case ICE_AQC_CAPS_RDMA:
2074 		caps->rdma = (number == 1);
2075 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2076 		break;
2077 	case ICE_AQC_CAPS_MAX_MTU:
2078 		caps->max_mtu = number;
2079 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2080 			  prefix, caps->max_mtu);
2081 		break;
2082 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2083 		caps->pcie_reset_avoidance = (number > 0);
2084 		ice_debug(hw, ICE_DBG_INIT,
2085 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2086 			  caps->pcie_reset_avoidance);
2087 		break;
2088 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2089 		caps->reset_restrict_support = (number == 1);
2090 		ice_debug(hw, ICE_DBG_INIT,
2091 			  "%s: reset_restrict_support = %d\n", prefix,
2092 			  caps->reset_restrict_support);
2093 		break;
2094 	default:
2095 		/* Not one of the recognized common capabilities */
2096 		found = false;
2097 	}
2098 
2099 	return found;
2100 }
2101 
2102 /**
2103  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2104  * @hw: pointer to the HW structure
2105  * @caps: pointer to capabilities structure to fix
2106  *
2107  * Re-calculate the capabilities that are dependent on the number of physical
2108  * ports; i.e. some features are not supported or function differently on
2109  * devices with more than 4 ports.
2110  */
2111 static void
2112 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2113 {
2114 	/* This assumes device capabilities are always scanned before function
2115 	 * capabilities during the initialization flow.
2116 	 */
2117 	if (hw->dev_caps.num_funcs > 4) {
2118 		/* Max 4 TCs per port */
2119 		caps->maxtc = 4;
2120 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2121 			  caps->maxtc);
2122 		if (caps->rdma) {
2123 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2124 			caps->rdma = 0;
2125 		}
2126 
2127 		/* print message only when processing device capabilities
2128 		 * during initialization.
2129 		 */
2130 		if (caps == &hw->dev_caps.common_cap)
2131 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2132 	}
2133 }
2134 
2135 /**
2136  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2137  * @hw: pointer to the HW struct
2138  * @func_p: pointer to function capabilities structure
2139  * @cap: pointer to the capability element to parse
2140  *
2141  * Extract function capabilities for ICE_AQC_CAPS_VF.
2142  */
2143 static void
2144 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2145 		       struct ice_aqc_list_caps_elem *cap)
2146 {
2147 	u32 logical_id = le32_to_cpu(cap->logical_id);
2148 	u32 number = le32_to_cpu(cap->number);
2149 
2150 	func_p->num_allocd_vfs = number;
2151 	func_p->vf_base_id = logical_id;
2152 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2153 		  func_p->num_allocd_vfs);
2154 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2155 		  func_p->vf_base_id);
2156 }
2157 
2158 /**
2159  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2160  * @hw: pointer to the HW struct
2161  * @func_p: pointer to function capabilities structure
2162  * @cap: pointer to the capability element to parse
2163  *
2164  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2165  */
2166 static void
2167 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2168 			struct ice_aqc_list_caps_elem *cap)
2169 {
2170 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2171 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2172 		  le32_to_cpu(cap->number));
2173 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2174 		  func_p->guar_num_vsi);
2175 }
2176 
2177 /**
2178  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2179  * @hw: pointer to the HW struct
2180  * @func_p: pointer to function capabilities structure
2181  * @cap: pointer to the capability element to parse
2182  *
2183  * Extract function capabilities for ICE_AQC_CAPS_1588.
2184  */
2185 static void
2186 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2187 			 struct ice_aqc_list_caps_elem *cap)
2188 {
2189 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2190 	u32 number = le32_to_cpu(cap->number);
2191 
2192 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2193 	func_p->common_cap.ieee_1588 = info->ena;
2194 
2195 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2196 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2197 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2198 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2199 
2200 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2201 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2202 
2203 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2204 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2205 	} else {
2206 		/* Unknown clock frequency, so assume a (probably incorrect)
2207 		 * default to avoid out-of-bounds look ups of frequency
2208 		 * related information.
2209 		 */
2210 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2211 			  info->clk_freq);
2212 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2213 	}
2214 
2215 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2216 		  func_p->common_cap.ieee_1588);
2217 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2218 		  info->src_tmr_owned);
2219 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2220 		  info->tmr_ena);
2221 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2222 		  info->tmr_index_owned);
2223 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2224 		  info->tmr_index_assoc);
2225 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2226 		  info->clk_freq);
2227 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2228 		  info->clk_src);
2229 }
2230 
2231 /**
2232  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2233  * @hw: pointer to the HW struct
2234  * @func_p: pointer to function capabilities structure
2235  *
2236  * Extract function capabilities for ICE_AQC_CAPS_FD.
2237  */
2238 static void
2239 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2240 {
2241 	u32 reg_val, val;
2242 
2243 	reg_val = rd32(hw, GLQF_FD_SIZE);
2244 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2245 		GLQF_FD_SIZE_FD_GSIZE_S;
2246 	func_p->fd_fltr_guar =
2247 		ice_get_num_per_func(hw, val);
2248 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2249 		GLQF_FD_SIZE_FD_BSIZE_S;
2250 	func_p->fd_fltr_best_effort = val;
2251 
2252 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2253 		  func_p->fd_fltr_guar);
2254 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2255 		  func_p->fd_fltr_best_effort);
2256 }
2257 
2258 /**
2259  * ice_parse_func_caps - Parse function capabilities
2260  * @hw: pointer to the HW struct
2261  * @func_p: pointer to function capabilities structure
2262  * @buf: buffer containing the function capability records
2263  * @cap_count: the number of capabilities
2264  *
2265  * Helper function to parse function (0x000A) capabilities list. For
2266  * capabilities shared between device and function, this relies on
2267  * ice_parse_common_caps.
2268  *
2269  * Loop through the list of provided capabilities and extract the relevant
2270  * data into the function capabilities structured.
2271  */
2272 static void
2273 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2274 		    void *buf, u32 cap_count)
2275 {
2276 	struct ice_aqc_list_caps_elem *cap_resp;
2277 	u32 i;
2278 
2279 	cap_resp = buf;
2280 
2281 	memset(func_p, 0, sizeof(*func_p));
2282 
2283 	for (i = 0; i < cap_count; i++) {
2284 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2285 		bool found;
2286 
2287 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2288 					      &cap_resp[i], "func caps");
2289 
2290 		switch (cap) {
2291 		case ICE_AQC_CAPS_VF:
2292 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2293 			break;
2294 		case ICE_AQC_CAPS_VSI:
2295 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2296 			break;
2297 		case ICE_AQC_CAPS_1588:
2298 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2299 			break;
2300 		case ICE_AQC_CAPS_FD:
2301 			ice_parse_fdir_func_caps(hw, func_p);
2302 			break;
2303 		default:
2304 			/* Don't list common capabilities as unknown */
2305 			if (!found)
2306 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2307 					  i, cap);
2308 			break;
2309 		}
2310 	}
2311 
2312 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2313 }
2314 
2315 /**
2316  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2317  * @hw: pointer to the HW struct
2318  * @dev_p: pointer to device capabilities structure
2319  * @cap: capability element to parse
2320  *
2321  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2322  */
2323 static void
2324 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2325 			      struct ice_aqc_list_caps_elem *cap)
2326 {
2327 	u32 number = le32_to_cpu(cap->number);
2328 
2329 	dev_p->num_funcs = hweight32(number);
2330 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2331 		  dev_p->num_funcs);
2332 }
2333 
2334 /**
2335  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2336  * @hw: pointer to the HW struct
2337  * @dev_p: pointer to device capabilities structure
2338  * @cap: capability element to parse
2339  *
2340  * Parse ICE_AQC_CAPS_VF for device capabilities.
2341  */
2342 static void
2343 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2344 		      struct ice_aqc_list_caps_elem *cap)
2345 {
2346 	u32 number = le32_to_cpu(cap->number);
2347 
2348 	dev_p->num_vfs_exposed = number;
2349 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2350 		  dev_p->num_vfs_exposed);
2351 }
2352 
2353 /**
2354  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2355  * @hw: pointer to the HW struct
2356  * @dev_p: pointer to device capabilities structure
2357  * @cap: capability element to parse
2358  *
2359  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2360  */
2361 static void
2362 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2363 		       struct ice_aqc_list_caps_elem *cap)
2364 {
2365 	u32 number = le32_to_cpu(cap->number);
2366 
2367 	dev_p->num_vsi_allocd_to_host = number;
2368 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2369 		  dev_p->num_vsi_allocd_to_host);
2370 }
2371 
2372 /**
2373  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2374  * @hw: pointer to the HW struct
2375  * @dev_p: pointer to device capabilities structure
2376  * @cap: capability element to parse
2377  *
2378  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2379  */
2380 static void
2381 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2382 			struct ice_aqc_list_caps_elem *cap)
2383 {
2384 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2385 	u32 logical_id = le32_to_cpu(cap->logical_id);
2386 	u32 phys_id = le32_to_cpu(cap->phys_id);
2387 	u32 number = le32_to_cpu(cap->number);
2388 
2389 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2390 	dev_p->common_cap.ieee_1588 = info->ena;
2391 
2392 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2393 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2394 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2395 
2396 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2397 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2398 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2399 
2400 	info->ena_ports = logical_id;
2401 	info->tmr_own_map = phys_id;
2402 
2403 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2404 		  dev_p->common_cap.ieee_1588);
2405 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2406 		  info->tmr0_owner);
2407 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2408 		  info->tmr0_owned);
2409 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2410 		  info->tmr0_ena);
2411 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2412 		  info->tmr1_owner);
2413 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2414 		  info->tmr1_owned);
2415 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2416 		  info->tmr1_ena);
2417 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2418 		  info->ena_ports);
2419 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2420 		  info->tmr_own_map);
2421 }
2422 
2423 /**
2424  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2425  * @hw: pointer to the HW struct
2426  * @dev_p: pointer to device capabilities structure
2427  * @cap: capability element to parse
2428  *
2429  * Parse ICE_AQC_CAPS_FD for device capabilities.
2430  */
2431 static void
2432 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2433 			struct ice_aqc_list_caps_elem *cap)
2434 {
2435 	u32 number = le32_to_cpu(cap->number);
2436 
2437 	dev_p->num_flow_director_fltr = number;
2438 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2439 		  dev_p->num_flow_director_fltr);
2440 }
2441 
2442 /**
2443  * ice_parse_dev_caps - Parse device capabilities
2444  * @hw: pointer to the HW struct
2445  * @dev_p: pointer to device capabilities structure
2446  * @buf: buffer containing the device capability records
2447  * @cap_count: the number of capabilities
2448  *
2449  * Helper device to parse device (0x000B) capabilities list. For
2450  * capabilities shared between device and function, this relies on
2451  * ice_parse_common_caps.
