xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_base.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	q_vector->tx.itr_mode = ITR_DYNAMIC;
117 	q_vector->rx.itr_mode = ITR_DYNAMIC;
118 	q_vector->tx.type = ICE_TX_CONTAINER;
119 	q_vector->rx.type = ICE_RX_CONTAINER;
120 
121 	if (vsi->type == ICE_VSI_VF)
122 		goto out;
123 	/* only set affinity_mask if the CPU is online */
124 	if (cpu_online(v_idx))
125 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
126 
127 	/* This will not be called in the driver load path because the netdev
128 	 * will not be created yet. All other cases with register the NAPI
129 	 * handler here (i.e. resume, reset/rebuild, etc.)
130 	 */
131 	if (vsi->netdev)
132 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
133 			       NAPI_POLL_WEIGHT);
134 
135 out:
136 	/* tie q_vector and VSI together */
137 	vsi->q_vectors[v_idx] = q_vector;
138 
139 	return 0;
140 }
141 
142 /**
143  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
144  * @vsi: VSI having the memory freed
145  * @v_idx: index of the vector to be freed
146  */
147 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
148 {
149 	struct ice_q_vector *q_vector;
150 	struct ice_pf *pf = vsi->back;
151 	struct ice_tx_ring *tx_ring;
152 	struct ice_rx_ring *rx_ring;
153 	struct device *dev;
154 
155 	dev = ice_pf_to_dev(pf);
156 	if (!vsi->q_vectors[v_idx]) {
157 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
158 		return;
159 	}
160 	q_vector = vsi->q_vectors[v_idx];
161 
162 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
163 		tx_ring->q_vector = NULL;
164 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
165 		rx_ring->q_vector = NULL;
166 
167 	/* only VSI with an associated netdev is set up with NAPI */
168 	if (vsi->netdev)
169 		netif_napi_del(&q_vector->napi);
170 
171 	devm_kfree(dev, q_vector);
172 	vsi->q_vectors[v_idx] = NULL;
173 }
174 
175 /**
176  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
177  * @hw: board specific structure
178  */
179 static void ice_cfg_itr_gran(struct ice_hw *hw)
180 {
181 	u32 regval = rd32(hw, GLINT_CTL);
182 
183 	/* no need to update global register if ITR gran is already set */
184 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
185 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
186 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
187 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
188 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
189 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
190 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
191 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
192 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
193 		return;
194 
195 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
196 		  GLINT_CTL_ITR_GRAN_200_M) |
197 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
198 		  GLINT_CTL_ITR_GRAN_100_M) |
199 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
200 		  GLINT_CTL_ITR_GRAN_50_M) |
201 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
202 		  GLINT_CTL_ITR_GRAN_25_M);
203 	wr32(hw, GLINT_CTL, regval);
204 }
205 
206 /**
207  * ice_calc_txq_handle - calculate the queue handle
208  * @vsi: VSI that ring belongs to
209  * @ring: ring to get the absolute queue index
210  * @tc: traffic class number
211  */
212 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
213 {
214 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
215 
216 	if (ring->ch)
217 		return ring->q_index - ring->ch->base_q;
218 
219 	/* Idea here for calculation is that we subtract the number of queue
220 	 * count from TC that ring belongs to from it's absolute queue index
221 	 * and as a result we get the queue's index within TC.
222 	 */
223 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
224 }
225 
226 /**
227  * ice_eswitch_calc_txq_handle
228  * @ring: pointer to ring which unique index is needed
229  *
230  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
231  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
232  * here by finding index in vsi->tx_rings of this ring.
233  *
234  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
235  * because VSI is get from ring->vsi, so it has to be present in this VSI.
236  */
237 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
238 {
239 	struct ice_vsi *vsi = ring->vsi;
240 	int i;
241 
242 	ice_for_each_txq(vsi, i) {
243 		if (vsi->tx_rings[i] == ring)
244 			return i;
245 	}
246 
247 	return ICE_INVAL_Q_INDEX;
248 }
249 
250 /**
251  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
252  * @ring: The Tx ring to configure
253  *
254  * This enables/disables XPS for a given Tx descriptor ring
255  * based on the TCs enabled for the VSI that ring belongs to.
