1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 6 #include "iavf.h" 7 #include "iavf_trace.h" 8 #include "iavf_prototype.h" 9 10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 11 u32 td_tag) 12 { 13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | 14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | 15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | 16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | 17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); 18 } 19 20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) 21 22 /** 23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer 24 * @ring: the ring that owns the buffer 25 * @tx_buffer: the buffer to free 26 **/ 27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, 28 struct iavf_tx_buffer *tx_buffer) 29 { 30 if (tx_buffer->skb) { 31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) 32 kfree(tx_buffer->raw_buf); 33 else 34 dev_kfree_skb_any(tx_buffer->skb); 35 if (dma_unmap_len(tx_buffer, len)) 36 dma_unmap_single(ring->dev, 37 dma_unmap_addr(tx_buffer, dma), 38 dma_unmap_len(tx_buffer, len), 39 DMA_TO_DEVICE); 40 } else if (dma_unmap_len(tx_buffer, len)) { 41 dma_unmap_page(ring->dev, 42 dma_unmap_addr(tx_buffer, dma), 43 dma_unmap_len(tx_buffer, len), 44 DMA_TO_DEVICE); 45 } 46 47 tx_buffer->next_to_watch = NULL; 48 tx_buffer->skb = NULL; 49 dma_unmap_len_set(tx_buffer, len, 0); 50 /* tx_buffer must be completely set up in the transmit path */ 51 } 52 53 /** 54 * iavf_clean_tx_ring - Free any empty Tx buffers 55 * @tx_ring: ring to be cleaned 56 **/ 57 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring) 58 { 59 unsigned long bi_size; 60 u16 i; 61 62 /* ring already cleared, nothing to do */ 63 if (!tx_ring->tx_bi) 64 return; 65 66 /* Free all the Tx ring sk_buffs */ 67 for (i = 0; i < tx_ring->count; i++) 68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 69 70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 71 memset(tx_ring->tx_bi, 0, bi_size); 72 73 /* Zero out the descriptor ring */ 74 memset(tx_ring->desc, 0, tx_ring->size); 75 76 tx_ring->next_to_use = 0; 77 tx_ring->next_to_clean = 0; 78 79 if (!tx_ring->netdev) 80 return; 81 82 /* cleanup Tx queue statistics */ 83 netdev_tx_reset_queue(txring_txq(tx_ring)); 84 } 85 86 /** 87 * iavf_free_tx_resources - Free Tx resources per queue 88 * @tx_ring: Tx descriptor ring for a specific queue 89 * 90 * Free all transmit software resources 91 **/ 92 void iavf_free_tx_resources(struct iavf_ring *tx_ring) 93 { 94 iavf_clean_tx_ring(tx_ring); 95 kfree(tx_ring->tx_bi); 96 tx_ring->tx_bi = NULL; 97 98 if (tx_ring->desc) { 99 dma_free_coherent(tx_ring->dev, tx_ring->size, 100 tx_ring->desc, tx_ring->dma); 101 tx_ring->desc = NULL; 102 } 103 } 104 105 /** 106 * iavf_get_tx_pending - how many Tx descriptors not processed 107 * @ring: the ring of descriptors 108 * @in_sw: is tx_pending being checked in SW or HW 109 * 110 * Since there is no access to the ring head register 111 * in XL710, we need to use our local copies 112 **/ 113 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) 114 { 115 u32 head, tail; 116 117 /* underlying hardware might not allow access and/or always return 118 * 0 for the head/tail registers so just use the cached values 119 */ 120 head = ring->next_to_clean; 121 tail = ring->next_to_use; 122 123 if (head != tail) 124 return (head < tail) ? 125 tail - head : (tail + ring->count - head); 126 127 return 0; 128 } 129 130 /** 131 * iavf_force_wb - Issue SW Interrupt so HW does a wb 132 * @vsi: the VSI we care about 133 * @q_vector: the vector on which to force writeback 134 **/ 135 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) 136 { 137 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 138 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ 139 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | 140 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK 141 /* allow 00 to be written to the index */; 142 143 wr32(&vsi->back->hw, 144 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), 145 val); 146 } 147 148 /** 149 * iavf_detect_recover_hung - Function to detect and recover hung_queues 150 * @vsi: pointer to vsi struct with tx queues 151 * 152 * VSI has netdev and netdev has TX queues. This function is to check each of 153 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 154 **/ 155 void iavf_detect_recover_hung(struct iavf_vsi *vsi) 156 { 157 struct iavf_ring *tx_ring = NULL; 158 struct net_device *netdev; 159 unsigned int i; 160 int packets; 161 162 if (!vsi) 163 return; 164 165 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) 166 return; 167 168 netdev = vsi->netdev; 169 if (!netdev) 170 return; 171 172 if (!netif_carrier_ok(netdev)) 173 return; 174 175 for (i = 0; i < vsi->back->num_active_queues; i++) { 176 tx_ring = &vsi->back->tx_rings[i]; 177 if (tx_ring && tx_ring->desc) { 178 /* If packet counter has not changed the queue is 179 * likely stalled, so force an interrupt for this 180 * queue. 181 * 182 * prev_pkt_ctr would be negative if there was no 183 * pending work. 184 */ 185 packets = tx_ring->stats.packets & INT_MAX; 186 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 187 iavf_force_wb(vsi, tx_ring->q_vector); 188 continue; 189 } 190 191 /* Memory barrier between read of packet count and call 192 * to iavf_get_tx_pending() 193 */ 194 smp_rmb(); 195 tx_ring->tx_stats.prev_pkt_ctr = 196 iavf_get_tx_pending(tx_ring, true) ? packets : -1; 197 } 198 } 199 } 200 201 #define WB_STRIDE 4 202 203 /** 204 * iavf_clean_tx_irq - Reclaim resources after transmit completes 205 * @vsi: the VSI we care about 206 * @tx_ring: Tx ring to clean 207 * @napi_budget: Used to determine if we are in netpoll 208 * 209 * Returns true if there's any budget left (e.g. the clean is finished) 210 **/ 211 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, 212 struct iavf_ring *tx_ring, int napi_budget) 213 { 214 int i = tx_ring->next_to_clean; 215 struct iavf_tx_buffer *tx_buf; 216 struct iavf_tx_desc *tx_desc; 217 unsigned int total_bytes = 0, total_packets = 0; 218 unsigned int budget = IAVF_DEFAULT_IRQ_WORK; 219 220 tx_buf = &tx_ring->tx_bi[i]; 221 tx_desc = IAVF_TX_DESC(tx_ring, i); 222 i -= tx_ring->count; 223 224 do { 225 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; 226 227 /* if next_to_watch is not set then there is no work pending */ 228 if (!eop_desc) 229 break; 230 231 /* prevent any other reads prior to eop_desc */ 232 smp_rmb(); 233 234 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 235 /* if the descriptor isn't done, no work yet to do */ 236 if (!(eop_desc->cmd_type_offset_bsz & 237 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) 238 break; 239 240 /* clear next_to_watch to prevent false hangs */ 241 tx_buf->next_to_watch = NULL; 242 243 /* update the statistics for this packet */ 244 total_bytes += tx_buf->bytecount; 245 total_packets += tx_buf->gso_segs; 246 247 /* free the skb */ 248 napi_consume_skb(tx_buf->skb, napi_budget); 249 250 /* unmap skb header data */ 251 dma_unmap_single(tx_ring->dev, 252 dma_unmap_addr(tx_buf, dma), 253 dma_unmap_len(tx_buf, len), 254 DMA_TO_DEVICE); 255 256 /* clear tx_buffer data */ 257 tx_buf->skb = NULL; 258 dma_unmap_len_set(tx_buf, len, 0); 259 260 /* unmap remaining buffers */ 261 while (tx_desc != eop_desc) { 262 iavf_trace(clean_tx_irq_unmap, 263 tx_ring, tx_desc, tx_buf); 264 265 tx_buf++; 266 tx_desc++; 267 i++; 268 if (unlikely(!i)) { 269 i -= tx_ring->count; 270 tx_buf = tx_ring->tx_bi; 271 tx_desc = IAVF_TX_DESC(tx_ring, 0); 272 } 273 274 /* unmap any remaining paged data */ 275 if (dma_unmap_len(tx_buf, len)) { 276 dma_unmap_page(tx_ring->dev, 277 dma_unmap_addr(tx_buf, dma), 278 dma_unmap_len(tx_buf, len), 279 DMA_TO_DEVICE); 280 dma_unmap_len_set(tx_buf, len, 0); 281 } 282 } 283 284 /* move us one more past the eop_desc for start of next pkt */ 285 tx_buf++; 286 tx_desc++; 287 i++; 288 if (unlikely(!i)) { 289 i -= tx_ring->count; 290 tx_buf = tx_ring->tx_bi; 291 tx_desc = IAVF_TX_DESC(tx_ring, 0); 292 } 293 294 prefetch(tx_desc); 295 296 /* update budget accounting */ 297 budget--; 298 } while (likely(budget)); 299 300 i += tx_ring->count; 301 tx_ring->next_to_clean = i; 302 u64_stats_update_begin(&tx_ring->syncp); 303 tx_ring->stats.bytes += total_bytes; 304 tx_ring->stats.packets += total_packets; 305 u64_stats_update_end(&tx_ring->syncp); 306 tx_ring->q_vector->tx.total_bytes += total_bytes; 307 tx_ring->q_vector->tx.total_packets += total_packets; 308 309 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { 310 /* check to see if there are < 4 descriptors 311 * waiting to be written back, then kick the hardware to force 312 * them to be written back in case we stay in NAPI. 313 * In this mode on X722 we do not enable Interrupt. 314 */ 315 unsigned int j = iavf_get_tx_pending(tx_ring, false); 316 317 if (budget && 318 ((j / WB_STRIDE) == 0) && (j > 0) && 319 !test_bit(__IAVF_VSI_DOWN, vsi->state) && 320 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) 321 tx_ring->arm_wb = true; 322 } 323 324 /* notify netdev of completed buffers */ 325 netdev_tx_completed_queue(txring_txq(tx_ring), 326 total_packets, total_bytes); 327 328 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 329 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 330 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 331 /* Make sure that anybody stopping the queue after this 332 * sees the new next_to_clean. 