1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_base.h"
5 #include "ice_dcb_lib.h"
6 
7 /**
8  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
10  *
11  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
12  */
13 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
14 {
15 	int offset, i;
16 
17 	mutex_lock(qs_cfg->qs_mutex);
18 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
19 					    0, qs_cfg->q_count, 0);
20 	if (offset >= qs_cfg->pf_map_size) {
21 		mutex_unlock(qs_cfg->qs_mutex);
22 		return -ENOMEM;
23 	}
24 
25 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
26 	for (i = 0; i < qs_cfg->q_count; i++)
27 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
28 	mutex_unlock(qs_cfg->qs_mutex);
29 
30 	return 0;
31 }
32 
33 /**
34  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
36  *
37  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
38  */
39 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
40 {
41 	int i, index = 0;
42 
43 	mutex_lock(qs_cfg->qs_mutex);
44 	for (i = 0; i < qs_cfg->q_count; i++) {
45 		index = find_next_zero_bit(qs_cfg->pf_map,
46 					   qs_cfg->pf_map_size, index);
47 		if (index >= qs_cfg->pf_map_size)
48 			goto err_scatter;
49 		set_bit(index, qs_cfg->pf_map);
50 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
51 	}
52 	mutex_unlock(qs_cfg->qs_mutex);
53 
54 	return 0;
55 err_scatter:
56 	for (index = 0; index < i; index++) {
57 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
58 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
59 	}
60 	mutex_unlock(qs_cfg->qs_mutex);
61 
62 	return -ENOMEM;
63 }
64 
65 /**
66  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67  * @pf: the PF being configured
68  * @pf_q: the PF queue
69  * @ena: enable or disable state of the queue
70  *
71  * This routine will wait for the given Rx queue of the PF to reach the
72  * enabled or disabled state.
73  * Returns -ETIMEDOUT in case of failing to reach the requested state after
74  * multiple retries; else will return 0 in case of success.
75  */
76 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
77 {
78 	int i;
79 
80 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
81 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
82 			      QRX_CTRL_QENA_STAT_M))
83 			return 0;
84 
85 		usleep_range(20, 40);
86 	}
87 
88 	return -ETIMEDOUT;
89 }
90 
91 /**
92  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93  * @vsi: the VSI being configured
94  * @v_idx: index of the vector in the VSI struct
95  *
96  * We allocate one q_vector and set default value for ITR setting associated
97  * with this q_vector. If allocation fails we return -ENOMEM.
98  */
99 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
100 {
101 	struct ice_pf *pf = vsi->back;
102 	struct ice_q_vector *q_vector;
103 
104 	/* allocate q_vector */
105 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
106 				GFP_KERNEL);
107 	if (!q_vector)
108 		return -ENOMEM;
109 
110 	q_vector->vsi = vsi;
111 	q_vector->v_idx = v_idx;
112 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
113 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
114 	if (vsi->type == ICE_VSI_VF)
115 		goto out;
116 	/* only set affinity_mask if the CPU is online */
117 	if (cpu_online(v_idx))
118 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
119 
120 	/* This will not be called in the driver load path because the netdev
121 	 * will not be created yet. All other cases with register the NAPI
122 	 * handler here (i.e. resume, reset/rebuild, etc.)
