1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 9 /** 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 12 * 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 14 */ 15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 16 { 17 unsigned int offset, i; 18 19 mutex_lock(qs_cfg->qs_mutex); 20 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 21 0, qs_cfg->q_count, 0); 22 if (offset >= qs_cfg->pf_map_size) { 23 mutex_unlock(qs_cfg->qs_mutex); 24 return -ENOMEM; 25 } 26 27 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 28 for (i = 0; i < qs_cfg->q_count; i++) 29 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 30 mutex_unlock(qs_cfg->qs_mutex); 31 32 return 0; 33 } 34 35 /** 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 38 * 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 40 */ 41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 42 { 43 unsigned int i, index = 0; 44 45 mutex_lock(qs_cfg->qs_mutex); 46 for (i = 0; i < qs_cfg->q_count; i++) { 47 index = find_next_zero_bit(qs_cfg->pf_map, 48 qs_cfg->pf_map_size, index); 49 if (index >= qs_cfg->pf_map_size) 50 goto err_scatter; 51 set_bit(index, qs_cfg->pf_map); 52 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 53 } 54 mutex_unlock(qs_cfg->qs_mutex); 55 56 return 0; 57 err_scatter: 58 for (index = 0; index < i; index++) { 59 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 60 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 61 } 62 mutex_unlock(qs_cfg->qs_mutex); 63 64 return -ENOMEM; 65 } 66 67 /** 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 69 * @pf: the PF being configured 70 * @pf_q: the PF queue 71 * @ena: enable or disable state of the queue 72 * 73 * This routine will wait for the given Rx queue of the PF to reach the 74 * enabled or disabled state. 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after 76 * multiple retries; else will return 0 in case of success. 77 */ 78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 79 { 80 int i; 81 82 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 83 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 84 QRX_CTRL_QENA_STAT_M)) 85 return 0; 86 87 usleep_range(20, 40); 88 } 89 90 return -ETIMEDOUT; 91 } 92 93 /** 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 95 * @vsi: the VSI being configured 96 * @v_idx: index of the vector in the VSI struct 97 * 98 * We allocate one q_vector and set default value for ITR setting associated 99 * with this q_vector. If allocation fails we return -ENOMEM. 100 */ 101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 102 { 103 struct ice_pf *pf = vsi->back; 104 struct ice_q_vector *q_vector; 105 106 /* allocate q_vector */ 107 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), 108 GFP_KERNEL); 109 if (!q_vector) 110 return -ENOMEM; 111 112 q_vector->vsi = vsi; 113 q_vector->v_idx = v_idx; 114 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 115 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 116 if (vsi->type == ICE_VSI_VF) 117 goto out; 118 /* only set affinity_mask if the CPU is online */ 119 if (cpu_online(v_idx)) 120 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 121 122 /* This will not be called in the driver load path because the netdev 123 * will not be created yet. All other cases with register the NAPI 124 * handler here (i.e. resume, reset/rebuild, etc.) 125 */ 126 if (vsi->netdev) 127 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 128 NAPI_POLL_WEIGHT); 129 130 out: 131 /* tie q_vector and VSI together */ 132 vsi->q_vectors[v_idx] = q_vector; 133 134 return 0; 135 } 136 137 /** 138 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 139 * @vsi: VSI having the memory freed 140 * @v_idx: index of the vector to be freed 141 */ 142 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 143 { 144 struct ice_q_vector *q_vector; 145 struct ice_pf *pf = vsi->back; 146 struct ice_ring *ring; 147 struct device *dev; 148 149 dev = ice_pf_to_dev(pf); 150 if (!vsi->q_vectors[v_idx]) { 151 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 152 return; 153 } 154 q_vector = vsi->q_vectors[v_idx]; 155 156 ice_for_each_ring(ring, q_vector->tx) 157 ring->q_vector = NULL; 158 ice_for_each_ring(ring, q_vector->rx) 159 ring->q_vector = NULL; 160 161 /* only VSI with an associated netdev is set up with NAPI */ 162 if (vsi->netdev) 163 netif_napi_del(&q_vector->napi); 164 165 devm_kfree(dev, q_vector); 166 vsi->q_vectors[v_idx] = NULL; 167 } 168 169 /** 170 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 171 * @hw: board specific structure 172 */ 173 static void ice_cfg_itr_gran(struct ice_hw *hw) 174 { 175 u32 regval = rd32(hw, GLINT_CTL); 176 177 /* no need to update global register if ITR gran is already set */ 178 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 179 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 180 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 181 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 182 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 183 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 184 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 185 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 186 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 187 return; 188 189 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 190 GLINT_CTL_ITR_GRAN_200_M) | 191 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 192 GLINT_CTL_ITR_GRAN_100_M) | 193 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 194 GLINT_CTL_ITR_GRAN_50_M) | 195 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 196 GLINT_CTL_ITR_GRAN_25_M); 197 wr32(hw, GLINT_CTL, regval); 198 } 199 200 /** 201 * ice_calc_q_handle - calculate the queue handle 202 * @vsi: VSI that ring belongs to 203 * @ring: ring to get the absolute queue index 204 * @tc: traffic class number 205 */ 206 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc) 207 { 208 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 209 210 /* Idea here for calculation is that we subtract the number of queue 211 * count from TC that ring belongs to from it's absolute queue index 212 * and as a result we get the queue's index within TC. 213 */ 214 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 215 } 216 217 /** 218 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 219 * @ring: The Tx ring to configure 220 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 221 * @pf_q: queue index in the PF space 222 * 223 * Configure the Tx descriptor ring in TLAN context. 224 */ 225 static void 226 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 227 { 228 struct ice_vsi *vsi = ring->vsi; 229 struct ice_hw *hw = &vsi->back->hw; 230 231 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 232 233 tlan_ctx->port_num = vsi->port_info->lport; 234 235 /* Transmit Queue Length */ 236 tlan_ctx->qlen = ring->count; 237 238 ice_set_cgd_num(tlan_ctx, ring); 239 240 /* PF number */ 241 tlan_ctx->pf_num = hw->pf_id; 242 243 /* queue belongs to a specific VSI type 244 * VF / VM index should be programmed per vmvf_type setting: 245 * for vmvf_type = VF, it is VF number between 0-256 246 * for vmvf_type = VM, it is VM number between 0-767 247 * for PF or EMP this field should be set to zero 248 */ 249 switch (vsi->type) { 250 case ICE_VSI_LB: 251 case ICE_VSI_CTRL: 252 case ICE_VSI_PF: 253 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 254 break; 255 case ICE_VSI_VF: 256 /* Firmware expects vmvf_num to be absolute VF ID */ 257 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 258 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 259 break; 260 default: 261 return; 262 } 263 264 /* make sure the context is associated with the right VSI */ 265 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 266 267 tlan_ctx->tso_ena = ICE_TX_LEGACY; 268 tlan_ctx->tso_qnum = pf_q; 269 270 /* Legacy or Advanced Host Interface: 271 * 0: Advanced Host Interface 272 * 1: Legacy Host Interface 273 */ 274 tlan_ctx->legacy_int = ICE_TX_LEGACY; 275 } 276 277 /** 278 * ice_setup_rx_ctx - Configure a receive ring context 279 * @ring: The Rx ring to configure 280 * 281 * Configure the Rx descriptor ring in RLAN context. 