1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2018-2020, Intel Corporation. */ 3 4 #include "ice.h" 5 6 /** 7 * ice_is_arfs_active - helper to check is aRFS is active 8 * @vsi: VSI to check 9 */ 10 static bool ice_is_arfs_active(struct ice_vsi *vsi) 11 { 12 return !!vsi->arfs_fltr_list; 13 } 14 15 /** 16 * ice_is_arfs_using_perfect_flow - check if aRFS has active perfect filters 17 * @hw: pointer to the HW structure 18 * @flow_type: flow type as Flow Director understands it 19 * 20 * Flow Director will query this function to see if aRFS is currently using 21 * the specified flow_type for perfect (4-tuple) filters. 22 */ 23 bool 24 ice_is_arfs_using_perfect_flow(struct ice_hw *hw, enum ice_fltr_ptype flow_type) 25 { 26 struct ice_arfs_active_fltr_cntrs *arfs_fltr_cntrs; 27 struct ice_pf *pf = hw->back; 28 struct ice_vsi *vsi; 29 30 vsi = ice_get_main_vsi(pf); 31 if (!vsi) 32 return false; 33 34 arfs_fltr_cntrs = vsi->arfs_fltr_cntrs; 35 36 /* active counters can be updated by multiple CPUs */ 37 smp_mb__before_atomic(); 38 switch (flow_type) { 39 case ICE_FLTR_PTYPE_NONF_IPV4_UDP: 40 return atomic_read(&arfs_fltr_cntrs->active_udpv4_cnt) > 0; 41 case ICE_FLTR_PTYPE_NONF_IPV6_UDP: 42 return atomic_read(&arfs_fltr_cntrs->active_udpv6_cnt) > 0; 43 case ICE_FLTR_PTYPE_NONF_IPV4_TCP: 44 return atomic_read(&arfs_fltr_cntrs->active_tcpv4_cnt) > 0; 45 case ICE_FLTR_PTYPE_NONF_IPV6_TCP: 46 return atomic_read(&arfs_fltr_cntrs->active_tcpv6_cnt) > 0; 47 default: 48 return false; 49 } 50 } 51 52 /** 53 * ice_arfs_update_active_fltr_cntrs - update active filter counters for aRFS 54 * @vsi: VSI that aRFS is active on 55 * @entry: aRFS entry used to change counters 56 * @add: true to increment counter, false to decrement 57 */ 58 static void 59 ice_arfs_update_active_fltr_cntrs(struct ice_vsi *vsi, 60 struct ice_arfs_entry *entry, bool add) 61 { 62 struct ice_arfs_active_fltr_cntrs *fltr_cntrs = vsi->arfs_fltr_cntrs; 63 64 switch (entry->fltr_info.flow_type) { 65 case ICE_FLTR_PTYPE_NONF_IPV4_TCP: 66 if (add) 67 atomic_inc(&fltr_cntrs->active_tcpv4_cnt); 68 else 69 atomic_dec(&fltr_cntrs->active_tcpv4_cnt); 70 break; 71 case ICE_FLTR_PTYPE_NONF_IPV6_TCP: 72 if (add) 73 atomic_inc(&fltr_cntrs->active_tcpv6_cnt); 74 else 75 atomic_dec(&fltr_cntrs->active_tcpv6_cnt); 76 break; 77 case ICE_FLTR_PTYPE_NONF_IPV4_UDP: 78 if (add) 79 atomic_inc(&fltr_cntrs->active_udpv4_cnt); 80 else 81 atomic_dec(&fltr_cntrs->active_udpv4_cnt); 82 break; 83 case ICE_FLTR_PTYPE_NONF_IPV6_UDP: 84 if (add) 85 atomic_inc(&fltr_cntrs->active_udpv6_cnt); 86 else 87 atomic_dec(&fltr_cntrs->active_udpv6_cnt); 88 break; 89 default: 90 dev_err(ice_pf_to_dev(vsi->back), "aRFS: Failed to update filter counters, invalid filter type %d\n", 91 entry->fltr_info.flow_type); 92 } 93 } 94 95 /** 96 * ice_arfs_del_flow_rules - delete the rules passed in from HW 97 * @vsi: VSI for the flow rules that need to be deleted 98 * @del_list_head: head of the list of ice_arfs_entry(s) for rule deletion 99 * 100 * Loop through the delete list passed in and remove the rules from HW. After 101 * each rule is deleted, disconnect and free the ice_arfs_entry because it is no 102 * longer being referenced by the aRFS hash table. 