333 */ 334 smp_mb(); 335 if (__netif_subqueue_stopped(tx_ring->netdev, 336 tx_ring->queue_index) && 337 !test_bit(__IAVF_VSI_DOWN, vsi->state)) { 338 netif_wake_subqueue(tx_ring->netdev, 339 tx_ring->queue_index); 340 ++tx_ring->tx_stats.restart_queue; 341 } 342 } 343 344 return !!budget; 345 } 346 347 /** 348 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 349 * @vsi: the VSI we care about 350 * @q_vector: the vector on which to enable writeback 351 * 352 **/ 353 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, 354 struct iavf_q_vector *q_vector) 355 { 356 u16 flags = q_vector->tx.ring[0].flags; 357 u32 val; 358 359 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) 360 return; 361 362 if (q_vector->arm_wb_state) 363 return; 364 365 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | 366 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ 367 368 wr32(&vsi->back->hw, 369 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); 370 q_vector->arm_wb_state = true; 371 } 372 373 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, 374 struct iavf_ring_container *rc) 375 { 376 return &q_vector->rx == rc; 377 } 378 379 #define IAVF_AIM_MULTIPLIER_100G 2560 380 #define IAVF_AIM_MULTIPLIER_50G 1280 381 #define IAVF_AIM_MULTIPLIER_40G 1024 382 #define IAVF_AIM_MULTIPLIER_20G 512 383 #define IAVF_AIM_MULTIPLIER_10G 256 384 #define IAVF_AIM_MULTIPLIER_1G 32 385 386 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps) 387 { 388 switch (speed_mbps) { 389 case SPEED_100000: 390 return IAVF_AIM_MULTIPLIER_100G; 391 case SPEED_50000: 392 return IAVF_AIM_MULTIPLIER_50G; 393 case SPEED_40000: 394 return IAVF_AIM_MULTIPLIER_40G; 395 case SPEED_25000: 396 case SPEED_20000: 397 return IAVF_AIM_MULTIPLIER_20G; 398 case SPEED_10000: 399 default: 400 return IAVF_AIM_MULTIPLIER_10G; 401 case SPEED_1000: 402 case SPEED_100: 403 return IAVF_AIM_MULTIPLIER_1G; 404 } 405 } 406 407 static unsigned int 408 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl) 409 { 410 switch (speed_virtchnl) { 411 case VIRTCHNL_LINK_SPEED_40GB: 412 return IAVF_AIM_MULTIPLIER_40G; 413 case VIRTCHNL_LINK_SPEED_25GB: 414 case VIRTCHNL_LINK_SPEED_20GB: 415 return IAVF_AIM_MULTIPLIER_20G; 416 case VIRTCHNL_LINK_SPEED_10GB: 417 default: 418 return IAVF_AIM_MULTIPLIER_10G; 419 case VIRTCHNL_LINK_SPEED_1GB: 420 case VIRTCHNL_LINK_SPEED_100MB: 421 return IAVF_AIM_MULTIPLIER_1G; 422 } 423 } 424 425 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter) 426 { 427 if (ADV_LINK_SUPPORT(adapter)) 428 return IAVF_ITR_ADAPTIVE_MIN_INC * 429 iavf_mbps_itr_multiplier(adapter->link_speed_mbps); 430 else 431 return IAVF_ITR_ADAPTIVE_MIN_INC * 432 iavf_virtchnl_itr_multiplier(adapter->link_speed); 433 } 434 435 /** 436 * iavf_update_itr - update the dynamic ITR value based on statistics 437 * @q_vector: structure containing interrupt and ring information 438 * @rc: structure containing ring performance data 439 * 440 * Stores a new ITR value based on packets and byte 441 * counts during the last interrupt. The advantage of per interrupt 442 * computation is faster updates and more accurate ITR for the current 443 * traffic pattern. Constants in this function were computed 444 * based on theoretical maximum wire speed and thresholds were set based 445 * on testing data as well as attempting to minimize response time 446 * while increasing bulk throughput. 447 **/ 448 static void iavf_update_itr(struct iavf_q_vector *q_vector, 449 struct iavf_ring_container *rc) 450 { 451 unsigned int avg_wire_size, packets, bytes, itr; 452 unsigned long next_update = jiffies; 453 454 /* If we don't have any rings just leave ourselves set for maximum 455 * possible latency so we take ourselves out of the equation. 456 */ 457 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 458 return; 459 460 /* For Rx we want to push the delay up and default to low latency. 461 * for Tx we want to pull the delay down and default to high latency. 462 */ 463 itr = iavf_container_is_rx(q_vector, rc) ? 464 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : 465 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; 466 467 /* If we didn't update within up to 1 - 2 jiffies we can assume 468 * that either packets are coming in so slow there hasn't been 469 * any work, or that there is so much work that NAPI is dealing 470 * with interrupt moderation and we don't need to do anything. 471 */ 472 if (time_after(next_update, rc->next_update)) 473 goto clear_counts; 474 475 /* If itr_countdown is set it means we programmed an ITR within 476 * the last 4 interrupt cycles. This has a side effect of us 477 * potentially firing an early interrupt. In order to work around 478 * this we need to throw out any data received for a few 479 * interrupts following the update. 480 */ 481 if (q_vector->itr_countdown) { 482 itr = rc->target_itr; 483 goto clear_counts; 484 } 485 486 packets = rc->total_packets; 487 bytes = rc->total_bytes; 488 489 if (iavf_container_is_rx(q_vector, rc)) { 490 /* If Rx there are 1 to 4 packets and bytes are less than 491 * 9000 assume insufficient data to use bulk rate limiting 492 * approach unless Tx is already in bulk rate limiting. We 493 * are likely latency driven. 494 */ 495 if (packets && packets < 4 && bytes < 9000 && 496 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { 497 itr = IAVF_ITR_ADAPTIVE_LATENCY; 498 goto adjust_by_size; 499 } 500 } else if (packets < 4) { 501 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 502 * bulk mode and we are receiving 4 or fewer packets just 503 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 504 * that the Rx can relax. 505 */ 506 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && 507 (q_vector->rx.target_itr & IAVF_ITR_MASK) == 508 IAVF_ITR_ADAPTIVE_MAX_USECS) 509 goto clear_counts; 510 } else if (packets > 32) { 511 /* If we have processed over 32 packets in a single interrupt 512 * for Tx assume we need to switch over to "bulk" mode. 513 */ 514 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; 515 } 516 517 /* We have no packets to actually measure against. This means 518 * either one of the other queues on this vector is active or 519 * we are a Tx queue doing TSO with too high of an interrupt rate. 520 * 521 * Between 4 and 56 we can assume that our current interrupt delay 522 * is only slightly too low. As such we should increase it by a small 523 * fixed amount. 524 */ 525 if (packets < 56) { 526 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; 527 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 528 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 529 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 530 } 531 goto clear_counts; 532 } 533 534 if (packets <= 256) { 535 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 536 itr &= IAVF_ITR_MASK; 537 538 /* Between 56 and 112 is our "goldilocks" zone where we are 539 * working out "just right". Just report that our current 540 * ITR is good for us. 541 */ 542 if (packets <= 112) 543 goto clear_counts; 544 545 /* If packet count is 128 or greater we are likely looking 546 * at a slight overrun of the delay we want. Try halving 547 * our delay to see if that will cut the number of packets 548 * in half per interrupt. 549 */ 550 itr /= 2; 551 itr &= IAVF_ITR_MASK; 552 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) 553 itr = IAVF_ITR_ADAPTIVE_MIN_USECS; 554 555 goto clear_counts; 556 } 557 558 /* The paths below assume we are dealing with a bulk ITR since 559 * number of packets is greater than 256. We are just going to have 560 * to compute a value and try to bring the count under control, 561 * though for smaller packet sizes there isn't much we can do as 562 * NAPI polling will likely be kicking in sooner rather than later. 563 */ 564 itr = IAVF_ITR_ADAPTIVE_BULK; 565 566 adjust_by_size: 567 /* If packet counts are 256 or greater we can assume we have a gross 568 * overestimation of what the rate should be. Instead of trying to fine 569 * tune it just use the formula below to try and dial in an exact value 570 * give the current packet size of the frame. 571 */ 572 avg_wire_size = bytes / packets; 573 574 /* The following is a crude approximation of: 575 * wmem_default / (size + overhead) = desired_pkts_per_int 576 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 577 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 578 * 579 * Assuming wmem_default is 212992 and overhead is 640 bytes per 580 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 581 * formula down to 582 * 583 * (170 * (size + 24)) / (size + 640) = ITR 584 * 585 * We first do some math on the packet size and then finally bitshift 586 * by 8 after rounding up. We also have to account for PCIe link speed 587 * difference as ITR scales based on this. 588 */ 589 if (avg_wire_size <= 60) { 590 /* Start at 250k ints/sec */ 591 avg_wire_size = 4096; 592 } else if (avg_wire_size <= 380) { 593 /* 250K ints/sec to 60K ints/sec */ 594 avg_wire_size *= 40; 595 avg_wire_size += 1696; 596 } else if (avg_wire_size <= 1084) { 597 /* 60K ints/sec to 36K ints/sec */ 598 avg_wire_size *= 15; 599 avg_wire_size += 11452; 600 } else if (avg_wire_size <= 1980) { 601 /* 36K ints/sec to 30K ints/sec */ 602 avg_wire_size *= 5; 603 avg_wire_size += 22420; 604 } else { 605 /* plateau at a limit of 30K ints/sec */ 606 avg_wire_size = 32256; 607 } 608 609 /* If we are in low latency mode halve our delay which doubles the 610 * rate to somewhere between 100K to 16K ints/sec 611 */ 612 if (itr & IAVF_ITR_ADAPTIVE_LATENCY) 613 avg_wire_size /= 2; 614 615 /* Resultant value is 256 times larger than it needs to be. This 616 * gives us room to adjust the value as needed to either increase 617 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 618 * 619 * Use addition as we have already recorded the new latency flag 620 * for the ITR value. 