1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	if (vsi->type == ICE_VSI_VF)
117 		goto out;
118 	/* only set affinity_mask if the CPU is online */
119 	if (cpu_online(v_idx))
120 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
121 
122 	/* This will not be called in the driver load path because the netdev
123 	 * will not be created yet. All other cases with register the NAPI
124 	 * handler here (i.e. resume, reset/rebuild, etc.)
125 	 */
126 	if (vsi->netdev)
127 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
128 			       NAPI_POLL_WEIGHT);
129 
130 out:
131 	/* tie q_vector and VSI together */
132 	vsi->q_vectors[v_idx] = q_vector;
133 
134 	return 0;
135 }
136 
137 /**
138  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
139  * @vsi: VSI having the memory freed
140  * @v_idx: index of the vector to be freed
141  */
142 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
143 {
144 	struct ice_q_vector *q_vector;
145 	struct ice_pf *pf = vsi->back;
146 	struct ice_ring *ring;
147 	struct device *dev;
148 
149 	dev = ice_pf_to_dev(pf);
150 	if (!vsi->q_vectors[v_idx]) {
151 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
152 		return;
153 	}
154 	q_vector = vsi->q_vectors[v_idx];
155 
156 	ice_for_each_ring(ring, q_vector->tx)
157 		ring->q_vector = NULL;
158 	ice_for_each_ring(ring, q_vector->rx)
159 		ring->q_vector = NULL;
160 
161 	/* only VSI with an associated netdev is set up with NAPI */
162 	if (vsi->netdev)
163 		netif_napi_del(&q_vector->napi);
164 
165 	devm_kfree(dev, q_vector);
166 	vsi->q_vectors[v_idx] = NULL;
167 }
168 
169 /**
170  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
171  * @hw: board specific structure
172  */
173 static void ice_cfg_itr_gran(struct ice_hw *hw)
174 {
175 	u32 regval = rd32(hw, GLINT_CTL);
176 
177 	/* no need to update global register if ITR gran is already set */
178 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
179 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
180 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
181 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
182 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
183 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
184 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
185 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
186 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
187 		return;
188 
189 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
190 		  GLINT_CTL_ITR_GRAN_200_M) |
191 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
192 		  GLINT_CTL_ITR_GRAN_100_M) |
193 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
194 		  GLINT_CTL_ITR_GRAN_50_M) |
195 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
196 		  GLINT_CTL_ITR_GRAN_25_M);
197 	wr32(hw, GLINT_CTL, regval);
198 }
199 
200 /**
201  * ice_calc_q_handle - calculate the queue handle
202  * @vsi: VSI that ring belongs to
203  * @ring: ring to get the absolute queue index
204  * @tc: traffic class number
205  */
206 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
207 {
208 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
209 
210 	/* Idea here for calculation is that we subtract the number of queue
211 	 * count from TC that ring belongs to from it's absolute queue index
212 	 * and as a result we get the queue's index within TC.
213 	 */
214 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
215 }
216 
217 /**
218  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
219  * @ring: The Tx ring to configure
220  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
221  * @pf_q: queue index in the PF space
222  *
223  * Configure the Tx descriptor ring in TLAN context.
224  */
225 static void
226 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
227 {
228 	struct ice_vsi *vsi = ring->vsi;
229 	struct ice_hw *hw = &vsi->back->hw;
230 
231 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
232 
233 	tlan_ctx->port_num = vsi->port_info->lport;
234 
235 	/* Transmit Queue Length */
236 	tlan_ctx->qlen = ring->count;
237 
238 	ice_set_cgd_num(tlan_ctx, ring);
239 
240 	/* PF number */
241 	tlan_ctx->pf_num = hw->pf_id;
242 
243 	/* queue belongs to a specific VSI type
244 	 * VF / VM index should be programmed per vmvf_type setting:
245 	 * for vmvf_type = VF, it is VF number between 0-256
246 	 * for vmvf_type = VM, it is VM number between 0-767
247 	 * for PF or EMP this field should be set to zero
248 	 */
249 	switch (vsi->type) {
250 	case ICE_VSI_LB:
251 	case ICE_VSI_CTRL:
252 	case ICE_VSI_PF:
253 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
254 		break;
255 	case ICE_VSI_VF:
256 		/* Firmware expects vmvf_num to be absolute VF ID */
257 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
258 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
259 		break;
260 	default:
261 		return;
262 	}
263 
264 	/* make sure the context is associated with the right VSI */
265 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
266 
267 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
268 	tlan_ctx->tso_qnum = pf_q;
269 
270 	/* Legacy or Advanced Host Interface:
271 	 * 0: Advanced Host Interface
272 	 * 1: Legacy Host Interface
273 	 */
274 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
275 }
276 
277 /**
278  * ice_rx_offset - Return expected offset into page to access data
279  * @rx_ring: Ring we are requesting offset of
280  *
281  * Returns the offset value for ring into the data buffer.
