1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 149 /* only set affinity_mask if the CPU is online */ 150 if (cpu_online(v_idx)) 151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 152 153 /* This will not be called in the driver load path because the netdev 154 * will not be created yet. All other cases with register the NAPI 155 * handler here (i.e. resume, reset/rebuild, etc.) 156 */ 157 if (vsi->netdev) 158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 159 160 out: 161 /* tie q_vector and VSI together */ 162 vsi->q_vectors[v_idx] = q_vector; 163 164 return 0; 165 166 err_free_q_vector: 167 kfree(q_vector); 168 169 return err; 170 } 171 172 /** 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 174 * @vsi: VSI having the memory freed 175 * @v_idx: index of the vector to be freed 176 */ 177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 178 { 179 struct ice_q_vector *q_vector; 180 struct ice_pf *pf = vsi->back; 181 struct ice_tx_ring *tx_ring; 182 struct ice_rx_ring *rx_ring; 183 struct device *dev; 184 185 dev = ice_pf_to_dev(pf); 186 if (!vsi->q_vectors[v_idx]) { 187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 188 return; 189 } 190 q_vector = vsi->q_vectors[v_idx]; 191 192 ice_for_each_tx_ring(tx_ring, q_vector->tx) 193 tx_ring->q_vector = NULL; 194 ice_for_each_rx_ring(rx_ring, q_vector->rx) 195 rx_ring->q_vector = NULL; 196 197 /* only VSI with an associated netdev is set up with NAPI */ 198 if (vsi->netdev) 199 netif_napi_del(&q_vector->napi); 200 201 /* release MSIX interrupt if q_vector had interrupt allocated */ 202 if (q_vector->irq.index < 0) 203 goto free_q_vector; 204 205 /* only free last VF ctrl vsi interrupt */ 206 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 207 ice_get_vf_ctrl_vsi(pf, vsi)) 208 goto free_q_vector; 209 210 ice_free_irq(pf, q_vector->irq); 211 212 free_q_vector: 213 kfree(q_vector); 214 vsi->q_vectors[v_idx] = NULL; 215 } 216 217 /** 218 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 219 * @hw: board specific structure 220 */ 221 static void ice_cfg_itr_gran(struct ice_hw *hw) 222 { 223 u32 regval = rd32(hw, GLINT_CTL); 224 225 /* no need to update global register if ITR gran is already set */ 226 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 227 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 228 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 229 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 230 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 231 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 232 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 233 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 234 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 235 return; 236 237 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 238 GLINT_CTL_ITR_GRAN_200_M) | 239 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 240 GLINT_CTL_ITR_GRAN_100_M) | 241 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 242 GLINT_CTL_ITR_GRAN_50_M) | 243 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 244 GLINT_CTL_ITR_GRAN_25_M); 245 wr32(hw, GLINT_CTL, regval); 246 } 247 248 /** 249 * ice_calc_txq_handle - calculate the queue handle 250 * @vsi: VSI that ring belongs to 251 * @ring: ring to get the absolute queue index 252 * @tc: traffic class number 253 */ 254 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 255 { 256 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 257 258 if (ring->ch) 259 return ring->q_index - ring->ch->base_q; 260 261 /* Idea here for calculation is that we subtract the number of queue 262 * count from TC that ring belongs to from it's absolute queue index 263 * and as a result we get the queue's index within TC. 264 */ 265 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 266 } 267 268 /** 269 * ice_eswitch_calc_txq_handle 270 * @ring: pointer to ring which unique index is needed 271 * 272 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 273 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 274 * here by finding index in vsi->tx_rings of this ring. 275 * 276 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 277 * because VSI is get from ring->vsi, so it has to be present in this VSI. 278 */ 279 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) 280 { 281 struct ice_vsi *vsi = ring->vsi; 282 int i; 283 284 ice_for_each_txq(vsi, i) { 285 if (vsi->tx_rings[i] == ring) 286 return i; 287 } 288 289 return ICE_INVAL_Q_INDEX; 290 } 291 