2452  *
2453  * Loop through the list of provided capabilities and extract the relevant
2454  * data into the device capabilities structured.
2455  */
2456 static void
2457 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2458 		   void *buf, u32 cap_count)
2459 {
2460 	struct ice_aqc_list_caps_elem *cap_resp;
2461 	u32 i;
2462 
2463 	cap_resp = buf;
2464 
2465 	memset(dev_p, 0, sizeof(*dev_p));
2466 
2467 	for (i = 0; i < cap_count; i++) {
2468 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2469 		bool found;
2470 
2471 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2472 					      &cap_resp[i], "dev caps");
2473 
2474 		switch (cap) {
2475 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2476 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2477 			break;
2478 		case ICE_AQC_CAPS_VF:
2479 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2480 			break;
2481 		case ICE_AQC_CAPS_VSI:
2482 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2483 			break;
2484 		case ICE_AQC_CAPS_1588:
2485 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2486 			break;
2487 		case  ICE_AQC_CAPS_FD:
2488 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2489 			break;
2490 		default:
2491 			/* Don't list common capabilities as unknown */
2492 			if (!found)
2493 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2494 					  i, cap);
2495 			break;
2496 		}
2497 	}
2498 
2499 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2500 }
2501 
2502 /**
2503  * ice_aq_list_caps - query function/device capabilities
2504  * @hw: pointer to the HW struct
2505  * @buf: a buffer to hold the capabilities
2506  * @buf_size: size of the buffer
2507  * @cap_count: if not NULL, set to the number of capabilities reported
2508  * @opc: capabilities type to discover, device or function
2509  * @cd: pointer to command details structure or NULL
2510  *
2511  * Get the function (0x000A) or device (0x000B) capabilities description from
2512  * firmware and store it in the buffer.
2513  *
2514  * If the cap_count pointer is not NULL, then it is set to the number of
2515  * capabilities firmware will report. Note that if the buffer size is too
2516  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2517  * cap_count will still be updated in this case. It is recommended that the
2518  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2519  * firmware could return) to avoid this.
2520  */
2521 int
2522 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2523 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2524 {
2525 	struct ice_aqc_list_caps *cmd;
2526 	struct ice_aq_desc desc;
2527 	int status;
2528 
2529 	cmd = &desc.params.get_cap;
2530 
2531 	if (opc != ice_aqc_opc_list_func_caps &&
2532 	    opc != ice_aqc_opc_list_dev_caps)
2533 		return -EINVAL;
2534 
2535 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2536 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2537 
2538 	if (cap_count)
2539 		*cap_count = le32_to_cpu(cmd->count);
2540 
2541 	return status;
2542 }
2543 
2544 /**
2545  * ice_discover_dev_caps - Read and extract device capabilities
2546  * @hw: pointer to the hardware structure
2547  * @dev_caps: pointer to device capabilities structure
2548  *
2549  * Read the device capabilities and extract them into the dev_caps structure
2550  * for later use.
2551  */
2552 int
2553 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2554 {
2555 	u32 cap_count = 0;
2556 	void *cbuf;
2557 	int status;
2558 
2559 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2560 	if (!cbuf)
2561 		return -ENOMEM;
2562 
2563 	/* Although the driver doesn't know the number of capabilities the
2564 	 * device will return, we can simply send a 4KB buffer, the maximum
2565 	 * possible size that firmware can return.
2566 	 */
2567 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2568 
2569 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2570 				  ice_aqc_opc_list_dev_caps, NULL);
2571 	if (!status)
2572 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2573 	kfree(cbuf);
2574 
2575 	return status;
2576 }
2577 
2578 /**
2579  * ice_discover_func_caps - Read and extract function capabilities
2580  * @hw: pointer to the hardware structure
2581  * @func_caps: pointer to function capabilities structure
2582  *
2583  * Read the function capabilities and extract them into the func_caps structure
2584  * for later use.
2585  */
2586 static int
2587 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2588 {
2589 	u32 cap_count = 0;
2590 	void *cbuf;
2591 	int status;
2592 
2593 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2594 	if (!cbuf)
2595 		return -ENOMEM;
2596 
2597 	/* Although the driver doesn't know the number of capabilities the
2598 	 * device will return, we can simply send a 4KB buffer, the maximum
2599 	 * possible size that firmware can return.
2600 	 */
2601 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2602 
2603 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2604 				  ice_aqc_opc_list_func_caps, NULL);
2605 	if (!status)
2606 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2607 	kfree(cbuf);
2608 
2609 	return status;
2610 }
2611 
2612 /**
2613  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2614  * @hw: pointer to the hardware structure
2615  */
2616 void ice_set_safe_mode_caps(struct ice_hw *hw)
2617 {
2618 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2619 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2620 	struct ice_hw_common_caps cached_caps;
2621 	u32 num_funcs;
2622 
2623 	/* cache some func_caps values that should be restored after memset */
2624 	cached_caps = func_caps->common_cap;
2625 
2626 	/* unset func capabilities */
2627 	memset(func_caps, 0, sizeof(*func_caps));
2628 
2629 #define ICE_RESTORE_FUNC_CAP(name) \
2630 	func_caps->common_cap.name = cached_caps.name
2631 
2632 	/* restore cached values */
2633 	ICE_RESTORE_FUNC_CAP(valid_functions);
2634 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2635 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2636 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2637 	ICE_RESTORE_FUNC_CAP(max_mtu);
2638 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2639 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2640 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2641 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2642 
2643 	/* one Tx and one Rx queue in safe mode */
2644 	func_caps->common_cap.num_rxq = 1;
2645 	func_caps->common_cap.num_txq = 1;
2646 
2647 	/* two MSIX vectors, one for traffic and one for misc causes */
2648 	func_caps->common_cap.num_msix_vectors = 2;
2649 	func_caps->guar_num_vsi = 1;
2650 
2651 	/* cache some dev_caps values that should be restored after memset */
2652 	cached_caps = dev_caps->common_cap;
2653 	num_funcs = dev_caps->num_funcs;
2654 
2655 	/* unset dev capabilities */
2656 	memset(dev_caps, 0, sizeof(*dev_caps));
2657 
2658 #define ICE_RESTORE_DEV_CAP(name) \
2659 	dev_caps->common_cap.name = cached_caps.name
2660 
2661 	/* restore cached values */
2662 	ICE_RESTORE_DEV_CAP(valid_functions);
2663 	ICE_RESTORE_DEV_CAP(txq_first_id);
2664 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2665 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2666 	ICE_RESTORE_DEV_CAP(max_mtu);
2667 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2668 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2669 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2670 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2671 	dev_caps->num_funcs = num_funcs;
2672 
2673 	/* one Tx and one Rx queue per function in safe mode */
2674 	dev_caps->common_cap.num_rxq = num_funcs;
2675 	dev_caps->common_cap.num_txq = num_funcs;
2676 
2677 	/* two MSIX vectors per function */
2678 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2679 }
2680 
2681 /**
2682  * ice_get_caps - get info about the HW
2683  * @hw: pointer to the hardware structure
2684  */
2685 int ice_get_caps(struct ice_hw *hw)
2686 {
2687 	int status;
2688 
2689 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2690 	if (status)
2691 		return status;
2692 
2693 	return ice_discover_func_caps(hw, &hw->func_caps);
2694 }
2695 
2696 /**
2697  * ice_aq_manage_mac_write - manage MAC address write command
2698  * @hw: pointer to the HW struct
2699  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2700  * @flags: flags to control write behavior
2701  * @cd: pointer to command details structure or NULL
2702  *
2703  * This function is used to write MAC address to the NVM (0x0108).
2704  */
2705 int
2706 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2707 			struct ice_sq_cd *cd)
2708 {
2709 	struct ice_aqc_manage_mac_write *cmd;
2710 	struct ice_aq_desc desc;
2711 
2712 	cmd = &desc.params.mac_write;
2713 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2714 
2715 	cmd->flags = flags;
2716 	ether_addr_copy(cmd->mac_addr, mac_addr);
2717 
2718 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2719 }
2720 
2721 /**
2722  * ice_aq_clear_pxe_mode
2723  * @hw: pointer to the HW struct
2724  *
2725  * Tell the firmware that the driver is taking over from PXE (0x0110).
2726  */
2727 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2728 {
2729 	struct ice_aq_desc desc;
2730 
2731 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2732 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2733 
2734 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2735 }
2736 
2737 /**
2738  * ice_clear_pxe_mode - clear pxe operations mode
2739  * @hw: pointer to the HW struct
2740  *
2741  * Make sure all PXE mode settings are cleared, including things
2742  * like descriptor fetch/write-back mode.
2743  */
2744 void ice_clear_pxe_mode(struct ice_hw *hw)
2745 {
2746 	if (ice_check_sq_alive(hw, &hw->adminq))
2747 		ice_aq_clear_pxe_mode(hw);
2748 }
2749 
2750 /**
2751  * ice_aq_set_port_params - set physical port parameters.
2752  * @pi: pointer to the port info struct
2753  * @double_vlan: if set double VLAN is enabled
2754  * @cd: pointer to command details structure or NULL
2755  *
2756  * Set Physical port parameters (0x0203)
2757  */
2758 int
2759 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2760 		       struct ice_sq_cd *cd)
2761 
2762 {
2763 	struct ice_aqc_set_port_params *cmd;
2764 	struct ice_hw *hw = pi->hw;
2765 	struct ice_aq_desc desc;
2766 	u16 cmd_flags = 0;
2767 
2768 	cmd = &desc.params.set_port_params;
2769 
2770 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2771 	if (double_vlan)
2772 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2773 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2774 
2775 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2776 }
2777 
2778 /**
2779  * ice_get_link_speed_based_on_phy_type - returns link speed
2780  * @phy_type_low: lower part of phy_type
2781  * @phy_type_high: higher part of phy_type
2782  *
2783  * This helper function will convert an entry in PHY type structure
2784  * [phy_type_low, phy_type_high] to its corresponding link speed.
2785  * Note: In the structure of [phy_type_low, phy_type_high], there should
2786  * be one bit set, as this function will convert one PHY type to its
2787  * speed.
