1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 
107 	/* allocate q_vector */
108 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
109 				GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 
122 	if (vsi->type == ICE_VSI_VF)
123 		goto out;
124 	/* only set affinity_mask if the CPU is online */
125 	if (cpu_online(v_idx))
126 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
127 
128 	/* This will not be called in the driver load path because the netdev
129 	 * will not be created yet. All other cases with register the NAPI
130 	 * handler here (i.e. resume, reset/rebuild, etc.)
131 	 */
132 	if (vsi->netdev)
133 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
134 			       NAPI_POLL_WEIGHT);
135 
136 out:
137 	/* tie q_vector and VSI together */
138 	vsi->q_vectors[v_idx] = q_vector;
139 
140 	return 0;
141 }
142 
143 /**
144  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
145  * @vsi: VSI having the memory freed
146  * @v_idx: index of the vector to be freed
147  */
148 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
149 {
150 	struct ice_q_vector *q_vector;
151 	struct ice_pf *pf = vsi->back;
152 	struct ice_tx_ring *tx_ring;
153 	struct ice_rx_ring *rx_ring;
154 	struct device *dev;
155 
156 	dev = ice_pf_to_dev(pf);
157 	if (!vsi->q_vectors[v_idx]) {
158 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
159 		return;
160 	}
161 	q_vector = vsi->q_vectors[v_idx];
162 
163 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
164 		tx_ring->q_vector = NULL;
165 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
166 		rx_ring->q_vector = NULL;
167 
168 	/* only VSI with an associated netdev is set up with NAPI */
169 	if (vsi->netdev)
170 		netif_napi_del(&q_vector->napi);
171 
172 	devm_kfree(dev, q_vector);
173 	vsi->q_vectors[v_idx] = NULL;
174 }
175 
176 /**
177  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
178  * @hw: board specific structure
179  */
180 static void ice_cfg_itr_gran(struct ice_hw *hw)
181 {
182 	u32 regval = rd32(hw, GLINT_CTL);
183 
184 	/* no need to update global register if ITR gran is already set */
185 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
186 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
187 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
188 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
189 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
190 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
191 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
192 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
193 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
194 		return;
195 
196 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
197 		  GLINT_CTL_ITR_GRAN_200_M) |
198 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
199 		  GLINT_CTL_ITR_GRAN_100_M) |
200 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
201 		  GLINT_CTL_ITR_GRAN_50_M) |
202 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
203 		  GLINT_CTL_ITR_GRAN_25_M);
204 	wr32(hw, GLINT_CTL, regval);
205 }
206 
207 /**
208  * ice_calc_txq_handle - calculate the queue handle
209  * @vsi: VSI that ring belongs to
210  * @ring: ring to get the absolute queue index
211  * @tc: traffic class number
212  */
213 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
214 {
215 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
216 
217 	if (ring->ch)
218 		return ring->q_index - ring->ch->base_q;
219 
220 	/* Idea here for calculation is that we subtract the number of queue
221 	 * count from TC that ring belongs to from it's absolute queue index
222 	 * and as a result we get the queue's index within TC.
223 	 */
224 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
225 }
226 
227 /**
228  * ice_eswitch_calc_txq_handle
229  * @ring: pointer to ring which unique index is needed
230  *
231  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
232  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
233  * here by finding index in vsi->tx_rings of this ring.
234  *
235  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
236  * because VSI is get from ring->vsi, so it has to be present in this VSI.
237  */
238 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
239 {
240 	struct ice_vsi *vsi = ring->vsi;
241 	int i;
242 
243 	ice_for_each_txq(vsi, i) {
244 		if (vsi->tx_rings[i] == ring)
245 			return i;
246 	}
247 
248 	return ICE_INVAL_Q_INDEX;
249 }
250 
251 /**
252  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
253  * @ring: The Tx ring to configure
254  *
255  * This enables/disables XPS for a given Tx descriptor ring
256  * based on the TCs enabled for the VSI that ring belongs to.
257  */
258 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
259 {
260 	if (!ring->q_vector || !ring->netdev)
261 		return;
262 
263 	/* We only initialize XPS once, so as not to overwrite user settings */
264 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
265 		return;
266 
267 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
268 			    ring->q_index);
269 }
270 
271 /**
272  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
273  * @ring: The Tx ring to configure
274  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
275  * @pf_q: queue index in the PF space
276  *
277  * Configure the Tx descriptor ring in TLAN context.