621 */ 622 itr += DIV_ROUND_UP(avg_wire_size, 623 iavf_itr_divisor(q_vector->adapter)) * 624 IAVF_ITR_ADAPTIVE_MIN_INC; 625 626 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { 627 itr &= IAVF_ITR_ADAPTIVE_LATENCY; 628 itr += IAVF_ITR_ADAPTIVE_MAX_USECS; 629 } 630 631 clear_counts: 632 /* write back value */ 633 rc->target_itr = itr; 634 635 /* next update should occur within next jiffy */ 636 rc->next_update = next_update + 1; 637 638 rc->total_bytes = 0; 639 rc->total_packets = 0; 640 } 641 642 /** 643 * iavf_setup_tx_descriptors - Allocate the Tx descriptors 644 * @tx_ring: the tx ring to set up 645 * 646 * Return 0 on success, negative on error 647 **/ 648 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) 649 { 650 struct device *dev = tx_ring->dev; 651 int bi_size; 652 653 if (!dev) 654 return -ENOMEM; 655 656 /* warn if we are about to overwrite the pointer */ 657 WARN_ON(tx_ring->tx_bi); 658 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; 659 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 660 if (!tx_ring->tx_bi) 661 goto err; 662 663 /* round up to nearest 4K */ 664 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); 665 tx_ring->size = ALIGN(tx_ring->size, 4096); 666 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 667 &tx_ring->dma, GFP_KERNEL); 668 if (!tx_ring->desc) { 669 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 670 tx_ring->size); 671 goto err; 672 } 673 674 tx_ring->next_to_use = 0; 675 tx_ring->next_to_clean = 0; 676 tx_ring->tx_stats.prev_pkt_ctr = -1; 677 return 0; 678 679 err: 680 kfree(tx_ring->tx_bi); 681 tx_ring->tx_bi = NULL; 682 return -ENOMEM; 683 } 684 685 /** 686 * iavf_clean_rx_ring - Free Rx buffers 687 * @rx_ring: ring to be cleaned 688 **/ 689 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring) 690 { 691 unsigned long bi_size; 692 u16 i; 693 694 /* ring already cleared, nothing to do */ 695 if (!rx_ring->rx_bi) 696 return; 697 698 if (rx_ring->skb) { 699 dev_kfree_skb(rx_ring->skb); 700 rx_ring->skb = NULL; 701 } 702 703 /* Free all the Rx ring sk_buffs */ 704 for (i = 0; i < rx_ring->count; i++) { 705 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 706 707 if (!rx_bi->page) 708 continue; 709 710 /* Invalidate cache lines that may have been written to by 711 * device so that we avoid corrupting memory. 712 */ 713 dma_sync_single_range_for_cpu(rx_ring->dev, 714 rx_bi->dma, 715 rx_bi->page_offset, 716 rx_ring->rx_buf_len, 717 DMA_FROM_DEVICE); 718 719 /* free resources associated with mapping */ 720 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 721 iavf_rx_pg_size(rx_ring), 722 DMA_FROM_DEVICE, 723 IAVF_RX_DMA_ATTR); 724 725 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 726 727 rx_bi->page = NULL; 728 rx_bi->page_offset = 0; 729 } 730 731 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 732 memset(rx_ring->rx_bi, 0, bi_size); 733 734 /* Zero out the descriptor ring */ 735 memset(rx_ring->desc, 0, rx_ring->size); 736 737 rx_ring->next_to_alloc = 0; 738 rx_ring->next_to_clean = 0; 739 rx_ring->next_to_use = 0; 740 } 741 742 /** 743 * iavf_free_rx_resources - Free Rx resources 744 * @rx_ring: ring to clean the resources from 745 * 746 * Free all receive software resources 747 **/ 748 void iavf_free_rx_resources(struct iavf_ring *rx_ring) 749 { 750 iavf_clean_rx_ring(rx_ring); 751 kfree(rx_ring->rx_bi); 752 rx_ring->rx_bi = NULL; 753 754 if (rx_ring->desc) { 755 dma_free_coherent(rx_ring->dev, rx_ring->size, 756 rx_ring->desc, rx_ring->dma); 757 rx_ring->desc = NULL; 758 } 759 } 760 761 /** 762 * iavf_setup_rx_descriptors - Allocate Rx descriptors 763 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 764 * 765 * Returns 0 on success, negative on failure 766 **/ 767 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) 768 { 769 struct device *dev = rx_ring->dev; 770 int bi_size; 771 772 /* warn if we are about to overwrite the pointer */ 773 WARN_ON(rx_ring->rx_bi); 774 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; 775 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 776 if (!rx_ring->rx_bi) 777 goto err; 778 779 u64_stats_init(&rx_ring->syncp); 780 781 /* Round up to nearest 4K */ 782 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); 783 rx_ring->size = ALIGN(rx_ring->size, 4096); 784 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 785 &rx_ring->dma, GFP_KERNEL); 786 787 if (!rx_ring->desc) { 788 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 789 rx_ring->size); 790 goto err; 791 } 792 793 rx_ring->next_to_alloc = 0; 794 rx_ring->next_to_clean = 0; 795 rx_ring->next_to_use = 0; 796 797 return 0; 798 err: 799 kfree(rx_ring->rx_bi); 800 rx_ring->rx_bi = NULL; 801 return -ENOMEM; 802 } 803 804 /** 805 * iavf_release_rx_desc - Store the new tail and head values 806 * @rx_ring: ring to bump 807 * @val: new head index 808 **/ 809 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) 810 { 811 rx_ring->next_to_use = val; 812 813 /* update next to alloc since we have filled the ring */ 814 rx_ring->next_to_alloc = val; 815 816 /* Force memory writes to complete before letting h/w 817 * know there are new descriptors to fetch. (Only 818 * applicable for weak-ordered memory model archs, 819 * such as IA-64). 820 */ 821 wmb(); 822 writel(val, rx_ring->tail); 823 } 824 825 /** 826 * iavf_rx_offset - Return expected offset into page to access data 827 * @rx_ring: Ring we are requesting offset of 828 * 829 * Returns the offset value for ring into the data buffer. 830 */ 831 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) 832 { 833 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; 834 } 835 836 /** 837 * iavf_alloc_mapped_page - recycle or make a new page 838 * @rx_ring: ring to use 839 * @bi: rx_buffer struct to modify 840 * 841 * Returns true if the page was successfully allocated or 842 * reused. 843 **/ 844 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, 845 struct iavf_rx_buffer *bi) 846 { 847 struct page *page = bi->page; 848 dma_addr_t dma; 849 850 /* since we are recycling buffers we should seldom need to alloc */ 851 if (likely(page)) { 852 rx_ring->rx_stats.page_reuse_count++; 853 return true; 854 } 855 856 /* alloc new page for storage */ 857 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); 858 if (unlikely(!page)) { 859 rx_ring->rx_stats.alloc_page_failed++; 860 return false; 861 } 862 863 /* map page for use */ 864 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 865 iavf_rx_pg_size(rx_ring), 866 DMA_FROM_DEVICE, 867 IAVF_RX_DMA_ATTR); 868 869 /* if mapping failed free memory back to system since 870 * there isn't much point in holding memory we can't use 871 */ 872 if (dma_mapping_error(rx_ring->dev, dma)) { 873 __free_pages(page, iavf_rx_pg_order(rx_ring)); 874 rx_ring->rx_stats.alloc_page_failed++; 875 return false; 876 } 877 878 bi->dma = dma; 879 bi->page = page; 880 bi->page_offset = iavf_rx_offset(rx_ring); 881 882 /* initialize pagecnt_bias to 1 representing we fully own page */ 883 bi->pagecnt_bias = 1; 884 885 return true; 886 } 887 888 /** 889 * iavf_receive_skb - Send a completed packet up the stack 890 * @rx_ring: rx ring in play 891 * @skb: packet to send up 892 * @vlan_tag: vlan tag for packet 893 **/ 894 static void iavf_receive_skb(struct iavf_ring *rx_ring, 895 struct sk_buff *skb, u16 vlan_tag) 896 { 897 struct iavf_q_vector *q_vector = rx_ring->q_vector; 898 899 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 900 (vlan_tag & VLAN_VID_MASK)) 901 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 902 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) && 903 vlan_tag & VLAN_VID_MASK) 904 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag); 905 906 napi_gro_receive(&q_vector->napi, skb); 907 } 908 909 /** 910 * iavf_alloc_rx_buffers - Replace used receive buffers 911 * @rx_ring: ring to place buffers on 912 * @cleaned_count: number of buffers to replace 913 * 914 * Returns false if all allocations were successful, true if any fail 915 **/ 916 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) 917 { 918 u16 ntu = rx_ring->next_to_use; 919 union iavf_rx_desc *rx_desc; 920 struct iavf_rx_buffer *bi; 921 922 /* do nothing if no valid netdev defined */ 923 if (!rx_ring->netdev || !cleaned_count) 924 return false; 925 926 rx_desc = IAVF_RX_DESC(rx_ring, ntu); 927 bi = &rx_ring->rx_bi[ntu]; 928 929 do { 930 if (!iavf_alloc_mapped_page(rx_ring, bi)) 931 goto no_buffers; 932 933 /* sync the buffer for use by the device */ 934 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 935 bi->page_offset, 936 rx_ring->rx_buf_len, 937 DMA_FROM_DEVICE); 938 939 /* Refresh the desc even if buffer_addrs didn't change 940 * because each write-back erases this info. 941 */ 942 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 943 944 rx_desc++; 945 bi++; 946 ntu++; 947 if (unlikely(ntu == rx_ring->count)) { 948 rx_desc = IAVF_RX_DESC(rx_ring, 0); 949 bi = rx_ring->rx_bi; 950 ntu = 0; 951 } 952 953 /* clear the status bits for the next_to_use descriptor */ 954 rx_desc->wb.qword1.status_error_len = 0; 955 956 cleaned_count--; 957 } while (cleaned_count); 958 959 if (rx_ring->next_to_use != ntu) 960 iavf_release_rx_desc(rx_ring, ntu); 961 962 return false; 963 964 no_buffers: 965 if (rx_ring->next_to_use != ntu) 966 iavf_release_rx_desc(rx_ring, ntu); 967 968 /* make sure to come back via polling to try again after 969 * allocation failure 970 */ 971 return true; 972 } 973 974 /** 975 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum 976 * @vsi: the VSI we care about 977 * @skb: skb currently being received and modified 978 * @rx_desc: the receive descriptor 979 **/ 980 static inline void iavf_rx_checksum(struct iavf_vsi *vsi, 981 struct sk_buff *skb, 982 union iavf_rx_desc *rx_desc) 983 { 984 struct iavf_rx_ptype_decoded decoded; 985 u32 rx_error, rx_status; 986 bool ipv4, ipv6; 987 u8 ptype; 988 u64 qword; 989 990 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 991 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; 992 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> 993 IAVF_RXD_QW1_ERROR_SHIFT; 994 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> 995 IAVF_RXD_QW1_STATUS_SHIFT; 996 decoded = decode_rx_desc_ptype(ptype); 997 998 skb->ip_summed = CHECKSUM_NONE; 999 1000 skb_checksum_none_assert(skb); 1001 1002 /* Rx csum enabled and ip headers found? */ 1003 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1004 return; 1005 1006 /* did the hardware decode the packet and checksum? */ 1007 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) 1008 return; 1009 1010 /* both known and outer_ip must be set for the below code to work */ 1011 if (!