282 */ 283 int ice_setup_rx_ctx(struct ice_ring *ring) 284 { 285 struct device *dev = ice_pf_to_dev(ring->vsi->back); 286 int chain_len = ICE_MAX_CHAINED_RX_BUFS; 287 u16 num_bufs = ICE_DESC_UNUSED(ring); 288 struct ice_vsi *vsi = ring->vsi; 289 u32 rxdid = ICE_RXDID_FLEX_NIC; 290 struct ice_rlan_ctx rlan_ctx; 291 struct ice_hw *hw; 292 u16 pf_q; 293 int err; 294 295 hw = &vsi->back->hw; 296 297 /* what is Rx queue number in global space of 2K Rx queues */ 298 pf_q = vsi->rxq_map[ring->q_index]; 299 300 /* clear the context structure first */ 301 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 302 303 ring->rx_buf_len = vsi->rx_buf_len; 304 305 if (ring->vsi->type == ICE_VSI_PF) { 306 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 307 /* coverity[check_return] */ 308 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 309 ring->q_index); 310 311 ring->xsk_pool = ice_xsk_pool(ring); 312 if (ring->xsk_pool) { 313 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 314 315 ring->rx_buf_len = 316 xsk_pool_get_rx_frame_size(ring->xsk_pool); 317 /* For AF_XDP ZC, we disallow packets to span on 318 * multiple buffers, thus letting us skip that 319 * handling in the fast-path. 320 */ 321 chain_len = 1; 322 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 323 MEM_TYPE_XSK_BUFF_POOL, 324 NULL); 325 if (err) 326 return err; 327 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 328 329 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 330 ring->q_index); 331 } else { 332 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 333 /* coverity[check_return] */ 334 xdp_rxq_info_reg(&ring->xdp_rxq, 335 ring->netdev, 336 ring->q_index); 337 338 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 339 MEM_TYPE_PAGE_SHARED, 340 NULL); 341 if (err) 342 return err; 343 } 344 } 345 /* Receive Queue Base Address. 346 * Indicates the starting address of the descriptor queue defined in 347 * 128 Byte units. 348 */ 349 rlan_ctx.base = ring->dma >> 7; 350 351 rlan_ctx.qlen = ring->count; 352 353 /* Receive Packet Data Buffer Size. 354 * The Packet Data Buffer Size is defined in 128 byte units. 355 */ 356 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 357 358 /* use 32 byte descriptors */ 359 rlan_ctx.dsize = 1; 360 361 /* Strip the Ethernet CRC bytes before the packet is posted to host 362 * memory. 363 */ 364 rlan_ctx.crcstrip = 1; 365 366 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 367 rlan_ctx.l2tsel = 1; 368 369 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 370 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 371 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 372 373 /* This controls whether VLAN is stripped from inner headers 374 * The VLAN in the inner L2 header is stripped to the receive 375 * descriptor if enabled by this flag. 376 */ 377 rlan_ctx.showiv = 0; 378 379 /* Max packet size for this queue - must not be set to a larger value 380 * than 5 x DBUF 381 */ 382 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 383 chain_len * ring->rx_buf_len); 384 385 /* Rx queue threshold in units of 64 */ 386 rlan_ctx.lrxqthresh = 1; 387 388 /* Enable Flexible Descriptors in the queue context which 389 * allows this driver to select a specific receive descriptor format 390 * increasing context priority to pick up profile ID; default is 0x01; 391 * setting to 0x03 to ensure profile is programming if prev context is 392 * of same priority 393 */ 394 if (vsi->type != ICE_VSI_VF) 395 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3); 396 else 397 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3); 398 399 /* Absolute queue number out of 2K needs to be passed */ 400 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 401 if (err) { 402 dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 403 pf_q, err); 404 return -EIO; 405 } 406 407 if (vsi->type == ICE_VSI_VF) 408 return 0; 409 410 /* configure Rx buffer alignment */ 411 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 412 ice_clear_ring_build_skb_ena(ring); 413 else 414 ice_set_ring_build_skb_ena(ring); 415 416 /* init queue specific tail register */ 417 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 418 writel(0, ring->tail); 419 420 if (ring->xsk_pool) { 421 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 422 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 423 num_bufs, ring->q_index); 424 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 425 426 return 0; 427 } 428 429 err = ice_alloc_rx_bufs_zc(ring, num_bufs); 430 if (err) 431 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 432 ring->q_index, pf_q); 433 return 0; 434 } 435 436 ice_alloc_rx_bufs(ring, num_bufs); 437 438 return 0; 439 } 440 441 /** 442 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 443 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 444 * 445 * This function first tries to find contiguous space. If it is not successful, 446 * it tries with the scatter approach. 