278  */
279 static void
280 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
281 {
282 	struct ice_vsi *vsi = ring->vsi;
283 	struct ice_hw *hw = &vsi->back->hw;
284 
285 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
286 
287 	tlan_ctx->port_num = vsi->port_info->lport;
288 
289 	/* Transmit Queue Length */
290 	tlan_ctx->qlen = ring->count;
291 
292 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
293 
294 	/* PF number */
295 	tlan_ctx->pf_num = hw->pf_id;
296 
297 	/* queue belongs to a specific VSI type
298 	 * VF / VM index should be programmed per vmvf_type setting:
299 	 * for vmvf_type = VF, it is VF number between 0-256
300 	 * for vmvf_type = VM, it is VM number between 0-767
301 	 * for PF or EMP this field should be set to zero
302 	 */
303 	switch (vsi->type) {
304 	case ICE_VSI_LB:
305 	case ICE_VSI_CTRL:
306 	case ICE_VSI_PF:
307 		if (ring->ch)
308 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
309 		else
310 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
311 		break;
312 	case ICE_VSI_VF:
313 		/* Firmware expects vmvf_num to be absolute VF ID */
314 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
315 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
316 		break;
317 	case ICE_VSI_SWITCHDEV_CTRL:
318 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
319 		break;
320 	default:
321 		return;
322 	}
323 
324 	/* make sure the context is associated with the right VSI */
325 	if (ring->ch)
326 		tlan_ctx->src_vsi = ring->ch->vsi_num;
327 	else
328 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
329 
330 	/* Restrict Tx timestamps to the PF VSI */
331 	switch (vsi->type) {
332 	case ICE_VSI_PF:
333 		tlan_ctx->tsyn_ena = 1;
334 		break;
335 	default:
336 		break;
337 	}
338 
339 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
340 	tlan_ctx->tso_qnum = pf_q;
341 
342 	/* Legacy or Advanced Host Interface:
343 	 * 0: Advanced Host Interface
344 	 * 1: Legacy Host Interface
345 	 */
346 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
347 }
348 
349 /**
350  * ice_rx_offset - Return expected offset into page to access data
351  * @rx_ring: Ring we are requesting offset of
352  *
353  * Returns the offset value for ring into the data buffer.
354  */
355 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
356 {
357 	if (ice_ring_uses_build_skb(rx_ring))
358 		return ICE_SKB_PAD;
359 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
360 		return XDP_PACKET_HEADROOM;
361 
362 	return 0;
363 }
364 
365 /**
366  * ice_setup_rx_ctx - Configure a receive ring context
367  * @ring: The Rx ring to configure
368  *
369  * Configure the Rx descriptor ring in RLAN context.
370  */
371 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
372 {
373 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
374 	struct ice_vsi *vsi = ring->vsi;
375 	u32 rxdid = ICE_RXDID_FLEX_NIC;
376 	struct ice_rlan_ctx rlan_ctx;
377 	struct ice_hw *hw;
378 	u16 pf_q;
379 	int err;
380 
381 	hw = &vsi->back->hw;
382 
383 	/* what is Rx queue number in global space of 2K Rx queues */
384 	pf_q = vsi->rxq_map[ring->q_index];
385 
386 	/* clear the context structure first */
387 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
388 
389 	/* Receive Queue Base Address.
390 	 * Indicates the starting address of the descriptor queue defined in
391 	 * 128 Byte units.
392 	 */
393 	rlan_ctx.base = ring->dma >> 7;
394 
395 	rlan_ctx.qlen = ring->count;
396 
397 	/* Receive Packet Data Buffer Size.
398 	 * The Packet Data Buffer Size is defined in 128 byte units.
399 	 */
400 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
401 
402 	/* use 32 byte descriptors */
403 	rlan_ctx.dsize = 1;
404 
405 	/* Strip the Ethernet CRC bytes before the packet is posted to host
406 	 * memory.