292 /** 293 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 294 * @ring: The Tx ring to configure 295 * 296 * This enables/disables XPS for a given Tx descriptor ring 297 * based on the TCs enabled for the VSI that ring belongs to. 298 */ 299 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 300 { 301 if (!ring->q_vector || !ring->netdev) 302 return; 303 304 /* We only initialize XPS once, so as not to overwrite user settings */ 305 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 306 return; 307 308 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 309 ring->q_index); 310 } 311 312 /** 313 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 314 * @ring: The Tx ring to configure 315 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 316 * @pf_q: queue index in the PF space 317 * 318 * Configure the Tx descriptor ring in TLAN context. 319 */ 320 static void 321 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 322 { 323 struct ice_vsi *vsi = ring->vsi; 324 struct ice_hw *hw = &vsi->back->hw; 325 326 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 327 328 tlan_ctx->port_num = vsi->port_info->lport; 329 330 /* Transmit Queue Length */ 331 tlan_ctx->qlen = ring->count; 332 333 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 334 335 /* PF number */ 336 tlan_ctx->pf_num = hw->pf_id; 337 338 /* queue belongs to a specific VSI type 339 * VF / VM index should be programmed per vmvf_type setting: 340 * for vmvf_type = VF, it is VF number between 0-256 341 * for vmvf_type = VM, it is VM number between 0-767 342 * for PF or EMP this field should be set to zero 343 */ 344 switch (vsi->type) { 345 case ICE_VSI_LB: 346 case ICE_VSI_CTRL: 347 case ICE_VSI_PF: 348 if (ring->ch) 349 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 350 else 351 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 352 break; 353 case ICE_VSI_VF: 354 /* Firmware expects vmvf_num to be absolute VF ID */ 355 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 356 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 357 break; 358 case ICE_VSI_SWITCHDEV_CTRL: 359 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 360 break; 361 default: 362 return; 363 } 364 365 /* make sure the context is associated with the right VSI */ 366 if (ring->ch) 367 tlan_ctx->src_vsi = ring->ch->vsi_num; 368 else 369 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 370 371 /* Restrict Tx timestamps to the PF VSI */ 372 switch (vsi->type) { 373 case ICE_VSI_PF: 374 tlan_ctx->tsyn_ena = 1; 375 break; 376 default: 377 break; 378 } 379 380 tlan_ctx->tso_ena = ICE_TX_LEGACY; 381 tlan_ctx->tso_qnum = pf_q; 382 383 /* Legacy or Advanced Host Interface: 384 * 0: Advanced Host Interface 385 * 1: Legacy Host Interface 386 */ 387 tlan_ctx->legacy_int = ICE_TX_LEGACY; 388 } 389 390 /** 391 * ice_rx_offset - Return expected offset into page to access data 392 * @rx_ring: Ring we are requesting offset of 393 * 394 * Returns the offset value for ring into the data buffer. 395 */ 396 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 397 { 398 if (ice_ring_uses_build_skb(rx_ring)) 399 return ICE_SKB_PAD; 400 return 0; 401 } 402 403 /** 404 * ice_setup_rx_ctx - Configure a receive ring context 405 * @ring: The Rx ring to configure 406 * 407 * Configure the Rx descriptor ring in RLAN context. 408 */ 409 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 410 { 411 struct ice_vsi *vsi = ring->vsi; 412 u32 rxdid = ICE_RXDID_FLEX_NIC; 413 struct ice_rlan_ctx rlan_ctx; 414 struct ice_hw *hw; 415 u16 pf_q; 416 int err; 417 418 hw = &vsi->back->hw; 419 420 /* what is Rx queue number in global space of 2K Rx queues */ 421 pf_q = vsi->rxq_map[ring->q_index]; 422 423 /* clear the context structure first */ 424 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 425 426 /* Receive Queue Base Address. 427 * Indicates the starting address of the descriptor queue defined in 428 * 128 Byte units. 429 */ 430 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 431 432 rlan_ctx.qlen = ring->count; 433 434 /* Receive Packet Data Buffer Size. 435 * The Packet Data Buffer Size is defined in 128 byte units. 436 */ 437 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 438 439 /* use 32 byte descriptors */ 440 rlan_ctx.dsize = 1; 441 442 /* Strip the Ethernet CRC bytes before the packet is posted to host 443 * memory. 