1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 static bool ice_alloc_rx_buf_zc(struct ice_rx_ring *rx_ring) 11 { 12 rx_ring->xdp_buf = kcalloc(rx_ring->count, sizeof(*rx_ring->xdp_buf), GFP_KERNEL); 13 return !!rx_ring->xdp_buf; 14 } 15 16 static bool ice_alloc_rx_buf(struct ice_rx_ring *rx_ring) 17 { 18 rx_ring->rx_buf = kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); 19 return !!rx_ring->rx_buf; 20 } 21 22 /** 23 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 24 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 25 * 26 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 27 */ 28 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 29 { 30 unsigned int offset, i; 31 32 mutex_lock(qs_cfg->qs_mutex); 33 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 34 0, qs_cfg->q_count, 0); 35 if (offset >= qs_cfg->pf_map_size) { 36 mutex_unlock(qs_cfg->qs_mutex); 37 return -ENOMEM; 38 } 39 40 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 41 for (i = 0; i < qs_cfg->q_count; i++) 42 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 43 mutex_unlock(qs_cfg->qs_mutex); 44 45 return 0; 46 } 47 48 /** 49 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 50 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 51 * 52 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 53 */ 54 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 55 { 56 unsigned int i, index = 0; 57 58 mutex_lock(qs_cfg->qs_mutex); 59 for (i = 0; i < qs_cfg->q_count; i++) { 60 index = find_next_zero_bit(qs_cfg->pf_map, 61 qs_cfg->pf_map_size, index); 62 if (index >= qs_cfg->pf_map_size) 63 goto err_scatter; 64 set_bit(index, qs_cfg->pf_map); 65 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 66 } 67 mutex_unlock(qs_cfg->qs_mutex); 68 69 return 0; 70 err_scatter: 71 for (index = 0; index < i; index++) { 72 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 73 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 74 } 75 mutex_unlock(qs_cfg->qs_mutex); 76 77 return -ENOMEM; 78 } 79 80 /** 81 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 82 * @pf: the PF being configured 83 * @pf_q: the PF queue 84 * @ena: enable or disable state of the queue 85 * 86 * This routine will wait for the given Rx queue of the PF to reach the 87 * enabled or disabled state. 88 * Returns -ETIMEDOUT in case of failing to reach the requested state after 89 * multiple retries; else will return 0 in case of success. 90 */ 91 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 92 { 93 int i; 94 95 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 96 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 97 QRX_CTRL_QENA_STAT_M)) 98 return 0; 99 100 usleep_range(20, 40); 101 } 102 103 return -ETIMEDOUT; 104 } 105 106 /** 107 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 108 * @vsi: the VSI being configured 109 * @v_idx: index of the vector in the VSI struct 110 * 111 * We allocate one q_vector and set default value for ITR setting associated 112 * with this q_vector. If allocation fails we return -ENOMEM. 113 */ 114 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 115 { 116 struct ice_pf *pf = vsi->back; 117 struct ice_q_vector *q_vector; 118 119 /* allocate q_vector */ 120 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), 121 GFP_KERNEL); 122 if (!q_vector) 123 return -ENOMEM; 124 125 q_vector->vsi = vsi; 126 q_vector->v_idx = v_idx; 127 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 128 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 129 q_vector->tx.itr_mode = ITR_DYNAMIC; 130 q_vector->rx.itr_mode = ITR_DYNAMIC; 131 q_vector->tx.type = ICE_TX_CONTAINER; 132 q_vector->rx.type = ICE_RX_CONTAINER; 133 134 if (vsi->type == ICE_VSI_VF) 135 goto out; 136 /* only set affinity_mask if the CPU is online */ 137 if (cpu_online(v_idx)) 138 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 139 140 /* This will not be called in the driver load path because the netdev 141 * will not be created yet. All other cases with register the NAPI 142 * handler here (i.e. resume, reset/rebuild, etc.) 143 */ 144 if (vsi->netdev) 145 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 146 NAPI_POLL_WEIGHT); 147 148 out: 149 /* tie q_vector and VSI together */ 150 vsi->q_vectors[v_idx] = q_vector; 151 152 return 0; 153 } 154 155 /** 156 