(decoded.known && decoded.outer_ip)) 1012 return; 1013 1014 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 1015 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); 1016 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && 1017 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); 1018 1019 if (ipv4 && 1020 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | 1021 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) 1022 goto checksum_fail; 1023 1024 /* likely incorrect csum if alternate IP extension headers found */ 1025 if (ipv6 && 1026 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1027 /* don't increment checksum err here, non-fatal err */ 1028 return; 1029 1030 /* there was some L4 error, count error and punt packet to the stack */ 1031 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) 1032 goto checksum_fail; 1033 1034 /* handle packets that were not able to be checksummed due 1035 * to arrival speed, in this case the stack can compute 1036 * the csum. 1037 */ 1038 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) 1039 return; 1040 1041 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1042 switch (decoded.inner_prot) { 1043 case IAVF_RX_PTYPE_INNER_PROT_TCP: 1044 case IAVF_RX_PTYPE_INNER_PROT_UDP: 1045 case IAVF_RX_PTYPE_INNER_PROT_SCTP: 1046 skb->ip_summed = CHECKSUM_UNNECESSARY; 1047 fallthrough; 1048 default: 1049 break; 1050 } 1051 1052 return; 1053 1054 checksum_fail: 1055 vsi->back->hw_csum_rx_error++; 1056 } 1057 1058 /** 1059 * iavf_ptype_to_htype - get a hash type 1060 * @ptype: the ptype value from the descriptor 1061 * 1062 * Returns a hash type to be used by skb_set_hash 1063 **/ 1064 static inline int iavf_ptype_to_htype(u8 ptype) 1065 { 1066 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1067 1068 if (!decoded.known) 1069 return PKT_HASH_TYPE_NONE; 1070 1071 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1072 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1073 return PKT_HASH_TYPE_L4; 1074 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && 1075 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1076 return PKT_HASH_TYPE_L3; 1077 else 1078 return PKT_HASH_TYPE_L2; 1079 } 1080 1081 /** 1082 * iavf_rx_hash - set the hash value in the skb 1083 * @ring: descriptor ring 1084 * @rx_desc: specific descriptor 1085 * @skb: skb currently being received and modified 1086 * @rx_ptype: Rx packet type 1087 **/ 1088 static inline void iavf_rx_hash(struct iavf_ring *ring, 1089 union iavf_rx_desc *rx_desc, 1090 struct sk_buff *skb, 1091 u8 rx_ptype) 1092 { 1093 u32 hash; 1094 const __le64 rss_mask = 1095 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << 1096 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); 1097 1098 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1099 return; 1100 1101 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1102 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1103 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); 1104 } 1105 } 1106 1107 /** 1108 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor 1109 * @rx_ring: rx descriptor ring packet is being transacted on 1110 * @rx_desc: pointer to the EOP Rx descriptor 1111 * @skb: pointer to current skb being populated 1112 * @rx_ptype: the packet type decoded by hardware 1113 * 1114 * This function checks the ring, descriptor, and packet information in 1115 * order to populate the hash, checksum, VLAN, protocol, and 1116 * other fields within the skb. 1117 **/ 1118 static inline 1119 void iavf_process_skb_fields(struct iavf_ring *rx_ring, 1120 union iavf_rx_desc *rx_desc, struct sk_buff *skb, 1121 u8 rx_ptype) 1122 { 1123 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1124 1125 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); 1126 1127 skb_record_rx_queue(skb, rx_ring->queue_index); 1128 1129 /* modifies the skb - consumes the enet header */ 1130 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1131 } 1132 1133 /** 1134 * iavf_cleanup_headers - Correct empty headers 1135 * @rx_ring: rx descriptor ring packet is being transacted on 1136 * @skb: pointer to current skb being fixed 1137 * 1138 * Also address the case where we are pulling data in on pages only 1139 * and as such no data is present in the skb header. 1140 * 1141 * In addition if skb is not at least 60 bytes we need to pad it so that 1142 * it is large enough to qualify as a valid Ethernet frame. 1143 * 1144 * Returns true if an error was encountered and skb was freed. 1145 **/ 1146 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) 1147 { 1148 /* if eth_skb_pad returns an error the skb was freed */ 1149 if (eth_skb_pad(skb)) 1150 return true; 1151 1152 return false; 1153 } 1154 1155 /** 1156 * iavf_reuse_rx_page - page flip buffer and store it back on the ring 1157 * @rx_ring: rx descriptor ring to store buffers on 1158 * @old_buff: donor buffer to have page reused 1159 * 1160 * Synchronizes page for reuse by the adapter 1161 **/ 1162 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, 1163 struct iavf_rx_buffer *old_buff) 1164 { 1165 struct iavf_rx_buffer *new_buff; 1166 u16 nta = rx_ring->next_to_alloc; 1167 1168 new_buff = &rx_ring->rx_bi[nta]; 1169 1170 /* update, and store next to alloc */ 1171 nta++; 1172 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1173 1174 /* transfer page from old buffer to new buffer */ 1175 new_buff->dma = old_buff->dma; 1176 new_buff->page = old_buff->page; 1177 new_buff->page_offset = old_buff->page_offset; 1178 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1179 } 1180 1181 /** 1182 * iavf_can_reuse_rx_page - Determine if this page can be reused by 1183 * the adapter for another receive 1184 * 1185 * @rx_buffer: buffer containing the page 1186 * 1187 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1188 * an unused region in the page. 1189 * 1190 * For small pages, @truesize will be a constant value, half the size 1191 * of the memory at page. We'll attempt to alternate between high and 1192 * low halves of the page, with one half ready for use by the hardware 1193 * and the other half being consumed by the stack. We use the page 1194 * ref count to determine whether the stack has finished consuming the 1195 * portion of this page that was passed up with a previous packet. If 1196 * the page ref count is >1, we'll assume the "other" half page is 1197 * still busy, and this page cannot be reused. 1198 * 1199 * For larger pages, @truesize will be the actual space used by the 1200 * received packet (adjusted upward to an even multiple of the cache 1201 * line size). This will advance through the page by the amount 1202 * actually consumed by the received packets while there is still 1203 * space for a buffer. Each region of larger pages will be used at 1204 * most once, after which the page will not be reused. 1205 * 1206 * In either case, if the page is reusable its refcount is increased. 1207 **/ 1208 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) 1209 { 1210 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1211 struct page *page = rx_buffer->page; 1212 1213 /* Is any reuse possible? */ 1214 if (!dev_page_is_reusable(page)) 1215 return false; 1216 1217 #if (PAGE_SIZE < 8192) 1218 /* if we are only owner of page we can reuse it */ 1219 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1220 return false; 1221 #else 1222 #define IAVF_LAST_OFFSET \ 1223 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) 1224 if (rx_buffer->page_offset > IAVF_LAST_OFFSET) 1225 return false; 1226 #endif 1227 1228 /* If we have drained the page fragment pool we need to update 1229 * the pagecnt_bias and page count so that we fully restock the 1230 * number of references the driver holds. 1231 */ 1232 if (unlikely(!pagecnt_bias)) { 1233 page_ref_add(page, USHRT_MAX); 1234 rx_buffer->pagecnt_bias = USHRT_MAX; 1235 } 1236 1237 return true; 1238 } 1239 1240 /** 1241 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff 1242 * @rx_ring: rx descriptor ring to transact packets on 1243 * @rx_buffer: buffer containing page to add 1244 * @skb: sk_buff to place the data into 1245 * @size: packet length from rx_desc 1246 * 1247 * This function will add the data contained in rx_buffer->page to the skb. 1248 * It will just attach the page as a frag to the skb. 1249 * 1250 * The function will then update the page offset. 1251 **/ 1252 static void iavf_add_rx_frag(struct iavf_ring *rx_ring, 1253 struct iavf_rx_buffer *rx_buffer, 1254 struct sk_buff *skb, 1255 unsigned int size) 1256 { 1257 #if (PAGE_SIZE < 8192) 1258 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1259 #else 1260 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); 1261 #endif 1262 1263 if (!size) 1264 return; 1265 1266 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1267 rx_buffer->page_offset, size, truesize); 1268 1269 /* page is being used so we must update the page offset */ 1270 #if (PAGE_SIZE < 8192) 1271 rx_buffer->page_offset ^= truesize; 1272 #else 1273 rx_buffer->page_offset += truesize; 1274 #endif 1275 } 1276 1277 /** 1278 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1279 * @rx_ring: rx descriptor ring to transact packets on 1280 * @size: size of buffer to add to skb 1281 * 1282 * This function will pull an Rx buffer from the ring and synchronize it 1283 * for use by the CPU. 1284 */ 1285 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, 1286 const unsigned int size) 1287 { 1288 struct iavf_rx_buffer *rx_buffer; 1289 1290 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1291 prefetchw(rx_buffer->page); 1292 if (!size) 1293 return rx_buffer; 1294 1295 /* we are reusing so sync this buffer for CPU use */ 1296 dma_sync_single_range_for_cpu(rx_ring->dev, 1297 rx_buffer->dma, 1298 rx_buffer->page_offset, 1299 size, 1300 DMA_FROM_DEVICE); 1301 1302 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1303 rx_buffer->pagecnt_bias--; 1304 1305 return rx_buffer; 1306 } 1307 1308 /** 1309 * iavf_construct_skb - Allocate skb and populate it 1310 * @rx_ring: rx descriptor ring to transact packets on 1311 * @rx_buffer: rx buffer to pull data from 1312 * @size: size of buffer to add to skb 1313 * 1314 * This function allocates an skb. It then populates it with the page 1315 * data from the current receive descriptor, taking care to set up the 1316 * skb correctly. 