2788  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2789  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2790  */
2791 static u16
2792 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2793 {
2794 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2795 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2796 
2797 	switch (phy_type_low) {
2798 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2799 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2800 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2801 		break;
2802 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2803 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2804 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2805 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2806 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2807 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2808 		break;
2809 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2810 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2811 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2812 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2813 		break;
2814 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2815 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2816 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2817 		break;
2818 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2819 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2820 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2821 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2822 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2823 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2824 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2825 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2826 		break;
2827 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2828 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2829 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2830 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2831 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2832 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2833 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2834 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2835 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2836 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2837 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2838 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2839 		break;
2840 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2841 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2842 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2843 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2844 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2845 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2846 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2847 		break;
2848 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2849 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2850 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2851 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2852 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2853 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2854 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2855 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2856 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2857 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2858 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2859 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2860 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2861 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2862 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2863 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2864 		break;
2865 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2866 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2867 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2868 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2869 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2870 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2871 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2872 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2873 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2874 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2875 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2876 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2877 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2878 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2879 		break;
2880 	default:
2881 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2882 		break;
2883 	}
2884 
2885 	switch (phy_type_high) {
2886 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2887 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2888 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2889 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2890 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2891 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2892 		break;
2893 	default:
2894 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2895 		break;
2896 	}
2897 
2898 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2899 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2900 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2901 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2902 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2903 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2904 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2905 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2906 		return speed_phy_type_low;
2907 	else
2908 		return speed_phy_type_high;
2909 }
2910 
2911 /**
2912  * ice_update_phy_type
2913  * @phy_type_low: pointer to the lower part of phy_type
2914  * @phy_type_high: pointer to the higher part of phy_type
2915  * @link_speeds_bitmap: targeted link speeds bitmap
2916  *
2917  * Note: For the link_speeds_bitmap structure, you can check it at
2918  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2919  * link_speeds_bitmap include multiple speeds.
2920  *
2921  * Each entry in this [phy_type_low, phy_type_high] structure will
2922  * present a certain link speed. This helper function will turn on bits
2923  * in [phy_type_low, phy_type_high] structure based on the value of
2924  * link_speeds_bitmap input parameter.
2925  */
2926 void
2927 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2928 		    u16 link_speeds_bitmap)
2929 {
2930 	u64 pt_high;
2931 	u64 pt_low;
2932 	int index;
2933 	u16 speed;
2934 
2935 	/* We first check with low part of phy_type */
2936 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2937 		pt_low = BIT_ULL(index);
2938 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2939 
2940 		if (link_speeds_bitmap & speed)
2941 			*phy_type_low |= BIT_ULL(index);
2942 	}
2943 
2944 	/* We then check with high part of phy_type */
2945 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2946 		pt_high = BIT_ULL(index);
2947 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2948 
2949 		if (link_speeds_bitmap & speed)
2950 			*phy_type_high |= BIT_ULL(index);
2951 	}
2952 }
2953 
2954 /**
2955  * ice_aq_set_phy_cfg
2956  * @hw: pointer to the HW struct
2957  * @pi: port info structure of the interested logical port
2958  * @cfg: structure with PHY configuration data to be set
2959  * @cd: pointer to command details structure or NULL
2960  *
2961  * Set the various PHY configuration parameters supported on the Port.
2962  * One or more of the Set PHY config parameters may be ignored in an MFP
2963  * mode as the PF may not have the privilege to set some of the PHY Config
2964  * parameters. This status will be indicated by the command response (0x0601).
2965  */
2966 int
2967 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2968 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2969 {
2970 	struct ice_aq_desc desc;
2971 	int status;
2972 
2973 	if (!cfg)
2974 		return -EINVAL;
2975 
2976 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2977 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2978 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2979 			  cfg->caps);
2980 
2981 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2982 	}
2983 
2984 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2985 	desc.params.set_phy.lport_num = pi->lport;
2986 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2987 
2988 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2989 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2990 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2991 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2992 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2993 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2994 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2995 		  cfg->low_power_ctrl_an);
2996 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2997 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2998 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2999 		  cfg->link_fec_opt);
3000 
3001 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3002 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3003 		status = 0;
3004 
3005 	if (!status)
3006 		pi->phy.curr_user_phy_cfg = *cfg;
3007 
3008 	return status;
3009 }
3010 
3011 /**
3012  * ice_update_link_info - update status of the HW network link
3013  * @pi: port info structure of the interested logical port
3014  */
3015 int ice_update_link_info(struct ice_port_info *pi)
3016 {
3017 	struct ice_link_status *li;
3018 	int status;
3019 
3020 	if (!pi)
3021 		return -EINVAL;
3022 
3023 	li = &pi->phy.link_info;
3024 
3025 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3026 	if (status)
3027 		return status;
3028 
3029 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3030 		struct ice_aqc_get_phy_caps_data *pcaps;
3031 		struct ice_hw *hw;
3032 
3033 		hw = pi->hw;
3034 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3035 				     GFP_KERNEL);
3036 		if (!pcaps)
3037 			return -ENOMEM;
3038 
3039 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3040 					     pcaps, NULL);
3041 
3042 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3043 	}
3044 
3045 	return status;
3046 }
3047 
3048 /**
3049  * ice_cache_phy_user_req
3050  * @pi: port information structure
3051  * @cache_data: PHY logging data
3052  * @cache_mode: PHY logging mode
3053  *
3054  * Log the user request on (FC, FEC, SPEED) for later use.
3055  */
3056 static void
3057 ice_cache_phy_user_req(struct ice_port_info *pi,
3058 		       struct ice_phy_cache_mode_data cache_data,
3059 		       enum ice_phy_cache_mode cache_mode)
3060 {
3061 	if (!pi)
3062 		return;
3063 
3064 	switch (cache_mode) {
3065 	case ICE_FC_MODE:
3066 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3067 		break;
3068 	case ICE_SPEED_MODE:
3069 		pi->phy.curr_user_speed_req =
3070 			cache_data.data.curr_user_speed_req;
3071 		break;
3072 	case ICE_FEC_MODE:
3073 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3074 		break;
3075 	default:
3076 		break;
3077 	}
3078 }
3079 
3080 /**
3081  * ice_caps_to_fc_mode
3082  * @caps: PHY capabilities
3083  *
3084  * Convert PHY FC capabilities to ice FC mode
3085  */
3086 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3087 {
3088 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3089 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3090 		return ICE_FC_FULL;
3091 
3092 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3093 		return ICE_FC_TX_PAUSE;
3094 
3095 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3096 		return ICE_FC_RX_PAUSE;
3097 
3098 	return ICE_FC_NONE;
3099 }
3100 
3101 /**
3102  * ice_caps_to_fec_mode
3103  * @caps: PHY capabilities
3104  * @fec_options: Link FEC options
3105  *
3106  * Convert PHY FEC capabilities to ice FEC mode
3107  */
3108 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3109 {
3110 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3111 		return ICE_FEC_AUTO;
3112 
3113 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3114 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3115 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3116 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3117 		return ICE_FEC_BASER;
3118 
3119 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3120 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3121 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3122 		return ICE_FEC_RS;
3123 
3124 	return ICE_FEC_NONE;
3125 }
3126 
3127 /**
3128  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3129  * @pi: port information structure
3130  * @cfg: PHY configuration data to set FC mode
3131  * @req_mode: FC mode to configure
3132  */
3133 int
3134 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3135 	       enum ice_fc_mode req_mode)
3136 {
3137 	struct ice_phy_cache_mode_data cache_data;
3138 	u8 pause_mask = 0x0;
3139 
3140 	if (!pi || !cfg)
3141 		return -EINVAL;
3142 
3143 	switch (req_mode) {
3144 	case ICE_FC_FULL:
3145 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3146 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3147 		break;
3148 	case ICE_FC_RX_PAUSE:
3149 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3150 		break;
3151 	case ICE_FC_TX_PAUSE:
3152 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3153 		break;
3154 	default:
3155 		break;
3156 	}
3157 
3158 	/* clear the old pause settings */
3159 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3160 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3161 
3162 	/* set the new capabilities */
3163 	cfg->caps |= pause_mask;
3164 
3165 	/* Cache user FC request */
3166 	cache_data.data.curr_user_fc_req = req_mode;
3167 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3168 
3169 	return 0;
3170 }
3171 
3172 /**
3173  * ice_set_fc
3174  * @pi: port information structure
3175  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3176  * @ena_auto_link_update: enable automatic link update
3177  *
3178  * Set the requested flow control mode.
3179  */
3180 int
3181 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3182 {
3183 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3184 	struct ice_aqc_get_phy_caps_data *pcaps;
3185 	struct ice_hw *hw;
3186 	int status;
3187 
3188 	if (!pi || !aq_failures)
3189 		return -EINVAL;
3190 
3191 	*aq_failures = 0;
3192 	hw = pi->hw;
3193 
3194 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3195 	if (!pcaps)
3196 		return -ENOMEM;
3197 
3198 	/* Get the current PHY config */
3199 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3200 				     pcaps, NULL);
3201 	if (status) {
3202 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3203 		goto out;
3204 	}
3205 
3206 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3207 
3208 	/* Configure the set PHY data */
3209 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3210 	if (status)
3211 		goto out;
3212 
3213 	/* If the capabilities have changed, then set the new config */
3214 	if (cfg.caps != pcaps->caps) {
3215 		int retry_count, retry_max = 10;
3216 
3217 		/* Auto restart link so settings take effect */
3218 		if (ena_auto_link_update)
3219 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3220 
3221 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3222 		if (status) {
3223 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3224 			goto out;
3225 		}
3226 
3227 		/* Update the link info
3228 		 * It sometimes takes a really long time for link to
3229 		 * come back from the atomic reset. Thus, we wait a
3230 		 * little bit.
3231 		 */
3232 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3233 			status = ice_update_link_info(pi);
3234 
3235 			if (!status)
3236 				break;
3237 
3238 			mdelay(100);
3239 		}
3240 
3241 		if (status)
3242 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3243 	}
3244 
3245 out:
3246 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3247 	return status;
3248 }
3249 
3250 /**
3251  * ice_phy_caps_equals_cfg
3252  * @phy_caps: PHY capabilities
3253  * @phy_cfg: PHY configuration
3254  *
3255  * Helper function to determine if PHY capabilities matches PHY
3256  * configuration
3257  */
3258 bool
3259 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3260 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3261 {
3262 	u8 caps_mask, cfg_mask;
3263 
3264 	if (!phy_caps || !phy_cfg)
3265 		return false;
3266 
3267 	/* These bits are not common between capabilities and configuration.
3268 	 * Do not use them to determine equality.