407 	 */
408 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
409 
410 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
411 	 * and it needs to remain 1 for non-DVM capable configurations to not
412 	 * break backward compatibility for VF drivers. Setting this field to 0
413 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
414 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
415 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
416 	 * check for the tag
417 	 */
418 	if (ice_is_dvm_ena(hw))
419 		if (vsi->type == ICE_VSI_VF &&
420 		    ice_vf_is_port_vlan_ena(vsi->vf))
421 			rlan_ctx.l2tsel = 1;
422 		else
423 			rlan_ctx.l2tsel = 0;
424 	else
425 		rlan_ctx.l2tsel = 1;
426 
427 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
428 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
429 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
430 
431 	/* This controls whether VLAN is stripped from inner headers
432 	 * The VLAN in the inner L2 header is stripped to the receive
433 	 * descriptor if enabled by this flag.
434 	 */
435 	rlan_ctx.showiv = 0;
436 
437 	/* For AF_XDP ZC, we disallow packets to span on
438 	 * multiple buffers, thus letting us skip that
439 	 * handling in the fast-path.
440 	 */
441 	if (ring->xsk_pool)
442 		chain_len = 1;
443 	/* Max packet size for this queue - must not be set to a larger value
444 	 * than 5 x DBUF
445 	 */
446 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
447 			       chain_len * ring->rx_buf_len);
448 
449 	/* Rx queue threshold in units of 64 */
450 	rlan_ctx.lrxqthresh = 1;
451 
452 	/* Enable Flexible Descriptors in the queue context which
453 	 * allows this driver to select a specific receive descriptor format
454 	 * increasing context priority to pick up profile ID; default is 0x01;
455 	 * setting to 0x03 to ensure profile is programming if prev context is
456 	 * of same priority
457 	 */
458 	if (vsi->type != ICE_VSI_VF)
459 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
460 	else
461 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
462 					false);
463 
464 	/* Absolute queue number out of 2K needs to be passed */
465 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
466 	if (err) {
467 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
468 			pf_q, err);
469 		return -EIO;
470 	}
471 
472 	if (vsi->type == ICE_VSI_VF)
473 		return 0;
474 
475 	/* configure Rx buffer alignment */
476 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
477 		ice_clear_ring_build_skb_ena(ring);
478 	else
479 		ice_set_ring_build_skb_ena(ring);
480 
481 	ring->rx_offset = ice_rx_offset(ring);
482 
483 	/* init queue specific tail register */
484 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
485 	writel(0, ring->tail);
486 
487 	return 0;
488 }
489 
490 /**
491  * ice_vsi_cfg_rxq - Configure an Rx queue
492  * @ring: the ring being configured
493  *
494  * Return 0 on success and a negative value on error.
495  */
496 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
497 {
498 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
499 	u16 num_bufs = ICE_DESC_UNUSED(ring);
500 	int err;
501 
502 	ring->rx_buf_len = ring->vsi->rx_buf_len;
503 
504 	if (ring->vsi->type == ICE_VSI_PF) {
505 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
506 			/* coverity[check_return] */
507 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
508 					 ring->q_index, ring->q_vector->napi.napi_id);
509 
510 		ring->xsk_pool = ice_xsk_pool(ring);
511 		if (ring->xsk_pool) {
512 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
513 
514 			ring->rx_buf_len =
515 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
516 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
517 							 MEM_TYPE_XSK_BUFF_POOL,
518 							 NULL);
519 			if (err)
520 				return err;
521 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
522 
523 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
524 				 ring->q_index);
525 		} else {
526 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
527 				/* coverity[check_return] */
528 				xdp_rxq_info_reg(&ring->xdp_rxq,
529 						 ring->netdev,
530 						 ring->q_index, ring->q_vector->napi.napi_id);
531 
532 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
533 							 MEM_TYPE_PAGE_SHARED,
534 							 NULL);
535 			if (err)
536 				return err;
537 		}
538 	}
539 
540 	err = ice_setup_rx_ctx(ring);
541 	if (err) {
542 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
543 			ring->q_index, err);
544 		return err;
545 	}
546 
547 	if (ring->xsk_pool) {
548 		bool ok;
549 
550 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
551 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
552 				 num_bufs, ring->q_index);
553 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
554 
555 			return 0;
556 		}
557 
558 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
559 		if (!ok) {
560 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
561 
562 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
563 				 ring->q_index, pf_q);
564 		}
565 
566 		return 0;
567 	}
568 
569 	ice_alloc_rx_bufs(ring, num_bufs);
570 
571 	return 0;
572 }
573 
574 /**
575  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
576  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
577  *
578  * This function first tries to find contiguous space. If it is not successful,
579  * it tries with the scatter approach.