1317 */ 1318 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, 1319 struct iavf_rx_buffer *rx_buffer, 1320 unsigned int size) 1321 { 1322 void *va; 1323 #if (PAGE_SIZE < 8192) 1324 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1325 #else 1326 unsigned int truesize = SKB_DATA_ALIGN(size); 1327 #endif 1328 unsigned int headlen; 1329 struct sk_buff *skb; 1330 1331 if (!rx_buffer) 1332 return NULL; 1333 /* prefetch first cache line of first page */ 1334 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1335 net_prefetch(va); 1336 1337 /* allocate a skb to store the frags */ 1338 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1339 IAVF_RX_HDR_SIZE, 1340 GFP_ATOMIC | __GFP_NOWARN); 1341 if (unlikely(!skb)) 1342 return NULL; 1343 1344 /* Determine available headroom for copy */ 1345 headlen = size; 1346 if (headlen > IAVF_RX_HDR_SIZE) 1347 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE); 1348 1349 /* align pull length to size of long to optimize memcpy performance */ 1350 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 1351 1352 /* update all of the pointers */ 1353 size -= headlen; 1354 if (size) { 1355 skb_add_rx_frag(skb, 0, rx_buffer->page, 1356 rx_buffer->page_offset + headlen, 1357 size, truesize); 1358 1359 /* buffer is used by skb, update page_offset */ 1360 #if (PAGE_SIZE < 8192) 1361 rx_buffer->page_offset ^= truesize; 1362 #else 1363 rx_buffer->page_offset += truesize; 1364 #endif 1365 } else { 1366 /* buffer is unused, reset bias back to rx_buffer */ 1367 rx_buffer->pagecnt_bias++; 1368 } 1369 1370 return skb; 1371 } 1372 1373 /** 1374 * iavf_build_skb - Build skb around an existing buffer 1375 * @rx_ring: Rx descriptor ring to transact packets on 1376 * @rx_buffer: Rx buffer to pull data from 1377 * @size: size of buffer to add to skb 1378 * 1379 * This function builds an skb around an existing Rx buffer, taking care 1380 * to set up the skb correctly and avoid any memcpy overhead. 1381 */ 1382 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, 1383 struct iavf_rx_buffer *rx_buffer, 1384 unsigned int size) 1385 { 1386 void *va; 1387 #if (PAGE_SIZE < 8192) 1388 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; 1389 #else 1390 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1391 SKB_DATA_ALIGN(IAVF_SKB_PAD + size); 1392 #endif 1393 struct sk_buff *skb; 1394 1395 if (!rx_buffer || !size) 1396 return NULL; 1397 /* prefetch first cache line of first page */ 1398 va = page_address(rx_buffer->page) + rx_buffer->page_offset; 1399 net_prefetch(va); 1400 1401 /* build an skb around the page buffer */ 1402 skb = napi_build_skb(va - IAVF_SKB_PAD, truesize); 1403 if (unlikely(!skb)) 1404 return NULL; 1405 1406 /* update pointers within the skb to store the data */ 1407 skb_reserve(skb, IAVF_SKB_PAD); 1408 __skb_put(skb, size); 1409 1410 /* buffer is used by skb, update page_offset */ 1411 #if (PAGE_SIZE < 8192) 1412 rx_buffer->page_offset ^= truesize; 1413 #else 1414 rx_buffer->page_offset += truesize; 1415 #endif 1416 1417 return skb; 1418 } 1419 1420 /** 1421 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free 1422 * @rx_ring: rx descriptor ring to transact packets on 1423 * @rx_buffer: rx buffer to pull data from 1424 * 1425 * This function will clean up the contents of the rx_buffer. It will 1426 * either recycle the buffer or unmap it and free the associated resources. 1427 */ 1428 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, 1429 struct iavf_rx_buffer *rx_buffer) 1430 { 1431 if (!rx_buffer) 1432 return; 1433 1434 if (iavf_can_reuse_rx_page(rx_buffer)) { 1435 /* hand second half of page back to the ring */ 1436 iavf_reuse_rx_page(rx_ring, rx_buffer); 1437 rx_ring->rx_stats.page_reuse_count++; 1438 } else { 1439 /* we are not reusing the buffer so unmap it */ 1440 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1441 iavf_rx_pg_size(rx_ring), 1442 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); 1443 __page_frag_cache_drain(rx_buffer->page, 1444 rx_buffer->pagecnt_bias); 1445 } 1446 1447 /* clear contents of buffer_info */ 1448 rx_buffer->page = NULL; 1449 } 1450 1451 /** 1452 * iavf_is_non_eop - process handling of non-EOP buffers 1453 * @rx_ring: Rx ring being processed 1454 * @rx_desc: Rx descriptor for current buffer 1455 * @skb: Current socket buffer containing buffer in progress 1456 * 1457 * This function updates next to clean. If the buffer is an EOP buffer 1458 * this function exits returning false, otherwise it will place the 1459 * sk_buff in the next buffer to be chained and return true indicating 1460 * that this is in fact a non-EOP buffer. 1461 **/ 1462 static bool iavf_is_non_eop(struct iavf_ring *rx_ring, 1463 union iavf_rx_desc *rx_desc, 1464 struct sk_buff *skb) 1465 { 1466 u32 ntc = rx_ring->next_to_clean + 1; 1467 1468 /* fetch, update, and store next to clean */ 1469 ntc = (ntc < rx_ring->count) ? ntc : 0; 1470 rx_ring->next_to_clean = ntc; 1471 1472 prefetch(IAVF_RX_DESC(rx_ring, ntc)); 1473 1474 /* if we are the last buffer then there is nothing else to do */ 1475 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) 1476 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) 1477 return false; 1478 1479 rx_ring->rx_stats.non_eop_descs++; 1480 1481 return true; 1482 } 1483 1484 /** 1485 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 1486 * @rx_ring: rx descriptor ring to transact packets on 1487 * @budget: Total limit on number of packets to process 1488 * 1489 * This function provides a "bounce buffer" approach to Rx interrupt 1490 * processing. The advantage to this is that on systems that have 1491 * expensive overhead for IOMMU access this provides a means of avoiding 1492 * it by maintaining the mapping of the page to the system. 1493 * 1494 * Returns amount of work completed 1495 **/ 1496 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) 1497 { 1498 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1499 struct sk_buff *skb = rx_ring->skb; 1500 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); 1501 bool failure = false; 1502 1503 while (likely(total_rx_packets < (unsigned int)budget)) { 1504 struct iavf_rx_buffer *rx_buffer; 1505 union iavf_rx_desc *rx_desc; 1506 unsigned int size; 1507 u16 vlan_tag = 0; 1508 u8 rx_ptype; 1509 u64 qword; 1510 1511 /* return some buffers to hardware, one at a time is too slow */ 1512 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { 1513 failure = failure || 1514 iavf_alloc_rx_buffers(rx_ring, cleaned_count); 1515 cleaned_count = 0; 1516 } 1517 1518 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1519 1520 /* status_error_len will always be zero for unused descriptors 1521 * because it's cleared in cleanup, and overlaps with hdr_addr 1522 * which is always zero because packet split isn't used, if the 1523 * hardware wrote DD then the length will be non-zero 1524 */ 1525 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1526 1527 /* This memory barrier is needed to keep us from reading 1528 * any other fields out of the rx_desc until we have 1529 * verified the descriptor has been written back. 1530 */ 1531 dma_rmb(); 1532 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) 1533 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) 1534 break; 1535 1536 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> 1537 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; 1538 1539 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); 1540 rx_buffer = iavf_get_rx_buffer(rx_ring, size); 1541 1542 /* retrieve a buffer from the ring */ 1543 if (skb) 1544 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1545 else if (ring_uses_build_skb(rx_ring)) 1546 skb = iavf_build_skb(rx_ring, rx_buffer, size); 1547 else 1548 skb = iavf_construct_skb(rx_ring, rx_buffer, size); 1549 1550 /* exit if we failed to retrieve a buffer */ 1551 if (!skb) { 1552 rx_ring->rx_stats.alloc_buff_failed++; 1553 if (rx_buffer && size) 1554 rx_buffer->pagecnt_bias++; 1555 break; 1556 } 1557 1558 iavf_put_rx_buffer(rx_ring, rx_buffer); 1559 cleaned_count++; 1560 1561 if (iavf_is_non_eop(rx_ring, rx_desc, skb)) 1562 continue; 1563 1564 /* ERR_MASK will only have valid bits if EOP set, and 1565 * what we are doing here is actually checking 1566 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1567 * the error field 1568 */ 1569 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { 1570 dev_kfree_skb_any(skb); 1571 skb = NULL; 1572 continue; 1573 } 1574 1575 if (iavf_cleanup_headers(rx_ring, skb)) { 1576 skb = NULL; 1577 continue; 1578 } 1579 1580 /* probably a little skewed due to removing CRC */ 1581 total_rx_bytes += skb->len; 1582 1583 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1584 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> 1585 IAVF_RXD_QW1_PTYPE_SHIFT; 1586 1587 /* populate checksum, VLAN, and protocol */ 1588 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 1589 1590 if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) && 1591 rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) 1592 vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1); 1593 if (rx_desc->wb.qword2.ext_status & 1594 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) && 1595 rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) 1596 vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2); 1597 1598 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 1599 iavf_receive_skb(rx_ring, skb, vlan_tag); 1600 skb = NULL; 1601 1602 /* update budget accounting */ 1603 total_rx_packets++; 1604 } 1605 1606 rx_ring->skb = skb; 1607 1608 u64_stats_update_begin(&rx_ring->syncp); 1609 rx_ring->stats.packets += total_rx_packets; 1610 rx_ring->stats.bytes += total_rx_bytes; 1611 u64_stats_update_end(&rx_ring->syncp); 1612 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1613 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1614 1615 /* guarantee a trip back through this routine if there was a failure */ 1616 return failure ? budget : (int)total_rx_packets; 1617 } 1618 1619 static inline u32 iavf_buildreg_itr(const int type, u16 itr) 1620 { 1621 u32 val; 1622 1623 /* We don't bother with setting the CLEARPBA bit as the data sheet 1624 * points out doing so is "meaningless since it was already 1625 * auto-cleared". The auto-clearing happens when the interrupt is 1626 * asserted. 