3269 	 */
3270 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3271 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3272 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3273 
3274 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3275 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3276 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3277 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3278 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3279 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3280 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3281 		return false;
3282 
3283 	return true;
3284 }
3285 
3286 /**
3287  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3288  * @pi: port information structure
3289  * @caps: PHY ability structure to copy date from
3290  * @cfg: PHY configuration structure to copy data to
3291  *
3292  * Helper function to copy AQC PHY get ability data to PHY set configuration
3293  * data structure
3294  */
3295 void
3296 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3297 			 struct ice_aqc_get_phy_caps_data *caps,
3298 			 struct ice_aqc_set_phy_cfg_data *cfg)
3299 {
3300 	if (!pi || !caps || !cfg)
3301 		return;
3302 
3303 	memset(cfg, 0, sizeof(*cfg));
3304 	cfg->phy_type_low = caps->phy_type_low;
3305 	cfg->phy_type_high = caps->phy_type_high;
3306 	cfg->caps = caps->caps;
3307 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3308 	cfg->eee_cap = caps->eee_cap;
3309 	cfg->eeer_value = caps->eeer_value;
3310 	cfg->link_fec_opt = caps->link_fec_options;
3311 	cfg->module_compliance_enforcement =
3312 		caps->module_compliance_enforcement;
3313 }
3314 
3315 /**
3316  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3317  * @pi: port information structure
3318  * @cfg: PHY configuration data to set FEC mode
3319  * @fec: FEC mode to configure
3320  */
3321 int
3322 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3323 		enum ice_fec_mode fec)
3324 {
3325 	struct ice_aqc_get_phy_caps_data *pcaps;
3326 	struct ice_hw *hw;
3327 	int status;
3328 
3329 	if (!pi || !cfg)
3330 		return -EINVAL;
3331 
3332 	hw = pi->hw;
3333 
3334 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3335 	if (!pcaps)
3336 		return -ENOMEM;
3337 
3338 	status = ice_aq_get_phy_caps(pi, false,
3339 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3340 				      ICE_AQC_REPORT_DFLT_CFG :
3341 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3342 	if (status)
3343 		goto out;
3344 
3345 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3346 	cfg->link_fec_opt = pcaps->link_fec_options;
3347 
3348 	switch (fec) {
3349 	case ICE_FEC_BASER:
3350 		/* Clear RS bits, and AND BASE-R ability
3351 		 * bits and OR request bits.
3352 		 */
3353 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3355 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3356 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3357 		break;
3358 	case ICE_FEC_RS:
3359 		/* Clear BASE-R bits, and AND RS ability
3360 		 * bits and OR request bits.
3361 		 */
3362 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3363 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3364 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3365 		break;
3366 	case ICE_FEC_NONE:
3367 		/* Clear all FEC option bits. */
3368 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3369 		break;
3370 	case ICE_FEC_AUTO:
3371 		/* AND auto FEC bit, and all caps bits. */
3372 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3373 		cfg->link_fec_opt |= pcaps->link_fec_options;
3374 		break;
3375 	default:
3376 		status = -EINVAL;
3377 		break;
3378 	}
3379 
3380 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3381 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3382 		struct ice_link_default_override_tlv tlv = { 0 };
3383 
3384 		status = ice_get_link_default_override(&tlv, pi);
3385 		if (status)
3386 			goto out;
3387 
3388 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3389 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3390 			cfg->link_fec_opt = tlv.fec_options;
3391 	}
3392 
3393 out:
3394 	kfree(pcaps);
3395 
3396 	return status;
3397 }
3398 
3399 /**
3400  * ice_get_link_status - get status of the HW network link
3401  * @pi: port information structure
3402  * @link_up: pointer to bool (true/false = linkup/linkdown)
3403  *
3404  * Variable link_up is true if link is up, false if link is down.
3405  * The variable link_up is invalid if status is non zero. As a
3406  * result of this call, link status reporting becomes enabled
3407  */
3408 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3409 {
3410 	struct ice_phy_info *phy_info;
3411 	int status = 0;
3412 
3413 	if (!pi || !link_up)
3414 		return -EINVAL;
3415 
3416 	phy_info = &pi->phy;
3417 
3418 	if (phy_info->get_link_info) {
3419 		status = ice_update_link_info(pi);
3420 
3421 		if (status)
3422 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3423 				  status);
3424 	}
3425 
3426 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3427 
3428 	return status;
3429 }
3430 
3431 /**
3432  * ice_aq_set_link_restart_an
3433  * @pi: pointer to the port information structure
3434  * @ena_link: if true: enable link, if false: disable link
3435  * @cd: pointer to command details structure or NULL
3436  *
3437  * Sets up the link and restarts the Auto-Negotiation over the link.
3438  */
3439 int
3440 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3441 			   struct ice_sq_cd *cd)
3442 {
3443 	struct ice_aqc_restart_an *cmd;
3444 	struct ice_aq_desc desc;
3445 
3446 	cmd = &desc.params.restart_an;
3447 
3448 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3449 
3450 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3451 	cmd->lport_num = pi->lport;
3452 	if (ena_link)
3453 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3454 	else
3455 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3456 
3457 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3458 }
3459 
3460 /**
3461  * ice_aq_set_event_mask
3462  * @hw: pointer to the HW struct
3463  * @port_num: port number of the physical function
3464  * @mask: event mask to be set
3465  * @cd: pointer to command details structure or NULL
3466  *
3467  * Set event mask (0x0613)
3468  */
3469 int
3470 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3471 		      struct ice_sq_cd *cd)
3472 {
3473 	struct ice_aqc_set_event_mask *cmd;
3474 	struct ice_aq_desc desc;
3475 
3476 	cmd = &desc.params.set_event_mask;
3477 
3478 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3479 
3480 	cmd->lport_num = port_num;
3481 
3482 	cmd->event_mask = cpu_to_le16(mask);
3483 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3484 }
3485 
3486 /**
3487  * ice_aq_set_mac_loopback
3488  * @hw: pointer to the HW struct
3489  * @ena_lpbk: Enable or Disable loopback
3490  * @cd: pointer to command details structure or NULL
3491  *
3492  * Enable/disable loopback on a given port
3493  */
3494 int
3495 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3496 {
3497 	struct ice_aqc_set_mac_lb *cmd;
3498 	struct ice_aq_desc desc;
3499 
3500 	cmd = &desc.params.set_mac_lb;
3501 
3502 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3503 	if (ena_lpbk)
3504 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3505 
3506 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3507 }
3508 
3509 /**
3510  * ice_aq_set_port_id_led
3511  * @pi: pointer to the port information
3512  * @is_orig_mode: is this LED set to original mode (by the net-list)
3513  * @cd: pointer to command details structure or NULL
3514  *
3515  * Set LED value for the given port (0x06e9)
3516  */
3517 int
3518 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3519 		       struct ice_sq_cd *cd)
3520 {
3521 	struct ice_aqc_set_port_id_led *cmd;
3522 	struct ice_hw *hw = pi->hw;
3523 	struct ice_aq_desc desc;
3524 
3525 	cmd = &desc.params.set_port_id_led;
3526 
3527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3528 
3529 	if (is_orig_mode)
3530 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3531 	else
3532 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3533 
3534 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3535 }
3536 
3537 /**
3538  * ice_aq_sff_eeprom
3539  * @hw: pointer to the HW struct
3540  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3541  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3542  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3543  * @page: QSFP page
3544  * @set_page: set or ignore the page
3545  * @data: pointer to data buffer to be read/written to the I2C device.
3546  * @length: 1-16 for read, 1 for write.
3547  * @write: 0 read, 1 for write.
3548  * @cd: pointer to command details structure or NULL
3549  *
3550  * Read/Write SFF EEPROM (0x06EE)
3551  */
3552 int
3553 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3554 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3555 		  bool write, struct ice_sq_cd *cd)
3556 {
3557 	struct ice_aqc_sff_eeprom *cmd;
3558 	struct ice_aq_desc desc;
3559 	int status;
3560 
3561 	if (!data || (mem_addr & 0xff00))
3562 		return -EINVAL;
3563 
3564 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3565 	cmd = &desc.params.read_write_sff_param;
3566 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3567 	cmd->lport_num = (u8)(lport & 0xff);
3568 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3569 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3570 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3571 					((set_page <<
3572 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3573 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3574 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3575 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3576 	if (write)
3577 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3578 
3579 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3580 	return status;
3581 }
3582 
3583 /**
3584  * __ice_aq_get_set_rss_lut
3585  * @hw: pointer to the hardware structure
3586  * @params: RSS LUT parameters
3587  * @set: set true to set the table, false to get the table
3588  *
3589  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3590  */
3591 static int
3592 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3593 {
3594 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3595 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3596 	struct ice_aq_desc desc;
3597 	int status;
3598 	u8 *lut;
3599 
3600 	if (!params)
3601 		return -EINVAL;
3602 
3603 	vsi_handle = params->vsi_handle;
3604 	lut = params->lut;
3605 
3606 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3607 		return -EINVAL;
3608 
3609 	lut_size = params->lut_size;
3610 	lut_type = params->lut_type;
3611 	glob_lut_idx = params->global_lut_id;
3612 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3613 
3614 	cmd_resp = &desc.params.get_set_rss_lut;
3615 
3616 	if (set) {
3617 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3618 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3619 	} else {
3620 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3621 	}
3622 
3623 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3624 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3625 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3626 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3627 
3628 	switch (lut_type) {
3629 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3630 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3631 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3632 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3633 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3634 		break;
3635 	default:
3636 		status = -EINVAL;
3637 		goto ice_aq_get_set_rss_lut_exit;
3638 	}
3639 
3640 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3641 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3642 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3643 
3644 		if (!set)
3645 			goto ice_aq_get_set_rss_lut_send;
3646 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3647 		if (!set)
3648 			goto ice_aq_get_set_rss_lut_send;
3649 	} else {
3650 		goto ice_aq_get_set_rss_lut_send;
3651 	}
3652 
3653 	/* LUT size is only valid for Global and PF table types */
3654 	switch (lut_size) {
3655 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3656 		break;
3657 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3658 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3659 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3660 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3661 		break;
3662 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3663 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3664 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3665 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3666 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3667 			break;
3668 		}
3669 		fallthrough;
3670 	default:
3671 		status = -EINVAL;
3672 		goto ice_aq_get_set_rss_lut_exit;
3673 	}
3674 
3675 ice_aq_get_set_rss_lut_send:
3676 	cmd_resp->flags = cpu_to_le16(flags);
3677 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3678 
3679 ice_aq_get_set_rss_lut_exit:
3680 	return status;
3681 }
3682 
3683 /**
3684  * ice_aq_get_rss_lut
3685  * @hw: pointer to the hardware structure
3686  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3687  *
3688  * get the RSS lookup table, PF or VSI type
3689  */
3690 int
3691 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3692 {
3693 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3694 }
3695 
3696 /**
3697  * ice_aq_set_rss_lut
3698  * @hw: pointer to the hardware structure
3699  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3700  *
3701  * set the RSS lookup table, PF or VSI type
3702  */
3703 int
3704 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3705 {
3706 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3707 }
3708 
3709 /**
3710  * __ice_aq_get_set_rss_key
3711  * @hw: pointer to the HW struct
3712  * @vsi_id: VSI FW index
3713  * @key: pointer to key info struct
3714  * @set: set true to set the key, false to get the key
3715  *
3716  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3717  */
3718 static int
3719 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3720 			 struct ice_aqc_get_set_rss_keys *key, bool set)
3721 {
3722 	struct ice_aqc_get_set_rss_key *cmd_resp;
3723 	u16 key_size = sizeof(*key);
3724 	struct ice_aq_desc desc;
3725 
3726 	cmd_resp = &desc.params.get_set_rss_key;
3727 
3728 	if (set) {
3729 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3730 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3731 	} else {
3732 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3733 	}
3734 
3735 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3736 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3737 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3738 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3739 
3740 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3741 }
3742 
3743 /**
3744  * ice_aq_get_rss_key
3745  * @hw: pointer to the HW struct
3746  * @vsi_handle: software VSI handle
3747  * @key: pointer to key info struct
3748  *
3749  * get the RSS key per VSI
3750  */
3751 int
3752 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3753 		   struct ice_aqc_get_set_rss_keys *key)
3754 {
3755 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3756 		return -EINVAL;
3757 
3758 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3759 					key, false);
3760 }
3761 
3762 /**
3763  * ice_aq_set_rss_key
3764  * @hw: pointer to the HW struct
3765  * @vsi_handle: software VSI handle
3766  * @keys: pointer to key info struct
3767  *
3768  * set the RSS key per VSI
3769  */
3770 int
3771 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3772 		   struct ice_aqc_get_set_rss_keys *keys)
3773 {
3774 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3775 		return -EINVAL;
3776 
3777 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3778 					keys, true);
3779 }
3780 
3781 /**
3782  * ice_aq_add_lan_txq
3783  * @hw: pointer to the hardware structure
3784  * @num_qgrps: Number of added queue groups
3785  * @qg_list: list of queue groups to be added
3786  * @buf_size: size of buffer for indirect command
3787  * @cd: pointer to command details structure or NULL
3788  *
3789  * Add Tx LAN queue (0x0C30)
3790  *
3791  * NOTE:
3792  * Prior to calling add Tx LAN queue:
3793  * Initialize the following as part of the Tx queue context:
3794  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3795  * Cache profile and Packet shaper profile.
