1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 #include "ice_flow.h" 8 #include "ice_ptp_hw.h" 9 10 #define ICE_PF_RESET_WAIT_COUNT 300 11 12 static const char * const ice_link_mode_str_low[] = { 13 [0] = "100BASE_TX", 14 [1] = "100M_SGMII", 15 [2] = "1000BASE_T", 16 [3] = "1000BASE_SX", 17 [4] = "1000BASE_LX", 18 [5] = "1000BASE_KX", 19 [6] = "1G_SGMII", 20 [7] = "2500BASE_T", 21 [8] = "2500BASE_X", 22 [9] = "2500BASE_KX", 23 [10] = "5GBASE_T", 24 [11] = "5GBASE_KR", 25 [12] = "10GBASE_T", 26 [13] = "10G_SFI_DA", 27 [14] = "10GBASE_SR", 28 [15] = "10GBASE_LR", 29 [16] = "10GBASE_KR_CR1", 30 [17] = "10G_SFI_AOC_ACC", 31 [18] = "10G_SFI_C2C", 32 [19] = "25GBASE_T", 33 [20] = "25GBASE_CR", 34 [21] = "25GBASE_CR_S", 35 [22] = "25GBASE_CR1", 36 [23] = "25GBASE_SR", 37 [24] = "25GBASE_LR", 38 [25] = "25GBASE_KR", 39 [26] = "25GBASE_KR_S", 40 [27] = "25GBASE_KR1", 41 [28] = "25G_AUI_AOC_ACC", 42 [29] = "25G_AUI_C2C", 43 [30] = "40GBASE_CR4", 44 [31] = "40GBASE_SR4", 45 [32] = "40GBASE_LR4", 46 [33] = "40GBASE_KR4", 47 [34] = "40G_XLAUI_AOC_ACC", 48 [35] = "40G_XLAUI", 49 [36] = "50GBASE_CR2", 50 [37] = "50GBASE_SR2", 51 [38] = "50GBASE_LR2", 52 [39] = "50GBASE_KR2", 53 [40] = "50G_LAUI2_AOC_ACC", 54 [41] = "50G_LAUI2", 55 [42] = "50G_AUI2_AOC_ACC", 56 [43] = "50G_AUI2", 57 [44] = "50GBASE_CP", 58 [45] = "50GBASE_SR", 59 [46] = "50GBASE_FR", 60 [47] = "50GBASE_LR", 61 [48] = "50GBASE_KR_PAM4", 62 [49] = "50G_AUI1_AOC_ACC", 63 [50] = "50G_AUI1", 64 [51] = "100GBASE_CR4", 65 [52] = "100GBASE_SR4", 66 [53] = "100GBASE_LR4", 67 [54] = "100GBASE_KR4", 68 [55] = "100G_CAUI4_AOC_ACC", 69 [56] = "100G_CAUI4", 70 [57] = "100G_AUI4_AOC_ACC", 71 [58] = "100G_AUI4", 72 [59] = "100GBASE_CR_PAM4", 73 [60] = "100GBASE_KR_PAM4", 74 [61] = "100GBASE_CP2", 75 [62] = "100GBASE_SR2", 76 [63] = "100GBASE_DR", 77 }; 78 79 static const char * const ice_link_mode_str_high[] = { 80 [0] = "100GBASE_KR2_PAM4", 81 [1] = "100G_CAUI2_AOC_ACC", 82 [2] = "100G_CAUI2", 83 [3] = "100G_AUI2_AOC_ACC", 84 [4] = "100G_AUI2", 85 }; 86 87 /** 88 * ice_dump_phy_type - helper function to dump phy_type 89 * @hw: pointer to the HW structure 90 * @low: 64 bit value for phy_type_low 91 * @high: 64 bit value for phy_type_high 92 * @prefix: prefix string to differentiate multiple dumps 93 */ 94 static void 95 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix) 96 { 97 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low); 98 99 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) { 100 if (low & BIT_ULL(i)) 101 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 102 prefix, i, ice_link_mode_str_low[i]); 103 } 104 105 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high); 106 107 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) { 108 if (high & BIT_ULL(i)) 109 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 110 prefix, i, ice_link_mode_str_high[i]); 111 } 112 } 113 114 /** 115 * ice_set_mac_type - Sets MAC type 116 * @hw: pointer to the HW structure 117 * 118 * This function sets the MAC type of the adapter based on the 119 * vendor ID and device ID stored in the HW structure. 120 */ 121 static int ice_set_mac_type(struct ice_hw *hw) 122 { 123 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 124 return -ENODEV; 125 126 switch (hw->device_id) { 127 case ICE_DEV_ID_E810C_BACKPLANE: 128 case ICE_DEV_ID_E810C_QSFP: 129 case ICE_DEV_ID_E810C_SFP: 130 case ICE_DEV_ID_E810_XXV_BACKPLANE: 131 case ICE_DEV_ID_E810_XXV_QSFP: 132 case ICE_DEV_ID_E810_XXV_SFP: 133 hw->mac_type = ICE_MAC_E810; 134 break; 135 case ICE_DEV_ID_E823C_10G_BASE_T: 136 case ICE_DEV_ID_E823C_BACKPLANE: 137 case ICE_DEV_ID_E823C_QSFP: 138 case ICE_DEV_ID_E823C_SFP: 139 case ICE_DEV_ID_E823C_SGMII: 140 case ICE_DEV_ID_E822C_10G_BASE_T: 141 case ICE_DEV_ID_E822C_BACKPLANE: 142 case ICE_DEV_ID_E822C_QSFP: 143 case ICE_DEV_ID_E822C_SFP: 144 case ICE_DEV_ID_E822C_SGMII: 145 case ICE_DEV_ID_E822L_10G_BASE_T: 146 case ICE_DEV_ID_E822L_BACKPLANE: 147 case ICE_DEV_ID_E822L_SFP: 148 case ICE_DEV_ID_E822L_SGMII: 149 case ICE_DEV_ID_E823L_10G_BASE_T: 150 case ICE_DEV_ID_E823L_1GBE: 151 case ICE_DEV_ID_E823L_BACKPLANE: 152 case ICE_DEV_ID_E823L_QSFP: 153 case ICE_DEV_ID_E823L_SFP: 154 hw->mac_type = ICE_MAC_GENERIC; 155 break; 156 case ICE_DEV_ID_E830_BACKPLANE: 157 case ICE_DEV_ID_E830_QSFP56: 158 case ICE_DEV_ID_E830_SFP: 159 case ICE_DEV_ID_E830_SFP_DD: 160 hw->mac_type = ICE_MAC_E830; 161 break; 162 default: 163 hw->mac_type = ICE_MAC_UNKNOWN; 164 break; 165 } 166 167 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type); 168 return 0; 169 } 170 171 /** 172 * ice_is_e810 173 * @hw: pointer to the hardware structure 174 * 175 * returns true if the device is E810 based, false if not. 176 */ 177 bool ice_is_e810(struct ice_hw *hw) 178 { 179 return hw->mac_type == ICE_MAC_E810; 180 } 181 182 /** 183 * ice_is_e810t 184 * @hw: pointer to the hardware structure 185 * 186 * returns true if the device is E810T based, false if not. 187 */ 188 bool ice_is_e810t(struct ice_hw *hw) 189 { 190 switch (hw->device_id) { 191 case ICE_DEV_ID_E810C_SFP: 192 switch (hw->subsystem_device_id) { 193 case ICE_SUBDEV_ID_E810T: 194 case ICE_SUBDEV_ID_E810T2: 195 case ICE_SUBDEV_ID_E810T3: 196 case ICE_SUBDEV_ID_E810T4: 197 case ICE_SUBDEV_ID_E810T6: 198 case ICE_SUBDEV_ID_E810T7: 199 return true; 200 } 201 break; 202 case ICE_DEV_ID_E810C_QSFP: 203 switch (hw->subsystem_device_id) { 204 case ICE_SUBDEV_ID_E810T2: 205 case ICE_SUBDEV_ID_E810T3: 206 case ICE_SUBDEV_ID_E810T5: 207 return true; 208 } 209 break; 210 default: 211 break; 212 } 213 214 return false; 215 } 216 217 /** 218 * ice_is_e823 219 * @hw: pointer to the hardware structure 220 * 221 * returns true if the device is E823-L or E823-C based, false if not. 222 */ 223 bool ice_is_e823(struct ice_hw *hw) 224 { 225 switch (hw->device_id) { 226 case ICE_DEV_ID_E823L_BACKPLANE: 227 case ICE_DEV_ID_E823L_SFP: 228 case ICE_DEV_ID_E823L_10G_BASE_T: 229 case ICE_DEV_ID_E823L_1GBE: 230 case ICE_DEV_ID_E823L_QSFP: 231 case ICE_DEV_ID_E823C_BACKPLANE: 232 case ICE_DEV_ID_E823C_QSFP: 233 case ICE_DEV_ID_E823C_SFP: 234 case ICE_DEV_ID_E823C_10G_BASE_T: 235 case ICE_DEV_ID_E823C_SGMII: 236 return true; 237 default: 238 return false; 239 } 240 } 241 242 /** 243 * ice_clear_pf_cfg - Clear PF configuration 244 * @hw: pointer to the hardware structure 245 * 246 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port 247 * configuration, flow director filters, etc.). 248 */ 249 int ice_clear_pf_cfg(struct ice_hw *hw) 250 { 251 struct ice_aq_desc desc; 252 253 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 254 255 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 256 } 257 258 /** 259 * ice_aq_manage_mac_read - manage MAC address read command 260 * @hw: pointer to the HW struct 261 * @buf: a virtual buffer to hold the manage MAC read response 262 * @buf_size: Size of the virtual buffer 263 * @cd: pointer to command details structure or NULL 264 * 265 * This function is used to return per PF station MAC address (0x0107). 266 * NOTE: Upon successful completion of this command, MAC address information 267 * is returned in user specified buffer. Please interpret user specified 268 * buffer as "manage_mac_read" response. 269 * Response such as various MAC addresses are stored in HW struct (port.mac) 270 * ice_discover_dev_caps is expected to be called before this function is 271 * called. 272 */ 273 static int 274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 275 struct ice_sq_cd *cd) 276 { 277 struct ice_aqc_manage_mac_read_resp *resp; 278 struct ice_aqc_manage_mac_read *cmd; 279 struct ice_aq_desc desc; 280 int status; 281 u16 flags; 282 u8 i; 283 284 cmd = &desc.params.mac_read; 285 286 if (buf_size < sizeof(*resp)) 287 return -EINVAL; 288 289 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 290 291 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 292 if (status) 293 return status; 294 295 resp = buf; 296 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 297 298 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 299 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 300 return -EIO; 301 } 302 303 /* A single port can report up to two (LAN and WoL) addresses */ 304 for (i = 0; i < cmd->num_addr; i++) 305 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 306 ether_addr_copy(hw->port_info->mac.lan_addr, 307 resp[i].mac_addr); 308 ether_addr_copy(hw->port_info->mac.perm_addr, 309 resp[i].mac_addr); 310 break; 311 } 312 313 return 0; 314 } 315 316 /** 317 * ice_aq_get_phy_caps - returns PHY capabilities 318 * @pi: port information structure 319 * @qual_mods: report qualified modules 320 * @report_mode: report mode capabilities 321 * @pcaps: structure for PHY capabilities to be filled 322 * @cd: pointer to command details structure or NULL 323 * 324 * Returns the various PHY capabilities supported on the Port (0x0600) 325 */ 326 int 327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 328 struct ice_aqc_get_phy_caps_data *pcaps, 329 struct ice_sq_cd *cd) 330 { 331 struct ice_aqc_get_phy_caps *cmd; 332 u16 pcaps_size = sizeof(*pcaps); 333 struct ice_aq_desc desc; 334 const char *prefix; 335 struct ice_hw *hw; 336 int status; 337 338 cmd = &desc.params.get_phy; 339 340 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 341 return -EINVAL; 342 hw = pi->hw; 343 344 if (report_mode == ICE_AQC_REPORT_DFLT_CFG && 345 !ice_fw_supports_report_dflt_cfg(hw)) 346 return -EINVAL; 347 348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 349 350 if (qual_mods) 351 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 352 353 cmd->param0 |= cpu_to_le16(report_mode); 354 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd); 355 356 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n"); 357 358 switch (report_mode) { 359 case ICE_AQC_REPORT_TOPO_CAP_MEDIA: 360 prefix = "phy_caps_media"; 361 break; 362 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA: 363 prefix = "phy_caps_no_media"; 364 break; 365 case ICE_AQC_REPORT_ACTIVE_CFG: 366 prefix = "phy_caps_active"; 367 break; 368 case ICE_AQC_REPORT_DFLT_CFG: 369 prefix = "phy_caps_default"; 370 break; 371 default: 372 prefix = "phy_caps_invalid"; 373 } 374 375 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low), 376 le64_to_cpu(pcaps->phy_type_high), prefix); 377 378 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n", 379 prefix, report_mode); 380 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps); 381 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix, 382 pcaps->low_power_ctrl_an); 383 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix, 384 pcaps->eee_cap); 385 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix, 386 pcaps->eeer_value); 387 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix, 388 pcaps->link_fec_options); 389 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n", 390 prefix, pcaps->module_compliance_enforcement); 391 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n", 392 prefix, pcaps->extended_compliance_code); 393 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix, 394 pcaps->module_type[0]); 395 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix, 396 pcaps->module_type[1]); 397 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix, 398 pcaps->module_type[2]); 399 400 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) { 401 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 402 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 403 memcpy(pi->phy.link_info.module_type, &pcaps->module_type, 404 sizeof(pi->phy.link_info.module_type)); 405 } 406 407 return status; 408 } 409 410 /** 411 * ice_aq_get_link_topo_handle - get link topology node return status 412 * @pi: port information structure 413 * @node_type: requested node type 414 * @cd: pointer to command details structure or NULL 415 * 416 * Get link topology node return status for specified node type (0x06E0) 417 * 418 * Node type cage can be used to determine if cage is present. If AQC 419 * returns error (ENOENT), then no cage present. If no cage present, then 420 * connection type is backplane or BASE-T. 421 */ 422 static int 423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type, 424 struct ice_sq_cd *cd) 425 { 426 struct ice_aqc_get_link_topo *cmd; 427 struct ice_aq_desc desc; 428 429 cmd = &desc.params.get_link_topo; 430 431 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 432 433 cmd->addr.topo_params.node_type_ctx = 434 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT << 435 ICE_AQC_LINK_TOPO_NODE_CTX_S); 436 437 /* set node type */ 438 cmd->addr.topo_params.node_type_ctx |= 439 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type); 440 441 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 442 } 443 444 /** 445 * ice_is_media_cage_present 446 * @pi: port information structure 447 * 448 * Returns true if media cage is present, else false. If no cage, then 449 * media type is backplane or BASE-T. 450 */ 451 static bool ice_is_media_cage_present(struct ice_port_info *pi) 452 { 453 /* Node type cage can be used to determine if cage is present. If AQC 454 * returns error (ENOENT), then no cage present. If no cage present then 455 * connection type is backplane or BASE-T. 456 */ 457 return !ice_aq_get_link_topo_handle(pi, 458 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE, 459 NULL); 460 } 461 462 /** 463 * ice_get_media_type - Gets media type 464 * @pi: port information structure 465 */ 466 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 467 { 468 struct ice_link_status *hw_link_info; 469 470 if (!pi) 471 return ICE_MEDIA_UNKNOWN; 472 473 hw_link_info = &pi->phy.link_info; 474 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 475 /* If more than one media type is selected, report unknown */ 476 return ICE_MEDIA_UNKNOWN; 477 478 if (hw_link_info->phy_type_low) { 479 /* 1G SGMII is a special case where some DA cable PHYs 480 * may show this as an option when it really shouldn't 481 * be since SGMII is meant to be between a MAC and a PHY 482 * in a backplane. Try to detect this case and handle it 483 */ 484 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII && 485 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 486 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 487 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 488 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 489 return ICE_MEDIA_DA; 490 491 switch (hw_link_info->phy_type_low) { 492 case ICE_PHY_TYPE_LOW_1000BASE_SX: 493 case ICE_PHY_TYPE_LOW_1000BASE_LX: 494 case ICE_PHY_TYPE_LOW_10GBASE_SR: 495 case ICE_PHY_TYPE_LOW_10GBASE_LR: 496 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 497 case ICE_PHY_TYPE_LOW_25GBASE_SR: 498 case ICE_PHY_TYPE_LOW_25GBASE_LR: 499 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 500 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 501 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 502 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 503 case ICE_PHY_TYPE_LOW_50GBASE_SR: 504 case ICE_PHY_TYPE_LOW_50GBASE_FR: 505 case ICE_PHY_TYPE_LOW_50GBASE_LR: 506 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 507 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 508 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 509 case ICE_PHY_TYPE_LOW_100GBASE_DR: 510 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 511 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 512 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 513 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 514 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 515 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 516 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 517 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 518 return ICE_MEDIA_FIBER; 519 case ICE_PHY_TYPE_LOW_100BASE_TX: 520 case ICE_PHY_TYPE_LOW_1000BASE_T: 521 case ICE_PHY_TYPE_LOW_2500BASE_T: 522 case ICE_PHY_TYPE_LOW_5GBASE_T: 523 case ICE_PHY_TYPE_LOW_10GBASE_T: 524 case ICE_PHY_TYPE_LOW_25GBASE_T: 525 return ICE_MEDIA_BASET; 526 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 527 case ICE_PHY_TYPE_LOW_25GBASE_CR: 528 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 529 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 530 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 531 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 532 case ICE_PHY_TYPE_LOW_50GBASE_CP: 533 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 534 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 535 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 536 return ICE_MEDIA_DA; 537 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 538 case ICE_PHY_TYPE_LOW_40G_XLAUI: 539 case ICE_PHY_TYPE_LOW_50G_LAUI2: 540 case ICE_PHY_TYPE_LOW_50G_AUI2: 541 case ICE_PHY_TYPE_LOW_50G_AUI1: 542 case ICE_PHY_TYPE_LOW_100G_AUI4: 543 case ICE_PHY_TYPE_LOW_100G_CAUI4: 544 if (ice_is_media_cage_present(pi)) 545 return ICE_MEDIA_DA; 546 fallthrough; 547 case ICE_PHY_TYPE_LOW_1000BASE_KX: 548 case ICE_PHY_TYPE_LOW_2500BASE_KX: 549 case ICE_PHY_TYPE_LOW_2500BASE_X: 550 case ICE_PHY_TYPE_LOW_5GBASE_KR: 551 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 552 case ICE_PHY_TYPE_LOW_25GBASE_KR: 553 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 554 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 555 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 556 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 557 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 558 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 559 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 560 return ICE_MEDIA_BACKPLANE; 561 } 562 } else { 563 switch (hw_link_info->phy_type_high) { 564 case ICE_PHY_TYPE_HIGH_100G_AUI2: 565 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 566 if (ice_is_media_cage_present(pi)) 567 return ICE_MEDIA_DA; 568 fallthrough; 569 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 570 return ICE_MEDIA_BACKPLANE; 571 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 572 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 573 return ICE_MEDIA_FIBER; 574 } 575 } 576 return ICE_MEDIA_UNKNOWN; 577 } 578 579 /** 580 * ice_aq_get_link_info 581 * @pi: port information structure 582 * @ena_lse: enable/disable LinkStatusEvent reporting 583 * @link: pointer to link status structure - optional 584 * @cd: pointer to command details structure or NULL 585 * 586 * Get Link Status (0x607). Returns the link status of the adapter. 587 */ 588 int 589 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 590 struct ice_link_status *link, struct ice_sq_cd *cd) 591 { 592 struct ice_aqc_get_link_status_data link_data = { 0 }; 593 struct ice_aqc_get_link_status *resp; 594 struct ice_link_status *li_old, *li; 595 enum ice_media_type *hw_media_type; 596 struct ice_fc_info *hw_fc_info; 597 bool tx_pause, rx_pause; 598 struct ice_aq_desc desc; 599 struct ice_hw *hw; 600 u16 cmd_flags; 601 int status; 602 603 if (!pi) 604 return -EINVAL; 605 hw = pi->hw; 606 li_old = &pi->phy.link_info_old; 607 hw_media_type = &pi->phy.media_type; 608 li = &pi->phy.link_info; 609 hw_fc_info = &pi->fc; 610 611 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 612 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 613 resp = &desc.params.get_link_status; 614 resp->cmd_flags = cpu_to_le16(cmd_flags); 615 resp->lport_num = pi->lport; 616 617 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd); 618 619 if (status) 620 return status; 621 622 /* save off old link status information */ 623 *li_old = *li; 624 625 /* update current link status information */ 626 li->link_speed = le16_to_cpu(link_data.link_speed); 627 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 628 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 629 *hw_media_type = ice_get_media_type(pi); 630 li->link_info = link_data.link_info; 631 li->link_cfg_err = link_data.link_cfg_err; 632 li->an_info = link_data.an_info; 633 li->ext_info = link_data.ext_info; 634 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 635 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; 636 li->topo_media_conflict = link_data.topo_media_conflict; 637 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | 638 ICE_AQ_CFG_PACING_TYPE_M); 639 640 /* update fc info */ 641 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 642 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 643 if (tx_pause && rx_pause) 644 hw_fc_info->current_mode = ICE_FC_FULL; 645 else if (tx_pause) 646 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 647 else if (rx_pause) 648 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 649 else 650 hw_fc_info->current_mode = ICE_FC_NONE; 651 652 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 653 654 ice_debug(hw, ICE_DBG_LINK, "get link info\n"); 655 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed); 656 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 657 (unsigned long long)li->phy_type_low); 658 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 659 (unsigned long long)li->phy_type_high); 660 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type); 661 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info); 662 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err); 663 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info); 664 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info); 665 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info); 666 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena); 667 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n", 668 li->max_frame_size); 669 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing); 670 671 /* save link status information */ 672 if (link) 673 *link = *li; 674 675 /* flag cleared so calling functions don't call AQ again */ 676 pi->phy.get_link_info = false; 677 678 return 0; 679 } 680 681 /** 682 * ice_fill_tx_timer_and_fc_thresh 683 * @hw: pointer to the HW struct 684 * @cmd: pointer to MAC cfg structure 685 * 686 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command 687 * descriptor 688 */ 689 static void 690 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, 691 struct ice_aqc_set_mac_cfg *cmd) 692 { 693 u32 val, fc_thres_m; 694 695 /* We read back the transmit timer and FC threshold value of 696 * LFC. Thus, we will use index = 697 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. 