1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	if (vsi->type == ICE_VSI_VF)
117 		goto out;
118 	/* only set affinity_mask if the CPU is online */
119 	if (cpu_online(v_idx))
120 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
121 
122 	/* This will not be called in the driver load path because the netdev
123 	 * will not be created yet. All other cases with register the NAPI
124 	 * handler here (i.e. resume, reset/rebuild, etc.)
125 	 */
126 	if (vsi->netdev)
127 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
128 			       NAPI_POLL_WEIGHT);
129 
130 out:
131 	/* tie q_vector and VSI together */
132 	vsi->q_vectors[v_idx] = q_vector;
133 
134 	return 0;
135 }
136 
137 /**
138  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
139  * @vsi: VSI having the memory freed
140  * @v_idx: index of the vector to be freed
141  */
142 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
143 {
144 	struct ice_q_vector *q_vector;
145 	struct ice_pf *pf = vsi->back;
146 	struct ice_ring *ring;
147 	struct device *dev;
148 
149 	dev = ice_pf_to_dev(pf);
150 	if (!vsi->q_vectors[v_idx]) {
151 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
152 		return;
153 	}
154 	q_vector = vsi->q_vectors[v_idx];
155 
156 	ice_for_each_ring(ring, q_vector->tx)
157 		ring->q_vector = NULL;
158 	ice_for_each_ring(ring, q_vector->rx)
159 		ring->q_vector = NULL;
160 
161 	/* only VSI with an associated netdev is set up with NAPI */
162 	if (vsi->netdev)
163 		netif_napi_del(&q_vector->napi);
164 
165 	devm_kfree(dev, q_vector);
166 	vsi->q_vectors[v_idx] = NULL;
167 }
168 
169 /**
170  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
171  * @hw: board specific structure
172  */
173 static void ice_cfg_itr_gran(struct ice_hw *hw)
174 {
175 	u32 regval = rd32(hw, GLINT_CTL);
176 
177 	/* no need to update global register if ITR gran is already set */
178 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
179 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
180 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
181 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
182 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
183 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
184 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
185 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
186 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
187 		return;
188 
189 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
190 		  GLINT_CTL_ITR_GRAN_200_M) |
191 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
192 		  GLINT_CTL_ITR_GRAN_100_M) |
193 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
194 		  GLINT_CTL_ITR_GRAN_50_M) |
195 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
196 		  GLINT_CTL_ITR_GRAN_25_M);
197 	wr32(hw, GLINT_CTL, regval);
198 }
199 
200 /**
201  * ice_calc_q_handle - calculate the queue handle
202  * @vsi: VSI that ring belongs to
203  * @ring: ring to get the absolute queue index
204  * @tc: traffic class number
205  */
206 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
207 {
208 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
209 
210 	/* Idea here for calculation is that we subtract the number of queue
211 	 * count from TC that ring belongs to from it's absolute queue index
212 	 * and as a result we get the queue's index within TC.
213 	 */
214 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
215 }
216 
217 /**
218  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
219  * @ring: The Tx ring to configure
220  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
221  * @pf_q: queue index in the PF space
222  *
223  * Configure the Tx descriptor ring in TLAN context.
224  */
225 static void
226 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
227 {
228 	struct ice_vsi *vsi = ring->vsi;
229 	struct ice_hw *hw = &vsi->back->hw;
230 
231 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
232 
233 	tlan_ctx->port_num = vsi->port_info->lport;
234 
235 	/* Transmit Queue Length */
236 	tlan_ctx->qlen = ring->count;
237 
238 	ice_set_cgd_num(tlan_ctx, ring);
239 
240 	/* PF number */
241 	tlan_ctx->pf_num = hw->pf_id;
242 
243 	/* queue belongs to a specific VSI type
244 	 * VF / VM index should be programmed per vmvf_type setting:
245 	 * for vmvf_type = VF, it is VF number between 0-256
246 	 * for vmvf_type = VM, it is VM number between 0-767
247 	 * for PF or EMP this field should be set to zero
248 	 */
249 	switch (vsi->type) {
250 	case ICE_VSI_LB:
251 	case ICE_VSI_CTRL:
252 	case ICE_VSI_PF:
253 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
254 		break;
255 	case ICE_VSI_VF:
256 		/* Firmware expects vmvf_num to be absolute VF ID */
257 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
258 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
259 		break;
260 	default:
261 		return;
262 	}
263 
264 	/* make sure the context is associated with the right VSI */
265 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
266 
267 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
268 	tlan_ctx->tso_qnum = pf_q;
269 
270 	/* Legacy or Advanced Host Interface:
271 	 * 0: Advanced Host Interface
272 	 * 1: Legacy Host Interface
273 	 */
274 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
275 }
276 
277 /**
278  * ice_setup_rx_ctx - Configure a receive ring context
279  * @ring: The Rx ring to configure
280  *
281  * Configure the Rx descriptor ring in RLAN context.