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 157 * @vsi: VSI having the memory freed 158 * @v_idx: index of the vector to be freed 159 */ 160 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 161 { 162 struct ice_q_vector *q_vector; 163 struct ice_pf *pf = vsi->back; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 struct device *dev; 167 168 dev = ice_pf_to_dev(pf); 169 if (!vsi->q_vectors[v_idx]) { 170 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 171 return; 172 } 173 q_vector = vsi->q_vectors[v_idx]; 174 175 ice_for_each_tx_ring(tx_ring, q_vector->tx) 176 tx_ring->q_vector = NULL; 177 ice_for_each_rx_ring(rx_ring, q_vector->rx) 178 rx_ring->q_vector = NULL; 179 180 /* only VSI with an associated netdev is set up with NAPI */ 181 if (vsi->netdev) 182 netif_napi_del(&q_vector->napi); 183 184 devm_kfree(dev, q_vector); 185 vsi->q_vectors[v_idx] = NULL; 186 } 187 188 /** 189 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 190 * @hw: board specific structure 191 */ 192 static void ice_cfg_itr_gran(struct ice_hw *hw) 193 { 194 u32 regval = rd32(hw, GLINT_CTL); 195 196 /* no need to update global register if ITR gran is already set */ 197 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 198 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 199 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 200 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 201 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 202 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 203 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 204 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 205 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 206 return; 207 208 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 209 GLINT_CTL_ITR_GRAN_200_M) | 210 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 211 GLINT_CTL_ITR_GRAN_100_M) | 212 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 213 GLINT_CTL_ITR_GRAN_50_M) | 214 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 215 GLINT_CTL_ITR_GRAN_25_M); 216 wr32(hw, GLINT_CTL, regval); 217 } 218 219 /** 220 * ice_calc_txq_handle - calculate the queue handle 221 * @vsi: VSI that ring belongs to 222 * @ring: ring to get the absolute queue index 223 * @tc: traffic class number 224 */ 225 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 226 { 227 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 228 229 if (ring->ch) 230 return ring->q_index - ring->ch->base_q; 231 232 /* Idea here for calculation is that we subtract the number of queue 233 * count from TC that ring belongs to from it's absolute queue index 234 * and as a result we get the queue's index within TC. 235 */ 236 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 237 } 238 239 /** 240 * ice_eswitch_calc_txq_handle 241 * @ring: pointer to ring which unique index is needed 242 * 243 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 244 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 245 * here by finding index in vsi->tx_rings of this ring. 246 * 247 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 248 * because VSI is get from ring->vsi, so it has to be present in this VSI. 249 */ 250 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) 251 { 252 struct ice_vsi *vsi = ring->vsi; 253 int i; 254 255 ice_for_each_txq(vsi, i) { 256 if (vsi->tx_rings[i] == ring) 257 return i; 258 } 259 260 return ICE_INVAL_Q_INDEX; 261 } 262 263 /** 264 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 265 * @ring: The Tx ring to configure 266 * 267 * This enables/disables XPS for a given Tx descriptor ring 268 * based on the TCs enabled for the VSI that ring belongs to. 269 */ 270 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 271 { 272 if (!ring->q_vector || !ring->netdev) 273 return; 274 275 /* We only initialize XPS once, so as not to overwrite user settings */ 276 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 277 return; 278 279 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 280 ring->q_index); 281 } 282 283 /** 284 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 285 * @ring: The Tx ring to configure 286 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 287 * @pf_q: queue index in the PF space 288 * 289 * Configure the Tx descriptor ring in TLAN context. 