698 * 699 * Also, because we are operating on transmit timer and FC 700 * threshold of LFC, we don't turn on any bit in tx_tmr_priority 701 */ 702 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX 703 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR 704 705 if (hw->mac_type == ICE_MAC_E830) { 706 /* Retrieve the transmit timer */ 707 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT); 708 cmd->tx_tmr_value = 709 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M); 710 711 /* Retrieve the fc threshold */ 712 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR); 713 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M; 714 } else { 715 /* Retrieve the transmit timer */ 716 val = rd32(hw, 717 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC)); 718 cmd->tx_tmr_value = 719 le16_encode_bits(val, 720 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M); 721 722 /* Retrieve the fc threshold */ 723 val = rd32(hw, 724 E800_REFRESH_TMR(E800_IDX_OF_LFC)); 725 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M; 726 } 727 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m); 728 } 729 730 /** 731 * ice_aq_set_mac_cfg 732 * @hw: pointer to the HW struct 733 * @max_frame_size: Maximum Frame Size to be supported 734 * @cd: pointer to command details structure or NULL 735 * 736 * Set MAC configuration (0x0603) 737 */ 738 int 739 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) 740 { 741 struct ice_aqc_set_mac_cfg *cmd; 742 struct ice_aq_desc desc; 743 744 cmd = &desc.params.set_mac_cfg; 745 746 if (max_frame_size == 0) 747 return -EINVAL; 748 749 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); 750 751 cmd->max_frame_size = cpu_to_le16(max_frame_size); 752 753 ice_fill_tx_timer_and_fc_thresh(hw, cmd); 754 755 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 756 } 757 758 /** 759 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 760 * @hw: pointer to the HW struct 761 */ 762 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw) 763 { 764 struct ice_switch_info *sw; 765 int status; 766 767 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 768 sizeof(*hw->switch_info), GFP_KERNEL); 769 sw = hw->switch_info; 770 771 if (!sw) 772 return -ENOMEM; 773 774 INIT_LIST_HEAD(&sw->vsi_list_map_head); 775 sw->prof_res_bm_init = 0; 776 777 status = ice_init_def_sw_recp(hw); 778 if (status) { 779 devm_kfree(ice_hw_to_dev(hw), hw->switch_info); 780 return status; 781 } 782 return 0; 783 } 784 785 /** 786 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 787 * @hw: pointer to the HW struct 788 */ 789 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 790 { 791 struct ice_switch_info *sw = hw->switch_info; 792 struct ice_vsi_list_map_info *v_pos_map; 793 struct ice_vsi_list_map_info *v_tmp_map; 794 struct ice_sw_recipe *recps; 795 u8 i; 796 797 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 798 list_entry) { 799 list_del(&v_pos_map->list_entry); 800 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 801 } 802 recps = sw->recp_list; 803 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 804 struct ice_recp_grp_entry *rg_entry, *tmprg_entry; 805 806 recps[i].root_rid = i; 807 list_for_each_entry_safe(rg_entry, tmprg_entry, 808 &recps[i].rg_list, l_entry) { 809 list_del(&rg_entry->l_entry); 810 devm_kfree(ice_hw_to_dev(hw), rg_entry); 811 } 812 813 if (recps[i].adv_rule) { 814 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 815 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 816 817 mutex_destroy(&recps[i].filt_rule_lock); 818 list_for_each_entry_safe(lst_itr, tmp_entry, 819 &recps[i].filt_rules, 820 list_entry) { 821 list_del(&lst_itr->list_entry); 822 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 823 devm_kfree(ice_hw_to_dev(hw), lst_itr); 824 } 825 } else { 826 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; 827 828 mutex_destroy(&recps[i].filt_rule_lock); 829 list_for_each_entry_safe(lst_itr, tmp_entry, 830 &recps[i].filt_rules, 831 list_entry) { 832 list_del(&lst_itr->list_entry); 833 devm_kfree(ice_hw_to_dev(hw), lst_itr); 834 } 835 } 836 devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf); 837 } 838 ice_rm_all_sw_replay_rule_info(hw); 839 devm_kfree(ice_hw_to_dev(hw), sw->recp_list); 840 devm_kfree(ice_hw_to_dev(hw), sw); 841 } 842 843 /** 844 * ice_get_fw_log_cfg - get FW logging configuration 845 * @hw: pointer to the HW struct 846 */ 847 static int ice_get_fw_log_cfg(struct ice_hw *hw) 848 { 849 struct ice_aq_desc desc; 850 __le16 *config; 851 int status; 852 u16 size; 853 854 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX; 855 config = kzalloc(size, GFP_KERNEL); 856 if (!config) 857 return -ENOMEM; 858 859 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info); 860 861 status = ice_aq_send_cmd(hw, &desc, config, size, NULL); 862 if (!status) { 863 u16 i; 864 865 /* Save FW logging information into the HW structure */ 866 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 867 u16 v, m, flgs; 868 869 v = le16_to_cpu(config[i]); 870 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 871 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S; 872 873 if (m < ICE_AQC_FW_LOG_ID_MAX) 874 hw->fw_log.evnts[m].cur = flgs; 875 } 876 } 877 878 kfree(config); 879 880 return status; 881 } 882 883 /** 884 * ice_cfg_fw_log - configure FW logging 885 * @hw: pointer to the HW struct 886 * @enable: enable certain FW logging events if true, disable all if false 887 * 888 * This function enables/disables the FW logging via Rx CQ events and a UART 889 * port based on predetermined configurations. FW logging via the Rx CQ can be 890 * enabled/disabled for individual PF's. However, FW logging via the UART can 891 * only be enabled/disabled for all PFs on the same device. 892 * 893 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in 894 * hw->fw_log need to be set accordingly, e.g. based on user-provided input, 895 * before initializing the device. 896 * 897 * When re/configuring FW logging, callers need to update the "cfg" elements of 898 * the hw->fw_log.evnts array with the desired logging event configurations for 899 * modules of interest. When disabling FW logging completely, the callers can 900 * just pass false in the "enable" parameter. On completion, the function will 901 * update the "cur" element of the hw->fw_log.evnts array with the resulting 902 * logging event configurations of the modules that are being re/configured. FW 903 * logging modules that are not part of a reconfiguration operation retain their 904 * previous states. 905 * 906 * Before resetting the device, it is recommended that the driver disables FW 907 * logging before shutting down the control queue. When disabling FW logging 908 * ("enable" = false), the latest configurations of FW logging events stored in 909 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after 910 * a device reset. 911 * 912 * When enabling FW logging to emit log messages via the Rx CQ during the 913 * device's initialization phase, a mechanism alternative to interrupt handlers 914 * needs to be used to extract FW log messages from the Rx CQ periodically and 915 * to prevent the Rx CQ from being full and stalling other types of control 916 * messages from FW to SW. Interrupts are typically disabled during the device's 917 * initialization phase. 918 */ 919 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable) 920 { 921 struct ice_aqc_fw_logging *cmd; 922 u16 i, chgs = 0, len = 0; 923 struct ice_aq_desc desc; 924 __le16 *data = NULL; 925 u8 actv_evnts = 0; 926 void *buf = NULL; 927 int status = 0; 928 929 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) 930 return 0; 931 932 /* Disable FW logging only when the control queue is still responsive */ 933 if (!enable && 934 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) 935 return 0; 936 937 /* Get current FW log settings */ 938 status = ice_get_fw_log_cfg(hw); 939 if (status) 940 return status; 941 942 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); 943 cmd = &desc.params.fw_logging; 944 945 /* Indicate which controls are valid */ 946 if (hw->fw_log.cq_en) 947 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; 948 949 if (hw->fw_log.uart_en) 950 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; 951 952 if (enable) { 953 /* Fill in an array of entries with FW logging modules and 954 * logging events being reconfigured. 955 */ 956 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 957 u16 val; 958 959 /* Keep track of enabled event types */ 960 actv_evnts |= hw->fw_log.evnts[i].cfg; 961 962 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) 963 continue; 964 965 if (!data) { 966 data = devm_kcalloc(ice_hw_to_dev(hw), 967 ICE_AQC_FW_LOG_ID_MAX, 968 sizeof(*data), 969 GFP_KERNEL); 970 if (!data) 971 return -ENOMEM; 972 } 973 974 val = i << ICE_AQC_FW_LOG_ID_S; 975 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; 976 data[chgs++] = cpu_to_le16(val); 977 } 978 979 /* Only enable FW logging if at least one module is specified. 980 * If FW logging is currently enabled but all modules are not 981 * enabled to emit log messages, disable FW logging altogether. 982 */ 983 if (actv_evnts) { 984 /* Leave if there is effectively no change */ 985 if (!chgs) 986 goto out; 987 988 if (hw->fw_log.cq_en) 989 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; 990 991 if (hw->fw_log.uart_en) 992 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; 993 994 buf = data; 995 len = sizeof(*data) * chgs; 996 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 997 } 998 } 999 1000 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); 1001 if (!status) { 1002 /* Update the current configuration to reflect events enabled. 1003 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW 1004 * logging mode is enabled for the device. They do not reflect 1005 * actual modules being enabled to emit log messages. So, their 1006 * values remain unchanged even when all modules are disabled. 1007 */ 1008 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; 1009 1010 hw->fw_log.actv_evnts = actv_evnts; 1011 for (i = 0; i < cnt; i++) { 1012 u16 v, m; 1013 1014 if (!enable) { 1015 /* When disabling all FW logging events as part 1016 * of device's de-initialization, the original 1017 * configurations are retained, and can be used 1018 * to reconfigure FW logging later if the device 1019 * is re-initialized. 1020 */ 1021 hw->fw_log.evnts[i].cur = 0; 1022 continue; 1023 } 1024 1025 v = le16_to_cpu(data[i]); 1026 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 1027 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; 1028 } 1029 } 1030 1031 out: 1032 devm_kfree(ice_hw_to_dev(hw), data); 1033 1034 return status; 1035 } 1036 1037 /** 1038 * ice_output_fw_log 1039 * @hw: pointer to the HW struct 1040 * @desc: pointer to the AQ message descriptor 1041 * @buf: pointer to the buffer accompanying the AQ message 1042 * 1043 * Formats a FW Log message and outputs it via the standard driver logs. 1044 */ 1045 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) 1046 { 1047 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n"); 1048 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf, 1049 le16_to_cpu(desc->datalen)); 1050 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n"); 1051 } 1052 1053 /** 1054 * ice_get_itr_intrl_gran 1055 * @hw: pointer to the HW struct 1056 * 1057 * Determines the ITR/INTRL granularities based on the maximum aggregate 1058 * bandwidth according to the device's configuration during power-on. 1059 */ 1060 static void ice_get_itr_intrl_gran(struct ice_hw *hw) 1061 { 1062 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & 1063 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> 1064 GL_PWR_MODE_CTL_CAR_MAX_BW_S; 1065 1066 switch (max_agg_bw) { 1067 case ICE_MAX_AGG_BW_200G: 1068 case ICE_MAX_AGG_BW_100G: 1069 case ICE_MAX_AGG_BW_50G: 1070 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; 1071 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; 1072 break; 1073 case ICE_MAX_AGG_BW_25G: 1074 hw->itr_gran = ICE_ITR_GRAN_MAX_25; 1075 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; 1076 break; 1077 } 1078 } 1079 1080 /** 1081 * ice_init_hw - main hardware initialization routine 1082 * @hw: pointer to the hardware structure 1083 */ 1084 int ice_init_hw(struct ice_hw *hw) 1085 { 1086 struct ice_aqc_get_phy_caps_data *pcaps; 1087 u16 mac_buf_len; 1088 void *mac_buf; 1089 int status; 1090 1091 /* Set MAC type based on DeviceID */ 1092 status = ice_set_mac_type(hw); 1093 if (status) 1094 return status; 1095 1096 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & 1097 PF_FUNC_RID_FUNC_NUM_M) >> 1098 PF_FUNC_RID_FUNC_NUM_S; 1099 1100 status = ice_reset(hw, ICE_RESET_PFR); 1101 if (status) 1102 return status; 1103 1104 ice_get_itr_intrl_gran(hw); 1105 1106 status = ice_create_all_ctrlq(hw); 1107 if (status) 1108 goto err_unroll_cqinit; 1109 1110 /* Enable FW logging. Not fatal if this fails. */ 1111 status = ice_cfg_fw_log(hw, true); 1112 if (status) 1113 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); 1114 1115 status = ice_clear_pf_cfg(hw); 1116 if (status) 1117 goto err_unroll_cqinit; 1118 1119 /* Set bit to enable Flow Director filters */ 1120 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 1121 INIT_LIST_HEAD(&hw->fdir_list_head); 1122 1123 ice_clear_pxe_mode(hw); 1124 1125 status = ice_init_nvm(hw); 1126 if (status) 1127 goto err_unroll_cqinit; 1128 1129 status = ice_get_caps(hw); 1130 if (status) 1131 goto err_unroll_cqinit; 1132 1133 if (!hw->port_info) 1134 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 1135 sizeof(*hw->port_info), 1136 GFP_KERNEL); 1137 if (!hw->port_info) { 1138 status = -ENOMEM; 1139 goto err_unroll_cqinit; 1140 } 1141 1142 /* set the back pointer to HW */ 1143 hw->port_info->hw = hw; 1144 1145 /* Initialize port_info struct with switch configuration data */ 1146 status = ice_get_initial_sw_cfg(hw); 1147 if (status) 1148 goto err_unroll_alloc; 1149 1150 hw->evb_veb = true; 1151 1152 /* init xarray for identifying scheduling nodes uniquely */ 1153 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC); 1154 1155 /* Query the allocated resources for Tx scheduler */ 1156 status = ice_sched_query_res_alloc(hw); 1157 if (status) { 1158 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); 1159 goto err_unroll_alloc; 1160 } 1161 ice_sched_get_psm_clk_freq(hw); 1162 1163 /* Initialize port_info struct with scheduler data */ 1164 status = ice_sched_init_port(hw->port_info); 1165 if (status) 1166 goto err_unroll_sched; 1167 1168 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 1169 if (!pcaps) { 1170 status = -ENOMEM; 1171 goto err_unroll_sched; 1172 } 1173 1174 /* Initialize port_info struct with PHY capabilities */ 1175 status = ice_aq_get_phy_caps(hw->port_info, false, 1176 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 1177 NULL); 1178 devm_kfree(ice_hw_to_dev(hw), pcaps); 1179 if (status) 1180 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n", 1181 status); 1182 1183 /* Initialize port_info struct with link information */ 1184 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 1185 if (status) 1186 goto err_unroll_sched; 1187 1188 /* need a valid SW entry point to build a Tx tree */ 1189 if (!hw->sw_entry_point_layer) { 1190 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); 1191 status = -EIO; 1192 goto err_unroll_sched; 1193 } 1194 INIT_LIST_HEAD(&hw->agg_list); 1195 /* Initialize max burst size */ 1196 if (!hw->max_burst_size) 1197 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); 1198 1199 status = ice_init_fltr_mgmt_struct(hw); 1200 if (status) 1201 goto err_unroll_sched; 1202 1203 /* Get MAC information */ 1204 /* A single port can report up to two (LAN and WoL) addresses */ 1205 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, 1206 sizeof(struct ice_aqc_manage_mac_read_resp), 1207 GFP_KERNEL); 1208 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 1209 1210 if (!mac_buf) { 1211 status = -ENOMEM; 1212 goto err_unroll_fltr_mgmt_struct; 1213 } 1214 1215 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 1216 devm_kfree(ice_hw_to_dev(hw), mac_buf); 1217 1218 if (status) 1219 goto err_unroll_fltr_mgmt_struct; 1220 /* enable jumbo frame support at MAC level */ 1221 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 1222 if (status) 1223 goto err_unroll_fltr_mgmt_struct; 1224 /* Obtain counter base index which would be used by flow director */ 1225 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); 1226 if (status) 1227 goto err_unroll_fltr_mgmt_struct; 1228 status = ice_init_hw_tbls(hw); 1229 if (status) 1230 goto err_unroll_fltr_mgmt_struct; 1231 mutex_init(&hw->tnl_lock); 1232 return 0; 1233 1234 err_unroll_fltr_mgmt_struct: 1235 ice_cleanup_fltr_mgmt_struct(hw); 1236 err_unroll_sched: 1237 ice_sched_cleanup_all(hw); 1238 err_unroll_alloc: 1239 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 1240 err_unroll_cqinit: 1241 ice_destroy_all_ctrlq(hw); 1242 return status; 1243 } 1244 1245 /** 1246 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 1247 * @hw: pointer to the hardware structure 1248 * 1249 * This should be called only during nominal operation, not as a result of 1250 * ice_init_hw() failing since ice_init_hw() will take care of unrolling 1251 * applicable initializations if it fails for any reason. 1252 */ 1253 void ice_deinit_hw(struct ice_hw *hw) 1254 { 1255 ice_free_fd_res_cntr(hw, hw->fd_ctr_base); 1256 ice_cleanup_fltr_mgmt_struct(hw); 1257 1258 ice_sched_cleanup_all(hw); 1259 ice_sched_clear_agg(hw); 1260 ice_free_seg(hw); 1261 ice_free_hw_tbls(hw); 1262 mutex_destroy(&hw->tnl_lock); 1263 1264 /* Attempt to disable FW logging before shutting down control queues */ 1265 ice_cfg_fw_log(hw, false); 1266 ice_destroy_all_ctrlq(hw); 1267 1268 /* Clear VSI contexts if not already cleared */ 1269 ice_clear_all_vsi_ctx(hw); 1270 } 1271 1272 /** 1273 * ice_check_reset - Check to see if a global reset is complete 1274 * @hw: pointer to the hardware structure 1275 */ 1276 int ice_check_reset(struct ice_hw *hw) 1277 { 1278 u32 cnt, reg = 0, grst_timeout, uld_mask; 1279 1280 /* Poll for Device Active state in case a recent CORER, GLOBR, 1281 * or EMPR has occurred. The grst delay value is in 100ms units. 1282 * Add 1sec for outstanding AQ commands that can take a long time. 1283 */ 1284 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> 1285 GLGEN_RSTCTL_GRSTDEL_S) + 10; 1286 1287 for (cnt = 0; cnt < grst_timeout; cnt++) { 1288 mdelay(100); 1289 reg = rd32(hw, GLGEN_RSTAT); 1290 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 1291 break; 1292 } 1293 1294 if (cnt == grst_timeout) { 1295 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); 1296 return -EIO; 1297 } 1298 1299 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ 1300 GLNVM_ULD_PCIER_DONE_1_M |\ 1301 GLNVM_ULD_CORER_DONE_M |\ 1302 GLNVM_ULD_GLOBR_DONE_M |\ 1303 GLNVM_ULD_POR_DONE_M |\ 1304 GLNVM_ULD_POR_DONE_1_M |\ 1305 GLNVM_ULD_PCIER_DONE_2_M) 1306 1307 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ? 1308 GLNVM_ULD_PE_DONE_M : 0); 1309 1310 /* Device is Active; check Global Reset processes are done */ 1311 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 1312 reg = rd32(hw, GLNVM_ULD) & uld_mask; 1313 if (reg == uld_mask) { 1314 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); 1315 break; 1316 } 1317 mdelay(10); 1318 } 1319 1320 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1321 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 1322 reg); 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ice_pf_reset - Reset the PF 1331 * @hw: pointer to the hardware structure 1332 * 1333 * If a global reset has been triggered, this function checks 1334 * for its completion and then issues the PF reset 1335 */ 1336 static int ice_pf_reset(struct ice_hw *hw) 1337 { 1338 u32 cnt, reg; 1339 1340 /* If at function entry a global reset was already in progress, i.e. 1341 * state is not 'device active' or any of the reset done bits are not 1342 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 1343 * global reset is done. 1344 */ 1345 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 1346 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 1347 /* poll on global reset currently in progress until done */ 1348 if (ice_check_reset(hw)) 1349 return -EIO; 1350 1351 return 0; 1352 } 1353 1354 /* Reset the PF */ 1355 reg = rd32(hw, PFGEN_CTRL); 1356 1357 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 1358 1359 /* Wait for the PFR to complete. The wait time is the global config lock 1360 * timeout plus the PFR timeout which will account for a possible reset 1361 * that is occurring during a download package operation. 1362 */ 1363 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + 1364 ICE_PF_RESET_WAIT_COUNT; cnt++) { 1365 reg = rd32(hw, PFGEN_CTRL); 1366 if (!(reg & PFGEN_CTRL_PFSWR_M)) 1367 break; 1368 1369 mdelay(1); 1370 } 1371 1372 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1373 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); 1374 return -EIO; 1375 } 1376 1377 return 0; 1378 } 1379 1380 /** 1381 * ice_reset - Perform different types of reset 1382 * @hw: pointer to the hardware structure 1383 * @req: reset request 1384 * 1385 * This function triggers a reset as specified by the req parameter. 1386 * 1387 * Note: 1388 * If anything other than a PF reset is triggered, PXE mode is restored. 