3796  *
3797  * After add Tx LAN queue AQ command is completed:
3798  * Interrupts should be associated with specific queues,
3799  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3800  * flow.
3801  */
3802 static int
3803 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3804 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3805 		   struct ice_sq_cd *cd)
3806 {
3807 	struct ice_aqc_add_tx_qgrp *list;
3808 	struct ice_aqc_add_txqs *cmd;
3809 	struct ice_aq_desc desc;
3810 	u16 i, sum_size = 0;
3811 
3812 	cmd = &desc.params.add_txqs;
3813 
3814 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3815 
3816 	if (!qg_list)
3817 		return -EINVAL;
3818 
3819 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3820 		return -EINVAL;
3821 
3822 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3823 		sum_size += struct_size(list, txqs, list->num_txqs);
3824 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3825 						      list->num_txqs);
3826 	}
3827 
3828 	if (buf_size != sum_size)
3829 		return -EINVAL;
3830 
3831 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3832 
3833 	cmd->num_qgrps = num_qgrps;
3834 
3835 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3836 }
3837 
3838 /**
3839  * ice_aq_dis_lan_txq
3840  * @hw: pointer to the hardware structure
3841  * @num_qgrps: number of groups in the list
3842  * @qg_list: the list of groups to disable
3843  * @buf_size: the total size of the qg_list buffer in bytes
3844  * @rst_src: if called due to reset, specifies the reset source
3845  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3846  * @cd: pointer to command details structure or NULL
3847  *
3848  * Disable LAN Tx queue (0x0C31)
3849  */
3850 static int
3851 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3852 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3853 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3854 		   struct ice_sq_cd *cd)
3855 {
3856 	struct ice_aqc_dis_txq_item *item;
3857 	struct ice_aqc_dis_txqs *cmd;
3858 	struct ice_aq_desc desc;
3859 	u16 i, sz = 0;
3860 	int status;
3861 
3862 	cmd = &desc.params.dis_txqs;
3863 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3864 
3865 	/* qg_list can be NULL only in VM/VF reset flow */
3866 	if (!qg_list && !rst_src)
3867 		return -EINVAL;
3868 
3869 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3870 		return -EINVAL;
3871 
3872 	cmd->num_entries = num_qgrps;
3873 
3874 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3875 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3876 
3877 	switch (rst_src) {
3878 	case ICE_VM_RESET:
3879 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3880 		cmd->vmvf_and_timeout |=
3881 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3882 		break;
3883 	case ICE_VF_RESET:
3884 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3885 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3886 		cmd->vmvf_and_timeout |=
3887 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3888 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3889 		break;
3890 	case ICE_NO_RESET:
3891 	default:
3892 		break;
3893 	}
3894 
3895 	/* flush pipe on time out */
3896 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3897 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3898 	if (!qg_list)
3899 		goto do_aq;
3900 
3901 	/* set RD bit to indicate that command buffer is provided by the driver
3902 	 * and it needs to be read by the firmware
3903 	 */
3904 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3905 
3906 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3907 		u16 item_size = struct_size(item, q_id, item->num_qs);
3908 
3909 		/* If the num of queues is even, add 2 bytes of padding */
3910 		if ((item->num_qs % 2) == 0)
3911 			item_size += 2;
3912 
3913 		sz += item_size;
3914 
3915 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3916 	}
3917 
3918 	if (buf_size != sz)
3919 		return -EINVAL;
3920 
3921 do_aq:
3922 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3923 	if (status) {
3924 		if (!qg_list)
3925 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3926 				  vmvf_num, hw->adminq.sq_last_status);
3927 		else
3928 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3929 				  le16_to_cpu(qg_list[0].q_id[0]),
3930 				  hw->adminq.sq_last_status);
3931 	}
3932 	return status;
3933 }
3934 
3935 /**
3936  * ice_aq_add_rdma_qsets
3937  * @hw: pointer to the hardware structure
3938  * @num_qset_grps: Number of RDMA Qset groups
3939  * @qset_list: list of Qset groups to be added
3940  * @buf_size: size of buffer for indirect command
3941  * @cd: pointer to command details structure or NULL
3942  *
3943  * Add Tx RDMA Qsets (0x0C33)
3944  */
3945 static int
3946 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3947 		      struct ice_aqc_add_rdma_qset_data *qset_list,
3948 		      u16 buf_size, struct ice_sq_cd *cd)
3949 {
3950 	struct ice_aqc_add_rdma_qset_data *list;
3951 	struct ice_aqc_add_rdma_qset *cmd;
3952 	struct ice_aq_desc desc;
3953 	u16 i, sum_size = 0;
3954 
3955 	cmd = &desc.params.add_rdma_qset;
3956 
3957 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3958 
3959 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3960 		return -EINVAL;
3961 
3962 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3963 		u16 num_qsets = le16_to_cpu(list->num_qsets);
3964 
3965 		sum_size += struct_size(list, rdma_qsets, num_qsets);
3966 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3967 							     num_qsets);
3968 	}
3969 
3970 	if (buf_size != sum_size)
3971 		return -EINVAL;
3972 
3973 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3974 
3975 	cmd->num_qset_grps = num_qset_grps;
3976 
3977 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
3978 }
3979 
3980 /* End of FW Admin Queue command wrappers */
3981 
3982 /**
3983  * ice_write_byte - write a byte to a packed context structure
3984  * @src_ctx:  the context structure to read from
3985  * @dest_ctx: the context to be written to
3986  * @ce_info:  a description of the struct to be filled
3987  */
3988 static void
3989 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3990 {
3991 	u8 src_byte, dest_byte, mask;
3992 	u8 *from, *dest;
3993 	u16 shift_width;
3994 
3995 	/* copy from the next struct field */
3996 	from = src_ctx + ce_info->offset;
3997 
3998 	/* prepare the bits and mask */
3999 	shift_width = ce_info->lsb % 8;
4000 	mask = (u8)(BIT(ce_info->width) - 1);
4001 
4002 	src_byte = *from;
4003 	src_byte &= mask;
4004 
4005 	/* shift to correct alignment */
4006 	mask <<= shift_width;
4007 	src_byte <<= shift_width;
4008 
4009 	/* get the current bits from the target bit string */
4010 	dest = dest_ctx + (ce_info->lsb / 8);
4011 
4012 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4013 
4014 	dest_byte &= ~mask;	/* get the bits not changing */
4015 	dest_byte |= src_byte;	/* add in the new bits */
4016 
4017 	/* put it all back */
4018 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4019 }
4020 
4021 /**
4022  * ice_write_word - write a word to a packed context structure
4023  * @src_ctx:  the context structure to read from
4024  * @dest_ctx: the context to be written to
4025  * @ce_info:  a description of the struct to be filled
4026  */
4027 static void
4028 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4029 {
4030 	u16 src_word, mask;
4031 	__le16 dest_word;
4032 	u8 *from, *dest;
4033 	u16 shift_width;
4034 
4035 	/* copy from the next struct field */
4036 	from = src_ctx + ce_info->offset;
4037 
4038 	/* prepare the bits and mask */
4039 	shift_width = ce_info->lsb % 8;
4040 	mask = BIT(ce_info->width) - 1;
4041 
4042 	/* don't swizzle the bits until after the mask because the mask bits
4043 	 * will be in a different bit position on big endian machines
4044 	 */
4045 	src_word = *(u16 *)from;
4046 	src_word &= mask;
4047 
4048 	/* shift to correct alignment */
4049 	mask <<= shift_width;
4050 	src_word <<= shift_width;
4051 
4052 	/* get the current bits from the target bit string */
4053 	dest = dest_ctx + (ce_info->lsb / 8);
4054 
4055 	memcpy(&dest_word, dest, sizeof(dest_word));
4056 
4057 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4058 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4059 
4060 	/* put it all back */
4061 	memcpy(dest, &dest_word, sizeof(dest_word));
4062 }
4063 
4064 /**
4065  * ice_write_dword - write a dword to a packed context structure
4066  * @src_ctx:  the context structure to read from
4067  * @dest_ctx: the context to be written to
4068  * @ce_info:  a description of the struct to be filled
4069  */
4070 static void
4071 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4072 {
4073 	u32 src_dword, mask;
4074 	__le32 dest_dword;
4075 	u8 *from, *dest;
4076 	u16 shift_width;
4077 
4078 	/* copy from the next struct field */
4079 	from = src_ctx + ce_info->offset;
4080 
4081 	/* prepare the bits and mask */
4082 	shift_width = ce_info->lsb % 8;
4083 
4084 	/* if the field width is exactly 32 on an x86 machine, then the shift
4085 	 * operation will not work because the SHL instructions count is masked
4086 	 * to 5 bits so the shift will do nothing
4087 	 */
4088 	if (ce_info->width < 32)
4089 		mask = BIT(ce_info->width) - 1;
4090 	else
4091 		mask = (u32)~0;
4092 
4093 	/* don't swizzle the bits until after the mask because the mask bits
4094 	 * will be in a different bit position on big endian machines
4095 	 */
4096 	src_dword = *(u32 *)from;
4097 	src_dword &= mask;
4098 
4099 	/* shift to correct alignment */
4100 	mask <<= shift_width;
4101 	src_dword <<= shift_width;
4102 
4103 	/* get the current bits from the target bit string */
4104 	dest = dest_ctx + (ce_info->lsb / 8);
4105 
4106 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4107 
4108 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4109 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4110 
4111 	/* put it all back */
4112 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4113 }
4114 
4115 /**
4116  * ice_write_qword - write a qword to a packed context structure
4117  * @src_ctx:  the context structure to read from
4118  * @dest_ctx: the context to be written to
4119  * @ce_info:  a description of the struct to be filled
4120  */
4121 static void
4122 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4123 {
4124 	u64 src_qword, mask;
4125 	__le64 dest_qword;
4126 	u8 *from, *dest;
4127 	u16 shift_width;
4128 
4129 	/* copy from the next struct field */
4130 	from = src_ctx + ce_info->offset;
4131 
4132 	/* prepare the bits and mask */
4133 	shift_width = ce_info->lsb % 8;
4134 
4135 	/* if the field width is exactly 64 on an x86 machine, then the shift
4136 	 * operation will not work because the SHL instructions count is masked
4137 	 * to 6 bits so the shift will do nothing
4138 	 */
4139 	if (ce_info->width < 64)
4140 		mask = BIT_ULL(ce_info->width) - 1;
4141 	else
4142 		mask = (u64)~0;
4143 
4144 	/* don't swizzle the bits until after the mask because the mask bits
4145 	 * will be in a different bit position on big endian machines
4146 	 */
4147 	src_qword = *(u64 *)from;
4148 	src_qword &= mask;
4149 
4150 	/* shift to correct alignment */
4151 	mask <<= shift_width;
4152 	src_qword <<= shift_width;
4153 
4154 	/* get the current bits from the target bit string */
4155 	dest = dest_ctx + (ce_info->lsb / 8);
4156 
4157 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4158 
4159 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4160 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4161 
4162 	/* put it all back */
4163 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4164 }
4165 
4166 /**
4167  * ice_set_ctx - set context bits in packed structure
4168  * @hw: pointer to the hardware structure
4169  * @src_ctx:  pointer to a generic non-packed context structure
4170  * @dest_ctx: pointer to memory for the packed structure
4171  * @ce_info:  a description of the structure to be transformed
4172  */
4173 int
4174 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4175 	    const struct ice_ctx_ele *ce_info)
4176 {
4177 	int f;
4178 
4179 	for (f = 0; ce_info[f].width; f++) {
4180 		/* We have to deal with each element of the FW response
4181 		 * using the correct size so that we are correct regardless
4182 		 * of the endianness of the machine.