103 */ 104 static void 105 ice_arfs_del_flow_rules(struct ice_vsi *vsi, struct hlist_head *del_list_head) 106 { 107 struct ice_arfs_entry *e; 108 struct hlist_node *n; 109 struct device *dev; 110 111 dev = ice_pf_to_dev(vsi->back); 112 113 hlist_for_each_entry_safe(e, n, del_list_head, list_entry) { 114 int result; 115 116 result = ice_fdir_write_fltr(vsi->back, &e->fltr_info, false, 117 false); 118 if (!result) 119 ice_arfs_update_active_fltr_cntrs(vsi, e, false); 120 else 121 dev_dbg(dev, "Unable to delete aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n", 122 result, e->fltr_state, e->fltr_info.fltr_id, 123 e->flow_id, e->fltr_info.q_index); 124 125 /* The aRFS hash table is no longer referencing this entry */ 126 hlist_del(&e->list_entry); 127 devm_kfree(dev, e); 128 } 129 } 130 131 /** 132 * ice_arfs_add_flow_rules - add the rules passed in from HW 133 * @vsi: VSI for the flow rules that need to be added 134 * @add_list_head: head of the list of ice_arfs_entry_ptr(s) for rule addition 135 * 136 * Loop through the add list passed in and remove the rules from HW. After each 137 * rule is added, disconnect and free the ice_arfs_entry_ptr node. Don't free 138 * the ice_arfs_entry(s) because they are still being referenced in the aRFS 139 * hash table. 140 */ 141 static void 142 ice_arfs_add_flow_rules(struct ice_vsi *vsi, struct hlist_head *add_list_head) 143 { 144 struct ice_arfs_entry_ptr *ep; 145 struct hlist_node *n; 146 struct device *dev; 147 148 dev = ice_pf_to_dev(vsi->back); 149 150 hlist_for_each_entry_safe(ep, n, add_list_head, list_entry) { 151 int result; 152 153 result = ice_fdir_write_fltr(vsi->back, 154 &ep->arfs_entry->fltr_info, true, 155 false); 156 if (!result) 157 ice_arfs_update_active_fltr_cntrs(vsi, ep->arfs_entry, 158 true); 159 else 160 dev_dbg(dev, "Unable to add aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n", 161 result, ep->arfs_entry->fltr_state, 162 ep->arfs_entry->fltr_info.fltr_id, 163 ep->arfs_entry->flow_id, 164 ep->arfs_entry->fltr_info.q_index); 165 166 hlist_del(&ep->list_entry); 167 devm_kfree(dev, ep); 168 } 169 } 170 171 /** 172 * ice_arfs_is_flow_expired - check if the aRFS entry has expired 173 * @vsi: VSI containing the aRFS entry 174 * @arfs_entry: aRFS entry that's being checked for expiration 175 * 176 * Return true if the flow has expired, else false. This function should be used 177 * to determine whether or not an aRFS entry should be removed from the hardware 178 * and software structures. 