290 */ 291 static void 292 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 293 { 294 struct ice_vsi *vsi = ring->vsi; 295 struct ice_hw *hw = &vsi->back->hw; 296 297 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 298 299 tlan_ctx->port_num = vsi->port_info->lport; 300 301 /* Transmit Queue Length */ 302 tlan_ctx->qlen = ring->count; 303 304 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 305 306 /* PF number */ 307 tlan_ctx->pf_num = hw->pf_id; 308 309 /* queue belongs to a specific VSI type 310 * VF / VM index should be programmed per vmvf_type setting: 311 * for vmvf_type = VF, it is VF number between 0-256 312 * for vmvf_type = VM, it is VM number between 0-767 313 * for PF or EMP this field should be set to zero 314 */ 315 switch (vsi->type) { 316 case ICE_VSI_LB: 317 case ICE_VSI_CTRL: 318 case ICE_VSI_PF: 319 if (ring->ch) 320 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 321 else 322 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 323 break; 324 case ICE_VSI_VF: 325 /* Firmware expects vmvf_num to be absolute VF ID */ 326 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 327 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 328 break; 329 case ICE_VSI_SWITCHDEV_CTRL: 330 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 331 break; 332 default: 333 return; 334 } 335 336 /* make sure the context is associated with the right VSI */ 337 if (ring->ch) 338 tlan_ctx->src_vsi = ring->ch->vsi_num; 339 else 340 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 341 342 /* Restrict Tx timestamps to the PF VSI */ 343 switch (vsi->type) { 344 case ICE_VSI_PF: 345 tlan_ctx->tsyn_ena = 1; 346 break; 347 default: 348 break; 349 } 350 351 tlan_ctx->tso_ena = ICE_TX_LEGACY; 352 tlan_ctx->tso_qnum = pf_q; 353 354 /* Legacy or Advanced Host Interface: 355 * 0: Advanced Host Interface 356 * 1: Legacy Host Interface 357 */ 358 tlan_ctx->legacy_int = ICE_TX_LEGACY; 359 } 360 361 /** 362 * ice_rx_offset - Return expected offset into page to access data 363 * @rx_ring: Ring we are requesting offset of 364 * 365 * Returns the offset value for ring into the data buffer. 366 */ 367 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 368 { 369 if (ice_ring_uses_build_skb(rx_ring)) 370 return ICE_SKB_PAD; 371 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 372 return XDP_PACKET_HEADROOM; 373 374 return 0; 375 } 376 377 /** 378 * ice_setup_rx_ctx - Configure a receive ring context 379 * @ring: The Rx ring to configure 380 * 381 * Configure the Rx descriptor ring in RLAN context. 382 */ 383 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 384 { 385 int chain_len = ICE_MAX_CHAINED_RX_BUFS; 386 struct ice_vsi *vsi = ring->vsi; 387 u32 rxdid = ICE_RXDID_FLEX_NIC; 388 struct ice_rlan_ctx rlan_ctx; 389 struct ice_hw *hw; 390 u16 pf_q; 391 int err; 392 393 hw = &vsi->back->hw; 394 395 /* what is Rx queue number in global space of 2K Rx queues */ 396 pf_q = vsi->rxq_map[ring->q_index]; 397 398 /* clear the context structure first */ 399 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 400 401 /* Receive Queue Base Address. 402 * Indicates the starting address of the descriptor queue defined in 403 * 128 Byte units. 404 */ 405 rlan_ctx.base = ring->dma >> 7; 406 407 rlan_ctx.qlen = ring->count; 408 409 /* Receive Packet Data Buffer Size. 410 * The Packet Data Buffer Size is defined in 128 byte units. 411 */ 412 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 413 414 /* use 32 byte descriptors */ 415 rlan_ctx.dsize = 1; 416 417 /* Strip the Ethernet CRC bytes before the packet is posted to host 418 * memory. 419 */ 420 rlan_ctx.crcstrip = 1; 421 422 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 423 * and it needs to remain 1 for non-DVM capable configurations to not 424 * break backward compatibility for VF drivers. Setting this field to 0 425 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 426 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 427 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 428 * check for the tag 429 */ 430 if (ice_is_dvm_ena(hw)) 431 if (vsi->type == ICE_VSI_VF && 432 ice_vf_is_port_vlan_ena(vsi->vf)) 433 rlan_ctx.l2tsel = 1; 434 else 435 rlan_ctx.l2tsel = 0; 436 else 437 rlan_ctx.l2tsel = 1; 438 439 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 440 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 