256  */
257 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
258 {
259 	if (!ring->q_vector || !ring->netdev)
260 		return;
261 
262 	/* We only initialize XPS once, so as not to overwrite user settings */
263 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
264 		return;
265 
266 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
267 			    ring->q_index);
268 }
269 
270 /**
271  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
272  * @ring: The Tx ring to configure
273  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
274  * @pf_q: queue index in the PF space
275  *
276  * Configure the Tx descriptor ring in TLAN context.
277  */
278 static void
279 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
280 {
281 	struct ice_vsi *vsi = ring->vsi;
282 	struct ice_hw *hw = &vsi->back->hw;
283 
284 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
285 
286 	tlan_ctx->port_num = vsi->port_info->lport;
287 
288 	/* Transmit Queue Length */
289 	tlan_ctx->qlen = ring->count;
290 
291 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
292 
293 	/* PF number */
294 	tlan_ctx->pf_num = hw->pf_id;
295 
296 	/* queue belongs to a specific VSI type
297 	 * VF / VM index should be programmed per vmvf_type setting:
298 	 * for vmvf_type = VF, it is VF number between 0-256
299 	 * for vmvf_type = VM, it is VM number between 0-767
300 	 * for PF or EMP this field should be set to zero
301 	 */
302 	switch (vsi->type) {
303 	case ICE_VSI_LB:
304 	case ICE_VSI_CTRL:
305 	case ICE_VSI_PF:
306 		if (ring->ch)
307 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
308 		else
309 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
310 		break;
311 	case ICE_VSI_VF:
312 		/* Firmware expects vmvf_num to be absolute VF ID */
313 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
314 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
315 		break;
316 	case ICE_VSI_SWITCHDEV_CTRL:
317 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
318 		break;
319 	default:
320 		return;
321 	}
322 
323 	/* make sure the context is associated with the right VSI */
324 	if (ring->ch)
325 		tlan_ctx->src_vsi = ring->ch->vsi_num;
326 	else
327 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
328 
329 	/* Restrict Tx timestamps to the PF VSI */
330 	switch (vsi->type) {
331 	case ICE_VSI_PF:
332 		tlan_ctx->tsyn_ena = 1;
333 		break;
334 	default:
335 		break;
336 	}
337 
338 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
339 	tlan_ctx->tso_qnum = pf_q;
340 
341 	/* Legacy or Advanced Host Interface:
342 	 * 0: Advanced Host Interface
343 	 * 1: Legacy Host Interface
344 	 */
345 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
346 }
347 
348 /**
349  * ice_rx_offset - Return expected offset into page to access data
350  * @rx_ring: Ring we are requesting offset of
351  *
352  * Returns the offset value for ring into the data buffer.
353  */
354 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
355 {
356 	if (ice_ring_uses_build_skb(rx_ring))
357 		return ICE_SKB_PAD;
358 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
359 		return XDP_PACKET_HEADROOM;
360 
361 	return 0;
362 }
363 
364 /**
365  * ice_setup_rx_ctx - Configure a receive ring context
366  * @ring: The Rx ring to configure
367  *
368  * Configure the Rx descriptor ring in RLAN context.
369  */
370 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
371 {
372 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
373 	struct ice_vsi *vsi = ring->vsi;
374 	u32 rxdid = ICE_RXDID_FLEX_NIC;
375 	struct ice_rlan_ctx rlan_ctx;
376 	struct ice_hw *hw;
377 	u16 pf_q;
378 	int err;
379 
380 	hw = &vsi->back->hw;
381 
382 	/* what is Rx queue number in global space of 2K Rx queues */
383 	pf_q = vsi->rxq_map[ring->q_index];
384 
385 	/* clear the context structure first */
386 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
387 
388 	/* Receive Queue Base Address.
389 	 * Indicates the starting address of the descriptor queue defined in
390 	 * 128 Byte units.
391 	 */
392 	rlan_ctx.base = ring->dma >> 7;
393 
394 	rlan_ctx.qlen = ring->count;
395 
396 	/* Receive Packet Data Buffer Size.
397 	 * The Packet Data Buffer Size is defined in 128 byte units.
398 	 */
399 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
400 
401 	/* use 32 byte descriptors */
402 	rlan_ctx.dsize = 1;
403 
404 	/* Strip the Ethernet CRC bytes before the packet is posted to host
405 	 * memory.