1627 * 1628 * Hardware errata 28 for also indicates that writing to a 1629 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 1630 * an event in the PBA anyway so we need to rely on the automask 1631 * to hold pending events for us until the interrupt is re-enabled 1632 * 1633 * The itr value is reported in microseconds, and the register 1634 * value is recorded in 2 microsecond units. For this reason we 1635 * only need to shift by the interval shift - 1 instead of the 1636 * full value. 1637 */ 1638 itr &= IAVF_ITR_MASK; 1639 1640 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 1641 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | 1642 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); 1643 1644 return val; 1645 } 1646 1647 /* a small macro to shorten up some long lines */ 1648 #define INTREG IAVF_VFINT_DYN_CTLN1 1649 1650 /* The act of updating the ITR will cause it to immediately trigger. In order 1651 * to prevent this from throwing off adaptive update statistics we defer the 1652 * update so that it can only happen so often. So after either Tx or Rx are 1653 * updated we make the adaptive scheme wait until either the ITR completely 1654 * expires via the next_update expiration or we have been through at least 1655 * 3 interrupts. 1656 */ 1657 #define ITR_COUNTDOWN_START 3 1658 1659 /** 1660 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt 1661 * @vsi: the VSI we care about 1662 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1663 * 1664 **/ 1665 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, 1666 struct iavf_q_vector *q_vector) 1667 { 1668 struct iavf_hw *hw = &vsi->back->hw; 1669 u32 intval; 1670 1671 /* These will do nothing if dynamic updates are not enabled */ 1672 iavf_update_itr(q_vector, &q_vector->tx); 1673 iavf_update_itr(q_vector, &q_vector->rx); 1674 1675 /* This block of logic allows us to get away with only updating 1676 * one ITR value with each interrupt. The idea is to perform a 1677 * pseudo-lazy update with the following criteria. 1678 * 1679 * 1. Rx is given higher priority than Tx if both are in same state 1680 * 2. If we must reduce an ITR that is given highest priority. 1681 * 3. We then give priority to increasing ITR based on amount. 1682 */ 1683 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 1684 /* Rx ITR needs to be reduced, this is highest priority */ 1685 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1686 q_vector->rx.target_itr); 1687 q_vector->rx.current_itr = q_vector->rx.target_itr; 1688 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1689 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 1690 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 1691 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 1692 /* Tx ITR needs to be reduced, this is second priority 1693 * Tx ITR needs to be increased more than Rx, fourth priority 1694 */ 1695 intval = iavf_buildreg_itr(IAVF_TX_ITR, 1696 q_vector->tx.target_itr); 1697 q_vector->tx.current_itr = q_vector->tx.target_itr; 1698 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1699 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 1700 /* Rx ITR needs to be increased, third priority */ 1701 intval = iavf_buildreg_itr(IAVF_RX_ITR, 1702 q_vector->rx.target_itr); 1703 q_vector->rx.current_itr = q_vector->rx.target_itr; 1704 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1705 } else { 1706 /* No ITR update, lowest priority */ 1707 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); 1708 if (q_vector->itr_countdown) 1709 q_vector->itr_countdown--; 1710 } 1711 1712 if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) 1713 wr32(hw, INTREG(q_vector->reg_idx), intval); 1714 } 1715 1716 /** 1717 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine 1718 * @napi: napi struct with our devices info in it 1719 * @budget: amount of work driver is allowed to do this pass, in packets 1720 * 1721 * This function will clean all queues associated with a q_vector. 1722 * 1723 * Returns the amount of work done 1724 **/ 1725 int iavf_napi_poll(struct napi_struct *napi, int budget) 1726 { 1727 struct iavf_q_vector *q_vector = 1728 container_of(napi, struct iavf_q_vector, napi); 1729 struct iavf_vsi *vsi = q_vector->vsi; 1730 struct iavf_ring *ring; 1731 bool clean_complete = true; 1732 bool arm_wb = false; 1733 int budget_per_ring; 1734 int work_done = 0; 1735 1736 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { 1737 napi_complete(napi); 1738 return 0; 1739 } 1740 1741 /* Since the actual Tx work is minimal, we can give the Tx a larger 1742 * budget and be more aggressive about cleaning up the Tx descriptors. 1743 */ 1744 iavf_for_each_ring(ring, q_vector->tx) { 1745 if (!iavf_clean_tx_irq(vsi, ring, budget)) { 1746 clean_complete = false; 1747 continue; 1748 } 1749 arm_wb |= ring->arm_wb; 1750 ring->arm_wb = false; 1751 } 1752 1753 /* Handle case where we are called by netpoll with a budget of 0 */ 1754 if (budget <= 0) 1755 goto tx_only; 1756 1757 /* We attempt to distribute budget to each Rx queue fairly, but don't 1758 * allow the budget to go below 1 because that would exit polling early. 1759 */ 1760 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1761 1762 iavf_for_each_ring(ring, q_vector->rx) { 1763 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); 1764 1765 work_done += cleaned; 1766 /* if we clean as many as budgeted, we must not be done */ 1767 if (cleaned >= budget_per_ring) 1768 clean_complete = false; 1769 } 1770 1771 /* If work not completed, return budget and polling will return */ 1772 if (!clean_complete) { 1773 int cpu_id = smp_processor_id(); 1774 1775 /* It is possible that the interrupt affinity has changed but, 1776 * if the cpu is pegged at 100%, polling will never exit while 1777 * traffic continues and the interrupt will be stuck on this 1778 * cpu. We check to make sure affinity is correct before we 1779 * continue to poll, otherwise we must stop polling so the 1780 * interrupt can move to the correct cpu. 1781 */ 1782 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 1783 /* Tell napi that we are done polling */ 1784 napi_complete_done(napi, work_done); 1785 1786 /* Force an interrupt */ 1787 iavf_force_wb(vsi, q_vector); 1788 1789 /* Return budget-1 so that polling stops */ 1790 return budget - 1; 1791 } 1792 tx_only: 1793 if (arm_wb) { 1794 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 1795 iavf_enable_wb_on_itr(vsi, q_vector); 1796 } 1797 return budget; 1798 } 1799 1800 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) 1801 q_vector->arm_wb_state = false; 1802 1803 /* Exit the polling mode, but don't re-enable interrupts if stack might 1804 * poll us due to busy-polling 1805 */ 1806 if (likely(napi_complete_done(napi, work_done))) 1807 iavf_update_enable_itr(vsi, q_vector); 1808 1809 return min_t(int, work_done, budget - 1); 1810 } 1811 1812 /** 1813 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 1814 * @skb: send buffer 1815 * @tx_ring: ring to send buffer on 1816 * @flags: the tx flags to be set 1817 * 1818 * Checks the skb and set up correspondingly several generic transmit flags 1819 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 1820 * 1821 * Returns error code indicate the frame should be dropped upon error and the 1822 * otherwise returns 0 to indicate the flags has been set properly. 1823 **/ 1824 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb, 1825 struct iavf_ring *tx_ring, u32 *flags) 1826 { 1827 u32 tx_flags = 0; 1828 1829 1830 /* stack will only request hardware VLAN insertion offload for protocols 1831 * that the driver supports and has enabled 1832 */ 1833 if (!skb_vlan_tag_present(skb)) 1834 return; 1835 1836 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; 1837 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) { 1838 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN; 1839 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) { 1840 tx_flags |= IAVF_TX_FLAGS_HW_VLAN; 1841 } else { 1842 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n"); 1843 return; 1844 } 1845 1846 *flags = tx_flags; 1847 } 1848 1849 /** 1850 * iavf_tso - set up the tso context descriptor 1851 * @first: pointer to first Tx buffer for xmit 1852 * @hdr_len: ptr to the size of the packet header 1853 * @cd_type_cmd_tso_mss: Quad Word 1 1854 * 1855 * Returns 0 if no TSO can happen, 1 if tso is going, or error 1856 **/ 1857 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, 1858 u64 *cd_type_cmd_tso_mss) 1859 { 1860 struct sk_buff *skb = first->skb; 1861 u64 cd_cmd, cd_tso_len, cd_mss; 1862 union { 1863 struct iphdr *v4; 1864 struct ipv6hdr *v6; 1865 unsigned char *hdr; 1866 } ip; 1867 union { 1868 struct tcphdr *tcp; 1869 struct udphdr *udp; 1870 unsigned char *hdr; 1871 } l4; 1872 u32 paylen, l4_offset; 1873 u16 gso_segs, gso_size; 1874 int err; 1875 1876 if (skb->ip_summed != CHECKSUM_PARTIAL) 1877 return 0; 1878 1879 if (!skb_is_gso(skb)) 1880 return 0; 1881 1882 err = skb_cow_head(skb, 0); 1883 if (err < 0) 1884 return err; 1885 1886 ip.hdr = skb_network_header(skb); 1887 l4.hdr = skb_transport_header(skb); 1888 1889 /* initialize outer IP header fields */ 1890 if (ip.v4->version == 4) { 1891 ip.v4->tot_len = 0; 1892 ip.v4->check = 0; 1893 } else { 1894 ip.v6->payload_len = 0; 1895 } 1896 1897 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1898 SKB_GSO_GRE_CSUM | 