123 	 */
124 	if (vsi->netdev)
125 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
126 			       NAPI_POLL_WEIGHT);
127 
128 out:
129 	/* tie q_vector and VSI together */
130 	vsi->q_vectors[v_idx] = q_vector;
131 
132 	return 0;
133 }
134 
135 /**
136  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
137  * @vsi: VSI having the memory freed
138  * @v_idx: index of the vector to be freed
139  */
140 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
141 {
142 	struct ice_q_vector *q_vector;
143 	struct ice_pf *pf = vsi->back;
144 	struct ice_ring *ring;
145 	struct device *dev;
146 
147 	dev = ice_pf_to_dev(pf);
148 	if (!vsi->q_vectors[v_idx]) {
149 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
150 		return;
151 	}
152 	q_vector = vsi->q_vectors[v_idx];
153 
154 	ice_for_each_ring(ring, q_vector->tx)
155 		ring->q_vector = NULL;
156 	ice_for_each_ring(ring, q_vector->rx)
157 		ring->q_vector = NULL;
158 
159 	/* only VSI with an associated netdev is set up with NAPI */
160 	if (vsi->netdev)
161 		netif_napi_del(&q_vector->napi);
162 
163 	devm_kfree(dev, q_vector);
164 	vsi->q_vectors[v_idx] = NULL;
165 }
166 
167 /**
168  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
169  * @hw: board specific structure
170  */
171 static void ice_cfg_itr_gran(struct ice_hw *hw)
172 {
173 	u32 regval = rd32(hw, GLINT_CTL);
174 
175 	/* no need to update global register if ITR gran is already set */
176 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
177 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
178 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
179 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
180 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
181 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
182 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
183 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
184 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
185 		return;
186 
187 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
188 		  GLINT_CTL_ITR_GRAN_200_M) |
189 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
190 		  GLINT_CTL_ITR_GRAN_100_M) |
191 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
192 		  GLINT_CTL_ITR_GRAN_50_M) |
193 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
194 		  GLINT_CTL_ITR_GRAN_25_M);
195 	wr32(hw, GLINT_CTL, regval);
196 }
197 
198 /**
199  * ice_calc_q_handle - calculate the queue handle
200  * @vsi: VSI that ring belongs to
201  * @ring: ring to get the absolute queue index
202  * @tc: traffic class number
203  */
204 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
205 {
206 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
207 
208 	/* Idea here for calculation is that we subtract the number of queue
209 	 * count from TC that ring belongs to from it's absolute queue index
210 	 * and as a result we get the queue's index within TC.
211 	 */
212 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
213 }
214 
215 /**
216  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
217  * @ring: The Tx ring to configure
218  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
219  * @pf_q: queue index in the PF space
220  *
221  * Configure the Tx descriptor ring in TLAN context.
222  */
223 static void
224 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
225 {
226 	struct ice_vsi *vsi = ring->vsi;
227 	struct ice_hw *hw = &vsi->back->hw;
228 
229 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
230 
231 	tlan_ctx->port_num = vsi->port_info->lport;
232 
233 	/* Transmit Queue Length */
234 	tlan_ctx->qlen = ring->count;
235 
236 	ice_set_cgd_num(tlan_ctx, ring);
237 
238 	/* PF number */
239 	tlan_ctx->pf_num = hw->pf_id;
240 
241 	/* queue belongs to a specific VSI type
242 	 * VF / VM index should be programmed per vmvf_type setting:
243 	 * for vmvf_type = VF, it is VF number between 0-256
244 	 * for vmvf_type = VM, it is VM number between 0-767
245 	 * for PF or EMP this field should be set to zero
246 	 */
247 	switch (vsi->type) {
248 	case ICE_VSI_LB:
249 	case ICE_VSI_PF:
250 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
251 		break;
252 	case ICE_VSI_VF:
253 		/* Firmware expects vmvf_num to be absolute VF ID */
254 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
255 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
256 		break;
257 	default:
258 		return;
259 	}
260 
261 	/* make sure the context is associated with the right VSI */
262 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
263 
264 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
265 	tlan_ctx->tso_qnum = pf_q;
266 
267 	/* Legacy or Advanced Host Interface:
268 	 * 0: Advanced Host Interface
269 	 * 1: Legacy Host Interface
270 	 */
271 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
272 }
273 
274 /**
275  * ice_setup_rx_ctx - Configure a receive ring context
276  * @ring: The Rx ring to configure
277  *
278  * Configure the Rx descriptor ring in RLAN context.
