1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	q_vector->tx.itr_mode = ITR_DYNAMIC;
117 	q_vector->rx.itr_mode = ITR_DYNAMIC;
118 	q_vector->tx.type = ICE_TX_CONTAINER;
119 	q_vector->rx.type = ICE_RX_CONTAINER;
120 
121 	if (vsi->type == ICE_VSI_VF)
122 		goto out;
123 	/* only set affinity_mask if the CPU is online */
124 	if (cpu_online(v_idx))
125 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
126 
127 	/* This will not be called in the driver load path because the netdev
128 	 * will not be created yet. All other cases with register the NAPI
129 	 * handler here (i.e. resume, reset/rebuild, etc.)
130 	 */
131 	if (vsi->netdev)
132 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
133 			       NAPI_POLL_WEIGHT);
134 
135 out:
136 	/* tie q_vector and VSI together */
137 	vsi->q_vectors[v_idx] = q_vector;
138 
139 	return 0;
140 }
141 
142 /**
143  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
144  * @vsi: VSI having the memory freed
145  * @v_idx: index of the vector to be freed
146  */
147 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
148 {
149 	struct ice_q_vector *q_vector;
150 	struct ice_pf *pf = vsi->back;
151 	struct ice_tx_ring *tx_ring;
152 	struct ice_rx_ring *rx_ring;
153 	struct device *dev;
154 
155 	dev = ice_pf_to_dev(pf);
156 	if (!vsi->q_vectors[v_idx]) {
157 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
158 		return;
159 	}
160 	q_vector = vsi->q_vectors[v_idx];
161 
162 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
163 		tx_ring->q_vector = NULL;
164 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
165 		rx_ring->q_vector = NULL;
166 
167 	/* only VSI with an associated netdev is set up with NAPI */
168 	if (vsi->netdev)
169 		netif_napi_del(&q_vector->napi);
170 
171 	devm_kfree(dev, q_vector);
172 	vsi->q_vectors[v_idx] = NULL;
173 }
174 
175 /**
176  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
177  * @hw: board specific structure
178  */
179 static void ice_cfg_itr_gran(struct ice_hw *hw)
180 {
181 	u32 regval = rd32(hw, GLINT_CTL);
182 
183 	/* no need to update global register if ITR gran is already set */
184 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
185 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
186 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
187 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
188 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
189 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
190 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
191 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
192 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
193 		return;
194 
195 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
196 		  GLINT_CTL_ITR_GRAN_200_M) |
197 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
198 		  GLINT_CTL_ITR_GRAN_100_M) |
199 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
200 		  GLINT_CTL_ITR_GRAN_50_M) |
201 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
202 		  GLINT_CTL_ITR_GRAN_25_M);
203 	wr32(hw, GLINT_CTL, regval);
204 }
205 
206 /**
207  * ice_calc_txq_handle - calculate the queue handle
208  * @vsi: VSI that ring belongs to
209  * @ring: ring to get the absolute queue index
210  * @tc: traffic class number
211  */
212 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
213 {
214 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
215 
216 	/* Idea here for calculation is that we subtract the number of queue
217 	 * count from TC that ring belongs to from it's absolute queue index
218 	 * and as a result we get the queue's index within TC.
219 	 */
220 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
221 }
222 
223 /**
224  * ice_eswitch_calc_txq_handle
225  * @ring: pointer to ring which unique index is needed
226  *
227  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
228  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
229  * here by finding index in vsi->tx_rings of this ring.
230  *
231  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
232  * because VSI is get from ring->vsi, so it has to be present in this VSI.
233  */
234 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
235 {
236 	struct ice_vsi *vsi = ring->vsi;
237 	int i;
238 
239 	ice_for_each_txq(vsi, i) {
240 		if (vsi->tx_rings[i] == ring)
241 			return i;
242 	}
243 
244 	return ICE_INVAL_Q_INDEX;
245 }
246 
247 /**
248  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
249  * @ring: The Tx ring to configure
250  *
251  * This enables/disables XPS for a given Tx descriptor ring
252  * based on the TCs enabled for the VSI that ring belongs to.