179 */ 180 static bool 181 ice_arfs_is_flow_expired(struct ice_vsi *vsi, struct ice_arfs_entry *arfs_entry) 182 { 183 #define ICE_ARFS_TIME_DELTA_EXPIRATION msecs_to_jiffies(5000) 184 if (rps_may_expire_flow(vsi->netdev, arfs_entry->fltr_info.q_index, 185 arfs_entry->flow_id, 186 arfs_entry->fltr_info.fltr_id)) 187 return true; 188 189 /* expiration timer only used for UDP filters */ 190 if (arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV4_UDP && 191 arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV6_UDP) 192 return false; 193 194 return time_in_range64(arfs_entry->time_activated + 195 ICE_ARFS_TIME_DELTA_EXPIRATION, 196 arfs_entry->time_activated, get_jiffies_64()); 197 } 198 199 /** 200 * ice_arfs_update_flow_rules - add/delete aRFS rules in HW 201 * @vsi: the VSI to be forwarded to 202 * @idx: index into the table of aRFS filter lists. Obtained from skb->hash 203 * @add_list: list to populate with filters to be added to Flow Director 204 * @del_list: list to populate with filters to be deleted from Flow Director 205 * 206 * Iterate over the hlist at the index given in the aRFS hash table and 207 * determine if there are any aRFS entries that need to be either added or 208 * deleted in the HW. If the aRFS entry is marked as ICE_ARFS_INACTIVE the 209 * filter needs to be added to HW, else if it's marked as ICE_ARFS_ACTIVE and 210 * the flow has expired delete the filter from HW. The caller of this function 211 * is expected to add/delete rules on the add_list/del_list respectively. 212 */ 213 static void 214 ice_arfs_update_flow_rules(struct ice_vsi *vsi, u16 idx, 215 struct hlist_head *add_list, 216 struct hlist_head *del_list) 217 { 218 struct ice_arfs_entry *e; 219 struct hlist_node *n; 220 struct device *dev; 221 222 dev = ice_pf_to_dev(vsi->back); 223 224 /* go through the aRFS hlist at this idx and check for needed updates */ 225 hlist_for_each_entry_safe(e, n, &vsi->arfs_fltr_list[idx], list_entry) 226 /* check if filter needs to be added to HW */ 227 if (e->fltr_state == ICE_ARFS_INACTIVE) { 228 enum ice_fltr_ptype flow_type = e->fltr_info.flow_type; 229 struct ice_arfs_entry_ptr *ep = 230 devm_kzalloc(dev, sizeof(*ep), GFP_ATOMIC); 231 232 if (!ep) 233 continue; 234 INIT_HLIST_NODE(&ep->list_entry); 235 /* reference aRFS entry to add HW filter */ 236 ep->arfs_entry = e; 237 hlist_add_head(&ep->list_entry, add_list); 238 e->fltr_state = ICE_ARFS_ACTIVE; 239 /* expiration timer only used for UDP flows */ 240 if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP || 241 flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP) 242 e->time_activated = get_jiffies_64(); 243 } else if (e->fltr_state == ICE_ARFS_ACTIVE) { 244 /* check if filter needs to be removed from HW */ 245 if (ice_arfs_is_flow_expired(vsi, e)) { 246 /* remove aRFS entry from hash table for delete 247 * and to prevent referencing it the next time 248 * through this hlist index 249 */ 250 hlist_del(&e->list_entry); 251 e->fltr_state = ICE_ARFS_TODEL; 252 /* save reference to aRFS entry for delete */ 253 hlist_add_head(&e->list_entry, del_list); 254 } 255 } 256 } 257 258 /** 259 * ice_sync_arfs_fltrs - update all aRFS filters 260 * @pf: board private structure 261 */ 262 void ice_sync_arfs_fltrs(struct ice_pf *pf) 263 { 264 HLIST_HEAD(tmp_del_list); 