447 * 448 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 449 */ 450 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 451 { 452 int ret = 0; 453 454 ret = __ice_vsi_get_qs_contig(qs_cfg); 455 if (ret) { 456 /* contig failed, so try with scatter approach */ 457 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 458 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 459 qs_cfg->scatter_count); 460 ret = __ice_vsi_get_qs_sc(qs_cfg); 461 } 462 return ret; 463 } 464 465 /** 466 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 467 * @vsi: the VSI being configured 468 * @ena: start or stop the Rx ring 469 * @rxq_idx: 0-based Rx queue index for the VSI passed in 470 * @wait: wait or don't wait for configuration to finish in hardware 471 * 472 * Return 0 on success and negative on error. 473 */ 474 int 475 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 476 { 477 int pf_q = vsi->rxq_map[rxq_idx]; 478 struct ice_pf *pf = vsi->back; 479 struct ice_hw *hw = &pf->hw; 480 u32 rx_reg; 481 482 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 483 484 /* Skip if the queue is already in the requested state */ 485 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 486 return 0; 487 488 /* turn on/off the queue */ 489 if (ena) 490 rx_reg |= QRX_CTRL_QENA_REQ_M; 491 else 492 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 493 wr32(hw, QRX_CTRL(pf_q), rx_reg); 494 495 if (!wait) 496 return 0; 497 498 ice_flush(hw); 499 return ice_pf_rxq_wait(pf, pf_q, ena); 500 } 501 502 /** 503 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 504 * @vsi: the VSI being configured 505 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 506 * @rxq_idx: 0-based Rx queue index for the VSI passed in 507 * 508 * This routine will wait for the given Rx queue of the VSI to reach the 509 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 510 * the requested state after multiple retries; else will return 0 in case of 511 * success. 512 */ 513 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 514 { 515 int pf_q = vsi->rxq_map[rxq_idx]; 516 struct ice_pf *pf = vsi->back; 517 518 return ice_pf_rxq_wait(pf, pf_q, ena); 519 } 520 521 /** 522 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 523 * @vsi: the VSI being configured 524 * 525 * We allocate one q_vector per queue interrupt. If allocation fails we 526 * return -ENOMEM. 527 */ 528 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 529 { 530 struct device *dev = ice_pf_to_dev(vsi->back); 531 u16 v_idx; 532 int err; 533 534 if (vsi->q_vectors[0]) { 535 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 536 return -EEXIST; 537 } 538 539 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 540 err = ice_vsi_alloc_q_vector(vsi, v_idx); 541 if (err) 542 goto err_out; 543 } 544 545 return 0; 546 547 err_out: 548 while (v_idx--) 549 ice_free_q_vector(vsi, v_idx); 550 551 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 552 vsi->num_q_vectors, vsi->vsi_num, err); 553 vsi->num_q_vectors = 0; 554 return err; 555 } 556 557 /** 558 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 559 * @vsi: the VSI being configured 560 * 561 * This function maps descriptor rings to the queue-specific vectors allotted 562 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 563 * and Rx rings to the vector as "efficiently" as possible. 564 */ 565 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 566 { 567 int q_vectors = vsi->num_q_vectors; 568 u16 tx_rings_rem, rx_rings_rem; 569 int v_id; 570 571 /* initially assigning remaining rings count to VSIs num queue value */ 572 tx_rings_rem = vsi->num_txq; 573 rx_rings_rem = vsi->num_rxq; 574 575 for (v_id = 0; v_id < q_vectors; v_id++) { 576 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 577 u8 tx_rings_per_v, rx_rings_per_v; 578 u16 q_id, q_base; 579 580 /* Tx rings mapping to vector */ 581 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 582 q_vectors - v_id); 583 q_vector->num_ring_tx = tx_rings_per_v; 584 q_vector->tx.ring = NULL; 585 q_vector->tx.itr_idx = ICE_TX_ITR; 586 q_base = vsi->num_txq - tx_rings_rem; 587 588 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 