1389 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 1390 * interface has been restored in the rebuild flow. 1391 */ 1392 int ice_reset(struct ice_hw *hw, enum ice_reset_req req) 1393 { 1394 u32 val = 0; 1395 1396 switch (req) { 1397 case ICE_RESET_PFR: 1398 return ice_pf_reset(hw); 1399 case ICE_RESET_CORER: 1400 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 1401 val = GLGEN_RTRIG_CORER_M; 1402 break; 1403 case ICE_RESET_GLOBR: 1404 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 1405 val = GLGEN_RTRIG_GLOBR_M; 1406 break; 1407 default: 1408 return -EINVAL; 1409 } 1410 1411 val |= rd32(hw, GLGEN_RTRIG); 1412 wr32(hw, GLGEN_RTRIG, val); 1413 ice_flush(hw); 1414 1415 /* wait for the FW to be ready */ 1416 return ice_check_reset(hw); 1417 } 1418 1419 /** 1420 * ice_copy_rxq_ctx_to_hw 1421 * @hw: pointer to the hardware structure 1422 * @ice_rxq_ctx: pointer to the rxq context 1423 * @rxq_index: the index of the Rx queue 1424 * 1425 * Copies rxq context from dense structure to HW register space 1426 */ 1427 static int 1428 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) 1429 { 1430 u8 i; 1431 1432 if (!ice_rxq_ctx) 1433 return -EINVAL; 1434 1435 if (rxq_index > QRX_CTRL_MAX_INDEX) 1436 return -EINVAL; 1437 1438 /* Copy each dword separately to HW */ 1439 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 1440 wr32(hw, QRX_CONTEXT(i, rxq_index), 1441 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1442 1443 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, 1444 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1445 } 1446 1447 return 0; 1448 } 1449 1450 /* LAN Rx Queue Context */ 1451 static const struct ice_ctx_ele ice_rlan_ctx_info[] = { 1452 /* Field Width LSB */ 1453 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 1454 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 1455 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 1456 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 1457 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 1458 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 1459 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 1460 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 1461 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 1462 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 1463 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 1464 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 1465 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 1466 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 1467 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 1468 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 1469 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 1470 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 1471 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 1472 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), 1473 { 0 } 1474 }; 1475 1476 /** 1477 * ice_write_rxq_ctx 1478 * @hw: pointer to the hardware structure 1479 * @rlan_ctx: pointer to the rxq context 1480 * @rxq_index: the index of the Rx queue 1481 * 1482 * Converts rxq context from sparse to dense structure and then writes 1483 * it to HW register space and enables the hardware to prefetch descriptors 1484 * instead of only fetching them on demand 1485 */ 1486 int 1487 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 1488 u32 rxq_index) 1489 { 1490 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; 1491 1492 if (!rlan_ctx) 1493 return -EINVAL; 1494 1495 rlan_ctx->prefena = 1; 1496 1497 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); 1498 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); 1499 } 1500 1501 /* LAN Tx Queue Context */ 1502 const struct ice_ctx_ele ice_tlan_ctx_info[] = { 1503 /* Field Width LSB */ 1504 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 1505 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 1506 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 1507 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 1508 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 1509 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 1510 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 1511 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 1512 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), 1513 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 1514 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 1515 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 1516 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 1517 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 1518 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 1519 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 1520 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 1521 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 1522 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 1523 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 1524 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 1525 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 1526 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 1527 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 1528 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 1529 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 1530 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 1531 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171), 1532 { 0 } 1533 }; 1534 1535 /* Sideband Queue command wrappers */ 1536 1537 /** 1538 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue 1539 * @hw: pointer to the HW struct 1540 * @desc: descriptor describing the command 1541 * @buf: buffer to use for indirect commands (NULL for direct commands) 1542 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1543 * @cd: pointer to command details structure 1544 */ 1545 static int 1546 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc, 1547 void *buf, u16 buf_size, struct ice_sq_cd *cd) 1548 { 1549 return ice_sq_send_cmd(hw, ice_get_sbq(hw), 1550 (struct ice_aq_desc *)desc, buf, buf_size, cd); 1551 } 1552 1553 /** 1554 * ice_sbq_rw_reg - Fill Sideband Queue command 1555 * @hw: pointer to the HW struct 1556 * @in: message info to be filled in descriptor 1557 */ 1558 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in) 1559 { 1560 struct ice_sbq_cmd_desc desc = {0}; 1561 struct ice_sbq_msg_req msg = {0}; 1562 u16 msg_len; 1563 int status; 1564 1565 msg_len = sizeof(msg); 1566 1567 msg.dest_dev = in->dest_dev; 1568 msg.opcode = in->opcode; 1569 msg.flags = ICE_SBQ_MSG_FLAGS; 1570 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE; 1571 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low); 1572 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high); 1573 1574 if (in->opcode) 1575 msg.data = cpu_to_le32(in->data); 1576 else 1577 /* data read comes back in completion, so shorten the struct by 1578 * sizeof(msg.data) 1579 */ 1580 msg_len -= sizeof(msg.data); 1581 1582 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 1583 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req); 1584 desc.param0.cmd_len = cpu_to_le16(msg_len); 1585 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL); 1586 if (!status && !in->opcode) 1587 in->data = le32_to_cpu 1588 (((struct ice_sbq_msg_cmpl *)&msg)->data); 1589 return status; 1590 } 1591 1592 /* FW Admin Queue command wrappers */ 1593 1594 /* Software lock/mutex that is meant to be held while the Global Config Lock 1595 * in firmware is acquired by the software to prevent most (but not all) types 1596 * of AQ commands from being sent to FW 1597 */ 1598 DEFINE_MUTEX(ice_global_cfg_lock_sw); 1599 1600 /** 1601 * ice_should_retry_sq_send_cmd 1602 * @opcode: AQ opcode 1603 * 1604 * Decide if we should retry the send command routine for the ATQ, depending 1605 * on the opcode. 1606 */ 1607 static bool ice_should_retry_sq_send_cmd(u16 opcode) 1608 { 1609 switch (opcode) { 1610 case ice_aqc_opc_get_link_topo: 1611 case ice_aqc_opc_lldp_stop: 1612 case ice_aqc_opc_lldp_start: 1613 case ice_aqc_opc_lldp_filter_ctrl: 1614 return true; 1615 } 1616 1617 return false; 1618 } 1619 1620 /** 1621 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ) 1622 * @hw: pointer to the HW struct 1623 * @cq: pointer to the specific Control queue 1624 * @desc: prefilled descriptor describing the command 1625 * @buf: buffer to use for indirect commands (or NULL for direct commands) 1626 * @buf_size: size of buffer for indirect commands (or 0 for direct commands) 1627 * @cd: pointer to command details structure 1628 * 1629 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin 1630 * Queue if the EBUSY AQ error is returned. 1631 */ 1632 static int 1633 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq, 1634 struct ice_aq_desc *desc, void *buf, u16 buf_size, 1635 struct ice_sq_cd *cd) 1636 { 1637 struct ice_aq_desc desc_cpy; 1638 bool is_cmd_for_retry; 1639 u8 idx = 0; 1640 u16 opcode; 1641 int status; 1642 1643 opcode = le16_to_cpu(desc->opcode); 1644 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode); 1645 memset(&desc_cpy, 0, sizeof(desc_cpy)); 1646 1647 if (is_cmd_for_retry) { 1648 /* All retryable cmds are direct, without buf. */ 1649 WARN_ON(buf); 1650 1651 memcpy(&desc_cpy, desc, sizeof(desc_cpy)); 1652 } 1653 1654 do { 1655 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd); 1656 1657 if (!is_cmd_for_retry || !status || 1658 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY) 1659 break; 1660 1661 memcpy(desc, &desc_cpy, sizeof(desc_cpy)); 1662 1663 msleep(ICE_SQ_SEND_DELAY_TIME_MS); 1664 1665 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE); 1666 1667 return status; 1668 } 1669 1670 /** 1671 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 1672 * @hw: pointer to the HW struct 1673 * @desc: descriptor describing the command 1674 * @buf: buffer to use for indirect commands (NULL for direct commands) 1675 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1676 * @cd: pointer to command details structure 1677 * 1678 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 1679 */ 1680 int 1681 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 1682 u16 buf_size, struct ice_sq_cd *cd) 1683 { 1684 struct ice_aqc_req_res *cmd = &desc->params.res_owner; 1685 bool lock_acquired = false; 1686 int status; 1687 1688 /* When a package download is in process (i.e. when the firmware's 1689 * Global Configuration Lock resource is held), only the Download 1690 * Package, Get Version, Get Package Info List, Upload Section, 1691 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters, 1692 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get 1693 * Recipes to Profile Association, and Release Resource (with resource 1694 * ID set to Global Config Lock) AdminQ commands are allowed; all others 1695 * must block until the package download completes and the Global Config 1696 * Lock is released. See also ice_acquire_global_cfg_lock(). 1697 */ 1698 switch (le16_to_cpu(desc->opcode)) { 1699 case ice_aqc_opc_download_pkg: 1700 case ice_aqc_opc_get_pkg_info_list: 1701 case ice_aqc_opc_get_ver: 1702 case ice_aqc_opc_upload_section: 1703 case ice_aqc_opc_update_pkg: 1704 case ice_aqc_opc_set_port_params: 1705 case ice_aqc_opc_get_vlan_mode_parameters: 1706 case ice_aqc_opc_set_vlan_mode_parameters: 1707 case ice_aqc_opc_add_recipe: 1708 case ice_aqc_opc_recipe_to_profile: 1709 case ice_aqc_opc_get_recipe: 1710 case ice_aqc_opc_get_recipe_to_profile: 1711 break; 1712 case ice_aqc_opc_release_res: 1713 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) 1714 break; 1715 fallthrough; 1716 default: 1717 mutex_lock(&ice_global_cfg_lock_sw); 1718 lock_acquired = true; 1719 break; 1720 } 1721 1722 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd); 1723 if (lock_acquired) 1724 mutex_unlock(&ice_global_cfg_lock_sw); 1725 1726 return status; 1727 } 1728 1729 /** 1730 * ice_aq_get_fw_ver 1731 * @hw: pointer to the HW struct 1732 * @cd: pointer to command details structure or NULL 1733 * 1734 * Get the firmware version (0x0001) from the admin queue commands 1735 */ 1736 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 1737 { 1738 struct ice_aqc_get_ver *resp; 1739 struct ice_aq_desc desc; 1740 int status; 1741 1742 resp = &desc.params.get_ver; 1743 1744 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 1745 1746 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1747 1748 if (!status) { 1749 hw->fw_branch = resp->fw_branch; 1750 hw->fw_maj_ver = resp->fw_major; 1751 hw->fw_min_ver = resp->fw_minor; 1752 hw->fw_patch = resp->fw_patch; 1753 hw->fw_build = le32_to_cpu(resp->fw_build); 1754 hw->api_branch = resp->api_branch; 1755 hw->api_maj_ver = resp->api_major; 1756 hw->api_min_ver = resp->api_minor; 1757 hw->api_patch = resp->api_patch; 1758 } 1759 1760 return status; 1761 } 1762 1763 /** 1764 * ice_aq_send_driver_ver 1765 * @hw: pointer to the HW struct 1766 * @dv: driver's major, minor version 1767 * @cd: pointer to command details structure or NULL 1768 * 1769 * Send the driver version (0x0002) to the firmware 1770 */ 1771 int 1772 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, 1773 struct ice_sq_cd *cd) 1774 { 1775 struct ice_aqc_driver_ver *cmd; 1776 struct ice_aq_desc desc; 1777 u16 len; 1778 1779 cmd = &desc.params.driver_ver; 1780 1781 if (!dv) 1782 return -EINVAL; 1783 1784 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); 1785 1786 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1787 cmd->major_ver = dv->major_ver; 1788 cmd->minor_ver = dv->minor_ver; 1789 cmd->build_ver = dv->build_ver; 1790 cmd->subbuild_ver = dv->subbuild_ver; 1791 1792 len = 0; 1793 while (len < sizeof(dv->driver_string) && 1794 isascii(dv->driver_string[len]) && dv->driver_string[len]) 1795 len++; 1796 1797 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); 1798 } 1799 1800 /** 1801 * ice_aq_q_shutdown 1802 * @hw: pointer to the HW struct 1803 * @unloading: is the driver unloading itself 1804 * 1805 * Tell the Firmware that we're shutting down the AdminQ and whether 1806 * or not the driver is unloading as well (0x0003). 1807 */ 1808 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 1809 { 1810 struct ice_aqc_q_shutdown *cmd; 1811 struct ice_aq_desc desc; 1812 1813 cmd = &desc.params.q_shutdown; 1814 1815 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 1816 1817 if (unloading) 1818 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; 1819 1820 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1821 } 1822 1823 /** 1824 * ice_aq_req_res 1825 * @hw: pointer to the HW struct 1826 * @res: resource ID 1827 * @access: access type 1828 * @sdp_number: resource number 1829 * @timeout: the maximum time in ms that the driver may hold the resource 1830 * @cd: pointer to command details structure or NULL 1831 * 1832 * Requests common resource using the admin queue commands (0x0008). 1833 * When attempting to acquire the Global Config Lock, the driver can 1834 * learn of three states: 1835 * 1) 0 - acquired lock, and can perform download package 1836 * 2) -EIO - did not get lock, driver should fail to load 1837 * 3) -EALREADY - did not get lock, but another driver has 1838 * successfully downloaded the package; the driver does 1839 * not have to download the package and can continue 1840 * loading 1841 * 1842 * Note that if the caller is in an acquire lock, perform action, release lock 1843 * phase of operation, it is possible that the FW may detect a timeout and issue 1844 * a CORER. In this case, the driver will receive a CORER interrupt and will 1845 * have to determine its cause. The calling thread that is handling this flow 1846 * will likely get an error propagated back to it indicating the Download 1847 * Package, Update Package or the Release Resource AQ commands timed out. 1848 */ 1849 static int 1850 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1851 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 1852 struct ice_sq_cd *cd) 1853 { 1854 struct ice_aqc_req_res *cmd_resp; 1855 struct ice_aq_desc desc; 1856 int status; 1857 1858 cmd_resp = &desc.params.res_owner; 1859 1860 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 1861 1862 cmd_resp->res_id = cpu_to_le16(res); 1863 cmd_resp->access_type = cpu_to_le16(access); 1864 cmd_resp->res_number = cpu_to_le32(sdp_number); 1865 cmd_resp->timeout = cpu_to_le32(*timeout); 1866 *timeout = 0; 1867 1868 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1869 1870 /* The completion specifies the maximum time in ms that the driver 1871 * may hold the resource in the Timeout field. 1872 */ 1873 1874 /* Global config lock response utilizes an additional status field. 1875 * 1876 * If the Global config lock resource is held by some other driver, the 1877 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field 1878 * and the timeout field indicates the maximum time the current owner 1879 * of the resource has to free it. 1880 */ 1881 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { 1882 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { 1883 *timeout = le32_to_cpu(cmd_resp->timeout); 1884 return 0; 1885 } else if (le16_to_cpu(cmd_resp->status) == 1886 ICE_AQ_RES_GLBL_IN_PROG) { 1887 *timeout = le32_to_cpu(cmd_resp->timeout); 1888 return -EIO; 1889 } else if (le16_to_cpu(cmd_resp->status) == 1890 ICE_AQ_RES_GLBL_DONE) { 1891 return -EALREADY; 1892 } 1893 1894 /* invalid FW response, force a timeout immediately */ 1895 *timeout = 0; 1896 return -EIO; 1897 } 1898 1899 /* If the resource is held by some other driver, the command completes 1900 * with a busy return value and the timeout field indicates the maximum 1901 * time the current owner of the resource has to free it. 1902 */ 1903 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 1904 *timeout = le32_to_cpu(cmd_resp->timeout); 1905 1906 return status; 1907 } 1908 1909 /** 1910 * ice_aq_release_res 1911 * @hw: pointer to the HW struct 1912 * @res: resource ID 1913 * @sdp_number: resource number 1914 * @cd: pointer to command details structure or NULL 1915 * 1916 * release common resource using the admin queue commands (0x0009) 1917 */ 1918 static int 1919 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 1920 struct ice_sq_cd *cd) 1921 { 1922 struct ice_aqc_req_res *cmd; 1923 struct ice_aq_desc desc; 1924 1925 cmd = &desc.params.res_owner; 1926 1927 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 1928 1929 cmd->res_id = cpu_to_le16(res); 1930 cmd->res_number = cpu_to_le32(sdp_number); 1931 1932 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1933 } 1934 1935 /** 1936 * ice_acquire_res 1937 * @hw: pointer to the HW structure 1938 * @res: resource ID 1939 * @access: access type (read or write) 1940 * @timeout: timeout in milliseconds 1941 * 1942 * This function will attempt to acquire the ownership of a resource. 1943 */ 1944 int 1945 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1946 enum ice_aq_res_access_type access, u32 timeout) 1947 { 1948 #define ICE_RES_POLLING_DELAY_MS 10 1949 u32 delay = ICE_RES_POLLING_DELAY_MS; 1950 u32 time_left = timeout; 1951 int status; 1952 1953 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1954 1955 /* A return code of -EALREADY means that another driver has 1956 * previously acquired the resource and performed any necessary updates; 1957 * in this case the caller does not obtain the resource and has no 1958 * further work to do. 1959 */ 1960 if (status == -EALREADY) 1961 goto ice_acquire_res_exit; 1962 1963 if (status) 1964 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); 1965 1966 /* If necessary, poll until the current lock owner timeouts */ 1967 timeout = time_left; 1968 while (status && timeout && time_left) { 1969 mdelay(delay); 1970 timeout = (timeout > delay) ? timeout - delay : 0; 1971 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1972 1973 if (status == -EALREADY) 1974 /* lock free, but no work to do */ 1975 break; 1976 1977 if (!status) 1978 /* lock acquired */ 1979 break; 1980 } 1981 if (status && status != -EALREADY) 1982 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1983 1984 ice_acquire_res_exit: 1985 if (status == -EALREADY) { 1986 if (access == ICE_RES_WRITE) 1987 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); 1988 else 1989 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n"); 1990 } 1991 return status; 1992 } 1993 1994 /** 1995 * ice_release_res 1996 * @hw: pointer to the HW structure 1997 * @res: resource ID 1998 * 1999 * This function will release a resource using the proper Admin Command. 2000 */ 2001 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 2002 { 2003 unsigned long timeout; 2004 int status; 2005 2006 /* there are some rare cases when trying to release the resource 2007 * results in an admin queue timeout, so handle them correctly 2008 */ 2009 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT; 2010 do { 2011 status = ice_aq_release_res(hw, res, 0, NULL); 2012 if (status != -EIO) 2013 break; 2014 usleep_range(1000, 2000); 2015 } while (time_before(jiffies, timeout)); 2016 } 2017 2018 /** 2019 * ice_aq_alloc_free_res - command to allocate/free resources 2020 * @hw: pointer to the HW struct 2021 * @buf: Indirect buffer to hold data parameters and response 2022 * @buf_size: size of buffer for indirect commands 2023 * @opc: pass in the command opcode 2024 * 2025 * Helper function to allocate/free resources using the admin queue commands 2026 */ 2027 int ice_aq_alloc_free_res(struct ice_hw *hw, 2028 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 2029 enum ice_adminq_opc opc) 2030 { 2031 struct ice_aqc_alloc_free_res_cmd *cmd; 2032 struct ice_aq_desc desc; 2033 2034 cmd = &desc.params.sw_res_ctrl; 2035 2036 if (!buf || buf_size < flex_array_size(buf, elem, 1)) 2037 return -EINVAL; 2038 2039 ice_fill_dflt_direct_cmd_desc(&desc, opc); 2040 2041 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2042 2043 cmd->num_entries = cpu_to_le16(1); 2044 2045 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL); 2046 } 2047 2048 /** 2049 * ice_alloc_hw_res - allocate resource 2050 * @hw: pointer to the HW struct 2051 * @type: type of resource 2052 * @num: number of resources to allocate 2053 * @btm: allocate from bottom 2054 * @res: pointer to array that will receive the resources 2055 */ 2056 int 2057 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) 2058 { 2059 struct ice_aqc_alloc_free_res_elem *buf; 2060 u16 buf_len; 2061 int status; 2062 2063 buf_len = struct_size(buf, elem, num); 2064 buf = kzalloc(buf_len, GFP_KERNEL); 2065 if (!buf) 2066 return -ENOMEM; 2067 2068 /* Prepare buffer to allocate resource. */ 2069 buf->num_elems = cpu_to_le16(num); 2070 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | 2071 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); 2072 if (btm) 2073 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); 2074 2075 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 2076 if (status) 2077 goto ice_alloc_res_exit; 2078 2079 memcpy(res, buf->elem, sizeof(*buf->elem) * num); 2080 2081 ice_alloc_res_exit: 2082 kfree(buf); 2083 return status; 2084 } 2085 2086 /** 2087 * ice_free_hw_res - free allocated HW resource 2088 * @hw: pointer to the HW struct 2089 * @type: type of resource to free 2090 * @num: number of resources 2091 * @res: pointer to array that contains the resources to free 2092 */ 2093 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) 2094 { 2095 struct ice_aqc_alloc_free_res_elem *buf; 2096 u16 buf_len; 2097 int status; 2098 2099 buf_len = struct_size(buf, elem, num); 2100 buf = kzalloc(buf_len, GFP_KERNEL); 2101 if (!buf) 2102 return -ENOMEM; 2103 2104 /* Prepare buffer to free resource. */ 2105 buf->num_elems = cpu_to_le16(num); 2106 buf->res_type = cpu_to_le16(type); 2107 memcpy(buf->elem, res, sizeof(*buf->elem) * num); 2108 2109 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 2110 if (status) 2111 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 2112 2113 kfree(buf); 2114 return status; 2115 } 2116 2117 /** 2118 * ice_get_num_per_func - determine number of resources per PF 2119 * @hw: pointer to the HW structure 2120 * @max: value to be evenly split between each PF 2121 * 2122 * Determine the number of valid functions by going through the bitmap returned 2123 * from parsing capabilities and use this to calculate the number of resources 2124 * per PF based on the max value passed in. 2125 */ 2126 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) 2127 { 2128 u8 funcs; 2129 2130 #define ICE_CAPS_VALID_FUNCS_M 0xFF 2131 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 2132 ICE_CAPS_VALID_FUNCS_M); 2133 2134 if (!funcs) 2135 return 0; 2136 2137 return max / funcs; 2138 } 2139 2140 /** 2141 * ice_parse_common_caps - parse common device/function capabilities 2142 * @hw: pointer to the HW struct 2143 * @caps: pointer to common capabilities structure 2144 * @elem: the capability element to parse 2145 * @prefix: message prefix for tracing capabilities 2146 * 2147 * Given a capability element, extract relevant details into the common 2148 * capability structure. 