282  */
283 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
284 {
285 	if (ice_ring_uses_build_skb(rx_ring))
286 		return ICE_SKB_PAD;
287 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
288 		return XDP_PACKET_HEADROOM;
289 
290 	return 0;
291 }
292 
293 /**
294  * ice_setup_rx_ctx - Configure a receive ring context
295  * @ring: The Rx ring to configure
296  *
297  * Configure the Rx descriptor ring in RLAN context.
298  */
299 int ice_setup_rx_ctx(struct ice_ring *ring)
300 {
301 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
302 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
303 	u16 num_bufs = ICE_DESC_UNUSED(ring);
304 	struct ice_vsi *vsi = ring->vsi;
305 	u32 rxdid = ICE_RXDID_FLEX_NIC;
306 	struct ice_rlan_ctx rlan_ctx;
307 	struct ice_hw *hw;
308 	u16 pf_q;
309 	int err;
310 
311 	hw = &vsi->back->hw;
312 
313 	/* what is Rx queue number in global space of 2K Rx queues */
314 	pf_q = vsi->rxq_map[ring->q_index];
315 
316 	/* clear the context structure first */
317 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
318 
319 	ring->rx_buf_len = vsi->rx_buf_len;
320 
321 	if (ring->vsi->type == ICE_VSI_PF) {
322 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
323 			/* coverity[check_return] */
324 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
325 					 ring->q_index, ring->q_vector->napi.napi_id);
326 
327 		ring->xsk_pool = ice_xsk_pool(ring);
328 		if (ring->xsk_pool) {
329 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
330 
331 			ring->rx_buf_len =
332 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
333 			/* For AF_XDP ZC, we disallow packets to span on
334 			 * multiple buffers, thus letting us skip that
335 			 * handling in the fast-path.
336 			 */
337 			chain_len = 1;
338 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
339 							 MEM_TYPE_XSK_BUFF_POOL,
340 							 NULL);
341 			if (err)
342 				return err;
343 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
344 
345 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
346 				 ring->q_index);
347 		} else {
348 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
349 				/* coverity[check_return] */
350 				xdp_rxq_info_reg(&ring->xdp_rxq,
351 						 ring->netdev,
352 						 ring->q_index, ring->q_vector->napi.napi_id);
353 
354 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
355 							 MEM_TYPE_PAGE_SHARED,
356 							 NULL);
357 			if (err)
358 				return err;
359 		}
360 	}
361 	/* Receive Queue Base Address.
362 	 * Indicates the starting address of the descriptor queue defined in
363 	 * 128 Byte units.
364 	 */
365 	rlan_ctx.base = ring->dma >> 7;
366 
367 	rlan_ctx.qlen = ring->count;
368 
369 	/* Receive Packet Data Buffer Size.
370 	 * The Packet Data Buffer Size is defined in 128 byte units.
371 	 */
372 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
373 
374 	/* use 32 byte descriptors */
375 	rlan_ctx.dsize = 1;
376 
377 	/* Strip the Ethernet CRC bytes before the packet is posted to host
378 	 * memory.
379 	 */
380 	rlan_ctx.crcstrip = 1;
381 
382 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
383 	rlan_ctx.l2tsel = 1;
384 
385 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
386 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
387 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
388 
389 	/* This controls whether VLAN is stripped from inner headers
390 	 * The VLAN in the inner L2 header is stripped to the receive
391 	 * descriptor if enabled by this flag.