441 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 442 443 /* This controls whether VLAN is stripped from inner headers 444 * The VLAN in the inner L2 header is stripped to the receive 445 * descriptor if enabled by this flag. 446 */ 447 rlan_ctx.showiv = 0; 448 449 /* For AF_XDP ZC, we disallow packets to span on 450 * multiple buffers, thus letting us skip that 451 * handling in the fast-path. 452 */ 453 if (ring->xsk_pool) 454 chain_len = 1; 455 /* Max packet size for this queue - must not be set to a larger value 456 * than 5 x DBUF 457 */ 458 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 459 chain_len * ring->rx_buf_len); 460 461 /* Rx queue threshold in units of 64 */ 462 rlan_ctx.lrxqthresh = 1; 463 464 /* Enable Flexible Descriptors in the queue context which 465 * allows this driver to select a specific receive descriptor format 466 * increasing context priority to pick up profile ID; default is 0x01; 467 * setting to 0x03 to ensure profile is programming if prev context is 468 * of same priority 469 */ 470 if (vsi->type != ICE_VSI_VF) 471 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 472 else 473 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 474 false); 475 476 /* Absolute queue number out of 2K needs to be passed */ 477 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 478 if (err) { 479 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 480 pf_q, err); 481 return -EIO; 482 } 483 484 if (vsi->type == ICE_VSI_VF) 485 return 0; 486 487 /* configure Rx buffer alignment */ 488 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 489 ice_clear_ring_build_skb_ena(ring); 490 else 491 ice_set_ring_build_skb_ena(ring); 492 493 ring->rx_offset = ice_rx_offset(ring); 494 495 /* init queue specific tail register */ 496 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 497 writel(0, ring->tail); 498 499 return 0; 500 } 501 502 /** 503 * ice_vsi_cfg_rxq - Configure an Rx queue 504 * @ring: the ring being configured 505 * 506 * Return 0 on success and a negative value on error. 507 */ 508 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 509 { 510 struct device *dev = ice_pf_to_dev(ring->vsi->back); 511 u16 num_bufs = ICE_DESC_UNUSED(ring); 512 int err; 513 514 ring->rx_buf_len = ring->vsi->rx_buf_len; 515 516 if (ring->vsi->type == ICE_VSI_PF) { 517 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 518 /* coverity[check_return] */ 519 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 520 ring->q_index, ring->q_vector->napi.napi_id); 521 522 kfree(ring->rx_buf); 523 ring->xsk_pool = ice_xsk_pool(ring); 524 if (ring->xsk_pool) { 525 if (!ice_alloc_rx_buf_zc(ring)) 526 return -ENOMEM; 527 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 528 529 ring->rx_buf_len = 530 xsk_pool_get_rx_frame_size(ring->xsk_pool); 531 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 532 MEM_TYPE_XSK_BUFF_POOL, 533 NULL); 534 if (err) 535 return err; 536 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 537 538 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 539 ring->q_index); 540 } else { 541 if (!ice_alloc_rx_buf(ring)) 542 return -ENOMEM; 543 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 544 /* coverity[check_return] */ 545 xdp_rxq_info_reg(&ring->xdp_rxq, 546 ring->netdev, 547 ring->q_index, ring->q_vector->napi.napi_id); 548 549 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 550 MEM_TYPE_PAGE_SHARED, 551 NULL); 552 if (err) 553 return err; 554 } 555 } 556 557 err = ice_setup_rx_ctx(ring); 558 if (err) { 559 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 560 ring->q_index, err); 561 return err; 562 } 563 564 if (ring->xsk_pool) { 565 bool ok; 566 567 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 568 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 569 num_bufs, ring->q_index); 570 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 571 572 return 0; 573 } 574 575 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 576 if (!ok) { 577 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 578 579 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 580 ring->q_index, pf_q); 581 } 582 583 return 0; 584 } 585 586 ice_alloc_rx_bufs(ring, num_bufs); 587 588 return 0; 589 } 590 591 /** 592 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 593 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 594 * 595 * This function first tries to find contiguous space. If it is not successful, 596 * it tries with the scatter approach. 