444 */ 445 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 446 447 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 448 * and it needs to remain 1 for non-DVM capable configurations to not 449 * break backward compatibility for VF drivers. Setting this field to 0 450 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 451 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 452 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 453 * check for the tag 454 */ 455 if (ice_is_dvm_ena(hw)) 456 if (vsi->type == ICE_VSI_VF && 457 ice_vf_is_port_vlan_ena(vsi->vf)) 458 rlan_ctx.l2tsel = 1; 459 else 460 rlan_ctx.l2tsel = 0; 461 else 462 rlan_ctx.l2tsel = 1; 463 464 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 465 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 466 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 467 468 /* This controls whether VLAN is stripped from inner headers 469 * The VLAN in the inner L2 header is stripped to the receive 470 * descriptor if enabled by this flag. 471 */ 472 rlan_ctx.showiv = 0; 473 474 /* Max packet size for this queue - must not be set to a larger value 475 * than 5 x DBUF 476 */ 477 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 478 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 479 480 /* Rx queue threshold in units of 64 */ 481 rlan_ctx.lrxqthresh = 1; 482 483 /* Enable Flexible Descriptors in the queue context which 484 * allows this driver to select a specific receive descriptor format 485 * increasing context priority to pick up profile ID; default is 0x01; 486 * setting to 0x03 to ensure profile is programming if prev context is 487 * of same priority 488 */ 489 if (vsi->type != ICE_VSI_VF) 490 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 491 else 492 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 493 false); 494 495 /* Absolute queue number out of 2K needs to be passed */ 496 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 497 if (err) { 498 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 499 pf_q, err); 500 return -EIO; 501 } 502 503 if (vsi->type == ICE_VSI_VF) 504 return 0; 505 506 /* configure Rx buffer alignment */ 507 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 508 ice_clear_ring_build_skb_ena(ring); 509 else 510 ice_set_ring_build_skb_ena(ring); 511 512 ring->rx_offset = ice_rx_offset(ring); 513 514 /* init queue specific tail register */ 515 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 516 writel(0, ring->tail); 517 518 return 0; 519 } 520 521 /** 522 * ice_vsi_cfg_rxq - Configure an Rx queue 523 * @ring: the ring being configured 524 * 525 * Return 0 on success and a negative value on error. 526 */ 527 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 528 { 529 struct device *dev = ice_pf_to_dev(ring->vsi->back); 530 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 531 int err; 532 533 ring->rx_buf_len = ring->vsi->rx_buf_len; 534 535 if (ring->vsi->type == ICE_VSI_PF) { 536 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 537 /* coverity[check_return] */ 538 __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 539 ring->q_index, 540 ring->q_vector->napi.napi_id, 541 ring->vsi->rx_buf_len); 542 543 ring->xsk_pool = ice_xsk_pool(ring); 544 if (ring->xsk_pool) { 545 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 546 547 ring->rx_buf_len = 548 xsk_pool_get_rx_frame_size(ring->xsk_pool); 549 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 550 MEM_TYPE_XSK_BUFF_POOL, 551 NULL); 552 if (err) 553 return err; 554 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 555 556 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 557 ring->q_index); 558 } else { 559 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 560 /* coverity[check_return] */ 561 __xdp_rxq_info_reg(&ring->xdp_rxq, 562 ring->netdev, 563 ring->q_index, 564 ring->q_vector->napi.napi_id, 565 ring->vsi->rx_buf_len); 566 567 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 568 MEM_TYPE_PAGE_SHARED, 569 NULL); 570 if (err) 571 return err; 572 } 573 } 574 575 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); 576 ring->xdp.data = NULL; 577 err = ice_setup_rx_ctx(ring); 578 if (err) { 579 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 580 ring->q_index, err); 581 return err; 582 } 583 584 if (ring->xsk_pool) { 585 bool ok; 586 587 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 588 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 589 num_bufs, ring->q_index); 590 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 591 592 return 0; 593 } 594 595 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 596 if (!ok) { 597 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 598 599 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 600 ring->q_index, pf_q); 601 } 602 603 return 0; 604 } 605 606 ice_alloc_rx_bufs(ring, num_bufs); 607 608 return 0; 609 } 610 611 /** 612 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 613 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 614 * 615 * This function first tries to find contiguous space. If it is not successful, 616 * it tries with the scatter approach. 