406 	 */
407 	rlan_ctx.crcstrip = 1;
408 
409 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
410 	rlan_ctx.l2tsel = 1;
411 
412 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
413 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
414 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
415 
416 	/* This controls whether VLAN is stripped from inner headers
417 	 * The VLAN in the inner L2 header is stripped to the receive
418 	 * descriptor if enabled by this flag.
419 	 */
420 	rlan_ctx.showiv = 0;
421 
422 	/* For AF_XDP ZC, we disallow packets to span on
423 	 * multiple buffers, thus letting us skip that
424 	 * handling in the fast-path.
425 	 */
426 	if (ring->xsk_pool)
427 		chain_len = 1;
428 	/* Max packet size for this queue - must not be set to a larger value
429 	 * than 5 x DBUF
430 	 */
431 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
432 			       chain_len * ring->rx_buf_len);
433 
434 	/* Rx queue threshold in units of 64 */
435 	rlan_ctx.lrxqthresh = 1;
436 
437 	/* Enable Flexible Descriptors in the queue context which
438 	 * allows this driver to select a specific receive descriptor format
439 	 * increasing context priority to pick up profile ID; default is 0x01;
440 	 * setting to 0x03 to ensure profile is programming if prev context is
441 	 * of same priority
442 	 */
443 	if (vsi->type != ICE_VSI_VF)
444 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
445 	else
446 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
447 					false);
448 
449 	/* Absolute queue number out of 2K needs to be passed */
450 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
451 	if (err) {
452 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
453 			pf_q, err);
454 		return -EIO;
455 	}
456 
457 	if (vsi->type == ICE_VSI_VF)
458 		return 0;
459 
460 	/* configure Rx buffer alignment */
461 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
462 		ice_clear_ring_build_skb_ena(ring);
463 	else
464 		ice_set_ring_build_skb_ena(ring);
465 
466 	ring->rx_offset = ice_rx_offset(ring);
467 
468 	/* init queue specific tail register */
469 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
470 	writel(0, ring->tail);
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_vsi_cfg_rxq - Configure an Rx queue
477  * @ring: the ring being configured
478  *
479  * Return 0 on success and a negative value on error.
480  */
481 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
482 {
483 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
484 	u16 num_bufs = ICE_DESC_UNUSED(ring);
485 	int err;
486 
487 	ring->rx_buf_len = ring->vsi->rx_buf_len;
488 
489 	if (ring->vsi->type == ICE_VSI_PF) {
490 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
491 			/* coverity[check_return] */
492 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
493 					 ring->q_index, ring->q_vector->napi.napi_id);
494 
495 		ring->xsk_pool = ice_xsk_pool(ring);
496 		if (ring->xsk_pool) {
497 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
498 
499 			ring->rx_buf_len =
500 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
501 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
502 							 MEM_TYPE_XSK_BUFF_POOL,
503 							 NULL);
504 			if (err)
505 				return err;
506 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
507 
508 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
509 				 ring->q_index);
510 		} else {
511 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
512 				/* coverity[check_return] */
513 				xdp_rxq_info_reg(&ring->xdp_rxq,
514 						 ring->netdev,
515 						 ring->q_index, ring->q_vector->napi.napi_id);
516 
517 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
518 							 MEM_TYPE_PAGE_SHARED,
519 							 NULL);
520 			if (err)
521 				return err;
522 		}
523 	}
524 
525 	err = ice_setup_rx_ctx(ring);
526 	if (err) {
527 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
528 			ring->q_index, err);
529 		return err;
530 	}
531 
532 	if (ring->xsk_pool) {
533 		bool ok;
534 
535 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
536 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
537 				 num_bufs, ring->q_index);
538 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
539 
540 			return 0;
541 		}
542 
543 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
544 		if (!ok) {
545 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
546 
547 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
548 				 ring->q_index, pf_q);
549 		}
550 
551 		return 0;
552 	}
553 
554 	ice_alloc_rx_bufs(ring, num_bufs);
555 
556 	return 0;
557 }
558 
559 /**
560  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
561  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
562  *
563  * This function first tries to find contiguous space. If it is not successful,
564  * it tries with the scatter approach.