4183 		 */
4184 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4185 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4186 				  f, ce_info[f].width, ce_info[f].size_of);
4187 			continue;
4188 		}
4189 		switch (ce_info[f].size_of) {
4190 		case sizeof(u8):
4191 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4192 			break;
4193 		case sizeof(u16):
4194 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4195 			break;
4196 		case sizeof(u32):
4197 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4198 			break;
4199 		case sizeof(u64):
4200 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4201 			break;
4202 		default:
4203 			return -EINVAL;
4204 		}
4205 	}
4206 
4207 	return 0;
4208 }
4209 
4210 /**
4211  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4212  * @hw: pointer to the HW struct
4213  * @vsi_handle: software VSI handle
4214  * @tc: TC number
4215  * @q_handle: software queue handle
4216  */
4217 struct ice_q_ctx *
4218 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4219 {
4220 	struct ice_vsi_ctx *vsi;
4221 	struct ice_q_ctx *q_ctx;
4222 
4223 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4224 	if (!vsi)
4225 		return NULL;
4226 	if (q_handle >= vsi->num_lan_q_entries[tc])
4227 		return NULL;
4228 	if (!vsi->lan_q_ctx[tc])
4229 		return NULL;
4230 	q_ctx = vsi->lan_q_ctx[tc];
4231 	return &q_ctx[q_handle];
4232 }
4233 
4234 /**
4235  * ice_ena_vsi_txq
4236  * @pi: port information structure
4237  * @vsi_handle: software VSI handle
4238  * @tc: TC number
4239  * @q_handle: software queue handle
4240  * @num_qgrps: Number of added queue groups
4241  * @buf: list of queue groups to be added
4242  * @buf_size: size of buffer for indirect command
4243  * @cd: pointer to command details structure or NULL
4244  *
4245  * This function adds one LAN queue
4246  */
4247 int
4248 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4249 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4250 		struct ice_sq_cd *cd)
4251 {
4252 	struct ice_aqc_txsched_elem_data node = { 0 };
4253 	struct ice_sched_node *parent;
4254 	struct ice_q_ctx *q_ctx;
4255 	struct ice_hw *hw;
4256 	int status;
4257 
4258 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4259 		return -EIO;
4260 
4261 	if (num_qgrps > 1 || buf->num_txqs > 1)
4262 		return -ENOSPC;
4263 
4264 	hw = pi->hw;
4265 
4266 	if (!ice_is_vsi_valid(hw, vsi_handle))
4267 		return -EINVAL;
4268 
4269 	mutex_lock(&pi->sched_lock);
4270 
4271 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4272 	if (!q_ctx) {
4273 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4274 			  q_handle);
4275 		status = -EINVAL;
4276 		goto ena_txq_exit;
4277 	}
4278 
4279 	/* find a parent node */
4280 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4281 					    ICE_SCHED_NODE_OWNER_LAN);
4282 	if (!parent) {
4283 		status = -EINVAL;
4284 		goto ena_txq_exit;
4285 	}
4286 
4287 	buf->parent_teid = parent->info.node_teid;
4288 	node.parent_teid = parent->info.node_teid;
4289 	/* Mark that the values in the "generic" section as valid. The default
4290 	 * value in the "generic" section is zero. This means that :
4291 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4292 	 * - 0 priority among siblings, indicated by Bit 1-3.
4293 	 * - WFQ, indicated by Bit 4.
4294 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4295 	 * Bit 5-6.
4296 	 * - Bit 7 is reserved.
4297 	 * Without setting the generic section as valid in valid_sections, the
4298 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4299 	 */
4300 	buf->txqs[0].info.valid_sections =
4301 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4302 		ICE_AQC_ELEM_VALID_EIR;
4303 	buf->txqs[0].info.generic = 0;
4304 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4305 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4306 	buf->txqs[0].info.cir_bw.bw_alloc =
4307 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4308 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4309 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4310 	buf->txqs[0].info.eir_bw.bw_alloc =
4311 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4312 
4313 	/* add the LAN queue */
4314 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4315 	if (status) {
4316 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4317 			  le16_to_cpu(buf->txqs[0].txq_id),
4318 			  hw->adminq.sq_last_status);
4319 		goto ena_txq_exit;
4320 	}
4321 
4322 	node.node_teid = buf->txqs[0].q_teid;
4323 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4324 	q_ctx->q_handle = q_handle;
4325 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4326 
4327 	/* add a leaf node into scheduler tree queue layer */
4328 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4329 	if (!status)
4330 		status = ice_sched_replay_q_bw(pi, q_ctx);
4331 
4332 ena_txq_exit:
4333 	mutex_unlock(&pi->sched_lock);
4334 	return status;
4335 }
4336 
4337 /**
4338  * ice_dis_vsi_txq
4339  * @pi: port information structure
4340  * @vsi_handle: software VSI handle
4341  * @tc: TC number
4342  * @num_queues: number of queues
4343  * @q_handles: pointer to software queue handle array
4344  * @q_ids: pointer to the q_id array
4345  * @q_teids: pointer to queue node teids
4346  * @rst_src: if called due to reset, specifies the reset source
4347  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4348  * @cd: pointer to command details structure or NULL
4349  *
4350  * This function removes queues and their corresponding nodes in SW DB
4351  */
4352 int
4353 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4354 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4355 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4356 		struct ice_sq_cd *cd)
4357 {
4358 	struct ice_aqc_dis_txq_item *qg_list;
4359 	struct ice_q_ctx *q_ctx;
4360 	int status = -ENOENT;
4361 	struct ice_hw *hw;
4362 	u16 i, buf_size;
4363 
4364 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4365 		return -EIO;
4366 
4367 	hw = pi->hw;
4368 
4369 	if (!num_queues) {
4370 		/* if queue is disabled already yet the disable queue command
4371 		 * has to be sent to complete the VF reset, then call
4372 		 * ice_aq_dis_lan_txq without any queue information
4373 		 */
4374 		if (rst_src)
4375 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4376 						  vmvf_num, NULL);
4377 		return -EIO;
4378 	}
4379 
4380 	buf_size = struct_size(qg_list, q_id, 1);
4381 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4382 	if (!qg_list)
4383 		return -ENOMEM;
4384 
4385 	mutex_lock(&pi->sched_lock);
4386 
4387 	for (i = 0; i < num_queues; i++) {
4388 		struct ice_sched_node *node;
4389 
4390 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4391 		if (!node)
4392 			continue;
4393 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4394 		if (!q_ctx) {
4395 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4396 				  q_handles[i]);
4397 			continue;
4398 		}
4399 		if (q_ctx->q_handle != q_handles[i]) {
4400 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4401 				  q_ctx->q_handle, q_handles[i]);
4402 			continue;
4403 		}
4404 		qg_list->parent_teid = node->info.parent_teid;
4405 		qg_list->num_qs = 1;
4406 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4407 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4408 					    vmvf_num, cd);
4409 
4410 		if (status)
4411 			break;
4412 		ice_free_sched_node(pi, node);
4413 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4414 	}
4415 	mutex_unlock(&pi->sched_lock);
4416 	kfree(qg_list);
4417 	return status;
4418 }
4419 
4420 /**
4421  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4422  * @pi: port information structure
4423  * @vsi_handle: software VSI handle
4424  * @tc_bitmap: TC bitmap
4425  * @maxqs: max queues array per TC
4426  * @owner: LAN or RDMA
4427  *
4428  * This function adds/updates the VSI queues per TC.