597 * 598 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 599 */ 600 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 601 { 602 int ret = 0; 603 604 ret = __ice_vsi_get_qs_contig(qs_cfg); 605 if (ret) { 606 /* contig failed, so try with scatter approach */ 607 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 608 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 609 qs_cfg->scatter_count); 610 ret = __ice_vsi_get_qs_sc(qs_cfg); 611 } 612 return ret; 613 } 614 615 /** 616 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 617 * @vsi: the VSI being configured 618 * @ena: start or stop the Rx ring 619 * @rxq_idx: 0-based Rx queue index for the VSI passed in 620 * @wait: wait or don't wait for configuration to finish in hardware 621 * 622 * Return 0 on success and negative on error. 623 */ 624 int 625 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 626 { 627 int pf_q = vsi->rxq_map[rxq_idx]; 628 struct ice_pf *pf = vsi->back; 629 struct ice_hw *hw = &pf->hw; 630 u32 rx_reg; 631 632 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 633 634 /* Skip if the queue is already in the requested state */ 635 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 636 return 0; 637 638 /* turn on/off the queue */ 639 if (ena) 640 rx_reg |= QRX_CTRL_QENA_REQ_M; 641 else 642 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 643 wr32(hw, QRX_CTRL(pf_q), rx_reg); 644 645 if (!wait) 646 return 0; 647 648 ice_flush(hw); 649 return ice_pf_rxq_wait(pf, pf_q, ena); 650 } 651 652 /** 653 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 654 * @vsi: the VSI being configured 655 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 656 * @rxq_idx: 0-based Rx queue index for the VSI passed in 657 * 658 * This routine will wait for the given Rx queue of the VSI to reach the 659 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 660 * the requested state after multiple retries; else will return 0 in case of 661 * success. 662 */ 663 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 664 { 665 int pf_q = vsi->rxq_map[rxq_idx]; 666 struct ice_pf *pf = vsi->back; 667 668 return ice_pf_rxq_wait(pf, pf_q, ena); 669 } 670 671 /** 672 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 673 * @vsi: the VSI being configured 674 * 675 * We allocate one q_vector per queue interrupt. If allocation fails we 676 * return -ENOMEM. 677 */ 678 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 679 { 680 struct device *dev = ice_pf_to_dev(vsi->back); 681 u16 v_idx; 682 int err; 683 684 if (vsi->q_vectors[0]) { 685 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 686 return -EEXIST; 687 } 688 689 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 690 err = ice_vsi_alloc_q_vector(vsi, v_idx); 691 if (err) 692 goto err_out; 693 } 694 695 return 0; 696 697 err_out: 698 while (v_idx--) 699 ice_free_q_vector(vsi, v_idx); 700 701 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 702 vsi->num_q_vectors, vsi->vsi_num, err); 703 vsi->num_q_vectors = 0; 704 return err; 705 } 706 707 /** 708 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 709 * @vsi: the VSI being configured 710 * 711 * This function maps descriptor rings to the queue-specific vectors allotted 712 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 713 * and Rx rings to the vector as "efficiently" as possible. 714 */ 715 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 716 { 717 int q_vectors = vsi->num_q_vectors; 718 u16 tx_rings_rem, rx_rings_rem; 719 int v_id; 720 721 /* initially assigning remaining rings count to VSIs num queue value */ 722 tx_rings_rem = vsi->num_txq; 723 rx_rings_rem = vsi->num_rxq; 724 725 for (v_id = 0; v_id < q_vectors; v_id++) { 726 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 727 u8 tx_rings_per_v, rx_rings_per_v; 728 u16 q_id, q_base; 729 730 /* Tx rings mapping to vector */ 731 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 732 q_vectors - v_id); 733 q_vector->num_ring_tx = tx_rings_per_v; 734 q_vector->tx.tx_ring = NULL; 735 q_vector->tx.itr_idx = ICE_TX_ITR; 736 q_base = vsi->num_txq - tx_rings_rem; 737 738 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 739 