2149 * 2150 * Returns: true if the capability matches one of the common capability ids, 2151 * false otherwise. 2152 */ 2153 static bool 2154 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps, 2155 struct ice_aqc_list_caps_elem *elem, const char *prefix) 2156 { 2157 u32 logical_id = le32_to_cpu(elem->logical_id); 2158 u32 phys_id = le32_to_cpu(elem->phys_id); 2159 u32 number = le32_to_cpu(elem->number); 2160 u16 cap = le16_to_cpu(elem->cap); 2161 bool found = true; 2162 2163 switch (cap) { 2164 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2165 caps->valid_functions = number; 2166 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix, 2167 caps->valid_functions); 2168 break; 2169 case ICE_AQC_CAPS_SRIOV: 2170 caps->sr_iov_1_1 = (number == 1); 2171 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix, 2172 caps->sr_iov_1_1); 2173 break; 2174 case ICE_AQC_CAPS_DCB: 2175 caps->dcb = (number == 1); 2176 caps->active_tc_bitmap = logical_id; 2177 caps->maxtc = phys_id; 2178 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb); 2179 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix, 2180 caps->active_tc_bitmap); 2181 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc); 2182 break; 2183 case ICE_AQC_CAPS_RSS: 2184 caps->rss_table_size = number; 2185 caps->rss_table_entry_width = logical_id; 2186 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix, 2187 caps->rss_table_size); 2188 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix, 2189 caps->rss_table_entry_width); 2190 break; 2191 case ICE_AQC_CAPS_RXQS: 2192 caps->num_rxq = number; 2193 caps->rxq_first_id = phys_id; 2194 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix, 2195 caps->num_rxq); 2196 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix, 2197 caps->rxq_first_id); 2198 break; 2199 case ICE_AQC_CAPS_TXQS: 2200 caps->num_txq = number; 2201 caps->txq_first_id = phys_id; 2202 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix, 2203 caps->num_txq); 2204 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix, 2205 caps->txq_first_id); 2206 break; 2207 case ICE_AQC_CAPS_MSIX: 2208 caps->num_msix_vectors = number; 2209 caps->msix_vector_first_id = phys_id; 2210 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix, 2211 caps->num_msix_vectors); 2212 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix, 2213 caps->msix_vector_first_id); 2214 break; 2215 case ICE_AQC_CAPS_PENDING_NVM_VER: 2216 caps->nvm_update_pending_nvm = true; 2217 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix); 2218 break; 2219 case ICE_AQC_CAPS_PENDING_OROM_VER: 2220 caps->nvm_update_pending_orom = true; 2221 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix); 2222 break; 2223 case ICE_AQC_CAPS_PENDING_NET_VER: 2224 caps->nvm_update_pending_netlist = true; 2225 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix); 2226 break; 2227 case ICE_AQC_CAPS_NVM_MGMT: 2228 caps->nvm_unified_update = 2229 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? 2230 true : false; 2231 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix, 2232 caps->nvm_unified_update); 2233 break; 2234 case ICE_AQC_CAPS_RDMA: 2235 caps->rdma = (number == 1); 2236 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma); 2237 break; 2238 case ICE_AQC_CAPS_MAX_MTU: 2239 caps->max_mtu = number; 2240 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", 2241 prefix, caps->max_mtu); 2242 break; 2243 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE: 2244 caps->pcie_reset_avoidance = (number > 0); 2245 ice_debug(hw, ICE_DBG_INIT, 2246 "%s: pcie_reset_avoidance = %d\n", prefix, 2247 caps->pcie_reset_avoidance); 2248 break; 2249 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT: 2250 caps->reset_restrict_support = (number == 1); 2251 ice_debug(hw, ICE_DBG_INIT, 2252 "%s: reset_restrict_support = %d\n", prefix, 2253 caps->reset_restrict_support); 2254 break; 2255 case ICE_AQC_CAPS_FW_LAG_SUPPORT: 2256 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG); 2257 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n", 2258 prefix, caps->roce_lag); 2259 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG); 2260 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n", 2261 prefix, caps->sriov_lag); 2262 break; 2263 default: 2264 /* Not one of the recognized common capabilities */ 2265 found = false; 2266 } 2267 2268 return found; 2269 } 2270 2271 /** 2272 * ice_recalc_port_limited_caps - Recalculate port limited capabilities 2273 * @hw: pointer to the HW structure 2274 * @caps: pointer to capabilities structure to fix 2275 * 2276 * Re-calculate the capabilities that are dependent on the number of physical 2277 * ports; i.e. some features are not supported or function differently on 2278 * devices with more than 4 ports. 2279 */ 2280 static void 2281 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps) 2282 { 2283 /* This assumes device capabilities are always scanned before function 2284 * capabilities during the initialization flow. 2285 */ 2286 if (hw->dev_caps.num_funcs > 4) { 2287 /* Max 4 TCs per port */ 2288 caps->maxtc = 4; 2289 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n", 2290 caps->maxtc); 2291 if (caps->rdma) { 2292 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n"); 2293 caps->rdma = 0; 2294 } 2295 2296 /* print message only when processing device capabilities 2297 * during initialization. 2298 */ 2299 if (caps == &hw->dev_caps.common_cap) 2300 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n"); 2301 } 2302 } 2303 2304 /** 2305 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps 2306 * @hw: pointer to the HW struct 2307 * @func_p: pointer to function capabilities structure 2308 * @cap: pointer to the capability element to parse 2309 * 2310 * Extract function capabilities for ICE_AQC_CAPS_VF. 2311 */ 2312 static void 2313 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2314 struct ice_aqc_list_caps_elem *cap) 2315 { 2316 u32 logical_id = le32_to_cpu(cap->logical_id); 2317 u32 number = le32_to_cpu(cap->number); 2318 2319 func_p->num_allocd_vfs = number; 2320 func_p->vf_base_id = logical_id; 2321 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n", 2322 func_p->num_allocd_vfs); 2323 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n", 2324 func_p->vf_base_id); 2325 } 2326 2327 /** 2328 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps 2329 * @hw: pointer to the HW struct 2330 * @func_p: pointer to function capabilities structure 2331 * @cap: pointer to the capability element to parse 2332 * 2333 * Extract function capabilities for ICE_AQC_CAPS_VSI. 2334 */ 2335 static void 2336 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2337 struct ice_aqc_list_caps_elem *cap) 2338 { 2339 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); 2340 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n", 2341 le32_to_cpu(cap->number)); 2342 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n", 2343 func_p->guar_num_vsi); 2344 } 2345 2346 /** 2347 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps 2348 * @hw: pointer to the HW struct 2349 * @func_p: pointer to function capabilities structure 2350 * @cap: pointer to the capability element to parse 2351 * 2352 * Extract function capabilities for ICE_AQC_CAPS_1588. 2353 */ 2354 static void 2355 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2356 struct ice_aqc_list_caps_elem *cap) 2357 { 2358 struct ice_ts_func_info *info = &func_p->ts_func_info; 2359 u32 number = le32_to_cpu(cap->number); 2360 2361 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0); 2362 func_p->common_cap.ieee_1588 = info->ena; 2363 2364 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0); 2365 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0); 2366 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0); 2367 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0); 2368 2369 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S; 2370 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0); 2371 2372 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) { 2373 info->time_ref = (enum ice_time_ref_freq)info->clk_freq; 2374 } else { 2375 /* Unknown clock frequency, so assume a (probably incorrect) 2376 * default to avoid out-of-bounds look ups of frequency 2377 * related information. 2378 */ 2379 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n", 2380 info->clk_freq); 2381 info->time_ref = ICE_TIME_REF_FREQ_25_000; 2382 } 2383 2384 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n", 2385 func_p->common_cap.ieee_1588); 2386 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n", 2387 info->src_tmr_owned); 2388 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n", 2389 info->tmr_ena); 2390 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n", 2391 info->tmr_index_owned); 2392 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n", 2393 info->tmr_index_assoc); 2394 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n", 2395 info->clk_freq); 2396 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n", 2397 info->clk_src); 2398 } 2399 2400 /** 2401 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps 2402 * @hw: pointer to the HW struct 2403 * @func_p: pointer to function capabilities structure 2404 * 2405 * Extract function capabilities for ICE_AQC_CAPS_FD. 2406 */ 2407 static void 2408 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p) 2409 { 2410 u32 reg_val, gsize, bsize; 2411 2412 reg_val = rd32(hw, GLQF_FD_SIZE); 2413 switch (hw->mac_type) { 2414 case ICE_MAC_E830: 2415 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2416 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2417 break; 2418 case ICE_MAC_E810: 2419 default: 2420 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2421 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2422 } 2423 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize); 2424 func_p->fd_fltr_best_effort = bsize; 2425 2426 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n", 2427 func_p->fd_fltr_guar); 2428 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n", 2429 func_p->fd_fltr_best_effort); 2430 } 2431 2432 /** 2433 * ice_parse_func_caps - Parse function capabilities 2434 * @hw: pointer to the HW struct 2435 * @func_p: pointer to function capabilities structure 2436 * @buf: buffer containing the function capability records 2437 * @cap_count: the number of capabilities 2438 * 2439 * Helper function to parse function (0x000A) capabilities list. For 2440 * capabilities shared between device and function, this relies on 2441 * ice_parse_common_caps. 2442 * 2443 * Loop through the list of provided capabilities and extract the relevant 2444 * data into the function capabilities structured. 2445 */ 2446 static void 2447 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2448 void *buf, u32 cap_count) 2449 { 2450 struct ice_aqc_list_caps_elem *cap_resp; 2451 u32 i; 2452 2453 cap_resp = buf; 2454 2455 memset(func_p, 0, sizeof(*func_p)); 2456 2457 for (i = 0; i < cap_count; i++) { 2458 u16 cap = le16_to_cpu(cap_resp[i].cap); 2459 bool found; 2460 2461 found = ice_parse_common_caps(hw, &func_p->common_cap, 2462 &cap_resp[i], "func caps"); 2463 2464 switch (cap) { 2465 case ICE_AQC_CAPS_VF: 2466 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 2467 break; 2468 case ICE_AQC_CAPS_VSI: 2469 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 2470 break; 2471 case ICE_AQC_CAPS_1588: 2472 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]); 2473 break; 2474 case ICE_AQC_CAPS_FD: 2475 ice_parse_fdir_func_caps(hw, func_p); 2476 break; 2477 default: 2478 /* Don't list common capabilities as unknown */ 2479 if (!found) 2480 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n", 2481 i, cap); 2482 break; 2483 } 2484 } 2485 2486 ice_recalc_port_limited_caps(hw, &func_p->common_cap); 2487 } 2488 2489 /** 2490 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps 2491 * @hw: pointer to the HW struct 2492 * @dev_p: pointer to device capabilities structure 2493 * @cap: capability element to parse 2494 * 2495 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities. 2496 */ 2497 static void 2498 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2499 struct ice_aqc_list_caps_elem *cap) 2500 { 2501 u32 number = le32_to_cpu(cap->number); 2502 2503 dev_p->num_funcs = hweight32(number); 2504 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n", 2505 dev_p->num_funcs); 2506 } 2507 2508 /** 2509 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps 2510 * @hw: pointer to the HW struct 2511 * @dev_p: pointer to device capabilities structure 2512 * @cap: capability element to parse 2513 * 2514 * Parse ICE_AQC_CAPS_VF for device capabilities. 2515 */ 2516 static void 2517 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2518 struct ice_aqc_list_caps_elem *cap) 2519 { 2520 u32 number = le32_to_cpu(cap->number); 2521 2522 dev_p->num_vfs_exposed = number; 2523 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n", 2524 dev_p->num_vfs_exposed); 2525 } 2526 2527 /** 2528 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps 2529 * @hw: pointer to the HW struct 2530 * @dev_p: pointer to device capabilities structure 2531 * @cap: capability element to parse 2532 * 2533 * Parse ICE_AQC_CAPS_VSI for device capabilities. 2534 */ 2535 static void 2536 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2537 struct ice_aqc_list_caps_elem *cap) 2538 { 2539 u32 number = le32_to_cpu(cap->number); 2540 2541 dev_p->num_vsi_allocd_to_host = number; 2542 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n", 2543 dev_p->num_vsi_allocd_to_host); 2544 } 2545 2546 /** 2547 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps 2548 * @hw: pointer to the HW struct 2549 * @dev_p: pointer to device capabilities structure 2550 * @cap: capability element to parse 2551 * 2552 * Parse ICE_AQC_CAPS_1588 for device capabilities. 2553 */ 2554 static void 2555 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2556 struct ice_aqc_list_caps_elem *cap) 2557 { 2558 struct ice_ts_dev_info *info = &dev_p->ts_dev_info; 2559 u32 logical_id = le32_to_cpu(cap->logical_id); 2560 u32 phys_id = le32_to_cpu(cap->phys_id); 2561 u32 number = le32_to_cpu(cap->number); 2562 2563 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0); 2564 dev_p->common_cap.ieee_1588 = info->ena; 2565 2566 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M; 2567 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0); 2568 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0); 2569 2570 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S; 2571 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0); 2572 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0); 2573 2574 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0); 2575 2576 info->ena_ports = logical_id; 2577 info->tmr_own_map = phys_id; 2578 2579 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n", 2580 dev_p->common_cap.ieee_1588); 2581 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n", 2582 info->tmr0_owner); 2583 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n", 2584 info->tmr0_owned); 2585 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n", 2586 info->tmr0_ena); 2587 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n", 2588 info->tmr1_owner); 2589 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n", 2590 info->tmr1_owned); 2591 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n", 2592 info->tmr1_ena); 2593 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n", 2594 info->ts_ll_read); 2595 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n", 2596 info->ena_ports); 2597 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n", 2598 info->tmr_own_map); 2599 } 2600 2601 /** 2602 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps 2603 * @hw: pointer to the HW struct 2604 * @dev_p: pointer to device capabilities structure 2605 * @cap: capability element to parse 2606 * 2607 * Parse ICE_AQC_CAPS_FD for device capabilities. 2608 */ 2609 static void 2610 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2611 struct ice_aqc_list_caps_elem *cap) 2612 { 2613 u32 number = le32_to_cpu(cap->number); 2614 2615 dev_p->num_flow_director_fltr = number; 2616 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n", 2617 dev_p->num_flow_director_fltr); 2618 } 2619 2620 /** 2621 * ice_parse_dev_caps - Parse device capabilities 2622 * @hw: pointer to the HW struct 2623 * @dev_p: pointer to device capabilities structure 2624 * @buf: buffer containing the device capability records 2625 * @cap_count: the number of capabilities 2626 * 2627 * Helper device to parse device (0x000B) capabilities list. For 2628 * capabilities shared between device and function, this relies on 2629 * ice_parse_common_caps. 2630 * 2631 * Loop through the list of provided capabilities and extract the relevant 2632 * data into the device capabilities structured. 2633 */ 2634 static void 2635 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2636 void *buf, u32 cap_count) 2637 { 2638 struct ice_aqc_list_caps_elem *cap_resp; 2639 u32 i; 2640 2641 cap_resp = buf; 2642 2643 memset(dev_p, 0, sizeof(*dev_p)); 2644 2645 for (i = 0; i < cap_count; i++) { 2646 u16 cap = le16_to_cpu(cap_resp[i].cap); 2647 bool found; 2648 2649 found = ice_parse_common_caps(hw, &dev_p->common_cap, 2650 &cap_resp[i], "dev caps"); 2651 2652 switch (cap) { 2653 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2654 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]); 2655 break; 2656 case ICE_AQC_CAPS_VF: 2657 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 2658 break; 2659 case ICE_AQC_CAPS_VSI: 2660 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 2661 break; 2662 case ICE_AQC_CAPS_1588: 2663 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]); 2664 break; 2665 case ICE_AQC_CAPS_FD: 2666 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 2667 break; 2668 default: 2669 /* Don't list common capabilities as unknown */ 2670 if (!found) 2671 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n", 2672 i, cap); 2673 break; 2674 } 2675 } 2676 2677 ice_recalc_port_limited_caps(hw, &dev_p->common_cap); 2678 } 2679 2680 /** 2681 * ice_aq_get_netlist_node 2682 * @hw: pointer to the hw struct 2683 * @cmd: get_link_topo AQ structure 2684 * @node_part_number: output node part number if node found 2685 * @node_handle: output node handle parameter if node found 2686 */ 2687 static int 2688 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd, 2689 u8 *node_part_number, u16 *node_handle) 2690 { 2691 struct ice_aq_desc desc; 2692 2693 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 2694 desc.params.get_link_topo = *cmd; 2695 2696 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL)) 2697 return -EIO; 2698 2699 if (node_handle) 2700 *node_handle = le16_to_cpu(desc.params.get_link_topo.addr.handle); 2701 if (node_part_number) 2702 *node_part_number = desc.params.get_link_topo.node_part_num; 2703 2704 return 0; 2705 } 2706 2707 /** 2708 * ice_is_pf_c827 - check if pf contains c827 phy 2709 * @hw: pointer to the hw struct 2710 */ 2711 bool ice_is_pf_c827(struct ice_hw *hw) 2712 { 2713 struct ice_aqc_get_link_topo cmd = {}; 2714 u8 node_part_number; 2715 u16 node_handle; 2716 int status; 2717 2718 if (hw->mac_type != ICE_MAC_E810) 2719 return false; 2720 2721 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) 2722 return true; 2723 2724 cmd.addr.topo_params.node_type_ctx = 2725 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) | 2726 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT); 2727 cmd.addr.topo_params.index = 0; 2728 2729 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, 2730 &node_handle); 2731 2732 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) 2733 return false; 2734 2735 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE) 2736 return true; 2737 2738 return false; 2739 } 2740 2741 /** 2742 * ice_aq_list_caps - query function/device capabilities 2743 * @hw: pointer to the HW struct 2744 * @buf: a buffer to hold the capabilities 2745 * @buf_size: size of the buffer 2746 * @cap_count: if not NULL, set to the number of capabilities reported 2747 * @opc: capabilities type to discover, device or function 2748 * @cd: pointer to command details structure or NULL 2749 * 2750 * Get the function (0x000A) or device (0x000B) capabilities description from 2751 * firmware and store it in the buffer. 2752 * 2753 * If the cap_count pointer is not NULL, then it is set to the number of 2754 * capabilities firmware will report. Note that if the buffer size is too 2755 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The 2756 * cap_count will still be updated in this case. It is recommended that the 2757 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that 2758 * firmware could return) to avoid this. 2759 */ 2760 int 2761 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 2762 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 2763 { 2764 struct ice_aqc_list_caps *cmd; 2765 struct ice_aq_desc desc; 2766 int status; 2767 2768 cmd = &desc.params.get_cap; 2769 2770 if (opc != ice_aqc_opc_list_func_caps && 2771 opc != ice_aqc_opc_list_dev_caps) 2772 return -EINVAL; 2773 2774 ice_fill_dflt_direct_cmd_desc(&desc, opc); 2775 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2776 2777 if (cap_count) 2778 *cap_count = le32_to_cpu(cmd->count); 2779 2780 return status; 2781 } 2782 2783 /** 2784 * ice_discover_dev_caps - Read and extract device capabilities 2785 * @hw: pointer to the hardware structure 2786 * @dev_caps: pointer to device capabilities structure 2787 * 2788 * Read the device capabilities and extract them into the dev_caps structure 2789 * for later use. 2790 */ 2791 int 2792 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps) 2793 { 2794 u32 cap_count = 0; 2795 void *cbuf; 2796 int status; 2797 2798 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2799 if (!cbuf) 2800 return -ENOMEM; 2801 2802 /* Although the driver doesn't know the number of capabilities the 2803 * device will return, we can simply send a 4KB buffer, the maximum 2804 * possible size that firmware can return. 