253  */
254 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
255 {
256 	if (!ring->q_vector || !ring->netdev)
257 		return;
258 
259 	/* We only initialize XPS once, so as not to overwrite user settings */
260 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
261 		return;
262 
263 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
264 			    ring->q_index);
265 }
266 
267 /**
268  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
269  * @ring: The Tx ring to configure
270  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
271  * @pf_q: queue index in the PF space
272  *
273  * Configure the Tx descriptor ring in TLAN context.
274  */
275 static void
276 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
277 {
278 	struct ice_vsi *vsi = ring->vsi;
279 	struct ice_hw *hw = &vsi->back->hw;
280 
281 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
282 
283 	tlan_ctx->port_num = vsi->port_info->lport;
284 
285 	/* Transmit Queue Length */
286 	tlan_ctx->qlen = ring->count;
287 
288 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
289 
290 	/* PF number */
291 	tlan_ctx->pf_num = hw->pf_id;
292 
293 	/* queue belongs to a specific VSI type
294 	 * VF / VM index should be programmed per vmvf_type setting:
295 	 * for vmvf_type = VF, it is VF number between 0-256
296 	 * for vmvf_type = VM, it is VM number between 0-767
297 	 * for PF or EMP this field should be set to zero
298 	 */
299 	switch (vsi->type) {
300 	case ICE_VSI_LB:
301 	case ICE_VSI_CTRL:
302 	case ICE_VSI_PF:
303 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
304 		break;
305 	case ICE_VSI_VF:
306 		/* Firmware expects vmvf_num to be absolute VF ID */
307 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
308 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
309 		break;
310 	case ICE_VSI_SWITCHDEV_CTRL:
311 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
312 		break;
313 	default:
314 		return;
315 	}
316 
317 	/* make sure the context is associated with the right VSI */
318 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
319 
320 	/* Restrict Tx timestamps to the PF VSI */
321 	switch (vsi->type) {
322 	case ICE_VSI_PF:
323 		tlan_ctx->tsyn_ena = 1;
324 		break;
325 	default:
326 		break;
327 	}
328 
329 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
330 	tlan_ctx->tso_qnum = pf_q;
331 
332 	/* Legacy or Advanced Host Interface:
333 	 * 0: Advanced Host Interface
334 	 * 1: Legacy Host Interface
335 	 */
336 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
337 }
338 
339 /**
340  * ice_rx_offset - Return expected offset into page to access data
341  * @rx_ring: Ring we are requesting offset of
342  *
343  * Returns the offset value for ring into the data buffer.
344  */
345 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
346 {
347 	if (ice_ring_uses_build_skb(rx_ring))
348 		return ICE_SKB_PAD;
349 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
350 		return XDP_PACKET_HEADROOM;
351 
352 	return 0;
353 }
354 
355 /**
356  * ice_setup_rx_ctx - Configure a receive ring context
357  * @ring: The Rx ring to configure
358  *
359  * Configure the Rx descriptor ring in RLAN context.
360  */
361 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
362 {
363 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
364 	struct ice_vsi *vsi = ring->vsi;
365 	u32 rxdid = ICE_RXDID_FLEX_NIC;
366 	struct ice_rlan_ctx rlan_ctx;
367 	struct ice_hw *hw;
368 	u16 pf_q;
369 	int err;
370 
371 	hw = &vsi->back->hw;
372 
373 	/* what is Rx queue number in global space of 2K Rx queues */
374 	pf_q = vsi->rxq_map[ring->q_index];
375 
376 	/* clear the context structure first */
377 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
378 
379 	/* Receive Queue Base Address.
380 	 * Indicates the starting address of the descriptor queue defined in
381 	 * 128 Byte units.
382 	 */
383 	rlan_ctx.base = ring->dma >> 7;
384 
385 	rlan_ctx.qlen = ring->count;
386 
387 	/* Receive Packet Data Buffer Size.
388 	 * The Packet Data Buffer Size is defined in 128 byte units.
389 	 */
390 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
391 
392 	/* use 32 byte descriptors */
393 	rlan_ctx.dsize = 1;
394 
395 	/* Strip the Ethernet CRC bytes before the packet is posted to host
396 	 * memory.