565  *
566  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
567  */
568 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
569 {
570 	int ret = 0;
571 
572 	ret = __ice_vsi_get_qs_contig(qs_cfg);
573 	if (ret) {
574 		/* contig failed, so try with scatter approach */
575 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
576 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
577 					qs_cfg->scatter_count);
578 		ret = __ice_vsi_get_qs_sc(qs_cfg);
579 	}
580 	return ret;
581 }
582 
583 /**
584  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
585  * @vsi: the VSI being configured
586  * @ena: start or stop the Rx ring
587  * @rxq_idx: 0-based Rx queue index for the VSI passed in
588  * @wait: wait or don't wait for configuration to finish in hardware
589  *
590  * Return 0 on success and negative on error.
591  */
592 int
593 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
594 {
595 	int pf_q = vsi->rxq_map[rxq_idx];
596 	struct ice_pf *pf = vsi->back;
597 	struct ice_hw *hw = &pf->hw;
598 	u32 rx_reg;
599 
600 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
601 
602 	/* Skip if the queue is already in the requested state */
603 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
604 		return 0;
605 
606 	/* turn on/off the queue */
607 	if (ena)
608 		rx_reg |= QRX_CTRL_QENA_REQ_M;
609 	else
610 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
611 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
612 
613 	if (!wait)
614 		return 0;
615 
616 	ice_flush(hw);
617 	return ice_pf_rxq_wait(pf, pf_q, ena);
618 }
619 
620 /**
621  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
622  * @vsi: the VSI being configured
623  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
624  * @rxq_idx: 0-based Rx queue index for the VSI passed in
625  *
626  * This routine will wait for the given Rx queue of the VSI to reach the
627  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
628  * the requested state after multiple retries; else will return 0 in case of
629  * success.
630  */
631 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
632 {
633 	int pf_q = vsi->rxq_map[rxq_idx];
634 	struct ice_pf *pf = vsi->back;
635 
636 	return ice_pf_rxq_wait(pf, pf_q, ena);
637 }
638 
639 /**
640  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
641  * @vsi: the VSI being configured
642  *
643  * We allocate one q_vector per queue interrupt. If allocation fails we
644  * return -ENOMEM.
645  */
646 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
647 {
648 	struct device *dev = ice_pf_to_dev(vsi->back);
649 	u16 v_idx;
650 	int err;
651 
652 	if (vsi->q_vectors[0]) {
653 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
654 		return -EEXIST;
655 	}
656 
657 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
658 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
659 		if (err)
660 			goto err_out;
661 	}
662 
663 	return 0;
664 
665 err_out:
666 	while (v_idx--)
667 		ice_free_q_vector(vsi, v_idx);
668 
669 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
670 		vsi->num_q_vectors, vsi->vsi_num, err);
671 	vsi->num_q_vectors = 0;
672 	return err;
673 }
674 
675 /**
676  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
677  * @vsi: the VSI being configured
678  *
679  * This function maps descriptor rings to the queue-specific vectors allotted
680  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
681  * and Rx rings to the vector as "efficiently" as possible.