617 * 618 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 619 */ 620 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 621 { 622 int ret = 0; 623 624 ret = __ice_vsi_get_qs_contig(qs_cfg); 625 if (ret) { 626 /* contig failed, so try with scatter approach */ 627 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 628 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 629 qs_cfg->scatter_count); 630 ret = __ice_vsi_get_qs_sc(qs_cfg); 631 } 632 return ret; 633 } 634 635 /** 636 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 637 * @vsi: the VSI being configured 638 * @ena: start or stop the Rx ring 639 * @rxq_idx: 0-based Rx queue index for the VSI passed in 640 * @wait: wait or don't wait for configuration to finish in hardware 641 * 642 * Return 0 on success and negative on error. 643 */ 644 int 645 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 646 { 647 int pf_q = vsi->rxq_map[rxq_idx]; 648 struct ice_pf *pf = vsi->back; 649 struct ice_hw *hw = &pf->hw; 650 u32 rx_reg; 651 652 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 653 654 /* Skip if the queue is already in the requested state */ 655 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 656 return 0; 657 658 /* turn on/off the queue */ 659 if (ena) 660 rx_reg |= QRX_CTRL_QENA_REQ_M; 661 else 662 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 663 wr32(hw, QRX_CTRL(pf_q), rx_reg); 664 665 if (!wait) 666 return 0; 667 668 ice_flush(hw); 669 return ice_pf_rxq_wait(pf, pf_q, ena); 670 } 671 672 /** 673 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 674 * @vsi: the VSI being configured 675 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 676 * @rxq_idx: 0-based Rx queue index for the VSI passed in 677 * 678 * This routine will wait for the given Rx queue of the VSI to reach the 679 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 680 * the requested state after multiple retries; else will return 0 in case of 681 * success. 682 */ 683 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 684 { 685 int pf_q = vsi->rxq_map[rxq_idx]; 686 struct ice_pf *pf = vsi->back; 687 688 return ice_pf_rxq_wait(pf, pf_q, ena); 689 } 690 691 /** 692 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 693 * @vsi: the VSI being configured 694 * 695 * We allocate one q_vector per queue interrupt. If allocation fails we 696 * return -ENOMEM. 697 */ 698 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 699 { 700 struct device *dev = ice_pf_to_dev(vsi->back); 701 u16 v_idx; 702 int err; 703 704 if (vsi->q_vectors[0]) { 705 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 706 return -EEXIST; 707 } 708 709 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 710 err = ice_vsi_alloc_q_vector(vsi, v_idx); 711 if (err) 712 goto err_out; 713 } 714 715 return 0; 716 717 err_out: 718 while (v_idx--) 719 ice_free_q_vector(vsi, v_idx); 720 721 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 722 vsi->num_q_vectors, vsi->vsi_num, err); 723 vsi->num_q_vectors = 0; 724 return err; 725 } 726 727 /** 728 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 729 * @vsi: the VSI being configured 730 * 731 * This function maps descriptor rings to the queue-specific vectors allotted 732 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 733 * and Rx rings to the vector as "efficiently" as possible. 