392 	 */
393 	rlan_ctx.showiv = 0;
394 
395 	/* Max packet size for this queue - must not be set to a larger value
396 	 * than 5 x DBUF
397 	 */
398 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
399 			       chain_len * ring->rx_buf_len);
400 
401 	/* Rx queue threshold in units of 64 */
402 	rlan_ctx.lrxqthresh = 1;
403 
404 	/* Enable Flexible Descriptors in the queue context which
405 	 * allows this driver to select a specific receive descriptor format
406 	 * increasing context priority to pick up profile ID; default is 0x01;
407 	 * setting to 0x03 to ensure profile is programming if prev context is
408 	 * of same priority
409 	 */
410 	if (vsi->type != ICE_VSI_VF)
411 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
412 	else
413 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
414 
415 	/* Absolute queue number out of 2K needs to be passed */
416 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
417 	if (err) {
418 		dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
419 			pf_q, err);
420 		return -EIO;
421 	}
422 
423 	if (vsi->type == ICE_VSI_VF)
424 		return 0;
425 
426 	/* configure Rx buffer alignment */
427 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
428 		ice_clear_ring_build_skb_ena(ring);
429 	else
430 		ice_set_ring_build_skb_ena(ring);
431 
432 	ring->rx_offset = ice_rx_offset(ring);
433 
434 	/* init queue specific tail register */
435 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
436 	writel(0, ring->tail);
437 
438 	if (ring->xsk_pool) {
439 		bool ok;
440 
441 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
442 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
443 				 num_bufs, ring->q_index);
444 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
445 
446 			return 0;
447 		}
448 
449 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
450 		if (!ok)
451 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
452 				 ring->q_index, pf_q);
453 		return 0;
454 	}
455 
456 	ice_alloc_rx_bufs(ring, num_bufs);
457 
458 	return 0;
459 }
460 
461 /**
462  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
463  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
464  *
465  * This function first tries to find contiguous space. If it is not successful,
466  * it tries with the scatter approach.
467  *
468  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
469  */
470 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
471 {
472 	int ret = 0;
473 
474 	ret = __ice_vsi_get_qs_contig(qs_cfg);
475 	if (ret) {
476 		/* contig failed, so try with scatter approach */
477 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
478 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
479 					qs_cfg->scatter_count);
480 		ret = __ice_vsi_get_qs_sc(qs_cfg);
481 	}
482 	return ret;
483 }
484 
485 /**
486  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
487  * @vsi: the VSI being configured
488  * @ena: start or stop the Rx ring
489  * @rxq_idx: 0-based Rx queue index for the VSI passed in
490  * @wait: wait or don't wait for configuration to finish in hardware
491  *
492  * Return 0 on success and negative on error.
493  */
494 int
495 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
496 {
497 	int pf_q = vsi->rxq_map[rxq_idx];
498 	struct ice_pf *pf = vsi->back;
499 	struct ice_hw *hw = &pf->hw;
500 	u32 rx_reg;
501 
502 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
503 
504 	/* Skip if the queue is already in the requested state */
505 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
506 		return 0;
507 
508 	/* turn on/off the queue */
509 	if (ena)
510 		rx_reg |= QRX_CTRL_QENA_REQ_M;
511 	else
512 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
513 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
514 
515 	if (!wait)
516 		return 0;
517 
518 	ice_flush(hw);
519 	return ice_pf_rxq_wait(pf, pf_q, ena);
520 }
521 
522 /**
523  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
524  * @vsi: the VSI being configured
525  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
526  * @rxq_idx: 0-based Rx queue index for the VSI passed in
527  *
528  * This routine will wait for the given Rx queue of the VSI to reach the
529  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
530  * the requested state after multiple retries; else will return 0 in case of
531  * success.
532  */
533 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
534 {
535 	int pf_q = vsi->rxq_map[rxq_idx];
536 	struct ice_pf *pf = vsi->back;
537 
538 	return ice_pf_rxq_wait(pf, pf_q, ena);
539 }
540 
541 /**
542  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
543  * @vsi: the VSI being configured
544  *
545  * We allocate one q_vector per queue interrupt. If allocation fails we
546  * return -ENOMEM.
547  */
548 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
549 {
550 	struct device *dev = ice_pf_to_dev(vsi->back);
551 	u16 v_idx;
552 	int err;
553 
554 	if (vsi->q_vectors[0]) {
555 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
556 		return -EEXIST;
557 	}
558 
559 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
560 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
561 		if (err)
562 			goto err_out;
563 	}
564 
565 	return 0;
566 
567 err_out:
568 	while (v_idx--)
569 		ice_free_q_vector(vsi, v_idx);
570 
571 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
572 		vsi->num_q_vectors, vsi->vsi_num, err);
573 	vsi->num_q_vectors = 0;
574 	return err;
575 }
576 
577 /**
578  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
579  * @vsi: the VSI being configured
580  *
581  * This function maps descriptor rings to the queue-specific vectors allotted
582  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
583  * and Rx rings to the vector as "efficiently" as possible.