265 HLIST_HEAD(tmp_add_list); 266 struct ice_vsi *pf_vsi; 267 unsigned int i; 268 269 pf_vsi = ice_get_main_vsi(pf); 270 if (!pf_vsi) 271 return; 272 273 if (!ice_is_arfs_active(pf_vsi)) 274 return; 275 276 spin_lock_bh(&pf_vsi->arfs_lock); 277 /* Once we process aRFS for the PF VSI get out */ 278 for (i = 0; i < ICE_MAX_ARFS_LIST; i++) 279 ice_arfs_update_flow_rules(pf_vsi, i, &tmp_add_list, 280 &tmp_del_list); 281 spin_unlock_bh(&pf_vsi->arfs_lock); 282 283 /* use list of ice_arfs_entry(s) for delete */ 284 ice_arfs_del_flow_rules(pf_vsi, &tmp_del_list); 285 286 /* use list of ice_arfs_entry_ptr(s) for add */ 287 ice_arfs_add_flow_rules(pf_vsi, &tmp_add_list); 288 } 289 290 /** 291 * ice_arfs_build_entry - builds an aRFS entry based on input 292 * @vsi: destination VSI for this flow 293 * @fk: flow dissector keys for creating the tuple 294 * @rxq_idx: Rx queue to steer this flow to 295 * @flow_id: passed down from the stack and saved for flow expiration 296 * 297 * returns an aRFS entry on success and NULL on failure 298 */ 299 static struct ice_arfs_entry * 300 ice_arfs_build_entry(struct ice_vsi *vsi, const struct flow_keys *fk, 301 u16 rxq_idx, u32 flow_id) 302 { 303 struct ice_arfs_entry *arfs_entry; 304 struct ice_fdir_fltr *fltr_info; 305 u8 ip_proto; 306 307 arfs_entry = devm_kzalloc(ice_pf_to_dev(vsi->back), 308 sizeof(*arfs_entry), 309 GFP_ATOMIC | __GFP_NOWARN); 310 if (!arfs_entry) 311 return NULL; 312 313 fltr_info = &arfs_entry->fltr_info; 314 fltr_info->q_index = rxq_idx; 315 fltr_info->dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX; 316 fltr_info->dest_vsi = vsi->idx; 317 ip_proto = fk->basic.ip_proto; 318 319 if (fk->basic.n_proto == htons(ETH_P_IP)) { 320 fltr_info->ip.v4.proto = ip_proto; 321 fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ? 322 ICE_FLTR_PTYPE_NONF_IPV4_TCP : 323 ICE_FLTR_PTYPE_NONF_IPV4_UDP; 324 fltr_info->ip.v4.src_ip = fk->addrs.v4addrs.src; 325 fltr_info->ip.v4.dst_ip = fk->addrs.v4addrs.dst; 326 fltr_info->ip.v4.src_port = fk->ports.src; 327 fltr_info->ip.v4.dst_port = fk->ports.dst; 328 } else { /* ETH_P_IPV6 */ 329 fltr_info->ip.v6.proto = ip_proto; 330 fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ? 331 ICE_FLTR_PTYPE_NONF_IPV6_TCP : 332 ICE_FLTR_PTYPE_NONF_IPV6_UDP; 333 memcpy(&fltr_info->ip.v6.src_ip, &fk->addrs.v6addrs.src, 334 sizeof(struct in6_addr)); 335 memcpy(&fltr_info->ip.v6.dst_ip, &fk->addrs.v6addrs.dst, 336 sizeof(struct in6_addr)); 337 fltr_info->ip.v6.src_port = fk->ports.src; 338 fltr_info->ip.v6.dst_port = fk->ports.dst; 339 } 340 341 arfs_entry->flow_id = flow_id; 342 fltr_info->fltr_id = 343 atomic_inc_return(vsi->arfs_last_fltr_id) % RPS_NO_FILTER; 344 345 return arfs_entry; 346 } 347 348 /** 349 * ice_arfs_is_perfect_flow_set - Check to see if perfect flow is set 350 * @hw: pointer to HW structure 351 * @l3_proto: ETH_P_IP or ETH_P_IPV6 in network order 352 * @l4_proto: IPPROTO_UDP or IPPROTO_TCP 353 * 354 * We only support perfect (4-tuple) filters for aRFS. This function allows aRFS 355 * to check if perfect (4-tuple) flow rules are currently in place by Flow 356 * Director. 