734 */ 735 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 736 { 737 int q_vectors = vsi->num_q_vectors; 738 u16 tx_rings_rem, rx_rings_rem; 739 int v_id; 740 741 /* initially assigning remaining rings count to VSIs num queue value */ 742 tx_rings_rem = vsi->num_txq; 743 rx_rings_rem = vsi->num_rxq; 744 745 for (v_id = 0; v_id < q_vectors; v_id++) { 746 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 747 u8 tx_rings_per_v, rx_rings_per_v; 748 u16 q_id, q_base; 749 750 /* Tx rings mapping to vector */ 751 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 752 q_vectors - v_id); 753 q_vector->num_ring_tx = tx_rings_per_v; 754 q_vector->tx.tx_ring = NULL; 755 q_vector->tx.itr_idx = ICE_TX_ITR; 756 q_base = vsi->num_txq - tx_rings_rem; 757 758 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 759 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 760 761 tx_ring->q_vector = q_vector; 762 tx_ring->next = q_vector->tx.tx_ring; 763 q_vector->tx.tx_ring = tx_ring; 764 } 765 tx_rings_rem -= tx_rings_per_v; 766 767 /* Rx rings mapping to vector */ 768 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 769 q_vectors - v_id); 770 q_vector->num_ring_rx = rx_rings_per_v; 771 q_vector->rx.rx_ring = NULL; 772 q_vector->rx.itr_idx = ICE_RX_ITR; 773 q_base = vsi->num_rxq - rx_rings_rem; 774 775 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 776 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 777 778 rx_ring->q_vector = q_vector; 779 rx_ring->next = q_vector->rx.rx_ring; 780 q_vector->rx.rx_ring = rx_ring; 781 } 782 rx_rings_rem -= rx_rings_per_v; 783 } 784 } 785 786 /** 787 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 788 * @vsi: the VSI having memory freed 789 */ 790 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 791 { 792 int v_idx; 793 794 ice_for_each_q_vector(vsi, v_idx) 795 ice_free_q_vector(vsi, v_idx); 796 797 vsi->num_q_vectors = 0; 798 } 799 800 /** 801 * ice_vsi_cfg_txq - Configure single Tx queue 802 * @vsi: the VSI that queue belongs to 803 * @ring: Tx ring to be configured 804 * @qg_buf: queue group buffer 805 */ 806 int 807 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 808 struct ice_aqc_add_tx_qgrp *qg_buf) 809 { 810 u8 buf_len = struct_size(qg_buf, txqs, 1); 811 struct ice_tlan_ctx tlan_ctx = { 0 }; 812 struct ice_aqc_add_txqs_perq *txq; 813 struct ice_channel *ch = ring->ch; 814 struct ice_pf *pf = vsi->back; 815 struct ice_hw *hw = &pf->hw; 816 int status; 817 u16 pf_q; 818 u8 tc; 819 820 /* Configure XPS */ 821 ice_cfg_xps_tx_ring(ring); 822 823 pf_q = ring->reg_idx; 824 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 825 /* copy context contents into the qg_buf */ 826 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 827 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 828 ice_tlan_ctx_info); 829 830 /* init queue specific tail reg. It is referred as 831 * transmit comm scheduler queue doorbell. 832 */ 833 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 834 835 if (IS_ENABLED(CONFIG_DCB)) 836 tc = ring->dcb_tc; 837 else 838 tc = 0; 839 840 /* Add unique software queue handle of the Tx queue per 841 * TC into the VSI Tx ring 842 */ 843 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 844 ring->q_handle = ice_eswitch_calc_txq_handle(ring); 845 846 if (ring->q_handle == ICE_INVAL_Q_INDEX) 847 return -ENODEV; 848 } else { 849 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 850 } 851 852 if (ch) 853 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 854 ring->q_handle, 1, qg_buf, buf_len, 855 NULL); 856 else 857 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 858 ring->q_handle, 1, qg_buf, buf_len, 859 NULL); 860 if (status) { 861 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 862 status); 863 return status; 864 } 865 866 /* Add Tx Queue TEID into the VSI Tx ring from the 867 * response. This will complete configuring and 868 * enabling the queue. 869 */ 870 txq = &qg_buf->txqs[0]; 871 if (pf_q == le16_to_cpu(txq->txq_id)) 872 ring->txq_teid = le32_to_cpu(txq->q_teid); 873 874 return 0; 875 } 876 877 /** 878 * ice_cfg_itr - configure the initial interrupt throttle values 879 * @hw: pointer to the HW structure 880 * @q_vector: interrupt vector that's being configured 881 * 882 * Configure interrupt throttling values for the ring containers that are 883 * associated with the interrupt vector passed in. 884 */ 885 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 886 { 887 ice_cfg_itr_gran(hw); 888 889 if (q_vector->num_ring_rx) 890 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 891 892 if (q_vector->num_ring_tx) 893 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 894 895 ice_write_intrl(q_vector, q_vector->intrl); 896 } 897 898 /** 899 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 900 * @vsi: the VSI being configured 901 * @txq: Tx queue being mapped to MSI-X vector 902 * @msix_idx: MSI-X vector index within the function 903 * @itr_idx: ITR index of the interrupt cause 904 * 905 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 906 * within the function space. 