682  */
683 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
684 {
685 	int q_vectors = vsi->num_q_vectors;
686 	u16 tx_rings_rem, rx_rings_rem;
687 	int v_id;
688 
689 	/* initially assigning remaining rings count to VSIs num queue value */
690 	tx_rings_rem = vsi->num_txq;
691 	rx_rings_rem = vsi->num_rxq;
692 
693 	for (v_id = 0; v_id < q_vectors; v_id++) {
694 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
695 		u8 tx_rings_per_v, rx_rings_per_v;
696 		u16 q_id, q_base;
697 
698 		/* Tx rings mapping to vector */
699 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
700 						  q_vectors - v_id);
701 		q_vector->num_ring_tx = tx_rings_per_v;
702 		q_vector->tx.tx_ring = NULL;
703 		q_vector->tx.itr_idx = ICE_TX_ITR;
704 		q_base = vsi->num_txq - tx_rings_rem;
705 
706 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
707 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
708 
709 			tx_ring->q_vector = q_vector;
710 			tx_ring->next = q_vector->tx.tx_ring;
711 			q_vector->tx.tx_ring = tx_ring;
712 		}
713 		tx_rings_rem -= tx_rings_per_v;
714 
715 		/* Rx rings mapping to vector */
716 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
717 						  q_vectors - v_id);
718 		q_vector->num_ring_rx = rx_rings_per_v;
719 		q_vector->rx.rx_ring = NULL;
720 		q_vector->rx.itr_idx = ICE_RX_ITR;
721 		q_base = vsi->num_rxq - rx_rings_rem;
722 
723 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
724 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
725 
726 			rx_ring->q_vector = q_vector;
727 			rx_ring->next = q_vector->rx.rx_ring;
728 			q_vector->rx.rx_ring = rx_ring;
729 		}
730 		rx_rings_rem -= rx_rings_per_v;
731 	}
732 }
733 
734 /**
735  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
736  * @vsi: the VSI having memory freed
737  */
738 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
739 {
740 	int v_idx;
741 
742 	ice_for_each_q_vector(vsi, v_idx)
743 		ice_free_q_vector(vsi, v_idx);
744 }
745 
746 /**
747  * ice_vsi_cfg_txq - Configure single Tx queue
748  * @vsi: the VSI that queue belongs to
749  * @ring: Tx ring to be configured
750  * @qg_buf: queue group buffer
751  */
752 int
753 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
754 		struct ice_aqc_add_tx_qgrp *qg_buf)
755 {
756 	u8 buf_len = struct_size(qg_buf, txqs, 1);
757 	struct ice_tlan_ctx tlan_ctx = { 0 };
758 	struct ice_aqc_add_txqs_perq *txq;
759 	struct ice_channel *ch = ring->ch;
760 	struct ice_pf *pf = vsi->back;
761 	struct ice_hw *hw = &pf->hw;
762 	enum ice_status status;
763 	u16 pf_q;
764 	u8 tc;
765 
766 	/* Configure XPS */
767 	ice_cfg_xps_tx_ring(ring);
768 
769 	pf_q = ring->reg_idx;
770 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
771 	/* copy context contents into the qg_buf */
772 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
773 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
774 		    ice_tlan_ctx_info);
775 
776 	/* init queue specific tail reg. It is referred as
777 	 * transmit comm scheduler queue doorbell.
778 	 */
779 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
780 
781 	if (IS_ENABLED(CONFIG_DCB))
782 		tc = ring->dcb_tc;
783 	else
784 		tc = 0;
785 
786 	/* Add unique software queue handle of the Tx queue per
787 	 * TC into the VSI Tx ring
788 	 */
789 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
790 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
791 
792 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
793 			return -ENODEV;
794 	} else {
795 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
796 	}
797 
798 	if (ch)
799 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
800 					 ring->q_handle, 1, qg_buf, buf_len,
801 					 NULL);
802 	else
803 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
804 					 ring->q_handle, 1, qg_buf, buf_len,
805 					 NULL);
806 	if (status) {
807 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
808 			ice_stat_str(status));
809 		return -ENODEV;
810 	}
811 
812 	/* Add Tx Queue TEID into the VSI Tx ring from the
813 	 * response. This will complete configuring and
814 	 * enabling the queue.
815 	 */
816 	txq = &qg_buf->txqs[0];
817 	if (pf_q == le16_to_cpu(txq->txq_id))
818 		ring->txq_teid = le32_to_cpu(txq->q_teid);
819 
820 	return 0;
821 }
822 
823 /**
824  * ice_cfg_itr - configure the initial interrupt throttle values
825  * @hw: pointer to the HW structure
826  * @q_vector: interrupt vector that's being configured
827  *
828  * Configure interrupt throttling values for the ring containers that are
829  * associated with the interrupt vector passed in.
830  */
831 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
832 {
833 	ice_cfg_itr_gran(hw);
834 
835 	if (q_vector->num_ring_rx)
836 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
837 
838 	if (q_vector->num_ring_tx)
839 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
840 
841 	ice_write_intrl(q_vector, q_vector->intrl);
842 }
843 
844 /**
845  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
846  * @vsi: the VSI being configured
847  * @txq: Tx queue being mapped to MSI-X vector
848  * @msix_idx: MSI-X vector index within the function
849  * @itr_idx: ITR index of the interrupt cause
850  *
851  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
852  * within the function space.