2805 */ 2806 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2807 2808 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2809 ice_aqc_opc_list_dev_caps, NULL); 2810 if (!status) 2811 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 2812 kfree(cbuf); 2813 2814 return status; 2815 } 2816 2817 /** 2818 * ice_discover_func_caps - Read and extract function capabilities 2819 * @hw: pointer to the hardware structure 2820 * @func_caps: pointer to function capabilities structure 2821 * 2822 * Read the function capabilities and extract them into the func_caps structure 2823 * for later use. 2824 */ 2825 static int 2826 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps) 2827 { 2828 u32 cap_count = 0; 2829 void *cbuf; 2830 int status; 2831 2832 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2833 if (!cbuf) 2834 return -ENOMEM; 2835 2836 /* Although the driver doesn't know the number of capabilities the 2837 * device will return, we can simply send a 4KB buffer, the maximum 2838 * possible size that firmware can return. 2839 */ 2840 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2841 2842 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2843 ice_aqc_opc_list_func_caps, NULL); 2844 if (!status) 2845 ice_parse_func_caps(hw, func_caps, cbuf, cap_count); 2846 kfree(cbuf); 2847 2848 return status; 2849 } 2850 2851 /** 2852 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode 2853 * @hw: pointer to the hardware structure 2854 */ 2855 void ice_set_safe_mode_caps(struct ice_hw *hw) 2856 { 2857 struct ice_hw_func_caps *func_caps = &hw->func_caps; 2858 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; 2859 struct ice_hw_common_caps cached_caps; 2860 u32 num_funcs; 2861 2862 /* cache some func_caps values that should be restored after memset */ 2863 cached_caps = func_caps->common_cap; 2864 2865 /* unset func capabilities */ 2866 memset(func_caps, 0, sizeof(*func_caps)); 2867 2868 #define ICE_RESTORE_FUNC_CAP(name) \ 2869 func_caps->common_cap.name = cached_caps.name 2870 2871 /* restore cached values */ 2872 ICE_RESTORE_FUNC_CAP(valid_functions); 2873 ICE_RESTORE_FUNC_CAP(txq_first_id); 2874 ICE_RESTORE_FUNC_CAP(rxq_first_id); 2875 ICE_RESTORE_FUNC_CAP(msix_vector_first_id); 2876 ICE_RESTORE_FUNC_CAP(max_mtu); 2877 ICE_RESTORE_FUNC_CAP(nvm_unified_update); 2878 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm); 2879 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom); 2880 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist); 2881 2882 /* one Tx and one Rx queue in safe mode */ 2883 func_caps->common_cap.num_rxq = 1; 2884 func_caps->common_cap.num_txq = 1; 2885 2886 /* two MSIX vectors, one for traffic and one for misc causes */ 2887 func_caps->common_cap.num_msix_vectors = 2; 2888 func_caps->guar_num_vsi = 1; 2889 2890 /* cache some dev_caps values that should be restored after memset */ 2891 cached_caps = dev_caps->common_cap; 2892 num_funcs = dev_caps->num_funcs; 2893 2894 /* unset dev capabilities */ 2895 memset(dev_caps, 0, sizeof(*dev_caps)); 2896 2897 #define ICE_RESTORE_DEV_CAP(name) \ 2898 dev_caps->common_cap.name = cached_caps.name 2899 2900 /* restore cached values */ 2901 ICE_RESTORE_DEV_CAP(valid_functions); 2902 ICE_RESTORE_DEV_CAP(txq_first_id); 2903 ICE_RESTORE_DEV_CAP(rxq_first_id); 2904 ICE_RESTORE_DEV_CAP(msix_vector_first_id); 2905 ICE_RESTORE_DEV_CAP(max_mtu); 2906 ICE_RESTORE_DEV_CAP(nvm_unified_update); 2907 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm); 2908 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom); 2909 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist); 2910 dev_caps->num_funcs = num_funcs; 2911 2912 /* one Tx and one Rx queue per function in safe mode */ 2913 dev_caps->common_cap.num_rxq = num_funcs; 2914 dev_caps->common_cap.num_txq = num_funcs; 2915 2916 /* two MSIX vectors per function */ 2917 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; 2918 } 2919 2920 /** 2921 * ice_get_caps - get info about the HW 2922 * @hw: pointer to the hardware structure 2923 */ 2924 int ice_get_caps(struct ice_hw *hw) 2925 { 2926 int status; 2927 2928 status = ice_discover_dev_caps(hw, &hw->dev_caps); 2929 if (status) 2930 return status; 2931 2932 return ice_discover_func_caps(hw, &hw->func_caps); 2933 } 2934 2935 /** 2936 * ice_aq_manage_mac_write - manage MAC address write command 2937 * @hw: pointer to the HW struct 2938 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 2939 * @flags: flags to control write behavior 2940 * @cd: pointer to command details structure or NULL 2941 * 2942 * This function is used to write MAC address to the NVM (0x0108). 2943 */ 2944 int 2945 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, 2946 struct ice_sq_cd *cd) 2947 { 2948 struct ice_aqc_manage_mac_write *cmd; 2949 struct ice_aq_desc desc; 2950 2951 cmd = &desc.params.mac_write; 2952 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 2953 2954 cmd->flags = flags; 2955 ether_addr_copy(cmd->mac_addr, mac_addr); 2956 2957 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2958 } 2959 2960 /** 2961 * ice_aq_clear_pxe_mode 2962 * @hw: pointer to the HW struct 2963 * 2964 * Tell the firmware that the driver is taking over from PXE (0x0110). 2965 */ 2966 static int ice_aq_clear_pxe_mode(struct ice_hw *hw) 2967 { 2968 struct ice_aq_desc desc; 2969 2970 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 2971 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 2972 2973 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 2974 } 2975 2976 /** 2977 * ice_clear_pxe_mode - clear pxe operations mode 2978 * @hw: pointer to the HW struct 2979 * 2980 * Make sure all PXE mode settings are cleared, including things 2981 * like descriptor fetch/write-back mode. 2982 */ 2983 void ice_clear_pxe_mode(struct ice_hw *hw) 2984 { 2985 if (ice_check_sq_alive(hw, &hw->adminq)) 2986 ice_aq_clear_pxe_mode(hw); 2987 } 2988 2989 /** 2990 * ice_aq_set_port_params - set physical port parameters. 2991 * @pi: pointer to the port info struct 2992 * @double_vlan: if set double VLAN is enabled 2993 * @cd: pointer to command details structure or NULL 2994 * 2995 * Set Physical port parameters (0x0203) 2996 */ 2997 int 2998 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan, 2999 struct ice_sq_cd *cd) 3000 3001 { 3002 struct ice_aqc_set_port_params *cmd; 3003 struct ice_hw *hw = pi->hw; 3004 struct ice_aq_desc desc; 3005 u16 cmd_flags = 0; 3006 3007 cmd = &desc.params.set_port_params; 3008 3009 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params); 3010 if (double_vlan) 3011 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA; 3012 cmd->cmd_flags = cpu_to_le16(cmd_flags); 3013 3014 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3015 } 3016 3017 /** 3018 * ice_is_100m_speed_supported 3019 * @hw: pointer to the HW struct 3020 * 3021 * returns true if 100M speeds are supported by the device, 3022 * false otherwise. 3023 */ 3024 bool ice_is_100m_speed_supported(struct ice_hw *hw) 3025 { 3026 switch (hw->device_id) { 3027 case ICE_DEV_ID_E822C_SGMII: 3028 case ICE_DEV_ID_E822L_SGMII: 3029 case ICE_DEV_ID_E823L_1GBE: 3030 case ICE_DEV_ID_E823C_SGMII: 3031 return true; 3032 default: 3033 return false; 3034 } 3035 } 3036 3037 /** 3038 * ice_get_link_speed_based_on_phy_type - returns link speed 3039 * @phy_type_low: lower part of phy_type 3040 * @phy_type_high: higher part of phy_type 3041 * 3042 * This helper function will convert an entry in PHY type structure 3043 * [phy_type_low, phy_type_high] to its corresponding link speed. 3044 * Note: In the structure of [phy_type_low, phy_type_high], there should 3045 * be one bit set, as this function will convert one PHY type to its 3046 * speed. 3047 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3048 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3049 */ 3050 static u16 3051 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) 3052 { 3053 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3054 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3055 3056 switch (phy_type_low) { 3057 case ICE_PHY_TYPE_LOW_100BASE_TX: 3058 case ICE_PHY_TYPE_LOW_100M_SGMII: 3059 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; 3060 break; 3061 case ICE_PHY_TYPE_LOW_1000BASE_T: 3062 case ICE_PHY_TYPE_LOW_1000BASE_SX: 3063 case ICE_PHY_TYPE_LOW_1000BASE_LX: 3064 case ICE_PHY_TYPE_LOW_1000BASE_KX: 3065 case ICE_PHY_TYPE_LOW_1G_SGMII: 3066 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; 3067 break; 3068 case ICE_PHY_TYPE_LOW_2500BASE_T: 3069 case ICE_PHY_TYPE_LOW_2500BASE_X: 3070 case ICE_PHY_TYPE_LOW_2500BASE_KX: 3071 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; 3072 break; 3073 case ICE_PHY_TYPE_LOW_5GBASE_T: 3074 case ICE_PHY_TYPE_LOW_5GBASE_KR: 3075 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; 3076 break; 3077 case ICE_PHY_TYPE_LOW_10GBASE_T: 3078 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 3079 case ICE_PHY_TYPE_LOW_10GBASE_SR: 3080 case ICE_PHY_TYPE_LOW_10GBASE_LR: 3081 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 3082 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 3083 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 3084 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; 3085 break; 3086 case ICE_PHY_TYPE_LOW_25GBASE_T: 3087 case ICE_PHY_TYPE_LOW_25GBASE_CR: 3088 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 3089 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 3090 case ICE_PHY_TYPE_LOW_25GBASE_SR: 3091 case ICE_PHY_TYPE_LOW_25GBASE_LR: 3092 case ICE_PHY_TYPE_LOW_25GBASE_KR: 3093 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 3094 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 3095 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 3096 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 3097 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; 3098 break; 3099 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 3100 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 3101 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 3102 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 3103 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 3104 case ICE_PHY_TYPE_LOW_40G_XLAUI: 3105 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; 3106 break; 3107 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 3108 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 3109 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 3110 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 3111 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 3112 case ICE_PHY_TYPE_LOW_50G_LAUI2: 3113 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 3114 case ICE_PHY_TYPE_LOW_50G_AUI2: 3115 case ICE_PHY_TYPE_LOW_50GBASE_CP: 3116 case ICE_PHY_TYPE_LOW_50GBASE_SR: 3117 case ICE_PHY_TYPE_LOW_50GBASE_FR: 3118 case ICE_PHY_TYPE_LOW_50GBASE_LR: 3119 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 3120 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 3121 case ICE_PHY_TYPE_LOW_50G_AUI1: 3122 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; 3123 break; 3124 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 3125 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 3126 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 3127 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 3128 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 3129 case ICE_PHY_TYPE_LOW_100G_CAUI4: 3130 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 3131 case ICE_PHY_TYPE_LOW_100G_AUI4: 3132 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 3133 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 3134 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 3135 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 3136 case ICE_PHY_TYPE_LOW_100GBASE_DR: 3137 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; 3138 break; 3139 default: 3140 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3141 break; 3142 } 3143 3144 switch (phy_type_high) { 3145 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 3146 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 3147 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 3148 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 3149 case ICE_PHY_TYPE_HIGH_100G_AUI2: 3150 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; 3151 break; 3152 default: 3153 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3154 break; 3155 } 3156 3157 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && 3158 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3159 return ICE_AQ_LINK_SPEED_UNKNOWN; 3160 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3161 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) 3162 return ICE_AQ_LINK_SPEED_UNKNOWN; 3163 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3164 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3165 return speed_phy_type_low; 3166 else 3167 return speed_phy_type_high; 3168 } 3169 3170 /** 3171 * ice_update_phy_type 3172 * @phy_type_low: pointer to the lower part of phy_type 3173 * @phy_type_high: pointer to the higher part of phy_type 3174 * @link_speeds_bitmap: targeted link speeds bitmap 3175 * 3176 * Note: For the link_speeds_bitmap structure, you can check it at 3177 * [ice_aqc_get_link_status->link_speed]. Caller can pass in 3178 * link_speeds_bitmap include multiple speeds. 3179 * 3180 * Each entry in this [phy_type_low, phy_type_high] structure will 3181 * present a certain link speed. This helper function will turn on bits 3182 * in [phy_type_low, phy_type_high] structure based on the value of 3183 * link_speeds_bitmap input parameter. 3184 */ 3185 void 3186 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, 3187 u16 link_speeds_bitmap) 3188 { 3189 u64 pt_high; 3190 u64 pt_low; 3191 int index; 3192 u16 speed; 3193 3194 /* We first check with low part of phy_type */ 3195 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { 3196 pt_low = BIT_ULL(index); 3197 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); 3198 3199 if (link_speeds_bitmap & speed) 3200 *phy_type_low |= BIT_ULL(index); 3201 } 3202 3203 /* We then check with high part of phy_type */ 3204 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { 3205 pt_high = BIT_ULL(index); 3206 speed = ice_get_link_speed_based_on_phy_type(0, pt_high); 3207 3208 if (link_speeds_bitmap & speed) 3209 *phy_type_high |= BIT_ULL(index); 3210 } 3211 } 3212 3213 /** 3214 * ice_aq_set_phy_cfg 3215 * @hw: pointer to the HW struct 3216 * @pi: port info structure of the interested logical port 3217 * @cfg: structure with PHY configuration data to be set 3218 * @cd: pointer to command details structure or NULL 3219 * 3220 * Set the various PHY configuration parameters supported on the Port. 3221 * One or more of the Set PHY config parameters may be ignored in an MFP 3222 * mode as the PF may not have the privilege to set some of the PHY Config 3223 * parameters. This status will be indicated by the command response (0x0601). 3224 */ 3225 int 3226 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi, 3227 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 3228 { 3229 struct ice_aq_desc desc; 3230 int status; 3231 3232 if (!cfg) 3233 return -EINVAL; 3234 3235 /* Ensure that only valid bits of cfg->caps can be turned on. */ 3236 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { 3237 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", 3238 cfg->caps); 3239 3240 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; 3241 } 3242 3243 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 3244 desc.params.set_phy.lport_num = pi->lport; 3245 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3246 3247 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n"); 3248 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 3249 (unsigned long long)le64_to_cpu(cfg->phy_type_low)); 3250 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 3251 (unsigned long long)le64_to_cpu(cfg->phy_type_high)); 3252 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps); 3253 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", 3254 cfg->low_power_ctrl_an); 3255 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap); 3256 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value); 3257 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n", 3258 cfg->link_fec_opt); 3259 3260 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 3261 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3262 status = 0; 3263 3264 if (!status) 3265 pi->phy.curr_user_phy_cfg = *cfg; 3266 3267 return status; 3268 } 3269 3270 /** 3271 * ice_update_link_info - update status of the HW network link 3272 * @pi: port info structure of the interested logical port 3273 */ 3274 int ice_update_link_info(struct ice_port_info *pi) 3275 { 3276 struct ice_link_status *li; 3277 int status; 3278 3279 if (!pi) 3280 return -EINVAL; 3281 3282 li = &pi->phy.link_info; 3283 3284 status = ice_aq_get_link_info(pi, true, NULL, NULL); 3285 if (status) 3286 return status; 3287 3288 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { 3289 struct ice_aqc_get_phy_caps_data *pcaps; 3290 struct ice_hw *hw; 3291 3292 hw = pi->hw; 3293 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), 3294 GFP_KERNEL); 3295 if (!pcaps) 3296 return -ENOMEM; 3297 3298 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 3299 pcaps, NULL); 3300 3301 devm_kfree(ice_hw_to_dev(hw), pcaps); 3302 } 3303 3304 return status; 3305 } 3306 3307 /** 3308 * ice_cache_phy_user_req 3309 * @pi: port information structure 3310 * @cache_data: PHY logging data 3311 * @cache_mode: PHY logging mode 3312 * 3313 * Log the user request on (FC, FEC, SPEED) for later use. 3314 */ 3315 static void 3316 ice_cache_phy_user_req(struct ice_port_info *pi, 3317 struct ice_phy_cache_mode_data cache_data, 3318 enum ice_phy_cache_mode cache_mode) 3319 { 3320 if (!pi) 3321 return; 3322 3323 switch (cache_mode) { 3324 case ICE_FC_MODE: 3325 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req; 3326 break; 3327 case ICE_SPEED_MODE: 3328 pi->phy.curr_user_speed_req = 3329 cache_data.data.curr_user_speed_req; 3330 break; 3331 case ICE_FEC_MODE: 3332 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req; 3333 break; 3334 default: 3335 break; 3336 } 3337 } 3338 3339 /** 3340 * ice_caps_to_fc_mode 3341 * @caps: PHY capabilities 3342 * 3343 * Convert PHY FC capabilities to ice FC mode 3344 */ 3345 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps) 3346 { 3347 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE && 3348 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3349 return ICE_FC_FULL; 3350 3351 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3352 return ICE_FC_TX_PAUSE; 3353 3354 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3355 return ICE_FC_RX_PAUSE; 3356 3357 return ICE_FC_NONE; 3358 } 3359 3360 /** 3361 * ice_caps_to_fec_mode 3362 * @caps: PHY capabilities 3363 * @fec_options: Link FEC options 3364 * 3365 * Convert PHY FEC capabilities to ice FEC mode 3366 */ 3367 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options) 3368 { 3369 if (caps & ICE_AQC_PHY_EN_AUTO_FEC) 3370 return ICE_FEC_AUTO; 3371 3372 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3373 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3374 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN | 3375 ICE_AQC_PHY_FEC_25G_KR_REQ)) 3376 return ICE_FEC_BASER; 3377 3378 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3379 ICE_AQC_PHY_FEC_25G_RS_544_REQ | 3380 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)) 3381 return ICE_FEC_RS; 3382 3383 return ICE_FEC_NONE; 3384 } 3385 3386 /** 3387 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode 3388 * @pi: port information structure 3389 * @cfg: PHY configuration data to set FC mode 3390 * @req_mode: FC mode to configure 3391 */ 3392 int 3393 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3394 enum ice_fc_mode req_mode) 3395 { 3396 struct ice_phy_cache_mode_data cache_data; 3397 u8 pause_mask = 0x0; 3398 3399 if (!pi || !cfg) 3400 return -EINVAL; 3401 3402 switch (req_mode) { 3403 case ICE_FC_FULL: 3404 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3405 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3406 break; 3407 case ICE_FC_RX_PAUSE: 3408 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3409 break; 3410 case ICE_FC_TX_PAUSE: 3411 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3412 break; 3413 default: 3414 break; 3415 } 3416 3417 /* clear the old pause settings */ 3418 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 3419 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 3420 3421 /* set the new capabilities */ 3422 cfg->caps |= pause_mask; 3423 3424 /* Cache user FC request */ 3425 cache_data.data.curr_user_fc_req = req_mode; 3426 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE); 3427 3428 return 0; 3429 } 3430 3431 /** 3432 * ice_set_fc 3433 * @pi: port information structure 3434 * @aq_failures: pointer to status code, specific to ice_set_fc routine 3435 * @ena_auto_link_update: enable automatic link update 3436 * 3437 * Set the requested flow control mode. 3438 */ 3439 int 3440 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) 3441 { 3442 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 3443 struct ice_aqc_get_phy_caps_data *pcaps; 3444 struct ice_hw *hw; 3445 int status; 3446 3447 if (!pi || !aq_failures) 3448 return -EINVAL; 3449 3450 *aq_failures = 0; 3451 hw = pi->hw; 3452 3453 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 3454 if (!pcaps) 3455 return -ENOMEM; 3456 3457 /* Get the current PHY config */ 3458 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, 3459 pcaps, NULL); 3460 if (status) { 3461 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 3462 goto out; 3463 } 3464 3465 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg); 3466 3467 /* Configure the set PHY data */ 3468 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode); 3469 if (status) 3470 goto out; 3471 3472 /* If the capabilities have changed, then set the new config */ 3473 if (cfg.caps != pcaps->caps) { 3474 int retry_count, retry_max = 10; 3475 3476 /* Auto restart link so settings take effect */ 3477 if (ena_auto_link_update) 3478 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3479 3480 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); 3481 if (status) { 3482 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 3483 goto out; 3484 } 3485 3486 /* Update the link info 3487 * It sometimes takes a really long time for link to 3488 * come back from the atomic reset. Thus, we wait a 3489 * little bit. 3490 */ 3491 for (retry_count = 0; retry_count < retry_max; retry_count++) { 3492 status = ice_update_link_info(pi); 3493 3494 if (!status) 3495 break; 3496 3497 mdelay(100); 3498 } 3499 3500 if (status) 3501 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 3502 } 3503 3504 out: 3505 devm_kfree(ice_hw_to_dev(hw), pcaps); 3506 return status; 3507 } 3508 3509 /** 3510 * ice_phy_caps_equals_cfg 3511 * @phy_caps: PHY capabilities 3512 * @phy_cfg: PHY configuration 3513 * 3514 * Helper function to determine if PHY capabilities matches PHY 3515 * configuration 3516 */ 3517 bool 3518 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps, 3519 struct ice_aqc_set_phy_cfg_data *phy_cfg) 3520 { 3521 u8 caps_mask, cfg_mask; 3522 3523 if (!phy_caps || !phy_cfg) 3524 return false; 3525 3526 /* These bits are not common between capabilities and configuration. 