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 740 741 tx_ring->q_vector = q_vector; 742 tx_ring->next = q_vector->tx.tx_ring; 743 q_vector->tx.tx_ring = tx_ring; 744 } 745 tx_rings_rem -= tx_rings_per_v; 746 747 /* Rx rings mapping to vector */ 748 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 749 q_vectors - v_id); 750 q_vector->num_ring_rx = rx_rings_per_v; 751 q_vector->rx.rx_ring = NULL; 752 q_vector->rx.itr_idx = ICE_RX_ITR; 753 q_base = vsi->num_rxq - rx_rings_rem; 754 755 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 756 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 757 758 rx_ring->q_vector = q_vector; 759 rx_ring->next = q_vector->rx.rx_ring; 760 q_vector->rx.rx_ring = rx_ring; 761 } 762 rx_rings_rem -= rx_rings_per_v; 763 } 764 } 765 766 /** 767 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 768 * @vsi: the VSI having memory freed 769 */ 770 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 771 { 772 int v_idx; 773 774 ice_for_each_q_vector(vsi, v_idx) 775 ice_free_q_vector(vsi, v_idx); 776 } 777 778 /** 779 * ice_vsi_cfg_txq - Configure single Tx queue 780 * @vsi: the VSI that queue belongs to 781 * @ring: Tx ring to be configured 782 * @qg_buf: queue group buffer 783 */ 784 int 785 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 786 struct ice_aqc_add_tx_qgrp *qg_buf) 787 { 788 u8 buf_len = struct_size(qg_buf, txqs, 1); 789 struct ice_tlan_ctx tlan_ctx = { 0 }; 790 struct ice_aqc_add_txqs_perq *txq; 791 struct ice_channel *ch = ring->ch; 792 struct ice_pf *pf = vsi->back; 793 struct ice_hw *hw = &pf->hw; 794 int status; 795 u16 pf_q; 796 u8 tc; 797 798 /* Configure XPS */ 799 ice_cfg_xps_tx_ring(ring); 800 801 pf_q = ring->reg_idx; 802 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 803 /* copy context contents into the qg_buf */ 804 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 805 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 806 ice_tlan_ctx_info); 807 808 /* init queue specific tail reg. It is referred as 809 * transmit comm scheduler queue doorbell. 810 */ 811 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 812 813 if (IS_ENABLED(CONFIG_DCB)) 814 tc = ring->dcb_tc; 815 else 816 tc = 0; 817 818 /* Add unique software queue handle of the Tx queue per 819 * TC into the VSI Tx ring 820 */ 821 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 822 ring->q_handle = ice_eswitch_calc_txq_handle(ring); 823 824 if (ring->q_handle == ICE_INVAL_Q_INDEX) 825 return -ENODEV; 826 } else { 827 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 828 } 829 830 if (ch) 831 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 832 ring->q_handle, 1, qg_buf, buf_len, 833 NULL); 834 else 835 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 836 ring->q_handle, 1, qg_buf, buf_len, 837 NULL); 838 if (status) { 839 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 840 status); 841 return status; 842 } 843 844 /* Add Tx Queue TEID into the VSI Tx ring from the 845 * response. This will complete configuring and 846 * enabling the queue. 847 */ 848 txq = &qg_buf->txqs[0]; 849 if (pf_q == le16_to_cpu(txq->txq_id)) 850 ring->txq_teid = le32_to_cpu(txq->q_teid); 851 852 return 0; 853 } 854 855 /** 856 * ice_cfg_itr - configure the initial interrupt throttle values 857 * @hw: pointer to the HW structure 858 * @q_vector: interrupt vector that's being configured 859 * 860 * Configure interrupt throttling values for the ring containers that are 861 * associated with the interrupt vector passed in. 862 */ 863 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 864 { 865 ice_cfg_itr_gran(hw); 866 867 if (q_vector->num_ring_rx) 868 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 869 870 if (q_vector->num_ring_tx) 871 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 872 873 ice_write_intrl(q_vector, q_vector->intrl); 874 } 875 876 /** 877 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 878 * @vsi: the VSI being configured 879 * @txq: Tx queue being mapped to MSI-X vector 880 * @msix_idx: MSI-X vector index within the function 881 * @itr_idx: ITR index of the interrupt cause 882 * 883 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 884 * within the function space. 