907 */ 908 void 909 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 910 { 911 struct ice_pf *pf = vsi->back; 912 struct ice_hw *hw = &pf->hw; 913 u32 val; 914 915 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 916 917 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 918 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 919 920 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 921 if (ice_is_xdp_ena_vsi(vsi)) { 922 u32 xdp_txq = txq + vsi->num_xdp_txq; 923 924 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 925 val); 926 } 927 ice_flush(hw); 928 } 929 930 /** 931 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 932 * @vsi: the VSI being configured 933 * @rxq: Rx queue being mapped to MSI-X vector 934 * @msix_idx: MSI-X vector index within the function 935 * @itr_idx: ITR index of the interrupt cause 936 * 937 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 938 * within the function space. 939 */ 940 void 941 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 942 { 943 struct ice_pf *pf = vsi->back; 944 struct ice_hw *hw = &pf->hw; 945 u32 val; 946 947 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 948 949 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 950 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 951 952 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 953 954 ice_flush(hw); 955 } 956 957 /** 958 * ice_trigger_sw_intr - trigger a software interrupt 959 * @hw: pointer to the HW structure 960 * @q_vector: interrupt vector to trigger the software interrupt for 961 */ 962 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 963 { 964 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 965 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 966 GLINT_DYN_CTL_SWINT_TRIG_M | 967 GLINT_DYN_CTL_INTENA_M); 968 } 969 970 /** 971 * ice_vsi_stop_tx_ring - Disable single Tx ring 972 * @vsi: the VSI being configured 973 * @rst_src: reset source 974 * @rel_vmvf_num: Relative ID of VF/VM 975 * @ring: Tx ring to be stopped 976 * @txq_meta: Meta data of Tx ring to be stopped 977 */ 978 int 979 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 980 u16 rel_vmvf_num, struct ice_tx_ring *ring, 981 struct ice_txq_meta *txq_meta) 982 { 983 struct ice_pf *pf = vsi->back; 984 struct ice_q_vector *q_vector; 985 struct ice_hw *hw = &pf->hw; 986 int status; 987 u32 val; 988 989 /* clear cause_ena bit for disabled queues */ 990 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 991 val &= ~QINT_TQCTL_CAUSE_ENA_M; 992 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 993 994 /* software is expected to wait for 100 ns */ 995 ndelay(100); 996 997 /* trigger a software interrupt for the vector 998 * associated to the queue to schedule NAPI handler 999 */ 1000 q_vector = ring->q_vector; 1001 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1002 ice_trigger_sw_intr(hw, q_vector); 1003 1004 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1005 txq_meta->tc, 1, &txq_meta->q_handle, 1006 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1007 rel_vmvf_num, NULL); 1008 1009 /* if the disable queue command was exercised during an 1010 * active reset flow, -EBUSY is returned. 1011 * This is not an error as the reset operation disables 1012 * queues at the hardware level anyway. 1013 */ 1014 if (status == -EBUSY) { 1015 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1016 } else if (status == -ENOENT) { 1017 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1018 } else if (status) { 1019 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1020 status); 1021 return status; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1029 * @vsi: VSI that ring belongs to 1030 * @ring: ring that txq_meta will be based on 1031 * @txq_meta: a helper struct that wraps Tx queue's information 1032 * 1033 * Set up a helper struct that will contain all the necessary fields that 1034 * are needed for stopping Tx queue 1035 */ 1036 void 1037 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, 1038 struct ice_txq_meta *txq_meta) 1039 { 1040 struct ice_channel *ch = ring->ch; 1041 u8 tc; 1042 1043 if (IS_ENABLED(CONFIG_DCB)) 1044 tc = ring->dcb_tc; 1045 else 1046 tc = 0; 1047 1048 txq_meta->q_id = ring->reg_idx; 1049 txq_meta->q_teid = ring->txq_teid; 1050 txq_meta->q_handle = ring->q_handle; 1051 if (ch) { 1052 txq_meta->vsi_idx = ch->ch_vsi->idx; 1053 txq_meta->tc = 0; 1054 } else { 1055 txq_meta->vsi_idx = vsi->idx; 1056 txq_meta->tc = tc; 1057 } 1058 } 1059