580  *
581  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
582  */
583 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
584 {
585 	int ret = 0;
586 
587 	ret = __ice_vsi_get_qs_contig(qs_cfg);
588 	if (ret) {
589 		/* contig failed, so try with scatter approach */
590 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
591 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
592 					qs_cfg->scatter_count);
593 		ret = __ice_vsi_get_qs_sc(qs_cfg);
594 	}
595 	return ret;
596 }
597 
598 /**
599  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
600  * @vsi: the VSI being configured
601  * @ena: start or stop the Rx ring
602  * @rxq_idx: 0-based Rx queue index for the VSI passed in
603  * @wait: wait or don't wait for configuration to finish in hardware
604  *
605  * Return 0 on success and negative on error.
606  */
607 int
608 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
609 {
610 	int pf_q = vsi->rxq_map[rxq_idx];
611 	struct ice_pf *pf = vsi->back;
612 	struct ice_hw *hw = &pf->hw;
613 	u32 rx_reg;
614 
615 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
616 
617 	/* Skip if the queue is already in the requested state */
618 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
619 		return 0;
620 
621 	/* turn on/off the queue */
622 	if (ena)
623 		rx_reg |= QRX_CTRL_QENA_REQ_M;
624 	else
625 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
626 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
627 
628 	if (!wait)
629 		return 0;
630 
631 	ice_flush(hw);
632 	return ice_pf_rxq_wait(pf, pf_q, ena);
633 }
634 
635 /**
636  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
637  * @vsi: the VSI being configured
638  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
639  * @rxq_idx: 0-based Rx queue index for the VSI passed in
640  *
641  * This routine will wait for the given Rx queue of the VSI to reach the
642  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
643  * the requested state after multiple retries; else will return 0 in case of
644  * success.
645  */
646 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
647 {
648 	int pf_q = vsi->rxq_map[rxq_idx];
649 	struct ice_pf *pf = vsi->back;
650 
651 	return ice_pf_rxq_wait(pf, pf_q, ena);
652 }
653 
654 /**
655  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
656  * @vsi: the VSI being configured
657  *
658  * We allocate one q_vector per queue interrupt. If allocation fails we
659  * return -ENOMEM.
660  */
661 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
662 {
663 	struct device *dev = ice_pf_to_dev(vsi->back);
664 	u16 v_idx;
665 	int err;
666 
667 	if (vsi->q_vectors[0]) {
668 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
669 		return -EEXIST;
670 	}
671 
672 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
673 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
674 		if (err)
675 			goto err_out;
676 	}
677 
678 	return 0;
679 
680 err_out:
681 	while (v_idx--)
682 		ice_free_q_vector(vsi, v_idx);
683 
684 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
685 		vsi->num_q_vectors, vsi->vsi_num, err);
686 	vsi->num_q_vectors = 0;
687 	return err;
688 }
689 
690 /**
691  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
692  * @vsi: the VSI being configured
693  *
694  * This function maps descriptor rings to the queue-specific vectors allotted
695  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
696  * and Rx rings to the vector as "efficiently" as possible.