279  */
280 int ice_setup_rx_ctx(struct ice_ring *ring)
281 {
282 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
283 	struct ice_vsi *vsi = ring->vsi;
284 	u32 rxdid = ICE_RXDID_FLEX_NIC;
285 	struct ice_rlan_ctx rlan_ctx;
286 	struct ice_hw *hw;
287 	u32 regval;
288 	u16 pf_q;
289 	int err;
290 
291 	hw = &vsi->back->hw;
292 
293 	/* what is Rx queue number in global space of 2K Rx queues */
294 	pf_q = vsi->rxq_map[ring->q_index];
295 
296 	/* clear the context structure first */
297 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
298 
299 	ring->rx_buf_len = vsi->rx_buf_len;
300 
301 	if (ring->vsi->type == ICE_VSI_PF) {
302 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
303 			/* coverity[check_return] */
304 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
305 					 ring->q_index);
306 
307 		ring->xsk_umem = ice_xsk_umem(ring);
308 		if (ring->xsk_umem) {
309 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
310 
311 			ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr -
312 					   XDP_PACKET_HEADROOM;
313 			/* For AF_XDP ZC, we disallow packets to span on
314 			 * multiple buffers, thus letting us skip that
315 			 * handling in the fast-path.
316 			 */
317 			chain_len = 1;
318 			ring->zca.free = ice_zca_free;
319 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
320 							 MEM_TYPE_ZERO_COPY,
321 							 &ring->zca);
322 			if (err)
323 				return err;
324 
325 			dev_info(ice_pf_to_dev(vsi->back), "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
326 				 ring->q_index);
327 		} else {
328 			ring->zca.free = NULL;
329 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
330 				/* coverity[check_return] */
331 				xdp_rxq_info_reg(&ring->xdp_rxq,
332 						 ring->netdev,
333 						 ring->q_index);
334 
335 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
336 							 MEM_TYPE_PAGE_SHARED,
337 							 NULL);
338 			if (err)
339 				return err;
340 		}
341 	}
342 	/* Receive Queue Base Address.
343 	 * Indicates the starting address of the descriptor queue defined in
344 	 * 128 Byte units.
345 	 */
346 	rlan_ctx.base = ring->dma >> 7;
347 
348 	rlan_ctx.qlen = ring->count;
349 
350 	/* Receive Packet Data Buffer Size.
351 	 * The Packet Data Buffer Size is defined in 128 byte units.
352 	 */
353 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
354 
355 	/* use 32 byte descriptors */
356 	rlan_ctx.dsize = 1;
357 
358 	/* Strip the Ethernet CRC bytes before the packet is posted to host
359 	 * memory.
360 	 */
361 	rlan_ctx.crcstrip = 1;
362 
363 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
364 	rlan_ctx.l2tsel = 1;
365 
366 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
367 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
368 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
369 
370 	/* This controls whether VLAN is stripped from inner headers
371 	 * The VLAN in the inner L2 header is stripped to the receive
372 	 * descriptor if enabled by this flag.
373 	 */
374 	rlan_ctx.showiv = 0;
375 
376 	/* Max packet size for this queue - must not be set to a larger value
377 	 * than 5 x DBUF
378 	 */
379 	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
380 			       chain_len * ring->rx_buf_len);
381 
382 	/* Rx queue threshold in units of 64 */
383 	rlan_ctx.lrxqthresh = 1;
384 
385 	 /* Enable Flexible Descriptors in the queue context which
386 	  * allows this driver to select a specific receive descriptor format
387 	  */
388 	regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
389 	if (vsi->type != ICE_VSI_VF) {
390 		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
391 			QRXFLXP_CNTXT_RXDID_IDX_M;
392 
393 		/* increasing context priority to pick up profile ID;
394 		 * default is 0x01; setting to 0x03 to ensure profile
395 		 * is programming if prev context is of same priority
396 		 */
397 		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
398 			QRXFLXP_CNTXT_RXDID_PRIO_M;
399 
400 	} else {
401 		regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
402 			    QRXFLXP_CNTXT_RXDID_PRIO_M |
403 			    QRXFLXP_CNTXT_TS_M);
404 	}
405 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
406 
407 	/* Absolute queue number out of 2K needs to be passed */
408 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
409 	if (err) {
410 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
411 			pf_q, err);
412 		return -EIO;
413 	}
414 
415 	if (vsi->type == ICE_VSI_VF)
416 		return 0;
417 
418 	/* configure Rx buffer alignment */
419 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
420 		ice_clear_ring_build_skb_ena(ring);
421 	else
422 		ice_set_ring_build_skb_ena(ring);
423 
424 	/* init queue specific tail register */
425 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
426 	writel(0, ring->tail);
427 
428 	err = ring->xsk_umem ?