1899 SKB_GSO_IPXIP4 | 1900 SKB_GSO_IPXIP6 | 1901 SKB_GSO_UDP_TUNNEL | 1902 SKB_GSO_UDP_TUNNEL_CSUM)) { 1903 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 1904 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 1905 l4.udp->len = 0; 1906 1907 /* determine offset of outer transport header */ 1908 l4_offset = l4.hdr - skb->data; 1909 1910 /* remove payload length from outer checksum */ 1911 paylen = skb->len - l4_offset; 1912 csum_replace_by_diff(&l4.udp->check, 1913 (__force __wsum)htonl(paylen)); 1914 } 1915 1916 /* reset pointers to inner headers */ 1917 ip.hdr = skb_inner_network_header(skb); 1918 l4.hdr = skb_inner_transport_header(skb); 1919 1920 /* initialize inner IP header fields */ 1921 if (ip.v4->version == 4) { 1922 ip.v4->tot_len = 0; 1923 ip.v4->check = 0; 1924 } else { 1925 ip.v6->payload_len = 0; 1926 } 1927 } 1928 1929 /* determine offset of inner transport header */ 1930 l4_offset = l4.hdr - skb->data; 1931 /* remove payload length from inner checksum */ 1932 paylen = skb->len - l4_offset; 1933 1934 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1935 csum_replace_by_diff(&l4.udp->check, 1936 (__force __wsum)htonl(paylen)); 1937 /* compute length of UDP segmentation header */ 1938 *hdr_len = (u8)sizeof(l4.udp) + l4_offset; 1939 } else { 1940 csum_replace_by_diff(&l4.tcp->check, 1941 (__force __wsum)htonl(paylen)); 1942 /* compute length of TCP segmentation header */ 1943 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset); 1944 } 1945 1946 /* pull values out of skb_shinfo */ 1947 gso_size = skb_shinfo(skb)->gso_size; 1948 gso_segs = skb_shinfo(skb)->gso_segs; 1949 1950 /* update GSO size and bytecount with header size */ 1951 first->gso_segs = gso_segs; 1952 first->bytecount += (first->gso_segs - 1) * *hdr_len; 1953 1954 /* find the field values */ 1955 cd_cmd = IAVF_TX_CTX_DESC_TSO; 1956 cd_tso_len = skb->len - *hdr_len; 1957 cd_mss = gso_size; 1958 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | 1959 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | 1960 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); 1961 return 1; 1962 } 1963 1964 /** 1965 * iavf_tx_enable_csum - Enable Tx checksum offloads 1966 * @skb: send buffer 1967 * @tx_flags: pointer to Tx flags currently set 1968 * @td_cmd: Tx descriptor command bits to set 1969 * @td_offset: Tx descriptor header offsets to set 1970 * @tx_ring: Tx descriptor ring 1971 * @cd_tunneling: ptr to context desc bits 1972 **/ 1973 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 1974 u32 *td_cmd, u32 *td_offset, 1975 struct iavf_ring *tx_ring, 1976 u32 *cd_tunneling) 1977 { 1978 union { 1979 struct iphdr *v4; 1980 struct ipv6hdr *v6; 1981 unsigned char *hdr; 1982 } ip; 1983 union { 1984 struct tcphdr *tcp; 1985 struct udphdr *udp; 1986 unsigned char *hdr; 1987 } l4; 1988 unsigned char *exthdr; 1989 u32 offset, cmd = 0; 1990 __be16 frag_off; 1991 u8 l4_proto = 0; 1992 1993 if (skb->ip_summed != CHECKSUM_PARTIAL) 1994 return 0; 1995 1996 ip.hdr = skb_network_header(skb); 1997 l4.hdr = skb_transport_header(skb); 1998 1999 /* compute outer L2 header size */ 2000 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; 2001 2002 if (skb->encapsulation) { 2003 u32 tunnel = 0; 2004 /* define outer network header type */ 2005 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2006 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2007 IAVF_TX_CTX_EXT_IP_IPV4 : 2008 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; 2009 2010 l4_proto = ip.v4->protocol; 2011 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2012 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; 2013 2014 exthdr = ip.hdr + sizeof(*ip.v6); 2015 l4_proto = ip.v6->nexthdr; 2016 if (l4.hdr != exthdr) 2017 ipv6_skip_exthdr(skb, exthdr - skb->data, 2018 &l4_proto, &frag_off); 2019 } 2020 2021 /* define outer transport */ 2022 switch (l4_proto) { 2023 case IPPROTO_UDP: 2024 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; 2025 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2026 break; 2027 case IPPROTO_GRE: 2028 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; 2029 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2030 break; 2031 case IPPROTO_IPIP: 2032 case IPPROTO_IPV6: 2033 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; 2034 l4.hdr = skb_inner_network_header(skb); 2035 break; 2036 default: 2037 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2038 return -1; 2039 2040 skb_checksum_help(skb); 2041 return 0; 2042 } 2043 2044 /* compute outer L3 header size */ 2045 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2046 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2047 2048 /* switch IP header pointer from outer to inner header */ 2049 ip.hdr = skb_inner_network_header(skb); 2050 2051 /* compute tunnel header size */ 2052 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2053 IAVF_TXD_CTX_QW0_NATLEN_SHIFT; 2054 2055 /* indicate if we need to offload outer UDP header */ 2056 if ((*tx_flags & IAVF_TX_FLAGS_TSO) && 2057 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2058 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2059 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; 2060 2061 /* record tunnel offload values */ 2062 *cd_tunneling |= tunnel; 2063 2064 /* switch L4 header pointer from outer to inner */ 2065 l4.hdr = skb_inner_transport_header(skb); 2066 l4_proto = 0; 2067 2068 /* reset type as we transition from outer to inner headers */ 2069 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); 2070 if (ip.v4->version == 4) 2071 *tx_flags |= IAVF_TX_FLAGS_IPV4; 2072 if (ip.v6->version == 6) 2073 *tx_flags |= IAVF_TX_FLAGS_IPV6; 2074 } 2075 2076 /* Enable IP checksum offloads */ 2077 if (*tx_flags & IAVF_TX_FLAGS_IPV4) { 2078 l4_proto = ip.v4->protocol; 2079 /* the stack computes the IP header already, the only time we 2080 * need the hardware to recompute it is in the case of TSO. 2081 */ 2082 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? 2083 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : 2084 IAVF_TX_DESC_CMD_IIPT_IPV4; 2085 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { 2086 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; 2087 2088 exthdr = ip.hdr + sizeof(*ip.v6); 2089 l4_proto = ip.v6->nexthdr; 2090 if (l4.hdr != exthdr) 2091 ipv6_skip_exthdr(skb, exthdr - skb->data, 2092 &l4_proto, &frag_off); 2093 } 2094 2095 /* compute inner L3 header size */ 2096 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; 2097 2098 /* Enable L4 checksum offloads */ 2099 switch (l4_proto) { 2100 case IPPROTO_TCP: 2101 /* enable checksum offloads */ 2102 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; 2103 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2104 break; 2105 case IPPROTO_SCTP: 2106 /* enable SCTP checksum offload */ 2107 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; 2108 offset |= (sizeof(struct sctphdr) >> 2) << 2109 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2110 break; 2111 case IPPROTO_UDP: 2112 /* enable UDP checksum offload */ 2113 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; 2114 offset |= (sizeof(struct udphdr) >> 2) << 2115 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2116 break; 2117 default: 2118 if (*tx_flags & IAVF_TX_FLAGS_TSO) 2119 return -1; 2120 skb_checksum_help(skb); 2121 return 0; 2122 } 2123 2124 *td_cmd |= cmd; 2125 *td_offset |= offset; 2126 2127 return 1; 2128 } 2129 2130 /** 2131 * iavf_create_tx_ctx - Build the Tx context descriptor 2132 * @tx_ring: ring to create the descriptor on 2133 * @cd_type_cmd_tso_mss: Quad Word 1 2134 * @cd_tunneling: Quad Word 0 - bits 0-31 2135 * @cd_l2tag2: Quad Word 0 - bits 32-63 2136 **/ 2137 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, 2138 const u64 cd_type_cmd_tso_mss, 2139 const u32 cd_tunneling, const u32 cd_l2tag2) 2140 { 2141 struct iavf_tx_context_desc *context_desc; 2142 int i = tx_ring->next_to_use; 2143 2144 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && 2145 !cd_tunneling && !cd_l2tag2) 2146 return; 2147 2148 /* grab the next descriptor */ 2149 context_desc = IAVF_TX_CTXTDESC(tx_ring, i); 2150 2151 i++; 2152 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2153 2154 /* cpu_to_le32 and assign to struct fields */ 2155 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2156 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2157 context_desc->rsvd = cpu_to_le16(0); 2158 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2159 } 2160 2161 /** 2162 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet 2163 * @skb: send buffer 2164 * 2165 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 2166 * and so we need to figure out the cases where we need to linearize the skb. 2167 * 2168 * For TSO we need to count the TSO header and segment payload separately. 2169 * As such we need to check cases where we have 7 fragments or more as we 2170 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 2171 * the segment payload in the first descriptor, and another 7 for the 2172 * fragments. 2173 **/ 2174 bool __iavf_chk_linearize(struct sk_buff *skb) 2175 { 2176 const skb_frag_t *frag, *stale; 2177 int nr_frags, sum; 2178 2179 /* no need to check if number of frags is less than 7 */ 2180 nr_frags = skb_shinfo(skb)->nr_frags; 2181 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) 2182 return false; 2183 2184 /* We need to walk through the list and validate that each group 2185 * of 6 fragments totals at least gso_size. 2186 */ 2187 nr_frags -= IAVF_MAX_BUFFER_TXD - 2; 2188 frag = &skb_shinfo(skb)->frags[0]; 2189 2190 /* Initialize size to the negative value of gso_size minus 1. We 2191 * use this as the worst case scenerio in which the frag ahead 2192 * of us only provides one byte which is why we are limited to 6 2193 * descriptors for a single transmit as the header and previous 2194 * fragment are already consuming 2 descriptors. 