885 */ 886 void 887 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 888 { 889 struct ice_pf *pf = vsi->back; 890 struct ice_hw *hw = &pf->hw; 891 u32 val; 892 893 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 894 895 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 896 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 897 898 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 899 if (ice_is_xdp_ena_vsi(vsi)) { 900 u32 xdp_txq = txq + vsi->num_xdp_txq; 901 902 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 903 val); 904 } 905 ice_flush(hw); 906 } 907 908 /** 909 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 910 * @vsi: the VSI being configured 911 * @rxq: Rx queue being mapped to MSI-X vector 912 * @msix_idx: MSI-X vector index within the function 913 * @itr_idx: ITR index of the interrupt cause 914 * 915 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 916 * within the function space. 917 */ 918 void 919 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 920 { 921 struct ice_pf *pf = vsi->back; 922 struct ice_hw *hw = &pf->hw; 923 u32 val; 924 925 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 926 927 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 928 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 929 930 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 931 932 ice_flush(hw); 933 } 934 935 /** 936 * ice_trigger_sw_intr - trigger a software interrupt 937 * @hw: pointer to the HW structure 938 * @q_vector: interrupt vector to trigger the software interrupt for 939 */ 940 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 941 { 942 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 943 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 944 GLINT_DYN_CTL_SWINT_TRIG_M | 945 GLINT_DYN_CTL_INTENA_M); 946 } 947 948 /** 949 * ice_vsi_stop_tx_ring - Disable single Tx ring 950 * @vsi: the VSI being configured 951 * @rst_src: reset source 952 * @rel_vmvf_num: Relative ID of VF/VM 953 * @ring: Tx ring to be stopped 954 * @txq_meta: Meta data of Tx ring to be stopped 955 */ 956 int 957 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 958 u16 rel_vmvf_num, struct ice_tx_ring *ring, 959 struct ice_txq_meta *txq_meta) 960 { 961 struct ice_pf *pf = vsi->back; 962 struct ice_q_vector *q_vector; 963 struct ice_hw *hw = &pf->hw; 964 int status; 965 u32 val; 966 967 /* clear cause_ena bit for disabled queues */ 968 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 969 val &= ~QINT_TQCTL_CAUSE_ENA_M; 970 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 971 972 /* software is expected to wait for 100 ns */ 973 ndelay(100); 974 975 /* trigger a software interrupt for the vector 976 * associated to the queue to schedule NAPI handler 977 */ 978 q_vector = ring->q_vector; 979 if (q_vector) 980 ice_trigger_sw_intr(hw, q_vector); 981 982 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 983 txq_meta->tc, 1, &txq_meta->q_handle, 984 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 985 rel_vmvf_num, NULL); 986 987 /* if the disable queue command was exercised during an 988 * active reset flow, -EBUSY is returned. 989 * This is not an error as the reset operation disables 990 * queues at the hardware level anyway. 991 */ 992 if (status == -EBUSY) { 993 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 994 } else if (status == -ENOENT) { 995 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 996 } else if (status) { 997 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 998 status); 999 return status; 1000 } 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1007 * @vsi: VSI that ring belongs to 1008 * @ring: ring that txq_meta will be based on 1009 * @txq_meta: a helper struct that wraps Tx queue's information 1010 * 1011 * Set up a helper struct that will contain all the necessary fields that 1012 * are needed for stopping Tx queue 1013 */ 1014 void 1015 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, 1016 struct ice_txq_meta *txq_meta) 1017 { 1018 struct ice_channel *ch = ring->ch; 1019 u8 tc; 1020 1021 if (IS_ENABLED(CONFIG_DCB)) 1022 tc = ring->dcb_tc; 1023 else 1024 tc = 0; 1025 1026 txq_meta->q_id = ring->reg_idx; 1027 txq_meta->q_teid = ring->txq_teid; 1028 txq_meta->q_handle = ring->q_handle; 1029 if (ch) { 1030 txq_meta->vsi_idx = ch->ch_vsi->idx; 1031 txq_meta->tc = 0; 1032 } else { 1033 txq_meta->vsi_idx = vsi->idx; 1034 txq_meta->tc = tc; 1035 } 1036 } 1037