357 */ 358 static bool 359 ice_arfs_is_perfect_flow_set(struct ice_hw *hw, __be16 l3_proto, u8 l4_proto) 360 { 361 unsigned long *perfect_fltr = hw->fdir_perfect_fltr; 362 363 /* advanced Flow Director disabled, perfect filters always supported */ 364 if (!perfect_fltr) 365 return true; 366 367 if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_UDP) 368 return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_UDP, perfect_fltr); 369 else if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_TCP) 370 return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_TCP, perfect_fltr); 371 else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_UDP) 372 return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_UDP, perfect_fltr); 373 else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_TCP) 374 return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_TCP, perfect_fltr); 375 376 return false; 377 } 378 379 /** 380 * ice_rx_flow_steer - steer the Rx flow to where application is being run 381 * @netdev: ptr to the netdev being adjusted 382 * @skb: buffer with required header information 383 * @rxq_idx: queue to which the flow needs to move 384 * @flow_id: flow identifier provided by the netdev 385 * 386 * Based on the skb, rxq_idx, and flow_id passed in add/update an entry in the 387 * aRFS hash table. Iterate over one of the hlists in the aRFS hash table and 388 * if the flow_id already exists in the hash table but the rxq_idx has changed 389 * mark the entry as ICE_ARFS_INACTIVE so it can get updated in HW, else 390 * if the entry is marked as ICE_ARFS_TODEL delete it from the aRFS hash table. 391 * If neither of the previous conditions are true then add a new entry in the 392 * aRFS hash table, which gets set to ICE_ARFS_INACTIVE by default so it can be 393 * added to HW. 394 */ 395 int 396 ice_rx_flow_steer(struct net_device *netdev, const struct sk_buff *skb, 397 u16 rxq_idx, u32 flow_id) 398 { 399 struct ice_netdev_priv *np = netdev_priv(netdev); 400 struct ice_arfs_entry *arfs_entry; 401 struct ice_vsi *vsi = np->vsi; 402 struct flow_keys fk; 403 struct ice_pf *pf; 404 __be16 n_proto; 405 u8 ip_proto; 406 u16 idx; 407 int ret; 408 409 /* failed to allocate memory for aRFS so don't crash */ 410 if (unlikely(!vsi->arfs_fltr_list)) 411 return -ENODEV; 412 413 pf = vsi->back; 414 415 if (skb->encapsulation) 416 return -EPROTONOSUPPORT; 417 418 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) 419 return -EPROTONOSUPPORT; 420 421 n_proto = fk.basic.n_proto; 422 /* Support only IPV4 and IPV6 */ 423 if ((n_proto == htons(ETH_P_IP) && !ip_is_fragment(ip_hdr(skb))) || 424 n_proto == htons(ETH_P_IPV6)) 425 ip_proto = fk.basic.ip_proto; 426 else 427 return -EPROTONOSUPPORT; 428 429 /* Support only TCP and UDP */ 430 if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP) 431 return -EPROTONOSUPPORT; 432 433 /* only support 4-tuple