3527 * Do not use them to determine equality. 3528 */ 3529 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE | 3530 ICE_AQC_GET_PHY_EN_MOD_QUAL); 3531 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3532 3533 if (phy_caps->phy_type_low != phy_cfg->phy_type_low || 3534 phy_caps->phy_type_high != phy_cfg->phy_type_high || 3535 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) || 3536 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an || 3537 phy_caps->eee_cap != phy_cfg->eee_cap || 3538 phy_caps->eeer_value != phy_cfg->eeer_value || 3539 phy_caps->link_fec_options != phy_cfg->link_fec_opt) 3540 return false; 3541 3542 return true; 3543 } 3544 3545 /** 3546 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 3547 * @pi: port information structure 3548 * @caps: PHY ability structure to copy date from 3549 * @cfg: PHY configuration structure to copy data to 3550 * 3551 * Helper function to copy AQC PHY get ability data to PHY set configuration 3552 * data structure 3553 */ 3554 void 3555 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi, 3556 struct ice_aqc_get_phy_caps_data *caps, 3557 struct ice_aqc_set_phy_cfg_data *cfg) 3558 { 3559 if (!pi || !caps || !cfg) 3560 return; 3561 3562 memset(cfg, 0, sizeof(*cfg)); 3563 cfg->phy_type_low = caps->phy_type_low; 3564 cfg->phy_type_high = caps->phy_type_high; 3565 cfg->caps = caps->caps; 3566 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 3567 cfg->eee_cap = caps->eee_cap; 3568 cfg->eeer_value = caps->eeer_value; 3569 cfg->link_fec_opt = caps->link_fec_options; 3570 cfg->module_compliance_enforcement = 3571 caps->module_compliance_enforcement; 3572 } 3573 3574 /** 3575 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode 3576 * @pi: port information structure 3577 * @cfg: PHY configuration data to set FEC mode 3578 * @fec: FEC mode to configure 3579 */ 3580 int 3581 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3582 enum ice_fec_mode fec) 3583 { 3584 struct ice_aqc_get_phy_caps_data *pcaps; 3585 struct ice_hw *hw; 3586 int status; 3587 3588 if (!pi || !cfg) 3589 return -EINVAL; 3590 3591 hw = pi->hw; 3592 3593 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3594 if (!pcaps) 3595 return -ENOMEM; 3596 3597 status = ice_aq_get_phy_caps(pi, false, 3598 (ice_fw_supports_report_dflt_cfg(hw) ? 3599 ICE_AQC_REPORT_DFLT_CFG : 3600 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL); 3601 if (status) 3602 goto out; 3603 3604 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 3605 cfg->link_fec_opt = pcaps->link_fec_options; 3606 3607 switch (fec) { 3608 case ICE_FEC_BASER: 3609 /* Clear RS bits, and AND BASE-R ability 3610 * bits and OR request bits. 3611 */ 3612 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3613 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; 3614 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3615 ICE_AQC_PHY_FEC_25G_KR_REQ; 3616 break; 3617 case ICE_FEC_RS: 3618 /* Clear BASE-R bits, and AND RS ability 3619 * bits and OR request bits. 3620 */ 3621 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; 3622 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3623 ICE_AQC_PHY_FEC_25G_RS_544_REQ; 3624 break; 3625 case ICE_FEC_NONE: 3626 /* Clear all FEC option bits. */ 3627 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; 3628 break; 3629 case ICE_FEC_AUTO: 3630 /* AND auto FEC bit, and all caps bits. */ 3631 cfg->caps &= ICE_AQC_PHY_CAPS_MASK; 3632 cfg->link_fec_opt |= pcaps->link_fec_options; 3633 break; 3634 default: 3635 status = -EINVAL; 3636 break; 3637 } 3638 3639 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) && 3640 !ice_fw_supports_report_dflt_cfg(hw)) { 3641 struct ice_link_default_override_tlv tlv = { 0 }; 3642 3643 status = ice_get_link_default_override(&tlv, pi); 3644 if (status) 3645 goto out; 3646 3647 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) && 3648 (tlv.options & ICE_LINK_OVERRIDE_EN)) 3649 cfg->link_fec_opt = tlv.fec_options; 3650 } 3651 3652 out: 3653 kfree(pcaps); 3654 3655 return status; 3656 } 3657 3658 /** 3659 * ice_get_link_status - get status of the HW network link 3660 * @pi: port information structure 3661 * @link_up: pointer to bool (true/false = linkup/linkdown) 3662 * 3663 * Variable link_up is true if link is up, false if link is down. 3664 * The variable link_up is invalid if status is non zero. As a 3665 * result of this call, link status reporting becomes enabled 3666 */ 3667 int ice_get_link_status(struct ice_port_info *pi, bool *link_up) 3668 { 3669 struct ice_phy_info *phy_info; 3670 int status = 0; 3671 3672 if (!pi || !link_up) 3673 return -EINVAL; 3674 3675 phy_info = &pi->phy; 3676 3677 if (phy_info->get_link_info) { 3678 status = ice_update_link_info(pi); 3679 3680 if (status) 3681 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", 3682 status); 3683 } 3684 3685 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 3686 3687 return status; 3688 } 3689 3690 /** 3691 * ice_aq_set_link_restart_an 3692 * @pi: pointer to the port information structure 3693 * @ena_link: if true: enable link, if false: disable link 3694 * @cd: pointer to command details structure or NULL 3695 * 3696 * Sets up the link and restarts the Auto-Negotiation over the link. 3697 */ 3698 int 3699 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 3700 struct ice_sq_cd *cd) 3701 { 3702 struct ice_aqc_restart_an *cmd; 3703 struct ice_aq_desc desc; 3704 3705 cmd = &desc.params.restart_an; 3706 3707 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 3708 3709 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 3710 cmd->lport_num = pi->lport; 3711 if (ena_link) 3712 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 3713 else 3714 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 3715 3716 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 3717 } 3718 3719 /** 3720 * ice_aq_set_event_mask 3721 * @hw: pointer to the HW struct 3722 * @port_num: port number of the physical function 3723 * @mask: event mask to be set 3724 * @cd: pointer to command details structure or NULL 3725 * 3726 * Set event mask (0x0613) 3727 */ 3728 int 3729 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 3730 struct ice_sq_cd *cd) 3731 { 3732 struct ice_aqc_set_event_mask *cmd; 3733 struct ice_aq_desc desc; 3734 3735 cmd = &desc.params.set_event_mask; 3736 3737 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 3738 3739 cmd->lport_num = port_num; 3740 3741 cmd->event_mask = cpu_to_le16(mask); 3742 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3743 } 3744 3745 /** 3746 * ice_aq_set_mac_loopback 3747 * @hw: pointer to the HW struct 3748 * @ena_lpbk: Enable or Disable loopback 3749 * @cd: pointer to command details structure or NULL 3750 * 3751 * Enable/disable loopback on a given port 3752 */ 3753 int 3754 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) 3755 { 3756 struct ice_aqc_set_mac_lb *cmd; 3757 struct ice_aq_desc desc; 3758 3759 cmd = &desc.params.set_mac_lb; 3760 3761 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); 3762 if (ena_lpbk) 3763 cmd->lb_mode = ICE_AQ_MAC_LB_EN; 3764 3765 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3766 } 3767 3768 /** 3769 * ice_aq_set_port_id_led 3770 * @pi: pointer to the port information 3771 * @is_orig_mode: is this LED set to original mode (by the net-list) 3772 * @cd: pointer to command details structure or NULL 3773 * 3774 * Set LED value for the given port (0x06e9) 3775 */ 3776 int 3777 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, 3778 struct ice_sq_cd *cd) 3779 { 3780 struct ice_aqc_set_port_id_led *cmd; 3781 struct ice_hw *hw = pi->hw; 3782 struct ice_aq_desc desc; 3783 3784 cmd = &desc.params.set_port_id_led; 3785 3786 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); 3787 3788 if (is_orig_mode) 3789 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; 3790 else 3791 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; 3792 3793 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3794 } 3795 3796 /** 3797 * ice_aq_get_port_options 3798 * @hw: pointer to the HW struct 3799 * @options: buffer for the resultant port options 3800 * @option_count: input - size of the buffer in port options structures, 3801 * output - number of returned port options 3802 * @lport: logical port to call the command with (optional) 3803 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 3804 * when PF owns more than 1 port it must be true 3805 * @active_option_idx: index of active port option in returned buffer 3806 * @active_option_valid: active option in returned buffer is valid 3807 * @pending_option_idx: index of pending port option in returned buffer 3808 * @pending_option_valid: pending option in returned buffer is valid 3809 * 3810 * Calls Get Port Options AQC (0x06ea) and verifies result. 3811 */ 3812 int 3813 ice_aq_get_port_options(struct ice_hw *hw, 3814 struct ice_aqc_get_port_options_elem *options, 3815 u8 *option_count, u8 lport, bool lport_valid, 3816 u8 *active_option_idx, bool *active_option_valid, 3817 u8 *pending_option_idx, bool *pending_option_valid) 3818 { 3819 struct ice_aqc_get_port_options *cmd; 3820 struct ice_aq_desc desc; 3821 int status; 3822 u8 i; 3823 3824 /* options buffer shall be able to hold max returned options */ 3825 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M) 3826 return -EINVAL; 3827 3828 cmd = &desc.params.get_port_options; 3829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options); 3830 3831 if (lport_valid) 3832 cmd->lport_num = lport; 3833 cmd->lport_num_valid = lport_valid; 3834 3835 status = ice_aq_send_cmd(hw, &desc, options, 3836 *option_count * sizeof(*options), NULL); 3837 if (status) 3838 return status; 3839 3840 /* verify direct FW response & set output parameters */ 3841 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M, 3842 cmd->port_options_count); 3843 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count); 3844 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID, 3845 cmd->port_options); 3846 if (*active_option_valid) { 3847 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M, 3848 cmd->port_options); 3849 if (*active_option_idx > (*option_count - 1)) 3850 return -EIO; 3851 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n", 3852 *active_option_idx); 3853 } 3854 3855 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID, 3856 cmd->pending_port_option_status); 3857 if (*pending_option_valid) { 3858 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M, 3859 cmd->pending_port_option_status); 3860 if (*pending_option_idx > (*option_count - 1)) 3861 return -EIO; 3862 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n", 3863 *pending_option_idx); 3864 } 3865 3866 /* mask output options fields */ 3867 for (i = 0; i < *option_count; i++) { 3868 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M, 3869 options[i].pmd); 3870 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M, 3871 options[i].max_lane_speed); 3872 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n", 3873 options[i].pmd, options[i].max_lane_speed); 3874 } 3875 3876 return 0; 3877 } 3878 3879 /** 3880 * ice_aq_set_port_option 3881 * @hw: pointer to the HW struct 3882 * @lport: logical port to call the command with 3883 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 3884 * when PF owns more than 1 port it must be true 3885 * @new_option: new port option to be written 3886 * 3887 * Calls Set Port Options AQC (0x06eb). 3888 */ 3889 int 3890 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid, 3891 u8 new_option) 3892 { 3893 struct ice_aqc_set_port_option *cmd; 3894 struct ice_aq_desc desc; 3895 3896 if (new_option > ICE_AQC_PORT_OPT_COUNT_M) 3897 return -EINVAL; 3898 3899 cmd = &desc.params.set_port_option; 3900 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option); 3901 3902 if (lport_valid) 3903 cmd->lport_num = lport; 3904 3905 cmd->lport_num_valid = lport_valid; 3906 cmd->selected_port_option = new_option; 3907 3908 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 3909 } 3910 3911 /** 3912 * ice_aq_sff_eeprom 3913 * @hw: pointer to the HW struct 3914 * @lport: bits [7:0] = logical port, bit [8] = logical port valid 3915 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) 3916 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. 3917 * @page: QSFP page 3918 * @set_page: set or ignore the page 3919 * @data: pointer to data buffer to be read/written to the I2C device. 3920 * @length: 1-16 for read, 1 for write. 3921 * @write: 0 read, 1 for write. 3922 * @cd: pointer to command details structure or NULL 3923 * 3924 * Read/Write SFF EEPROM (0x06EE) 3925 */ 3926 int 3927 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, 3928 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, 3929 bool write, struct ice_sq_cd *cd) 3930 { 3931 struct ice_aqc_sff_eeprom *cmd; 3932 struct ice_aq_desc desc; 3933 int status; 3934 3935 if (!data || (mem_addr & 0xff00)) 3936 return -EINVAL; 3937 3938 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); 3939 cmd = &desc.params.read_write_sff_param; 3940 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 3941 cmd->lport_num = (u8)(lport & 0xff); 3942 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); 3943 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) & 3944 ICE_AQC_SFF_I2CBUS_7BIT_M) | 3945 ((set_page << 3946 ICE_AQC_SFF_SET_EEPROM_PAGE_S) & 3947 ICE_AQC_SFF_SET_EEPROM_PAGE_M)); 3948 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); 3949 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S); 3950 if (write) 3951 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE); 3952 3953 status = ice_aq_send_cmd(hw, &desc, data, length, cd); 3954 return status; 3955 } 3956 3957 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type) 3958 { 3959 switch (type) { 3960 case ICE_LUT_VSI: 3961 return ICE_LUT_VSI_SIZE; 3962 case ICE_LUT_GLOBAL: 3963 return ICE_LUT_GLOBAL_SIZE; 3964 case ICE_LUT_PF: 3965 return ICE_LUT_PF_SIZE; 3966 } 3967 WARN_ONCE(1, "incorrect type passed"); 3968 return ICE_LUT_VSI_SIZE; 3969 } 3970 3971 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size) 3972 { 3973 switch (size) { 3974 case ICE_LUT_VSI_SIZE: 3975 return ICE_AQC_LUT_SIZE_SMALL; 3976 case ICE_LUT_GLOBAL_SIZE: 3977 return ICE_AQC_LUT_SIZE_512; 3978 case ICE_LUT_PF_SIZE: 3979 return ICE_AQC_LUT_SIZE_2K; 3980 } 3981 WARN_ONCE(1, "incorrect size passed"); 3982 return 0; 3983 } 3984 3985 /** 3986 * __ice_aq_get_set_rss_lut 3987 * @hw: pointer to the hardware structure 3988 * @params: RSS LUT parameters 3989 * @set: set true to set the table, false to get the table 3990 * 3991 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 3992 */ 3993 static int 3994 __ice_aq_get_set_rss_lut(struct ice_hw *hw, 3995 struct ice_aq_get_set_rss_lut_params *params, bool set) 3996 { 3997 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0; 3998 enum ice_lut_type lut_type = params->lut_type; 3999 struct ice_aqc_get_set_rss_lut *desc_params; 4000 enum ice_aqc_lut_flags flags; 4001 enum ice_lut_size lut_size; 4002 struct ice_aq_desc desc; 4003 u8 *lut = params->lut; 4004 4005 4006 if (!lut || !ice_is_vsi_valid(hw, vsi_handle)) 4007 return -EINVAL; 4008 4009 lut_size = ice_lut_type_to_size(lut_type); 4010 if (lut_size > params->lut_size) 4011 return -EINVAL; 4012 else if (set && lut_size != params->lut_size) 4013 return -EINVAL; 4014 4015 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut; 4016 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 4017 if (set) 4018 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4019 4020 desc_params = &desc.params.get_set_rss_lut; 4021 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4022 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4023 4024 if (lut_type == ICE_LUT_GLOBAL) 4025 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX, 4026 params->global_lut_id); 4027 4028 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size); 4029 desc_params->flags = cpu_to_le16(flags); 4030 4031 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 4032 } 4033 4034 /** 4035 * ice_aq_get_rss_lut 4036 * @hw: pointer to the hardware structure 4037 * @get_params: RSS LUT parameters used to specify which RSS LUT to get 4038 * 4039 * get the RSS lookup table, PF or VSI type 4040 */ 4041 int 4042 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params) 4043 { 4044 return __ice_aq_get_set_rss_lut(hw, get_params, false); 4045 } 4046 4047 /** 4048 * ice_aq_set_rss_lut 4049 * @hw: pointer to the hardware structure 4050 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT 4051 * 4052 * set the RSS lookup table, PF or VSI type 4053 */ 4054 int 4055 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params) 4056 { 4057 return __ice_aq_get_set_rss_lut(hw, set_params, true); 4058 } 4059 4060 /** 4061 * __ice_aq_get_set_rss_key 4062 * @hw: pointer to the HW struct 4063 * @vsi_id: VSI FW index 4064 * @key: pointer to key info struct 4065 * @set: set true to set the key, false to get the key 4066 * 4067 * get (0x0B04) or set (0x0B02) the RSS key per VSI 4068 */ 4069 static int 4070 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 4071 struct ice_aqc_get_set_rss_keys *key, bool set) 4072 { 4073 struct ice_aqc_get_set_rss_key *desc_params; 4074 u16 key_size = sizeof(*key); 4075 struct ice_aq_desc desc; 4076 4077 if (set) { 4078 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 4079 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4080 } else { 4081 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 4082 } 4083 4084 desc_params = &desc.params.get_set_rss_key; 4085 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4086 4087 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 4088 } 4089 4090 /** 4091 * ice_aq_get_rss_key 4092 * @hw: pointer to the HW struct 4093 * @vsi_handle: software VSI handle 4094 * @key: pointer to key info struct 4095 * 4096 * get the RSS key per VSI 4097 */ 4098 int 4099 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, 4100 struct ice_aqc_get_set_rss_keys *key) 4101 { 4102 if (!ice_is_vsi_valid(hw, vsi_handle) || !key) 4103 return -EINVAL; 4104 4105 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4106 key, false); 4107 } 4108 4109 /** 4110 * ice_aq_set_rss_key 4111 * @hw: pointer to the HW struct 4112 * @vsi_handle: software VSI handle 4113 * @keys: pointer to key info struct 4114 * 4115 * set the RSS key per VSI 4116 */ 4117 int 4118 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, 4119 struct ice_aqc_get_set_rss_keys *keys) 4120 { 4121 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) 4122 return -EINVAL; 4123 4124 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4125 keys, true); 4126 } 4127 4128 /** 4129 * ice_aq_add_lan_txq 4130 * @hw: pointer to the hardware structure 4131 * @num_qgrps: Number of added queue groups 4132 * @qg_list: list of queue groups to be added 4133 * @buf_size: size of buffer for indirect command 4134 * @cd: pointer to command details structure or NULL 4135 * 4136 * Add Tx LAN queue (0x0C30) 4137 * 4138 * NOTE: 4139 * Prior to calling add Tx LAN queue: 4140 * Initialize the following as part of the Tx queue context: 4141 * Completion queue ID if the queue uses Completion queue, Quanta profile, 4142 * Cache profile and Packet shaper profile. 