397 	 */
398 	rlan_ctx.crcstrip = 1;
399 
400 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
401 	rlan_ctx.l2tsel = 1;
402 
403 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
404 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
405 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
406 
407 	/* This controls whether VLAN is stripped from inner headers
408 	 * The VLAN in the inner L2 header is stripped to the receive
409 	 * descriptor if enabled by this flag.
410 	 */
411 	rlan_ctx.showiv = 0;
412 
413 	/* For AF_XDP ZC, we disallow packets to span on
414 	 * multiple buffers, thus letting us skip that
415 	 * handling in the fast-path.
416 	 */
417 	if (ring->xsk_pool)
418 		chain_len = 1;
419 	/* Max packet size for this queue - must not be set to a larger value
420 	 * than 5 x DBUF
421 	 */
422 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
423 			       chain_len * ring->rx_buf_len);
424 
425 	/* Rx queue threshold in units of 64 */
426 	rlan_ctx.lrxqthresh = 1;
427 
428 	/* Enable Flexible Descriptors in the queue context which
429 	 * allows this driver to select a specific receive descriptor format
430 	 * increasing context priority to pick up profile ID; default is 0x01;
431 	 * setting to 0x03 to ensure profile is programming if prev context is
432 	 * of same priority
433 	 */
434 	if (vsi->type != ICE_VSI_VF)
435 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
436 	else
437 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
438 					false);
439 
440 	/* Absolute queue number out of 2K needs to be passed */
441 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
442 	if (err) {
443 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
444 			pf_q, err);
445 		return -EIO;
446 	}
447 
448 	if (vsi->type == ICE_VSI_VF)
449 		return 0;
450 
451 	/* configure Rx buffer alignment */
452 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
453 		ice_clear_ring_build_skb_ena(ring);
454 	else
455 		ice_set_ring_build_skb_ena(ring);
456 
457 	ring->rx_offset = ice_rx_offset(ring);
458 
459 	/* init queue specific tail register */
460 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
461 	writel(0, ring->tail);
462 
463 	return 0;
464 }
465 
466 /**
467  * ice_vsi_cfg_rxq - Configure an Rx queue
468  * @ring: the ring being configured
469  *
470  * Return 0 on success and a negative value on error.
471  */
472 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
473 {
474 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
475 	u16 num_bufs = ICE_DESC_UNUSED(ring);
476 	int err;
477 
478 	ring->rx_buf_len = ring->vsi->rx_buf_len;
479 
480 	if (ring->vsi->type == ICE_VSI_PF) {
481 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
482 			/* coverity[check_return] */
483 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
484 					 ring->q_index, ring->q_vector->napi.napi_id);
485 
486 		ring->xsk_pool = ice_xsk_pool(ring);
487 		if (ring->xsk_pool) {
488 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
489 
490 			ring->rx_buf_len =
491 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
492 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
493 							 MEM_TYPE_XSK_BUFF_POOL,
494 							 NULL);
495 			if (err)
496 				return err;
497 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
498 
499 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
500 				 ring->q_index);
501 		} else {
502 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
503 				/* coverity[check_return] */
504 				xdp_rxq_info_reg(&ring->xdp_rxq,
505 						 ring->netdev,
506 						 ring->q_index, ring->q_vector->napi.napi_id);
507 
508 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
509 							 MEM_TYPE_PAGE_SHARED,
510 							 NULL);
511 			if (err)
512 				return err;
513 		}
514 	}
515 
516 	err = ice_setup_rx_ctx(ring);
517 	if (err) {
518 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
519 			ring->q_index, err);
520 		return err;
521 	}
522 
523 	if (ring->xsk_pool) {
524 		bool ok;
525 
526 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
527 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
528 				 num_bufs, ring->q_index);
529 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
530 
531 			return 0;
532 		}
533 
534 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
535 		if (!ok) {
536 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
537 
538 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
539 				 ring->q_index, pf_q);
540 		}
541 
542 		return 0;
543 	}
544 
545 	ice_alloc_rx_bufs(ring, num_bufs);
546 
547 	return 0;
548 }
549 
550 /**
551  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
552  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
553  *
554  * This function first tries to find contiguous space. If it is not successful,
555  * it tries with the scatter approach.