4429  */
4430 static int
4431 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4432 	       u16 *maxqs, u8 owner)
4433 {
4434 	int status = 0;
4435 	u8 i;
4436 
4437 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4438 		return -EIO;
4439 
4440 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4441 		return -EINVAL;
4442 
4443 	mutex_lock(&pi->sched_lock);
4444 
4445 	ice_for_each_traffic_class(i) {
4446 		/* configuration is possible only if TC node is present */
4447 		if (!ice_sched_get_tc_node(pi, i))
4448 			continue;
4449 
4450 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4451 					   ice_is_tc_ena(tc_bitmap, i));
4452 		if (status)
4453 			break;
4454 	}
4455 
4456 	mutex_unlock(&pi->sched_lock);
4457 	return status;
4458 }
4459 
4460 /**
4461  * ice_cfg_vsi_lan - configure VSI LAN queues
4462  * @pi: port information structure
4463  * @vsi_handle: software VSI handle
4464  * @tc_bitmap: TC bitmap
4465  * @max_lanqs: max LAN queues array per TC
4466  *
4467  * This function adds/updates the VSI LAN queues per TC.
4468  */
4469 int
4470 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4471 		u16 *max_lanqs)
4472 {
4473 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4474 			      ICE_SCHED_NODE_OWNER_LAN);
4475 }
4476 
4477 /**
4478  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4479  * @pi: port information structure
4480  * @vsi_handle: software VSI handle
4481  * @tc_bitmap: TC bitmap
4482  * @max_rdmaqs: max RDMA queues array per TC
4483  *
4484  * This function adds/updates the VSI RDMA queues per TC.
4485  */
4486 int
4487 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4488 		 u16 *max_rdmaqs)
4489 {
4490 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4491 			      ICE_SCHED_NODE_OWNER_RDMA);
4492 }
4493 
4494 /**
4495  * ice_ena_vsi_rdma_qset
4496  * @pi: port information structure
4497  * @vsi_handle: software VSI handle
4498  * @tc: TC number
4499  * @rdma_qset: pointer to RDMA Qset
4500  * @num_qsets: number of RDMA Qsets
4501  * @qset_teid: pointer to Qset node TEIDs
4502  *
4503  * This function adds RDMA Qset
4504  */
4505 int
4506 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4507 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4508 {
4509 	struct ice_aqc_txsched_elem_data node = { 0 };
4510 	struct ice_aqc_add_rdma_qset_data *buf;
4511 	struct ice_sched_node *parent;
4512 	struct ice_hw *hw;
4513 	u16 i, buf_size;
4514 	int ret;
4515 
4516 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4517 		return -EIO;
4518 	hw = pi->hw;
4519 
4520 	if (!ice_is_vsi_valid(hw, vsi_handle))
4521 		return -EINVAL;
4522 
4523 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4524 	buf = kzalloc(buf_size, GFP_KERNEL);
4525 	if (!buf)
4526 		return -ENOMEM;
4527 	mutex_lock(&pi->sched_lock);
4528 
4529 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4530 					    ICE_SCHED_NODE_OWNER_RDMA);
4531 	if (!parent) {
4532 		ret = -EINVAL;
4533 		goto rdma_error_exit;
4534 	}
4535 	buf->parent_teid = parent->info.node_teid;
4536 	node.parent_teid = parent->info.node_teid;
4537 
4538 	buf->num_qsets = cpu_to_le16(num_qsets);
4539 	for (i = 0; i < num_qsets; i++) {
4540 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4541 		buf->rdma_qsets[i].info.valid_sections =
4542 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4543 			ICE_AQC_ELEM_VALID_EIR;
4544 		buf->rdma_qsets[i].info.generic = 0;
4545 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4546 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4547 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4548 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4549 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4550 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4551 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4552 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4553 	}
4554 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4555 	if (ret) {
4556 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4557 		goto rdma_error_exit;
4558 	}
4559 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4560 	for (i = 0; i < num_qsets; i++) {
4561 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4562 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4563 					 &node);
4564 		if (ret)
4565 			break;
4566 		qset_teid[i] = le32_to_cpu(node.node_teid);
4567 	}
4568 rdma_error_exit:
4569 	mutex_unlock(&pi->sched_lock);
4570 	kfree(buf);
4571 	return ret;
4572 }
4573 
4574 /**
4575  * ice_dis_vsi_rdma_qset - free RDMA resources
4576  * @pi: port_info struct
4577  * @count: number of RDMA Qsets to free
4578  * @qset_teid: TEID of Qset node
4579  * @q_id: list of queue IDs being disabled
4580  */
4581 int
4582 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4583 		      u16 *q_id)
4584 {
4585 	struct ice_aqc_dis_txq_item *qg_list;
4586 	struct ice_hw *hw;
4587 	int status = 0;
4588 	u16 qg_size;
4589 	int i;
4590 
4591 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4592 		return -EIO;
4593 
4594 	hw = pi->hw;
4595 
4596 	qg_size = struct_size(qg_list, q_id, 1);
4597 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4598 	if (!qg_list)
4599 		return -ENOMEM;
4600 
4601 	mutex_lock(&pi->sched_lock);
4602 
4603 	for (i = 0; i < count; i++) {
4604 		struct ice_sched_node *node;
4605 
4606 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4607 		if (!node)
4608 			continue;
4609 
4610 		qg_list->parent_teid = node->info.parent_teid;
4611 		qg_list->num_qs = 1;
4612 		qg_list->q_id[0] =
4613 			cpu_to_le16(q_id[i] |
4614 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4615 
4616 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4617 					    ICE_NO_RESET, 0, NULL);
4618 		if (status)
4619 			break;
4620 
4621 		ice_free_sched_node(pi, node);
4622 	}
4623 
4624 	mutex_unlock(&pi->sched_lock);
4625 	kfree(qg_list);
4626 	return status;
4627 }
4628 
4629 /**
4630  * ice_replay_pre_init - replay pre initialization
4631  * @hw: pointer to the HW struct
4632  *
4633  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4634  */
4635 static int ice_replay_pre_init(struct ice_hw *hw)
4636 {
4637 	struct ice_switch_info *sw = hw->switch_info;
4638 	u8 i;
4639 
4640 	/* Delete old entries from replay filter list head if there is any */
4641 	ice_rm_all_sw_replay_rule_info(hw);
4642 	/* In start of replay, move entries into replay_rules list, it
4643 	 * will allow adding rules entries back to filt_rules list,
4644 	 * which is operational list.
4645 	 */
4646 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4647 		list_replace_init(&sw->recp_list[i].filt_rules,
4648 				  &sw->recp_list[i].filt_replay_rules);
4649 	ice_sched_replay_agg_vsi_preinit(hw);
4650 
4651 	return 0;
4652 }
4653 
4654 /**
4655  * ice_replay_vsi - replay VSI configuration
4656  * @hw: pointer to the HW struct
4657  * @vsi_handle: driver VSI handle
4658  *
4659  * Restore all VSI configuration after reset. It is required to call this
4660  * function with main VSI first.
4661  */
4662 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4663 {
4664 	int status;
4665 
4666 	if (!ice_is_vsi_valid(hw, vsi_handle))
4667 		return -EINVAL;
4668 
4669 	/* Replay pre-initialization if there is any */
4670 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4671 		status = ice_replay_pre_init(hw);
4672 		if (status)
4673 			return status;
4674 	}
4675 	/* Replay per VSI all RSS configurations */
4676 	status = ice_replay_rss_cfg(hw, vsi_handle);
4677 	if (status)
4678 		return status;
4679 	/* Replay per VSI all filters */
4680 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4681 	if (!status)
4682 		status = ice_replay_vsi_agg(hw, vsi_handle);
4683 	return status;
4684 }
4685 
4686 /**
4687  * ice_replay_post - post replay configuration cleanup
4688  * @hw: pointer to the HW struct
4689  *
4690  * Post replay cleanup.
4691  */
4692 void ice_replay_post(struct ice_hw *hw)
4693 {
4694 	/* Delete old entries from replay filter list head */
4695 	ice_rm_all_sw_replay_rule_info(hw);
4696 	ice_sched_replay_agg(hw);
4697 }
4698 
4699 /**
4700  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4701  * @hw: ptr to the hardware info
4702  * @reg: offset of 64 bit HW register to read from
4703  * @prev_stat_loaded: bool to specify if previous stats are loaded
4704  * @prev_stat: ptr to previous loaded stat value
4705  * @cur_stat: ptr to current stat value
4706  */
4707 void
4708 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4709 		  u64 *prev_stat, u64 *cur_stat)
4710 {
4711 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4712 
4713 	/* device stats are not reset at PFR, they likely will not be zeroed
4714 	 * when the driver starts. Thus, save the value from the first read
4715 	 * without adding to the statistic value so that we report stats which
4716 	 * count up from zero.
4717 	 */
4718 	if (!prev_stat_loaded) {
4719 		*prev_stat = new_data;
4720 		return;
4721 	}
4722 
4723 	/* Calculate the difference between the new and old values, and then
4724 	 * add it to the software stat value.
4725 	 */
4726 	if (new_data >= *prev_stat)
4727 		*cur_stat += new_data - *prev_stat;
4728 	else
4729 		/* to manage the potential roll-over */
4730 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4731 
4732 	/* Update the previously stored value to prepare for next read */
4733 	*prev_stat = new_data;
4734 }
4735 
4736 /**
4737  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4738  * @hw: ptr to the hardware info
4739  * @reg: offset of HW register to read from
4740  * @prev_stat_loaded: bool to specify if previous stats are loaded
4741  * @prev_stat: ptr to previous loaded stat value
4742  * @cur_stat: ptr to current stat value
4743  */
4744 void
4745 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4746 		  u64 *prev_stat, u64 *cur_stat)
4747 {
4748 	u32 new_data;
4749 
4750 	new_data = rd32(hw, reg);
4751 
4752 	/* device stats are not reset at PFR, they likely will not be zeroed
4753 	 * when the driver starts. Thus, save the value from the first read
4754 	 * without adding to the statistic value so that we report stats which
4755 	 * count up from zero.
4756 	 */
4757 	if (!prev_stat_loaded) {
4758 		*prev_stat = new_data;
4759 		return;
4760 	}
4761 
4762 	/* Calculate the difference between the new and old values, and then
4763 	 * add it to the software stat value.