853  */
854 void
855 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
856 {
857 	struct ice_pf *pf = vsi->back;
858 	struct ice_hw *hw = &pf->hw;
859 	u32 val;
860 
861 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
862 
863 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
864 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
865 
866 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
867 	if (ice_is_xdp_ena_vsi(vsi)) {
868 		u32 xdp_txq = txq + vsi->num_xdp_txq;
869 
870 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
871 		     val);
872 	}
873 	ice_flush(hw);
874 }
875 
876 /**
877  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
878  * @vsi: the VSI being configured
879  * @rxq: Rx queue being mapped to MSI-X vector
880  * @msix_idx: MSI-X vector index within the function
881  * @itr_idx: ITR index of the interrupt cause
882  *
883  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
884  * within the function space.
885  */
886 void
887 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
888 {
889 	struct ice_pf *pf = vsi->back;
890 	struct ice_hw *hw = &pf->hw;
891 	u32 val;
892 
893 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
894 
895 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
896 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
897 
898 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
899 
900 	ice_flush(hw);
901 }
902 
903 /**
904  * ice_trigger_sw_intr - trigger a software interrupt
905  * @hw: pointer to the HW structure
906  * @q_vector: interrupt vector to trigger the software interrupt for
907  */
908 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
909 {
910 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
911 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
912 	     GLINT_DYN_CTL_SWINT_TRIG_M |
913 	     GLINT_DYN_CTL_INTENA_M);
914 }
915 
916 /**
917  * ice_vsi_stop_tx_ring - Disable single Tx ring
918  * @vsi: the VSI being configured
919  * @rst_src: reset source
920  * @rel_vmvf_num: Relative ID of VF/VM
921  * @ring: Tx ring to be stopped
922  * @txq_meta: Meta data of Tx ring to be stopped
923  */
924 int
925 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
926 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
927 		     struct ice_txq_meta *txq_meta)
928 {
929 	struct ice_pf *pf = vsi->back;
930 	struct ice_q_vector *q_vector;
931 	struct ice_hw *hw = &pf->hw;
932 	enum ice_status status;
933 	u32 val;
934 
935 	/* clear cause_ena bit for disabled queues */
936 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
937 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
938 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
939 
940 	/* software is expected to wait for 100 ns */
941 	ndelay(100);
942 
943 	/* trigger a software interrupt for the vector
944 	 * associated to the queue to schedule NAPI handler
945 	 */
946 	q_vector = ring->q_vector;
947 	if (q_vector)
948 		ice_trigger_sw_intr(hw, q_vector);
949 
950 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
951 				 txq_meta->tc, 1, &txq_meta->q_handle,
952 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
953 				 rel_vmvf_num, NULL);
954 
955 	/* if the disable queue command was exercised during an
956 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
957 	 * This is not an error as the reset operation disables
958 	 * queues at the hardware level anyway.
959 	 */
960 	if (status == ICE_ERR_RESET_ONGOING) {
961 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
962 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
963 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
964 	} else if (status) {
965 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
966 			ice_stat_str(status));
967 		return -ENODEV;
968 	}
969 
970 	return 0;
971 }
972 
973 /**
974  * ice_fill_txq_meta - Prepare the Tx queue's meta data
975  * @vsi: VSI that ring belongs to
976  * @ring: ring that txq_meta will be based on
977  * @txq_meta: a helper struct that wraps Tx queue's information
978  *
979  * Set up a helper struct that will contain all the necessary fields that
980  * are needed for stopping Tx queue
981  */
982 void
983 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
984 		  struct ice_txq_meta *txq_meta)
985 {
986 	struct ice_channel *ch = ring->ch;
987 	u8 tc;
988 
989 	if (IS_ENABLED(CONFIG_DCB))
990 		tc = ring->dcb_tc;
991 	else
992 		tc = 0;
993 
994 	txq_meta->q_id = ring->reg_idx;
995 	txq_meta->q_teid = ring->txq_teid;
996 	txq_meta->q_handle = ring->q_handle;
997 	if (ch) {
998 		txq_meta->vsi_idx = ch->ch_vsi->idx;
999 		txq_meta->tc = 0;
1000 	} else {
1001 		txq_meta->vsi_idx = vsi->idx;
1002 		txq_meta->tc = tc;
1003 	}
1004 }
1005