556  *
557  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
558  */
559 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
560 {
561 	int ret = 0;
562 
563 	ret = __ice_vsi_get_qs_contig(qs_cfg);
564 	if (ret) {
565 		/* contig failed, so try with scatter approach */
566 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
567 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
568 					qs_cfg->scatter_count);
569 		ret = __ice_vsi_get_qs_sc(qs_cfg);
570 	}
571 	return ret;
572 }
573 
574 /**
575  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
576  * @vsi: the VSI being configured
577  * @ena: start or stop the Rx ring
578  * @rxq_idx: 0-based Rx queue index for the VSI passed in
579  * @wait: wait or don't wait for configuration to finish in hardware
580  *
581  * Return 0 on success and negative on error.
582  */
583 int
584 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
585 {
586 	int pf_q = vsi->rxq_map[rxq_idx];
587 	struct ice_pf *pf = vsi->back;
588 	struct ice_hw *hw = &pf->hw;
589 	u32 rx_reg;
590 
591 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
592 
593 	/* Skip if the queue is already in the requested state */
594 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
595 		return 0;
596 
597 	/* turn on/off the queue */
598 	if (ena)
599 		rx_reg |= QRX_CTRL_QENA_REQ_M;
600 	else
601 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
602 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
603 
604 	if (!wait)
605 		return 0;
606 
607 	ice_flush(hw);
608 	return ice_pf_rxq_wait(pf, pf_q, ena);
609 }
610 
611 /**
612  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
613  * @vsi: the VSI being configured
614  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
615  * @rxq_idx: 0-based Rx queue index for the VSI passed in
616  *
617  * This routine will wait for the given Rx queue of the VSI to reach the
618  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
619  * the requested state after multiple retries; else will return 0 in case of
620  * success.
621  */
622 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
623 {
624 	int pf_q = vsi->rxq_map[rxq_idx];
625 	struct ice_pf *pf = vsi->back;
626 
627 	return ice_pf_rxq_wait(pf, pf_q, ena);
628 }
629 
630 /**
631  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
632  * @vsi: the VSI being configured
633  *
634  * We allocate one q_vector per queue interrupt. If allocation fails we
635  * return -ENOMEM.
636  */
637 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
638 {
639 	struct device *dev = ice_pf_to_dev(vsi->back);
640 	u16 v_idx;
641 	int err;
642 
643 	if (vsi->q_vectors[0]) {
644 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
645 		return -EEXIST;
646 	}
647 
648 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
649 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
650 		if (err)
651 			goto err_out;
652 	}
653 
654 	return 0;
655 
656 err_out:
657 	while (v_idx--)
658 		ice_free_q_vector(vsi, v_idx);
659 
660 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
661 		vsi->num_q_vectors, vsi->vsi_num, err);
662 	vsi->num_q_vectors = 0;
663 	return err;
664 }
665 
666 /**
667  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
668  * @vsi: the VSI being configured
669  *
670  * This function maps descriptor rings to the queue-specific vectors allotted
671  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
672  * and Rx rings to the vector as "efficiently" as possible.