429 	      ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) :
430 	      ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
431 	if (err)
432 		dev_info(ice_pf_to_dev(vsi->back), "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
433 			 ring->xsk_umem ? "UMEM enabled " : "",
434 			 ring->q_index, pf_q);
435 
436 	return 0;
437 }
438 
439 /**
440  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
441  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
442  *
443  * This function first tries to find contiguous space. If it is not successful,
444  * it tries with the scatter approach.
445  *
446  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
447  */
448 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
449 {
450 	int ret = 0;
451 
452 	ret = __ice_vsi_get_qs_contig(qs_cfg);
453 	if (ret) {
454 		/* contig failed, so try with scatter approach */
455 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
456 		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
457 					qs_cfg->scatter_count);
458 		ret = __ice_vsi_get_qs_sc(qs_cfg);
459 	}
460 	return ret;
461 }
462 
463 /**
464  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
465  * @vsi: the VSI being configured
466  * @ena: start or stop the Rx ring
467  * @rxq_idx: 0-based Rx queue index for the VSI passed in
468  * @wait: wait or don't wait for configuration to finish in hardware
469  *
470  * Return 0 on success and negative on error.
471  */
472 int
473 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
474 {
475 	int pf_q = vsi->rxq_map[rxq_idx];
476 	struct ice_pf *pf = vsi->back;
477 	struct ice_hw *hw = &pf->hw;
478 	u32 rx_reg;
479 
480 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
481 
482 	/* Skip if the queue is already in the requested state */
483 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
484 		return 0;
485 
486 	/* turn on/off the queue */
487 	if (ena)
488 		rx_reg |= QRX_CTRL_QENA_REQ_M;
489 	else
490 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
491 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
492 
493 	if (!wait)
494 		return 0;
495 
496 	ice_flush(hw);
497 	return ice_pf_rxq_wait(pf, pf_q, ena);
498 }
499 
500 /**
501  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
502  * @vsi: the VSI being configured
503  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
504  * @rxq_idx: 0-based Rx queue index for the VSI passed in
505  *
506  * This routine will wait for the given Rx queue of the VSI to reach the
507  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
508  * the requested state after multiple retries; else will return 0 in case of
509  * success.
510  */
511 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
512 {
513 	int pf_q = vsi->rxq_map[rxq_idx];
514 	struct ice_pf *pf = vsi->back;
515 
516 	return ice_pf_rxq_wait(pf, pf_q, ena);
517 }
518 
519 /**
520  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
521  * @vsi: the VSI being configured
522  *
523  * We allocate one q_vector per queue interrupt. If allocation fails we
524  * return -ENOMEM.
525  */
526 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
527 {
528 	struct device *dev = ice_pf_to_dev(vsi->back);
529 	int v_idx, err;
530 
531 	if (vsi->q_vectors[0]) {
532 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
533 		return -EEXIST;
534 	}
535 
536 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
537 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
538 		if (err)
539 			goto err_out;
540 	}
541 
542 	return 0;
543 
544 err_out:
545 	while (v_idx--)
546 		ice_free_q_vector(vsi, v_idx);
547 
548 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
549 		vsi->num_q_vectors, vsi->vsi_num, err);
550 	vsi->num_q_vectors = 0;
551 	return err;
552 }
553 
554 /**
555  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
556  * @vsi: the VSI being configured
557  *
558  * This function maps descriptor rings to the queue-specific vectors allotted
559  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
560  * and Rx rings to the vector as "efficiently" as possible.