filters for aRFS */ 434 if (!ice_arfs_is_perfect_flow_set(&pf->hw, n_proto, ip_proto)) 435 return -EOPNOTSUPP; 436 437 /* choose the aRFS list bucket based on skb hash */ 438 idx = skb_get_hash_raw(skb) & ICE_ARFS_LST_MASK; 439 /* search for entry in the bucket */ 440 spin_lock_bh(&vsi->arfs_lock); 441 hlist_for_each_entry(arfs_entry, &vsi->arfs_fltr_list[idx], 442 list_entry) { 443 struct ice_fdir_fltr *fltr_info; 444 445 /* keep searching for the already existing arfs_entry flow */ 446 if (arfs_entry->flow_id != flow_id) 447 continue; 448 449 fltr_info = &arfs_entry->fltr_info; 450 ret = fltr_info->fltr_id; 451 452 if (fltr_info->q_index == rxq_idx || 453 arfs_entry->fltr_state != ICE_ARFS_ACTIVE) 454 goto out; 455 456 /* update the queue to forward to on an already existing flow */ 457 fltr_info->q_index = rxq_idx; 458 arfs_entry->fltr_state = ICE_ARFS_INACTIVE; 459 ice_arfs_update_active_fltr_cntrs(vsi, arfs_entry, false); 460 goto out_schedule_service_task; 461 } 462 463 arfs_entry = ice_arfs_build_entry(vsi, &fk, rxq_idx, flow_id); 464 if (!arfs_entry) { 465 ret = -ENOMEM; 466 goto out; 467 } 468 469 ret = arfs_entry->fltr_info.fltr_id; 470 INIT_HLIST_NODE(&arfs_entry->list_entry); 471 hlist_add_head(&arfs_entry->list_entry, &vsi->arfs_fltr_list[idx]); 472 out_schedule_service_task: 473 ice_service_task_schedule(pf); 474 out: 475 spin_unlock_bh(&vsi->arfs_lock); 476 return ret; 477 } 478 479 /** 480 * ice_init_arfs_cntrs - initialize aRFS counter values 481 * @vsi: VSI that aRFS counters need to be initialized on 482 */ 483 static int ice_init_arfs_cntrs(struct ice_vsi *vsi) 484 { 485 if (!vsi || vsi->type != ICE_VSI_PF) 486 return -EINVAL; 487 488 vsi->arfs_fltr_cntrs = kzalloc(sizeof(*vsi->arfs_fltr_cntrs), 489 GFP_KERNEL); 490 if (!vsi->arfs_fltr_cntrs) 491 return -ENOMEM; 492 493 vsi->arfs_last_fltr_id = kzalloc(sizeof(*vsi->arfs_last_fltr_id), 494 GFP_KERNEL); 495 if (!vsi->arfs_last_fltr_id) { 496 kfree(vsi->arfs_fltr_cntrs); 497 vsi->arfs_fltr_cntrs = NULL; 498 return -ENOMEM; 499 } 500 501 return 0; 502 } 503 504 /** 505 * ice_init_arfs - initialize aRFS resources 506 * @vsi: the VSI to be forwarded to 507 */ 508 void ice_init_arfs(struct ice_vsi *vsi) 509 { 510 struct hlist_head *arfs_fltr_list; 511 unsigned int i; 512 513 if (!vsi || vsi->type != ICE_VSI_PF) 514 return; 515 516 arfs_fltr_list = kzalloc(sizeof(*arfs_fltr_list) * ICE_MAX_ARFS_LIST, 517 GFP_KERNEL); 518 if (!arfs_fltr_list) 519 return; 520 521 if (ice_init_arfs_cntrs(vsi)) 522 goto free_arfs_fltr_list; 523 524 for (i = 0; i < ICE_MAX_ARFS_LIST; i++) 525 INIT_HLIST_HEAD(&arfs_fltr_list[i]); 526 527 spin_lock_init(&vsi->arfs_lock); 528 529 vsi->arfs_fltr_list = arfs_fltr_list; 530 531 return; 532 533 free_arfs_fltr_list: 534 kfree(arfs_fltr_list); 535 } 536 537 /** 538 * ice_clear_arfs - clear the aRFS hash table and any memory used for aRFS 539 * @vsi: the VSI to be forwarded to 540 */ 541 void ice_clear_arfs(struct ice_vsi *vsi) 542 { 543 struct device *dev; 544 unsigned