4764 	 */
4765 	if (new_data >= *prev_stat)
4766 		*cur_stat += new_data - *prev_stat;
4767 	else
4768 		/* to manage the potential roll-over */
4769 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4770 
4771 	/* Update the previously stored value to prepare for next read */
4772 	*prev_stat = new_data;
4773 }
4774 
4775 /**
4776  * ice_sched_query_elem - query element information from HW
4777  * @hw: pointer to the HW struct
4778  * @node_teid: node TEID to be queried
4779  * @buf: buffer to element information
4780  *
4781  * This function queries HW element information
4782  */
4783 int
4784 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4785 		     struct ice_aqc_txsched_elem_data *buf)
4786 {
4787 	u16 buf_size, num_elem_ret = 0;
4788 	int status;
4789 
4790 	buf_size = sizeof(*buf);
4791 	memset(buf, 0, buf_size);
4792 	buf->node_teid = cpu_to_le32(node_teid);
4793 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4794 					  NULL);
4795 	if (status || num_elem_ret != 1)
4796 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4797 	return status;
4798 }
4799 
4800 /**
4801  * ice_aq_read_i2c
4802  * @hw: pointer to the hw struct
4803  * @topo_addr: topology address for a device to communicate with
4804  * @bus_addr: 7-bit I2C bus address
4805  * @addr: I2C memory address (I2C offset) with up to 16 bits
4806  * @params: I2C parameters: bit [7] - Repeated start,
4807  *			    bits [6:5] data offset size,
4808  *			    bit [4] - I2C address type,
4809  *			    bits [3:0] - data size to read (0-16 bytes)
4810  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
4811  * @cd: pointer to command details structure or NULL
4812  *
4813  * Read I2C (0x06E2)
4814  */
4815 int
4816 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4817 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
4818 		struct ice_sq_cd *cd)
4819 {
4820 	struct ice_aq_desc desc = { 0 };
4821 	struct ice_aqc_i2c *cmd;
4822 	u8 data_size;
4823 	int status;
4824 
4825 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
4826 	cmd = &desc.params.read_i2c;
4827 
4828 	if (!data)
4829 		return -EINVAL;
4830 
4831 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
4832 
4833 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
4834 	cmd->topo_addr = topo_addr;
4835 	cmd->i2c_params = params;
4836 	cmd->i2c_addr = addr;
4837 
4838 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4839 	if (!status) {
4840 		struct ice_aqc_read_i2c_resp *resp;
4841 		u8 i;
4842 
4843 		resp = &desc.params.read_i2c_resp;
4844 		for (i = 0; i < data_size; i++) {
4845 			*data = resp->i2c_data[i];
4846 			data++;
4847 		}
4848 	}
4849 
4850 	return status;
4851 }
4852 
4853 /**
4854  * ice_aq_set_driver_param - Set driver parameter to share via firmware
4855  * @hw: pointer to the HW struct
4856  * @idx: parameter index to set
4857  * @value: the value to set the parameter to
4858  * @cd: pointer to command details structure or NULL
4859  *
4860  * Set the value of one of the software defined parameters. All PFs connected
4861  * to this device can read the value using ice_aq_get_driver_param.
4862  *
4863  * Note that firmware provides no synchronization or locking, and will not
4864  * save the parameter value during a device reset. It is expected that
4865  * a single PF will write the parameter value, while all other PFs will only
4866  * read it.
4867  */
4868 int
4869 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4870 			u32 value, struct ice_sq_cd *cd)
4871 {
4872 	struct ice_aqc_driver_shared_params *cmd;
4873 	struct ice_aq_desc desc;
4874 
4875 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4876 		return -EIO;
4877 
4878 	cmd = &desc.params.drv_shared_params;
4879 
4880 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4881 
4882 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4883 	cmd->param_indx = idx;
4884 	cmd->param_val = cpu_to_le32(value);
4885 
4886 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4887 }
4888 
4889 /**
4890  * ice_aq_get_driver_param - Get driver parameter shared via firmware
4891  * @hw: pointer to the HW struct
4892  * @idx: parameter index to set
4893  * @value: storage to return the shared parameter
4894  * @cd: pointer to command details structure or NULL
4895  *
4896  * Get the value of one of the software defined parameters.
4897  *
4898  * Note that firmware provides no synchronization or locking. It is expected
4899  * that only a single PF will write a given parameter.
4900  */
4901 int
4902 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4903 			u32 *value, struct ice_sq_cd *cd)
4904 {
4905 	struct ice_aqc_driver_shared_params *cmd;
4906 	struct ice_aq_desc desc;
4907 	int status;
4908 
4909 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4910 		return -EIO;
4911 
4912 	cmd = &desc.params.drv_shared_params;
4913 
4914 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4915 
4916 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4917 	cmd->param_indx = idx;
4918 
4919 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4920 	if (status)
4921 		return status;
4922 
4923 	*value = le32_to_cpu(cmd->param_val);
4924 
4925 	return 0;
4926 }
4927 
4928 /**
4929  * ice_aq_set_gpio
4930  * @hw: pointer to the hw struct
4931  * @gpio_ctrl_handle: GPIO controller node handle
4932  * @pin_idx: IO Number of the GPIO that needs to be set
4933  * @value: SW provide IO value to set in the LSB
4934  * @cd: pointer to command details structure or NULL
4935  *
4936  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
4937  */
4938 int
4939 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
4940 		struct ice_sq_cd *cd)
4941 {
4942 	struct ice_aqc_gpio *cmd;
4943 	struct ice_aq_desc desc;
4944 
4945 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
4946 	cmd = &desc.params.read_write_gpio;
4947 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4948 	cmd->gpio_num = pin_idx;
4949 	cmd->gpio_val = value ? 1 : 0;
4950 
4951 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4952 }
4953 
4954 /**
4955  * ice_aq_get_gpio
4956  * @hw: pointer to the hw struct
4957  * @gpio_ctrl_handle: GPIO controller node handle
4958  * @pin_idx: IO Number of the GPIO that needs to be set
4959  * @value: IO value read
4960  * @cd: pointer to command details structure or NULL
4961  *
4962  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
4963  * the topology
4964  */
4965 int
4966 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
4967 		bool *value, struct ice_sq_cd *cd)
4968 {
4969 	struct ice_aqc_gpio *cmd;
4970 	struct ice_aq_desc desc;
4971 	int status;
4972 
4973 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
4974 	cmd = &desc.params.read_write_gpio;
4975 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4976 	cmd->gpio_num = pin_idx;
4977 
4978 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4979 	if (status)
4980 		return status;
4981 
4982 	*value = !!cmd->gpio_val;
4983 	return 0;
4984 }
4985 
4986 /**
4987  * ice_fw_supports_link_override
4988  * @hw: pointer to the hardware structure
4989  *
4990  * Checks if the firmware supports link override
4991  */
4992 bool ice_fw_supports_link_override(struct ice_hw *hw)
4993 {
4994 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4995 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4996 			return true;
4997 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4998 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4999 			return true;
5000 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5001 		return true;
5002 	}
5003 
5004 	return false;
5005 }
5006 
5007 /**
5008  * ice_get_link_default_override
5009  * @ldo: pointer to the link default override struct
5010  * @pi: pointer to the port info struct
5011  *
5012  * Gets the link default override for a port
5013  */
5014 int
5015 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5016 			      struct ice_port_info *pi)
5017 {
5018 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5019 	struct ice_hw *hw = pi->hw;
5020 	int status;
5021 
5022 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5023 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5024 	if (status) {
5025 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5026 		return status;
5027 	}
5028 
5029 	/* Each port has its own config; calculate for our port */
5030 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5031 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5032 
5033 	/* link options first */
5034 	status = ice_read_sr_word(hw, tlv_start, &buf);
5035 	if (status) {
5036 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5037 		return status;
5038 	}
5039 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5040 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5041 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5042 
5043 	/* link PHY config */
5044 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5045 	status = ice_read_sr_word(hw, offset, &buf);
5046 	if (status) {
5047 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5048 		return status;
5049 	}
5050 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5051 
5052 	/* PHY types low */
5053 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5054 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5055 		status = ice_read_sr_word(hw, (offset + i), &buf);
5056 		if (status) {
5057 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5058 			return status;
5059 		}
5060 		/* shift 16 bits at a time to fill 64 bits */
5061 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5062 	}
5063 
5064 	/* PHY types high */
5065 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5066 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5067 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5068 		status = ice_read_sr_word(hw, (offset + i), &buf);
5069 		if (status) {
5070 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5071 			return status;
5072 		}
5073 		/* shift 16 bits at a time to fill 64 bits */
5074 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5075 	}
5076 
5077 	return status;
5078 }
5079 
5080 /**
5081  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5082  * @caps: get PHY capability data
5083  */
5084 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5085 {
5086 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5087 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5088 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5089 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5090 		return true;
5091 
5092 	return false;
5093 }
5094 
5095 /**
5096  * ice_aq_set_lldp_mib - Set the LLDP MIB
5097  * @hw: pointer to the HW struct
5098  * @mib_type: Local, Remote or both Local and Remote MIBs
5099  * @buf: pointer to the caller-supplied buffer to store the MIB block
5100  * @buf_size: size of the buffer (in bytes)
5101  * @cd: pointer to command details structure or NULL
5102  *
5103  * Set the LLDP MIB. (0x0A08)
5104  */
5105 int
5106 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5107 		    struct ice_sq_cd *cd)
5108 {
5109 	struct ice_aqc_lldp_set_local_mib *cmd;
5110 	struct ice_aq_desc desc;
5111 
5112 	cmd = &desc.params.lldp_set_mib;
5113 
5114 	if (buf_size == 0 || !buf)
5115 		return -EINVAL;
5116 
5117 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5118 
5119 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5120 	desc.datalen = cpu_to_le16(buf_size);
5121 
5122 	cmd->type = mib_type;
5123 	cmd->length = cpu_to_le16(buf_size);
5124 
5125 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5126 }
5127 
5128 /**
5129  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5130  * @hw: pointer to HW struct
5131  */
5132 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5133 {
5134 	if (hw->mac_type != ICE_MAC_E810)
5135 		return false;
5136 
5137 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5138 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5139 			return true;
5140 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5141 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5142 			return true;
5143 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5144 		return true;
5145 	}
5146 	return false;
5147 }
5148 
5149 /**
5150  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5151  * @hw: pointer to HW struct
5152  * @vsi_num: absolute HW index for VSI
5153  * @add: boolean for if adding or removing a filter
5154  */
5155 int
5156 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5157 {
5158 	struct ice_aqc_lldp_filter_ctrl *cmd;
5159 	struct ice_aq_desc desc;
5160 
5161 	cmd = &desc.params.lldp_filter_ctrl;
5162 
5163 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5164 
5165 	if (add)
5166 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5167 	else
5168 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5169 
5170 	cmd->vsi_num = cpu_to_le16(vsi_num);
5171 
5172 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5173 }
5174 
5175 /**
5176  * ice_fw_supports_report_dflt_cfg
5177  * @hw: pointer to the hardware structure
5178  *
5179  * Checks if the firmware supports report default configuration
5180  */
5181 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5182 {
5183 	if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5184 		if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
5185 			return true;
5186 		if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
5187 		    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
5188 			return true;
5189 	} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5190 		return true;
5191 	}
5192 	return false;
5193 }
5194