282  */
283 int ice_setup_rx_ctx(struct ice_ring *ring)
284 {
285 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
286 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
287 	u16 num_bufs = ICE_DESC_UNUSED(ring);
288 	struct ice_vsi *vsi = ring->vsi;
289 	u32 rxdid = ICE_RXDID_FLEX_NIC;
290 	struct ice_rlan_ctx rlan_ctx;
291 	struct ice_hw *hw;
292 	u16 pf_q;
293 	int err;
294 
295 	hw = &vsi->back->hw;
296 
297 	/* what is Rx queue number in global space of 2K Rx queues */
298 	pf_q = vsi->rxq_map[ring->q_index];
299 
300 	/* clear the context structure first */
301 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
302 
303 	ring->rx_buf_len = vsi->rx_buf_len;
304 
305 	if (ring->vsi->type == ICE_VSI_PF) {
306 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
307 			/* coverity[check_return] */
308 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
309 					 ring->q_index);
310 
311 		ring->xsk_umem = ice_xsk_umem(ring);
312 		if (ring->xsk_umem) {
313 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
314 
315 			ring->rx_buf_len =
316 				xsk_umem_get_rx_frame_size(ring->xsk_umem);
317 			/* For AF_XDP ZC, we disallow packets to span on
318 			 * multiple buffers, thus letting us skip that
319 			 * handling in the fast-path.
320 			 */
321 			chain_len = 1;
322 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
323 							 MEM_TYPE_XSK_BUFF_POOL,
324 							 NULL);
325 			if (err)
326 				return err;
327 			xsk_buff_set_rxq_info(ring->xsk_umem, &ring->xdp_rxq);
328 
329 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
330 				 ring->q_index);
331 		} else {
332 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
333 				/* coverity[check_return] */
334 				xdp_rxq_info_reg(&ring->xdp_rxq,
335 						 ring->netdev,
336 						 ring->q_index);
337 
338 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
339 							 MEM_TYPE_PAGE_SHARED,
340 							 NULL);
341 			if (err)
342 				return err;
343 		}
344 	}
345 	/* Receive Queue Base Address.
346 	 * Indicates the starting address of the descriptor queue defined in
347 	 * 128 Byte units.
348 	 */
349 	rlan_ctx.base = ring->dma >> 7;
350 
351 	rlan_ctx.qlen = ring->count;
352 
353 	/* Receive Packet Data Buffer Size.
354 	 * The Packet Data Buffer Size is defined in 128 byte units.
355 	 */
356 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
357 
358 	/* use 32 byte descriptors */
359 	rlan_ctx.dsize = 1;
360 
361 	/* Strip the Ethernet CRC bytes before the packet is posted to host
362 	 * memory.
363 	 */
364 	rlan_ctx.crcstrip = 1;
365 
366 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
367 	rlan_ctx.l2tsel = 1;
368 
369 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
370 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
371 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
372 
373 	/* This controls whether VLAN is stripped from inner headers
374 	 * The VLAN in the inner L2 header is stripped to the receive
375 	 * descriptor if enabled by this flag.