673  */
674 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
675 {
676 	int q_vectors = vsi->num_q_vectors;
677 	u16 tx_rings_rem, rx_rings_rem;
678 	int v_id;
679 
680 	/* initially assigning remaining rings count to VSIs num queue value */
681 	tx_rings_rem = vsi->num_txq;
682 	rx_rings_rem = vsi->num_rxq;
683 
684 	for (v_id = 0; v_id < q_vectors; v_id++) {
685 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
686 		u8 tx_rings_per_v, rx_rings_per_v;
687 		u16 q_id, q_base;
688 
689 		/* Tx rings mapping to vector */
690 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
691 						  q_vectors - v_id);
692 		q_vector->num_ring_tx = tx_rings_per_v;
693 		q_vector->tx.tx_ring = NULL;
694 		q_vector->tx.itr_idx = ICE_TX_ITR;
695 		q_base = vsi->num_txq - tx_rings_rem;
696 
697 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
698 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
699 
700 			tx_ring->q_vector = q_vector;
701 			tx_ring->next = q_vector->tx.tx_ring;
702 			q_vector->tx.tx_ring = tx_ring;
703 		}
704 		tx_rings_rem -= tx_rings_per_v;
705 
706 		/* Rx rings mapping to vector */
707 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
708 						  q_vectors - v_id);
709 		q_vector->num_ring_rx = rx_rings_per_v;
710 		q_vector->rx.rx_ring = NULL;
711 		q_vector->rx.itr_idx = ICE_RX_ITR;
712 		q_base = vsi->num_rxq - rx_rings_rem;
713 
714 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
715 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
716 
717 			rx_ring->q_vector = q_vector;
718 			rx_ring->next = q_vector->rx.rx_ring;
719 			q_vector->rx.rx_ring = rx_ring;
720 		}
721 		rx_rings_rem -= rx_rings_per_v;
722 	}
723 }
724 
725 /**
726  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
727  * @vsi: the VSI having memory freed
728  */
729 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
730 {
731 	int v_idx;
732 
733 	ice_for_each_q_vector(vsi, v_idx)
734 		ice_free_q_vector(vsi, v_idx);
735 }
736 
737 /**
738  * ice_vsi_cfg_txq - Configure single Tx queue
739  * @vsi: the VSI that queue belongs to
740  * @ring: Tx ring to be configured
741  * @qg_buf: queue group buffer
742  */
743 int
744 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
745 		struct ice_aqc_add_tx_qgrp *qg_buf)
746 {
747 	u8 buf_len = struct_size(qg_buf, txqs, 1);
748 	struct ice_tlan_ctx tlan_ctx = { 0 };
749 	struct ice_aqc_add_txqs_perq *txq;
750 	struct ice_pf *pf = vsi->back;
751 	struct ice_hw *hw = &pf->hw;
752 	enum ice_status status;
753 	u16 pf_q;
754 	u8 tc;
755 
756 	/* Configure XPS */
757 	ice_cfg_xps_tx_ring(ring);
758 
759 	pf_q = ring->reg_idx;
760 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
761 	/* copy context contents into the qg_buf */
762 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
763 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
764 		    ice_tlan_ctx_info);
765 
766 	/* init queue specific tail reg. It is referred as
767 	 * transmit comm scheduler queue doorbell.
768 	 */
769 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
770 
771 	if (IS_ENABLED(CONFIG_DCB))
772 		tc = ring->dcb_tc;
773 	else
774 		tc = 0;
775 
776 	/* Add unique software queue handle of the Tx queue per
777 	 * TC into the VSI Tx ring
778 	 */
779 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
780 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
781 
782 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
783 			return -ENODEV;
784 	} else {
785 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
786 	}
787 
788 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
789 				 1, qg_buf, buf_len, NULL);
790 	if (status) {
791 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
792 			ice_stat_str(status));
793 		return -ENODEV;
794 	}
795 
796 	/* Add Tx Queue TEID into the VSI Tx ring from the
797 	 * response. This will complete configuring and
798 	 * enabling the queue.
799 	 */
800 	txq = &qg_buf->txqs[0];
801 	if (pf_q == le16_to_cpu(txq->txq_id))
802 		ring->txq_teid = le32_to_cpu(txq->q_teid);
803 
804 	return 0;
805 }
806 
807 /**
808  * ice_cfg_itr - configure the initial interrupt throttle values
809  * @hw: pointer to the HW structure
810  * @q_vector: interrupt vector that's being configured
811  *
812  * Configure interrupt throttling values for the ring containers that are
813  * associated with the interrupt vector passed in.
814  */
815 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
816 {
817 	ice_cfg_itr_gran(hw);
818 
819 	if (q_vector->num_ring_rx)
820 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
821 
822 	if (q_vector->num_ring_tx)
823 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
824 
825 	ice_write_intrl(q_vector, q_vector->intrl);
826 }
827 
828 /**
829  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
830  * @vsi: the VSI being configured
831  * @txq: Tx queue being mapped to MSI-X vector
832  * @msix_idx: MSI-X vector index within the function
833  * @itr_idx: ITR index of the interrupt cause
834  *
835  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
836  * within the function space.