584  */
585 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
586 {
587 	int q_vectors = vsi->num_q_vectors;
588 	u16 tx_rings_rem, rx_rings_rem;
589 	int v_id;
590 
591 	/* initially assigning remaining rings count to VSIs num queue value */
592 	tx_rings_rem = vsi->num_txq;
593 	rx_rings_rem = vsi->num_rxq;
594 
595 	for (v_id = 0; v_id < q_vectors; v_id++) {
596 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
597 		u8 tx_rings_per_v, rx_rings_per_v;
598 		u16 q_id, q_base;
599 
600 		/* Tx rings mapping to vector */
601 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
602 						  q_vectors - v_id);
603 		q_vector->num_ring_tx = tx_rings_per_v;
604 		q_vector->tx.ring = NULL;
605 		q_vector->tx.itr_idx = ICE_TX_ITR;
606 		q_base = vsi->num_txq - tx_rings_rem;
607 
608 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
609 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
610 
611 			tx_ring->q_vector = q_vector;
612 			tx_ring->next = q_vector->tx.ring;
613 			q_vector->tx.ring = tx_ring;
614 		}
615 		tx_rings_rem -= tx_rings_per_v;
616 
617 		/* Rx rings mapping to vector */
618 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
619 						  q_vectors - v_id);
620 		q_vector->num_ring_rx = rx_rings_per_v;
621 		q_vector->rx.ring = NULL;
622 		q_vector->rx.itr_idx = ICE_RX_ITR;
623 		q_base = vsi->num_rxq - rx_rings_rem;
624 
625 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
626 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
627 
628 			rx_ring->q_vector = q_vector;
629 			rx_ring->next = q_vector->rx.ring;
630 			q_vector->rx.ring = rx_ring;
631 		}
632 		rx_rings_rem -= rx_rings_per_v;
633 	}
634 }
635 
636 /**
637  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
638  * @vsi: the VSI having memory freed
639  */
640 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
641 {
642 	int v_idx;
643 
644 	ice_for_each_q_vector(vsi, v_idx)
645 		ice_free_q_vector(vsi, v_idx);
646 }
647 
648 /**
649  * ice_vsi_cfg_txq - Configure single Tx queue
650  * @vsi: the VSI that queue belongs to
651  * @ring: Tx ring to be configured
652  * @qg_buf: queue group buffer
653  */
654 int
655 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
656 		struct ice_aqc_add_tx_qgrp *qg_buf)
657 {
658 	u8 buf_len = struct_size(qg_buf, txqs, 1);
659 	struct ice_tlan_ctx tlan_ctx = { 0 };
660 	struct ice_aqc_add_txqs_perq *txq;
661 	struct ice_pf *pf = vsi->back;
662 	struct ice_hw *hw = &pf->hw;
663 	enum ice_status status;
664 	u16 pf_q;
665 	u8 tc;
666 
667 	pf_q = ring->reg_idx;
668 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
669 	/* copy context contents into the qg_buf */
670 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
671 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
672 		    ice_tlan_ctx_info);
673 
674 	/* init queue specific tail reg. It is referred as
675 	 * transmit comm scheduler queue doorbell.
676 	 */
677 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
678 
679 	if (IS_ENABLED(CONFIG_DCB))
680 		tc = ring->dcb_tc;
681 	else
682 		tc = 0;
683 
684 	/* Add unique software queue handle of the Tx queue per
685 	 * TC into the VSI Tx ring
686 	 */
687 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
688 
689 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
690 				 1, qg_buf, buf_len, NULL);
691 	if (status) {
692 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
693 			ice_stat_str(status));
694 		return -ENODEV;
695 	}
696 
697 	/* Add Tx Queue TEID into the VSI Tx ring from the
698 	 * response. This will complete configuring and
699 	 * enabling the queue.
700 	 */
701 	txq = &qg_buf->txqs[0];
702 	if (pf_q == le16_to_cpu(txq->txq_id))
703 		ring->txq_teid = le32_to_cpu(txq->q_teid);
704 
705 	return 0;
706 }
707 
708 /**
709  * ice_cfg_itr - configure the initial interrupt throttle values
710  * @hw: pointer to the HW structure
711  * @q_vector: interrupt vector that's being configured
712  *
713  * Configure interrupt throttling values for the ring containers that are
714  * associated with the interrupt vector passed in.
715  */
716 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
717 {
718 	ice_cfg_itr_gran(hw);
719 
720 	if (q_vector->num_ring_rx) {
721 		struct ice_ring_container *rc = &q_vector->rx;
722 
723 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
724 		rc->next_update = jiffies + 1;
725 		rc->current_itr = rc->target_itr;
726 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
727 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
728 	}
729 
730 	if (q_vector->num_ring_tx) {
731 		struct ice_ring_container *rc = &q_vector->tx;
732 
733 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
734 		rc->next_update = jiffies + 1;
735 		rc->current_itr = rc->target_itr;
736 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
737 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
738 	}
739 }
740 
741 /**
742  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
743  * @vsi: the VSI being configured
744  * @txq: Tx queue being mapped to MSI-X vector
745  * @msix_idx: MSI-X vector index within the function
746  * @itr_idx: ITR index of the interrupt cause
747  *
748  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
749  * within the function space.