376 	 */
377 	rlan_ctx.showiv = 0;
378 
379 	/* Max packet size for this queue - must not be set to a larger value
380 	 * than 5 x DBUF
381 	 */
382 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
383 			       chain_len * ring->rx_buf_len);
384 
385 	/* Rx queue threshold in units of 64 */
386 	rlan_ctx.lrxqthresh = 1;
387 
388 	/* Enable Flexible Descriptors in the queue context which
389 	 * allows this driver to select a specific receive descriptor format
390 	 * increasing context priority to pick up profile ID; default is 0x01;
391 	 * setting to 0x03 to ensure profile is programming if prev context is
392 	 * of same priority
393 	 */
394 	if (vsi->type != ICE_VSI_VF)
395 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
396 	else
397 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
398 
399 	/* Absolute queue number out of 2K needs to be passed */
400 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
401 	if (err) {
402 		dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
403 			pf_q, err);
404 		return -EIO;
405 	}
406 
407 	if (vsi->type == ICE_VSI_VF)
408 		return 0;
409 
410 	/* configure Rx buffer alignment */
411 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
412 		ice_clear_ring_build_skb_ena(ring);
413 	else
414 		ice_set_ring_build_skb_ena(ring);
415 
416 	/* init queue specific tail register */
417 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
418 	writel(0, ring->tail);
419 
420 	if (ring->xsk_umem) {
421 		if (!xsk_buff_can_alloc(ring->xsk_umem, num_bufs)) {
422 			dev_warn(dev, "UMEM does not provide enough addresses to fill %d buffers on Rx ring %d\n",
423 				 num_bufs, ring->q_index);
424 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
425 
426 			return 0;
427 		}
428 
429 		err = ice_alloc_rx_bufs_zc(ring, num_bufs);
430 		if (err)
431 			dev_info(dev, "Failed to allocate some buffers on UMEM enabled Rx ring %d (pf_q %d)\n",
432 				 ring->q_index, pf_q);
433 		return 0;
434 	}
435 
436 	ice_alloc_rx_bufs(ring, num_bufs);
437 
438 	return 0;
439 }
440 
441 /**
442  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
443  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
444  *
445  * This function first tries to find contiguous space. If it is not successful,
446  * it tries with the scatter approach.
447  *
448  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
449  */
450 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
451 {
452 	int ret = 0;
453 
454 	ret = __ice_vsi_get_qs_contig(qs_cfg);
455 	if (ret) {
456 		/* contig failed, so try with scatter approach */
457 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
458 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
459 					qs_cfg->scatter_count);
460 		ret = __ice_vsi_get_qs_sc(qs_cfg);
461 	}
462 	return ret;
463 }
464 
465 /**
466  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
467  * @vsi: the VSI being configured
468  * @ena: start or stop the Rx ring
469  * @rxq_idx: 0-based Rx queue index for the VSI passed in
470  * @wait: wait or don't wait for configuration to finish in hardware
471  *
472  * Return 0 on success and negative on error.
473  */
474 int
475 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
476 {
477 	int pf_q = vsi->rxq_map[rxq_idx];
478 	struct ice_pf *pf = vsi->back;
479 	struct ice_hw *hw = &pf->hw;
480 	u32 rx_reg;
481 
482 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
483 
484 	/* Skip if the queue is already in the requested state */
485 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
486 		return 0;
487 
488 	/* turn on/off the queue */
489 	if (ena)
490 		rx_reg |= QRX_CTRL_QENA_REQ_M;
491 	else
492 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
493 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
494 
495 	if (!wait)
496 		return 0;
497 
498 	ice_flush(hw);
499 	return ice_pf_rxq_wait(pf, pf_q, ena);
500 }
501 
502 /**
503  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
504  * @vsi: the VSI being configured
505  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
506  * @rxq_idx: 0-based Rx queue index for the VSI passed in
507  *
508  * This routine will wait for the given Rx queue of the VSI to reach the
509  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
510  * the requested state after multiple retries; else will return 0 in case of
511  * success.
512  */
513 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
514 {
515 	int pf_q = vsi->rxq_map[rxq_idx];
516 	struct ice_pf *pf = vsi->back;
517 
518 	return ice_pf_rxq_wait(pf, pf_q, ena);
519 }
520 
521 /**
522  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
523  * @vsi: the VSI being configured
524  *
525  * We allocate one q_vector per queue interrupt. If allocation fails we
526  * return -ENOMEM.
527  */
528 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
529 {
530 	struct device *dev = ice_pf_to_dev(vsi->back);
531 	u16 v_idx;
532 	int err;
533 
534 	if (vsi->q_vectors[0]) {
535 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
536 		return -EEXIST;
537 	}
538 
539 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
540 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
541 		if (err)
542 			goto err_out;
543 	}
544 
545 	return 0;
546 
547 err_out:
548 	while (v_idx--)
549 		ice_free_q_vector(vsi, v_idx);
550 
551 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
552 		vsi->num_q_vectors, vsi->vsi_num, err);
553 	vsi->num_q_vectors = 0;
554 	return err;
555 }
556 
557 /**
558  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
559  * @vsi: the VSI being configured
560  *
561  * This function maps descriptor rings to the queue-specific vectors allotted
562  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
563  * and Rx rings to the vector as "efficiently" as possible.