4143 * 4144 * After add Tx LAN queue AQ command is completed: 4145 * Interrupts should be associated with specific queues, 4146 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 4147 * flow. 4148 */ 4149 static int 4150 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4151 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 4152 struct ice_sq_cd *cd) 4153 { 4154 struct ice_aqc_add_tx_qgrp *list; 4155 struct ice_aqc_add_txqs *cmd; 4156 struct ice_aq_desc desc; 4157 u16 i, sum_size = 0; 4158 4159 cmd = &desc.params.add_txqs; 4160 4161 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 4162 4163 if (!qg_list) 4164 return -EINVAL; 4165 4166 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4167 return -EINVAL; 4168 4169 for (i = 0, list = qg_list; i < num_qgrps; i++) { 4170 sum_size += struct_size(list, txqs, list->num_txqs); 4171 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + 4172 list->num_txqs); 4173 } 4174 4175 if (buf_size != sum_size) 4176 return -EINVAL; 4177 4178 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4179 4180 cmd->num_qgrps = num_qgrps; 4181 4182 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4183 } 4184 4185 /** 4186 * ice_aq_dis_lan_txq 4187 * @hw: pointer to the hardware structure 4188 * @num_qgrps: number of groups in the list 4189 * @qg_list: the list of groups to disable 4190 * @buf_size: the total size of the qg_list buffer in bytes 4191 * @rst_src: if called due to reset, specifies the reset source 4192 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4193 * @cd: pointer to command details structure or NULL 4194 * 4195 * Disable LAN Tx queue (0x0C31) 4196 */ 4197 static int 4198 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4199 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 4200 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4201 struct ice_sq_cd *cd) 4202 { 4203 struct ice_aqc_dis_txq_item *item; 4204 struct ice_aqc_dis_txqs *cmd; 4205 struct ice_aq_desc desc; 4206 u16 i, sz = 0; 4207 int status; 4208 4209 cmd = &desc.params.dis_txqs; 4210 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 4211 4212 /* qg_list can be NULL only in VM/VF reset flow */ 4213 if (!qg_list && !rst_src) 4214 return -EINVAL; 4215 4216 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4217 return -EINVAL; 4218 4219 cmd->num_entries = num_qgrps; 4220 4221 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & 4222 ICE_AQC_Q_DIS_TIMEOUT_M); 4223 4224 switch (rst_src) { 4225 case ICE_VM_RESET: 4226 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; 4227 cmd->vmvf_and_timeout |= 4228 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); 4229 break; 4230 case ICE_VF_RESET: 4231 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; 4232 /* In this case, FW expects vmvf_num to be absolute VF ID */ 4233 cmd->vmvf_and_timeout |= 4234 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & 4235 ICE_AQC_Q_DIS_VMVF_NUM_M); 4236 break; 4237 case ICE_NO_RESET: 4238 default: 4239 break; 4240 } 4241 4242 /* flush pipe on time out */ 4243 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; 4244 /* If no queue group info, we are in a reset flow. Issue the AQ */ 4245 if (!qg_list) 4246 goto do_aq; 4247 4248 /* set RD bit to indicate that command buffer is provided by the driver 4249 * and it needs to be read by the firmware 4250 */ 4251 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4252 4253 for (i = 0, item = qg_list; i < num_qgrps; i++) { 4254 u16 item_size = struct_size(item, q_id, item->num_qs); 4255 4256 /* If the num of queues is even, add 2 bytes of padding */ 4257 if ((item->num_qs % 2) == 0) 4258 item_size += 2; 4259 4260 sz += item_size; 4261 4262 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); 4263 } 4264 4265 if (buf_size != sz) 4266 return -EINVAL; 4267 4268 do_aq: 4269 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4270 if (status) { 4271 if (!qg_list) 4272 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", 4273 vmvf_num, hw->adminq.sq_last_status); 4274 else 4275 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", 4276 le16_to_cpu(qg_list[0].q_id[0]), 4277 hw->adminq.sq_last_status); 4278 } 4279 return status; 4280 } 4281 4282 /** 4283 * ice_aq_cfg_lan_txq 4284 * @hw: pointer to the hardware structure 4285 * @buf: buffer for command 4286 * @buf_size: size of buffer in bytes 4287 * @num_qs: number of queues being configured 4288 * @oldport: origination lport 4289 * @newport: destination lport 4290 * @cd: pointer to command details structure or NULL 4291 * 4292 * Move/Configure LAN Tx queue (0x0C32) 4293 * 4294 * There is a better AQ command to use for moving nodes, so only coding 4295 * this one for configuring the node. 4296 */ 4297 int 4298 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf, 4299 u16 buf_size, u16 num_qs, u8 oldport, u8 newport, 4300 struct ice_sq_cd *cd) 4301 { 4302 struct ice_aqc_cfg_txqs *cmd; 4303 struct ice_aq_desc desc; 4304 int status; 4305 4306 cmd = &desc.params.cfg_txqs; 4307 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs); 4308 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4309 4310 if (!buf) 4311 return -EINVAL; 4312 4313 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG; 4314 cmd->num_qs = num_qs; 4315 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M); 4316 cmd->port_num_chng |= (newport << ICE_AQC_Q_CFG_DST_PRT_S) & 4317 ICE_AQC_Q_CFG_DST_PRT_M; 4318 cmd->time_out = (5 << ICE_AQC_Q_CFG_TIMEOUT_S) & 4319 ICE_AQC_Q_CFG_TIMEOUT_M; 4320 cmd->blocked_cgds = 0; 4321 4322 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 4323 if (status) 4324 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n", 4325 hw->adminq.sq_last_status); 4326 return status; 4327 } 4328 4329 /** 4330 * ice_aq_add_rdma_qsets 4331 * @hw: pointer to the hardware structure 4332 * @num_qset_grps: Number of RDMA Qset groups 4333 * @qset_list: list of Qset groups to be added 4334 * @buf_size: size of buffer for indirect command 4335 * @cd: pointer to command details structure or NULL 4336 * 4337 * Add Tx RDMA Qsets (0x0C33) 4338 */ 4339 static int 4340 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps, 4341 struct ice_aqc_add_rdma_qset_data *qset_list, 4342 u16 buf_size, struct ice_sq_cd *cd) 4343 { 4344 struct ice_aqc_add_rdma_qset_data *list; 4345 struct ice_aqc_add_rdma_qset *cmd; 4346 struct ice_aq_desc desc; 4347 u16 i, sum_size = 0; 4348 4349 cmd = &desc.params.add_rdma_qset; 4350 4351 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset); 4352 4353 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS) 4354 return -EINVAL; 4355 4356 for (i = 0, list = qset_list; i < num_qset_grps; i++) { 4357 u16 num_qsets = le16_to_cpu(list->num_qsets); 4358 4359 sum_size += struct_size(list, rdma_qsets, num_qsets); 4360 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets + 4361 num_qsets); 4362 } 4363 4364 if (buf_size != sum_size) 4365 return -EINVAL; 4366 4367 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4368 4369 cmd->num_qset_grps = num_qset_grps; 4370 4371 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd); 4372 } 4373 4374 /* End of FW Admin Queue command wrappers */ 4375 4376 /** 4377 * ice_write_byte - write a byte to a packed context structure 4378 * @src_ctx: the context structure to read from 4379 * @dest_ctx: the context to be written to 4380 * @ce_info: a description of the struct to be filled 4381 */ 4382 static void 4383 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4384 { 4385 u8 src_byte, dest_byte, mask; 4386 u8 *from, *dest; 4387 u16 shift_width; 4388 4389 /* copy from the next struct field */ 4390 from = src_ctx + ce_info->offset; 4391 4392 /* prepare the bits and mask */ 4393 shift_width = ce_info->lsb % 8; 4394 mask = (u8)(BIT(ce_info->width) - 1); 4395 4396 src_byte = *from; 4397 src_byte &= mask; 4398 4399 /* shift to correct alignment */ 4400 mask <<= shift_width; 4401 src_byte <<= shift_width; 4402 4403 /* get the current bits from the target bit string */ 4404 dest = dest_ctx + (ce_info->lsb / 8); 4405 4406 memcpy(&dest_byte, dest, sizeof(dest_byte)); 4407 4408 dest_byte &= ~mask; /* get the bits not changing */ 4409 dest_byte |= src_byte; /* add in the new bits */ 4410 4411 /* put it all back */ 4412 memcpy(dest, &dest_byte, sizeof(dest_byte)); 4413 } 4414 4415 /** 4416 * ice_write_word - write a word to a packed context structure 4417 * @src_ctx: the context structure to read from 4418 * @dest_ctx: the context to be written to 4419 * @ce_info: a description of the struct to be filled 4420 */ 4421 static void 4422 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4423 { 4424 u16 src_word, mask; 4425 __le16 dest_word; 4426 u8 *from, *dest; 4427 u16 shift_width; 4428 4429 /* copy from the next struct field */ 4430 from = src_ctx + ce_info->offset; 4431 4432 /* prepare the bits and mask */ 4433 shift_width = ce_info->lsb % 8; 4434 mask = BIT(ce_info->width) - 1; 4435 4436 /* don't swizzle the bits until after the mask because the mask bits 4437 * will be in a different bit position on big endian machines 4438 */ 4439 src_word = *(u16 *)from; 4440 src_word &= mask; 4441 4442 /* shift to correct alignment */ 4443 mask <<= shift_width; 4444 src_word <<= shift_width; 4445 4446 /* get the current bits from the target bit string */ 4447 dest = dest_ctx + (ce_info->lsb / 8); 4448 4449 memcpy(&dest_word, dest, sizeof(dest_word)); 4450 4451 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ 4452 dest_word |= cpu_to_le16(src_word); /* add in the new bits */ 4453 4454 /* put it all back */ 4455 memcpy(dest, &dest_word, sizeof(dest_word)); 4456 } 4457 4458 /** 4459 * ice_write_dword - write a dword to a packed context structure 4460 * @src_ctx: the context structure to read from 4461 * @dest_ctx: the context to be written to 4462 * @ce_info: a description of the struct to be filled 4463 */ 4464 static void 4465 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4466 { 4467 u32 src_dword, mask; 4468 __le32 dest_dword; 4469 u8 *from, *dest; 4470 u16 shift_width; 4471 4472 /* copy from the next struct field */ 4473 from = src_ctx + ce_info->offset; 4474 4475 /* prepare the bits and mask */ 4476 shift_width = ce_info->lsb % 8; 4477 4478 /* if the field width is exactly 32 on an x86 machine, then the shift 4479 * operation will not work because the SHL instructions count is masked 4480 * to 5 bits so the shift will do nothing 4481 */ 4482 if (ce_info->width < 32) 4483 mask = BIT(ce_info->width) - 1; 4484 else 4485 mask = (u32)~0; 4486 4487 /* don't swizzle the bits until after the mask because the mask bits 4488 * will be in a different bit position on big endian machines 4489 */ 4490 src_dword = *(u32 *)from; 4491 src_dword &= mask; 4492 4493 /* shift to correct alignment */ 4494 mask <<= shift_width; 4495 src_dword <<= shift_width; 4496 4497 /* get the current bits from the target bit string */ 4498 dest = dest_ctx + (ce_info->lsb / 8); 4499 4500 memcpy(&dest_dword, dest, sizeof(dest_dword)); 4501 4502 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ 4503 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ 4504 4505 /* put it all back */ 4506 memcpy(dest, &dest_dword, sizeof(dest_dword)); 4507 } 4508 4509 /** 4510 * ice_write_qword - write a qword to a packed context structure 4511 * @src_ctx: the context structure to read from 4512 * @dest_ctx: the context to be written to 4513 * @ce_info: a description of the struct to be filled 4514 */ 4515 static void 4516 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4517 { 4518 u64 src_qword, mask; 4519 __le64 dest_qword; 4520 u8 *from, *dest; 4521 u16 shift_width; 4522 4523 /* copy from the next struct field */ 4524 from = src_ctx + ce_info->offset; 4525 4526 /* prepare the bits and mask */ 4527 shift_width = ce_info->lsb % 8; 4528 4529 /* if the field width is exactly 64 on an x86 machine, then the shift 4530 * operation will not work because the SHL instructions count is masked 4531 * to 6 bits so the shift will do nothing 4532 */ 4533 if (ce_info->width < 64) 4534 mask = BIT_ULL(ce_info->width) - 1; 4535 else 4536 mask = (u64)~0; 4537 4538 /* don't swizzle the bits until after the mask because the mask bits 4539 * will be in a different bit position on big endian machines 4540 */ 4541 src_qword = *(u64 *)from; 4542 src_qword &= mask; 4543 4544 /* shift to correct alignment */ 4545 mask <<= shift_width; 4546 src_qword <<= shift_width; 4547 4548 /* get the current bits from the target bit string */ 4549 dest = dest_ctx + (ce_info->lsb / 8); 4550 4551 memcpy(&dest_qword, dest, sizeof(dest_qword)); 4552 4553 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ 4554 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ 4555 4556 /* put it all back */ 4557 memcpy(dest, &dest_qword, sizeof(dest_qword)); 4558 } 4559 4560 /** 4561 * ice_set_ctx - set context bits in packed structure 4562 * @hw: pointer to the hardware structure 4563 * @src_ctx: pointer to a generic non-packed context structure 4564 * @dest_ctx: pointer to memory for the packed structure 4565 * @ce_info: a description of the structure to be transformed 4566 */ 4567 int 4568 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx, 4569 const struct ice_ctx_ele *ce_info) 4570 { 4571 int f; 4572 4573 for (f = 0; ce_info[f].width; f++) { 4574 /* We have to deal with each element of the FW response 4575 * using the correct size so that we are correct regardless 4576 * of the endianness of the machine. 4577 */ 4578 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) { 4579 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n", 4580 f, ce_info[f].width, ce_info[f].size_of); 4581 continue; 4582 } 4583 switch (ce_info[f].size_of) { 4584 case sizeof(u8): 4585 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); 4586 break; 4587 case sizeof(u16): 4588 ice_write_word(src_ctx, dest_ctx, &ce_info[f]); 4589 break; 4590 case sizeof(u32): 4591 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); 4592 break; 4593 case sizeof(u64): 4594 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); 4595 break; 4596 default: 4597 return -EINVAL; 4598 } 4599 } 4600 4601 return 0; 4602 } 4603 4604 /** 4605 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC 4606 * @hw: pointer to the HW struct 4607 * @vsi_handle: software VSI handle 4608 * @tc: TC number 4609 * @q_handle: software queue handle 4610 */ 4611 struct ice_q_ctx * 4612 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) 4613 { 4614 struct ice_vsi_ctx *vsi; 4615 struct ice_q_ctx *q_ctx; 4616 4617 vsi = ice_get_vsi_ctx(hw, vsi_handle); 4618 if (!vsi) 4619 return NULL; 4620 if (q_handle >= vsi->num_lan_q_entries[tc]) 4621 return NULL; 4622 if (!vsi->lan_q_ctx[tc]) 4623 return NULL; 4624 q_ctx = vsi->lan_q_ctx[tc]; 4625 return &q_ctx[q_handle]; 4626 } 4627 4628 /** 4629 * ice_ena_vsi_txq 4630 * @pi: port information structure 4631 * @vsi_handle: software VSI handle 4632 * @tc: TC number 4633 * @q_handle: software queue handle 4634 * @num_qgrps: Number of added queue groups 4635 * @buf: list of queue groups to be added 4636 * @buf_size: size of buffer for indirect command 4637 * @cd: pointer to command details structure or NULL 4638 * 4639 * This function adds one LAN queue 4640 */ 4641 int 4642 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, 4643 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 4644 struct ice_sq_cd *cd) 4645 { 4646 struct ice_aqc_txsched_elem_data node = { 0 }; 4647 struct ice_sched_node *parent; 4648 struct ice_q_ctx *q_ctx; 4649 struct ice_hw *hw; 4650 int status; 4651 4652 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4653 return -EIO; 4654 4655 if (num_qgrps > 1 || buf->num_txqs > 1) 4656 return -ENOSPC; 4657 4658 hw = pi->hw; 4659 4660 if (!ice_is_vsi_valid(hw, vsi_handle)) 4661 return -EINVAL; 4662 4663 mutex_lock(&pi->sched_lock); 4664 4665 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); 4666 if (!q_ctx) { 4667 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", 4668 q_handle); 4669 status = -EINVAL; 4670 goto ena_txq_exit; 4671 } 4672 4673 /* find a parent node */ 4674 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4675 ICE_SCHED_NODE_OWNER_LAN); 4676 if (!parent) { 4677 status = -EINVAL; 4678 goto ena_txq_exit; 4679 } 4680 4681 buf->parent_teid = parent->info.node_teid; 4682 node.parent_teid = parent->info.node_teid; 4683 /* Mark that the values in the "generic" section as valid. The default 4684 * value in the "generic" section is zero. This means that : 4685 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 4686 * - 0 priority among siblings, indicated by Bit 1-3. 4687 * - WFQ, indicated by Bit 4. 4688 * - 0 Adjustment value is used in PSM credit update flow, indicated by 4689 * Bit 5-6. 4690 * - Bit 7 is reserved. 4691 * Without setting the generic section as valid in valid_sections, the 4692 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. 4693 */ 4694 buf->txqs[0].info.valid_sections = 4695 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4696 ICE_AQC_ELEM_VALID_EIR; 4697 buf->txqs[0].info.generic = 0; 4698 buf->txqs[0].info.cir_bw.bw_profile_idx = 4699 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4700 buf->txqs[0].info.cir_bw.bw_alloc = 4701 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4702 buf->txqs[0].info.eir_bw.bw_profile_idx = 4703 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4704 buf->txqs[0].info.eir_bw.bw_alloc = 4705 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4706 4707 /* add the LAN queue */ 4708 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 4709 if (status) { 4710 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", 4711 le16_to_cpu(buf->txqs[0].txq_id), 4712 hw->adminq.sq_last_status); 4713 goto ena_txq_exit; 4714 } 4715 4716 node.node_teid = buf->txqs[0].q_teid; 4717 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4718 q_ctx->q_handle = q_handle; 4719 q_ctx->q_teid = le32_to_cpu(node.node_teid); 4720 4721 /* add a leaf node into scheduler tree queue layer */ 4722 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL); 4723 if (!status) 4724 status = ice_sched_replay_q_bw(pi, q_ctx); 4725 4726 ena_txq_exit: 4727 mutex_unlock(&pi->sched_lock); 4728 return status; 4729 } 4730 4731 /** 4732 * ice_dis_vsi_txq 4733 * @pi: port information structure 4734 * @vsi_handle: software VSI handle 4735 * @tc: TC number 4736 * @num_queues: number of queues 4737 * @q_handles: pointer to software queue handle array 4738 * @q_ids: pointer to the q_id array 4739 * @q_teids: pointer to queue node teids 4740 * @rst_src: if called due to reset, specifies the reset source 4741 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4742 * @cd: pointer to command details structure or NULL 4743 * 4744 * This function removes queues and their corresponding nodes in SW DB 4745 */ 4746 int 4747 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, 4748 u16 *q_handles, u16 *q_ids, u32 *q_teids, 4749 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4750 struct ice_sq_cd *cd) 4751 { 4752 struct ice_aqc_dis_txq_item *qg_list; 4753 struct ice_q_ctx *q_ctx; 4754 int status = -ENOENT; 4755 struct ice_hw *hw; 4756 u16 i, buf_size; 4757 4758 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4759 return -EIO; 4760 4761 hw = pi->hw; 4762 4763 if (!num_queues) { 4764 /* if queue is disabled already yet the disable queue command 4765 * has to be sent to complete the VF reset, then call 4766 * ice_aq_dis_lan_txq without any queue information 4767 */ 4768 if (rst_src) 4769 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, 4770 vmvf_num, NULL); 4771 return -EIO; 4772 } 4773 4774 buf_size = struct_size(qg_list, q_id, 1); 4775 qg_list = kzalloc(buf_size, GFP_KERNEL); 4776 if (!qg_list) 4777 return -ENOMEM; 4778 4779 mutex_lock(&pi->sched_lock); 4780 4781 for (i = 0; i < num_queues; i++) { 4782 struct ice_sched_node *node; 4783 4784 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 4785 if (!node) 4786 continue; 4787 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); 4788 if (!q_ctx) { 4789 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", 4790 q_handles[i]); 4791 continue; 4792 } 4793 if (q_ctx->q_handle != q_handles[i]) { 4794 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", 4795 q_ctx->q_handle, q_handles[i]); 4796 continue; 4797 } 4798 qg_list->parent_teid = node->info.parent_teid; 4799 qg_list->num_qs = 1; 4800 qg_list->q_id[0] = cpu_to_le16(q_ids[i]); 4801 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, 4802 vmvf_num, cd); 4803 4804 if (status) 4805 break; 4806 ice_free_sched_node(pi, node); 4807 q_ctx->q_handle = ICE_INVAL_Q_HANDLE; 4808 q_ctx->q_teid = ICE_INVAL_TEID; 4809 } 4810 mutex_unlock(&pi->sched_lock); 4811 kfree(qg_list); 4812 return status; 4813 } 4814 4815 /** 4816 * ice_cfg_vsi_qs - configure the new/existing VSI queues 4817 * @pi: port information structure 4818 * @vsi_handle: software VSI handle 4819 * @tc_bitmap: TC bitmap 4820 * @maxqs: max queues array per TC 4821 * @owner: LAN or RDMA 4822 * 4823 * This function adds/updates the VSI queues per TC. 4824 */ 4825 static int 4826 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4827 u16 *maxqs, u8 owner) 4828 { 4829 int status = 0; 4830 u8 i; 4831 4832 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4833 return -EIO; 4834 4835 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 4836 return -EINVAL; 4837 4838 mutex_lock(&pi->sched_lock); 4839 4840 ice_for_each_traffic_class(i) { 4841 /* configuration is possible only if TC node is present */ 4842 if (!ice_sched_get_tc_node(pi, i)) 4843 continue; 4844 4845 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, 4846 ice_is_tc_ena(tc_bitmap, i)); 4847 if (status) 4848 break; 4849 } 4850 4851 mutex_unlock(&pi->sched_lock); 4852 return status; 4853 } 4854 4855 /** 4856 * ice_cfg_vsi_lan - configure VSI LAN queues 4857 * @pi: port information structure 4858 * @vsi_handle: software VSI handle 4859 * @tc_bitmap: TC bitmap 4860 * @max_lanqs: max LAN queues array per TC 4861 * 4862 * This function adds/updates the VSI LAN queues per TC. 4863 */ 4864 int 4865 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4866 u16 *max_lanqs) 4867 { 4868 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, 4869 ICE_SCHED_NODE_OWNER_LAN); 4870 } 4871 4872 /** 4873 * ice_cfg_vsi_rdma - configure the VSI RDMA queues 4874 * @pi: port information structure 4875 * @vsi_handle: software VSI handle 4876 * @tc_bitmap: TC bitmap 4877 * @max_rdmaqs: max RDMA queues array per TC 4878 * 4879 * This function adds/updates the VSI RDMA queues per TC. 4880 */ 4881 int 4882 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap, 4883 u16 *max_rdmaqs) 4884 { 4885 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs, 4886 ICE_SCHED_NODE_OWNER_RDMA); 4887 } 4888 4889 /** 4890 * ice_ena_vsi_rdma_qset 4891 * @pi: port information structure 4892 * @vsi_handle: software VSI handle 4893 * @tc: TC number 4894 * @rdma_qset: pointer to RDMA Qset 4895 * @num_qsets: number of RDMA Qsets 4896 * @qset_teid: pointer to Qset node TEIDs 4897 * 4898 * This function adds RDMA Qset 4899 */ 4900 int 4901 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4902 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid) 4903 { 4904 struct ice_aqc_txsched_elem_data node = { 0 }; 4905 struct ice_aqc_add_rdma_qset_data *buf; 4906 struct ice_sched_node *parent; 4907 struct ice_hw *hw; 4908 u16 i, buf_size; 4909 int ret; 4910 4911 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4912 return -EIO; 4913 hw = pi->hw; 4914 4915 if (!ice_is_vsi_valid(hw, vsi_handle)) 4916 return -EINVAL; 4917 4918 buf_size = struct_size(buf, rdma_qsets, num_qsets); 4919 buf = kzalloc(buf_size, GFP_KERNEL); 4920 if (!buf) 4921 return -ENOMEM; 4922 mutex_lock(&pi->sched_lock); 4923 4924 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4925 ICE_SCHED_NODE_OWNER_RDMA); 4926 if (!parent) { 4927 ret = -EINVAL; 4928 goto rdma_error_exit; 4929 } 4930 buf->parent_teid = parent->info.node_teid; 4931 node.parent_teid = parent->info.node_teid; 4932 4933 buf->num_qsets = cpu_to_le16(num_qsets); 4934 for (i = 0; i < num_qsets; i++) { 4935 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]); 4936 buf->rdma_qsets[i].info.valid_sections = 4937 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4938 ICE_AQC_ELEM_VALID_EIR; 4939 buf->rdma_qsets[i].info.generic = 0; 4940 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx = 4941 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4942 buf->rdma_qsets[i].info.cir_bw.bw_alloc = 4943 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4944 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx = 4945 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4946 buf->rdma_qsets[i].info.eir_bw.bw_alloc = 4947 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4948 } 4949 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL); 4950 if (ret) { 4951 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n"); 4952 goto rdma_error_exit; 4953 } 4954 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4955 for (i = 0; i < num_qsets; i++) { 4956 node.node_teid = buf->rdma_qsets[i].qset_teid; 4957 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, 4958 &node, NULL); 4959 if (ret) 4960 break; 4961 qset_teid[i] = le32_to_cpu(node.node_teid); 4962 } 4963 rdma_error_exit: 4964 mutex_unlock(&pi->sched_lock); 4965 kfree(buf); 4966 return ret; 4967 } 4968 4969 /** 4970 * ice_dis_vsi_rdma_qset - free RDMA resources 4971 * @pi: port_info struct 4972 * @count: number of RDMA Qsets to free 4973 * @qset_teid: TEID of Qset node 4974 * @q_id: list of queue IDs being disabled 4975 */ 4976 int 4977 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid, 4978 u16 *q_id) 4979 { 4980 struct ice_aqc_dis_txq_item *qg_list; 4981 struct ice_hw *hw; 4982 int status = 0; 4983 u16 qg_size; 4984 int i; 4985 4986 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4987 return -EIO; 4988 4989 hw = pi->hw; 4990 4991 qg_size = struct_size(qg_list, q_id, 1); 4992 qg_list = kzalloc(qg_size, GFP_KERNEL); 4993 if (!qg_list) 4994 return -ENOMEM; 4995 4996 mutex_lock(&pi->sched_lock); 4997 4998 for (i = 0; i < count; i++) { 4999 struct ice_sched_node *node; 5000 5001 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]); 5002 if (!node) 5003 continue; 5004 5005 qg_list->parent_teid = node->info.parent_teid; 5006 qg_list->num_qs = 1; 5007 qg_list->q_id[0] = 5008 cpu_to_le16(q_id[i] | 5009 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET); 5010 5011 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size, 5012 ICE_NO_RESET, 0, NULL); 5013 if (status) 5014 break; 5015 5016 ice_free_sched_node(pi, node); 5017 } 5018 5019 mutex_unlock(&pi->sched_lock); 5020 kfree(qg_list); 5021 return status; 5022 } 5023 5024 /** 5025 * ice_replay_pre_init - replay pre initialization 5026 * @hw: pointer to the HW struct 5027 * 5028 * Initializes required config data for VSI, FD, ACL, and RSS before replay. 