589 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 590 591 tx_ring->q_vector = q_vector; 592 tx_ring->next = q_vector->tx.ring; 593 q_vector->tx.ring = tx_ring; 594 } 595 tx_rings_rem -= tx_rings_per_v; 596 597 /* Rx rings mapping to vector */ 598 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 599 q_vectors - v_id); 600 q_vector->num_ring_rx = rx_rings_per_v; 601 q_vector->rx.ring = NULL; 602 q_vector->rx.itr_idx = ICE_RX_ITR; 603 q_base = vsi->num_rxq - rx_rings_rem; 604 605 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 606 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 607 608 rx_ring->q_vector = q_vector; 609 rx_ring->next = q_vector->rx.ring; 610 q_vector->rx.ring = rx_ring; 611 } 612 rx_rings_rem -= rx_rings_per_v; 613 } 614 } 615 616 /** 617 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 618 * @vsi: the VSI having memory freed 619 */ 620 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 621 { 622 int v_idx; 623 624 ice_for_each_q_vector(vsi, v_idx) 625 ice_free_q_vector(vsi, v_idx); 626 } 627 628 /** 629 * ice_vsi_cfg_txq - Configure single Tx queue 630 * @vsi: the VSI that queue belongs to 631 * @ring: Tx ring to be configured 632 * @qg_buf: queue group buffer 633 */ 634 int 635 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, 636 struct ice_aqc_add_tx_qgrp *qg_buf) 637 { 638 u8 buf_len = struct_size(qg_buf, txqs, 1); 639 struct ice_tlan_ctx tlan_ctx = { 0 }; 640 struct ice_aqc_add_txqs_perq *txq; 641 struct ice_pf *pf = vsi->back; 642 struct ice_hw *hw = &pf->hw; 643 enum ice_status status; 644 u16 pf_q; 645 u8 tc; 646 647 pf_q = ring->reg_idx; 648 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 649 /* copy context contents into the qg_buf */ 650 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 651 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 652 ice_tlan_ctx_info); 653 654 /* init queue specific tail reg. It is referred as 655 * transmit comm scheduler queue doorbell. 656 */ 657 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 658 659 if (IS_ENABLED(CONFIG_DCB)) 660 tc = ring->dcb_tc; 661 else 662 tc = 0; 663 664 /* Add unique software queue handle of the Tx queue per 665 * TC into the VSI Tx ring 666 */ 667 ring->q_handle = ice_calc_q_handle(vsi, ring, tc); 668 669 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 670 1, qg_buf, buf_len, NULL); 671 if (status) { 672 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n", 673 ice_stat_str(status)); 674 return -ENODEV; 675 } 676 677 /* Add Tx Queue TEID into the VSI Tx ring from the 678 * response. This will complete configuring and 679 * enabling the queue. 680 */ 681 txq = &qg_buf->txqs[0]; 682 if (pf_q == le16_to_cpu(txq->txq_id)) 683 ring->txq_teid = le32_to_cpu(txq->q_teid); 684 685 return 0; 686 } 687 688 /** 689 * ice_cfg_itr - configure the initial interrupt throttle values 690 * @hw: pointer to the HW structure 691 * @q_vector: interrupt vector that's being configured 692 * 693 * Configure interrupt throttling values for the ring containers that are 694 * associated with the interrupt vector passed in. 695 */ 696 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 697 { 698 ice_cfg_itr_gran(hw); 699 700 if (q_vector->num_ring_rx) { 701 struct ice_ring_container *rc = &q_vector->rx; 702 703 rc->target_itr = ITR_TO_REG(rc->itr_setting); 704 rc->next_update = jiffies + 1; 705 rc->current_itr = rc->target_itr; 706 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 707 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 708 } 709 710 if (q_vector->num_ring_tx) { 711 struct ice_ring_container *rc = &q_vector->tx; 712 713 rc->target_itr = ITR_TO_REG(rc->itr_setting); 714 rc->next_update = jiffies + 1; 715 rc->current_itr = rc->target_itr; 716 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 717 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); 718 } 719 } 720 721 /** 722 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 723 * @vsi: the VSI being configured 724 * @txq: Tx queue being mapped to MSI-X vector 725 * @msix_idx: MSI-X vector index within the function 726 * @itr_idx: ITR index of the interrupt cause 727 * 728 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 729 * within the function space. 