564  */
565 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
566 {
567 	int q_vectors = vsi->num_q_vectors;
568 	u16 tx_rings_rem, rx_rings_rem;
569 	int v_id;
570 
571 	/* initially assigning remaining rings count to VSIs num queue value */
572 	tx_rings_rem = vsi->num_txq;
573 	rx_rings_rem = vsi->num_rxq;
574 
575 	for (v_id = 0; v_id < q_vectors; v_id++) {
576 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
577 		u8 tx_rings_per_v, rx_rings_per_v;
578 		u16 q_id, q_base;
579 
580 		/* Tx rings mapping to vector */
581 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
582 						  q_vectors - v_id);
583 		q_vector->num_ring_tx = tx_rings_per_v;
584 		q_vector->tx.ring = NULL;
585 		q_vector->tx.itr_idx = ICE_TX_ITR;
586 		q_base = vsi->num_txq - tx_rings_rem;
587 
588 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
589 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
590 
591 			tx_ring->q_vector = q_vector;
592 			tx_ring->next = q_vector->tx.ring;
593 			q_vector->tx.ring = tx_ring;
594 		}
595 		tx_rings_rem -= tx_rings_per_v;
596 
597 		/* Rx rings mapping to vector */
598 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
599 						  q_vectors - v_id);
600 		q_vector->num_ring_rx = rx_rings_per_v;
601 		q_vector->rx.ring = NULL;
602 		q_vector->rx.itr_idx = ICE_RX_ITR;
603 		q_base = vsi->num_rxq - rx_rings_rem;
604 
605 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
606 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
607 
608 			rx_ring->q_vector = q_vector;
609 			rx_ring->next = q_vector->rx.ring;
610 			q_vector->rx.ring = rx_ring;
611 		}
612 		rx_rings_rem -= rx_rings_per_v;
613 	}
614 }
615 
616 /**
617  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
618  * @vsi: the VSI having memory freed
619  */
620 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
621 {
622 	int v_idx;
623 
624 	ice_for_each_q_vector(vsi, v_idx)
625 		ice_free_q_vector(vsi, v_idx);
626 }
627 
628 /**
629  * ice_vsi_cfg_txq - Configure single Tx queue
630  * @vsi: the VSI that queue belongs to
631  * @ring: Tx ring to be configured
632  * @qg_buf: queue group buffer
633  */
634 int
635 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
636 		struct ice_aqc_add_tx_qgrp *qg_buf)
637 {
638 	u8 buf_len = struct_size(qg_buf, txqs, 1);
639 	struct ice_tlan_ctx tlan_ctx = { 0 };
640 	struct ice_aqc_add_txqs_perq *txq;
641 	struct ice_pf *pf = vsi->back;
642 	struct ice_hw *hw = &pf->hw;
643 	enum ice_status status;
644 	u16 pf_q;
645 	u8 tc;
646 
647 	pf_q = ring->reg_idx;
648 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
649 	/* copy context contents into the qg_buf */
650 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
651 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
652 		    ice_tlan_ctx_info);
653 
654 	/* init queue specific tail reg. It is referred as
655 	 * transmit comm scheduler queue doorbell.
656 	 */
657 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
658 
659 	if (IS_ENABLED(CONFIG_DCB))
660 		tc = ring->dcb_tc;
661 	else
662 		tc = 0;
663 
664 	/* Add unique software queue handle of the Tx queue per
665 	 * TC into the VSI Tx ring
666 	 */
667 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
668 
669 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
670 				 1, qg_buf, buf_len, NULL);
671 	if (status) {
672 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
673 			ice_stat_str(status));
674 		return -ENODEV;
675 	}
676 
677 	/* Add Tx Queue TEID into the VSI Tx ring from the
678 	 * response. This will complete configuring and
679 	 * enabling the queue.
680 	 */
681 	txq = &qg_buf->txqs[0];
682 	if (pf_q == le16_to_cpu(txq->txq_id))
683 		ring->txq_teid = le32_to_cpu(txq->q_teid);
684 
685 	return 0;
686 }
687 
688 /**
689  * ice_cfg_itr - configure the initial interrupt throttle values
690  * @hw: pointer to the HW structure
691  * @q_vector: interrupt vector that's being configured
692  *
693  * Configure interrupt throttling values for the ring containers that are
694  * associated with the interrupt vector passed in.