561  */
562 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
563 {
564 	int q_vectors = vsi->num_q_vectors;
565 	int tx_rings_rem, rx_rings_rem;
566 	int v_id;
567 
568 	/* initially assigning remaining rings count to VSIs num queue value */
569 	tx_rings_rem = vsi->num_txq;
570 	rx_rings_rem = vsi->num_rxq;
571 
572 	for (v_id = 0; v_id < q_vectors; v_id++) {
573 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
574 		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
575 
576 		/* Tx rings mapping to vector */
577 		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
578 		q_vector->num_ring_tx = tx_rings_per_v;
579 		q_vector->tx.ring = NULL;
580 		q_vector->tx.itr_idx = ICE_TX_ITR;
581 		q_base = vsi->num_txq - tx_rings_rem;
582 
583 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
584 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
585 
586 			tx_ring->q_vector = q_vector;
587 			tx_ring->next = q_vector->tx.ring;
588 			q_vector->tx.ring = tx_ring;
589 		}
590 		tx_rings_rem -= tx_rings_per_v;
591 
592 		/* Rx rings mapping to vector */
593 		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
594 		q_vector->num_ring_rx = rx_rings_per_v;
595 		q_vector->rx.ring = NULL;
596 		q_vector->rx.itr_idx = ICE_RX_ITR;
597 		q_base = vsi->num_rxq - rx_rings_rem;
598 
599 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
600 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
601 
602 			rx_ring->q_vector = q_vector;
603 			rx_ring->next = q_vector->rx.ring;
604 			q_vector->rx.ring = rx_ring;
605 		}
606 		rx_rings_rem -= rx_rings_per_v;
607 	}
608 }
609 
610 /**
611  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
612  * @vsi: the VSI having memory freed
613  */
614 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
615 {
616 	int v_idx;
617 
618 	ice_for_each_q_vector(vsi, v_idx)
619 		ice_free_q_vector(vsi, v_idx);
620 }
621 
622 /**
623  * ice_vsi_cfg_txq - Configure single Tx queue
624  * @vsi: the VSI that queue belongs to
625  * @ring: Tx ring to be configured
626  * @qg_buf: queue group buffer
627  */
628 int
629 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
630 		struct ice_aqc_add_tx_qgrp *qg_buf)
631 {
632 	struct ice_tlan_ctx tlan_ctx = { 0 };
633 	struct ice_aqc_add_txqs_perq *txq;
634 	struct ice_pf *pf = vsi->back;
635 	u8 buf_len = sizeof(*qg_buf);
636 	enum ice_status status;
637 	u16 pf_q;
638 	u8 tc;
639 
640 	pf_q = ring->reg_idx;
641 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
642 	/* copy context contents into the qg_buf */
643 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
644 	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
645 		    ice_tlan_ctx_info);
646 
647 	/* init queue specific tail reg. It is referred as
648 	 * transmit comm scheduler queue doorbell.
649 	 */
650 	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
651 
652 	if (IS_ENABLED(CONFIG_DCB))
653 		tc = ring->dcb_tc;
654 	else
655 		tc = 0;
656 
657 	/* Add unique software queue handle of the Tx queue per
658 	 * TC into the VSI Tx ring
659 	 */
660 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
661 
662 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
663 				 1, qg_buf, buf_len, NULL);
664 	if (status) {
665 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
666 			status);
667 		return -ENODEV;
668 	}
669 
670 	/* Add Tx Queue TEID into the VSI Tx ring from the
671 	 * response. This will complete configuring and
672 	 * enabling the queue.
673 	 */
674 	txq = &qg_buf->txqs[0];
675 	if (pf_q == le16_to_cpu(txq->txq_id))
676 		ring->txq_teid = le32_to_cpu(txq->q_teid);
677 
678 	return 0;
679 }
680 
681 /**
682  * ice_cfg_itr - configure the initial interrupt throttle values
683  * @hw: pointer to the HW structure
684  * @q_vector: interrupt vector that's being configured
685  *
686  * Configure interrupt throttling values for the ring containers that are
687  * associated with the interrupt vector passed in.
688  */
689 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
690 {
691 	ice_cfg_itr_gran(hw);
692 
693 	if (q_vector->num_ring_rx) {
694 		struct ice_ring_container *rc = &q_vector->rx;
695 
696 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
697 		rc->next_update = jiffies + 1;
698 		rc->current_itr = rc->target_itr;
699 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
700 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
701 	}
702 
703 	if (q_vector->num_ring_tx) {
704 		struct ice_ring_container *rc = &q_vector->tx;
705 
706 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
707 		rc->next_update = jiffies + 1;
708 		rc->current_itr = rc->target_itr;
709 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
710 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
711 	}
712 }
713 
714 /**
715  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
716  * @vsi: the VSI being configured
717  * @txq: Tx queue being mapped to MSI-X vector
718  * @msix_idx: MSI-X vector index within the function
719  * @itr_idx: ITR index of the interrupt cause
720  *
721  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
722  * within the function space.