730 */ 731 void 732 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 733 { 734 struct ice_pf *pf = vsi->back; 735 struct ice_hw *hw = &pf->hw; 736 u32 val; 737 738 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 739 740 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 741 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 742 743 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 744 if (ice_is_xdp_ena_vsi(vsi)) { 745 u32 xdp_txq = txq + vsi->num_xdp_txq; 746 747 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 748 val); 749 } 750 ice_flush(hw); 751 } 752 753 /** 754 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 755 * @vsi: the VSI being configured 756 * @rxq: Rx queue being mapped to MSI-X vector 757 * @msix_idx: MSI-X vector index within the function 758 * @itr_idx: ITR index of the interrupt cause 759 * 760 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 761 * within the function space. 762 */ 763 void 764 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 765 { 766 struct ice_pf *pf = vsi->back; 767 struct ice_hw *hw = &pf->hw; 768 u32 val; 769 770 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 771 772 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 773 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 774 775 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 776 777 ice_flush(hw); 778 } 779 780 /** 781 * ice_trigger_sw_intr - trigger a software interrupt 782 * @hw: pointer to the HW structure 783 * @q_vector: interrupt vector to trigger the software interrupt for 784 */ 785 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 786 { 787 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 788 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 789 GLINT_DYN_CTL_SWINT_TRIG_M | 790 GLINT_DYN_CTL_INTENA_M); 791 } 792 793 /** 794 * ice_vsi_stop_tx_ring - Disable single Tx ring 795 * @vsi: the VSI being configured 796 * @rst_src: reset source 797 * @rel_vmvf_num: Relative ID of VF/VM 798 * @ring: Tx ring to be stopped 799 * @txq_meta: Meta data of Tx ring to be stopped 800 */ 801 int 802 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 803 u16 rel_vmvf_num, struct ice_ring *ring, 804 struct ice_txq_meta *txq_meta) 805 { 806 struct ice_pf *pf = vsi->back; 807 struct ice_q_vector *q_vector; 808 struct ice_hw *hw = &pf->hw; 809 enum ice_status status; 810 u32 val; 811 812 /* clear cause_ena bit for disabled queues */ 813 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 814 val &= ~QINT_TQCTL_CAUSE_ENA_M; 815 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 816 817 /* software is expected to wait for 100 ns */ 818 ndelay(100); 819 820 /* trigger a software interrupt for the vector 821 * associated to the queue to schedule NAPI handler 822 */ 823 q_vector = ring->q_vector; 824 if (q_vector) 825 ice_trigger_sw_intr(hw, q_vector); 826 827 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 828 txq_meta->tc, 1, &txq_meta->q_handle, 829 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 830 rel_vmvf_num, NULL); 831 832 /* if the disable queue command was exercised during an 833 * active reset flow, ICE_ERR_RESET_ONGOING is returned. 834 * This is not an error as the reset operation disables 835 * queues at the hardware level anyway. 836 */ 837 if (status == ICE_ERR_RESET_ONGOING) { 838 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 839 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 840 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 841 } else if (status) { 842 dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n", 843 ice_stat_str(status)); 844 return -ENODEV; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ice_fill_txq_meta - Prepare the Tx queue's meta data 852 * @vsi: VSI that ring belongs to 853 * @ring: ring that txq_meta will be based on 854 * @txq_meta: a helper struct that wraps Tx queue's information 855 * 856 * Set up a helper struct that will contain all the necessary fields that 857 * are needed for stopping Tx queue 858 */ 859 void 860 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring, 861 struct ice_txq_meta *txq_meta) 862 { 863 u8 tc; 864 865 if (IS_ENABLED(CONFIG_DCB)) 866 tc = ring->dcb_tc; 867 else 868 tc = 0; 869 870 txq_meta->q_id = ring->reg_idx; 871 txq_meta->q_teid = ring->txq_teid; 872 txq_meta->q_handle = ring->q_handle; 873 txq_meta->vsi_idx = vsi->idx; 874 txq_meta->tc = tc; 875 } 876