695  */
696 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
697 {
698 	ice_cfg_itr_gran(hw);
699 
700 	if (q_vector->num_ring_rx) {
701 		struct ice_ring_container *rc = &q_vector->rx;
702 
703 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
704 		rc->next_update = jiffies + 1;
705 		rc->current_itr = rc->target_itr;
706 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
707 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
708 	}
709 
710 	if (q_vector->num_ring_tx) {
711 		struct ice_ring_container *rc = &q_vector->tx;
712 
713 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
714 		rc->next_update = jiffies + 1;
715 		rc->current_itr = rc->target_itr;
716 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
717 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
718 	}
719 }
720 
721 /**
722  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
723  * @vsi: the VSI being configured
724  * @txq: Tx queue being mapped to MSI-X vector
725  * @msix_idx: MSI-X vector index within the function
726  * @itr_idx: ITR index of the interrupt cause
727  *
728  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
729  * within the function space.
730  */
731 void
732 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
733 {
734 	struct ice_pf *pf = vsi->back;
735 	struct ice_hw *hw = &pf->hw;
736 	u32 val;
737 
738 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
739 
740 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
741 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
742 
743 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
744 	if (ice_is_xdp_ena_vsi(vsi)) {
745 		u32 xdp_txq = txq + vsi->num_xdp_txq;
746 
747 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
748 		     val);
749 	}
750 	ice_flush(hw);
751 }
752 
753 /**
754  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
755  * @vsi: the VSI being configured
756  * @rxq: Rx queue being mapped to MSI-X vector
757  * @msix_idx: MSI-X vector index within the function
758  * @itr_idx: ITR index of the interrupt cause
759  *
760  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
761  * within the function space.
762  */
763 void
764 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
765 {
766 	struct ice_pf *pf = vsi->back;
767 	struct ice_hw *hw = &pf->hw;
768 	u32 val;
769 
770 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
771 
772 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
773 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
774 
775 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
776 
777 	ice_flush(hw);
778 }
779 
780 /**
781  * ice_trigger_sw_intr - trigger a software interrupt
782  * @hw: pointer to the HW structure
783  * @q_vector: interrupt vector to trigger the software interrupt for
784  */
785 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
786 {
787 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
788 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
789 	     GLINT_DYN_CTL_SWINT_TRIG_M |
790 	     GLINT_DYN_CTL_INTENA_M);
791 }
792 
793 /**
794  * ice_vsi_stop_tx_ring - Disable single Tx ring
795  * @vsi: the VSI being configured
796  * @rst_src: reset source
797  * @rel_vmvf_num: Relative ID of VF/VM
798  * @ring: Tx ring to be stopped
799  * @txq_meta: Meta data of Tx ring to be stopped
800  */
801 int
802 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
803 		     u16 rel_vmvf_num, struct ice_ring *ring,
804 		     struct ice_txq_meta *txq_meta)
805 {
806 	struct ice_pf *pf = vsi->back;
807 	struct ice_q_vector *q_vector;
808 	struct ice_hw *hw = &pf->hw;
809 	enum ice_status status;
810 	u32 val;
811 
812 	/* clear cause_ena bit for disabled queues */
813 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
814 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
815 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
816 
817 	/* software is expected to wait for 100 ns */
818 	ndelay(100);
819 
820 	/* trigger a software interrupt for the vector
821 	 * associated to the queue to schedule NAPI handler
822 	 */
823 	q_vector = ring->q_vector;
824 	if (q_vector)
825 		ice_trigger_sw_intr(hw, q_vector);
826 
827 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
828 				 txq_meta->tc, 1, &txq_meta->q_handle,
829 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
830 				 rel_vmvf_num, NULL);
831 
832 	/* if the disable queue command was exercised during an
833 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
834 	 * This is not an error as the reset operation disables
835 	 * queues at the hardware level anyway.
836 	 */
837 	if (status == ICE_ERR_RESET_ONGOING) {
838 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
839 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
840 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
841 	} else if (status) {
842 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
843 			ice_stat_str(status));
844 		return -ENODEV;
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  * ice_fill_txq_meta - Prepare the Tx queue's meta data
852  * @vsi: VSI that ring belongs to
853  * @ring: ring that txq_meta will be based on
854  * @txq_meta: a helper struct that wraps Tx queue's information
855  *
856  * Set up a helper struct that will contain all the necessary fields that
857  * are needed for stopping Tx queue
858  */
859 void
860 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
861 		  struct ice_txq_meta *txq_meta)
862 {
863 	u8 tc;
864 
865 	if (IS_ENABLED(CONFIG_DCB))
866 		tc = ring->dcb_tc;
867 	else
868 		tc = 0;
869 
870 	txq_meta->q_id = ring->reg_idx;
871 	txq_meta->q_teid = ring->txq_teid;
872 	txq_meta->q_handle = ring->q_handle;
873 	txq_meta->vsi_idx = vsi->idx;
874 	txq_meta->tc = tc;
875 }
876