837  */
838 void
839 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
840 {
841 	struct ice_pf *pf = vsi->back;
842 	struct ice_hw *hw = &pf->hw;
843 	u32 val;
844 
845 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
846 
847 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
848 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
849 
850 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
851 	if (ice_is_xdp_ena_vsi(vsi)) {
852 		u32 xdp_txq = txq + vsi->num_xdp_txq;
853 
854 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
855 		     val);
856 	}
857 	ice_flush(hw);
858 }
859 
860 /**
861  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
862  * @vsi: the VSI being configured
863  * @rxq: Rx queue being mapped to MSI-X vector
864  * @msix_idx: MSI-X vector index within the function
865  * @itr_idx: ITR index of the interrupt cause
866  *
867  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
868  * within the function space.
869  */
870 void
871 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
872 {
873 	struct ice_pf *pf = vsi->back;
874 	struct ice_hw *hw = &pf->hw;
875 	u32 val;
876 
877 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
878 
879 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
880 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
881 
882 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
883 
884 	ice_flush(hw);
885 }
886 
887 /**
888  * ice_trigger_sw_intr - trigger a software interrupt
889  * @hw: pointer to the HW structure
890  * @q_vector: interrupt vector to trigger the software interrupt for
891  */
892 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
893 {
894 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
895 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
896 	     GLINT_DYN_CTL_SWINT_TRIG_M |
897 	     GLINT_DYN_CTL_INTENA_M);
898 }
899 
900 /**
901  * ice_vsi_stop_tx_ring - Disable single Tx ring
902  * @vsi: the VSI being configured
903  * @rst_src: reset source
904  * @rel_vmvf_num: Relative ID of VF/VM
905  * @ring: Tx ring to be stopped
906  * @txq_meta: Meta data of Tx ring to be stopped
907  */
908 int
909 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
910 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
911 		     struct ice_txq_meta *txq_meta)
912 {
913 	struct ice_pf *pf = vsi->back;
914 	struct ice_q_vector *q_vector;
915 	struct ice_hw *hw = &pf->hw;
916 	enum ice_status status;
917 	u32 val;
918 
919 	/* clear cause_ena bit for disabled queues */
920 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
921 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
922 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
923 
924 	/* software is expected to wait for 100 ns */
925 	ndelay(100);
926 
927 	/* trigger a software interrupt for the vector
928 	 * associated to the queue to schedule NAPI handler
929 	 */
930 	q_vector = ring->q_vector;
931 	if (q_vector)
932 		ice_trigger_sw_intr(hw, q_vector);
933 
934 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
935 				 txq_meta->tc, 1, &txq_meta->q_handle,
936 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
937 				 rel_vmvf_num, NULL);
938 
939 	/* if the disable queue command was exercised during an
940 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
941 	 * This is not an error as the reset operation disables
942 	 * queues at the hardware level anyway.
943 	 */
944 	if (status == ICE_ERR_RESET_ONGOING) {
945 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
946 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
947 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
948 	} else if (status) {
949 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
950 			ice_stat_str(status));
951 		return -ENODEV;
952 	}
953 
954 	return 0;
955 }
956 
957 /**
958  * ice_fill_txq_meta - Prepare the Tx queue's meta data
959  * @vsi: VSI that ring belongs to
960  * @ring: ring that txq_meta will be based on
961  * @txq_meta: a helper struct that wraps Tx queue's information
962  *
963  * Set up a helper struct that will contain all the necessary fields that
964  * are needed for stopping Tx queue
965  */
966 void
967 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
968 		  struct ice_txq_meta *txq_meta)
969 {
970 	u8 tc;
971 
972 	if (IS_ENABLED(CONFIG_DCB))
973 		tc = ring->dcb_tc;
974 	else
975 		tc = 0;
976 
977 	txq_meta->q_id = ring->reg_idx;
978 	txq_meta->q_teid = ring->txq_teid;
979 	txq_meta->q_handle = ring->q_handle;
980 	txq_meta->vsi_idx = vsi->idx;
981 	txq_meta->tc = tc;
982 }
983