697  */
698 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
699 {
700 	int q_vectors = vsi->num_q_vectors;
701 	u16 tx_rings_rem, rx_rings_rem;
702 	int v_id;
703 
704 	/* initially assigning remaining rings count to VSIs num queue value */
705 	tx_rings_rem = vsi->num_txq;
706 	rx_rings_rem = vsi->num_rxq;
707 
708 	for (v_id = 0; v_id < q_vectors; v_id++) {
709 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
710 		u8 tx_rings_per_v, rx_rings_per_v;
711 		u16 q_id, q_base;
712 
713 		/* Tx rings mapping to vector */
714 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
715 						  q_vectors - v_id);
716 		q_vector->num_ring_tx = tx_rings_per_v;
717 		q_vector->tx.tx_ring = NULL;
718 		q_vector->tx.itr_idx = ICE_TX_ITR;
719 		q_base = vsi->num_txq - tx_rings_rem;
720 
721 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
722 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
723 
724 			tx_ring->q_vector = q_vector;
725 			tx_ring->next = q_vector->tx.tx_ring;
726 			q_vector->tx.tx_ring = tx_ring;
727 		}
728 		tx_rings_rem -= tx_rings_per_v;
729 
730 		/* Rx rings mapping to vector */
731 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
732 						  q_vectors - v_id);
733 		q_vector->num_ring_rx = rx_rings_per_v;
734 		q_vector->rx.rx_ring = NULL;
735 		q_vector->rx.itr_idx = ICE_RX_ITR;
736 		q_base = vsi->num_rxq - rx_rings_rem;
737 
738 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
739 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
740 
741 			rx_ring->q_vector = q_vector;
742 			rx_ring->next = q_vector->rx.rx_ring;
743 			q_vector->rx.rx_ring = rx_ring;
744 		}
745 		rx_rings_rem -= rx_rings_per_v;
746 	}
747 }
748 
749 /**
750  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
751  * @vsi: the VSI having memory freed
752  */
753 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
754 {
755 	int v_idx;
756 
757 	ice_for_each_q_vector(vsi, v_idx)
758 		ice_free_q_vector(vsi, v_idx);
759 }
760 
761 /**
762  * ice_vsi_cfg_txq - Configure single Tx queue
763  * @vsi: the VSI that queue belongs to
764  * @ring: Tx ring to be configured
765  * @qg_buf: queue group buffer
766  */
767 int
768 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
769 		struct ice_aqc_add_tx_qgrp *qg_buf)
770 {
771 	u8 buf_len = struct_size(qg_buf, txqs, 1);
772 	struct ice_tlan_ctx tlan_ctx = { 0 };
773 	struct ice_aqc_add_txqs_perq *txq;
774 	struct ice_channel *ch = ring->ch;
775 	struct ice_pf *pf = vsi->back;
776 	struct ice_hw *hw = &pf->hw;
777 	int status;
778 	u16 pf_q;
779 	u8 tc;
780 
781 	/* Configure XPS */
782 	ice_cfg_xps_tx_ring(ring);
783 
784 	pf_q = ring->reg_idx;
785 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
786 	/* copy context contents into the qg_buf */
787 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
788 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
789 		    ice_tlan_ctx_info);
790 
791 	/* init queue specific tail reg. It is referred as
792 	 * transmit comm scheduler queue doorbell.
793 	 */
794 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
795 
796 	if (IS_ENABLED(CONFIG_DCB))
797 		tc = ring->dcb_tc;
798 	else
799 		tc = 0;
800 
801 	/* Add unique software queue handle of the Tx queue per
802 	 * TC into the VSI Tx ring
803 	 */
804 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
805 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
806 
807 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
808 			return -ENODEV;
809 	} else {
810 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
811 	}
812 
813 	if (ch)
814 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
815 					 ring->q_handle, 1, qg_buf, buf_len,
816 					 NULL);
817 	else
818 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
819 					 ring->q_handle, 1, qg_buf, buf_len,
820 					 NULL);
821 	if (status) {
822 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
823 			status);
824 		return status;
825 	}
826 
827 	/* Add Tx Queue TEID into the VSI Tx ring from the
828 	 * response. This will complete configuring and
829 	 * enabling the queue.
830 	 */
831 	txq = &qg_buf->txqs[0];
832 	if (pf_q == le16_to_cpu(txq->txq_id))
833 		ring->txq_teid = le32_to_cpu(txq->q_teid);
834 
835 	return 0;
836 }
837 
838 /**
839  * ice_cfg_itr - configure the initial interrupt throttle values
840  * @hw: pointer to the HW structure
841  * @q_vector: interrupt vector that's being configured
842  *
843  * Configure interrupt throttling values for the ring containers that are
844  * associated with the interrupt vector passed in.
845  */
846 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
847 {
848 	ice_cfg_itr_gran(hw);
849 
850 	if (q_vector->num_ring_rx)
851 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
852 
853 	if (q_vector->num_ring_tx)
854 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
855 
856 	ice_write_intrl(q_vector, q_vector->intrl);
857 }
858 
859 /**
860  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
861  * @vsi: the VSI being configured
862  * @txq: Tx queue being mapped to MSI-X vector
863  * @msix_idx: MSI-X vector index within the function
864  * @itr_idx: ITR index of the interrupt cause
865  *
866  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
867  * within the function space.