723  */
724 void
725 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
726 {
727 	struct ice_pf *pf = vsi->back;
728 	struct ice_hw *hw = &pf->hw;
729 	u32 val;
730 
731 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
732 
733 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
734 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
735 
736 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
737 	if (ice_is_xdp_ena_vsi(vsi)) {
738 		u32 xdp_txq = txq + vsi->num_xdp_txq;
739 
740 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
741 		     val);
742 	}
743 	ice_flush(hw);
744 }
745 
746 /**
747  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
748  * @vsi: the VSI being configured
749  * @rxq: Rx queue being mapped to MSI-X vector
750  * @msix_idx: MSI-X vector index within the function
751  * @itr_idx: ITR index of the interrupt cause
752  *
753  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
754  * within the function space.
755  */
756 void
757 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
758 {
759 	struct ice_pf *pf = vsi->back;
760 	struct ice_hw *hw = &pf->hw;
761 	u32 val;
762 
763 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
764 
765 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
766 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
767 
768 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
769 
770 	ice_flush(hw);
771 }
772 
773 /**
774  * ice_trigger_sw_intr - trigger a software interrupt
775  * @hw: pointer to the HW structure
776  * @q_vector: interrupt vector to trigger the software interrupt for
777  */
778 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
779 {
780 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
781 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
782 	     GLINT_DYN_CTL_SWINT_TRIG_M |
783 	     GLINT_DYN_CTL_INTENA_M);
784 }
785 
786 /**
787  * ice_vsi_stop_tx_ring - Disable single Tx ring
788  * @vsi: the VSI being configured
789  * @rst_src: reset source
790  * @rel_vmvf_num: Relative ID of VF/VM
791  * @ring: Tx ring to be stopped
792  * @txq_meta: Meta data of Tx ring to be stopped
793  */
794 int
795 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
796 		     u16 rel_vmvf_num, struct ice_ring *ring,
797 		     struct ice_txq_meta *txq_meta)
798 {
799 	struct ice_pf *pf = vsi->back;
800 	struct ice_q_vector *q_vector;
801 	struct ice_hw *hw = &pf->hw;
802 	enum ice_status status;
803 	u32 val;
804 
805 	/* clear cause_ena bit for disabled queues */
806 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
807 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
808 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
809 
810 	/* software is expected to wait for 100 ns */
811 	ndelay(100);
812 
813 	/* trigger a software interrupt for the vector
814 	 * associated to the queue to schedule NAPI handler
815 	 */
816 	q_vector = ring->q_vector;
817 	if (q_vector)
818 		ice_trigger_sw_intr(hw, q_vector);
819 
820 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
821 				 txq_meta->tc, 1, &txq_meta->q_handle,
822 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
823 				 rel_vmvf_num, NULL);
824 
825 	/* if the disable queue command was exercised during an
826 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
827 	 * This is not an error as the reset operation disables
828 	 * queues at the hardware level anyway.
829 	 */
830 	if (status == ICE_ERR_RESET_ONGOING) {
831 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
832 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
833 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
834 	} else if (status) {
835 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
836 			status);
837 		return -ENODEV;
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  * ice_fill_txq_meta - Prepare the Tx queue's meta data
845  * @vsi: VSI that ring belongs to
846  * @ring: ring that txq_meta will be based on
847  * @txq_meta: a helper struct that wraps Tx queue's information
848  *
849  * Set up a helper struct that will contain all the necessary fields that
850  * are needed for stopping Tx queue
851  */
852 void
853 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
854 		  struct ice_txq_meta *txq_meta)
855 {
856 	u8 tc;
857 
858 	if (IS_ENABLED(CONFIG_DCB))
859 		tc = ring->dcb_tc;
860 	else
861 		tc = 0;
862 
863 	txq_meta->q_id = ring->reg_idx;
864 	txq_meta->q_teid = ring->txq_teid;
865 	txq_meta->q_handle = ring->q_handle;
866 	txq_meta->vsi_idx = vsi->idx;
867 	txq_meta->tc = tc;
868 }
869