750  */
751 void
752 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
753 {
754 	struct ice_pf *pf = vsi->back;
755 	struct ice_hw *hw = &pf->hw;
756 	u32 val;
757 
758 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
759 
760 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
761 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
762 
763 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
764 	if (ice_is_xdp_ena_vsi(vsi)) {
765 		u32 xdp_txq = txq + vsi->num_xdp_txq;
766 
767 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
768 		     val);
769 	}
770 	ice_flush(hw);
771 }
772 
773 /**
774  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
775  * @vsi: the VSI being configured
776  * @rxq: Rx queue being mapped to MSI-X vector
777  * @msix_idx: MSI-X vector index within the function
778  * @itr_idx: ITR index of the interrupt cause
779  *
780  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
781  * within the function space.
782  */
783 void
784 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
785 {
786 	struct ice_pf *pf = vsi->back;
787 	struct ice_hw *hw = &pf->hw;
788 	u32 val;
789 
790 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
791 
792 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
793 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
794 
795 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
796 
797 	ice_flush(hw);
798 }
799 
800 /**
801  * ice_trigger_sw_intr - trigger a software interrupt
802  * @hw: pointer to the HW structure
803  * @q_vector: interrupt vector to trigger the software interrupt for
804  */
805 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
806 {
807 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
808 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
809 	     GLINT_DYN_CTL_SWINT_TRIG_M |
810 	     GLINT_DYN_CTL_INTENA_M);
811 }
812 
813 /**
814  * ice_vsi_stop_tx_ring - Disable single Tx ring
815  * @vsi: the VSI being configured
816  * @rst_src: reset source
817  * @rel_vmvf_num: Relative ID of VF/VM
818  * @ring: Tx ring to be stopped
819  * @txq_meta: Meta data of Tx ring to be stopped
820  */
821 int
822 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
823 		     u16 rel_vmvf_num, struct ice_ring *ring,
824 		     struct ice_txq_meta *txq_meta)
825 {
826 	struct ice_pf *pf = vsi->back;
827 	struct ice_q_vector *q_vector;
828 	struct ice_hw *hw = &pf->hw;
829 	enum ice_status status;
830 	u32 val;
831 
832 	/* clear cause_ena bit for disabled queues */
833 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
834 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
835 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
836 
837 	/* software is expected to wait for 100 ns */
838 	ndelay(100);
839 
840 	/* trigger a software interrupt for the vector
841 	 * associated to the queue to schedule NAPI handler
842 	 */
843 	q_vector = ring->q_vector;
844 	if (q_vector)
845 		ice_trigger_sw_intr(hw, q_vector);
846 
847 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
848 				 txq_meta->tc, 1, &txq_meta->q_handle,
849 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
850 				 rel_vmvf_num, NULL);
851 
852 	/* if the disable queue command was exercised during an
853 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
854 	 * This is not an error as the reset operation disables
855 	 * queues at the hardware level anyway.
856 	 */
857 	if (status == ICE_ERR_RESET_ONGOING) {
858 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
859 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
860 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
861 	} else if (status) {
862 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
863 			ice_stat_str(status));
864 		return -ENODEV;
865 	}
866 
867 	return 0;
868 }
869 
870 /**
871  * ice_fill_txq_meta - Prepare the Tx queue's meta data
872  * @vsi: VSI that ring belongs to
873  * @ring: ring that txq_meta will be based on
874  * @txq_meta: a helper struct that wraps Tx queue's information
875  *
876  * Set up a helper struct that will contain all the necessary fields that
877  * are needed for stopping Tx queue
878  */
879 void
880 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
881 		  struct ice_txq_meta *txq_meta)
882 {
883 	u8 tc;
884 
885 	if (IS_ENABLED(CONFIG_DCB))
886 		tc = ring->dcb_tc;
887 	else
888 		tc = 0;
889 
890 	txq_meta->q_id = ring->reg_idx;
891 	txq_meta->q_teid = ring->txq_teid;
892 	txq_meta->q_handle = ring->q_handle;
893 	txq_meta->vsi_idx = vsi->idx;
894 	txq_meta->tc = tc;
895 }
896