868  */
869 void
870 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
871 {
872 	struct ice_pf *pf = vsi->back;
873 	struct ice_hw *hw = &pf->hw;
874 	u32 val;
875 
876 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
877 
878 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
879 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
880 
881 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
882 	if (ice_is_xdp_ena_vsi(vsi)) {
883 		u32 xdp_txq = txq + vsi->num_xdp_txq;
884 
885 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
886 		     val);
887 	}
888 	ice_flush(hw);
889 }
890 
891 /**
892  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
893  * @vsi: the VSI being configured
894  * @rxq: Rx queue being mapped to MSI-X vector
895  * @msix_idx: MSI-X vector index within the function
896  * @itr_idx: ITR index of the interrupt cause
897  *
898  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
899  * within the function space.
900  */
901 void
902 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
903 {
904 	struct ice_pf *pf = vsi->back;
905 	struct ice_hw *hw = &pf->hw;
906 	u32 val;
907 
908 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
909 
910 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
911 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
912 
913 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
914 
915 	ice_flush(hw);
916 }
917 
918 /**
919  * ice_trigger_sw_intr - trigger a software interrupt
920  * @hw: pointer to the HW structure
921  * @q_vector: interrupt vector to trigger the software interrupt for
922  */
923 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
924 {
925 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
926 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
927 	     GLINT_DYN_CTL_SWINT_TRIG_M |
928 	     GLINT_DYN_CTL_INTENA_M);
929 }
930 
931 /**
932  * ice_vsi_stop_tx_ring - Disable single Tx ring
933  * @vsi: the VSI being configured
934  * @rst_src: reset source
935  * @rel_vmvf_num: Relative ID of VF/VM
936  * @ring: Tx ring to be stopped
937  * @txq_meta: Meta data of Tx ring to be stopped
938  */
939 int
940 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
941 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
942 		     struct ice_txq_meta *txq_meta)
943 {
944 	struct ice_pf *pf = vsi->back;
945 	struct ice_q_vector *q_vector;
946 	struct ice_hw *hw = &pf->hw;
947 	int status;
948 	u32 val;
949 
950 	/* clear cause_ena bit for disabled queues */
951 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
952 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
953 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
954 
955 	/* software is expected to wait for 100 ns */
956 	ndelay(100);
957 
958 	/* trigger a software interrupt for the vector
959 	 * associated to the queue to schedule NAPI handler
960 	 */
961 	q_vector = ring->q_vector;
962 	if (q_vector)
963 		ice_trigger_sw_intr(hw, q_vector);
964 
965 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
966 				 txq_meta->tc, 1, &txq_meta->q_handle,
967 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
968 				 rel_vmvf_num, NULL);
969 
970 	/* if the disable queue command was exercised during an
971 	 * active reset flow, -EBUSY is returned.
972 	 * This is not an error as the reset operation disables
973 	 * queues at the hardware level anyway.
974 	 */
975 	if (status == -EBUSY) {
976 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
977 	} else if (status == -ENOENT) {
978 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
979 	} else if (status) {
980 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
981 			status);
982 		return status;
983 	}
984 
985 	return 0;
986 }
987 
988 /**
989  * ice_fill_txq_meta - Prepare the Tx queue's meta data
990  * @vsi: VSI that ring belongs to
991  * @ring: ring that txq_meta will be based on
992  * @txq_meta: a helper struct that wraps Tx queue's information
993  *
994  * Set up a helper struct that will contain all the necessary fields that
995  * are needed for stopping Tx queue
996  */
997 void
998 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
999 		  struct ice_txq_meta *txq_meta)
1000 {
1001 	struct ice_channel *ch = ring->ch;
1002 	u8 tc;
1003 
1004 	if (IS_ENABLED(CONFIG_DCB))
1005 		tc = ring->dcb_tc;
1006 	else
1007 		tc = 0;
1008 
1009 	txq_meta->q_id = ring->reg_idx;
1010 	txq_meta->q_teid = ring->txq_teid;
1011 	txq_meta->q_handle = ring->q_handle;
1012 	if (ch) {
1013 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1014 		txq_meta->tc = 0;
1015 	} else {
1016 		txq_meta->vsi_idx = vsi->idx;
1017 		txq_meta->tc = tc;
1018 	}
1019 }
1020