2195 */ 2196 sum = 1 - skb_shinfo(skb)->gso_size; 2197 2198 /* Add size of frags 0 through 4 to create our initial sum */ 2199 sum += skb_frag_size(frag++); 2200 sum += skb_frag_size(frag++); 2201 sum += skb_frag_size(frag++); 2202 sum += skb_frag_size(frag++); 2203 sum += skb_frag_size(frag++); 2204 2205 /* Walk through fragments adding latest fragment, testing it, and 2206 * then removing stale fragments from the sum. 2207 */ 2208 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 2209 int stale_size = skb_frag_size(stale); 2210 2211 sum += skb_frag_size(frag++); 2212 2213 /* The stale fragment may present us with a smaller 2214 * descriptor than the actual fragment size. To account 2215 * for that we need to remove all the data on the front and 2216 * figure out what the remainder would be in the last 2217 * descriptor associated with the fragment. 2218 */ 2219 if (stale_size > IAVF_MAX_DATA_PER_TXD) { 2220 int align_pad = -(skb_frag_off(stale)) & 2221 (IAVF_MAX_READ_REQ_SIZE - 1); 2222 2223 sum -= align_pad; 2224 stale_size -= align_pad; 2225 2226 do { 2227 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2228 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; 2229 } while (stale_size > IAVF_MAX_DATA_PER_TXD); 2230 } 2231 2232 /* if sum is negative we failed to make sufficient progress */ 2233 if (sum < 0) 2234 return true; 2235 2236 if (!nr_frags--) 2237 break; 2238 2239 sum -= stale_size; 2240 } 2241 2242 return false; 2243 } 2244 2245 /** 2246 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions 2247 * @tx_ring: the ring to be checked 2248 * @size: the size buffer we want to assure is available 2249 * 2250 * Returns -EBUSY if a stop is needed, else 0 2251 **/ 2252 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) 2253 { 2254 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2255 /* Memory barrier before checking head and tail */ 2256 smp_mb(); 2257 2258 /* Check again in a case another CPU has just made room available. */ 2259 if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) 2260 return -EBUSY; 2261 2262 /* A reprieve! - use start_queue because it doesn't call schedule */ 2263 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2264 ++tx_ring->tx_stats.restart_queue; 2265 return 0; 2266 } 2267 2268 /** 2269 * iavf_tx_map - Build the Tx descriptor 2270 * @tx_ring: ring to send buffer on 2271 * @skb: send buffer 2272 * @first: first buffer info buffer to use 2273 * @tx_flags: collected send information 2274 * @hdr_len: size of the packet header 2275 * @td_cmd: the command field in the descriptor 2276 * @td_offset: offset for checksum or crc 2277 **/ 2278 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, 2279 struct iavf_tx_buffer *first, u32 tx_flags, 2280 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2281 { 2282 unsigned int data_len = skb->data_len; 2283 unsigned int size = skb_headlen(skb); 2284 skb_frag_t *frag; 2285 struct iavf_tx_buffer *tx_bi; 2286 struct iavf_tx_desc *tx_desc; 2287 u16 i = tx_ring->next_to_use; 2288 u32 td_tag = 0; 2289 dma_addr_t dma; 2290 2291 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { 2292 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; 2293 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2294 IAVF_TX_FLAGS_VLAN_SHIFT; 2295 } 2296 2297 first->tx_flags = tx_flags; 2298 2299 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2300 2301 tx_desc = IAVF_TX_DESC(tx_ring, i); 2302 tx_bi = first; 2303 2304 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2305 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2306 2307 if (dma_mapping_error(tx_ring->dev, dma)) 2308 goto dma_error; 2309 2310 /* record length, and DMA address */ 2311 dma_unmap_len_set(tx_bi, len, size); 2312 dma_unmap_addr_set(tx_bi, dma, dma); 2313 2314 /* align size to end of page */ 2315 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); 2316 tx_desc->buffer_addr = cpu_to_le64(dma); 2317 2318 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { 2319 tx_desc->cmd_type_offset_bsz = 2320 build_ctob(td_cmd, td_offset, 2321 max_data, td_tag); 2322 2323 tx_desc++; 2324 i++; 2325 2326 if (i == tx_ring->count) { 2327 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2328 i = 0; 2329 } 2330 2331 dma += max_data; 2332 size -= max_data; 2333 2334 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; 2335 tx_desc->buffer_addr = cpu_to_le64(dma); 2336 } 2337 2338 if (likely(!data_len)) 2339 break; 2340 2341 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2342 size, td_tag); 2343 2344 tx_desc++; 2345 i++; 2346 2347 if (i == tx_ring->count) { 2348 tx_desc = IAVF_TX_DESC(tx_ring, 0); 2349 i = 0; 2350 } 2351 2352 size = skb_frag_size(frag); 2353 data_len -= size; 2354 2355 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2356 DMA_TO_DEVICE); 2357 2358 tx_bi = &tx_ring->tx_bi[i]; 2359 } 2360 2361 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 2362 2363 i++; 2364 if (i == tx_ring->count) 2365 i = 0; 2366 2367 tx_ring->next_to_use = i; 2368 2369 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); 2370 2371 /* write last descriptor with RS and EOP bits */ 2372 td_cmd |= IAVF_TXD_CMD; 2373 tx_desc->cmd_type_offset_bsz = 2374 build_ctob(td_cmd, td_offset, size, td_tag); 2375 2376 skb_tx_timestamp(skb); 2377 2378 /* Force memory writes to complete before letting h/w know there 2379 * are new descriptors to fetch. 2380 * 2381 * We also use this memory barrier to make certain all of the 2382 * status bits have been updated before next_to_watch is written. 2383 */ 2384 wmb(); 2385 2386 /* set next_to_watch value indicating a packet is present */ 2387 first->next_to_watch = tx_desc; 2388 2389 /* notify HW of packet */ 2390 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 2391 writel(i, tx_ring->tail); 2392 } 2393 2394 return; 2395 2396 dma_error: 2397 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2398 2399 /* clear dma mappings for failed tx_bi map */ 2400 for (;;) { 2401 tx_bi = &tx_ring->tx_bi[i]; 2402 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); 2403 if (tx_bi == first) 2404 break; 2405 if (i == 0) 2406 i = tx_ring->count; 2407 i--; 2408 } 2409 2410 tx_ring->next_to_use = i; 2411 } 2412 2413 /** 2414 * iavf_xmit_frame_ring - Sends buffer on Tx ring 2415 * @skb: send buffer 2416 * @tx_ring: ring to send buffer on 2417 * 2418 * Returns NETDEV_TX_OK if sent, else an error code 2419 **/ 2420 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, 2421 struct iavf_ring *tx_ring) 2422 { 2423 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; 2424 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2425 struct iavf_tx_buffer *first; 2426 u32 td_offset = 0; 2427 u32 tx_flags = 0; 2428 __be16 protocol; 2429 u32 td_cmd = 0; 2430 u8 hdr_len = 0; 2431 int tso, count; 2432 2433 /* prefetch the data, we'll need it later */ 2434 prefetch(skb->data); 2435 2436 iavf_trace(xmit_frame_ring, skb, tx_ring); 2437 2438 count = iavf_xmit_descriptor_count(skb); 2439 if (iavf_chk_linearize(skb, count)) { 2440 if (__skb_linearize(skb)) { 2441 dev_kfree_skb_any(skb); 2442 return NETDEV_TX_OK; 2443 } 2444 count = iavf_txd_use_count(skb->len); 2445 tx_ring->tx_stats.tx_linearize++; 2446 } 2447 2448 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, 2449 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, 2450 * + 4 desc gap to avoid the cache line where head is, 2451 * + 1 desc for context descriptor, 2452 * otherwise try next time 2453 */ 2454 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2455 tx_ring->tx_stats.tx_busy++; 2456 return NETDEV_TX_BUSY; 2457 } 2458 2459 /* record the location of the first descriptor for this packet */ 2460 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2461 first->skb = skb; 2462 first->bytecount = skb->len; 2463 first->gso_segs = 1; 2464 2465 /* prepare the xmit flags */ 2466 iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags); 2467 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { 2468 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 << 2469 IAVF_TXD_CTX_QW1_CMD_SHIFT; 2470 cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> 2471 IAVF_TX_FLAGS_VLAN_SHIFT; 2472 } 2473 2474 /* obtain protocol of skb */ 2475 protocol = vlan_get_protocol(skb); 2476 2477 /* setup IPv4/IPv6 offloads */ 2478 if (protocol == htons(ETH_P_IP)) 2479 tx_flags |= IAVF_TX_FLAGS_IPV4; 2480 else if (protocol == htons(ETH_P_IPV6)) 2481 tx_flags |= IAVF_TX_FLAGS_IPV6; 2482 2483 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 2484 2485 if (tso < 0) 2486 goto out_drop; 2487 else if (tso) 2488 tx_flags |= IAVF_TX_FLAGS_TSO; 2489 2490 /* Always offload the checksum, since it's in the data descriptor */ 2491 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2492 tx_ring, &cd_tunneling); 2493 if (tso < 0) 2494 goto out_drop; 2495 2496 /* always enable CRC insertion offload */ 2497 td_cmd |= IAVF_TX_DESC_CMD_ICRC; 2498 2499 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2500 cd_tunneling, cd_l2tag2); 2501 2502 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2503 td_cmd, td_offset); 2504 2505 return NETDEV_TX_OK; 2506 2507 out_drop: 2508 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); 2509 dev_kfree_skb_any(first->skb); 2510 first->skb = NULL; 2511 return NETDEV_TX_OK; 2512 } 2513 2514 /** 2515 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2516 * @skb: send buffer 2517 * @netdev: network interface device structure 2518 * 2519 * Returns NETDEV_TX_OK if sent, else an error code 2520 **/ 2521 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2522 { 2523 struct iavf_adapter *adapter = netdev_priv(netdev); 2524 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; 2525 2526 /* hardware can't handle really short frames, hardware padding works 2527 * beyond this point 2528 */ 2529 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { 2530 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) 2531 return NETDEV_TX_OK; 2532 skb->len = IAVF_MIN_TX_LEN; 2533 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); 2534 } 2535 2536 return iavf_xmit_frame_ring(skb, tx_ring); 2537 } 2538