int i; 545 546 if (!vsi || vsi->type != ICE_VSI_PF || !vsi->back || 547 !vsi->arfs_fltr_list) 548 return; 549 550 dev = ice_pf_to_dev(vsi->back); 551 for (i = 0; i < ICE_MAX_ARFS_LIST; i++) { 552 struct ice_arfs_entry *r; 553 struct hlist_node *n; 554 555 spin_lock_bh(&vsi->arfs_lock); 556 hlist_for_each_entry_safe(r, n, &vsi->arfs_fltr_list[i], 557 list_entry) { 558 hlist_del(&r->list_entry); 559 devm_kfree(dev, r); 560 } 561 spin_unlock_bh(&vsi->arfs_lock); 562 } 563 564 kfree(vsi->arfs_fltr_list); 565 vsi->arfs_fltr_list = NULL; 566 kfree(vsi->arfs_last_fltr_id); 567 vsi->arfs_last_fltr_id = NULL; 568 kfree(vsi->arfs_fltr_cntrs); 569 vsi->arfs_fltr_cntrs = NULL; 570 } 571 572 /** 573 * ice_free_cpu_rx_rmap - free setup CPU reverse map 574 * @vsi: the VSI to be forwarded to 575 */ 576 void ice_free_cpu_rx_rmap(struct ice_vsi *vsi) 577 { 578 struct net_device *netdev; 579 580 if (!vsi || vsi->type != ICE_VSI_PF || !vsi->arfs_fltr_list) 581 return; 582 583 netdev = vsi->netdev; 584 if (!netdev || !netdev->rx_cpu_rmap || 585 netdev->reg_state != NETREG_REGISTERED) 586 return; 587 588 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 589 netdev->rx_cpu_rmap = NULL; 590 } 591 592 /** 593 * ice_set_cpu_rx_rmap - setup CPU reverse map for each queue 594 * @vsi: the VSI to be forwarded to 595 */ 596 int ice_set_cpu_rx_rmap(struct ice_vsi *vsi) 597 { 598 struct net_device *netdev; 599 struct ice_pf *pf; 600 int base_idx, i; 601 602 if (!vsi || vsi->type != ICE_VSI_PF) 603 return -EINVAL; 604 605 pf = vsi->back; 606 netdev = vsi->netdev; 607 if (!pf || !netdev || !vsi->num_q_vectors || 608 vsi->netdev->reg_state != NETREG_REGISTERED) 609 return -EINVAL; 610 611 netdev_dbg(netdev, "Setup CPU RMAP: vsi type 0x%x, ifname %s, q_vectors %d\n", 612 vsi->type, netdev->name, vsi->num_q_vectors); 613 614 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(vsi->num_q_vectors); 615 if (unlikely(!netdev->rx_cpu_rmap)) 616 return -EINVAL; 617 618 base_idx = vsi->base_vector; 619 for (i = 0; i < vsi->num_q_vectors; i++) 620 if (irq_cpu_rmap_add(netdev->rx_cpu_rmap, 621 pf->msix_entries[base_idx + i].vector)) { 622 ice_free_cpu_rx_rmap(vsi); 623 return -EINVAL; 624 } 625 626 return 0; 627 } 628 629 /** 630 * ice_remove_arfs - remove/clear all aRFS resources 631 * @pf: device private structure 632 */ 633 void ice_remove_arfs(struct ice_pf *pf) 634 { 635 struct ice_vsi *pf_vsi; 636 637 pf_vsi = ice_get_main_vsi(pf); 638 if (!pf_vsi) 639 return; 640 641 ice_free_cpu_rx_rmap(pf_vsi); 642 ice_clear_arfs(pf_vsi); 643 } 644 645 /** 646 * ice_rebuild_arfs - remove/clear all aRFS resources and rebuild after reset 647 * @pf: device private structure 648 */ 649 void ice_rebuild_arfs(struct ice_pf *pf) 650 { 651 struct ice_vsi *pf_vsi; 652 653 pf_vsi = ice_get_main_vsi(pf); 654 if (!pf_vsi) 655 return; 656 657 ice_remove_arfs(pf); 658 if (ice_set_cpu_rx_rmap(pf_vsi)) { 659 dev_err(ice_pf_to_dev(pf), "Failed to rebuild aRFS\n"); 660 return; 661 } 662 ice_init_arfs(pf_vsi); 663 } 664