5029 */ 5030 static int ice_replay_pre_init(struct ice_hw *hw) 5031 { 5032 struct ice_switch_info *sw = hw->switch_info; 5033 u8 i; 5034 5035 /* Delete old entries from replay filter list head if there is any */ 5036 ice_rm_all_sw_replay_rule_info(hw); 5037 /* In start of replay, move entries into replay_rules list, it 5038 * will allow adding rules entries back to filt_rules list, 5039 * which is operational list. 5040 */ 5041 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 5042 list_replace_init(&sw->recp_list[i].filt_rules, 5043 &sw->recp_list[i].filt_replay_rules); 5044 ice_sched_replay_agg_vsi_preinit(hw); 5045 5046 return 0; 5047 } 5048 5049 /** 5050 * ice_replay_vsi - replay VSI configuration 5051 * @hw: pointer to the HW struct 5052 * @vsi_handle: driver VSI handle 5053 * 5054 * Restore all VSI configuration after reset. It is required to call this 5055 * function with main VSI first. 5056 */ 5057 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) 5058 { 5059 int status; 5060 5061 if (!ice_is_vsi_valid(hw, vsi_handle)) 5062 return -EINVAL; 5063 5064 /* Replay pre-initialization if there is any */ 5065 if (vsi_handle == ICE_MAIN_VSI_HANDLE) { 5066 status = ice_replay_pre_init(hw); 5067 if (status) 5068 return status; 5069 } 5070 /* Replay per VSI all RSS configurations */ 5071 status = ice_replay_rss_cfg(hw, vsi_handle); 5072 if (status) 5073 return status; 5074 /* Replay per VSI all filters */ 5075 status = ice_replay_vsi_all_fltr(hw, vsi_handle); 5076 if (!status) 5077 status = ice_replay_vsi_agg(hw, vsi_handle); 5078 return status; 5079 } 5080 5081 /** 5082 * ice_replay_post - post replay configuration cleanup 5083 * @hw: pointer to the HW struct 5084 * 5085 * Post replay cleanup. 5086 */ 5087 void ice_replay_post(struct ice_hw *hw) 5088 { 5089 /* Delete old entries from replay filter list head */ 5090 ice_rm_all_sw_replay_rule_info(hw); 5091 ice_sched_replay_agg(hw); 5092 } 5093 5094 /** 5095 * ice_stat_update40 - read 40 bit stat from the chip and update stat values 5096 * @hw: ptr to the hardware info 5097 * @reg: offset of 64 bit HW register to read from 5098 * @prev_stat_loaded: bool to specify if previous stats are loaded 5099 * @prev_stat: ptr to previous loaded stat value 5100 * @cur_stat: ptr to current stat value 5101 */ 5102 void 5103 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5104 u64 *prev_stat, u64 *cur_stat) 5105 { 5106 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); 5107 5108 /* device stats are not reset at PFR, they likely will not be zeroed 5109 * when the driver starts. Thus, save the value from the first read 5110 * without adding to the statistic value so that we report stats which 5111 * count up from zero. 5112 */ 5113 if (!prev_stat_loaded) { 5114 *prev_stat = new_data; 5115 return; 5116 } 5117 5118 /* Calculate the difference between the new and old values, and then 5119 * add it to the software stat value. 5120 */ 5121 if (new_data >= *prev_stat) 5122 *cur_stat += new_data - *prev_stat; 5123 else 5124 /* to manage the potential roll-over */ 5125 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; 5126 5127 /* Update the previously stored value to prepare for next read */ 5128 *prev_stat = new_data; 5129 } 5130 5131 /** 5132 * ice_stat_update32 - read 32 bit stat from the chip and update stat values 5133 * @hw: ptr to the hardware info 5134 * @reg: offset of HW register to read from 5135 * @prev_stat_loaded: bool to specify if previous stats are loaded 5136 * @prev_stat: ptr to previous loaded stat value 5137 * @cur_stat: ptr to current stat value 5138 */ 5139 void 5140 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5141 u64 *prev_stat, u64 *cur_stat) 5142 { 5143 u32 new_data; 5144 5145 new_data = rd32(hw, reg); 5146 5147 /* device stats are not reset at PFR, they likely will not be zeroed 5148 * when the driver starts. Thus, save the value from the first read 5149 * without adding to the statistic value so that we report stats which 5150 * count up from zero. 5151 */ 5152 if (!prev_stat_loaded) { 5153 *prev_stat = new_data; 5154 return; 5155 } 5156 5157 /* Calculate the difference between the new and old values, and then 5158 * add it to the software stat value. 5159 */ 5160 if (new_data >= *prev_stat) 5161 *cur_stat += new_data - *prev_stat; 5162 else 5163 /* to manage the potential roll-over */ 5164 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; 5165 5166 /* Update the previously stored value to prepare for next read */ 5167 *prev_stat = new_data; 5168 } 5169 5170 /** 5171 * ice_sched_query_elem - query element information from HW 5172 * @hw: pointer to the HW struct 5173 * @node_teid: node TEID to be queried 5174 * @buf: buffer to element information 5175 * 5176 * This function queries HW element information 5177 */ 5178 int 5179 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 5180 struct ice_aqc_txsched_elem_data *buf) 5181 { 5182 u16 buf_size, num_elem_ret = 0; 5183 int status; 5184 5185 buf_size = sizeof(*buf); 5186 memset(buf, 0, buf_size); 5187 buf->node_teid = cpu_to_le32(node_teid); 5188 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 5189 NULL); 5190 if (status || num_elem_ret != 1) 5191 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 5192 return status; 5193 } 5194 5195 /** 5196 * ice_aq_read_i2c 5197 * @hw: pointer to the hw struct 5198 * @topo_addr: topology address for a device to communicate with 5199 * @bus_addr: 7-bit I2C bus address 5200 * @addr: I2C memory address (I2C offset) with up to 16 bits 5201 * @params: I2C parameters: bit [7] - Repeated start, 5202 * bits [6:5] data offset size, 5203 * bit [4] - I2C address type, 5204 * bits [3:0] - data size to read (0-16 bytes) 5205 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device 5206 * @cd: pointer to command details structure or NULL 5207 * 5208 * Read I2C (0x06E2) 5209 */ 5210 int 5211 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5212 u16 bus_addr, __le16 addr, u8 params, u8 *data, 5213 struct ice_sq_cd *cd) 5214 { 5215 struct ice_aq_desc desc = { 0 }; 5216 struct ice_aqc_i2c *cmd; 5217 u8 data_size; 5218 int status; 5219 5220 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c); 5221 cmd = &desc.params.read_write_i2c; 5222 5223 if (!data) 5224 return -EINVAL; 5225 5226 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5227 5228 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5229 cmd->topo_addr = topo_addr; 5230 cmd->i2c_params = params; 5231 cmd->i2c_addr = addr; 5232 5233 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5234 if (!status) { 5235 struct ice_aqc_read_i2c_resp *resp; 5236 u8 i; 5237 5238 resp = &desc.params.read_i2c_resp; 5239 for (i = 0; i < data_size; i++) { 5240 *data = resp->i2c_data[i]; 5241 data++; 5242 } 5243 } 5244 5245 return status; 5246 } 5247 5248 /** 5249 * ice_aq_write_i2c 5250 * @hw: pointer to the hw struct 5251 * @topo_addr: topology address for a device to communicate with 5252 * @bus_addr: 7-bit I2C bus address 5253 * @addr: I2C memory address (I2C offset) with up to 16 bits 5254 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes) 5255 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device 5256 * @cd: pointer to command details structure or NULL 5257 * 5258 * Write I2C (0x06E3) 5259 * 5260 * * Return: 5261 * * 0 - Successful write to the i2c device 5262 * * -EINVAL - Data size greater than 4 bytes 5263 * * -EIO - FW error 5264 */ 5265 int 5266 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5267 u16 bus_addr, __le16 addr, u8 params, const u8 *data, 5268 struct ice_sq_cd *cd) 5269 { 5270 struct ice_aq_desc desc = { 0 }; 5271 struct ice_aqc_i2c *cmd; 5272 u8 data_size; 5273 5274 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c); 5275 cmd = &desc.params.read_write_i2c; 5276 5277 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5278 5279 /* data_size limited to 4 */ 5280 if (data_size > 4) 5281 return -EINVAL; 5282 5283 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5284 cmd->topo_addr = topo_addr; 5285 cmd->i2c_params = params; 5286 cmd->i2c_addr = addr; 5287 5288 memcpy(cmd->i2c_data, data, data_size); 5289 5290 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5291 } 5292 5293 /** 5294 * ice_aq_set_driver_param - Set driver parameter to share via firmware 5295 * @hw: pointer to the HW struct 5296 * @idx: parameter index to set 5297 * @value: the value to set the parameter to 5298 * @cd: pointer to command details structure or NULL 5299 * 5300 * Set the value of one of the software defined parameters. All PFs connected 5301 * to this device can read the value using ice_aq_get_driver_param. 5302 * 5303 * Note that firmware provides no synchronization or locking, and will not 5304 * save the parameter value during a device reset. It is expected that 5305 * a single PF will write the parameter value, while all other PFs will only 5306 * read it. 5307 */ 5308 int 5309 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx, 5310 u32 value, struct ice_sq_cd *cd) 5311 { 5312 struct ice_aqc_driver_shared_params *cmd; 5313 struct ice_aq_desc desc; 5314 5315 if (idx >= ICE_AQC_DRIVER_PARAM_MAX) 5316 return -EIO; 5317 5318 cmd = &desc.params.drv_shared_params; 5319 5320 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params); 5321 5322 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET; 5323 cmd->param_indx = idx; 5324 cmd->param_val = cpu_to_le32(value); 5325 5326 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5327 } 5328 5329 /** 5330 * ice_aq_get_driver_param - Get driver parameter shared via firmware 5331 * @hw: pointer to the HW struct 5332 * @idx: parameter index to set 5333 * @value: storage to return the shared parameter 5334 * @cd: pointer to command details structure or NULL 5335 * 5336 * Get the value of one of the software defined parameters. 5337 * 5338 * Note that firmware provides no synchronization or locking. It is expected 5339 * that only a single PF will write a given parameter. 5340 */ 5341 int 5342 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx, 5343 u32 *value, struct ice_sq_cd *cd) 5344 { 5345 struct ice_aqc_driver_shared_params *cmd; 5346 struct ice_aq_desc desc; 5347 int status; 5348 5349 if (idx >= ICE_AQC_DRIVER_PARAM_MAX) 5350 return -EIO; 5351 5352 cmd = &desc.params.drv_shared_params; 5353 5354 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params); 5355 5356 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET; 5357 cmd->param_indx = idx; 5358 5359 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5360 if (status) 5361 return status; 5362 5363 *value = le32_to_cpu(cmd->param_val); 5364 5365 return 0; 5366 } 5367 5368 /** 5369 * ice_aq_set_gpio 5370 * @hw: pointer to the hw struct 5371 * @gpio_ctrl_handle: GPIO controller node handle 5372 * @pin_idx: IO Number of the GPIO that needs to be set 5373 * @value: SW provide IO value to set in the LSB 5374 * @cd: pointer to command details structure or NULL 5375 * 5376 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology 5377 */ 5378 int 5379 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value, 5380 struct ice_sq_cd *cd) 5381 { 5382 struct ice_aqc_gpio *cmd; 5383 struct ice_aq_desc desc; 5384 5385 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio); 5386 cmd = &desc.params.read_write_gpio; 5387 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5388 cmd->gpio_num = pin_idx; 5389 cmd->gpio_val = value ? 1 : 0; 5390 5391 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5392 } 5393 5394 /** 5395 * ice_aq_get_gpio 5396 * @hw: pointer to the hw struct 5397 * @gpio_ctrl_handle: GPIO controller node handle 5398 * @pin_idx: IO Number of the GPIO that needs to be set 5399 * @value: IO value read 5400 * @cd: pointer to command details structure or NULL 5401 * 5402 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of 5403 * the topology 5404 */ 5405 int 5406 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, 5407 bool *value, struct ice_sq_cd *cd) 5408 { 5409 struct ice_aqc_gpio *cmd; 5410 struct ice_aq_desc desc; 5411 int status; 5412 5413 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio); 5414 cmd = &desc.params.read_write_gpio; 5415 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5416 cmd->gpio_num = pin_idx; 5417 5418 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5419 if (status) 5420 return status; 5421 5422 *value = !!cmd->gpio_val; 5423 return 0; 5424 } 5425 5426 /** 5427 * ice_is_fw_api_min_ver 5428 * @hw: pointer to the hardware structure 5429 * @maj: major version 5430 * @min: minor version 5431 * @patch: patch version 5432 * 5433 * Checks if the firmware API is minimum version 5434 */ 5435 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch) 5436 { 5437 if (hw->api_maj_ver == maj) { 5438 if (hw->api_min_ver > min) 5439 return true; 5440 if (hw->api_min_ver == min && hw->api_patch >= patch) 5441 return true; 5442 } else if (hw->api_maj_ver > maj) { 5443 return true; 5444 } 5445 5446 return false; 5447 } 5448 5449 /** 5450 * ice_fw_supports_link_override 5451 * @hw: pointer to the hardware structure 5452 * 5453 * Checks if the firmware supports link override 5454 */ 5455 bool ice_fw_supports_link_override(struct ice_hw *hw) 5456 { 5457 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ, 5458 ICE_FW_API_LINK_OVERRIDE_MIN, 5459 ICE_FW_API_LINK_OVERRIDE_PATCH); 5460 } 5461 5462 /** 5463 * ice_get_link_default_override 5464 * @ldo: pointer to the link default override struct 5465 * @pi: pointer to the port info struct 5466 * 5467 * Gets the link default override for a port 5468 */ 5469 int 5470 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo, 5471 struct ice_port_info *pi) 5472 { 5473 u16 i, tlv, tlv_len, tlv_start, buf, offset; 5474 struct ice_hw *hw = pi->hw; 5475 int status; 5476 5477 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len, 5478 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR); 5479 if (status) { 5480 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n"); 5481 return status; 5482 } 5483 5484 /* Each port has its own config; calculate for our port */ 5485 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS + 5486 ICE_SR_PFA_LINK_OVERRIDE_OFFSET; 5487 5488 /* link options first */ 5489 status = ice_read_sr_word(hw, tlv_start, &buf); 5490 if (status) { 5491 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5492 return status; 5493 } 5494 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M; 5495 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >> 5496 ICE_LINK_OVERRIDE_PHY_CFG_S; 5497 5498 /* link PHY config */ 5499 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET; 5500 status = ice_read_sr_word(hw, offset, &buf); 5501 if (status) { 5502 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n"); 5503 return status; 5504 } 5505 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M; 5506 5507 /* PHY types low */ 5508 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET; 5509 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5510 status = ice_read_sr_word(hw, (offset + i), &buf); 5511 if (status) { 5512 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5513 return status; 5514 } 5515 /* shift 16 bits at a time to fill 64 bits */ 5516 ldo->phy_type_low |= ((u64)buf << (i * 16)); 5517 } 5518 5519 /* PHY types high */ 5520 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET + 5521 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; 5522 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5523 status = ice_read_sr_word(hw, (offset + i), &buf); 5524 if (status) { 5525 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5526 return status; 5527 } 5528 /* shift 16 bits at a time to fill 64 bits */ 5529 ldo->phy_type_high |= ((u64)buf << (i * 16)); 5530 } 5531 5532 return status; 5533 } 5534 5535 /** 5536 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled 5537 * @caps: get PHY capability data 5538 */ 5539 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps) 5540 { 5541 if (caps->caps & ICE_AQC_PHY_AN_MODE || 5542 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 | 5543 ICE_AQC_PHY_AN_EN_CLAUSE73 | 5544 ICE_AQC_PHY_AN_EN_CLAUSE37)) 5545 return true; 5546 5547 return false; 5548 } 5549 5550 /** 5551 * ice_aq_set_lldp_mib - Set the LLDP MIB 5552 * @hw: pointer to the HW struct 5553 * @mib_type: Local, Remote or both Local and Remote MIBs 5554 * @buf: pointer to the caller-supplied buffer to store the MIB block 5555 * @buf_size: size of the buffer (in bytes) 5556 * @cd: pointer to command details structure or NULL 5557 * 5558 * Set the LLDP MIB. (0x0A08) 5559 */ 5560 int 5561 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size, 5562 struct ice_sq_cd *cd) 5563 { 5564 struct ice_aqc_lldp_set_local_mib *cmd; 5565 struct ice_aq_desc desc; 5566 5567 cmd = &desc.params.lldp_set_mib; 5568 5569 if (buf_size == 0 || !buf) 5570 return -EINVAL; 5571 5572 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib); 5573 5574 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD); 5575 desc.datalen = cpu_to_le16(buf_size); 5576 5577 cmd->type = mib_type; 5578 cmd->length = cpu_to_le16(buf_size); 5579 5580 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 5581 } 5582 5583 /** 5584 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl 5585 * @hw: pointer to HW struct 5586 */ 5587 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw) 5588 { 5589 if (hw->mac_type != ICE_MAC_E810) 5590 return false; 5591 5592 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ, 5593 ICE_FW_API_LLDP_FLTR_MIN, 5594 ICE_FW_API_LLDP_FLTR_PATCH); 5595 } 5596 5597 /** 5598 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter 5599 * @hw: pointer to HW struct 5600 * @vsi_num: absolute HW index for VSI 5601 * @add: boolean for if adding or removing a filter 5602 */ 5603 int 5604 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add) 5605 { 5606 struct ice_aqc_lldp_filter_ctrl *cmd; 5607 struct ice_aq_desc desc; 5608 5609 cmd = &desc.params.lldp_filter_ctrl; 5610 5611 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl); 5612 5613 if (add) 5614 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD; 5615 else 5616 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE; 5617 5618 cmd->vsi_num = cpu_to_le16(vsi_num); 5619 5620 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5621 } 5622 5623 /** 5624 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request 5625 * @hw: pointer to HW struct 5626 */ 5627 int ice_lldp_execute_pending_mib(struct ice_hw *hw) 5628 { 5629 struct ice_aq_desc desc; 5630 5631 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib); 5632 5633 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5634 } 5635 5636 /** 5637 * ice_fw_supports_report_dflt_cfg 5638 * @hw: pointer to the hardware structure 5639 * 5640 * Checks if the firmware supports report default configuration 5641 */ 5642 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw) 5643 { 5644 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ, 5645 ICE_FW_API_REPORT_DFLT_CFG_MIN, 5646 ICE_FW_API_REPORT_DFLT_CFG_PATCH); 5647 } 5648 5649 /* each of the indexes into the following array match the speed of a return 5650 * value from the list of AQ returned speeds like the range: 5651 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding 5652 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this 5653 * array. The array is defined as 15 elements long because the link_speed 5654 * returned by the firmware is a 16 bit * value, but is indexed 5655 * by [fls(speed) - 1] 5656 */ 5657 static const u32 ice_aq_to_link_speed[] = { 5658 SPEED_10, /* BIT(0) */ 5659 SPEED_100, 5660 SPEED_1000, 5661 SPEED_2500, 5662 SPEED_5000, 5663 SPEED_10000, 5664 SPEED_20000, 5665 SPEED_25000, 5666 SPEED_40000, 5667 SPEED_50000, 5668 SPEED_100000, /* BIT(10) */ 5669 }; 5670 5671 /** 5672 * ice_get_link_speed - get integer speed from table 5673 * @index: array index from fls(aq speed) - 1 5674 * 5675 * Returns: u32 value containing integer speed 5676 */ 5677 u32 ice_get_link_speed(u16 index) 5678 { 5679 if (index >= ARRAY_SIZE(ice_aq_to_link_speed)) 5680 return 0; 5681 5682 return ice_aq_to_link_speed[index]; 5683 } 5684